WO2014148583A1 - Quality evaluation device - Google Patents

Quality evaluation device Download PDF

Info

Publication number
WO2014148583A1
WO2014148583A1 PCT/JP2014/057623 JP2014057623W WO2014148583A1 WO 2014148583 A1 WO2014148583 A1 WO 2014148583A1 JP 2014057623 W JP2014057623 W JP 2014057623W WO 2014148583 A1 WO2014148583 A1 WO 2014148583A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement object
nucleic acid
quality
value
concentration
Prior art date
Application number
PCT/JP2014/057623
Other languages
French (fr)
Japanese (ja)
Inventor
慶一 野間
宮崎 秀樹
裕子 村田
昌一 村田
メイコ 木村
博章 鈴木
Original Assignee
フジデノロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フジデノロ株式会社 filed Critical フジデノロ株式会社
Publication of WO2014148583A1 publication Critical patent/WO2014148583A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/12Meat; fish
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood

Definitions

  • the present invention relates to an apparatus for measuring indices for managing the freshness and quality of fish meat, seafood, meat, livestock meat, and processed products using these.
  • the K value is an example.
  • ADP adenosine diphosphate
  • AMP adenosine monophosphate
  • IMP inosinic acid
  • HxR inosine
  • hypoxanthine accompanying the degradation of adenosine triphosphate (ATP) after death (Hx) is sequentially produced, and the percentage of the weight ratio or the amount (mole) ratio of inosine and hypoxanthine to all these substances is the K value.
  • This K value has been widely used as one of the indexes representing freshness.
  • the K value is the ratio of HxR and Hx to all substances of ATP, ADP, AMP, IMP, HxR, and Hx.
  • ATP is often decomposed.
  • IMP decomposition that is, generation of HxR and Hx is not often performed over time.
  • FIG. 14 is a diagram showing the ratio of each nucleic acid-related substance, the K value, and the ratio of ATP with the passage of time when the maji meat as a detection target is stored in a refrigerator. For example, comparing immediately after death (0h) and after 6 hours (6h), HxR and Hx are hardly generated, so there is no change in the K value, but the ATP concentration is greatly reduced. It can be seen that the freshness is changing.
  • Patent Document 1 proposes a method for measuring the amount of nucleic acid substances in fish proposed under such circumstances. According to the method of Patent Document 1, the amount of nucleic acid-related substance contained in the fish meat can be measured by electrochemically measuring the body fluid of the fish meat. However, in such a method, it is necessary to take out body fluid from fish meat, and a method for taking out body fluid more efficiently is still desired.
  • the present invention has been made against the background of the above circumstances, and its object is to provide a quality measuring device capable of measuring the freshness and quality of fish by collecting body fluid more efficiently from fish. Is to provide.
  • the invention according to claim 1 for achieving the object includes (a) fish, fish and shellfish, meat, livestock meat, and an object to be measured comprising these, and an indicator of freshness and quality;
  • An extraction container for extracting a nucleic acid-related substance and (b) having at least a working electrode and a counter electrode among the three types of electrodes, a working electrode, a counter electrode, and a reference electrode, and reacting with the nucleic acid-related substance on the surface of the working electrode
  • An electrochemical sensor that includes an enzyme immobilization part on which an enzyme is immobilized, the nucleic acid-related substance extracted by the extraction container is provided, and a voltage is applied between the working electrode and the counter electrode; and (c) the electrochemical And a measuring device that measures the concentration of the nucleic acid-related substance based on the output of the sensor and calculates the value related to the quality.
  • the extraction liquid can be easily taken out from the measurement object by the extraction container.
  • the enzyme in the enzyme fixing part provided on the working electrode is allowed to react with the nucleic acid-related substance in the extract.
  • a voltage is applied between at least the working electrode and the counter electrode of the electrochemical sensor. Further, based on the output of the electrochemical sensor at that time, the concentration of the nucleic acid-related substance in the extract is measured by the measuring device, and a value related to the quality of the measurement object is calculated based on the measured value. Therefore, a value relating to the quality of the measurement object can be obtained easily and quickly by a simple method.
  • a feature of the second invention is that the electrochemical sensor has a plurality of working electrodes, and an enzyme is immobilized on each of the enzyme fixing portions corresponding to the plurality of working electrodes. It is in. In this way, the concentration of each of a plurality of nucleic acid-related substances that react with a plurality of enzymes can be measured by a single measurement, so that more efficient measurement is possible.
  • the third invention is characterized in that the extraction container includes a crushing part for crushing the measurement object, a pusher for pressing the measurement object against the crushing part, and the crushing part. And a filtration member that filters the liquid extracted from the measurement object crushed by the above, and the crushing part is composed of a plurality of granular crushed particles.
  • the filtration unit can remove the extraction object from the extract. It becomes possible to remove substances other than nucleic acid-related substances to be measured in the electrochemical sensor.
  • the nucleic acid-related substance is ATP (adenosine triphosphate), ADP (adenosine diphosphate), AMP (adenosine monophosphate), IMP (inosinic acid), HxR. (Inosine) and Hx (hypoxanthine).
  • ATP adenosine triphosphate
  • ADP adenosine diphosphate
  • AMP adenosine monophosphate
  • IMP inosinic acid
  • HxR. Inosine
  • Hx hypoxanthine
  • a feature of the fifth invention is that the filtration member selectively absorbs oil and fat components from the liquid extracted from the measurement object. If it does in this way, it will prevent that the fats and oils component contained in the extract of the said measuring object becomes a disorder
  • the sixth invention is characterized in that an index relating to the freshness of the measurement object is calculated based on the concentration of the nucleic acid-related substance, particularly ATP, in the liquid extracted from the measurement object. .
  • the concentration of the nucleic acid-related substance, particularly ATP in the liquid extracted from the measurement object.
  • the seventh invention is characterized in that an index relating to the quality of the measurement object is calculated based on the concentration of the nucleic acid-related substance, particularly IMP, in the liquid extracted from the measurement object. .
  • an index relating to the quality of the measurement object can be obtained based on the concentration of IMP.
  • an index relating to the quality can be obtained even if the measurement object is already processed at the time of processing such as processed food.
  • the eighth invention is characterized in that the K value or Ki value of the measurement object is calculated based on the concentration of the nucleic acid-related substance in the liquid extracted from the measurement object. . In this way, it is possible to easily obtain the K value or Ki value that has been conventionally used as one of the indexes representing freshness for the measurement object.
  • FIG. 1 is a diagram for explaining an outline of a quality measuring apparatus according to an embodiment of the present invention.
  • a quality measuring apparatus 10 is an electrical signal indicating the degree of reaction between a nucleic acid-related substance and an enzyme contained in an extraction container 12 for extracting an extraction liquid from a measurement object, and the extraction liquid extracted from the extraction container 12.
  • a measurement device 16 that measures the concentration of the nucleic acid-related substance based on the output signal from the electrochemical sensor 14 and calculates a value related to quality.
  • FIG. 2 shows an example of the extraction container 12.
  • the extraction container 12 is configured to include, for example, a cylindrical tubular portion 20 and a pusher 22 that are open at one end and closed at the other end.
  • a discharge portion 20 a whose inner diameter is smaller than the inner diameter of the cylindrical portion 20 is continuously provided on the distal end side of the cylindrical portion 20, and is extracted from the measurement object 8 placed inside the cylindrical portion 20.
  • the extracted liquid is discharged.
  • the pusher 22 has a push plate 22a at its tip, and these are moved integrally. The pusher 22 is inserted into the inside of the cylindrical portion 20 from the opening end so that the push plate 22a becomes the tip, and the measuring object 8 having the push plate 22a placed inside the cylindrical portion 20 is inserted into the cylindrical portion 20.
  • the tip is pressed toward the tip 20a side.
  • the push plate 22a is provided so that the size thereof is smaller than the inner diameter of the cylindrical portion 20 so that the inside of the cylindrical portion 20 can be moved.
  • the space between the push plate 22a and the push plate 22a may or may not be airtight.
  • the filtration member 24 and the crushing part 26 are provided in the end part by the side of the discharge part 20a of the cylindrical part 20 from the front-end
  • the filtration member 24 is made into the same shape as the cross-sectional shape of the cylindrical part 20, and the extract liquid which the measurement object 8 is crushed and extracted by the crushing part 26 mentioned later reaches from the cylindrical part 20 to the discharge part 20a.
  • filtration, adsorption or absorption is performed.
  • the filtration member 24 is capable of filtering, adsorbing, or absorbing substances other than nucleic acid-related substances to be measured, particularly substances that interfere with measurement in an electrochemical sensor described later, in the extract.
