WO2014148727A1 - Multi-spark discharge generator and method for manufacturing nanoparticle structure using same - Google Patents

Multi-spark discharge generator and method for manufacturing nanoparticle structure using same Download PDF

Info

Publication number
WO2014148727A1
WO2014148727A1 PCT/KR2013/011884 KR2013011884W WO2014148727A1 WO 2014148727 A1 WO2014148727 A1 WO 2014148727A1 KR 2013011884 W KR2013011884 W KR 2013011884W WO 2014148727 A1 WO2014148727 A1 WO 2014148727A1
Authority
WO
WIPO (PCT)
Prior art keywords
spark discharge
discharge generator
ground plate
outlet hole
outlet
Prior art date
Application number
PCT/KR2013/011884
Other languages
French (fr)
Korean (ko)
Inventor
최만수
하경연
최호섭
한규희
정기남
이동준
채석병
Original Assignee
재단법인 멀티스케일 에너지시스템 연구단
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130104456A external-priority patent/KR101498378B1/en
Application filed by 재단법인 멀티스케일 에너지시스템 연구단, 서울대학교산학협력단 filed Critical 재단법인 멀티스케일 에너지시스템 연구단
Priority to CN201380003736.8A priority Critical patent/CN104302386B/en
Priority to US14/351,476 priority patent/US9669423B2/en
Publication of WO2014148727A1 publication Critical patent/WO2014148727A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/47Generating plasma using corona discharges
    • H05H1/471Pointed electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • B01J2219/0813Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes employing four electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0815Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes involving stationary electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0822The electrode being consumed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • B01J2219/0828Wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • B01J2219/083Details relating to the shape of the electrodes essentially linear cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0837Details relating to the material of the electrodes
    • B01J2219/0839Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0837Details relating to the material of the electrodes
    • B01J2219/0841Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0837Details relating to the material of the electrodes
    • B01J2219/0843Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0845Details relating to the type of discharge
    • B01J2219/0849Corona pulse discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0869Feeding or evacuating the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0879Solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a spark discharge generator and a method for producing a nanoparticle structure using the same.
  • Nano-patterning technology which produces micro- and nano-scale structures by selectively controlling charged nanoparticles and depositing them in the desired location, is a quantum device and nanobio that will be the key to the next generation of industries. It is expected to be useful for the development of nanobio devices.
  • a method of depositing charged nanoparticles having opposite polarities after charging a substrate using an electron beam or an ion beam is known.
  • this method is not only time-consuming because the method of charging the substrate is in series, but also has a limitation that it can be used only when the substrate is a non-conductor because the surface of the substrate is charged using an electron beam or an ion beam.
  • the technique of inducing and depositing only the charged nanoparticles in the pattern using the electrostatic force without the ion accumulation process This is known.
  • the technique can pattern high-purity nanoparticles generated in a gaseous state, but does not accumulate ions on the photoresist pattern, so that a large number of nanoparticles are deposited not only on an electrically conductive substrate but also on an undesired location, that is, on the photoresist surface. Can be.
  • Spark discharge is an efficient method for generating nano-sized particles among various gas phase synthesis methods and is useful for assembling nanostructures by generating charged aerosols with simple equipment.
  • rod-to-rod method has been widely used. This approach has recently been used for the synthesis of double or mixed metal nanoparticles or for nanowire growth.
  • Spark discharge generators are known to generate nano-sized particles, but charged aerosols of less than 10 nm tend to produce electrostatic aggregation of bipolar nanoparticles. It is important to generate such anti-agglomeration and smaller size charged aerosols in the spark discharge generator.
  • Methods of adjusting operating parameters such as spark frequency, spark energy and flow rate of carrier gas are also known to reduce the agglomeration of particles in a spark discharge generator.
  • the present applicant has proposed a method for producing a two-dimensional or three-dimensional nanoparticle structure by focusing patterning of nanoparticles in Korean Patent Application Publication No. 10-2009-0089787 (published Aug. 24, 2009). There is a bar.
  • the method simultaneously combines nanoparticles and ions that are bipolarly charged by spark discharge of an electrode structure of pin-to-plate or tip-to-plate structure. After generation, the nanoparticle structure having a two-dimensional or three-dimensional shape can be efficiently manufactured regardless of the polarity of the nanoparticles or ions by injecting into the reactor in which the patterned substrate is present and applying an electric field.
  • the pin-to-plate or tip-to-plate structure has an asymmetrical structure consisting of a pin with a sharp tip as the anode and a ground plate with a central outlet. .
  • Charged aerosols produced by such pin-to-plate structures are known to have a much smaller particle size, less agglomeration and a narrower particle size distribution than rod-to-rod structures.
  • the fin-to-plate structure which has been studied so far, can form nanostructures only in a limited area, for example, an area of about 8 mm or less in diameter, so that a large area and a high speed are necessary for industrialization.
  • Patent Document 1 Korean Patent Application Publication No. 10-2009-0089787 (published Aug. 24, 2009)
  • an aspect of the present invention is to provide a spark discharge generator capable of uniformly forming nanostructures at high speed in a large area and a method of manufacturing nanostructures using the same.
  • the present invention to achieve the above object
  • a discharge chamber having a gas inlet and an outlet
  • a plurality of columnar electrodes located in the discharge chamber located in the discharge chamber,
  • a ground plate located in the discharge chamber and having a plurality of outlet holes at positions corresponding to the positions of the respective columnar electrodes
  • a spark discharge generator having a substrate support in a position opposite to the columnar electrode and the ground plate is provided.
  • the columnar electrode may have a sharp, round or flat shape in the distal end portion facing the outlet hole of the ground plate.
  • the distal end of the columnar electrode may be spaced a predetermined distance from the outlet hole of the ground plate, at the same position as the outlet hole, or penetrate the outlet hole.
  • the outlet flow rate of the spark discharge generator may be adjusted to control the degree of aggregation of the particles.
  • the gas inlet may be further provided with a corona discharger.
  • the terminal portion of the columnar electrode can generate ions simultaneously with particle generation.
  • the spark discharge generator according to the present invention preferably uses a circuit composed of a plurality of resistors and a plurality of capacitors as a constant high voltage source.
  • reaction chamber is preferably provided with a window for viewing the spark discharge state.
  • the present invention also provides a method for uniformly forming a large area of a three-dimensional nanostructure array using a spark discharge generator as described above.
  • the spark discharge generator according to the present invention is provided with a ground plate having two or more columnar electrodes and a corresponding plurality of outlet holes, so that particles are sprayed in a large area. Therefore, a large amount of particles can move quickly along the electric field formed in the entire area of the large-area substrate, so that nanostructures can be rapidly produced on the large-area substrate, and thus, nanostructure arrays of industrially applicable scale can be manufactured by spark discharge. Can be.
  • FIG. 1 is a schematic diagram of a spark discharge device according to a preferred embodiment of the present invention.
  • FIG. 2 schematically illustrates the shape of an end portion of a columnar electrode according to various embodiments of the present disclosure.
  • FIG 3 schematically illustrates the relative positions of columnar electrodes and ground plate outlet holes in accordance with various embodiments of the present invention.
