WO2014149582A1 - Forming fence conductors in trenches formed by a spacer etching technique - Google Patents

Forming fence conductors in trenches formed by a spacer etching technique Download PDF

Info

Publication number
WO2014149582A1
WO2014149582A1 PCT/US2014/019735 US2014019735W WO2014149582A1 WO 2014149582 A1 WO2014149582 A1 WO 2014149582A1 US 2014019735 W US2014019735 W US 2014019735W WO 2014149582 A1 WO2014149582 A1 WO 2014149582A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
trench
conductive material
depositing
nanometers
Prior art date
Application number
PCT/US2014/019735
Other languages
French (fr)
Inventor
Paul Fest
Original Assignee
Microchip Technology Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microchip Technology Incorporated filed Critical Microchip Technology Incorporated
Priority to CN201480014847.3A priority Critical patent/CN105051884A/en
Priority to KR1020157027523A priority patent/KR20150132232A/en
Priority to EP14710754.4A priority patent/EP2973679B1/en
Publication of WO2014149582A1 publication Critical patent/WO2014149582A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76816Aspects relating to the layout of the pattern or to the size of vias or trenches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76895Local interconnects; Local pads, as exemplified by patent document EP0896365
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present disclosure relates to semiconductor integrated circuit (IC) fabrication, and more particularly, to forming sub-lithographic patterns of conductive lines in the semiconductor die (e.g., integrated circuit die) during fabrication thereof.
  • IC semiconductor integrated circuit
  • a method for forming fence conductors in a semiconductor integrated circuit die may comprise the steps of: depositing a first dielectric on a face of a semiconductor substrate; creating at least one trench in the first dielectric; depositing a sacrificial film on the first dielectric including walls and a bottom of the at least one trench; removing portions of the sacrificial film from a face of the first dielectric and the bottom of the at least one trench, wherein only sacrificial films remain on the walls of the at least one trench; depositing a second dielectric between the sacrificial films on the walls of the at least one trench; removing the first and second dielectrics until top portions of the sacrificial film may be exposed between the first and second dielectrics; removing the sacrificial films between the first and second dielectrics leaving at least two narrow channels therein; depositing conductive material on the faces of the first and second dielectrics and into the at least two narrow channels; and removing portions of the conductive material on the faces of
  • after the step of removing portions of the conductive material on the faces of the first and second dielectrics may further comprise the step of separating portions of the conductive material in the at least two narrow channels into independent fence conductors.
  • after the step of removing portions of the sacrificial film from the face of the first dielectric and the bottom of the at least one trench may further comprise the step of removing the sacrificial film from portions of the walls of the at least one trench.
  • the step of depositing the first dielectric may comprise the step of depositing the first dielectric to a thickness of from about 100 to about 2000 nanometers on the face of the semiconductor substrate.
  • the step of creating the at least one trench comprises the step of creating the at the least one trench to a depth of from about 100 to about 2000 nanometers in the first dielectric.
  • the step of creating the at least one trench comprises the step of creating the at the least one trench having a width of from about 100 to about 2000 nanometers in the first dielectric.
  • the step of depositing the sacrificial film comprises the step of depositing the sacrificial film to a thickness of from about 100 to about 2000 nanometers.
  • the step of depositing the second dielectric comprises the step of depositing the second dielectric to a thickness of from about 100 to about 2000 nanometers.
  • the sacrificial film may be selected from the group consisting of SiN, Si0 2 and SiO x N y .
  • the conductive material may be selected from the group consisting of Al, Ag, Au, Fe, Ta, TaN, Ti and TiN.
  • the conductive material comprises copper (Cu).
  • the step of depositing a barrier layer in the at least one narrow channel may be before the step of depositing the conductive material therein.
  • the step of separating portions of the conductive material may comprise the step of separating portions of the conductive material with reactive-ion etching (RIE).
  • the RIE may be aggressive.
  • the method may comprise the steps of filling gaps created by the RIE with dielectric, and chemical mechanical planarization (CMP) polishing thereof.
  • a semiconductor die may comprise: a semiconductor substrate; a first dielectric on a face of the semiconductor substrate; at least one trench in the first dielectric; at least two narrow channels in the at least one trench formed with sacrificial films on the walls of the at least one trench and a second dielectric, wherein the second dielectric fills a space between the sacrificial films on the walls of the at least one trench, and whereby the sacrificial films may be removed thereby forming the at least two narrow channels; and a conductive material filling the at least two narrow channels; wherein the conductive material in the at least two narrow channels may be separated and used as fence conductors to connect active elements of said semiconductor die.
  • a plurality of fence conductors may be made by separating the conductive material in the at least two narrow channels into desired lengths.
  • the first dielectric may have a thickness from about 100 to about 2000 nanometers.
  • the at the least one trench may have a depth from about 100 to about 2000 nanometers and a width from about 100 to about 2000 nanometers.
  • the sacrificial films have a thickness of from about 100 to about 2000 nanometers.
  • the second dielectric may have a thickness from about 100 to about 2000 nanometers.
  • a barrier layer may be between the walls of the at least one narrow channel and the conductive material.
  • the conductive material may be copper.
  • Figure 1 illustrates a schematic plan view diagram of a semiconductor integrated circuit wafer comprising a plurality of semiconductor dice
  • Figures 2, 3, 3A and 3B illustrate schematic elevational diagrams of semiconductor fabrication steps for forming sub-lithographic patterns of conductive lines in a semiconductor die, according to specific example embodiments of this disclosure
  • Figure 4 illustrates a schematic plan view diagram of a plurality of sub-lithographic patterns of conductive lines formed in a semiconductor die, according to a specific example embodiment of this disclosure
  • Figure 5 illustrates a schematic plan view diagram of a plurality of sub-lithographic patterns of conductive lines formed in a semiconductor die, according to a specific example embodiment of this disclosure
  • Figure 6 illustrates a schematic plan view diagram of the plurality of sub-lithographic patterns of conductive lines shown in Figure 5 being prepared for separating the conductive lines from each other, according to a specific example embodiment of this disclosure
  • Figure 7 illustrates a schematic plan view diagram of the plurality of sub-lithographic patterns of conductive lines shown in Figures 5 and 6 with portions of the conductive lines removed to separate the conductive lines from each other, according to a specific example embodiment of this disclosure;
  • Figure 8 illustrates a schematic plan view diagram of a plurality of sub-lithographic patterns of conductive lines having various routing paths that are formed in a semiconductor die, according to another specific example embodiment of this disclosure
  • Figure 9 illustrates a schematic plan view diagram of a plurality of sub-lithographic patterns of conductive lines having various routing paths as shown in Figure 8 being prepared for separation into independent conductors in a semiconductor die, according to another specific example embodiment of this disclosure
  • Figure 10 illustrates a schematic plan view diagram of a plurality of sub-lithographic patterns of conductive lines having various routing paths as shown in Figures 8 and 9 after being separated into independent conductors in a semiconductor die, according to another specific example embodiment of this disclosure