  • the material is selected.
  • a nonwoven fabric is used for the purpose of removing oils and fats from the extract.
  • the thickness of the filter member 24 is appropriately set according to the amount of substances that can be filtered or adsorbed by the filter member 24 and the exchange frequency. Furthermore, in the filtration member 24, when the measuring object 8 is crushed in the crushing part 26 mentioned later, the solid substance contained in an extract is filtered.
  • the crushing unit 26 crushes the measurement object 8 and extracts the extract.
  • the crushing part 26 is composed of a plurality of crushed grains 28.
  • the plurality of crushed grains 28 may be inserted into the cylindrical portion 20 after being preliminarily bonded to form a predetermined shape, or may be inserted into the cylindrical portion 20 as individual grains.
  • the size of the crushing portion 26, in other words, the amount of the crushing particles 28 constituting the crushing portion 26 is set according to the size of the cylindrical portion 20, the size of the measurement object 8 to be extracted, and the like. Specifically, for example, when the pusher 22 is pushed into the cylindrical portion 20 and the push plate 22a presses the measurement target 8, the measurement target 8 is crushed, and the push plate 22a approaches or contacts the crushing portion 26.
  • the crushing part 26 is provided to such an extent that it can be performed.
  • the shape of the crushing part 26 is not particularly limited, but preferably the measurement object 8 is sandwiched between the push plate 22a and the crushing part 26 so that the measurement object 8 is crushed without unevenness. Both shapes can be designed.
  • FIG. 3 is a diagram showing an example of the shape of the crushed grains 28.
  • the crushed grains 28 have a spherical shape, a so-called bead shape.
  • the measuring object 8 is pressed against the crushed grains 28 having such a shape by the push plate 22a, the measuring object 8 is broken and pressed, and the extract is extracted.
  • the directions of the plurality of crushed grains 28 do not need to be aligned.
  • the size, specifically the outer diameter, the inner diameter, the length, and the like of the crushed particles 28 are determined according to the measurement object 8 to be crushed.
  • the measurement object 8 when the measurement object 8 is a piece of meat such as tuna, horse mackerel, or tie according to the viscosity or hardness of the measurement object 8, the measurement object has a diameter of 0.5 to 2 mm. What is necessary is just to determine experimentally so that the amount of extraction may increase according to the kind of the thing 8.
  • FIG. The material of the crushed particles 28 may be determined according to the viscosity or hardness of the measurement object or according to the magnitude of the force that presses the pusher 22.
  • the crushed grains 28 are made of glass.
  • grains 28 shown in FIG. 3 are chamfered, this is not necessarily essential.
  • FIG. 4 is a diagram comparing the extraction amount of the extraction liquid from the measurement object 8 by the extraction container 12 of this example with other methods.
  • the particle diameter ⁇ 0.5 mm, the particle diameter ⁇ 1 mm, and the particle diameter ⁇ 2 mm correspond to the present embodiment
  • the outer diameters of the crushed particles 28 are 0.5 mm, 1 mm, and 2 mm, respectively. It corresponds to the case.
  • both the manual push and the screw type are provided with a disk-shaped plate instead of the crushing portion 26 of the present embodiment, and are provided on the disk-shaped plate and the pusher 22.
  • the extraction liquid is extracted by sandwiching and crushing the measuring object 8 with the pressing plate 22a.
  • the extraction liquid extracted by crushing the measurement object 8 is discharged from the discharge port 20a through the filter member 24.
  • Both the manual push and the screw type are different in the manner in which the pusher 22 is pushed.
  • the hand push is a push by hand, and the screw type pushes the pusher by a propulsion mechanism using a screw (not shown). .
  • the pusher is pushed by hand in the same manner as the above-described hand pushing.
  • pushing with a hand is the state in which force was applied to such an extent that the extract was obtained from the measuring object 8.
  • the fish meat was put in the extraction container 12 as the measurement object 8, and the extraction liquid was extracted several times under the above five conditions.
  • the value (mass) of the extract (body fluid) obtained when the extraction time is 1 minute, the value (mass) of the fish meat as the measurement object 8 placed in the extraction container 12, and the ratio thereof are shown in the figure.
  • FIG. 4 in the case of the particle diameter ⁇ 0.5 mm, the particle diameter ⁇ 1 mm, and the particle diameter ⁇ 2 mm, that is, when the crushing portion 26 of the present embodiment is applied, the same force is applied.
  • the ratio of the amount of the obtained extract to the mass of the measurement object 8 is large even in comparison with the screw type in which a larger force is applied, and it is short and efficient. It can be seen that the extraction liquid is being extracted. Further, when the respective cases of the particle diameter ⁇ 0.5 mm, the particle diameter ⁇ 1 mm, and the particle diameter ⁇ 2 mm are compared, the ratio of the amount of the obtained extract to the mass of the measurement object 8 is different.
  • the size, material, and the like of the crushed particles can be selected according to the measurement object 8. In the example of FIG. 4, the most efficient is achieved by selecting the diameter ⁇ of the crushed particles 28 as 1 mm. It will be good.
  • crushing portion 26 and the filtering member 24 in the extraction container can be replaced every time extraction is performed.
  • FIG. 5 is a diagram for explaining an example of the configuration of the electrochemical sensor 14.
  • the electrochemical sensor 14 of this embodiment includes a working electrode 32, a counter electrode 34, and three electrodes provided on a substrate 30 made of, for example, glass epoxy resin by vapor deposition or coating.
  • a reference electrode 36 is provided.
  • the working electrode 32, the counter electrode 34, and the reference electrode 36 are exposed on the substrate 30 in the terminal portion 42 on the left side of the horizontally long substrate 30, and are connected to the measuring device 16 described later. It functions as a terminal.
  • the right sensor unit 46 the working electrode 32, the counter electrode 34, and the reference electrode 36 are exposed on the substrate 30, and the extraction liquid of the measurement object 8 extracted by the extraction container 12 is dropped.
  • the working electrode 32, the counter electrode 34, and the reference electrode 36 can be attached so as to cover them.
  • the intermediate portion 44 between the terminal portion 42 and the sensor portion 46 the three electrodes of the substrate and the working electrode 32, the counter electrode 34, and the reference electrode 36 are covered with the insulating portion 40.
  • the insulating part 40 is made of, for example, an insulating film or an insulating resist, so that these three electrodes are not electrically connected by an extract or the like at a place other than the sensor part 46.
  • the working electrode 32 and the counter electrode 34 are preferably made of platinum, gold, glassy carbon, or carbon paste, and the reference electrode 36 is made of silver / silver chloride or the like.
  • an enzyme immobilization section 38 is provided that is immobilized using an immobilization material such as nitrocellulose, carboxymethylcellulose, or a photocurable resin.
  • enzymes immobilized on the enzyme immobilization unit 38 are, for example, glycerol kinase (GK) and glycerol 3-phosphate oxidase (G3PO).
  • GK glycerol kinase
  • G3PO glycerol 3-phosphate oxidase
  • the enzyme immobilized on the enzyme immobilization unit 38 is 5′-nucleotidase (NT) or alkaline phosphatase (AP), nucleotide phosphorylase (NP), xanthine oxidase.
  • nucleic acid-related substance to be detected is HxR or Hx
  • the enzyme immobilized on the enzyme immobilization unit 38 is nucleotide phosphorylase (NP), xanthine oxidase (XOD), or the like.
  • interfering substances contained in the measurement object specifically, for example, ascorbic acid (vitamin C), acetaminophen, uric acid, etc., cause a potential difference between the working electrode 32 and the counter electrode 34 in the electrochemical sensor described later. When a voltage is applied to occur, it can decompose below that voltage.
  • an ion exchange membrane such as acetyl cellulose or Nafion (registered trademark), polyvinyl alcohol, or the like may be provided on the substrate side of the enzyme fixing part 38 of the working electrode 32. In this way, it is possible to prevent or reduce these interference substances from reaching the surface of the working electrode 32 and being decomposed.
  • FIG. 6 is a diagram for explaining an example of the reaction between the nucleic acid-related substance and the enzyme at the working electrode 32 of the electrochemical sensor 14.
  • the principle will be described with reference to FIG. FIG. 6 shows an example in which the electrochemical sensor 14 detects ATP.
  • ATP contained in the extract adhering to the enzyme fixing part 38 of the working electrode 32 is decomposed into ADP by GK, which is an enzyme fixed to the enzyme fixing part 38, and glycerol triphosphate is generated.
  • G3PO which is an enzyme fixed to the enzyme fixing part 38, to generate hydrogen peroxide.