  • FIG. 4 is a nanostructure array sample image (a) and SEM image thereof (b) formed in a large area in accordance with an embodiment of the present invention.
  • FIG. 6 is an SEM image of an array of nanostructures formed in a large area using a single-spark discharge generator according to a comparative example.
  • Figure 8 is a photograph comparing the structure shape according to the flow rate in the multi-spark method according to the present invention (opening diameter of the photosensitive film is 2 microns).
  • FIG. 9 is a graph showing the particle size distribution according to the flow rate in the multi-spark method according to the present invention.
  • FIG. 1 is a schematic diagram of a device according to a preferred embodiment of the present invention.
  • the spark discharge device is characterized by having a ground plate having a plurality of columnar electrodes and a plurality of outlet holes corresponding to each columnar electrode.
  • the columnar electrode covers the pin electrode, the wire electrode, and the rod electrode, and the shape thereof is not particularly limited.
  • the distal end shape of the columnar electrode is illustrated as a sharp pin electrode in FIG. 1, the present invention is not limited thereto. Specifically, as shown in FIG. 2, the distal end of the columnar electrode may be sharp (a) round (b) or flat (c).
  • the diameter, length, and the like of the columnar electrode are not particularly limited and can be appropriately adjusted according to the application field or use.
  • the diameter of the pin electrode may be, for example, several microns to several millimeters, for example, 0.01 to 20 mm, but is not limited thereto.
  • the radius of curvature of the distal tip portion may be several microns to several millimeters, for example, 0.01 mm or more, but is not limited thereto.
  • the outlet holes of the ground plate are formed to correspond to the respective columnar electrodes and may have diameters of several microns to several millimeters, for example, 0.1-25 mm, but are not limited thereto.
  • the outlet flow rate of the spark discharge generator may be adjusted to control the degree of aggregation of the particles.
  • the distance between the columnar electrode and the ground plate is not particularly limited.
  • the columnar electrode 10 and the ground plate 20 are spaced a predetermined distance apart (a) or at the same position (b) or the outlet where the columnar electrode 10 is formed on the ground plate 20. (C) may be located through the hole (30).
  • the columnar electrode 10 is spaced apart from the outlet hole 30 of the ground plate path 20 by, for example, several microns to several tens of millimeters, for example, 0.01-10 mm. But it is not limited thereto.
  • the number of the columnar electrodes may be advantageous to form nanostructures uniformly over the entire area of 1 to 3 per 20-50 mm 2, but is not limited thereto.
  • the material of the columnar electrode and the ground plate is a nanoparticle precursor, a conductive material selected from gold, copper, tin, indium, ITO, graphite, and silver; Conductive material coated with an insulator material selected from cadmium oxide, iron oxide and tin oxide; Or a semiconductor material selected from silicon, GaAs, and CdSe, and is not particularly limited.
  • the electrical circuit for spark discharge is a constant high voltage source structure consisting of a high voltage source (HV), an external capacitor (C), and a resistor (R). Depending on the particle size can be adjusted separately, but is not limited thereto.
  • the apparatus of the present invention may further include a corona discharger for more efficient ion generation and deposition as shown in FIG.
  • the corona discharger may be applied with a voltage in the range of 1 kV to 10 kV.
  • the flow rate of the carrier gas such as nitrogen, helium, and argon is controlled by the diameter of the ground plate outlet hole inserted into the reactor, which is a variable to control the aggregation of particles generated by the multi-spark.
  • the flow rate of the carrier gas such as nitrogen, helium and argon can be controlled by the diameter of the inner cylinder inserted into the reactor, which is a variable to control the aggregation of particles generated by the multispark.
  • the distal end of the columnar electrode is characterized by generating ions simultaneously with particle generation, which may affect the formation of the structure, and may be adjusted to be sharp, round or flat as necessary.
  • the device according to the present invention can adjust the spacing between the plate electrode and the sample (substrate) to control the uniformity of the large-area nanostructure array fabrication and the region in which the nanostructure is formed.
  • the position of the inlet of the gas flowing into the multi-spark discharge generator can be adjusted, thereby controlling the particle movement path.
  • a plurality of gas inlets and outlets is advantageous for forming a uniform nanostructure on a large area substrate.
  • the particle migration path can be controlled by adjusting the positions of the inlet and outlet.
  • the device according to the invention preferably has a window for viewing the spark discharge state, and the sample (substrate) is preferably located in the center of the chamber.
  • the device according to the invention can be conveniently used to form a three-dimensional array of nanostructures in a large area, for example 0.25 cm 2 or more.
  • the discharge chamber had a volume of 727 cm 3 , an inner diameter of 11.5 cm, and a height of 7 cm.
  • the diameter of the pin electrode was 4 mm each, and 16 or more things with the radius of curvature of the terminal part were about 0.13 mm.
  • the outlet hole of the ground plate is formed corresponding to each pin electrode and is 1 mm in diameter. Both the pin electrode and the ground electrode were made of copper, and the distance between both electrodes was 2.5 mm. Nitrogen gas was used as the carrier gas. The flow rate was 0.03 m / s.
  • HV Hexan 205B, maximum voltage 10kV
  • a 2 nF capacitor was connected in parallel to the electrode.
  • HV voltage was tested while changing to 4kV, 5kV, 6kV.
  • the corona discharger was operated at 4 kV.
  • Nanoparticles were deposited on a 6 cm x 6 cm silicon substrate on which a nanopattern was formed with a photoresist film with holes of 2 microns in diameter spaced at 4 micron intervals for 1 hour and 30 minutes.
  • the resulting nanostructure array sample image (a) and its SEM image (b) are shown in FIGS. 4 and 5 (HV voltage 4 kV).
  • Example 2 It carried out similarly to Example 1 except having set the nitrogen gas flow rate into 0.06 m / s.
  • Example 2 It carried out similarly to Example 1 except having set the nitrogen gas flow rate into 0.09 m / s.
  • Nanostructures were prepared in the same manner as in Examples 1-3 (nitrogen gas flow rate changes) except that a single tip was used.
  • the size of the nanostructure was measured using a SMPS device composed of a differential mobility analyzer (DMA), a bipolar chargher, a flow control system, a condensation particle counter (CPC), and a data inversion system.
  • DMA differential mobility analyzer
  • CPC condensation particle counter
  • the nanostructure arrays manufactured through the multi-tip spark generator were measured in shape and size by using a field-emission scanning electron microscope (SUPRA 55VP).
  • FIG. 4 is a nanostructure array sample image (a) and SEM image thereof (b) formed in a large area in accordance with an embodiment of the present invention.
  • Example 5 is a result of measuring the height and diameter distribution of the nanostructure obtained in Example 3 (voltage 4kV). In spite of the large area, it can be seen that both the vertical and horizontal directions have a uniform distribution.
  • FIG. 6 is an SEM image of an array of nanostructures formed in a large area using a single-spark discharge generator according to a comparative example.
  • Figure 9 is a data measuring the size distribution of the particles generated by varying the flow rate at a voltage of 4kV. It can be seen that as the flow rate increases, the aggregation of particles decreases and the number of large particles decreases. That is, it can be confirmed through FIG. 7 that the aggregation of the particles can be controlled at a flow rate.
  • the spark discharge generator according to the present invention is provided with a ground plate having two or more columnar electrodes and a corresponding plurality of outlet holes, so that particles are sprayed in a large area. Therefore, a large amount of particles can move quickly along the electric field formed in the entire area of the large-area substrate, so that nanostructures can be rapidly produced on the large-area substrate, and thus, nanostructure arrays of industrially applicable scale can be manufactured by spark discharge. Can be.