  • Figure 1 1 illustrates a schematic process flow diagram for forming a plurality of sub- lithographic patterns of conductive lines in a semiconductor die, according to specific example embodiments of this disclosure.
  • Figure 12 illustrates a schematic process flow diagram for forming a plurality of sub- lithographic patterns of conductive lines in a semiconductor die, according to other specific example embodiments of this disclosure. While the present disclosure is susceptible to various modifications and alternative forms, specific example embodiments thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific example embodiments is not intended to limit the disclosure to the particular forms disclosed herein, but on the contrary, this disclosure is to cover all modifications and equivalents as defined by the appended claims.
  • a spacer etching process may be used to produce at least one trench in a first dielectric deposited onto a face of a semiconductor die.
  • a sacrificial film is then deposited to a desired thickness onto a face of the first dielectric, including walls and a bottom of the at least one trench. Then the sacrificial film is removed from the face of the first dielectric and the bottom of the at least one trench, leaving only the sacrificial film on the walls of the at least one trench. This may be accomplished by, for example but is not limited to, etching the sacrificial film from the face of the first dielectric and the bottom surface of the at least one trench.
  • Selected portions of the sacrificial film may also be selectively "broken" e.g., removed, during the aforementioned step where the gap fill step may create the break in the conductors.
  • a second dielectric is deposited over the face of the first dielectric and the sacrificial film on the walls of the trenches, wherein a gap between the sacrificial films on the walls of the at least one trench is filled in with the second dielectric. Then the second dielectric is removed by, for example but is not limited to, polishing, until the tops of the sacrificial films on the walls of the at least one trench are again exposed.
  • the sacrificial film may be removed by, for example but is not limited to, dip- out, where the dip-out process has good selectivity so as to not remove the dielectric material but effectively removes all of the sacrificial film from the very narrow channels remaining between the first dielectric walls and the second dielectric walls formed from the previous process step.
  • a slight etch of the dielectric material may round the top comers of these narrow channels that may improved fill thereof.
  • a conductive material fills in these very narrow channels to produce extremely thin fence conductors.
  • the face of the dielectric and tops of the extremely thin fence conductors may be planarized with, for example but is not limited to, a chemical mechanical planarization (CMP) process.
  • CMP chemical mechanical planarization
  • This sub-lithographic patterning of conductive lines may be produced in a fabrication process that is compatible with existing aluminum and copper backend processing. Portions of the fence conductors and surrounding insulating materials may be removed at appropriate locations (e.g., "broken") to produce desired conductor patterns comprising the fence conductors.
  • the trench depth helps in determining one dimension of the fence conductors, e.g., conductor height, and the thickness of the deposited sacrificial film determines a second dimension, e.g., conductor width. Lengths of the fence conductors are determined by where the continuous fence conductors are "broken,” e.g., separated, disconnections made therebetween, etc., from each other.
  • FIG. 1 depicted is a schematic plan view diagram of a semiconductor integrated circuit wafer comprising a plurality of semiconductor dice.
  • a silicon wafer 102 may be scribed into a plurality of semiconductor dice 104 for further processing to create planar transistors, diodes and conductors on each of the plurality of semiconductor dice 104. After all circuits have been fabricated on the plurality of semiconductor dice 104, the dice 104 are singulated (separated) and packaged into integrated circuits (not shown).
  • FIGs 2, 3, 3A and 3B depicted are schematic elevational diagrams of semiconductor fabrication steps for forming sub-lithographic patterns of conductive lines in a semiconductor die, according to specific example embodiments of this disclosure.
  • the first step (a) in forming fence conductors is shown in Figure 2 wherein a first dielectric 212 may be deposited on a surface of a semiconductor substrate 210 for each of the plurality of semiconductor dice 104.
  • the first dielectric 212 may have at least one trench 214 etched therein to a depth that helps determine a dimension, e.g., depth, of the desired fence conductors.
  • the at least one trench 214 comprises walls 216 and a bottom.
  • a sacrificial film 222 may be deposited over exposed surfaces of the first dielectric 212 and the at least one trench 214.
  • the sacrificial film 222 may be selectively etched from the top surface of the first dielectric 212 and the bottom of the at least one trench 214, leaving only sacrificial films 222a on the walls 216 of the at least one trench 214. Rounding of the tops of the sacrificial films 222a may occur during the etching process.
  • a second dielectric 212a may be deposited over the exposed surfaces of the first dielectric 212 and the sacrificial films 222a on the vertical walls 1 16 of the at least one trench 214 sufficiently thick enough to fill in the gap between the sacrificial films 222a.
  • a portion of the second dielectric 212a may be removed, e.g., polished, sufficiently deep enough to go past and remove the rounded tops of the sacrificial films 222a, otherwise there may be a re-entrant profile that may be very difficult to fill.
  • the sacrificial films 222a may be removed from between the first and second dielectrics 212 and 212a by, for example but not limited to, dip-out etching, thereby leaving ultra thin channels, e.g., trenches, furrows or grooves, therein. The dip-out etching may also round off the top corners of these very narrow channels which may improve filling material therein.
  • conductive material 218 may be deposited on the first and second dielectrics 212 and 212a to a sufficient thickness to fill in these ultra thin channels.
  • the deposited conductive material 218 may be removed from the top faces of the first and second dielectrics 212 and 212a exposing the tops of the ultra thin fence conductors 218a.
  • the depth of the trench 214 may determine the height and the thickness of the deposited sacrificial film 222 may determine the thickness of the fence conductors 218a.
  • the conductive material 218 may be selected from many different types of conductive materials comprising metals, metal alloys, and non-metallic but conductive compounds that would be suitable for the conductive fences disclosed herein, as would be readily apparent to one having ordinary skill in the art of semiconductor integrated circuit fabrication and also having the benefit of this disclosure.
  • a barrier layer 220 may be used between the copper material 218b and the surfaces of the first and second dielectrics 212 and 212a because copper atoms may diffuse into surrounding materials and thereby degrade their properties. Therefore the barrier layer 220 ( Figure 3B) in step (hi) may be deposited over the exposed surfaces of the first and second dielectrics 212 and 212a before a copper conductive material 218a is deposited in step (h2).
  • the first dielectric layer 212 may be, for example but is not limited to, SiN, Si0 2 , SiO x Ny, etc.
  • the second dielectric layer 212a may be, for example but is not limited to, SiN, SiOi, SiO x N y , etc.
  • the sacrificial film 222 may be, for example but is not limited to, SiN, Si0 2 , SiO x N y , etc.
  • the conductive material 218 may be, for example but is not limited to, Al, Ag, Au, Fe, Ta, TaN, Ti, TiN, Cu, etc.
  • the barrier layer 220 may be, for example but is not limited to, Ta, TaN, etc.
  • the thickness of the first dielectric layer 212 may be from about 100 to about 2000 nanometers.
  • the thickness of the second dielectric layer 212a may be from about 100 to about 2000 nanometers.
  • the thickness of the sacrificial film 222 may be from about 100 to about 2000 nanometers.
