WO2014148823A1 - Method for manufacturing hollow multi-metal oxide nanoparticles - Google Patents

Method for manufacturing hollow multi-metal oxide nanoparticles Download PDF

Info

Publication number
WO2014148823A1
WO2014148823A1 PCT/KR2014/002318 KR2014002318W WO2014148823A1 WO 2014148823 A1 WO2014148823 A1 WO 2014148823A1 KR 2014002318 W KR2014002318 W KR 2014002318W WO 2014148823 A1 WO2014148823 A1 WO 2014148823A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
oxide nanoparticles
hollow
transition metal
metal oxide
Prior art date
Application number
PCT/KR2014/002318
Other languages
French (fr)
Korean (ko)
Inventor
현택환
오명환
Original Assignee
서울대학교 산학협력단
기초과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단, 기초과학연구원 filed Critical 서울대학교 산학협력단
Publication of WO2014148823A1 publication Critical patent/WO2014148823A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention relates to a method for producing multimetal oxide nanoparticles of hollow structure. More specifically, the present invention includes the step of heating a mixture of the first transition metal oxide nanoparticles, the second transition metal salt, water and a surfactant under acidic conditions, the standard reduction of the first transition metal oxide nanoparticles The potential is greater than the standard reduction potential of the second transition metal ion, to a multimetal oxide nanoparticles manufacturing method.
  • the galvanic replacement reaction may be the most versatile to produce hollow metal nanostructures having controllable pore structures and compositions.
  • Galvanic substitution involves a process of corrosion driven by the electrochemical potential difference of two metal species. Hollow interiors are created due to the oxidative dissolution of metal nanoparticles used as reactive templates.
  • Hollow oxide nanoparticles are of great interest due to their potential applications in the energy, catalyst and medical fields. Although significant advances have been made in the synthesis of hollow metal oxide nanoparticles (Z. Wang, L. Zhou, XW Lou, Adv. Mater. 24 , 1903 (2012); K. An, T. Hyeon, Nano Today 4 , 359). (2009); Y. Piao et al. , Nat. Mater. 7 , 242 (2008); S. Peng, S. Sun, Angew. Chem. Int. Ed. 46 , 4155 (2007)), hollow polymetal oxides The synthesis of multimetallic oxide nanoparticles is still a big challenge.
  • the present inventors have completed the present invention by confirming that hollow polymetal oxide nanostructures can be prepared through a galvanic substitution reaction for transition metal oxide nanoparticles.
  • An object of the present invention includes heating a mixture of a first transition metal oxide nanoparticle, a second transition metal salt, water, and a surfactant under acidic conditions, wherein the standard reduction potential of the first transition metal oxide nanoparticle is It is to provide a hollow polymetal oxide nanoparticles manufacturing method that is larger than the standard reduction potential of the second transition metal ion.
  • the above-described object of the present invention includes heating a mixture of a first transition metal oxide nanoparticle, a second transition metal salt, water, and a surfactant under acidic conditions, and has a standard reduction potential of the first transition metal oxide nanoparticle. It can be achieved by providing a hollow polymetal oxide nanoparticle manufacturing method, wherein is greater than the standard reduction potential of the second transition metal ion.
  • the first transition metal oxide may be Mn 3 O 4 , MnO 2 , Co 3 O 4 , Fe 3 O 4 , PbO 2, or CeO 2 .
  • the second transition metal salt may be iron (II) perchlorate, tin (II) perchlorate, vanadium (III) chloride, titanium (III) chloride, chromium (II) chloride, iron (II) oxalate or iron ( II) chloride.
  • the surfactant may be selected from C 1 -C 18 carboxylic acids such as oleic acid, octanoic acid, stearic acid or decanoic acid; C 3 -C 18 alkylamines such as oleylamine, octylamine, hexadecylamine, octadecylamine or tri-n-octylamine, etc. RNH 2 ), C 1 -C 18 alcohols such as oleyl alcohol, octanol or butanol, and the like, or mixtures thereof.
  • C 1 -C 18 carboxylic acids such as oleic acid, octanoic acid, stearic acid or decanoic acid
  • C 3 -C 18 alkylamines such as oleylamine, octylamine, hexadecylamine, octadecylamine or tri-n-octylamine, etc.
  • the pH of the mixture is preferably 0.0 to 6.0. Acids such as hydrochloric acid, nitric acid, sulfuric acid, acetic acid, oxalic acid or perchloric acid may be added to adjust the pH of the mixture. In addition, the heating temperature of the mixture may be 30 °C to 100 °C.
  • the shape of the multimetal oxide nanoparticles may be a nano box or nano cage.
  • Nanobox refers to nanoparticles consisting of a hollow interior and solid walls.
  • nanonocage refers to nanoparticles consisting of hollow interiors and porous walls.
  • the size of the first transition metal oxide nanoparticles may be 5 nm to 100 nm, the size of the multimetal oxide nanoparticles may be 5 nm to 100 nm.
  • iron (II) perchlorate and Mn 2 O 3 nanoparticles are reacted (galvanic substitution reaction) to Mn 3 O 4 / ⁇ -Fe 2 O 3 nanobox or ⁇ -Fe 2 O 3 Nanocage can be prepared.
  • the galbini substitution reaction can be described on the basis of the difference in the standard reduction potential of the Fe 3+ / Fe 2+ pair and Mn 3 O 4 / Mn 2+ pair. Since the standard reduction potential (0.77 V) of the Fe 3+ / Fe 2+ pair is smaller than the standard reduction potential (1.82 V) of the Mn 3 O 4 / Mn 2+ pair, Fe 2+ is oxidized to Fe 3+ . At the same time, Mn 3 O 4 is reduced to Mn 2+ .
  • the reduced Mn 2+ ions are dissolved and leave an empty octahedral site near the surface of the nanoparticles.
  • some of the oxidized Fe 3+ ions present in the solution diffuse to the surface of the nanoparticles to fill the readily accessible vacancy.
  • Mn 3 O 4 is converted to ⁇ -Fe 2 O 3 . This prevents outward diffusion of the internal Mn 2+ species. This conversion occurs mainly around the edges of the shell.
  • the Fe 2+ ions move inside to reduce the octahedral Mn 3+ ions inside the Mn 3 O 4 nanoparticles.
  • the pinholes formed during the initial stage of the galvanic substitution reaction serve as a pathway for the continuous transfer of the reduced Mn 2+ ions from the nanobox thus formed, thereby reducing the remaining core species, i.e. tetrahedral Mn 2+ ions and oxygen anions. Promote dissolution.
  • the galvanic substitution reaction proceeds until the core is empty and the sidewalls are hollow, thereby forming a heterostructured Mn 3 O 4 / Fe 2 O 3 nanocage.
  • the core is empty and the sidewalls are hollow, thereby forming a heterostructured Mn 3 O 4 / Fe 2 O 3 nanocage.
  • precipitation of ⁇ -Fe 2 O 3 takes place inside its hollow, so that it is further converted into the ⁇ -Fe 2 O 3 nanocage. do.
  • hollow polymetal oxide nanoparticles having controllable pore structure and composition can be prepared simply by galvanic substitution.
  • the method of the present invention is also suitable for mass production of hollow multimetal oxide nanoparticles.
  • Figure 1A is a low magnification photograph of a TEM (transmission electron microscope), and pictures
  • Fig. 1A1 is the Mn 3 O 4 nanoparticles for the Mn 3 O 4 nanoparticles synthesized in Example 1 of the present invention
  • the insert of Figure 1A1 Figure Is a high resolution transmission electron microscope (HRTEM) photograph of the single crystal recorded along the [111] axis
  • FIG. 1A2 is a high resolution transmission electron microscope (HRTEM) photograph of the Mn 3 O 4 single crystal nanoparticles recorded along the axis
  • the inset of shows the corresponding Fourier transform (FT) pattern.
  • FIG. 1A1 is the Mn 3 O 4 nanoparticles for the Mn 3 O 4 nanoparticles synthesized in Example 1 of the present invention
  • the insert of Figure 1A1 Figure Is a high resolution transmission electron microscope (HRTEM) photograph of the single crystal recorded along the [111] axis
  • FIG. 1A2 is a high resolution transmission electron microscope (HRTEM) photograph
  • FIG. 1B is a low magnification TEM photograph (B1) and HRTEM photograph (B2) for the ⁇ -Fe 2 O 3 nanocage synthesized in Example 3 of the present invention, and the inset of FIG. 1B2 shows the corresponding FT pattern.
  • 2A is a TEM photograph (left) of Co 3 O 4 nanoparticles synthesized in Example 2 of the present invention and a TEM photograph of SnO 2 nanocage (right) synthesized in Example 7 of the present invention.
  • 2B is a TEM photograph of Mn 3 O 4 / SnO 2 nanoparticles (left) and SnO 2 nanoparticles (right) synthesized in Examples 4 and 5, respectively.
  • FIG. 3A shows the molar fraction of Fe in the reaction product in the course of synthesis using Mn 3 O 4 nanoparticles (solid circle) and its bulk counterpart (open circle).
  • ICP-AES Inductively coupled plasma-atomic emission spectroscopy
  • 3B shows powder X-ray diffraction (XRD) patterns for Mn 3 O 4 nanoparticles, Mn 3 O 4 / ⁇ -Fe 2 O 3 nanocage and ⁇ -Fe 2 O 3 nanocage.
  • XRD powder X-ray diffraction
  • 3C is a saturation magnetization curve obtained by superconducting quantum interference device (SQUID) measurement.
  • FIG. 4A shows the schematic diagram and, Mn 3 O 4 localized dissolution, and in the form of changes in the Mn 3 O 4 nanoparticles through surface precipitation of the ⁇ -Fe 2 O 3 for the conversion of Mn 3 O 4 nanoparticles .
  • 4B-4E are obtained by reaction of 1 mL of 0.4 M (B), 0.6 M (C), 1.0 M (D) and 1.6 M (E) iron (II) perchlorate aqueous solution with Mn 3 O 4 nanoparticles.
  • FIG. 4F is a high-angle annular dark-field scanning TEM (HAADF-STEM) photograph of the nanobox of FIG. 4B.
  • HAADF-STEM high-angle annular dark-field scanning TEM
  • FIGS. 4B and 4F pinholes were generated at the surface of the nanobox, indicating that pores developed inside the nanoparticle by a mechanism similar to pinhole corrosion.
  • the pinholes served as a transport path in the dissolution of the nanoparticle core.
  • FIG. 4G is a TEM photograph and the corresponding energy-filtered TEM (EFTEM) photograph of the nanobox of FIG. 4C in which Fe species precipitated at the corners.
  • FIG. 4H is a HAADF-STEM photograph of the nanocage of FIG. 4D, showing an open hollow structure.
  • FIG. 4I is a TEM photograph and corresponding EFTEM photograph for the nanocage of FIG. 4E.
  • FIG. 5 shows hollows synthesized by reaction of 1 mL of (a) 0.4 M, (b) 0.8 M, (c) 1.6 M and (e) 2.0 M aqueous solution of iron (II) perchlorate with Mn 3 O 4 nanoparticles.
  • XAS X-ray absorption spectroscopy
  • XMCD X-ray magnetic circular dichroism
  • FIG. 7A is a TEM photograph of CeO 2 nanoparticles used in Example 8 of the present invention
  • FIGS. 7B and 7C are TEM photographs of CeO 2 / ⁇ -Fe 2 O 3 nanocage synthesized in Example 8 of the present invention
  • 7D is an EFTEM photograph of the CeO 2 / ⁇ -Fe 2 O 3 nanocage.
  • FIG. 1A1 is a low magnification photograph of the Mn 3 O 4 nanoparticles
  • an insertion diagram of FIG. 1A1 is a HRTEM (high resolution transmission electron microscope) photograph of a single crystal recorded along the [111] axis
  • FIG. 1A2 is recorded along the [011] axis HRTEM (High Resolution Transmission Electron Microscopy) photographs of Mn 3 O 4 single crystal nanoparticles, and the inset of FIG.
  • 1A2 shows the corresponding Fourier transform (FT) pattern.
  • FT Fourier transform
  • FIG. 1B low magnification TEM (FIG. 1B1), HRTEM photograph (FIG. 1B2) and corresponding FT pattern (inset of FIG. 1B2) for ⁇ -Fe 2 O 3 synthesized using 2.0 M iron (II) perchlorate Is shown.
  • FIG. 1B it can be seen that the original Mn 3 O 4 nanoparticles were completely converted to nanocages with empty interiors and pores in the shell.
  • the outer shape of the nanocage is almost identical to the original Mn 3 O 4 nanoparticles.
  • the shell of the nanocage is a single crystal structure having a highly ordered continuous lattice fringe.
  • FIG. 3A shows the molar fraction of Fe in the reaction product in the course of synthesis using Mn 3 O 4 nanoparticles (solid circle) and its bulk counterpart (open circle).
  • ICP-AES Inductively coupled plasma-atomic emission spectroscopy
  • FIG. 3B shows powder X-ray diffraction (XRD) patterns for Mn 3 O 4 nanoparticles, Mn 3 O 4 / ⁇ -Fe 2 O 3 nanocage and ⁇ -Fe 2 O 3 nanocage.
  • XRD powder X-ray diffraction
  • FIG. 4F is a high-angle annular dark-field scanning TEM (HAADF-STEM) image of the nanobox of FIG.
  • FIG. 4G is a TEM photograph and corresponding EFTEM photograph of the nanobox of FIG. 4C, showing that Fe species have accumulated in the shell region of the nanocage.
  • FIG. 4H is a HAADF-STEM photograph of the nanocage of FIG. 4D, showing an open hollow structure.
  • FIG. 4I is a TEM photograph and corresponding EFTEM photograph of the nanocage of FIG. 4E, showing that the Fe species were uniformly deposited over the entire surface of the nanocage.
  • FIG. 5 shows hollows synthesized by reaction of 1 mL of (a) 0.4 M, (b) 0.8 M, (c) 1.6 M and (e) 2.0 M aqueous solution of iron (II) perchlorate with Mn 3 O 4 nanoparticles.
  • XAS X-ray absorption spectroscopy
  • XMCD X-ray magnetic circular dichroism
  • the XAS at the Mn L 2,3 -edge of the nanobox is almost identical to the XAS of the original Mn 3 O 4 nanoparticles, and both Mn 3+ and Mn 2+ ions are within the spinel structure. Occupy octahedral and tetrahedral sites respectively.
  • the peak corresponding to Mn 3+ ions gradually disappeared, and only after the end of the substitution reaction, only peaks of Mn 2+ ions remained.
  • Example 2 To 16 mL of the Mn 3 O 4 suspension prepared in Example 1 was added 0.5 mL of an aqueous solution comprising 0.34 g of oleylamine, 2.0 M tin (II) chloride solution and 0.4 mL of HCl solution (37%). , And heated to 90 °C in air for 2 hours to prepare a Mn 3 O 4 / SnO 2 nanocage. The resulting mixture was cooled to room temperature and centrifuged to yield the product, then washed with ethanol. TEM images of the Mn 3 O 4 / SnO 2 nanocages synthesized in this example are shown in FIG. 2B (left).
  • Example 2 To 16 mL of the Mn 3 O 4 suspension prepared in Example 1, 0.5 mL of an aqueous solution comprising 0.67 g of oleylamine, 0.14 g of oleic acid, 0.2 mL of HCl solution (37%) and 2.0 M tin (II) chloride After the addition, and heated to 90 °C in air for 2 hours to prepare a SnO 2 nanocage. The resulting mixture was cooled to room temperature and centrifuged to yield the product, then washed with ethanol. TME image of the SnO 2 nanocage synthesized in this example is shown in FIG. 2B (right).
  • FIG. 6B inset is EFTEM photograph
  • TEM images were obtained using a JEOL EM-2010 transmission electron microscope (TEM) at 200 kV.
  • HRTEM high resolution TEM
  • HRTEM was performed using a JEOL 2200FS transmission electron microscope at 200 kV.
  • Energy-filtered TEM photographs were recorded on a Tecnai F20 transmission electron microscope.
  • Elemental analysis was performed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) (Shimadzu).
  • ICP-AES inductively coupled plasma-atomic emission spectroscopy
  • Magnetization measurements were performed using an MPMS 5XL Quantum Design SQUID magnetometer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Compounds Of Iron (AREA)