Abstract

The present invention relates to a spark discharge generator, and the spark discharge generator according to the present invention comprises a plurality of column-type electrodes and a grounding plate having a plurality of exit holes in positions corresponding to positions of respective column-type electrodes, thereby making it possible to manufacture a large-area nanostructure array with a three-dimensional shape uniformly and rapidly.

Description

멀티-스파크 방전 발생기 및 이를 이용한 나노입자 구조체 제조방법Multi-spark discharge generator and nanoparticle structure manufacturing method using the same
본 발명은 스파크 방전 발생기 및 이를 이용한 나노입자 구조체 제조방법에 관한 것이다. The present invention relates to a spark discharge generator and a method for producing a nanoparticle structure using the same.
하전된 나노입자(charged nanoparticles)를 선택적으로 제어하여 원하는 위치에 증착함으로써 마이크로 및 나노 크기의 구조체를 제작하는 나노 패터닝(nanopatterning) 기술은, 차세대 산업에 주역이 될 양자 소자(quantum device) 및 나노바이오 소자(nanobio device)의 개발에 유용할 것으로 기대되고 있다.Nano-patterning technology, which produces micro- and nano-scale structures by selectively controlling charged nanoparticles and depositing them in the desired location, is a quantum device and nanobio that will be the key to the next generation of industries. It is expected to be useful for the development of nanobio devices.
이러한 하전된 나노입자의 패터닝 기술의 일례로서, 전자빔이나 이온빔을 사용하여 기판을 대전시킨 후 반대 극성을 갖는 하전된 나노입자를 증착하는 방법이 알려져 있다. 그러나, 이 방법은 기판을 대전시키는 방법이 직렬방식이라 시간이 많이 소요될 뿐만 아니라, 전자빔이나 이온빔을 이용하여 기판 표면을 대전시키므로 기판이 부도체인 경우에만 이용할 수 있다는 한계를 갖는다.As one example of a patterning technique of such charged nanoparticles, a method of depositing charged nanoparticles having opposite polarities after charging a substrate using an electron beam or an ion beam is known. However, this method is not only time-consuming because the method of charging the substrate is in series, but also has a limitation that it can be used only when the substrate is a non-conductor because the surface of the substrate is charged using an electron beam or an ion beam.
또한, 지지체 위에 감광막(photoresist)을 형성하고 감광막을 사진공정(photolithography) 등을 이용하여 패턴을 형성한 후, 이온 축적 공정 없이 정전기적인 힘을 이용하여 하전된 나노입자만을 패턴으로 유도 및 증착하는 기술이 공지되어 있다. 그러나, 상기 기술은 기상상태에서 발생시킨 고순도의 나노입자를 패터닝할 수는 있지만, 감광막 패턴 위에 이온을 축적하지 않으므로 전기가 통하는 기판 뿐만 아니라 원하지 않는 위치, 즉 감광막 표면 위에도 상당 수의 나노입자들이 증착될 수 있다. In addition, after forming a photoresist (photoresist) on the support and a pattern by using a photolithography (photolithography), etc., the technique of inducing and depositing only the charged nanoparticles in the pattern using the electrostatic force without the ion accumulation process This is known. However, the technique can pattern high-purity nanoparticles generated in a gaseous state, but does not accumulate ions on the photoresist pattern, so that a large number of nanoparticles are deposited not only on an electrically conductive substrate but also on an undesired location, that is, on the photoresist surface. Can be.
스파크 방전은 다양한 기상 합성법 중에서 나노 크기 입자를 생성하는데 효율적인 방법이고, 간단한 장비로 하전된 에어로졸을 발생시켜 나노구조물을 조립하는데 유용하다. 스파크 방전에는 여러 가지 방식이 있는데, 그 중 로드-투-로드(rod-to-rod) 방식이 널리 사용되어왔다. 이 방식은 최근 이중금속 또는 혼합 금속 나노입자 합성이나 나노와이어 성장에 이용된 적이 있다. 스파크 방전 발생기는 나노 크기 입자를 발생한다고 알려져 있지만, 10nm 이하의 하전된 에어로졸은 양극성(bipolar) 나노입자들의 정전기적 응집이 발생하는 경향이 있다. 스파크 방전 발생기에서 이러한 응집방지하고 보다 작은 크기의 하전된 에어로졸을 발생시키는 것이 중요하다. Spark discharge is an efficient method for generating nano-sized particles among various gas phase synthesis methods and is useful for assembling nanostructures by generating charged aerosols with simple equipment. There are many ways of spark discharge, among which rod-to-rod method has been widely used. This approach has recently been used for the synthesis of double or mixed metal nanoparticles or for nanowire growth. Spark discharge generators are known to generate nano-sized particles, but charged aerosols of less than 10 nm tend to produce electrostatic aggregation of bipolar nanoparticles. It is important to generate such anti-agglomeration and smaller size charged aerosols in the spark discharge generator.
스파크 방전 발생기에서 입자의 응집을 감소시키기 위하여 스파크 주파수, 스파크 에너지 및 운반가스의 유량과 같은 운전 변수를 조절하는 방법들도 알려져 있다. Methods of adjusting operating parameters such as spark frequency, spark energy and flow rate of carrier gas are also known to reduce the agglomeration of particles in a spark discharge generator.
이러한 노력의 일환으로 본원 출원인은 대한민국 특허출원공개 10-2009-0089787호(2009. 8. 24. 공개)에서 나노 입자의 집속 패터닝에 의한 2차원 또는 3차원 형상의 나노입자 구조체 제조방법을 제시한 바 있다. 상기 방법은 핀-투-플레이트(pin-to-plate) 또는 팁-투-플레이트(tip-to-plate) 구조의 전극 구조의 스파크 방전에 의해 양극성(bipolar)으로 하전된 나노입자 및 이온을 동시에 발생시킨 후 패턴이 형성된 기판이 존재하고 있는 반응기 내에 주입하고 전기장을 가함으로써 나노입자나 이온의 극성에 관계없이 2차원 또는 3차원 형상의 나노입자 구조체를 효율적으로 제조할 수 있다.As part of this effort, the present applicant has proposed a method for producing a two-dimensional or three-dimensional nanoparticle structure by focusing patterning of nanoparticles in Korean Patent Application Publication No. 10-2009-0089787 (published Aug. 24, 2009). There is a bar. The method simultaneously combines nanoparticles and ions that are bipolarly charged by spark discharge of an electrode structure of pin-to-plate or tip-to-plate structure. After generation, the nanoparticle structure having a two-dimensional or three-dimensional shape can be efficiently manufactured regardless of the polarity of the nanoparticles or ions by injecting into the reactor in which the patterned substrate is present and applying an electric field.
핀-투-플레이트(pin-to-plate) 또는 팁-투-플레이트(tip-to-plate) 구조는 날카로운 팁을 가진 핀을 양극으로 하고, 중앙 출구를 구비한 접지 플레이트로 이루어진 비대칭 구조를 갖는다. 이러한 핀-투-플레이트 구조에 의해 생성되는 하전된 에어로졸은 로드-투-로드 구조에 비해 입자 크기가 훨씬 작고 응집이 적으며 좁은 입경 분포를 갖는 것으로 알려져 있다. The pin-to-plate or tip-to-plate structure has an asymmetrical structure consisting of a pin with a sharp tip as the anode and a ground plate with a central outlet. . Charged aerosols produced by such pin-to-plate structures are known to have a much smaller particle size, less agglomeration and a narrower particle size distribution than rod-to-rod structures.
그러나 지금까지 연구되어온 핀-투-플레이트 구조는 제한된 면적, 예를 들어 지름 약 8mm 이하의 면적에만 나노구조물을 형성할 수 있어 산업화를 위해서는 대면적화 및 고속화가 필수이다.However, the fin-to-plate structure, which has been studied so far, can form nanostructures only in a limited area, for example, an area of about 8 mm or less in diameter, so that a large area and a high speed are necessary for industrialization.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) 대한민국 특허출원공개 10-2009-0089787 호 (2009. 8. 24. 공개)(Patent Document 1) Korean Patent Application Publication No. 10-2009-0089787 (published Aug. 24, 2009)
따라서 본 발명은 대면적에 고속으로 나노구조물을 균일하게 형성할 수 있는 스파크 방전 발생기 및 이를 이용한 나노 구조물 제조방법을 제공하고자 한다.Accordingly, an aspect of the present invention is to provide a spark discharge generator capable of uniformly forming nanostructures at high speed in a large area and a method of manufacturing nanostructures using the same.