  • the reference electrode 36 is provided to refer to a reference voltage when measuring the potential of the working electrode 32 and the counter electrode 34, and a relative potential difference between the working electrode 32 and the counter electrode 34 can be obtained. Is not necessarily required.
  • the measuring device 16 measures the concentration of the nucleic acid-related substance that the electrochemical sensor 14 attempts to detect based on the output of the electrochemical sensor 14. Further, a value related to the quality of the measurement object 8 is calculated based on the measured concentration of the nucleic acid-related substance.
  • the measurement device 16 has a display unit 50 including, for example, a display device, and the measured concentration of the nucleic acid-related substance, the value related to the calculated quality, and the like are displayed on the display unit 50.
  • the measuring device 16 and each electrode 32, 34, 36 of the electrochemical sensor 14 are connected by a cable 18, and a voltage is applied between the electrodes of the electrochemical sensor 14, or a current flowing between the electrodes is applied. It can be measured.
  • the electrochemical sensor 14 detects ATP as described above with reference to FIGS. 5 and 6, the voltage of the working electrode 32 is higher than the voltage of the counter electrode 34 by, for example, 0.7 V.
  • a voltage is applied to generate a potential difference, hydrogen peroxide is oxidized and electrons are transferred to the working electrode 32 as shown in FIG. That is, a current flows from the working electrode 32 to the counter electrode 34.
  • This 0.7 V corresponds to the decomposition voltage of hydrogen peroxide, and may be larger or smaller as long as hydrogen peroxide can be decomposed.
  • the measuring device 16 detects the magnitude of this current.
  • the measuring device 16 has a function of applying a voltage having a value set for each of the electrodes 32, 34, and 36 of the electrochemical sensor 14, and the working electrode 32 of the electrochemical sensor 14 It has a function of measuring the current flowing between the counter electrode 34.
  • FIG. 7 shows the time change of the current value detected by the measuring device 16 when ATP is the detection target in the electrochemical sensor 14 of FIG. Specifically, a solution prepared so that the ATP concentration is 2.5, 1.0, 0.75, 0.5, 0.25, 0.1 mM (mmol / L, volume molar concentration) in advance.
  • the time change of the current detected by the measuring device 16 of the present embodiment is shown.
  • FIG. 7 when a certain period of time elapses from the start of detection for each concentration, the change in the ATP concentration in the measurement object 8 is settled, and the gradient of the detected current is stable.
  • FIG. 8 is a diagram showing the correlation between the ATP concentration and the current value measured as shown in FIG. 7 for each of the measurement objects 8 that are ATP measurement objects in FIG.
  • the current value is specifically shown in FIG. 7 after the gradient of the current is stabilized.
  • an average of current values measured a plurality of times is used from 10 seconds to 60 seconds after the start of detection.
  • the ATP concentration is calculated based on the value of the current flowing between the working electrode 32 and the counter electrode 34 measured by the measuring device 16 by approximating the correlation obtained in this way by, for example, the least square method. Is possible.
  • the measuring device 16 has a relationship between the value of the current flowing between the working electrode 32 and the counter electrode 34 illustrated in FIG. 8 and the concentration of the nucleic acid-related substance of the measurement target 8 for each nucleic acid-related substance.
  • the above relationship may be a diagram as shown in FIG. 8, but is not limited to this, and may be in the form of a formula or a data table.
  • FIGS. 9 to 10 are diagrams showing the correlation between the IMP concentration and the current value and the correlation between the HxR concentration and the current value, respectively, obtained by the same method as in FIG.
  • the measuring device 16 has a relationship between the value of the current flowing between the working electrode 32 and the counter electrode 34 illustrated in FIG. 8 and the concentration of the nucleic acid-related substance of the measurement target 8 for each nucleic acid-related substance.
  • the above relationship may be a diagram as shown in FIG. 8, but is not limited to this, and may be in the form of a formula or a data table.
  • the maximum ATP concentration of the measurement object 8 is a value set for each measurement object 8, that is, for each type of fish, or even for the same fish, for each part or production area.
  • the concentration of ATP becomes the maximum value immediately after death. Or just get it statistically.
  • This value may be stored in advance in a storage device (memory or the like) (not shown) in the measurement device 16 or may be input by the operator every time measurement using the measurement device 16 is performed.
  • the value relating to freshness obtained as in the above equation (1) is effective as an index representing freshness. It is. In addition, it is possible to evaluate the freshness regardless of fish species, production area, and the like.
  • the maximum ATP concentration of the measurement object 8 is the same as that described for the above-described value relating to freshness, and is a value obtained experimentally or statistically in advance.
  • the IMP increases with the decrease in ATP in the fish meat that is the measurement object 8. That is, IMP increases by the amount of ATP decomposition. Therefore, it can be said that the higher the quality-related value obtained by Equation (2) is, the more ATP is decomposed. Further, since IMP corresponds to a so-called umami component, it can be determined that the umami is increased when the value related to the quality obtained by equation (2) is high.
  • the electrochemical sensor 14 cannot directly detect the concentration of IMP, for example, an electrochemical sensor capable of detecting the total concentration of IMP, HxR, and Hx and the total concentration of HxR and Hx, respectively. It is also possible to obtain the IMP concentration by subtracting the sum of the HxR and Hx concentrations from the sum of the IMP, HxR and Hx concentrations.
  • the reference value of the IMP concentration of the measurement object 8 is a value set in advance for each type of the measurement object 8, and for example, the maximum value of the IMP concentration is used.
  • the value regarding the quality obtained by the above formula (3) is defined without using the ATP concentration, when the measurement object 8 is a processed fish product, that is, before or at the processing stage. Even when ATP has already been decomposed, the quality can be evaluated using the value relating to the quality obtained by the equation (3).
  • FIG. 11 shows the results. As shown in FIG. 11, this result shows that the ATP concentration and the measured current value have a certain linear relationship. Therefore, it can be seen that, based on this relationship, the measuring device 16 can calculate the ATP concentration from the value of the current when the electrochemical sensor 14 measures the current to be measured 8.
  • the concentration and the measured current value have a certain linear relationship. Therefore, when the current is measured by the electrochemical sensor 14 for a certain measurement object 8 based on this relationship, the measuring device 16 can calculate the concentration from the value of the current.
  • a nucleic acid that is included in the measurement object 8 including fish, seafood, meat, livestock meat, and processed products using these, and serves as an index of freshness and quality.
  • An extraction container 12 for extracting a related substance (b) a working electrode 32, a counter electrode 34, and a reference electrode 36, and at least the working electrode 32 and the counter electrode 34.
  • An electrochemical sensor 14 that includes an enzyme immobilization unit 38 that immobilizes an enzyme that reacts with a substance, and that provides a nucleic acid-related substance extracted by the extraction container 12 and a voltage is applied between the working electrode 32 and the counter electrode 34; (C) a measurement device 16 that measures the concentration of the nucleic acid-related substance based on the output of the electrochemical sensor 14 and calculates a value related to the quality.
  • the extraction liquid can be easily taken out from the measurement object 8 by the extraction container 12, and the concentration of the nucleic acid-related substance in the extraction liquid is measured by the electrochemical sensor 14 and the measuring device 16. Since the value related to the quality of the measurement object 8 is calculated based on the measured value, the value related to the quality of the measurement object can be obtained easily and quickly by a simple method.
  • the extraction container 12 of the present embodiment includes a crushing portion 26 for crushing the measurement object 8, a pusher 22 and a push plate 22 a for pressing the measurement object 8 against the crushing portion 26, and a crushing portion 26.
  • a filtering member 24 for filtering the liquid extracted from the crushed measurement object 8, and the crushing portion 26 is composed of a plurality of granular crushed particles 28.
  • the nucleic acid-related substances to be measured by the quality measuring apparatus 10 of this embodiment are ATP (adenosine triphosphate), ADP (adenosine diphosphate), AMP (adenosine monophosphate), and IMP (inosinic acid). , HxR (inosine), and Hx (hypoxanthine), it is possible to measure the concentration of ATP and nucleic acid-related substances produced by the decomposition thereof, so that fish, seafood, meat, and livestock meat containing ATP can be measured. , And a value related to the quality of a processed product using these can be measured.
  • ATP adenosine triphosphate
  • ADP adenosine diphosphate
  • AMP adenosine monophosphate
  • IMP inosinic acid
  • HxR inosine
  • Hx hypoxanthine
  • the filtration member 24 of a present Example selectively absorbs fat and oil components from the liquid extracted from the measuring object 8, the fat and oil components contained in the extract of the measuring object 8 are enzyme-immobilized. It is possible to prevent the nucleic acid-related substance and the enzyme from becoming obstacles in the unit 38, and more appropriate measurement is possible.