  • the thickness of the barrier layer 220 may be from about 5 to about 100 nanometers.
  • the depth of the at least one trench 214 may be from about 100 to about 2000 nanometers.
  • the width of the at least one trench 214 may be from about 100 to about 2000 nanometers.
  • the width or thickness of the fence conductors 218a may be from about 10 to about 1000 nanometers.
  • FIGS 4 and 5 depicted are schematic plan view diagrams of a plurality of sub-lithographic patterns of conductive lines formed in a semiconductor die, according to specific example embodiments of this disclosure.
  • the fence conductors 218a are ready for further processing.
  • the fence conductors 218a may be separated in order to form useful independent circuit conductors.
  • the plurality of fence conductors 218a shown in Figure 5 may represent conductors used for a semiconductor transistor array.
  • FIG. 6 depicted is a schematic plan view diagram of the plurality of sub-lithographic patterns of conductive lines shown in Figure 5 being prepared for separating the conductive lines from each other, according to a specific example embodiment of this disclosure.
  • the ends of the fence conductors 218a, represented by the numeral 620, are to be broken, e.g., separated apart, disconnections made therebetween, etc.
  • the ends 620 may be routed to a "safe" area on the die 104 and may be "severed” (cut) with a removal process such as, for example but not limited to, aggressive reactive-ion etching (RIE), where the ends 620 are exposed and the remainder of the plurality of fence conductors 218a are protected from the RIE, e.g., masked.
  • RIE reactive-ion etching
  • FIG. 7 depicted is a schematic plan view diagram of the plurality of sub-lithographic pattern with portions of the conductive lines removed to separate the conductive lines from each other, according to a specific example embodiment of this disclosure.
  • a third dielectric fill (not shown) may be required to fill the gaps created by the RIE process.
  • CMP chemical mechanical planarization
  • the RIE mask may also be performed Via like to selectively break the fence conductors 218a at any place on the die 104.
  • fence conductors 218a as shown have been described more fully hereinabove. In is contemplated and with the scope of this disclosure that fence conductors 820 may be routed in as many different paths as desired and configured as conductors between active elements, e.g., transistors, on the semiconductor die 104.
  • the steps for creating a trench of this pattern and creating the fence conductors 820 may be formed through appropriate masks (not shown) and the same or similar processes as the process steps shown in Figures 2, 3 and 3A, and the accompanying descriptions thereof as more fully described hereinabove.
  • FIG 9 depicted is a schematic plan view diagram of a plurality of sub- lithographic patterns of conductive lines having various routing paths as shown in Figure 8 being prepared for separation into independent conductors in a semiconductor die, according to another specific example embodiment of this disclosure.
  • the fence conductors 820 may be separated, e.g., disconnections made therebetween, at various locations, generally represented by the numeral 822, on the semiconductor die 104. These separation locations 822 may be accomplished using Via style processes as is well known to those having ordinary skill in the art of semiconductor manufacturing and having the benefit of this disclosure.
  • FIG 10 depicted is a schematic plan view diagram of a plurality of sub-lithographic patterns of conductive lines having various routing paths as shown in Figures 8 and 9 after being separated into independent conductors in a semiconductor die, according to another specific example embodiment of this disclosure.
  • the via style fence separations may be filled in with another dielectric process deposition, then the fully separated fence conductors 1020 may be further connected to the active elements, e.g., transistors, and other connection nodes (not shown) in the semiconductor die 104.
  • FIG 11 depicted is a schematic process flow diagram for forming a plurality of sub-lithographic patterns of conductive lines in a semiconductor die, according to specific example embodiments of this disclosure.
  • a first dielectric 212 may be deposited on a face of a semiconductor substrate (die) 210.
  • at least one trench 214 may be etched into the dielectric 212.
  • a sacrificial film 222 may be deposited to a desired thickness on the first dielectric 212, and the walls and bottom of the at least one trench 214.
  • the sacrificial film 222 may be selectively etched from the top of the first dielectric 212, and the bottom of the at least one trench 214.
  • a second dielectric 212a may be deposited over the first dielectric 212 and the remaining sacrificial film 222 on the walls of the at least one trench 214 so as to fill in the gap therebetween.
  • a portion of the second dielectric 212a may be removed, e.g., polished off, until the tops of the sacrificial films 222 are exposed.
  • the sacrificial films 222 may be removed thereby leaving at least two narrow channels between vertical portions of the first and second dielectrics 212 and 212a.
  • a conductive material 218 may be deposited onto the faces of the first and second dielectrics and into the at least two narrow channels.
  • step 1 1 18 a portion of the conductive material 218 on the faces of the first and second dielectrics 212 and 212a may be removed until only the tops of the remaining conductive material 218a are exposed in the at least two narrow channels.
  • steps 1 120 portions of the conductive material 218a may be separated, e.g., disconnections made therebetween, so as to create independent fence conductors 1020 that may be used to interconnect active devices (not shown) in the semiconductor die 104.
  • a first dielectric 212 may be deposited on a face of a semiconductor substrate (die) 210.
  • at least one trench 214 may be etched into the dielectric 212.
  • a sacrificial film 222 may be deposited to a desired thickness on the first dielectric 212, and the walls and bottom of the at least one trench 214.
  • the sacrificial film 222 may be selectively etched from the top of the first dielectric 212, and the bottom of the at least one trench 214.
  • step 1209 the sacrificial film may be removed from portions of the walls of the at least one trench.
  • Step 1209 may effectively eliminate step 1 120 in Figure 1 1 for creating independent fence conductors 1020 that may be used to interconnect active devices (not shown) in the semiconductor die 104.
  • a second dielectric 212a may be deposited over the first dielectric 212 and the remaining sacrificial film 222 on the walls of the at least one trench 214 so as to fill in the gap therebetween.
  • a portion of the second dielectric 212a may be removed, e.g., polished off, until the tops of the sacrificial films 222 are exposed.
  • the sacrificial films 222 may be removed thereby leaving at least two narrow channels between vertical portions of the first and second dielectrics 212 and 212a.
  • a conductive material 218 may be deposited onto the faces of the first and second dielectrics and into the at least two narrow channels.
  • a portion of the conductive material 218 on the faces of the first and second dielectrics 212 and 212a may be removed until only the tops of the remaining conductive material 218a are exposed in the at least two narrow channels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A spacer etching process produces ultra-narrow conductive lines in a plurality of semiconductor dice. Trenches are formed in a first dielectric (212) then a sacrificial film (222) is deposited onto the first dielectric and the trench surfaces formed therein. Planar sacrificial film is removed from the face of the first dielectric and bottom of the trenches, leaving only sacrificial films (222a) on the trench walls. A gap between the sacrificial films on the trench walls is filled in with a second dielectric (212a). A portion of the second dielectric is removed to expose tops of the sacrificial films. The sacrificial films are removed leaving ultra-thin gaps that are filled in with a conductive material (218b). The tops of the conductive material in the gaps are exposed to create "fence conductors." Portions of the fence conductors and surrounding insulating materials are removed at appropriate locations to produce desired conductor patterns comprising isolated fence conductors.