상기 과제를 달성하기 위하여 본 발명은 The present invention to achieve the above object
기체 유입구 및 유출구를 구비한 방전 챔버, A discharge chamber having a gas inlet and an outlet,
상기 방전 챔버 내에 위치하는 복수개의 칼럼형 전극, A plurality of columnar electrodes located in the discharge chamber,
상기 방전 챔버 내에 위치하며, 각각의 칼럼형 전극의 위치에 상응하는 위치에 복수개의 출구 구멍을 갖는 접지 플레이트, A ground plate located in the discharge chamber and having a plurality of outlet holes at positions corresponding to the positions of the respective columnar electrodes,
상기 칼럼형 전극 및 접지 플레이트와 대향하는 위치에 기판 지지대를 구비한 스파크 방전 발생기를 제공한다. A spark discharge generator having a substrate support in a position opposite to the columnar electrode and the ground plate is provided.
본 발명의 바람직한 실시예에 따르면, 상기 칼럼형 전극은 상기 접지 플레이트의 출구 구멍을 향하는 말단부의 형상이 샤프하거나, 라운드이거나 또는 편평한 형상일 수 있다. According to a preferred embodiment of the present invention, the columnar electrode may have a sharp, round or flat shape in the distal end portion facing the outlet hole of the ground plate.
또한, 상기 칼럼형 전극의 말단부는 상기 접지 플레이트의 출구 구멍으로부터 소정 거리 이격되어 있거나, 출구 구멍과 동일한 위치에 있거나, 출구 구멍을 관통할 수 있다. In addition, the distal end of the columnar electrode may be spaced a predetermined distance from the outlet hole of the ground plate, at the same position as the outlet hole, or penetrate the outlet hole.
상기 접지 플레이트의 출구 구멍 직경을 조절함으로써 스파크 방전 발생기의 출구 유속을 조절하여 입자의 응집 정도를 제어할 수 있다. By controlling the outlet hole diameter of the ground plate, the outlet flow rate of the spark discharge generator may be adjusted to control the degree of aggregation of the particles.
본 발명의 바람직한 실시예에 따르면, 상기 기체 유입구에 코로나 방전기를 추가로 구비할 수 있다. According to a preferred embodiment of the present invention, the gas inlet may be further provided with a corona discharger.
본 발명의 바람직한 실시예에 따르면, 칼럼형 전극의 말단부는 입자 발생과 동시에 이온을 발생시킬 수 있다. According to a preferred embodiment of the present invention, the terminal portion of the columnar electrode can generate ions simultaneously with particle generation.
본 발명의 바람직한 실시예에 따르면, 상기 접지 플레이트와 기판 지지대간의 간격을 조절 가능하고, 또한 상기 기체 유입구에 기체 유입 유속을 조절할 수 있는 내부실린더를 구비하며, 이를 이용하여 입자의 응집 정도를 제어할 수 있다. According to a preferred embodiment of the present invention, it is possible to control the distance between the ground plate and the substrate support, and also provided with an internal cylinder to adjust the gas inlet flow rate at the gas inlet, by using this to control the degree of aggregation of particles Can be.
본 발명에 따른 스파크 방전 발생기는 다수의 저항, 다수의 커패시터로 구성된 회로를 정전압원(constant high voltage source)로 이용되는 것이 바람직하다. The spark discharge generator according to the present invention preferably uses a circuit composed of a plurality of resistors and a plurality of capacitors as a constant high voltage source.
또한 상기 반응 챔버는 스파크 방전 상태를 볼 수 있는 윈도우를 구비하는 것이 바람직하다. In addition, the reaction chamber is preferably provided with a window for viewing the spark discharge state.
본 발명은 또한 상기와 같은 스파크 방전 발생기를 사용하여 3차원 형상의 나노구조물 어레이를 대면적으로 균일하게 형성하는 방법을 제공한다.The present invention also provides a method for uniformly forming a large area of a three-dimensional nanostructure array using a spark discharge generator as described above.
본 발명에 따른 스파크 방전 발생기는 2개 이상의 칼럼형 전극과 이에 상응하는 복수개의 출구 구멍을 갖는 접지 플레이트를 구비하므로 넓은 면적에서 입자를 분사하는 효과가 있다. 따라서 대면적 기판의 전체 영역에 형성된 전기장을 따라 다량의 입자가 신속하게 이동할 수 있으므로 대면적 기판에 나노구조물을 신속하게 제조할 수 있어 스파크 방전에 의해 산업적으로 응용가능한 규모의 나노구조물 어레이를 제조할 수 있다.The spark discharge generator according to the present invention is provided with a ground plate having two or more columnar electrodes and a corresponding plurality of outlet holes, so that particles are sprayed in a large area. Therefore, a large amount of particles can move quickly along the electric field formed in the entire area of the large-area substrate, so that nanostructures can be rapidly produced on the large-area substrate, and thus, nanostructure arrays of industrially applicable scale can be manufactured by spark discharge. Can be.
도 1은 본 발명에 바람직한 실시예에 따른 스파크 방전 장치의 모식도이다. 1 is a schematic diagram of a spark discharge device according to a preferred embodiment of the present invention.
도 2는 본 발명의 다양한 실시예에 따른 칼럼형 전극의 말단부의 형상을 개략적으로 나타낸 것이다. 2 schematically illustrates the shape of an end portion of a columnar electrode according to various embodiments of the present disclosure.
도 3은 본 발명의 다양한 실시예에 따라 칼럼형 전극과 접지 플레이트 출구 구멍의 상대적인 위치를 개략적으로 나타낸 것이다. 3 schematically illustrates the relative positions of columnar electrodes and ground plate outlet holes in accordance with various embodiments of the present invention.
도 4는 본 발명의 실시예에 따라 대면적에 형성된 나노 구조물 어레이 샘플 이미지(a) 및 그의 SEM 이미지(b) 이다.4 is a nanostructure array sample image (a) and SEM image thereof (b) formed in a large area in accordance with an embodiment of the present invention.
도 5는 본 발명의 실시예에 따라 제조된 나노 구조물 어레이의 기판 위치에 따른 크기 편차를 측정한 결과이다. 5 is a result of measuring the size deviation according to the substrate position of the nanostructure array manufactured according to an embodiment of the present invention.
도 6은 비교예에 따라 싱글-스파크 방전 발생기를 사용하여 대면적에 형성한 나노 구조물 어레이의 SEM 이미지이다. 6 is an SEM image of an array of nanostructures formed in a large area using a single-spark discharge generator according to a comparative example.
도 7은 비교예에 따라 제조된 나노 구조물 어레이의 기판 위치에 따른 크기 편차를 측정한 결과이다. 7 is a result of measuring the size deviation according to the position of the substrate of the nanostructure array manufactured according to the comparative example.
도 8은 본 발명에 따른 멀티-스파크 방식에서 유속에 따른 구조물 형상을 비교한 사진이다(감광막의 오프닝 직경 2 미크론임).Figure 8 is a photograph comparing the structure shape according to the flow rate in the multi-spark method according to the present invention (opening diameter of the photosensitive film is 2 microns).
도 9는 본 발명에 따른 멀티-스파크 방식에서 유속에 따른 입경 분포를 나타내는 그래프이다.9 is a graph showing the particle size distribution according to the flow rate in the multi-spark method according to the present invention.
이하에서는 도면을 참조하여 본 발명을 보다 구체적으로 설명한다. Hereinafter, with reference to the drawings will be described the present invention in more detail.
도 1은 본 발명의 바람직한 실시예에 따른 장치의 모식도이다. 1 is a schematic diagram of a device according to a preferred embodiment of the present invention.
도 1에 도시된 바와 같이, 본 발명에 따른 스파크 방전 장치는 복수개의 칼럼형 전극과 각각의 칼럼형 전극에 상응하는 복수개의 출구 구멍이 구비된 접지 플레이트를 구비하는 것을 특징으로 한다. As shown in FIG. 1, the spark discharge device according to the present invention is characterized by having a ground plate having a plurality of columnar electrodes and a plurality of outlet holes corresponding to each columnar electrode.
칼럼형 전극은 핀 전극, 와이어 전극, 로드 전극을 포괄하는 것으로서 그 형상이 특별히 제한되지 않는다. The columnar electrode covers the pin electrode, the wire electrode, and the rod electrode, and the shape thereof is not particularly limited.