  • the quality measuring apparatus 10 of the present embodiment calculates an index related to the freshness of the measurement target 8 based on the concentration of ATP in the liquid extracted from the measurement target 8, the measurement target is fish meat or seafood.
  • an index relating to the freshness of the measurement object can be obtained appropriately by measuring the concentration of ATP.
  • the quality measuring apparatus 10 of the present embodiment calculates an index relating to the quality of the measurement object 8 based on the concentration of the IMP in the liquid extracted from the measurement object 8, the IMP corresponds to a so-called umami component. Therefore, an index relating to the quality of the measurement object can be obtained based on the concentration of IMP. Moreover, even if the measurement object is already processed at the time of processing such as processed food, an index relating to the quality can be obtained.
  • FIG. 12 is a view for explaining the configuration of the electrochemical sensor 114 in the embodiment of the quality measuring apparatus 10 of the present invention, and corresponds to FIG. 5 in the first embodiment.
  • the electrochemical sensor 114 of FIG. 12 as with the electrochemical sensor 14 in the above-described first embodiment, for example, three types of electrodes provided by vapor deposition or coating on the substrate 30 made of glass epoxy resin or the like. As a working electrode 32, a counter electrode 34, and a reference electrode 36.
  • the electrochemical sensor 114 of this embodiment is different from the electrochemical sensor of Embodiment 1 in that it has a plurality of types of working electrodes, that is, three working electrodes 32a, 32b, and 32c in the example of FIG.
  • the three working electrodes 32a, 32b, and 32c are provided with enzyme fixing portions 38a, 38b, and 38c, respectively, as in the first embodiment.
  • the enzyme immobilized on each of the plurality of enzyme immobilization units 38a, 38b, 38c is Different types of nucleic acid-related substances are used.
  • the working electrode 32a is for detecting ATP, and glycerol kinase (GK) and glycerol 3-phosphate oxidase (G3PO) are fixed to the fixing part 38a provided on the working electrode 32a.
  • the working electrode 32b is for detecting IMP, HxR and Hx, and the fixing part 38b provided on the working electrode 32b has an alkaline phosphatase (AP), 5'-nucleotidase (NT), nucleotide phosphoric acid. Rase (NP) and xanthine oxidase (XOD) are immobilized. Further, the working electrode 32c is for detecting HxR and Hx, and nucleotide phosphorylase (NP) and xanthine oxidase (XOD) are fixed to the fixing part 38c provided on the working electrode 32c.
  • AP alkaline phosphatase
  • NT 5'-nucleotidase
  • XOD xanthine oxidase
  • the working electrode 32c is for detecting HxR and Hx, and nucleotide phosphorylase (NP) and xanthine oxidase (XOD) are fixed to the fixing part 38c provided on
  • FIG. 13 is a diagram for explaining another embodiment of the electrochemical sensor 114 in the present embodiment, and corresponds to FIG.
  • the arrangement and shape of the electrodes 32, 34, and 36 are different from those in FIG.
  • the arrangement is limited to these arrangements as long as the distances between the working electrodes 32 and the counter electrode 34 can be equal. Not.
  • each of the electrodes 32, 34, and 36 is such that only a portion in contact with the extraction liquid in the sensor portion 46 is exposed, while the other portions are covered with the insulating portion 40. This is different in the example of FIG. If it does in this way, the part which is not used for a measurement among each electrode 32,34,36 can be protected, and the improvement of durability of the electrochemical sensor 114 can be aimed at.
  • the insulating portion 40 may similarly cover the electrodes 32, 34, and 36 except for the portions in contact with the extract.
  • the electrochemical sensor 114 according to Example 2 described above has a plurality of working electrodes 32a, 32b, and 32c, and the enzyme fixing portions 38a, 38b, and 38c corresponding to the plurality of working electrodes 32a, 32b, and 32c, respectively. Since different enzymes are immobilized, the concentration of each of multiple types of nucleic acid-related substances that react with multiple types of enzymes can be measured with a single measurement, enabling more efficient measurement. .
  • the measuring device 16 calculates the values related to freshness or the values related to quality expressed by the above formulas (1) to (3), but instead, You may make it calculate the value of the natural logarithm of what was shown by Formula (1) thru
  • the measuring device 16 calculates the values related to freshness or the values related to quality expressed by the above formulas (1) to (3), but instead, You may make it display the parameter
  • the measuring device 16 indicates a value related to freshness or a value related to quality.
  • both are taken into consideration. Evaluation may be performed and displayed. Specifically, for example, when the value related to the freshness is high and the value related to the quality is low, that is, when the content of ATP is high and the content of IMP is low, the freshness is evaluated to be good. If the value is low and the quality value is high, the quality is evaluated as being high or eaten, and if both the freshness value and the quality value are low, the quality is evaluated as poor. Can do.
  • the value related to freshness is defined by the equation (1), but is not limited thereto.
  • the value related to quality is defined by the equation (2), but is not limited thereto.
  • the total nucleic acid-related substance means, for example, when the measurement object 8 is fish meat, each nucleic acid-related substance ATP (adenosine triphosphate), ADP (adenosine diphosphate), AMP (adenosine monophosphate) contained therein. Phosphoric acid), IMP (inosinic acid), HxR (inosine), and Hx (hypoxanthine), but ADP and AMP, which are substances that rapidly decrease with degradation, can be considered to have a concentration of 0 .
  • Example 2 three working electrodes 32a, 32b, and 32c are provided on the substrate 30, and different enzymes are fixed to the three working electrodes 32a, 32b, and 32c, respectively.
  • the same nucleic acid-related substance can be measured three times at the same time by immobilizing the same enzyme on these three working electrodes 32a, 32b, and 32c.
  • the tolerance of a measured value can be made small by making the average of the measured value for 3 times measured in this way into a measured value.
  • the same enzyme is fixed to two of the three working electrodes 32a, 32b, and 32c, different enzymes can be fixed to the remaining one working electrode.
  • the number of working electrodes 32 provided on the substrate 30 is not limited to three, and the same effect can be obtained if the number of working electrodes 32 is plural.
  • the measurement device 16 indicates a value related to freshness or a value related to quality.
  • the total concentration of HxR and Hx, and ATP, ADP, AMP When the sum of the concentrations of IMP, HxR, and Hx is respectively obtained, the K value, which is the ratio of the sum of these concentrations, is used instead of or in addition to the value relating to freshness or the value relating to quality (3) It can be calculated and displayed as an expression.
  • K value (total concentration of HxR and Hx of the measurement object 8) / (total concentration of ATP, ADP, AMP, IMP, HxR, and Hx of the measurement object 8) ⁇ 100 ( 3)
  • K value an approximate K value represented by the following equation (4) may be calculated as the K value.
  • Ki value (total of HxR and Hx concentrations of measurement object 8) / (total of IMP, HxR and Hx concentrations of measurement object 8) ⁇ 100 (5)
  • This Ki value can be used as one of effective indexes that can replace the K value in a state in which ATP, ADP, and AMP in the measurement object 8 are almost completely decomposed. In this way, the K value conventionally used by the quality evaluation apparatus of the present invention or an approximate K value or Ki value equivalent thereto can be easily obtained.
  • the crushed particles 28 are spherical.
  • the present invention is not limited to this, and when a large number of crushed particles 28 are provided as the crushing portion 26, the shape of the crushed particles 28 and the crushed particles.
  • the shape may be any shape as long as the liquid can be extracted from the measurement object 8 by the 28 gaps between them.
  • the shape may be a chamfered polyhedron.
  • the crushed particles 28 are made of glass.
  • the present invention is not limited to this.
  • the extract is extracted by pressing the measurement object 8 such as resin, metal, ceramic, activated carbon, or the like. Anything is possible.
  • the substrate 30 of the electrochemical sensor 14 is made of glass epoxy resin, but is not limited to this.