Abstract

The present invention relates to a method for manufacturing hollow multi-metal oxide nanoparticles. More specifically, the present invention relates to a method for manufacturing multi-metal oxide nanoparticles comprising a step of heating a mixture of first transition metal oxide nanoparticles, a second transition metal salt, water and a surfactant under an acidic condition, wherein the standard reduction potential of the first transition metal oxide nanoparticles is greater than the standard reduction potential of a second transition metal ion.

Description

중공 다금속 산화물 나노입자 제조 방법Hollow polymetal oxide nanoparticles manufacturing method
본 발명은 중공 구조의 다금속 산화물 나노입자 제조 방법에 관한 것이다. 보다 상세하게는, 본 발명은 제1 전이금속 산화물 나노입자, 제2 전이금속 염, 물 및 계면활성제의 혼합물을 산성 조건 하에서 가열하는 단계를 포함하고, 상기 제1 전이금속 산화물 나노입자의 표준환원전위가 상기 제2 전이금속 이온의 표준환원전위 보다 더 큰 것인, 다금속 산화물 나노입자 제조 방법에 대한 것이다.The present invention relates to a method for producing multimetal oxide nanoparticles of hollow structure. More specifically, the present invention includes the step of heating a mixture of the first transition metal oxide nanoparticles, the second transition metal salt, water and a surfactant under acidic conditions, the standard reduction of the first transition metal oxide nanoparticles The potential is greater than the standard reduction potential of the second transition metal ion, to a multimetal oxide nanoparticles manufacturing method.
무기 나노입자의 화학적 변환(chemical transformation)은 고도의 구조적 및 조성적 복잡성을 갖는 나노구조체를 제조할 수 있는 강력한 도구이고, 따라서 제조가능한 나노구조의 물질의 범위를 확장시킬 수 있다.Chemical transformation of inorganic nanoparticles is a powerful tool for preparing nanostructures with high structural and compositional complexity, thus extending the range of manufacturable nanostructured materials.
다양한 화학적 변환 방법들 중에서, 제어가능한 기공 구조 및 조성을 갖는 중공(hollow) 금속 나노구조체를 제조하기에는 갈바니 치환반응(galvanic replacement reaction)이 가장 다용도로 사용될 수 있다.Among various chemical conversion methods, the galvanic replacement reaction may be the most versatile to produce hollow metal nanostructures having controllable pore structures and compositions.
갈바니 치환반응은 두 개의 금속 종들의 전기화학적 전위차에 의해 구동되는 부식(corrosion) 과정을 포함한다. 반응 주형(reactive template)으로서 사용되는 금속 나노입자의 산화적 용해로 인하여 중공 내부(hollow interior)가 생성된다.Galvanic substitution involves a process of corrosion driven by the electrochemical potential difference of two metal species. Hollow interiors are created due to the oxidative dissolution of metal nanoparticles used as reactive templates.
최근의 개발에 의해, 고도로 복잡한 중공 금속 및 합금 나노구조체를 생산할 수 있게 되었다. 그러나 갈바니 치환반응을 통한 이온 시스템의 화학적 변환을 달성하기 어렵다.Recent developments have made it possible to produce highly complex hollow metal and alloy nanostructures. However, it is difficult to achieve chemical conversion of the ionic system through galvanic substitution.
중공 산화물 나노입자는 에너지, 촉매 및 의학 분야에 대한 응용 가능성으로 인하여 많은 관심을 받고 있다. 중공 금속산화물 나노입자의 합성에 있어서 상당한 발전이 이루어졌지만(Z. Wang, L. Zhou, X. W. Lou, Adv. Mater. 24, 1903 (2012); K. An, T. Hyeon, Nano Today 4, 359 (2009); Y. Piao et al., Nat. Mater. 7, 242 (2008); S. Peng, S. Sun, Angew. Chem. Int. Ed. 46, 4155 (2007)), 중공 다금속산화물(multimetallic oxide) 나노입자의 합성은 여전히 큰 도전이다.Hollow oxide nanoparticles are of great interest due to their potential applications in the energy, catalyst and medical fields. Although significant advances have been made in the synthesis of hollow metal oxide nanoparticles (Z. Wang, L. Zhou, XW Lou, Adv. Mater. 24 , 1903 (2012); K. An, T. Hyeon, Nano Today 4 , 359). (2009); Y. Piao et al. , Nat. Mater. 7 , 242 (2008); S. Peng, S. Sun, Angew. Chem. Int. Ed. 46 , 4155 (2007)), hollow polymetal oxides The synthesis of multimetallic oxide nanoparticles is still a big challenge.
본 발명자들은 전이금속산화물 나노입자에 대해서도 갈바니 치환반응을 통해 중공 다금속 산화물 나노구조체를 제조할 수 있음을 확인함으로써 본 발명을 완성하였다.The present inventors have completed the present invention by confirming that hollow polymetal oxide nanostructures can be prepared through a galvanic substitution reaction for transition metal oxide nanoparticles.
본 발명의 목적은 제1 전이금속 산화물 나노입자, 제2 전이금속 염, 물 및 계면활성제의 혼합물을 산성 조건 하에서 가열하는 단계를 포함하고, 상기 제1 전이금속 산화물 나노입자의 표준환원전위가 상기 제2 전이금속 이온의 표준환원전위 보다 더 큰 것인, 중공 다금속 산화물 나노입자 제조 방법을 제공하는 것이다.An object of the present invention includes heating a mixture of a first transition metal oxide nanoparticle, a second transition metal salt, water, and a surfactant under acidic conditions, wherein the standard reduction potential of the first transition metal oxide nanoparticle is It is to provide a hollow polymetal oxide nanoparticles manufacturing method that is larger than the standard reduction potential of the second transition metal ion.
전술한 본 발명의 목적은 제1 전이금속 산화물 나노입자, 제2 전이금속 염, 물 및 계면활성제의 혼합물을 산성 조건 하에서 가열하는 단계를 포함하고, 상기 제1 전이금속 산화물 나노입자의 표준환원전위가 상기 제2 전이금속 이온의 표준환원전위 보다 더 큰 것인, 중공 다금속 산화물 나노입자 제조 방법을 제공함으로써 달성될 수 있다.The above-described object of the present invention includes heating a mixture of a first transition metal oxide nanoparticle, a second transition metal salt, water, and a surfactant under acidic conditions, and has a standard reduction potential of the first transition metal oxide nanoparticle. It can be achieved by providing a hollow polymetal oxide nanoparticle manufacturing method, wherein is greater than the standard reduction potential of the second transition metal ion.
상기 제1 전이금속 산화물은 Mn3O4, MnO2, Co3O4, Fe3O4, PbO2 또는 CeO2일 수 있다. 또한, 상기 제2 전이금속 염은 아이언(II) 퍼클로레이트, 틴(II) 퍼클롤레이트, 바나듐(III) 클로라이드, 티타늄(III) 클로라이드, 크롬(II) 클로라이드, 아이언(II) 옥살레이트 또는 아이언(II) 클로라이드일 수 있다.The first transition metal oxide may be Mn 3 O 4 , MnO 2 , Co 3 O 4 , Fe 3 O 4 , PbO 2, or CeO 2 . In addition, the second transition metal salt may be iron (II) perchlorate, tin (II) perchlorate, vanadium (III) chloride, titanium (III) chloride, chromium (II) chloride, iron (II) oxalate or iron ( II) chloride.
상기 계면활성제는 올레산(oleic acid), 옥탄산(octanoic acid), 스테아르산(stearic acid) 또는 데칸산(decanoic acid) 등과 같은 C1-C18 카르복시산; 올레일아민(oleylamine), 옥틸아민(octylamine), 헥사데실아민(hexadecylamine), 옥타데실아민(octadecylamine) 또는 트리옥틸아민(tri-n-octylamine) 등과 같은 C3-C18 알킬아민(alkyl amine(RNH2); 올레일알콜(oleyl alcohol), 옥탄올(octanol) 또는 부탄올(butanol) 등과 같은 C1-C18 알콜; 또는 이들의 혼합물일 수 있다.The surfactant may be selected from C 1 -C 18 carboxylic acids such as oleic acid, octanoic acid, stearic acid or decanoic acid; C 3 -C 18 alkylamines such as oleylamine, octylamine, hexadecylamine, octadecylamine or tri-n-octylamine, etc. RNH 2 ), C 1 -C 18 alcohols such as oleyl alcohol, octanol or butanol, and the like, or mixtures thereof.
상기 혼합물의 pH는 0.0 내지 6.0인 것이 바람직하다. 상기 혼합물의 pH를 조절하기 위하여 염산, 질산, 황산, 아세트산, 옥살산 또는 과염소산과 같은 산을 추가할 수 있다. 또한, 상기 혼합물의 가열 온도는 30℃ 내지 100℃일 수 있다.The pH of the mixture is preferably 0.0 to 6.0. Acids such as hydrochloric acid, nitric acid, sulfuric acid, acetic acid, oxalic acid or perchloric acid may be added to adjust the pH of the mixture. In addition, the heating temperature of the mixture may be 30 ℃ to 100 ℃.
상기 다금속 산화물 나노입자의 형상은 나노박스 또는 나노케이지일 수 있다. 본 명세서에서 "나노박스(nanobox)"란 중공 내부(hollow interior)와 중실 벽들(solid walls)로 이루어진 나노입자를 지칭한다. 또한, 본 명세서에서 "나노케이지(nanocage)"란 중공 내부 및 다공성 벽들로 이루어진 나노입자를 지칭한다.The shape of the multimetal oxide nanoparticles may be a nano box or nano cage. "Nanobox" as used herein refers to nanoparticles consisting of a hollow interior and solid walls. Also, herein, "nanocage" refers to nanoparticles consisting of hollow interiors and porous walls.
상기 제1 전이금속 산화물 나노입자의 크기는 5 nm 내지 100 nm일 수 있고, 상기 다금속 산화물 나노입자의 크기는 5 nm 내지 100 nm일 수 있다.The size of the first transition metal oxide nanoparticles may be 5 nm to 100 nm, the size of the multimetal oxide nanoparticles may be 5 nm to 100 nm.
나노스케일의 갈바니 치환반응에서, 다가 금속이온들 간의 산화환원쌍 반응(redox-couple reaction)이 일어난다. 나노입자 내의 상기 금속 이온들은 용액 내의 또 다른 금속 이온들에 의해 치환된다.In the nanoscale galvanic substitution reaction, a redox-couple reaction between polyvalent metal ions occurs. The metal ions in the nanoparticles are replaced by other metal ions in the solution.