또한, 도 1에는 칼럼형 전극의 말단부 형상이 뾰족한 핀 전극으로 도시되어 있으나 이에 한정되지 않는다. 구체적으로 도 2에 도시된 바와 같이, 칼럼형 전극의 말단부는 샤프하거나(a) 라운드형(b) 이거나 플랫한 형상(c) 등 다양할 수 있다. In addition, although the distal end shape of the columnar electrode is illustrated as a sharp pin electrode in FIG. 1, the present invention is not limited thereto. Specifically, as shown in FIG. 2, the distal end of the columnar electrode may be sharp (a) round (b) or flat (c).
또한 칼럼형 전극의 직경, 길이 등은 특별히 제한되지 않고 적용 분야나 용도에 따라 적절히 조절할 수 있다. In addition, the diameter, length, and the like of the columnar electrode are not particularly limited and can be appropriately adjusted according to the application field or use.
일례로, 핀 전극의 경우를 예로 들면 직경은 수 미크론 내지 수 밀리미터, 일례로 0.01 - 20 mm 일 수 있으나 이에 한정되지 않는다. 또한 말단 팁 부분의 곡률반경은 수 미크론 내지 수 밀리미터, 일례로 0.01 mm 이상일 수 있으나 이에 한정되지 않는다. For example, the diameter of the pin electrode may be, for example, several microns to several millimeters, for example, 0.01 to 20 mm, but is not limited thereto. In addition, the radius of curvature of the distal tip portion may be several microns to several millimeters, for example, 0.01 mm or more, but is not limited thereto.
접지 플레이트의 출구 구멍은 각각의 칼럼형 전극에 상응하도록 형성되며 직경이 각각 수 미크론 내지 수 밀리미터일 수 있고, 일례로 0.1-25 mm 일 수 있으나 이에 한정되지 않는다. 상기 접지 플레이트의 출구 구멍 직경을 조절함으로써 스파크 방전 발생기의 출구 유속을 조절하여 입자의 응집 정도를 제어할 수 있다.The outlet holes of the ground plate are formed to correspond to the respective columnar electrodes and may have diameters of several microns to several millimeters, for example, 0.1-25 mm, but are not limited thereto. By controlling the outlet hole diameter of the ground plate, the outlet flow rate of the spark discharge generator may be adjusted to control the degree of aggregation of the particles.
칼럼형 전극과 접지 플레이트의 거리는 특별히 제한되지 않는다. The distance between the columnar electrode and the ground plate is not particularly limited.
도 3에 도시된 바와 같이 칼럼형 전극(10)과 접지 플레이트(20)는 소정거리 이격되거나(a), 동일한 위치에 있거나(b) 칼럼형 전극(10)이 접지 플레이트(20)에 형성된 출구 구멍(30)을 관통하여 위치하도록(c) 할 수 있다. As shown in FIG. 3, the columnar electrode 10 and the ground plate 20 are spaced a predetermined distance apart (a) or at the same position (b) or the outlet where the columnar electrode 10 is formed on the ground plate 20. (C) may be located through the hole (30).
도 3 (a)와 같이, 칼럼형 전극(10)이 접지 플레이트로(20)의 출구 구멍(30)으로부터 소정 거리는 이격된 경우를 예로 들면, 수 미크론 내지 수십 밀리미터, 일례로 0.01-10 mm 일 수 있으나 이에 한정되지 않는다. As shown in FIG. 3A, the columnar electrode 10 is spaced apart from the outlet hole 30 of the ground plate path 20 by, for example, several microns to several tens of millimeters, for example, 0.01-10 mm. But it is not limited thereto.
반면, 도 3(b) 및 (c)와 같이, 칼럼형 전극(10)이 접지 플레이트(20)의 출구 구멍(30)과 동일한 위치 내지는 출구 구멍(30)에 삽입 또는 관통하는 경우에는 칼럼형 전극과 접지 플레이트가 닿지 않게 한다.On the other hand, as shown in FIGS. 3B and 3C, when the columnar electrode 10 is inserted or penetrated at the same position as the outlet hole 30 of the ground plate 20 or through the outlet hole 30, the columnar electrode 10 is columnar. Make sure the electrodes do not touch the ground plate.
상기 칼럼형 전극의 개수는 기판 면적 20-50 mm2 당 1-3개인 것이 전체 면적에 균일하게 나노 구조물을 형성하기에 유리할 수 있으나 이에 한정되지 않는다. The number of the columnar electrodes may be advantageous to form nanostructures uniformly over the entire area of 1 to 3 per 20-50 mm 2, but is not limited thereto.
칼럼형 전극과 접지 플레이트의 재질은 나노입자 전구물질로서 금, 구리, 주석, 인듐, ITO, 흑연 및 은 중에서 선택된 전도성 물질; 카드뮴 산화물, 산화철 및 산화주석 중에서 선택된 부도체 물질로 코팅된 전도성 물질; 또는 실리콘, GaAs 및 CdSe 중에서 선택된 반도체 물질일 수 있고 특별히 제한되지 않는다. The material of the columnar electrode and the ground plate is a nanoparticle precursor, a conductive material selected from gold, copper, tin, indium, ITO, graphite, and silver; Conductive material coated with an insulator material selected from cadmium oxide, iron oxide and tin oxide; Or a semiconductor material selected from silicon, GaAs, and CdSe, and is not particularly limited.
스파크 방전을 위한 전기회로는 고전압 공급원(HV)과 외부 커패시터(C), 저항(R)으로 구성된 정전압원(constant high voltage source) 구조로 다수의 저항, 다수의 커패시터로 구성된 회로를 이용하여 조건에 따라 별도로 입자의 크기를 조절 할 수 있지만 이에 한정되는 것은 아니다.The electrical circuit for spark discharge is a constant high voltage source structure consisting of a high voltage source (HV), an external capacitor (C), and a resistor (R). Depending on the particle size can be adjusted separately, but is not limited thereto.
스파크 방전기를 이용하여 나노구조물 어레이를 제조하는 방법은 대한민국 특허출원공개 10-2009-0089787호에 상세히 개시되어 있으므로, 이에 대한 구체적인 설명은 생략한다. 다만 본 발명의 장치는 도 1에 도시된 바와 같이 보다 효과적인 이온 발생 및 증착을 위해 코로나 방전기를 추가로 구비할 수 있다. 코로나 방전기는 1kV ~ 10kV 범위의 전압이 인가될 수 있다. Method for manufacturing a nanostructure array using a spark discharger is disclosed in detail in Korean Patent Application Publication No. 10-2009-0089787, a detailed description thereof will be omitted. However, the apparatus of the present invention may further include a corona discharger for more efficient ion generation and deposition as shown in FIG. The corona discharger may be applied with a voltage in the range of 1 kV to 10 kV.
반응기 내부에 삽입되는 접지 플레이트 출구 구멍의 직경에 의해 질소, 헬륨, 아르곤과 같은 운반기체의 유속이 조절 가능하며, 이는 멀티 스파크에 의해 발생되는 입자의 응집을 제어할 수 있는 변수가 된다.The flow rate of the carrier gas such as nitrogen, helium, and argon is controlled by the diameter of the ground plate outlet hole inserted into the reactor, which is a variable to control the aggregation of particles generated by the multi-spark.
반응기 내부에 삽입되는 내부 실린더의 직경에 의해 질소, 헬륨, 아르곤과 같은 운반기체의 유속이 조절 가능하며, 이는 멀티스파크에 의해 발생되는 입자의 응집을 제어할 수 있는 변수가 된다. The flow rate of the carrier gas such as nitrogen, helium and argon can be controlled by the diameter of the inner cylinder inserted into the reactor, which is a variable to control the aggregation of particles generated by the multispark.
칼럼형 전극의 말단부는 입자 발생과 동시에 이온을 발생시키는 특징을 가지고 있어 이는 구조물의 형성에 영향을 미칠 수 있으며, 필요에 따라 샤프하거나, 라운드하거나, 플랫하게 조절할 수 있다. The distal end of the columnar electrode is characterized by generating ions simultaneously with particle generation, which may affect the formation of the structure, and may be adjusted to be sharp, round or flat as necessary.
본 발명에 따른 장치는 플레이트 전극과 샘플(기판)간의 간격을 조절할 수 있어 대면적 나노구조물 어레이 제조의 균일성(uniformity) 및 나노구조물이 형성되는 영역을 조절할 수 있다. The device according to the present invention can adjust the spacing between the plate electrode and the sample (substrate) to control the uniformity of the large-area nanostructure array fabrication and the region in which the nanostructure is formed.
멀티스파크 방전발생기로 유입되는 기체의 유입구 위치는 조절 가능하며, 이를 통해 입자 이동경로를 제어할 수 있다. 본 발명의 바람직한 실시예에 따르면 기체 유입구 및 유출구는 복수개 인 것이 대면적 기판에 균일한 나노 구조물 형성하는데 유리하다. 다른 방법으로는 유입구 및 유출구의 위치를 조절하여 입자 이동경로를 제어할 수 있다. The position of the inlet of the gas flowing into the multi-spark discharge generator can be adjusted, thereby controlling the particle movement path. According to a preferred embodiment of the present invention, a plurality of gas inlets and outlets is advantageous for forming a uniform nanostructure on a large area substrate. Alternatively, the particle migration path can be controlled by adjusting the positions of the inlet and outlet.