  • acrylic resin PMMA
  • polystyrene PS
  • PET polyethylene terephthalate
  • PC Polycarbonate
  • Measurement object 10 Quality measuring device 12: Extraction container 14: Electrochemical sensor 16: Measuring device 22: Pusher 24: Filtration member 26: Crushing part 28: Crushing particle 32: Working electrode 34: Counter electrode 36: Reference electrode 38: Enzyme fixing part

Abstract

Provided is a quality evaluation device for effortless and rapid measurement of a value relating to the quality of a measured item, including fish, shellfish, edible meats, red meat, and processed products using these. The device is characterized by having: an extraction receptacle (12) for extracting a nucleic acid-related substance which is contained in measured item (8) including fish, shellfish, edible meats, red meat, and processed products using these, and which serves as an indicator of freshness and quality; an electrochemical sensor (14) having at least a working electrode (32) and a counter electrode (34) selected from among three different types of electrode, namely, a working electrode (32), a counter electrode (34), and a reference electrode (36), the surface of the working electrode (32) including an enzyme immobilizing portion on which is immobilized an enzyme that reacts with the nucleic acid-related substance, and which is adapted to be presented with the nucleic acid-related substance extracted by extraction receptacle (12) as well as to apply a voltage across the working electrode (32) and the counter electrode (34); and a measuring device (16) for measuring the concentration of the nucleic acid-related substance on the basis of the output of the electrochemical sensor (14), and calculating a value relating to the quality.

Description

品質評価装置Quality evaluation device
 本発明は、魚肉、魚介類、食肉、畜肉、及びこれらを用いた加工品の鮮度及び品質を管理するための指標を計測するための装置に関するものである。 The present invention relates to an apparatus for measuring indices for managing the freshness and quality of fish meat, seafood, meat, livestock meat, and processed products using these.
 魚肉、魚介類、食肉、畜肉、及びこれらを用いた加工品(以下、「魚肉類」という。)の鮮度及び品質を管理するための指標として、その核酸関連物質の含有量に基づいた数値を用いることが行なわれている。例えばK値はその一例である。例えば魚類筋肉においては、その死後においてアデノシン三リン酸(ATP)の分解に伴ってアデノシン二リン酸(ADP)、アデノシン一リン酸(AMP)、イノシン酸(IMP)、イノシン(HxR)、ヒポキサンチン(Hx)が順次生成されるが、これら全物質に対するイノシンおよびヒポキサンチンの重量比あるいは物質量(モル)比の百分率がK値である。このK値は、従来から鮮度を表す指標の一つとして広く用いられている。 As an index for managing the freshness and quality of fish meat, seafood, meat, livestock, and processed products using these (hereinafter referred to as “fish meat”), numerical values based on the content of nucleic acid-related substances are used. It is being used. For example, the K value is an example. For example, in fish muscle, adenosine diphosphate (ADP), adenosine monophosphate (AMP), inosinic acid (IMP), inosine (HxR), hypoxanthine accompanying the degradation of adenosine triphosphate (ATP) after death (Hx) is sequentially produced, and the percentage of the weight ratio or the amount (mole) ratio of inosine and hypoxanthine to all these substances is the K value. This K value has been widely used as one of the indexes representing freshness.
 ところで、従来においては、これらATP、ADP、AMP、IMP、HxR、Hxなどの核酸関連物質の濃度・質量などを測定するための方法として、例えばホモジナイザによるミキシング、遠心分離などを繰り返し経て得られた上澄みをクロマトグラフィを用いて検出するなど、煩雑な手順や大きな設備を要する方法で行なわれていた。また、特に魚類などはATPの分解が早いため、時間を掛けて測定を行なっても、得られた値が既に実際の魚介類のものと乖離してしまうという問題も生じ得る。このように、K値を測定するための従来の方法は、流通の現場で用いるのには困難を伴う場合があり、より簡便な方法でK値を測定するための手段が期待されていた。 By the way, conventionally, as a method for measuring the concentration and mass of nucleic acid-related substances such as ATP, ADP, AMP, IMP, HxR, Hx, etc., for example, it was obtained through repeated mixing, centrifugation, etc. with a homogenizer. It has been carried out by a complicated procedure and a method requiring a large equipment, such as detecting the supernatant using chromatography. In particular, since fish and the like decompose ATP quickly, there may be a problem that even if measurement is performed over time, the obtained value is already different from that of actual seafood. As described above, the conventional method for measuring the K value may be difficult to use in the field of distribution, and a means for measuring the K value by a simpler method has been expected.
 さらにK値は上述のようにATP、ADP、AMP、IMP、HxR、Hxの全物質に対するHxRおよびHxの比であるところ、魚介類の死後数時間においては、ATPの分解は多く行われる一方で、マアジやマダイ等の魚類においては、IMPの分解、すなわちHxRやHxの生成は時間の経過に対して多くは行われない。このような魚種によっては、その結果、魚介類の死後数時間においてATPが減少するものの、そのことはK値に反映されず、K値を用いて鮮度を評価することが困難であった。そのため、かかる状況においては、魚介類等の鮮度を評価するためのK値に変わる指標が求められていた。図14は、検出対象物としてのマアジ肉を冷蔵保管した場合の各核酸関連物質の比率、K値、ATPの割合のそれぞれについて時間の経過に伴って示した図である。例えば死後直後(0h)と6時間経過後(6h)とを比較すると、HxRやHxの生成はほとんど行われていないためK値に変化は見られないものの、ATPの濃度は大きく低下しており、鮮度が変化していることがわかる。 Furthermore, as described above, the K value is the ratio of HxR and Hx to all substances of ATP, ADP, AMP, IMP, HxR, and Hx. In the hours after the death of seafood, ATP is often decomposed. In fish such as horse mackerel and red sea bream, IMP decomposition, that is, generation of HxR and Hx is not often performed over time. As a result, depending on the type of fish, although ATP decreases several hours after the death of seafood, this is not reflected in the K value, and it was difficult to evaluate the freshness using the K value. Therefore, in such a situation, an index that changes to a K value for evaluating the freshness of seafood and the like has been demanded. FIG. 14 is a diagram showing the ratio of each nucleic acid-related substance, the K value, and the ratio of ATP with the passage of time when the maji meat as a detection target is stored in a refrigerator. For example, comparing immediately after death (0h) and after 6 hours (6h), HxR and Hx are hardly generated, so there is no change in the K value, but the ATP concentration is greatly reduced. It can be seen that the freshness is changing.
特開2012-047606号公報JP 2012-047606 A
 特許文献1は、かかる状況下で提案された魚類の核酸物質量を測定するための方法を提案するものである。この特許文献1の方法によれば、魚肉の体液を電気化学的に計測することにより、その魚肉に含まれる核酸関連物質量を測定することができる。しかしながら、かかる方法においては、魚肉から体液を取り出す必要があり、より効率よく体液を取り出す方法が依然として求められている。 Patent Document 1 proposes a method for measuring the amount of nucleic acid substances in fish proposed under such circumstances. According to the method of Patent Document 1, the amount of nucleic acid-related substance contained in the fish meat can be measured by electrochemically measuring the body fluid of the fish meat. However, in such a method, it is necessary to take out body fluid from fish meat, and a method for taking out body fluid more efficiently is still desired.
 本発明は以上の事情を背景として為されたもので、その目的とするところは、魚肉類からより効率よく体液を採取することにより該魚肉類の鮮度及び品質を計測することのできる品質計測装置を提供することにある。 The present invention has been made against the background of the above circumstances, and its object is to provide a quality measuring device capable of measuring the freshness and quality of fish by collecting body fluid more efficiently from fish. Is to provide.
 かかる目的を達成するための請求項1に係る発明は、(a)魚類、魚介類、食肉、畜肉及びこれらを用いた加工品を含んでなる測定対象物に含まれ、鮮度および品質の指標となる核酸関連物質を抽出する抽出容器と、(b)作用極、対極及び参照極の3種類の電極のうち少なくとも作用極および対極を有し、該作用極表面には前記核酸関連物質と反応する酵素を固定化させた酵素固定部を含み、前記抽出容器により抽出された前記核酸関連物質がもたらされるとともに前記作用極および対極間に電圧が印加される電気化学センサと、(c)前記電気化学センサの出力に基づいて前記核酸関連物質の濃度を計測し、前記品質に関する値を算出する計測装置と、を有することを特徴とする。 The invention according to claim 1 for achieving the object includes (a) fish, fish and shellfish, meat, livestock meat, and an object to be measured comprising these, and an indicator of freshness and quality; An extraction container for extracting a nucleic acid-related substance, and (b) having at least a working electrode and a counter electrode among the three types of electrodes, a working electrode, a counter electrode, and a reference electrode, and reacting with the nucleic acid-related substance on the surface of the working electrode An electrochemical sensor that includes an enzyme immobilization part on which an enzyme is immobilized, the nucleic acid-related substance extracted by the extraction container is provided, and a voltage is applied between the working electrode and the counter electrode; and (c) the electrochemical And a measuring device that measures the concentration of the nucleic acid-related substance based on the output of the sensor and calculates the value related to the quality.