Description

FORMING FENCE CONDUCTORS IN TRENCHES FORMED BY A SPACER ETCHING TECHNIQUE
TECHNICAL FIELD
The present disclosure relates to semiconductor integrated circuit (IC) fabrication, and more particularly, to forming sub-lithographic patterns of conductive lines in the semiconductor die (e.g., integrated circuit die) during fabrication thereof.
BACKGROUND
Reduction in the size of patterned conductive lines used for interconnection of active elements, e.g., transistors, in a semiconductor die has been limited by the lithographic processes available. As the number of transistors have increased on the semiconductor die resulting from improvements in the lithographic masking processes forming these transistors, conductive lines that must interconnect these ever decreasing in size transistors have been unable to decrease proportionally in size with the smaller transistors.
SUMMARY Therefore, there is need for a way to decrease the size of patterned conductive lines without the limitations of the lithographic processes available for manufacturing semiconductor integrated circuits.
According to an embodiment, a method for forming fence conductors in a semiconductor integrated circuit die may comprise the steps of: depositing a first dielectric on a face of a semiconductor substrate; creating at least one trench in the first dielectric; depositing a sacrificial film on the first dielectric including walls and a bottom of the at least one trench; removing portions of the sacrificial film from a face of the first dielectric and the bottom of the at least one trench, wherein only sacrificial films remain on the walls of the at least one trench; depositing a second dielectric between the sacrificial films on the walls of the at least one trench; removing the first and second dielectrics until top portions of the sacrificial film may be exposed between the first and second dielectrics; removing the sacrificial films between the first and second dielectrics leaving at least two narrow channels therein; depositing conductive material on the faces of the first and second dielectrics and into the at least two narrow channels; and removing portions of the conductive material on the faces of the first and second dielectrics until only tops of the conductive material may be exposed in the at least two narrow channels. According to a further embodiment of the method, after the step of removing portions of the conductive material on the faces of the first and second dielectrics, may further comprise the step of separating portions of the conductive material in the at least two narrow channels into independent fence conductors. According to a further embodiment of the method, after the step of removing portions of the sacrificial film from the face of the first dielectric and the bottom of the at least one trench, may further comprise the step of removing the sacrificial film from portions of the walls of the at least one trench.
According to a further embodiment of the method, the step of depositing the first dielectric may comprise the step of depositing the first dielectric to a thickness of from about 100 to about 2000 nanometers on the face of the semiconductor substrate. According to a further embodiment of the method, the step of creating the at least one trench comprises the step of creating the at the least one trench to a depth of from about 100 to about 2000 nanometers in the first dielectric. According to a further embodiment of the method, the step of creating the at least one trench comprises the step of creating the at the least one trench having a width of from about 100 to about 2000 nanometers in the first dielectric. According to a further embodiment of the method, the step of depositing the sacrificial film comprises the step of depositing the sacrificial film to a thickness of from about 100 to about 2000 nanometers. According to a further embodiment of the method, the step of depositing the second dielectric comprises the step of depositing the second dielectric to a thickness of from about 100 to about 2000 nanometers.
According to a further embodiment of the method, the sacrificial film may be selected from the group consisting of SiN, Si02 and SiOxNy. According to a further embodiment of the method, the conductive material may be selected from the group consisting of Al, Ag, Au, Fe, Ta, TaN, Ti and TiN. According to a further embodiment of the method, the conductive material comprises copper (Cu).
According to a further embodiment of the method, the step of depositing a barrier layer in the at least one narrow channel may be before the step of depositing the conductive material therein. According to a further embodiment of the method, the step of separating portions of the conductive material may comprise the step of separating portions of the conductive material with reactive-ion etching (RIE). According to a further embodiment of the method, the RIE may be aggressive. According to a further embodiment of the method, may comprise the steps of filling gaps created by the RIE with dielectric, and chemical mechanical planarization (CMP) polishing thereof.
According to another embodiment, a semiconductor die may comprise: a semiconductor substrate; a first dielectric on a face of the semiconductor substrate; at least one trench in the first dielectric; at least two narrow channels in the at least one trench formed with sacrificial films on the walls of the at least one trench and a second dielectric, wherein the second dielectric fills a space between the sacrificial films on the walls of the at least one trench, and whereby the sacrificial films may be removed thereby forming the at least two narrow channels; and a conductive material filling the at least two narrow channels; wherein the conductive material in the at least two narrow channels may be separated and used as fence conductors to connect active elements of said semiconductor die.
According to a further embodiment, a plurality of fence conductors may be made by separating the conductive material in the at least two narrow channels into desired lengths. According to a further embodiment, the first dielectric may have a thickness from about 100 to about 2000 nanometers. According to a further embodiment, the at the least one trench may have a depth from about 100 to about 2000 nanometers and a width from about 100 to about 2000 nanometers. According to a further embodiment, the sacrificial films have a thickness of from about 100 to about 2000 nanometers. According to a further embodiment, the second dielectric may have a thickness from about 100 to about 2000 nanometers. According to a further embodiment, a barrier layer may be between the walls of the at least one narrow channel and the conductive material. According to a further embodiment, the conductive material may be copper.
BRIEF DESCRIPTION OF THE DRAWINGS
A more complete understanding of the present disclosure may be acquired by referring to the following description taken in conjunction with the accompanying drawings wherein:
Figure 1 illustrates a schematic plan view diagram of a semiconductor integrated circuit wafer comprising a plurality of semiconductor dice;
Figures 2, 3, 3A and 3B illustrate schematic elevational diagrams of semiconductor fabrication steps for forming sub-lithographic patterns of conductive lines in a semiconductor die, according to specific example embodiments of this disclosure; Figure 4 illustrates a schematic plan view diagram of a plurality of sub-lithographic patterns of conductive lines formed in a semiconductor die, according to a specific example embodiment of this disclosure;
Figure 5 illustrates a schematic plan view diagram of a plurality of sub-lithographic patterns of conductive lines formed in a semiconductor die, according to a specific example embodiment of this disclosure;
Figure 6 illustrates a schematic plan view diagram of the plurality of sub-lithographic patterns of conductive lines shown in Figure 5 being prepared for separating the conductive lines from each other, according to a specific example embodiment of this disclosure; Figure 7 illustrates a schematic plan view diagram of the plurality of sub-lithographic patterns of conductive lines shown in Figures 5 and 6 with portions of the conductive lines removed to separate the conductive lines from each other, according to a specific example embodiment of this disclosure;
Figure 8 illustrates a schematic plan view diagram of a plurality of sub-lithographic patterns of conductive lines having various routing paths that are formed in a semiconductor die, according to another specific example embodiment of this disclosure;
Figure 9 illustrates a schematic plan view diagram of a plurality of sub-lithographic patterns of conductive lines having various routing paths as shown in Figure 8 being prepared for separation into independent conductors in a semiconductor die, according to another specific example embodiment of this disclosure;