본 발명의 하나의 실시 태양에 있어서, 아이언(II) 퍼클로레이트와 Mn2O3 나노입자를 반응(갈바니 치환반응)시켜 Mn3O4/γ-Fe2O3 나노박스 또는 γ-Fe2O3 나노케이지를 제조할 수 있다. 상기 갈비니 치환반응은 Fe3+/Fe2+ 쌍 및 Mn3O4/Mn2+ 쌍의 표준환원전위 차이를 근거로 설명될 수 있다. 상기 Fe3+/Fe2+ 쌍의 표준환원전위(0.77 V)가 상기 Mn3O4/Mn2+ 쌍의 표준환원전위(1.82 V) 보다 더 작기 때문에, Fe2+가 Fe3+로 산화되고, 동시에 Mn3O4는 Mn2+로 환원된다.In one embodiment of the present invention, iron (II) perchlorate and Mn 2 O 3 nanoparticles are reacted (galvanic substitution reaction) to Mn 3 O 4 / γ-Fe 2 O 3 nanobox or γ-Fe 2 O 3 Nanocage can be prepared. The galbini substitution reaction can be described on the basis of the difference in the standard reduction potential of the Fe 3+ / Fe 2+ pair and Mn 3 O 4 / Mn 2+ pair. Since the standard reduction potential (0.77 V) of the Fe 3+ / Fe 2+ pair is smaller than the standard reduction potential (1.82 V) of the Mn 3 O 4 / Mn 2+ pair, Fe 2+ is oxidized to Fe 3+ . At the same time, Mn 3 O 4 is reduced to Mn 2+ .
본 발명의 또 다른 실시 태양에 있어서, 아이언(II) 퍼클로레이트 대신에 FeCl2 또는 FeCl3를 반응시키면, FeCl2의 경우에만 나노입자가 나노케이지로 변환된다. 이러한 사실은 Fe2+ 이온이 Mn3O4 나노입자에서 Mn3+ 이온의 선택적 환원제로서 작용한다는 점을 확인시켜 준다.In another embodiment of the present invention, reacting FeCl 2 or FeCl 3 instead of iron (II) perchlorate converts the nanoparticles to nanocage only in the case of FeCl 2 . This fact confirms that Fe 2+ ions act as selective reducing agents of Mn 3+ ions in Mn 3 O 4 nanoparticles.
Fe2+의 산화로 인해 전자가 방출되고, 이어서 Mn3+가 Mn2+로 환원됨으로써, 상기 Mn3O4 나노입자의 팔면체 자리에서 양전하 결함들(positive charge deficiencies)이 생성된다. 상기 결함들은 Mn2+ 이온이 Fe3+ 이온으로 치환됨으로써 보충된다.The oxidation of Fe 2+ releases the electrons, followed by the reduction of Mn 3+ to Mn 2+ , resulting in positive charge deficiencies at the octahedral sites of the Mn 3 O 4 nanoparticles. The defects are compensated for by replacing Mn 2+ ions with Fe 3+ ions.
갈바니 치환반응이 개시되면, 환원된 Mn2+ 이온들이 용해되고, 상기 나노입자의 표면 근처에 빈 팔면체 자리를 남긴다. 동시에, 용액 내에 존재하는 산화된 Fe3+ 이온들 중 일부가 상기 나노입자의 표면으로 확산하여 즉시 접근가능한 빈자리(vacancy)를 채운다.When the galvanic substitution reaction is initiated, the reduced Mn 2+ ions are dissolved and leave an empty octahedral site near the surface of the nanoparticles. At the same time, some of the oxidized Fe 3+ ions present in the solution diffuse to the surface of the nanoparticles to fill the readily accessible vacancy.
환원된 Mn2+ 이온들의 방출 흐름과 이에 따라 용액으로부터 산화된 Fe3+ 이온들이 상기 Mn3O4 나노입자 표면 상에 위상 침전(topotactic precipitation)하면서, 상기 Mn3O4 나노입자의 최외각 쉘부터 시작하여 Mn3O4를 γ-Fe2O3로 변환시킨다. 이로 인하여 내부의 Mn2+ 종들의 외향(outward) 확산이 방해를 받는다. 이러한 변환은 상기 쉘의 모서리 주변에서 주로 발생한다.Oxidized from the reduced release of Mn 2+ ion flow and its solution in accordance with Fe 3+ ions to the Mn 3 O 4 of the Mn 3 O 4 nanoparticles and a phase precipitation (precipitation topotactic) on the nanoparticle surface outermost shell Starting from Mn 3 O 4 is converted to γ-Fe 2 O 3 . This prevents outward diffusion of the internal Mn 2+ species. This conversion occurs mainly around the edges of the shell.
상기 환원된 Mn2+ 이온들의 현저한 용해로 인한 빈 팔면체 자리들의 수가 증가하면 사면체 Mn2+ 이온들과 산소 음이온으로 이루어진 잔여 격자가 완전히 붕괴될 수 있다. 이러한 과정에 의해, γ-Fe2O3 층에 의해 덮히지 아니한 영역, 즉 밑면(basal plane)의 중간에서 반응의 초기 단계 동안에 핀홀들이 생성된다.Increasing the number of empty octahedral sites due to the significant dissolution of the reduced Mn 2+ ions may completely disrupt the residual lattice of tetrahedral Mn 2+ ions and oxygen anions. By this process, pinholes are produced during the initial phase of the reaction in the region not covered by the γ-Fe 2 O 3 layer, ie in the middle of the basal plane.
상기 갈바니 치환반응이 진행됨에 따라, 상기 Fe2+ 이온들이 내부로 이동하여 상기 Mn3O4 나노입자의 내부에서 상기 팔면체 Mn3+ 이온들을 환원시킨다. 상기 갈바니 치환반응의 초기 단계 동안에 형성된 핀홀들은, 이렇게 형성된 나노박스로부터 상기 환원된 Mn2+ 이온들을 지속적으로 이동시키는 통로로서의 역할을 함으로써, 남은 코어 종들, 즉 사면체 Mn2+ 이온들 및 산소 음이온의 용해를 촉진한다.As the galvanic substitution reaction proceeds, the Fe 2+ ions move inside to reduce the octahedral Mn 3+ ions inside the Mn 3 O 4 nanoparticles. The pinholes formed during the initial stage of the galvanic substitution reaction serve as a pathway for the continuous transfer of the reduced Mn 2+ ions from the nanobox thus formed, thereby reducing the remaining core species, i.e. tetrahedral Mn 2+ ions and oxygen anions. Promote dissolution.
상기 갈바니 치환반응은 상기 코어가 비고 측벽들이 중공 상태가 될 때까지 진행됨으로써, 불균일구조의(heterostructured) Mn3O4/Fe2O3 나노케이지를 형성한다. 이 단계에서, 초기(nascent) γ-Fe2O3 나노케이지의 개방 구조로 인하여 γ-Fe2O3의 침전이 이의 중공 내부에서 발생함으로써, 상기 γ-Fe2O3 나노케이지로 더 변환되게 한다.The galvanic substitution reaction proceeds until the core is empty and the sidewalls are hollow, thereby forming a heterostructured Mn 3 O 4 / Fe 2 O 3 nanocage. At this stage, due to the open structure of the nascent γ-Fe 2 O 3 nanocage, precipitation of γ-Fe 2 O 3 takes place inside its hollow, so that it is further converted into the γ-Fe 2 O 3 nanocage. do.
Mn3O4 나노입자가 과염소산과 반응했을 때 형태적 변화가 관찰되지 않았기 때문에, 상기 아이언(II) 퍼클로레이트 수용액의 퍼클로레이트 모이어티(perchlorate moiety)는 상기 중공 구조체의 생성에 영향을 미치지 아니하는 것으로 보인다. 또한, 출발물질로서 다른 형상의 Mn3O4 나노입자를 사용하여 동일한 반응을 진행하면 다른 형태를 갖는 케이지와 유사한 구조체를 제조할 수 있다.Since no morphological changes were observed when the Mn 3 O 4 nanoparticles reacted with perchloric acid, the perchlorate moiety of the iron (II) perchlorate aqueous solution does not appear to affect the formation of the hollow structure. . In addition, when the same reaction is performed using Mn 3 O 4 nanoparticles of different shapes as starting materials, a structure similar to a cage having a different shape can be prepared.
본 발명의 방법에 따르면, 제어가능한 기공 구조 및 조성을 갖는 중공 다금속 산화물 나노입자를 갈바니 치환반응에 의해 간단하게 제조할 수 있다. 또한, 본 발명의 방법은 중공 다금속 산화물 나노입자의 대량 생산에 적합하다.According to the method of the present invention, hollow polymetal oxide nanoparticles having controllable pore structure and composition can be prepared simply by galvanic substitution. The method of the present invention is also suitable for mass production of hollow multimetal oxide nanoparticles.
도 1A는 본 발명의 실시예 1에서 합성된 Mn3O4 나노입자에 대한 TEM(투과전자현미경) 사진이고, 도 1A1은 상기 Mn3O4 나노입자에 대한 저배율 사진이며, 도 1A1의 삽입도는 [111]축을 따라 기록한 단결정에 대한 HRTEM(고해상도 투과전자현미경) 사진이고, 도 1A2는 [011]축을 따라 기록한 Mn3O4 단결정 나노입자에 대한 HRTEM(고해상도 투과전자현미경) 사진이며, 도 1A2의 삽입도는 대응하는 FT(푸리에 변환) 패턴을 보여준다. 도 1B는 본 발명의 실시예 3에서 합성된 γ-Fe2O3 나노케이지에 대한 저배율 TEM 사진(B1) 및 HRTEM 사진(B2)이고, 도 1B2의 삽입도는 상응하는 FT 패턴을 보여 준다.Figure 1A is a low magnification photograph of a TEM (transmission electron microscope), and pictures, Fig. 1A1 is the Mn 3 O 4 nanoparticles for the Mn 3 O 4 nanoparticles synthesized in Example 1 of the present invention, the insert of Figure 1A1 Figure Is a high resolution transmission electron microscope (HRTEM) photograph of the single crystal recorded along the [111] axis, and FIG. 1A2 is a high resolution transmission electron microscope (HRTEM) photograph of the Mn 3 O 4 single crystal nanoparticles recorded along the axis, The inset of shows the corresponding Fourier transform (FT) pattern. FIG. 1B is a low magnification TEM photograph (B1) and HRTEM photograph (B2) for the γ-Fe 2 O 3 nanocage synthesized in Example 3 of the present invention, and the inset of FIG. 1B2 shows the corresponding FT pattern.
도 2A는 본 발명의 실시예 2에서 합성된 Co3O4 나노입자에 대한 TEM 사진(좌측)과 본 발명의 실시예 7에서 합성된 SnO2 나노케이지(우측)에 대한 TEM 사진이다. 도 2B는 본 발명의 실시예 4 및 5에서 각각 합성된 Mn3O4/SnO2 나노입자(좌측) 및 SnO2 나노입자(우측)에 대한 TEM 사진이다.2A is a TEM photograph (left) of Co 3 O 4 nanoparticles synthesized in Example 2 of the present invention and a TEM photograph of SnO 2 nanocage (right) synthesized in Example 7 of the present invention. 2B is a TEM photograph of Mn 3 O 4 / SnO 2 nanoparticles (left) and SnO 2 nanoparticles (right) synthesized in Examples 4 and 5, respectively.