 請求項1にかかる発明によれば、前記抽出容器により前記測定対象物から抽出液を容易に取り出すことが可能となる。かかる抽出液が、前記電気化学センサにもたらされることにより、作用極上に設けられた酵素固定部における酵素と前記抽出液中の核酸関連物質とが反応させられる。前記電気化学センサの少なくとも作用極および対極間に電圧が印加される。さらにその際の電気化学センサの出力に基づいて、前記計測装置により前記抽出液における核酸関連物質の濃度が計測されるとともに、該計測された値に基づいて測定対象物の品質に関する値が算出されるので、簡便な方法により手軽かつ迅速に測定対象物の品質に関する値を得ることができる。 According to the first aspect of the present invention, the extraction liquid can be easily taken out from the measurement object by the extraction container. By providing the extract to the electrochemical sensor, the enzyme in the enzyme fixing part provided on the working electrode is allowed to react with the nucleic acid-related substance in the extract. A voltage is applied between at least the working electrode and the counter electrode of the electrochemical sensor. Further, based on the output of the electrochemical sensor at that time, the concentration of the nucleic acid-related substance in the extract is measured by the measuring device, and a value related to the quality of the measurement object is calculated based on the measured value. Therefore, a value relating to the quality of the measurement object can be obtained easily and quickly by a simple method.
 また、第2の発明の特徴とするところは、前記電気化学センサは複数の作用極を有し、該複数の作用極のそれぞれに対応する酵素固定部にはそれぞれ酵素が固定化されていることにある。このようにすれば、一回の測定により複数の酵素と反応する複数の核酸関連物質のそれぞれについての濃度を計測することができるので、より効率のよい計測が可能となる。 In addition, a feature of the second invention is that the electrochemical sensor has a plurality of working electrodes, and an enzyme is immobilized on each of the enzyme fixing portions corresponding to the plurality of working electrodes. It is in. In this way, the concentration of each of a plurality of nucleic acid-related substances that react with a plurality of enzymes can be measured by a single measurement, so that more efficient measurement is possible.
 また、第3の発明の特徴とするところは、前記抽出容器は、前記測定対象物を破砕するための破砕部と、該測定対象物を該破砕部に押し付けるための押し子と、該破砕部によって破砕された測定対象物から抽出された液体を濾過する濾過部材と、を含み、該破砕部は、複数の粒状の破砕粒から構成されること、にある。このようにすれば、前記抽出容器において前記測定対象物は効率よく破砕することができるので、より迅速に前記測定対象物の抽出液を得ることができるとともに、前記濾過部により、前記抽出液から電気化学センサにおいて測定対象とされる核酸関連物質以外の物質を取り除くことが可能となる。 Further, the third invention is characterized in that the extraction container includes a crushing part for crushing the measurement object, a pusher for pressing the measurement object against the crushing part, and the crushing part. And a filtration member that filters the liquid extracted from the measurement object crushed by the above, and the crushing part is composed of a plurality of granular crushed particles. In this way, since the measurement object can be efficiently crushed in the extraction container, an extract of the measurement object can be obtained more quickly, and the filtration unit can remove the extraction object from the extract. It becomes possible to remove substances other than nucleic acid-related substances to be measured in the electrochemical sensor.
 また、第4の発明の特徴とするところは、前記核酸関連物質は、ATP(アデノシン三リン酸)、ADP(アデノシン二リン酸)、AMP(アデノシン一リン酸)、IMP(イノシン酸)、HxR(イノシン)、およびHx(ヒポキサンチン)であることにある。このようにすれば、特にATPとそれが分解することによって生ずる核酸関連物質の濃度を計測することができるので、ATPが含まれる魚肉、魚介類、食肉、畜肉、及びこれらを用いた加工品の品質に関する値を計測することができる。 According to a fourth aspect of the invention, the nucleic acid-related substance is ATP (adenosine triphosphate), ADP (adenosine diphosphate), AMP (adenosine monophosphate), IMP (inosinic acid), HxR. (Inosine) and Hx (hypoxanthine). In this way, it is possible to measure the concentration of ATP and the nucleic acid-related substances produced by the degradation of ATP. Therefore, fish, seafood, meat, livestock meat containing ATP, and processed products using these can be obtained. A quality-related value can be measured.
 また、第5の発明の特徴とするところは、前記濾過部材は、前記測定対象物から抽出された液体から、油脂成分を選択的に吸収するものであること、にある。このようにすれば、前記測定対象物の抽出液に含まれる油脂成分が前記酵素固定部において核酸関連物質と酵素とが反応する障害となることが防止され、より適切な計測が可能となる。 Further, a feature of the fifth invention is that the filtration member selectively absorbs oil and fat components from the liquid extracted from the measurement object. If it does in this way, it will prevent that the fats and oils component contained in the extract of the said measuring object becomes a disorder | damage | failure which a nucleic acid related substance and an enzyme react in the said enzyme fixing | fixed part, and a more appropriate measurement will be attained.
 また、第6の発明の特徴とするところは、前記測定対象物から抽出された液体中の核酸関連物質、特にATPの濃度に基づいて、該測定対象物の鮮度に関する指標を算出することにある。このようにすれば、測定対象物が魚肉、魚介類、食肉、畜肉などである場合のように、その死後においてATPが減少するところ、ATPの濃度を計測することにより適切に測定対象物の鮮度に関する指標を得ることができる。 Further, the sixth invention is characterized in that an index relating to the freshness of the measurement object is calculated based on the concentration of the nucleic acid-related substance, particularly ATP, in the liquid extracted from the measurement object. . In this way, when the measurement target is fish meat, seafood, meat, livestock meat, etc., the ATP decreases after the death, and the freshness of the measurement target is appropriately measured by measuring the concentration of ATP. Can be obtained.
 また、第7の発明の特徴とするところは、前記測定対象物から抽出された液体中の核酸関連物質、特にIMPの濃度に基づいて、該測定対象物の品質に関する指標を算出することにある。このようにすれば、IMPはいわゆるうま味成分に対応することから、IMPの濃度に基づいて測定対象物の品質に関する指標を得ることができる。また、測定対象物が加工食品のように加工時点ですでにATPが失われている場合であってもその品質に関する指標を得ることができる。 Further, the seventh invention is characterized in that an index relating to the quality of the measurement object is calculated based on the concentration of the nucleic acid-related substance, particularly IMP, in the liquid extracted from the measurement object. . In this way, since IMP corresponds to a so-called umami component, an index relating to the quality of the measurement object can be obtained based on the concentration of IMP. Moreover, even if the measurement object is already processed at the time of processing such as processed food, an index relating to the quality can be obtained.
 また、第8の発明の特徴とするところは、前記測定対象物から抽出された液体中の前記核酸関連物質の濃度に基づいて、該測定対象物のK値あるいはKi値を算出することにある。このようにすれば、測定対象物について、従来から鮮度を表す指標の一つとして用いられているK値あるいはKi値を簡便に得ることができる。 Further, the eighth invention is characterized in that the K value or Ki value of the measurement object is calculated based on the concentration of the nucleic acid-related substance in the liquid extracted from the measurement object. . In this way, it is possible to easily obtain the K value or Ki value that has been conventionally used as one of the indexes representing freshness for the measurement object.