또한 본 발명에 따른 장치는 스파크 방전 상태를 볼 수 있는 윈도우를 구비한 것이 바람직하며, 샘플(기판)은 챔버의 정중앙에 위치하는 것이 바람직하다. In addition, the device according to the invention preferably has a window for viewing the spark discharge state, and the sample (substrate) is preferably located in the center of the chamber.
본 발명에 의한 장치는 대면적, 예를 들면 0.25 cm2 이상의 넓이에 3차원 형상의 나노구조물 어레이를 형성하는데 편리하게 이용될 수 있다. The device according to the invention can be conveniently used to form a three-dimensional array of nanostructures in a large area, for example 0.25 cm 2 or more.
이하에서는 본 발명의 구체적인 실시예를 설명하지만 이는 예시일 뿐, 본 발명의 범위가 이에 의해 한정되는 것은 아니다.Hereinafter, specific embodiments of the present invention will be described, but these are only examples, and the scope of the present invention is not limited thereto.
실시예 1Example 1
도 1에 도시된 바와 같이 복수개의 핀 전극이 구비된 핀-투-플레이트 방식의 스파크 방전기(실시예)와 1개의 팁이 구비된 스파크 방전기(비교예)를 사용하여 실험하였다. As illustrated in FIG. 1, an experiment was performed using a pin-to-plate spark discharger (example) equipped with a plurality of pin electrodes and a spark discharger (comparative example) provided with one tip.
방전 챔버의 크기는 부피 727 cm3, 내경 11.5 cm, 높이 7 cm 이었다. 핀 전극의 직경은 각각 4 mm 이고, 말단 부분의 곡률반경이 대략 0.13 mm인 것을 16개 이상 사용하였다. 접지 플레이트의 출구 구멍은 각각의 핀 전극에 상응하도록 형성되며 직경이 1 mm 이다. 핀 전극과 접지 전극은 모두 구리로 만들었으며, 양 전극간 거리는 2.5 mm로 하였다. 질소 기체를 운반기체로 사용하였다. 유속은 0.03m/s로 하였다. The discharge chamber had a volume of 727 cm 3 , an inner diameter of 11.5 cm, and a height of 7 cm. The diameter of the pin electrode was 4 mm each, and 16 or more things with the radius of curvature of the terminal part were about 0.13 mm. The outlet hole of the ground plate is formed corresponding to each pin electrode and is 1 mm in diameter. Both the pin electrode and the ground electrode were made of copper, and the distance between both electrodes was 2.5 mm. Nitrogen gas was used as the carrier gas. The flow rate was 0.03 m / s.
스파크 방전을 위한 전기회로는 HV(Bertan 205B, 최대전압 10kV)를 20 Mohm의 저항을 통해 핀 전극에 직렬 연결하였다. 2 nF 용량의 커패시터를 전극에 병렬 연결하였다. HV 전압은 4kV, 5kV, 6kV 로 변화시키면서 실험하였다. 코로나 방전기는 4 kV로 작동시켰다. The electrical circuit for spark discharge connected HV (Bertan 205B, maximum voltage 10kV) in series with the pin electrode through a 20 Mohm resistor. A 2 nF capacitor was connected in parallel to the electrode. HV voltage was tested while changing to 4kV, 5kV, 6kV. The corona discharger was operated at 4 kV.
직경 2 미크론의 구멍이 4미크론 간격으로 천공된 감광막으로 나노 패턴이 형성된 6cm x 6cm 실리콘 기판에 1시간 30분간 나노입자 증착을 실시하였다. Nanoparticles were deposited on a 6 cm x 6 cm silicon substrate on which a nanopattern was formed with a photoresist film with holes of 2 microns in diameter spaced at 4 micron intervals for 1 hour and 30 minutes.
그 결과 얻은 나노 구조물 어레이 샘플 이미지(a) 및 그의 SEM 이미지(b)를 도 4 및 도 5에 나타내었다(HV 전압 4 kV). The resulting nanostructure array sample image (a) and its SEM image (b) are shown in FIGS. 4 and 5 (HV voltage 4 kV).
실시예 2Example 2
질소 기체 유속을 0.06m/s로 한 것을 제외하고는 실시예 1과 동일하게 하였다. It carried out similarly to Example 1 except having set the nitrogen gas flow rate into 0.06 m / s.
실시예 3Example 3
질소 기체 유속을 0.09m/s로 한 것을 제외하고는 실시예 1과 동일하게 하였다. It carried out similarly to Example 1 except having set the nitrogen gas flow rate into 0.09 m / s.
비교예 1 내지 3Comparative Examples 1 to 3
싱글팁을 사용한 것을 제외하고는 실시예 1 내지 3(질소 기체 유속 변화)과 동일하게 나노구조물을 제조하였다.Nanostructures were prepared in the same manner as in Examples 1-3 (nitrogen gas flow rate changes) except that a single tip was used.
실험결과측정Experiment result measurement
나노구조물의 크기 측정은 DMA(differential mobility analyzer), bipolar chargher, flow control system, CPC (condensation particle counter), data inversion system으로 구성된 SMPS 장치를 이용하였다. 멀티팁 스파크 발생기를 통해 제조된 나노구조물 어레이는 전계방출주사전자현미경 (Field-Emission Scanning Electron Microscope, SUPRA 55VP)을 이용하여 형태 및 크기를 측정하였다. The size of the nanostructure was measured using a SMPS device composed of a differential mobility analyzer (DMA), a bipolar chargher, a flow control system, a condensation particle counter (CPC), and a data inversion system. The nanostructure arrays manufactured through the multi-tip spark generator were measured in shape and size by using a field-emission scanning electron microscope (SUPRA 55VP).
도 4는 본 발명의 실시예에 따라 대면적에 형성된 나노 구조물 어레이 샘플 이미지(a) 및 그의 SEM 이미지(b) 이다. 4 is a nanostructure array sample image (a) and SEM image thereof (b) formed in a large area in accordance with an embodiment of the present invention.
도 5는 실시예 3 (전압 4kV)에서 얻은 나노 구조물의 높이 및 직경 분포를 측정한 결과이다. 대면적임에도 불구하고, 수직 수평 방향 모두 균일한 분포를 갖는 것을 알 수 있다. 5 is a result of measuring the height and diameter distribution of the nanostructure obtained in Example 3 (voltage 4kV). In spite of the large area, it can be seen that both the vertical and horizontal directions have a uniform distribution.
도 6은 비교예에 따라 싱글-스파크 방전 발생기를 사용하여 대면적에 형성한 나노 구조물 어레이의 SEM 이미지이다.6 is an SEM image of an array of nanostructures formed in a large area using a single-spark discharge generator according to a comparative example.
도 7은 비교예에 따라 제조된 나노 구조물 어레이의 기판 위치에 따른 크기 편차를 측정한 결과이다. 팁 중심에서 멀어질수록 구조물 형성이 잘 안돼서 균일성이 없다.7 is a result of measuring the size deviation according to the position of the substrate of the nanostructure array manufactured according to the comparative example. The further away from the center of the tip, the poorer the formation of the structure is, and thus there is no uniformity.
도 8은 실시예 1, 2, 3(전압 4 kV)에서 얻은 나노 구조물의 SEM 이미지이다. 유속이 증가할수록 입자 응집이 감소하여 부드러운 표면을 가진 구조물이 생성됨을 알 수 있다. 8 is an SEM image of the nanostructures obtained in Examples 1, 2 and 3 (voltage 4 kV). It can be seen that as the flow rate increases, particle aggregation decreases, resulting in a structure with a smooth surface.
도 9는 전압 4kV에서 유속을 변화시켜가며, 발생되는 입자의 크기분포를 측정한 자료이다. 유속이 증가할수록 입자의 응집이 감소하여 큰 입자의 개수가 감소함을 알 수 있다. 즉 유속으로 입자의 응집을 조절할 수 있음을 도 7을 통해 확인할 수 있다.Figure 9 is a data measuring the size distribution of the particles generated by varying the flow rate at a voltage of 4kV. It can be seen that as the flow rate increases, the aggregation of particles decreases and the number of large particles decreases. That is, it can be confirmed through FIG. 7 that the aggregation of the particles can be controlled at a flow rate.
본 발명에 따른 스파크 방전 발생기는 2개 이상의 칼럼형 전극과 이에 상응하는 복수개의 출구 구멍을 갖는 접지 플레이트를 구비하므로 넓은 면적에서 입자를 분사하는 효과가 있다. 따라서 대면적 기판의 전체 영역에 형성된 전기장을 따라 다량의 입자가 신속하게 이동할 수 있으므로 대면적 기판에 나노구조물을 신속하게 제조할 수 있어 스파크 방전에 의해 산업적으로 응용가능한 규모의 나노구조물 어레이를 제조할 수 있다.The spark discharge generator according to the present invention is provided with a ground plate having two or more columnar electrodes and a corresponding plurality of outlet holes, so that particles are sprayed in a large area. Therefore, a large amount of particles can move quickly along the electric field formed in the entire area of the large-area substrate, so that nanostructures can be rapidly produced on the large-area substrate, and thus, nanostructure arrays of industrially applicable scale can be manufactured by spark discharge. Can be.