도 3A는 Mn3O4 나노입자(실원(solid circle)) 및 이의 벌크 상태(bulk counterpart)(중공원(open circle))를 사용하는 합성 과정에서, 반응 생성물 내의 Fe의 몰분율을 아이언(II) 퍼클로레이트 첨가량의 함수로서 나타낸 유도결합 플라즈마-원자 발광 분광법(ICP-AES) 데이터이다. 도 3A의 점선은 Mn이 Fe로 완전히 치환되었을 경우를 보여 준다. 도 3B는 Mn3O4 나노입자, Mn3O4/γ-Fe2O3 나노케이지 및 γ-Fe2O3 나노케이지에 대한 분말 X-선 회절(XRD) 패턴을 보여 준다. 비교를 위해, Mn3O4(하단) 및 γ-Fe2O3(상단)에 대해 알려져 있는 XRD 패턴을 도 3B에 나타내었다. 도 3C는 초전도 양자간섭계(superconducting quantum interference device, SQUID) 측정으로 얻은 포화자화도 곡선이다.FIG. 3A shows the molar fraction of Fe in the reaction product in the course of synthesis using Mn 3 O 4 nanoparticles (solid circle) and its bulk counterpart (open circle). Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) data presented as a function of the amount of perchlorate added. The dotted line in FIG. 3A shows the case where Mn is completely substituted with Fe. 3B shows powder X-ray diffraction (XRD) patterns for Mn 3 O 4 nanoparticles, Mn 3 O 4 / γ-Fe 2 O 3 nanocage and γ-Fe 2 O 3 nanocage. For comparison, known XRD patterns for Mn 3 O 4 (bottom) and γ-Fe 2 O 3 (top) are shown in FIG. 3B. 3C is a saturation magnetization curve obtained by superconducting quantum interference device (SQUID) measurement.
도 4A는 Mn3O4 나노입자의 변환에 대한 개념도이고, Mn3O4의 국소적인 용해 및 γ-Fe2O3의 표면 침전을 통해 상기 Mn3O4 나노입자의 형태의 변화를 보여 준다. 도 4B 내지 도 4E는 1 mL의 0.4 M(B), 0.6 M(C), 1.0 M(D) 및 1.6 M(E)의 아이언(II) 퍼클로레이트 수용액과 Mn3O4 나노입자의 반응에 의해 합성된 중공 나노구조체에 대한 HRTEM 사진이다. 각 삽입도는 대응하는 FT 패턴이다. 도 4F는 도 4B의 나노박스에 대한 고각도 환상 암시야 주사 TEM(high-angle annular dark-field scanning TEM, HAADF-STEM) 사진이다. 도 4B 및 도 4F에 나타나 있듯이, 나노박스의 표면에서 핀홀들(pinholes)이 생성되었고, 이는 핀홀 부식과 유사한 메카니즘에 의해 상기 나노입자 내부에서 기공이 발달하였음을 의미한다. 상기 핀홀들은 상기 나노입자 코어의 용해 과정에서 전달 경로(transport path)로서 역할을 하였다. 도 4G는 도 4C의 나노박스에 대한 TEM 사진 및 대응하는 EFTEM(energy-filtered TEM) 사진이고, 이 사진들에서 Fe 종들이 모서리에 침전되었다. 도 4H는 도 4D의 나노케이지에 대한 HAADF-STEM 사진이고, 이 사진에서 개방된 중공 구조가 나타나 있다. 도 4I는 도 4E의 나노케이지에 대한 TEM 사진 및 대응하는 EFTEM 사진이다.Figure 4A shows the schematic diagram and, Mn 3 O 4 localized dissolution, and in the form of changes in the Mn 3 O 4 nanoparticles through surface precipitation of the γ-Fe 2 O 3 for the conversion of Mn 3 O 4 nanoparticles . 4B-4E are obtained by reaction of 1 mL of 0.4 M (B), 0.6 M (C), 1.0 M (D) and 1.6 M (E) iron (II) perchlorate aqueous solution with Mn 3 O 4 nanoparticles. HRTEM photographs of the synthesized hollow nanostructures. Each inset is a corresponding FT pattern. FIG. 4F is a high-angle annular dark-field scanning TEM (HAADF-STEM) photograph of the nanobox of FIG. 4B. As shown in FIGS. 4B and 4F, pinholes were generated at the surface of the nanobox, indicating that pores developed inside the nanoparticle by a mechanism similar to pinhole corrosion. The pinholes served as a transport path in the dissolution of the nanoparticle core. FIG. 4G is a TEM photograph and the corresponding energy-filtered TEM (EFTEM) photograph of the nanobox of FIG. 4C in which Fe species precipitated at the corners. FIG. 4H is a HAADF-STEM photograph of the nanocage of FIG. 4D, showing an open hollow structure. FIG. 4I is a TEM photograph and corresponding EFTEM photograph for the nanocage of FIG. 4E.
도 5는 1 mL의 (a) 0.4 M, (b) 0.8 M, (c) 1.6 M 및 (e) 2.0 M의 아이언(II) 퍼클로레이트 수용액과 Mn3O4 나노입자의 반응에 의해 합성된 중공 나노구조체에 대한 XAS(X-ray absorption spectroscopy) 및 XMCD(X-ray magnetic circular dichroism) 측정 결과이다. 도 5A는 원래의 Mn3O4 나노입자와 중공 나노구조체의 Mn L 2,3-모서리에서의 XAS이고, 도 5B 및 도 5C는 벌크 물질인 γ-Fe2O3 및 Fe3O4와 비교한, Fe L 2,3-모서리에서의 XAS(도 5B)와 중고 나노구조체에 대한 XMCD 스펙트럼(도 5C)이다.FIG. 5 shows hollows synthesized by reaction of 1 mL of (a) 0.4 M, (b) 0.8 M, (c) 1.6 M and (e) 2.0 M aqueous solution of iron (II) perchlorate with Mn 3 O 4 nanoparticles. Results of X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) measurements on nanostructures. 5A is XAS in the Mn L 2,3 -edge of the original Mn 3 O 4 nanoparticles and hollow nanostructures, and FIGS. 5B and 5C are compared with the bulk materials γ-Fe 2 O 3 and Fe 3 O 4 XASD spectra (FIG. 5C) for XAS (FIG. 5B) and used nanostructures at the Fe L 2,3- edges.
도 6은 본 발명의 실시예 6에서 합성된 Co3O4/SnO2 나노케이지에 대한 TEM 사진(도 6A, 삽입도(스케일 바 = 10 nm)는 고배율 TEM 사진)과 HRTEM 사진(도4B, 삽입도는 EFTEM 사진)이다.FIG. 6 is a TEM image (FIG. 6A, inset (scale bar = 10 nm) is a high magnification TEM image) and an HRTEM image of Co 3 O 4 / SnO 2 nanocage synthesized in Example 6 of the present invention. Inset is EFTEM photo).
도 7A는 본 발명의 실시예 8에서 사용된 CeO2 나노입자의 TEM 사진이고, 도 7B 및 도 7C는 본 발명의 실시예 8에서 합성된 CeO2/γ-Fe2O3 나노케이지의 TEM 사진이며, 도 7D는 상기 CeO2/γ-Fe2O3 나노케이지의 EFTEM 사진이다.FIG. 7A is a TEM photograph of CeO 2 nanoparticles used in Example 8 of the present invention, and FIGS. 7B and 7C are TEM photographs of CeO 2 / γ-Fe 2 O 3 nanocage synthesized in Example 8 of the present invention. 7D is an EFTEM photograph of the CeO 2 / γ-Fe 2 O 3 nanocage.
이하, 다음의 실시예 또는 도면을 들어 본 발명을 보다 구체적으로 설명하고자 한다. 그러나 다음의 실시예 또는 도면에 대한 설명은 본 발명의 구체적인 실시 태양을 특정하여 설명하고자 하는 것일 뿐이며, 본 발명의 권리 범위를 이들에 기재된 내용으로 한정하거나 제한해석하고자 의도하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples or drawings. However, the following description of the embodiments or drawings is only intended to specifically describe the specific embodiments of the present invention, it is not intended to limit or limit the scope of the present invention to the contents described therein.
실시예 1. Mn3O4 나노입자의 제조Example 1 Preparation of Mn 3 O 4 Nanoparticles
환류응축기(reflux condenser) 및 자석 교반 막대가 설치된 50 mL 3구 플라스크에 담긴 15 mL의 자일렌에 0.17 g의 망간(II) 아세테이트(Adrich), 0.67 g의 올레일아민(Acros) 및 0.14 g의 올레산(Aldrich)을 녹였다. 이후, 상기 플라스크를 교반하면서 공기 중에서 90℃까지 서서히 가열하였다. 1 mL의 탈이온수를 상기 플라스크 내로 신속히 주입하였다. 상기 반응 혼합물을 공기 중에서 90℃로 1.5 시간 동안 가열하였다.0.17 g of manganese (II) acetate (Adrich), 0.67 g of oleylamine (Acros) and 0.14 g of 15 mL xylene in a 50 mL three-necked flask equipped with a reflux condenser and a magnetic stir bar Oleic acid (Aldrich) was dissolved. The flask was then slowly heated to 90 ° C. in air with stirring. 1 mL of deionized water was injected rapidly into the flask. The reaction mixture was heated to 90 ° C. in air for 1.5 hours.
이렇게 합성된 Mn3O4 나노입자에 대한 TEM 사진(도 1A)을 보면, 상기 Mn3O4 나노입자의 폭과 길이가 약 20 nm이고 높이가 약 5 nm인 정방정계 형상(tetragonal shape)이다. 도 1A1은 상기 Mn3O4 나노입자에 대한 저배율 사진이며, 도 1A1의 삽입도는 [111]축을 따라 기록한 단결정에 대한 HRTEM(고해상도 투과전자현미경) 사진이고, 도 1A2는 [011]축을 따라 기록한 Mn3O4 단결정 나노입자에 대한 HRTEM(고해상도 투과전자현미경) 사진이며, 도 1A2의 삽입도는 대응하는 FT(푸리에 변환) 패턴을 보여준다. 상기 Mn3O4 나노입자에 대한 고해상도 TEM 사진 및 이에 대응하는 푸리에 변환 패턴을 보면, 상기 Mn3O4 나노입자의 윗면 및 옆면이 각각 {001} 면(facet) 및 {100} 면에 의해 둘러쌓여 있고, 이의 꼭지점 및 모서리들이 약간 잘려져 있다(truncated).This TEM photograph of the synthesized Mn 3 O 4 nanoparticles (look Fig. 1A), the width and length of the Mn 3 O 4 nanoparticles is about 20 nm, and the tetragonal shape (tetragonal shape) of about 5 nm in height . FIG. 1A1 is a low magnification photograph of the Mn 3 O 4 nanoparticles, an insertion diagram of FIG. 1A1 is a HRTEM (high resolution transmission electron microscope) photograph of a single crystal recorded along the [111] axis, and FIG. 1A2 is recorded along the [011] axis HRTEM (High Resolution Transmission Electron Microscopy) photographs of Mn 3 O 4 single crystal nanoparticles, and the inset of FIG. 1A2 shows the corresponding Fourier transform (FT) pattern. In the high resolution TEM image of the Mn 3 O 4 nanoparticles and the corresponding Fourier transform pattern, the top and side surfaces of the Mn 3 O 4 nanoparticles are surrounded by {001} facet and {100} face, respectively. Stacked and its vertices and edges slightly truncated.
실시예 2. Co3O4 나노입자의 제조Example 2. Preparation of Co 3 O 4 Nanoparticles
환류응축기가 설치된 100 mL 플라스크에 담긴 15 mL의 옥탄올에 1 mmol의 코발트(II) 퍼클로레이트(Aldrich)를 녹이고 10분 동안 초음파처리하였다. 이후에 공기 중의 60℃에서 교반하면서, 차례로 상기 플라스크에 10 mmol의 올레일아민과 1 mL의 물을 첨가하였다. 상기 반응 혼합물을 공기 중에서 6시간 동안 160℃로 가열하였다. 본 실시예에서 합성된 Co3O4에 대한 TEM 사진인 도 2A(좌측)에 나타나 있다.1 mmol of cobalt (II) perchlorate (Aldrich) was dissolved in 15 mL of octanol in a 100 mL flask equipped with a reflux condenser and sonicated for 10 minutes. Thereafter, 10 mmol of oleylamine and 1 mL of water were sequentially added to the flask with stirring at 60 ° C. in air. The reaction mixture was heated to 160 ° C. for 6 hours in air. It is shown in FIG. 2A (left), which is a TEM photograph of Co 3 O 4 synthesized in this example.