Figure 10 illustrates a schematic plan view diagram of a plurality of sub-lithographic patterns of conductive lines having various routing paths as shown in Figures 8 and 9 after being separated into independent conductors in a semiconductor die, according to another specific example embodiment of this disclosure; Figure 1 1 illustrates a schematic process flow diagram for forming a plurality of sub- lithographic patterns of conductive lines in a semiconductor die, according to specific example embodiments of this disclosure; and
Figure 12 illustrates a schematic process flow diagram for forming a plurality of sub- lithographic patterns of conductive lines in a semiconductor die, according to other specific example embodiments of this disclosure. While the present disclosure is susceptible to various modifications and alternative forms, specific example embodiments thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific example embodiments is not intended to limit the disclosure to the particular forms disclosed herein, but on the contrary, this disclosure is to cover all modifications and equivalents as defined by the appended claims.
DETAILED DESCRIPTION
According to the teachings of this disclosure, a spacer etching process may be used to produce at least one trench in a first dielectric deposited onto a face of a semiconductor die. A sacrificial film is then deposited to a desired thickness onto a face of the first dielectric, including walls and a bottom of the at least one trench. Then the sacrificial film is removed from the face of the first dielectric and the bottom of the at least one trench, leaving only the sacrificial film on the walls of the at least one trench. This may be accomplished by, for example but is not limited to, etching the sacrificial film from the face of the first dielectric and the bottom surface of the at least one trench. Selected portions of the sacrificial film may also be selectively "broken" e.g., removed, during the aforementioned step where the gap fill step may create the break in the conductors. Next a second dielectric is deposited over the face of the first dielectric and the sacrificial film on the walls of the trenches, wherein a gap between the sacrificial films on the walls of the at least one trench is filled in with the second dielectric. Then the second dielectric is removed by, for example but is not limited to, polishing, until the tops of the sacrificial films on the walls of the at least one trench are again exposed.
Next the sacrificial film may be removed by, for example but is not limited to, dip- out, where the dip-out process has good selectivity so as to not remove the dielectric material but effectively removes all of the sacrificial film from the very narrow channels remaining between the first dielectric walls and the second dielectric walls formed from the previous process step. However, a slight etch of the dielectric material may round the top comers of these narrow channels that may improved fill thereof. Next a conductive material fills in these very narrow channels to produce extremely thin fence conductors. Then the face of the dielectric and tops of the extremely thin fence conductors may be planarized with, for example but is not limited to, a chemical mechanical planarization (CMP) process. This sub-lithographic patterning of conductive lines may be produced in a fabrication process that is compatible with existing aluminum and copper backend processing. Portions of the fence conductors and surrounding insulating materials may be removed at appropriate locations (e.g., "broken") to produce desired conductor patterns comprising the fence conductors. The trench depth helps in determining one dimension of the fence conductors, e.g., conductor height, and the thickness of the deposited sacrificial film determines a second dimension, e.g., conductor width. Lengths of the fence conductors are determined by where the continuous fence conductors are "broken," e.g., separated, disconnections made therebetween, etc., from each other. Referring now to the drawings, the details of specific example embodiments are schematically illustrated. Like elements in the drawings will be represented by like numbers, and similar elements will be represented by like numbers with a different lower case letter suffix.
Referring to Figure 1 , depicted is a schematic plan view diagram of a semiconductor integrated circuit wafer comprising a plurality of semiconductor dice. A silicon wafer 102 may be scribed into a plurality of semiconductor dice 104 for further processing to create planar transistors, diodes and conductors on each of the plurality of semiconductor dice 104. After all circuits have been fabricated on the plurality of semiconductor dice 104, the dice 104 are singulated (separated) and packaged into integrated circuits (not shown). Referring to Figures 2, 3, 3A and 3B, depicted are schematic elevational diagrams of semiconductor fabrication steps for forming sub-lithographic patterns of conductive lines in a semiconductor die, according to specific example embodiments of this disclosure. The first step (a) in forming fence conductors is shown in Figure 2 wherein a first dielectric 212 may be deposited on a surface of a semiconductor substrate 210 for each of the plurality of semiconductor dice 104. In the next step (b) the first dielectric 212 may have at least one trench 214 etched therein to a depth that helps determine a dimension, e.g., depth, of the desired fence conductors. The at least one trench 214 comprises walls 216 and a bottom. In step (c) a sacrificial film 222 may be deposited over exposed surfaces of the first dielectric 212 and the at least one trench 214. In step (d) the sacrificial film 222 may be selectively etched from the top surface of the first dielectric 212 and the bottom of the at least one trench 214, leaving only sacrificial films 222a on the walls 216 of the at least one trench 214. Rounding of the tops of the sacrificial films 222a may occur during the etching process. In step (e) a second dielectric 212a may be deposited over the exposed surfaces of the first dielectric 212 and the sacrificial films 222a on the vertical walls 1 16 of the at least one trench 214 sufficiently thick enough to fill in the gap between the sacrificial films 222a. In step (f) a portion of the second dielectric 212a may be removed, e.g., polished, sufficiently deep enough to go past and remove the rounded tops of the sacrificial films 222a, otherwise there may be a re-entrant profile that may be very difficult to fill. In step (g) the sacrificial films 222a may be removed from between the first and second dielectrics 212 and 212a by, for example but not limited to, dip-out etching, thereby leaving ultra thin channels, e.g., trenches, furrows or grooves, therein. The dip-out etching may also round off the top corners of these very narrow channels which may improve filling material therein. In step (h) conductive material 218 may be deposited on the first and second dielectrics 212 and 212a to a sufficient thickness to fill in these ultra thin channels. In step (i) the deposited conductive material 218 may be removed from the top faces of the first and second dielectrics 212 and 212a exposing the tops of the ultra thin fence conductors 218a. The depth of the trench 214 may determine the height and the thickness of the deposited sacrificial film 222 may determine the thickness of the fence conductors 218a.
The conductive material 218 may be selected from many different types of conductive materials comprising metals, metal alloys, and non-metallic but conductive compounds that would be suitable for the conductive fences disclosed herein, as would be readily apparent to one having ordinary skill in the art of semiconductor integrated circuit fabrication and also having the benefit of this disclosure.
When copper is used for the conductive material 218b (Figure 3B) a barrier layer 220 may be used between the copper material 218b and the surfaces of the first and second dielectrics 212 and 212a because copper atoms may diffuse into surrounding materials and thereby degrade their properties. Therefore the barrier layer 220 (Figure 3B) in step (hi) may be deposited over the exposed surfaces of the first and second dielectrics 212 and 212a before a copper conductive material 218a is deposited in step (h2).
The first dielectric layer 212 may be, for example but is not limited to, SiN, Si02, SiOxNy, etc. The second dielectric layer 212a may be, for example but is not limited to, SiN, SiOi, SiOxNy, etc. The sacrificial film 222 may be, for example but is not limited to, SiN, Si02, SiOxNy, etc. The conductive material 218 may be, for example but is not limited to, Al, Ag, Au, Fe, Ta, TaN, Ti, TiN, Cu, etc. The barrier layer 220 may be, for example but is not limited to, Ta, TaN, etc.