Claims (12)

  1. 기체 유입구 및 유출구를 구비한 방전 챔버, A discharge chamber having a gas inlet and an outlet,
    상기 방전 챔버 내에 위치하는 복수개의 칼럼형 전극, A plurality of columnar electrodes located in the discharge chamber,
    상기 방전 챔버 내에 위치하며, 각각의 칼럼형 전극의 위치에 상응하는 위치에 복수개의 출구 구멍을 갖는 접지 플레이트, A ground plate located in the discharge chamber and having a plurality of outlet holes at positions corresponding to the positions of the respective columnar electrodes,
    상기 칼럼형 전극 및 접지 플레이트와 대향하는 위치에 기판 지지대를 구비한 스파크 방전 발생기.A spark discharge generator having a substrate support at a position opposite to the columnar electrode and the ground plate.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 칼럼형 전극은 상기 접지 플레이트의 출구 구멍을 향하는 말단부를 구비하며, 말단부의 형상은 샤프하거나, 라운드이거나 또는 플랫한 형상인, 스파크 방전 발생기.The columnar electrode having a distal end facing the outlet hole of the ground plate, wherein the distal end has a sharp, round or flat shape.
  3. 제 2 항에 있어서, The method of claim 2,
    상기 칼럼형 전극의 말단부는 상기 접지 플레이트의 출구 구멍으로부터 소정 거리 이격되어 있거나, 출구 구멍과 동일한 위치에 있거나, 출구 구멍을 관통하는, 스파크 방전 발생기.And the distal end of the columnar electrode is spaced a predetermined distance from the outlet hole of the ground plate, at the same position as the outlet hole, or penetrates through the outlet hole.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 접지 플레이트의 출구 구멍 직경을 조절함으로써 스파크 방전 발생기의 출구 유속을 조절하여 입자의 응집 정도를 제어할 수 있는 것인, 스파크 방전 발생기.By adjusting the outlet hole diameter of the ground plate to adjust the flow rate of the outlet of the spark discharge generator to control the degree of aggregation of the spark discharge generator.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 기체 유입구에 코로나 방전기를 추가로 구비하는, 스파크 방전 발생기.And a corona discharger at the gas inlet.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 기체 유입구 및 유출구가 각각 복수개인, 스파크 방전 발생기.And a plurality of gas inlets and outlets, respectively, spark discharge generator.
  7. 제 2 항에 있어서, The method of claim 2,
    칼럼형 전극의 말단부는 입자 발생과 동시에 이온을 발생시키는, 스파크 방전 발생기.A spark discharge generator, wherein the terminal portion of the columnar electrode generates ions simultaneously with particle generation.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 접지 플레이트와 기판 지지대간의 간격을 조절 가능한 것인, 스파크 방전 발생기.The spark discharge generator that can adjust the distance between the ground plate and the substrate support.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 기체 유입구에 기체 유입 유속을 조절할 수 있는 내부실린더를 구비하며, 이를 이용하여 입자의 응집 정도를 제어할 수 있는 것인, 스파크 방전 발생기.The gas inlet is provided with an internal cylinder that can adjust the gas inlet flow rate, it is possible to control the degree of aggregation of particles by using the spark discharge generator.
  10. 제 1 항에 있어서, The method of claim 1,
    다수의 저항, 다수의 커패시터로 구성된 회로를 정전압원(constant high voltage source)으로 이용하는 것인, 스파크 방전 발생기.Spark discharge generator, using a circuit composed of a plurality of resistors, a plurality of capacitors as a constant high voltage source.
  11. 제 1 항에 있어서, The method of claim 1,
    상기 반응 챔버가 스파크 방전 상태를 볼 수 있는 윈도우를 구비하는 것인, 스파크 방전 발생기.And the reaction chamber is provided with a window for viewing the spark discharge state.
  12. 제1항 내지 제11항 중 어느 한 항의 스파크 방전 발생기를 사용하여 3차원 형상의 나노구조물 어레이를 형성하는 방법.12. A method of forming a three-dimensional array of nanostructures using the spark discharge generator of any one of claims 1-11.
PCT/KR2013/011884 2013-03-22 2013-12-19 Multi-spark discharge generator and method for manufacturing nanoparticle structure using same WO2014148727A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380003736.8A CN104302386B (en) 2013-03-22 2013-12-19 Multiple spark discharges generator and use its to manufacture the method for nanoparticle structure
US14/351,476 US9669423B2 (en) 2013-03-22 2013-12-19 Multi-tip spark discharge generator and method for producing nanoparticle structure using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0030610 2013-03-22
KR20130030610 2013-03-22
KR1020130104456A KR101498378B1 (en) 2013-03-22 2013-08-30 Multi-spark discharge generator and process for preparing nanoparticle structure using same
KR10-2013-0104456 2013-08-30