실시예 3. 갈바니 치환반응에 의한 Mn3O4/γ-Fe2O3 및 γ-Fe2O3의 제조Example 3 Preparation of Mn 3 O 4 / γ-Fe 2 O 3 and γ-Fe 2 O 3 by Galvanic Substitution
실시예 1에서 제조된 Mn3O4 현탁액 16 mL에, 다양한 농도(0.1 - 3.0 M)의 아이언(II) 퍼클로레이트(Aldrich)를 첨가한 후, 공기 중에서 2시간 동안 90℃로 가열하여 Mn3O4/γ-Fe2O3 및 γ-Fe2O3를 제조하였다. 상기 생성 혼합물을 실온으로 냉각하고 원심분리하여 생성물을 얻은 후, 에탄올로 세척하였다.To 16 mL of the Mn 3 O 4 suspension prepared in Example 1, iron (II) perchlorate at various concentrations (0.1-3.0 M) was added, followed by heating to 90 ° C. for 2 hours in air to Mn 3 O 4 / γ-Fe 2 O 3 and γ-Fe 2 O 3 were prepared. The resulting mixture was cooled to room temperature and centrifuged to yield the product, then washed with ethanol.
도 1B에, 2.0 M의 아이언(II) 퍼클로레이트를 사용하여 합성한 γ-Fe2O3에 대한 저배율 TEM(도 1B1), HRTEM 사진(도 1B2) 및 상응하는 FT 패턴(도 1B2의 삽입도)이 나타나 있다. 도 1B를 보면, 원래의 Mn3O4 나노입자가, 내부가 비어 있고 쉘(shell)에 구멍이 있는 나노케이지로 완전히 전환되었다는 점을 알 수 있다. 상기 나노케이지의 외부 형상은 원래의 Mn3O4 나노입자와 거의 동일하다. 또한, 도 1B2의 HRTEM에서 볼 수 있듯이, 상기 나노케이지의 쉘은 고도로 정렬된 연속적 격자 줄무늬(highly ordered continuous lattice fringe)를 갖는 단결정상 구조임을 알 수 있다.In FIG. 1B, low magnification TEM (FIG. 1B1), HRTEM photograph (FIG. 1B2) and corresponding FT pattern (inset of FIG. 1B2) for γ-Fe 2 O 3 synthesized using 2.0 M iron (II) perchlorate Is shown. 1B, it can be seen that the original Mn 3 O 4 nanoparticles were completely converted to nanocages with empty interiors and pores in the shell. The outer shape of the nanocage is almost identical to the original Mn 3 O 4 nanoparticles. In addition, as can be seen in the HRTEM of FIG. 1B2, it can be seen that the shell of the nanocage is a single crystal structure having a highly ordered continuous lattice fringe.
도 3A는 Mn3O4 나노입자(실원(solid circle)) 및 이의 벌크 상태(bulk counterpart)(중공원(open circle))를 사용하는 합성 과정에서, 반응 생성물 내의 Fe의 몰분율을 아이언(II) 퍼클로레이트 첨가량의 함수로서 나타낸 유도결합 플라즈마-원자 발광 분광법(ICP-AES) 데이터이다. 도 3A에 나타나 있듯이, 상기 나노케이지 내의 철 대 망간의 몰비율은 91:9이고, 이러한 사실은 원래 나노입자 내의 망간 이온들이 철 이온들에 의해 거의 완전히 치환되었음을 나타낸다. 벌크 Mn3O4 분말을 사용한 경우에는 생성물 내의 Fe의 몰비율이 현저히 낮았다(25% 미만). 도 3A의 점선은 Mn이 Fe로 완전히 치환되었을 경우를 보여 준다. 도 3B는 Mn3O4 나노입자, Mn3O4/γ-Fe2O3 나노케이지 및 γ-Fe2O3 나노케이지에 대한 분말 X-선 회절(XRD) 패턴을 보여 준다. 비교를 위해, Mn3O4(하단) 및 γ-Fe2O3(상단)에 대해 알려져 있는 XRD 패턴을 도 3B에 나타내었다. 도 3B에 따르면, 아이언(II) 퍼클로레이트의 농도가 증가할수록, 사면체적으로 왜곡된(tetragonally distorted) Mn3O4 스피넬이 정육면체 γ-Fe2O3 스피넬로 변환되었음을 알 수 있다. 이러한 사실은 도 3C에 의해서도 확인된다. 도 3C는 초전도 양자간섭계(superconducting quantum interference device, SQUID) 측정으로 얻은 포화자화도 곡선이다. 도 3C에 나타나 있듯이, Fe 함량이 증가함에 따라 생성된 나노입자의 자화도가 일정하게 증가하였다.FIG. 3A shows the molar fraction of Fe in the reaction product in the course of synthesis using Mn 3 O 4 nanoparticles (solid circle) and its bulk counterpart (open circle). Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) data presented as a function of the amount of perchlorate added. As shown in FIG. 3A, the molar ratio of iron to manganese in the nanocage is 91: 9, indicating that manganese ions in the original nanoparticles are almost completely replaced by iron ions. When bulk Mn 3 O 4 powder was used, the molar ratio of Fe in the product was significantly lower (less than 25%). The dotted line in FIG. 3A shows the case where Mn is completely substituted with Fe. 3B shows powder X-ray diffraction (XRD) patterns for Mn 3 O 4 nanoparticles, Mn 3 O 4 / γ-Fe 2 O 3 nanocage and γ-Fe 2 O 3 nanocage. For comparison, known XRD patterns for Mn 3 O 4 (bottom) and γ-Fe 2 O 3 (top) are shown in FIG. 3B. According to FIG. 3B, it can be seen that as the concentration of the iron (II) perchlorate increases, tetragonally distorted Mn 3 O 4 spinel is converted into a cube γ-Fe 2 O 3 spinel. This fact is also confirmed by FIG. 3C. 3C is a saturation magnetization curve obtained by superconducting quantum interference device (SQUID) measurement. As shown in FIG. 3C, as the Fe content was increased, the magnetization of the produced nanoparticles was constantly increased.
도 4B 내지 도 4E는 1 mL의 0.4 M(B), 0.6 M(C), 1.0 M(D) 및 1.6 M(E)의 아이언(II) 퍼클로레이트 수용액과 Mn3O4 나노입자의 반응에 의해 합성된 중공 나노구조체에 대한 HRTEM 사진이고, 각 삽입도는 대응하는 FT 패턴이다. 아이언(II) 퍼클로레이트 수용액의 농도가 낮은 경우, 상기 Mn3O4 나노입자의 코어가 부분적으로 용해되어 비교적 두꺼운 벽을 갖는 나노박스가 생성되었다. 아이언(II) 퍼클로레이트의 농도가 증가할수록 기공의 크기가 커졌고, 상기 나노박스가 나노케이지로 변환되었다(도 4D 및 4H). 치환반응의 중간 단계 진행 중에, 상기 나노박스 및 나노케이지 모두 연속적인 줄무늬 패턴(fringe pattern)을 보였는데, 이는 원래 Mn3O4 나노입자의 격자 방향성이 유지된다는 점을 의미한다. 도 4B 내지 도 4E 및 이들의 삽입도는 상기 Mn3O4 나노입자의 (100) 평면과 상기 γ-Fe2O3 나노입자의 (110) 평면 사이의 평면간 거리가 약간 증가하였음을 보여 준다. 그러나 이러한 변화에도 상기 나노입자의 정사각형 밑면을 따라서 격자의 정렬이 변하지 아니하였다. 이러한 격자 정렬의 보존은 위상 변환(topotactic transformation)을 의미한다. 도 4F는 도 4B의 나노박스에 대한 고각도 환상 암시야 주사 TEM(high-angle annular dark-field scanning TEM, HAADF-STEM) 사진이고, 이 사진에서 (011) 평면 상에 핀홀이 형성되었다. 도 4G는 도 4C의 나노박스에 대한 TEM 사진 및 대응하는 EFTEM 사진이고, 상기 나노케이지의 쉘 영역에서 Fe 종들이 축적되었음을 보여 준다. 도 4H는 도 4D의 나노케이지에 대한 HAADF-STEM 사진이고, 이 사진에서 개방된 중공 구조가 나타나 있다. 도 4I는 도 4E의 나노케이지에 대한 TEM 사진 및 대응하는 EFTEM 사진이고, 상기 나노케이지의 전체 표면에 걸쳐 상기 Fe 종들이 균일하게 증착되었음을 보여 준다.4B-4E are obtained by reaction of 1 mL of 0.4 M (B), 0.6 M (C), 1.0 M (D) and 1.6 M (E) iron (II) perchlorate aqueous solution with Mn 3 O 4 nanoparticles. HRTEM photographs of the synthesized hollow nanostructures, with each inset being the corresponding FT pattern. When the concentration of the iron (II) perchlorate aqueous solution was low, the core of the Mn 3 O 4 nanoparticles was partially dissolved to produce a nanobox having a relatively thick wall. As the concentration of iron (II) perchlorate increased, the pore size increased, and the nanoboxes were converted into nanocages (FIGS. 4D and 4H). During the intermediate stage of the substitution reaction, both the nanobox and the nanocage showed a continuous fringe pattern, indicating that the lattice orientation of the original Mn 3 O 4 nanoparticles was maintained. 4B-4E and their insets show that the interplanar distance between the (100) plane of the Mn 3 O 4 nanoparticles and the (110) plane of the γ-Fe 2 O 3 nanoparticles slightly increased. . However, this change did not change the alignment of the lattice along the square underside of the nanoparticles. Preservation of this lattice alignment implies a topotactic transformation. FIG. 4F is a high-angle annular dark-field scanning TEM (HAADF-STEM) image of the nanobox of FIG. 4B, in which pinholes were formed. FIG. 4G is a TEM photograph and corresponding EFTEM photograph of the nanobox of FIG. 4C, showing that Fe species have accumulated in the shell region of the nanocage. FIG. 4H is a HAADF-STEM photograph of the nanocage of FIG. 4D, showing an open hollow structure. FIG. 4I is a TEM photograph and corresponding EFTEM photograph of the nanocage of FIG. 4E, showing that the Fe species were uniformly deposited over the entire surface of the nanocage.
도 5는 1 mL의 (a) 0.4 M, (b) 0.8 M, (c) 1.6 M 및 (e) 2.0 M의 아이언(II) 퍼클로레이트 수용액과 Mn3O4 나노입자의 반응에 의해 합성된 중공 나노구조체에 대한 XAS(X-ray absorption spectroscopy) 및 XMCD(X-ray magnetic circular dichroism) 측정 결과이다. 도 5A는 철 대 망간의 몰비율의 증가에 따른 Mn L 2,3-모서리에서의 X-선 흡수 스펙트럼이다. 도 5A에 나타난, 상기 나노박스의 Mn L 2,3-모서리에서의 XAS는 원래의 Mn3O4 나노입자의 XAS와 거의 동일하고, Mn3+ 및 Mn2+ 이온들은 모두 상기 스피넬 구조 내에서 팔면체 자리 및 사면체 자리를 각각 차지하고 있다. 도 5A에서 X-선 흡수 스펙트럼 (b)-(d)에서 볼 수 있듯이, Mn3+ 이온에 해당하는 피크는 점차 사라졌고, 치환반응 종료 후에는 Mn2+ 이온들의 피크들만 남았다. 그러나 Mn2+ 이온의 몰농도가 9% 미만으로 감소한 것은 상기 Mn2+ 이온들의 대부분이 상기 사면체 자리로부터 제거되었음을 의미한다. 상기 나노케이지의 Fe L 2,3-모서리에서의 XAS 및 XMCD 모두, Fe3+ 이온만을 함유하는 γ-Fe2O3(마그헤마이트)의 XAS 및 XMCD와 유사하였지만, Fe3+ 및 Fe2+ 이온을 모두 함유한 Fe3O4의 XAS 및 XMCD와는 유사하지 아니하였다(도 5B 및 5C). 이러한 결과는 Fe3+ 이온들이, 이전에 Mn3+ 이온들이 차지했던 상기 스피넬 구조의 팔면체 자리에 도입되었다는 사실을 의미한다.FIG. 5 shows hollows synthesized by reaction of 1 mL of (a) 0.4 M, (b) 0.8 M, (c) 1.6 M and (e) 2.0 M aqueous solution of iron (II) perchlorate with Mn 3 O 4 nanoparticles. Results of X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) measurements on nanostructures. 5A is an X-ray absorption spectrum at Mn L 2,3 -edge with increasing molar ratio of iron to manganese. 5A, the XAS at the Mn L 2,3 -edge of the nanobox is almost identical to the XAS of the original Mn 3 O 4 nanoparticles, and both Mn 3+ and Mn 2+ ions are within the spinel structure. Occupy octahedral and tetrahedral sites respectively. As can be seen in the X-ray absorption spectra (b)-(d) in FIG. 5A, the peak corresponding to Mn 3+ ions gradually disappeared, and only after the end of the substitution reaction, only peaks of Mn 2+ ions remained. However, a decrease in the molar concentration of Mn 2+ ions to less than 9% means that most of the Mn 2+ ions have been removed from the tetrahedral sites. Although both XAS and XMCD in the Fe L 2,3 -edge of the nanocage were similar to XAS and XMCD of γ-Fe 2 O 3 (maghemite) containing only Fe 3+ ions, Fe 3+ and Fe 2 It was not similar to XAS and XMCD of Fe 3 O 4 containing all + ions (FIGS. 5B and 5C). These results indicate that Fe 3+ ions were introduced into the octahedral sites of the spinel structure previously occupied by Mn 3+ ions.