The thickness of the first dielectric layer 212 may be from about 100 to about 2000 nanometers. The thickness of the second dielectric layer 212a may be from about 100 to about 2000 nanometers. The thickness of the sacrificial film 222 may be from about 100 to about 2000 nanometers. The thickness of the barrier layer 220 may be from about 5 to about 100 nanometers. The depth of the at least one trench 214 may be from about 100 to about 2000 nanometers. The width of the at least one trench 214 may be from about 100 to about 2000 nanometers. The width or thickness of the fence conductors 218a may be from about 10 to about 1000 nanometers.
Referring to Figures 4 and 5, depicted are schematic plan view diagrams of a plurality of sub-lithographic patterns of conductive lines formed in a semiconductor die, according to specific example embodiments of this disclosure. After removal of the continuous conductive material 218 down to where the tops of the fence conductors 218a are exposed as shown in Figures 3 A and 3B step (i), the fence conductors 218a are ready for further processing. The fence conductors 218a may be separated in order to form useful independent circuit conductors. The plurality of fence conductors 218a shown in Figure 5 may represent conductors used for a semiconductor transistor array.
Referring to Figure 6, depicted is a schematic plan view diagram of the plurality of sub-lithographic patterns of conductive lines shown in Figure 5 being prepared for separating the conductive lines from each other, according to a specific example embodiment of this disclosure. The ends of the fence conductors 218a, represented by the numeral 620, are to be broken, e.g., separated apart, disconnections made therebetween, etc. The ends 620 may be routed to a "safe" area on the die 104 and may be "severed" (cut) with a removal process such as, for example but not limited to, aggressive reactive-ion etching (RIE), where the ends 620 are exposed and the remainder of the plurality of fence conductors 218a are protected from the RIE, e.g., masked.
Referring to Figure 7, depicted is a schematic plan view diagram of the plurality of sub-lithographic pattern with portions of the conductive lines removed to separate the conductive lines from each other, according to a specific example embodiment of this disclosure. After the ends 620 have been removed, a third dielectric fill (not shown) may be required to fill the gaps created by the RIE process. Once this third dielectric fill has been completed, a chemical mechanical planarization (CMP) process may be performed on the face of the die 104. The RIE mask may also be performed Via like to selectively break the fence conductors 218a at any place on the die 104. Referring to Figure 8, depicted is a schematic plan view diagram of a plurality of sub- lithographic patterns of conductive lines having various routing paths that are formed in a semiconductor die, according to another specific example embodiment of this disclosure. Fence conductors 218a as shown have been described more fully hereinabove. In is contemplated and with the scope of this disclosure that fence conductors 820 may be routed in as many different paths as desired and configured as conductors between active elements, e.g., transistors, on the semiconductor die 104. The steps for creating a trench of this pattern and creating the fence conductors 820 may be formed through appropriate masks (not shown) and the same or similar processes as the process steps shown in Figures 2, 3 and 3A, and the accompanying descriptions thereof as more fully described hereinabove. Referring to Figure 9, depicted is a schematic plan view diagram of a plurality of sub- lithographic patterns of conductive lines having various routing paths as shown in Figure 8 being prepared for separation into independent conductors in a semiconductor die, according to another specific example embodiment of this disclosure. The fence conductors 820 may be separated, e.g., disconnections made therebetween, at various locations, generally represented by the numeral 822, on the semiconductor die 104. These separation locations 822 may be accomplished using Via style processes as is well known to those having ordinary skill in the art of semiconductor manufacturing and having the benefit of this disclosure.
Referring to Figure 10, depicted is a schematic plan view diagram of a plurality of sub-lithographic patterns of conductive lines having various routing paths as shown in Figures 8 and 9 after being separated into independent conductors in a semiconductor die, according to another specific example embodiment of this disclosure. The via style fence separations may be filled in with another dielectric process deposition, then the fully separated fence conductors 1020 may be further connected to the active elements, e.g., transistors, and other connection nodes (not shown) in the semiconductor die 104. Referring to Figure 11, depicted is a schematic process flow diagram for forming a plurality of sub-lithographic patterns of conductive lines in a semiconductor die, according to specific example embodiments of this disclosure. In step 1 102 a first dielectric 212 may be deposited on a face of a semiconductor substrate (die) 210. In step 1 104 at least one trench 214 may be etched into the dielectric 212. In step 1 106 a sacrificial film 222 may be deposited to a desired thickness on the first dielectric 212, and the walls and bottom of the at least one trench 214. In step 1 108 the sacrificial film 222 may be selectively etched from the top of the first dielectric 212, and the bottom of the at least one trench 214.
In step 1 1 10 a second dielectric 212a may be deposited over the first dielectric 212 and the remaining sacrificial film 222 on the walls of the at least one trench 214 so as to fill in the gap therebetween. In step 1 1 12 a portion of the second dielectric 212a may be removed, e.g., polished off, until the tops of the sacrificial films 222 are exposed. In step 1 1 14 the sacrificial films 222 may be removed thereby leaving at least two narrow channels between vertical portions of the first and second dielectrics 212 and 212a. In step 1 1 16 a conductive material 218 may be deposited onto the faces of the first and second dielectrics and into the at least two narrow channels. In step 1 1 18 a portion of the conductive material 218 on the faces of the first and second dielectrics 212 and 212a may be removed until only the tops of the remaining conductive material 218a are exposed in the at least two narrow channels. In step 1 120 portions of the conductive material 218a may be separated, e.g., disconnections made therebetween, so as to create independent fence conductors 1020 that may be used to interconnect active devices (not shown) in the semiconductor die 104.
Referring to Figure 12, depicted is a schematic process flow diagram for forming a plurality of sub-lithographic patterns of conductive lines in a semiconductor die, according to other specific example embodiments of this disclosure. In step 1 102 a first dielectric 212 may be deposited on a face of a semiconductor substrate (die) 210. In step 1 104 at least one trench 214 may be etched into the dielectric 212. In step 1 106 a sacrificial film 222 may be deposited to a desired thickness on the first dielectric 212, and the walls and bottom of the at least one trench 214. In step 1 108 the sacrificial film 222 may be selectively etched from the top of the first dielectric 212, and the bottom of the at least one trench 214. In step 1209 the sacrificial film may be removed from portions of the walls of the at least one trench. Step 1209 may effectively eliminate step 1 120 in Figure 1 1 for creating independent fence conductors 1020 that may be used to interconnect active devices (not shown) in the semiconductor die 104.
In step 1 110 a second dielectric 212a may be deposited over the first dielectric 212 and the remaining sacrificial film 222 on the walls of the at least one trench 214 so as to fill in the gap therebetween. In step 1 1 12 a portion of the second dielectric 212a may be removed, e.g., polished off, until the tops of the sacrificial films 222 are exposed. In step 1 114 the sacrificial films 222 may be removed thereby leaving at least two narrow channels between vertical portions of the first and second dielectrics 212 and 212a. In step 1 116 a conductive material 218 may be deposited onto the faces of the first and second dielectrics and into the at least two narrow channels. In step 1 1 18 a portion of the conductive material 218 on the faces of the first and second dielectrics 212 and 212a may be removed until only the tops of the remaining conductive material 218a are exposed in the at least two narrow channels.
While embodiments of this disclosure have been depicted, described, and are defined by reference to example embodiments of the disclosure, such references do not imply a limitation on the disclosure, and no such limitation is to be inferred. The subject matter disclosed is capable of considerable modification, alteration, and equivalents in form and function, as will occur to those ordinarily skilled in the pertinent art and having the benefit of this disclosure. The depicted and described embodiments of this disclosure are examples only, and are not exhaustive of the scope of the disclosure.