本発明の一実施例における品質計測装置の概要を示す図である。It is a figure which shows the outline | summary of the quality measurement apparatus in one Example of this invention. 図1の品質計測装置における抽出容器の概要を説明する図である。It is a figure explaining the outline | summary of the extraction container in the quality measuring device of FIG. 図2の抽出容器における破砕粒の一例を説明する図である。It is a figure explaining an example of the crushed grain in the extraction container of FIG. 本実施例の抽出容器と比較例とで、測定対象物に対する抽出液の割合を比較する図である。It is a figure which compares the ratio of the extract with respect to a measuring object with the extraction container of a present Example, and a comparative example. 図1の品質計測装置における電気化学センサの構成の一例を説明する図である。It is a figure explaining an example of a structure of the electrochemical sensor in the quality measuring device of FIG. 電気化学センサの作用極における核酸関連物質と酵素との反応の一例を説明する図であって、(a)はATPの、(b)はIMPの、(c)はHxRおよびHxのそれぞれの反応を説明する図である。It is a figure explaining an example of reaction of the nucleic acid related substance and enzyme in the working electrode of an electrochemical sensor, (a) is ATP, (b) is IMP, (c) is each reaction of HxR and Hx FIG. 電気化学センサによりATPを検出する場合において、計測装置で検出される電流値の時間変化を示す図である。It is a figure which shows the time change of the electric current value detected by a measuring device, when detecting ATP with an electrochemical sensor. 計測装置で検出される電流の値と実際の測定対象物のATPの濃度との相関を示す図である。It is a figure which shows the correlation with the value of the electric current detected with a measuring device, and the density | concentration of ATP of an actual measurement object. 計測装置で検出される電流の値と実際の測定対象物のIMPの濃度との相関を示す図である。It is a figure which shows the correlation with the value of the electric current detected with a measuring device, and the density | concentration of IMP of an actual measurement object. 計測装置で検出される電流の値と実際の測定対象物のHxRの濃度との相関を示す図である。It is a figure which shows the correlation with the value of the electric current detected with a measuring device, and the density | concentration of HxR of an actual measurement object. 計測装置で検出される電流の値と実際の測定対象物としてのATP溶液におけるATPの濃度との相関を示す図である。It is a figure which shows the correlation with the value of the electric current detected with a measuring device, and the density | concentration of ATP in the ATP solution as an actual measuring object. 本発明の別の実施例における電気化学センサの構成を説明する図である。It is a figure explaining the structure of the electrochemical sensor in another Example of this invention. 本発明のさらに別の実施例における電気化学センサの構成を説明する図であって、図12に対応する図である。It is a figure explaining the structure of the electrochemical sensor in another Example of this invention, Comprising: It is a figure corresponding to FIG. 検出対象物としてのマアジ肉を冷蔵保管した場合の各核酸関連物質の比率、K値、ATPの割合のそれぞれについて時間の経過に伴って示した図である。It is the figure shown with progress of time about each of the ratio of each nucleic acid related substance, K value, and the ratio of ATP at the time of storing chilled meat as a detection target object refrigerated.
 以下、本発明の一実施例について、図面を参照しつつ詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
 図1は、本発明の一実施例における品質計測装置の概要を説明する図である。図1において品質計測装置10は、測定対象物から抽出液を抽出するための抽出容器12、その抽出容器12から抽出された抽出液に含まれる核酸関連物質と酵素との反応の程度を電気信号として取り出すための電気化学センサ14、および、その電気化学センサ14からの出力信号に基づいて核酸関連物質の濃度を計測するとともに、品質に関する値を算出する計測装置16を含んで構成されている。 FIG. 1 is a diagram for explaining an outline of a quality measuring apparatus according to an embodiment of the present invention. In FIG. 1, a quality measuring apparatus 10 is an electrical signal indicating the degree of reaction between a nucleic acid-related substance and an enzyme contained in an extraction container 12 for extracting an extraction liquid from a measurement object, and the extraction liquid extracted from the extraction container 12. And a measurement device 16 that measures the concentration of the nucleic acid-related substance based on the output signal from the electrochemical sensor 14 and calculates a value related to quality.
 図2に抽出容器12の一例を示す。抽出容器12は、一端が開口し、他端が閉じた例えば円筒状の筒状部20と押し子22とを含んで構成されている。筒状部20の先端側には、その内径が筒状部20の内径よりも細い排出部20aが連続して設けられており、筒状部20の内部に置かれた測定対象物8から抽出された抽出液が排出されるようになっている。また、押し子22はその先端部に押し板22aを有しており、これらは一体的に動くようにされている。押し子22は筒状部20の開口端からその内部に押し板22aが先端となるように差し込まれ、押し板22aが筒状部20の内部に置かれた測定対象物8を筒状部20の先端20a側に押圧するようになっている。ここで、押し板22aは、筒状部20の内部を移動可能なように、その大きさが筒状部20の内径よりも小さくなるように設けられているが、筒状部20の内壁と押し板22aとの間とが気密にされてもよいし、されていなくてもよい。 FIG. 2 shows an example of the extraction container 12. The extraction container 12 is configured to include, for example, a cylindrical tubular portion 20 and a pusher 22 that are open at one end and closed at the other end. A discharge portion 20 a whose inner diameter is smaller than the inner diameter of the cylindrical portion 20 is continuously provided on the distal end side of the cylindrical portion 20, and is extracted from the measurement object 8 placed inside the cylindrical portion 20. The extracted liquid is discharged. The pusher 22 has a push plate 22a at its tip, and these are moved integrally. The pusher 22 is inserted into the inside of the cylindrical portion 20 from the opening end so that the push plate 22a becomes the tip, and the measuring object 8 having the push plate 22a placed inside the cylindrical portion 20 is inserted into the cylindrical portion 20. The tip is pressed toward the tip 20a side. Here, the push plate 22a is provided so that the size thereof is smaller than the inner diameter of the cylindrical portion 20 so that the inside of the cylindrical portion 20 can be moved. The space between the push plate 22a and the push plate 22a may or may not be airtight.
 円筒部20の排出部20a側の端部には、先端部から順に、濾過部材24、破砕部26が設けられている。このうち、濾過部材24は、筒状部20の断面形状と同じ形状とされ、測定対象物8が後述する破砕部26により破砕されて抽出される抽出液が円筒部20から排出部20aに至る過程において、濾過、吸着、あるいは吸収を行なう。濾過部材24は、抽出液のうち、測定対象となる核酸関連物質以外の物質、特に後述する電気化学センサにおいて測定の障害となるような物質を濾過、吸着、あるいは吸収することができるように、その材料が選択される。本実施例においては、特に抽出液中の油脂分を取り除くことを目的として、不織布が用いられる。また、濾過部材24の厚さは、その濾過部材24が濾過あるいは吸着することのできる物質の量と交換頻度などに応じて適宜設定される。さらに濾過部材24においては、後述する破砕部26において測定対象物8が破砕された際に抽出液に含まれる固形物が濾過される。 The filtration member 24 and the crushing part 26 are provided in the end part by the side of the discharge part 20a of the cylindrical part 20 from the front-end | tip part. Among these, the filtration member 24 is made into the same shape as the cross-sectional shape of the cylindrical part 20, and the extract liquid which the measurement object 8 is crushed and extracted by the crushing part 26 mentioned later reaches from the cylindrical part 20 to the discharge part 20a. In the process, filtration, adsorption or absorption is performed. The filtration member 24 is capable of filtering, adsorbing, or absorbing substances other than nucleic acid-related substances to be measured, particularly substances that interfere with measurement in an electrochemical sensor described later, in the extract. The material is selected. In this embodiment, a nonwoven fabric is used for the purpose of removing oils and fats from the extract. The thickness of the filter member 24 is appropriately set according to the amount of substances that can be filtered or adsorbed by the filter member 24 and the exchange frequency. Furthermore, in the filtration member 24, when the measuring object 8 is crushed in the crushing part 26 mentioned later, the solid substance contained in an extract is filtered.
 破砕部26は測定対象物8を破砕し、抽出液を抽出する。破砕部26は複数の破砕粒28から構成されている。複数の破砕粒28は予め接着されるなどして所定の形状とされた後に円筒部20内に挿入されてもよいし、個々の粒のまま円筒部20内に挿入されてもよい。破砕部26の大きさ、言い換えれば破砕部26を構成する破砕粒28の量は、円筒部20の大きさ、抽出しようとする測定対象物8の大きさなどに応じて設定される。具体的には例えば、押し子22を円筒部20に押し込み、押し板22aが測定対象物8を押圧した際に、測定対象物8が破砕され、押し板22aが破砕部26に近接するあるいは接することができる程度に破砕部26が設けられる。また、破砕部26の形状は特に限定されるものではないが、好適には測定対象物8が偏りなく破砕されるように、押し板22aと破砕部26とで測定対象物8を挟み込むように両者の形状が設計され得る。 The crushing unit 26 crushes the measurement object 8 and extracts the extract. The crushing part 26 is composed of a plurality of crushed grains 28. The plurality of crushed grains 28 may be inserted into the cylindrical portion 20 after being preliminarily bonded to form a predetermined shape, or may be inserted into the cylindrical portion 20 as individual grains. The size of the crushing portion 26, in other words, the amount of the crushing particles 28 constituting the crushing portion 26 is set according to the size of the cylindrical portion 20, the size of the measurement object 8 to be extracted, and the like. Specifically, for example, when the pusher 22 is pushed into the cylindrical portion 20 and the push plate 22a presses the measurement target 8, the measurement target 8 is crushed, and the push plate 22a approaches or contacts the crushing portion 26. The crushing part 26 is provided to such an extent that it can be performed. In addition, the shape of the crushing part 26 is not particularly limited, but preferably the measurement object 8 is sandwiched between the push plate 22a and the crushing part 26 so that the measurement object 8 is crushed without unevenness. Both shapes can be designed.