실시예 4. 갈바니 치환반응에 의한 Mn3O4/SnO2 나노케이지(nanocage)의 제조Example 4 Preparation of Mn 3 O 4 / SnO 2 NanoCages by Galvanic Substitution
실시예 1에서 제조된 Mn3O4 현탁액 16 mL에, 0.34 g의 올레일아민, 2.0 M 틴(II) 클로라이드 수용액 및 0.4 mL의 HCl 용액(37%)을 포함하는 수용액 0.5 mL를 첨가한 후, 공기 중에서 2시간 동안 90℃로 가열하여 Mn3O4/SnO2 나노케이지를 제조하였다. 상기 생성 혼합물을 실온으로 냉각하고 원심분리하여 생성물을 얻은 후, 에탄올로 세척하였다. 본 실시예에서 합성된 Mn3O4/SnO2 나노케이지에 대한 TEM 사진이 도 2B(좌측)에 나타나 있다.To 16 mL of the Mn 3 O 4 suspension prepared in Example 1 was added 0.5 mL of an aqueous solution comprising 0.34 g of oleylamine, 2.0 M tin (II) chloride solution and 0.4 mL of HCl solution (37%). , And heated to 90 ℃ in air for 2 hours to prepare a Mn 3 O 4 / SnO 2 nanocage. The resulting mixture was cooled to room temperature and centrifuged to yield the product, then washed with ethanol. TEM images of the Mn 3 O 4 / SnO 2 nanocages synthesized in this example are shown in FIG. 2B (left).
실시예 5. 갈바니 치환반응에 의한 SnO2 나노케이지의 제조Example 5 Preparation of SnO 2 NanoCages by Galvanic Substitution
실시예 1에서 제조된 Mn3O4 현탁액 16 mL에, 0.67 g의 올레일아민, 0.14 g의 올레산, 0.2 mL의 HCl 용액(37%) 및 2.0 M 틴(II) 클로라이드를 포함하는 수용액 0.5 mL를 첨가한 후, 공기 중에서 2시간 동안 90℃로 가열하여 SnO2 나노케이지를 제조하였다. 상기 생성 혼합물을 실온으로 냉각하고 원심분리하여 생성물을 얻은 후, 에탄올로 세척하였다. 본 실시예에서 합성된 SnO2 나노케이지에 대한 TME 사진이 도 2B(우측)에 나타나 있다.To 16 mL of the Mn 3 O 4 suspension prepared in Example 1, 0.5 mL of an aqueous solution comprising 0.67 g of oleylamine, 0.14 g of oleic acid, 0.2 mL of HCl solution (37%) and 2.0 M tin (II) chloride After the addition, and heated to 90 ℃ in air for 2 hours to prepare a SnO 2 nanocage. The resulting mixture was cooled to room temperature and centrifuged to yield the product, then washed with ethanol. TME image of the SnO 2 nanocage synthesized in this example is shown in FIG. 2B (right).
실시예 6. 갈바니 치환반응에 의한 Co3O4/SnO2 나노케이지의 제조Example 6 Preparation of Co 3 O 4 / SnO 2 NanoCages by Galvanic Substitution
실시예 2에서 제조된 1 mmol의 Co3O4 나노입자, 2 g의 올레일아민, 0.14 g의 올레산 및 15 mL의 자일렌으로 이루어진 현탁액에, 2.0 M 틴(II) 클로라이드 및 0.6 mL의 HCl 용액(37%)을 포함한 1 mL의 수용액을 첨가한 후, 공기 중에서 2시간 동안 90℃로 가열하여 Co3O4/SnO2 나노케이지를 제조하였다. 상기 생성 혼합물을 실온으로 냉각하고 원심분리하여 생성물을 얻은 후, 에탄올로 세척하였다.In a suspension consisting of 1 mmol of Co 3 O 4 nanoparticles prepared in Example 2, 2 g of oleylamine, 0.14 g of oleic acid and 15 mL of xylene, 2.0 M tin (II) chloride and 0.6 mL of HCl A 1 mL aqueous solution containing a solution (37%) was added, followed by heating at 90 ° C. for 2 hours in air to prepare a Co 3 O 4 / SnO 2 nanocage. The resulting mixture was cooled to room temperature and centrifuged to yield the product, then washed with ethanol.
본 실시예에서 합성된 Co3O4/SnO2 나노케이지에 대한 TEM 사진이 도 6A(삽입도(스케일 바 = 10 nm)는 고배율 TEM 사진)에 나타나 있고, 상기 Co3O4/SnO2 나노케이지에 대한 HRTEM 사진 도 6B(삽입도는 EFTEM 사진)에 나타나 있다.The TEM image of the Co 3 O 4 / SnO 2 nanocage synthesized in this example is shown in FIG. 6A (insertion scale (scale bar = 10 nm) is a high magnification TEM image), and the Co 3 O 4 / SnO 2 nano HRTEM photographs of cages are shown in FIG. 6B (inset is EFTEM photograph).
실시예 7. 갈바니 치환반응에 의한 SnO2 나노케이지의 제조Example 7 Preparation of SnO 2 NanoCages by Galvanic Substitution
실시예 2에서 제조된 1 mmol의 Co3O4 나노입자, 0.67 g의 올레일아민, 0.14 g의 올레산 및 15 mL의 자일렌으로 이루어진 현탁액에, 2.0 M 틴(II) 클로라이드 및 0.4 mL의 HCl 용액(37%)을 포함한 수용액 1 mL를 첨가한 후, 공기 중에서 2시간 동안 90℃로 가열하여 SnO2 나노케이지를 제조하였다. 상기 생성 혼합물을 실온으로 냉각하고 원심분리하여 생성물을 얻은 후, 에탄올로 세척하였다. 본 실시예서 합성된 SnO2 나노케이지에 대한 TEM 사진이 도 2A(우측)에 나타나 있다.In a suspension consisting of 1 mmol of Co 3 O 4 nanoparticles prepared in Example 2, 0.67 g of oleylamine, 0.14 g of oleic acid and 15 mL of xylene, 2.0 M tin (II) chloride and 0.4 mL of HCl SnO 2 nanocage was prepared by adding 1 mL of an aqueous solution containing solution (37%) and then heating to 90 ° C. for 2 hours in air. The resulting mixture was cooled to room temperature and centrifuged to yield the product, then washed with ethanol. TEM images of the SnO 2 nanocages synthesized in this example are shown in FIG. 2A (right).
실시예 8. 갈바니 치환반응에 의한 CeO2/γ-Fe2O3 나노케이지의 제조Example 8 Preparation of CeO 2 / γ-Fe 2 O 3 NanoCages by Galvanic Substitution
미리 제조된 1 mmol의 CeO2 나노입자, 0.67 g의 올레일아민, 0.14 g의 올레산 및 15 mL의 자일렌으로 이루어진 현탁액에, 1 mL의 1.0 M 아이언(II) 클로레이트 수용액을 첨가한 후, 공기 중에서 2시간 동안 90℃로 가열하여 CeO2/γ-Fe2O3 나노케이지를 제조하였다. 상기 생성 혼합물을 실온으로 냉각하고 원심분리하여 생성물을 얻은 후, 에탄올로 세척하였다. 본 실시예에서 사용한 CeO2 나노입자의 TEM 사진이 도 7A에 나타나 있고, 합성된 CeO2/γ-Fe2O3 나노케이지의 TEM 사진이 도 7B와 도 7C에 나타나 있으며, 상기 도 7C의 나노케이지의 EFTEM 사진이 도 7D에 나타나 있다.To a prepared suspension of 1 mmol of CeO 2 nanoparticles, 0.67 g of oleylamine, 0.14 g of oleic acid and 15 mL of xylene, 1 mL of 1.0 M iron (II) chlorate aqueous solution was added, CeO 2 / γ-Fe 2 O 3 nanocage was prepared by heating at 90 ° C. for 2 hours in air. The resulting mixture was cooled to room temperature and centrifuged to yield the product, then washed with ethanol. The TEM image of the CeO 2 nanoparticles used in this example is shown in FIG. 7A, and the TEM images of the synthesized CeO 2 / γ-Fe 2 O 3 nanocage are shown in FIGS. 7B and 7C, and the nanoparticles of FIG. 7C. EFTEM photographs of the cage are shown in FIG. 7D.
실시예 9. 제조된 나노입자들의 구조 분석Example 9. Structural Analysis of the Prepared Nanoparticles
200 kV에서 JEOL EM-2010 투과전자현미경(TEM)을 사용하여 TEM 사진을 얻었다. 200 kV에서 JEOL 2200FS 투과전자현미경을 사용하여 고해상도 TEM(HRTEM)을 수행하였다. 에너지-필터(energy-filtered) TEM 사진들을 Tecnai F20 투과전자현미경으로 기록하였다. 유도결합 플라즈마-원자 발광 분광법(inductively coupled plasma-atomic emission spectroscopy, ICP-AES)(Shimadzu)을 통해 원소 분석을 수행하였다. 회전 산화극(rotating anode) 및 Cu Kα 방사선원(radiation source)(λ=0.15418 nm)을 갖춘 Rigaku D/max 2500 회절계를 사용하여 X-선 회절 패턴을 얻었다. MPMS 5XL Quantum Design SQUID 자력계를 사용하여 자화도 측정을 수행하였다. Fe 및 Mn L 2,3-모서리 XAS 및 XMCD 측정은 포항가속기연구소의 빔라인 2A에서 수행되었다. Micromeritics ASAP 2000 가스흡착분석기를 사용하여 77K에서 질소 흡착 및 탈착 등온선을 측정하였다. BET(Brunauer-Emmett-Teller) 식 및 단일지점법(single-point method)를 사용하여 총표면적 및 기공 부피를 각각 측정하였다.TEM images were obtained using a JEOL EM-2010 transmission electron microscope (TEM) at 200 kV. High resolution TEM (HRTEM) was performed using a JEOL 2200FS transmission electron microscope at 200 kV. Energy-filtered TEM photographs were recorded on a Tecnai F20 transmission electron microscope. Elemental analysis was performed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) (Shimadzu). X-ray diffraction patterns were obtained using a Rigaku D / max 2500 diffractometer with a rotating anode and a Cu Kα radiation source (λ = 0.15418 nm). Magnetization measurements were performed using an MPMS 5XL Quantum Design SQUID magnetometer. Fe and Mn L 2,3- edges XAS and XMCD measurements were performed at beamline 2A of the Pohang Accelerator Laboratory. Nitrogen adsorption and desorption isotherms were measured at 77 K using a Micromeritics ASAP 2000 gas adsorption analyzer. The total surface area and pore volume were measured using the Brunauer-Emmett-Teller (BET) equation and the single-point method, respectively.