Claims

CLAIMS What is claimed is:
1. A method for forming fence conductors in a semiconductor integrated circuit die, said method comprising the steps of:
depositing a first dielectric on a face of a semiconductor substrate;
creating at least one trench in the first dielectric;
depositing a sacrificial film on the first dielectric including walls and a bottom of the at least one trench;
removing portions of the sacrificial film from a face of the first dielectric and the bottom of the at least one trench, wherein only sacrificial films remain on the walls of the at least one trench;
depositing a second dielectric between the sacrificial films on the walls of the at least one trench;
removing the first and second dielectrics until top portions of the sacrificial film are exposed between the first and second dielectrics;
removing the sacrificial films between the first and second dielectrics leaving at least two narrow channels therein;
depositing conductive material on the faces of the first and second dielectrics and into the at least two narrow channels; and
removing portions of the conductive material on the faces of the first and second dielectrics until only tops of the conductive material are exposed in the at least two narrow channels.
2. The method according to claim 1, after the step of removing portions of the conductive material on the faces of the first and second dielectrics, further comprising the step of separating portions of the conductive material in the at least two narrow channels into independent fence conductors.
3. The method according to claim 1, after the step of removing portions of the sacrificial film from the face of the first dielectric and the bottom of the at least one trench, further comprising the step of removing the sacrificial film from portions of the walls of the at least one trench.
4. The method according to claim 1 , wherein the step of depositing the first dielectric comprises the step of depositing the first dielectric to a thickness of from about 100 to about 2000 nanometers on the face of the semiconductor substrate.
5. The method according to claim 1 , wherein the step of creating the at least one trench comprises the step of creating the at the least one trench to a depth of from about 100 to about 2000 nanometers in the first dielectric.
6. The method according to claim 1 , wherein the step of creating the at least one trench comprises the step of creating the at the least one trench having a width of from about 100 to about 2000 nanometers in the first dielectric.
7. The method according to claim 1 , wherein the step of depositing the sacrificial film comprises the step of depositing the sacrificial film to a thickness of from about 100 to about 2000 nanometers.
8. The method according to claim 1 , wherein the step of depositing the second dielectric comprises the step of depositing the second dielectric to a thickness of from about 100 to about 2000 nanometers.
9. The method according to claim 1 , wherein the sacrificial film is selected from the group consisting of SiN, Si02 and SiOxNy.
10. The method according to claim 1 , wherein the conductive material is selected from the group consisting of Al, Ag, Au, Fe, Ta, TaN, Ti and TiN.
1 1. The method according to claim 1, wherein the conductive material comprises copper (Cu).
12. The method according to claim 1 1 , further comprising the step of depositing a barrier layer in the at least one narrow channel before the step of depositing the conductive material therein.
13. The method according to claim 1 , wherein the step of separating portions of the conductive material comprises the step of separating portions of the conductive material with reactive-ion etching (RIE).
14. The method according to claim 13, wherein the RIE is aggressive.
15. The method according to claim 13, further comprising the steps of filling gaps created by the RIE with dielectric and chemical mechanical planarization (CMP) polishing thereof.
16. A semiconductor die, comprising:
a semiconductor substrate;
a first dielectric on a face of the semiconductor substrate;
at least one trench in the first dielectric;
at least two narrow channels in the at least one trench formed with sacrificial films on the walls of the at least one trench and a second dielectric, wherein the second dielectric fills a space between the sacrificial films on the walls of the at least one trench, and whereby the sacrificial films are removed thereby forming the at least two narrow channels; and
a conductive material filling the at least two narrow channels; wherein the conductive material in the at least two narrow channels are separated and used as fence conductors to connect active elements of said semiconductor die.
17. The semiconductor die according to claim 16, further comprising a plurality of fence conductors made by separating the conductive material in the at least two narrow channels into desired lengths.
18. The semiconductor die according to claim 16, wherein the first dielectric has a thickness from about 100 to about 2000 nanometers.
19. The semiconductor die according to claim 16, wherein the at the least one trench has a depth from about 100 to about 2000 nanometers and a width from about 100 to about 2000 nanometers.
20. The semiconductor die according to claim 16, wherein the sacrificial films have a thickness of from about 100 to about 2000 nanometers.
21. The semiconductor die according to claim 16, wherein the second dielectric has a thickness from about 100 to about 2000 nanometers.
22. The semiconductor die according to claim 16, further comprising a barrier layer between the walls of the at least one narrow channel and the conductive material.
23. The semiconductor die according to claim 16, wherein the conductive material is copper.
PCT/US2014/019735 2013-03-15 2014-03-01 Forming fence conductors in trenches formed by a spacer etching technique WO2014149582A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480014847.3A CN105051884A (en) 2013-03-15 2014-03-01 Forming fence conductors in trenches formed by a spacer etching technique
KR1020157027523A KR20150132232A (en) 2013-03-15 2014-03-01 Forming fence conductors in trenches formed by a spacer etching technique
EP14710754.4A EP2973679B1 (en) 2013-03-15 2014-03-01 Forming fence conductors in trenches formed by a spacer etching technique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/836,647 US9034758B2 (en) 2013-03-15 2013-03-15 Forming fence conductors using spacer etched trenches
US13/836,647 2013-03-15