Publications (1)

Publication Number Publication Date
WO2014148727A1 true WO2014148727A1 (en) 2014-09-25

Family

ID=51580357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011884 WO2014148727A1 (en) 2013-03-22 2013-12-19 Multi-spark discharge generator and method for manufacturing nanoparticle structure using same

Country Status (1)

Country Link
WO (1) WO2014148727A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102523A (en) * 1990-08-10 1992-04-07 Leybold Aktiengesellschaft Arrangement for the production of a plasma
US20050106329A1 (en) * 2003-07-09 2005-05-19 Fry's Metals, Inc. Deposition and patterning process
JP2008150679A (en) * 2006-12-19 2008-07-03 Dialight Japan Co Ltd Method for forming carbon film onto surface of substrate, and device performing the same
US20080241422A1 (en) * 2007-01-05 2008-10-02 Industry-Academic Cooperation Foundation, Yonsei University Method for aerosol synthesis of carbon nanostructure under atmospheric pressure
KR20120007823A (en) * 2010-07-15 2012-01-25 (주)에이치시티 Cartridge type spark discharge aerosol generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102523A (en) * 1990-08-10 1992-04-07 Leybold Aktiengesellschaft Arrangement for the production of a plasma
US20050106329A1 (en) * 2003-07-09 2005-05-19 Fry's Metals, Inc. Deposition and patterning process
JP2008150679A (en) * 2006-12-19 2008-07-03 Dialight Japan Co Ltd Method for forming carbon film onto surface of substrate, and device performing the same
US20080241422A1 (en) * 2007-01-05 2008-10-02 Industry-Academic Cooperation Foundation, Yonsei University Method for aerosol synthesis of carbon nanostructure under atmospheric pressure
KR20120007823A (en) * 2010-07-15 2012-01-25 (주)에이치시티 Cartridge type spark discharge aerosol generator

Similar Documents

Publication Publication Date Title
WO2012047040A2 (en) Electric field auxiliary robotic nozzle printer and method for manufacturing organic wire pattern aligned using same
JP5010766B2 (en) Method and apparatus for statistically characterizing nanoparticles
WO2013133552A1 (en) Plasma processing method and substrate processing apparatus
KR101498378B1 (en) Multi-spark discharge generator and process for preparing nanoparticle structure using same
AU2017244132A1 (en) Nanostructure array based sensors for electrochemical sensing, capacitive sensing and field-emission sensing
US20110006271A1 (en) Dielectric composition with reduced resistance
Zhou et al. Effects of magnetic field intensity on ionic wind characteristics
KR100907787B1 (en) A method for focusing patterning of charged particles using a patterned perforated mask and a mask used therein
WO2014010803A1 (en) Optical element using three-dimensional structure assembled with nanoparticles
WO2017217718A1 (en) Nanoparticle production device and nanoparticle production method
US7855868B2 (en) Aerosol charge neutralizing device
WO2014148727A1 (en) Multi-spark discharge generator and method for manufacturing nanoparticle structure using same
KR101891696B1 (en) Spark discharge generator and process for preparing nanoparticle structure using same
CN106998617A (en) The device and method of large scale Atomospheric pressure glow discharge is produced based on microplasma spray gun
JPH0763032B2 (en) Electrostatic processing equipment for objects
CN106876579A (en) Macromolecule membrane polarization method and device, polarized film, electronic device
JP4597952B2 (en) Particle beam system manufacturing method and manufacturing apparatus
WO2019059689A1 (en) Apparatus for electrodeless measurement of electron mobility in nano material, apparatus for electrodeless measurement of hole mobility in nano material, method for electrodeless measurement of electron mobility in nano material, and method for electrodeless measurement of hole mobility in nano material
CN101937825B (en) Charged particle selection apparatus and charged particle irradiation apparatus
KR101391010B1 (en) Process for producing 3-dimensional nanoparticle structure
WO2022149802A1 (en) Nano 3d printing apparatus for manufacturing nanostructure
Kang et al. Assembly of charged aerosols on non-conducting substrates via ion-assisted aerosol lithography (IAAL)
RU2693734C1 (en) Generator for producing nanoparticles in pulse-periodic gas discharge
ALISOY et al. Transient analysis of double layer metal-gas-dielectric-metal DBD cell
WO2004097883A2 (en) Method of manufacturing a field emitting electrode

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14351476

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13879209

Country of ref document: EP

Kind code of ref document: A1