Claims (12)

  1. 제1 전이금속 산화물 나노입자, 제2 전이금속 염, 물 및 계면활성제의 혼합물을 산성 조건 하에서 가열하는 단계를 포함하고, 상기 제1 전이금속 산화물 나노입자의 표준환원전위가 상기 제2 전이금속 이온의 표준환원전위 보다 더 큰 것인, 중공 다금속 산화물 나노입자 제조 방법.Heating a mixture of a first transition metal oxide nanoparticle, a second transition metal salt, water, and a surfactant under acidic conditions, wherein a standard reduction potential of the first transition metal oxide nanoparticle is determined by the second transition metal ion It is larger than the standard reduction potential of the hollow polymetal oxide nanoparticles manufacturing method.
  2. 제1항에 있어서, 상기 제1 전이금속 산화물이 Mn3O4, MnO2, Co3O4, Fe3O4, PbO2 및 CeO2로 이루어진 군으로부터 선택되는 것임을 특징으로 하는 중공 다금속 산화물 나노입자 제조 방법.The hollow multimetal oxide of claim 1, wherein the first transition metal oxide is selected from the group consisting of Mn 3 O 4 , MnO 2 , Co 3 O 4 , Fe 3 O 4 , PbO 2, and CeO 2 . Nanoparticle Manufacturing Method.
  3. 제1항에 있어서, 상기 제2 전이금속 염이 아이언(II) 퍼클로레이트, 틴(II) 퍼클롤레이트, 바나듐(III) 클로라이드, 티타늄(III) 클로라이드, 크롬(II) 클로라이드, 아이언(II) 옥살레이트 및 아이언(II) 클로라이드로 이루어진 군으로부터 선택되는 것임을 특징으로 하는 중공 다금속 산화물 나노입자 제조 방법.The method of claim 1, wherein the second transition metal salt is iron (II) perchlorate, tin (II) perchlorate, vanadium (III) chloride, titanium (III) chloride, chromium (II) chloride, iron (II) oxal Hollow polymetal oxide nanoparticles production method characterized in that it is selected from the group consisting of latex and iron (II) chloride.
  4. 제1항에 있어서, 상기 계면활성제가 C1-C18 카르복시산, C3-C18 알킬아민 및 C1-C18 알콜로 이루어진 군으로부터 선택되는 어느 하나 또는 이들의 혼합물인 것임을 특징으로 하는 중공 다금속 산화물 나노입자 제조 방법.The hollow die according to claim 1, wherein the surfactant is any one selected from the group consisting of C 1 -C 18 carboxylic acids, C 3 -C 18 alkylamines and C 1 -C 18 alcohols or mixtures thereof. Method for producing metal oxide nanoparticles.
  5. 제4항에 있어서, 상기 C1-C18 카르복시산이 올레산(oleic acid), 옥탄산(octanoic acid), 스테아르산(stearic acid) 및 데칸산(decanoic acid)으로 이루어진 군으로부터 선택되는 것임을 특징으로 하는 중공 다금속 산화물 나노입자 제조 방법.The method of claim 4, wherein the C 1 -C 18 carboxylic acid is selected from the group consisting of oleic acid (oleic acid), octanoic acid (octanoic acid), stearic acid (stearic acid) and decanoic acid (decanoic acid) Method for producing hollow polymetal oxide nanoparticles.
  6. 제4항에 있어서, 상기 C1-C18 알킬아민이 올레일아민(oleylamine), 옥틸아민(octylamine), 헥사데실아민(hexadecylamine), 옥타데실아민(octadecylamine) 및 트리옥틸아민(tri-n-octylamine)으로 이루어진 군으로부터 선택되는 것임을 특징으로 하는 중공 다금속 산화물 나노입자 제조 방법.The method of claim 4, wherein the C 1 -C 18 alkylamine is oleylamine, octylamine, hexadecylamine, octadecylamine and octadecylamine and trioctylamine (tri-n- Method for producing hollow multimetal oxide nanoparticles, characterized in that it is selected from the group consisting of octylamine).
  7. 제4항에 있어서, 상기 C1-C18 알콜이 올레일알콜(oleyl alcohol), 옥탄올(octanol) 및 부탄올(butanol)로 이루어진 군으로부터 선택되는 것임을 특징으로 하는 중공 다금속 산화물 나노입자 제조 방법.The method of claim 4, wherein the C 1 -C 18 alcohol is selected from the group consisting of oleyl alcohol, octanol and butanol. .
  8. 제1항에 있어서, 상기 혼합물의 pH가 0.0 내지 6.0인 것임을 특징으로 하는 중공 다금속 산화물 나노입자 제조 방법.The method of claim 1, wherein the pH of the mixture is 0.0 to 6.0 characterized in that the hollow polymetal oxide nanoparticles manufacturing method.
  9. 제1항에 있어서, 상기 혼합물의 가열 온도는 30℃ 내지 100℃인 것임을 특징으로 하는 중공 다금속 산화물 나노입자 제조 방법.The method of claim 1, wherein the heating temperature of the mixture is 30 ℃ to 100 ℃ characterized in that the hollow polymetal oxide nanoparticles manufacturing method.
  10. 제1항에 있어서, 상기 다금속 산화물 나노입자의 형상이 나노박스 또는 나노케이지인 것임을 특징으로 하는 중공 다금속 산화물 나노입자 제조 방법.The method of claim 1, wherein the shape of the multimetal oxide nanoparticles is nanobox or nanocage.
  11. 제1항에 있어서, 상기 제1 전이금속 산화물 나노입자의 크기는 5 nm 내지 100 nm인 것임을 특징으로 하는 중공 다금속 산화물 나노입자 제조 방법.The method of claim 1, wherein the size of the first transition metal oxide nanoparticle is 5 nm to 100 nm.
  12. 제1항에 있어서, 상기 다금속 산화물 나노입자의 크기는 5 nm 내지 100 nm인 것임을 특징으로 하는 중공 다금속 산화물 나노입자 제조 방법.The method of claim 1, wherein the multimetal oxide nanoparticles have a size of 5 nm to 100 nm.
PCT/KR2014/002318 2013-03-22 2014-03-19 Method for manufacturing hollow multi-metal oxide nanoparticles WO2014148823A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130031151A KR20140115877A (en) 2013-03-22 2013-03-22 Process for Preparing Hollow Multimetallic Oxide Nanoparticle
KR10-2013-0031151 2013-03-22