Publications (1)

Publication Number Publication Date
WO2014149582A1 true WO2014149582A1 (en) 2014-09-25

Family

ID=50288334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/019735 WO2014149582A1 (en) 2013-03-15 2014-03-01 Forming fence conductors in trenches formed by a spacer etching technique

Country Status (6)

Country Link
US (1) US9034758B2 (en)
EP (1) EP2973679B1 (en)
KR (1) KR20150132232A (en)
CN (1) CN105051884A (en)
TW (1) TWI633625B (en)
WO (1) WO2014149582A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016186912A1 (en) * 2015-05-18 2016-11-24 Microchip Technology Incorporated Forming fence conductors using spacer etched trenches
US9583435B2 (en) 2013-03-15 2017-02-28 Microchip Technology Incorporated Forming fence conductors using spacer etched trenches

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11895835B2 (en) * 2021-06-15 2024-02-06 Micron Technology, Inc. Integrated circuitry comprising a memory array comprising strings of memory cells and methods including a method used in forming a memory array comprising strings of memory cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060154463A1 (en) * 2005-01-12 2006-07-13 International Business Machines Corporation Wiring patterns formed by selective metal plating
US20090046493A1 (en) * 2007-08-14 2009-02-19 Solomon Assefa Method and apparatus for fabricating sub-lithography data tracks for use in magnetic shift register memory devices
US20090124084A1 (en) * 2007-11-14 2009-05-14 Elliot Tan Fabrication of sub-resolution features for an integrated circuit
US20090298247A1 (en) * 2008-06-02 2009-12-03 Yong-Il Kim Method and device for providing a contact structure
US20130020615A1 (en) * 2011-07-22 2013-01-24 International Business Machines Corporation Borderless Contacts in Semiconductor Devices

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618383A (en) * 1994-03-30 1997-04-08 Texas Instruments Incorporated Narrow lateral dimensioned microelectronic structures and method of forming the same
US6586326B2 (en) * 2001-03-13 2003-07-01 Lsi Logic Corporation Metal planarization system
US6911229B2 (en) * 2002-08-09 2005-06-28 International Business Machines Corporation Structure comprising an interlayer of palladium and/or platinum and method for fabrication thereof
US6837967B1 (en) * 2002-11-06 2005-01-04 Lsi Logic Corporation Method and apparatus for cleaning deposited films from the edge of a wafer
JP2006324501A (en) * 2005-05-19 2006-11-30 Toshiba Corp Phase-change memory and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060154463A1 (en) * 2005-01-12 2006-07-13 International Business Machines Corporation Wiring patterns formed by selective metal plating
US20090046493A1 (en) * 2007-08-14 2009-02-19 Solomon Assefa Method and apparatus for fabricating sub-lithography data tracks for use in magnetic shift register memory devices
US20090124084A1 (en) * 2007-11-14 2009-05-14 Elliot Tan Fabrication of sub-resolution features for an integrated circuit
US20090298247A1 (en) * 2008-06-02 2009-12-03 Yong-Il Kim Method and device for providing a contact structure
US20130020615A1 (en) * 2011-07-22 2013-01-24 International Business Machines Corporation Borderless Contacts in Semiconductor Devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9583435B2 (en) 2013-03-15 2017-02-28 Microchip Technology Incorporated Forming fence conductors using spacer etched trenches
WO2016186912A1 (en) * 2015-05-18 2016-11-24 Microchip Technology Incorporated Forming fence conductors using spacer etched trenches

Also Published As

Publication number Publication date
US20140264882A1 (en) 2014-09-18
KR20150132232A (en) 2015-11-25
EP2973679A1 (en) 2016-01-20
US9034758B2 (en) 2015-05-19
EP2973679B1 (en) 2020-12-23
TW201448117A (en) 2014-12-16
CN105051884A (en) 2015-11-11
TWI633625B (en) 2018-08-21

Similar Documents

Publication Publication Date Title
US10381306B2 (en) Semiconductor memory device and a manufacturing method thereof
US10636698B2 (en) Skip via structures
TWI684244B (en) Methods of patterning variable width metallization lines
EP3108500B1 (en) Spacer enabled active isolation for an integrated circuit device
TWI734970B (en) Multiple patterning with mandrel cuts formed using a block mask
TW202018814A (en) Method for preparing a semiconductor structure
US7666800B2 (en) Feature patterning methods
US9034758B2 (en) Forming fence conductors using spacer etched trenches
CN105144365B (en) Spacer enabled polysilicon gate
US20190229059A1 (en) Methods of patterning dielectric layers for metallization and related structures
US9583435B2 (en) Forming fence conductors using spacer etched trenches
US8836128B1 (en) Forming fence conductors in an integrated circuit
WO2016186912A1 (en) Forming fence conductors using spacer etched trenches
US20140264886A1 (en) Forming Fence Conductors Using Spacer Pattern Transfer
CN114171524A (en) Preparation method of semiconductor structure and three-dimensional memory

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480014847.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14710754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157027523

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014710754

Country of ref document: EP