Publications (1)

Publication Number Publication Date
WO2014148823A1 true WO2014148823A1 (en) 2014-09-25

Family

ID=51580422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002318 WO2014148823A1 (en) 2013-03-22 2014-03-19 Method for manufacturing hollow multi-metal oxide nanoparticles

Country Status (2)

Country Link
KR (1) KR20140115877A (en)
WO (1) WO2014148823A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019030273A1 (en) 2017-08-09 2019-02-14 Basf Se Compositions comprising dispersed nanoparticles
US10814313B2 (en) * 2015-10-27 2020-10-27 Fondazione lstituto Italiano Di Tecnologia Method for the preparation of metal oxide hollow nanoparticles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110097027A (en) * 2010-02-24 2011-08-31 이화여자대학교 산학협력단 Method for manufacturing of high-density nano-pattern metal nanostructure and metal nanostructure thereby
KR101070705B1 (en) * 2008-11-20 2011-10-10 연세대학교 산학협력단 Method for synthesizing Ag-Mn3O4 complex nanorods or Mn3O4 nanotubes by using the standard reduction potential difference
KR20130001387A (en) * 2011-06-27 2013-01-04 서강대학교산학협력단 Porous transition metal oxide structure, preparing method of the same, photoelectrode including the same, and dye-sensitized solar cell including the photoelectrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101070705B1 (en) * 2008-11-20 2011-10-10 연세대학교 산학협력단 Method for synthesizing Ag-Mn3O4 complex nanorods or Mn3O4 nanotubes by using the standard reduction potential difference
KR20110097027A (en) * 2010-02-24 2011-08-31 이화여자대학교 산학협력단 Method for manufacturing of high-density nano-pattern metal nanostructure and metal nanostructure thereby
KR20130001387A (en) * 2011-06-27 2013-01-04 서강대학교산학협력단 Porous transition metal oxide structure, preparing method of the same, photoelectrode including the same, and dye-sensitized solar cell including the photoelectrode

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG, ZHIYU ET AL.: "Mesoporous Single-crystal CoSn(OH)6 Hollow Structures with Multilevel Interiors. Art. 1391", SCIENTIFIC REPORTS 3, 6 March 2013 (2013-03-06) *
WANG, ZHIYU ET AL.: "Metal Oxide Hollow Nanostructures for Lithium-ion Batteries", ADV. MATER., vol. 24, 2012, pages 1903 - 1911 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10814313B2 (en) * 2015-10-27 2020-10-27 Fondazione lstituto Italiano Di Tecnologia Method for the preparation of metal oxide hollow nanoparticles
WO2019030273A1 (en) 2017-08-09 2019-02-14 Basf Se Compositions comprising dispersed nanoparticles

Also Published As

Publication number Publication date
KR20140115877A (en) 2014-10-01

Similar Documents

Publication Publication Date Title
Ghosh et al. MnO and NiO nanoparticles: synthesis and magnetic properties
Fan et al. Novel CeO 2 yolk–shell structures loaded with tiny Au nanoparticles for superior catalytic reduction of p-nitrophenol
Cheng et al. One-step synthesis of superparamagnetic monodisperse porous Fe 3 O 4 hollow and core-shell spheres
US7867463B2 (en) Process for producing cerium oxide nanocrystals
Teng et al. Highly magnetizable superparamagnetic iron oxide nanoparticles embedded mesoporous silica spheres and their application for efficient recovery of DNA from agarose gel
Wang et al. Surfactant-assisted synthesis of double-wall Cu 2 O hollow spheres
Zhao et al. One-step synthesis of highly water-dispersible Mn 3 O 4 nanocrystals
Wang et al. Shape-controlled synthesis of CeOHCO3 and CeO2 microstructures
US20090184282A1 (en) Nanoparticle nickel zinc ferrites synthesized using reverse micelles
Zou et al. Facile synthesis of highly water-dispersible and monodispersed Fe 3 O 4 hollow microspheres and their application in water treatment
Liu et al. General synthetic strategy for high-yield and uniform rare-earth oxysulfate (RE 2 O 2 SO 4, RE= La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Y, Ho, and Yb) hollow spheres
Huang et al. Iron oxide nanoparticle layer templated by polydopamine spheres: a novel scaffold toward hollow–mesoporous magnetic nanoreactors
WO2014148823A1 (en) Method for manufacturing hollow multi-metal oxide nanoparticles
Ning et al. Facile synthesis of magnetic metal (Mn, Fe, Co, and Ni) oxides nanocrystals via a cation-exchange reaction
US6984369B1 (en) Process for making surfactant capped metal oxide nanocrystals, and products produced by the process
Avanzato et al. Biomimetic synthesis and antibacterial characteristics of magnesium oxide—germanium dioxide nanocomposite powders
Szabó et al. Magnetically modified single and turbostratic stacked graphenes from tris (2, 2′-bipyridyl) iron (II) ion-exchanged graphite oxide
Badr et al. Titanium oxide-based 1D nanofilaments, 2D sheets, and mesoporous particles: Synthesis, characterization, and ion intercalation
KR101156615B1 (en) Complexes comprising magnetite nano particles and preparation method thereof
Andersson et al. One-pot synthesis of well ordered mesoporous magnetic carriers
Lei et al. Synthesis and morphological control of MnCO3 and Mn (OH) 2 by a complex homogeneous precipitation method
Yathindranath et al. A general synthesis of metal (Mn, Fe, Co, Ni, Cu, Zn) oxide and silica nanoparticles based on a low temperature reduction/hydrolysis pathway
Pahari et al. Synthesis of nearly monodispersed metal oxide nanoparticles in water
Lu et al. Top-down synthesis of sponge-like Mn 3 O 4 at low temperature
WO2020080620A1 (en) Preparation method of metal ion-doped ceria using solvothermal synthesis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14770924

Country of ref document: EP

Kind code of ref document: A1