 図3は破砕粒28の形状の一例を示す図である。本実施例においては、破砕粒28は球状、いわゆるビーズ状の形状を有している。このような形状を有する破砕粒28に測定対象物8が押し板22aにより押圧されることにより、測定対象物8が破断、圧搾され、抽出液が抽出される。なお、破砕部26において複数の破砕粒28のそれぞれの向きは揃えられる必要はない。破砕粒28の大きさ、具体的には外径、内径、および長さなどは破砕しようとする測定対象物8に応じて決定される。具体的には例えば、測定対象物8の粘度や硬さに応じて、マグロやアジ、タイなどの肉片を測定対象物8とする場合には直径0.5乃至2mmなどのように、測定対象物8の種類に応じて抽出量が多くなるように実験的に定められればよい。また破砕粒28の素材についても、測定対象物の粘度や硬さに応じて、あるいは上記押し子22を押圧する力の大きさに応じて決定されればよい。具体的には、本実施例においては破砕粒28はガラスによって構成されている。なお、図3に示す破砕粒28は面取りが行なわれているが、これは必ずしも必須のものではない。 FIG. 3 is a diagram showing an example of the shape of the crushed grains 28. In the present embodiment, the crushed grains 28 have a spherical shape, a so-called bead shape. When the measuring object 8 is pressed against the crushed grains 28 having such a shape by the push plate 22a, the measuring object 8 is broken and pressed, and the extract is extracted. In the crushing portion 26, the directions of the plurality of crushed grains 28 do not need to be aligned. The size, specifically the outer diameter, the inner diameter, the length, and the like of the crushed particles 28 are determined according to the measurement object 8 to be crushed. Specifically, for example, when the measurement object 8 is a piece of meat such as tuna, horse mackerel, or tie according to the viscosity or hardness of the measurement object 8, the measurement object has a diameter of 0.5 to 2 mm. What is necessary is just to determine experimentally so that the amount of extraction may increase according to the kind of the thing 8. FIG. The material of the crushed particles 28 may be determined according to the viscosity or hardness of the measurement object or according to the magnitude of the force that presses the pusher 22. Specifically, in this embodiment, the crushed grains 28 are made of glass. In addition, although the crushing particle | grains 28 shown in FIG. 3 are chamfered, this is not necessarily essential.
 図4は、本実施例の抽出容器12による測定対象物8からの抽出液の抽出量を他の方法と比較した図である。図4において、粒径Φ0.5mm、粒径Φ1mm、および、粒径Φ2mmが本実施例に対応するものであり、それぞれ破砕粒28の外径の大きさを0.5mm、1mm、および2mmとした場合に対応している。また、手押し、および、ネジ式は、いずれも、本実施例の破砕部26に代えて、円板状の板を設けたものであり、この円板状の板と押し子22に設けられた押し板22aとで測定対象物8を挟み込んで押しつぶすことにより、抽出液の抽出を行なうものである。測定対象物8が押しつぶされることで抽出された抽出液は濾過部材24を経て排出口20aから排出される。この手押し、および、ネジ式の両者は、押し子22の押し方において異なり、手押しとは手で押すものであり、ねじ式とは押し子を図示しない螺子を用いた推進機構により押し込むものである。また、上記粒径Φ0.5mm、粒径Φ1mm、および、粒径Φ2mmのそれぞれについても、上記手押しと同様に押し子を手で押している。なお、手で押すとは測定対象物8から抽出液が得られる程度まで力が加わった状態である。 FIG. 4 is a diagram comparing the extraction amount of the extraction liquid from the measurement object 8 by the extraction container 12 of this example with other methods. In FIG. 4, the particle diameter Φ0.5 mm, the particle diameter Φ1 mm, and the particle diameter Φ2 mm correspond to the present embodiment, and the outer diameters of the crushed particles 28 are 0.5 mm, 1 mm, and 2 mm, respectively. It corresponds to the case. Further, both the manual push and the screw type are provided with a disk-shaped plate instead of the crushing portion 26 of the present embodiment, and are provided on the disk-shaped plate and the pusher 22. The extraction liquid is extracted by sandwiching and crushing the measuring object 8 with the pressing plate 22a. The extraction liquid extracted by crushing the measurement object 8 is discharged from the discharge port 20a through the filter member 24. Both the manual push and the screw type are different in the manner in which the pusher 22 is pushed. The hand push is a push by hand, and the screw type pushes the pusher by a propulsion mechanism using a screw (not shown). . Further, for each of the particle diameters Φ0.5 mm, particle diameter Φ1 mm, and particle diameter Φ2 mm, the pusher is pushed by hand in the same manner as the above-described hand pushing. In addition, pushing with a hand is the state in which force was applied to such an extent that the extract was obtained from the measuring object 8.
 抽出容器12に魚肉を測定対象物8として入れ、上述の5つの条件により抽出液の抽出液を複数回行なった。抽出時間を1分とした場合に得られた抽出液(体液)の量(質量)および抽出容器12に入れた測定対象物8である魚肉の量(質量)の値、およびそれらの比は図4に示すとおりである。この図4に示されるように、粒径Φ0.5mm、粒径Φ1mm、および、粒径Φ2mmの場合、すなわち、本実施例の破砕部26を適用した場合は、同じ力が加えられた手押しの場合のみならず、より大きい力が加えられたネジ式の場合に比較しても測定対象物8の質量に対する得られた抽出液の量の比が大きくなっており、短時間でかつ効率のよい抽出液の抽出が行なわれていることがわかる。また、粒径Φ0.5mm、粒径Φ1mm、および、粒径Φ2mmの場合のそれぞれを比較すると、測定対象物8の質量に対する得られた抽出液の量の比が異なっている。上述のように、測定対象物8に応じて破砕粒の大きさ、素材等を選択し得るものであり、図4の例においては破砕粒28の径Φを1mmと選択することにより最も効率がよいこととなる。 The fish meat was put in the extraction container 12 as the measurement object 8, and the extraction liquid was extracted several times under the above five conditions. The value (mass) of the extract (body fluid) obtained when the extraction time is 1 minute, the value (mass) of the fish meat as the measurement object 8 placed in the extraction container 12, and the ratio thereof are shown in the figure. As shown in FIG. As shown in FIG. 4, in the case of the particle diameter Φ0.5 mm, the particle diameter Φ1 mm, and the particle diameter Φ2 mm, that is, when the crushing portion 26 of the present embodiment is applied, the same force is applied. In addition to the case, the ratio of the amount of the obtained extract to the mass of the measurement object 8 is large even in comparison with the screw type in which a larger force is applied, and it is short and efficient. It can be seen that the extraction liquid is being extracted. Further, when the respective cases of the particle diameter Φ0.5 mm, the particle diameter Φ1 mm, and the particle diameter Φ2 mm are compared, the ratio of the amount of the obtained extract to the mass of the measurement object 8 is different. As described above, the size, material, and the like of the crushed particles can be selected according to the measurement object 8. In the example of FIG. 4, the most efficient is achieved by selecting the diameter Φ of the crushed particles 28 as 1 mm. It will be good.
 なお、抽出容器における破砕部26および濾過部材24は、一回の抽出が行なわれる毎に取り替えることが可能である。 It should be noted that the crushing portion 26 and the filtering member 24 in the extraction container can be replaced every time extraction is performed.
 図5は電気化学センサ14の構成の一例を説明する図である。図5に示すように、本実施例の電気化学センサ14は例えばガラスエポキシ樹脂などにより構成された基板30上に、蒸着あるいは塗布などによって設けられた3つの電極として作用極32、対極34、および参照極36を有している。図5においては、横長の基板30のうち、左側の端子部42においては作用極32、対極34、および参照極36は基板30上に露出しており、後述する計測装置16に接続するための端子として機能するようになっている。また、右側のセンサ部46においては、作用極32、対極34、および参照極36は基板30上に露出しており、上述の抽出容器12によって抽出された測定対象物8の抽出液を滴下するなどしてそれら作用極32、対極34、および参照極36を覆うように付着することができるようになっている。一方、端子部42およびセンサ部46の間である中間部44は、基板および作用極32、対極34、および参照極36の3つの電極は絶縁部40で覆われている。この絶縁部40は例えば絶縁フィルムあるいは絶縁レジストで構成され、これによりこれらの3つの電極がセンサ部46以外の箇所において抽出液などにより電気的に接続されることがないようになっている。 FIG. 5 is a diagram for explaining an example of the configuration of the electrochemical sensor 14. As shown in FIG. 5, the electrochemical sensor 14 of this embodiment includes a working electrode 32, a counter electrode 34, and three electrodes provided on a substrate 30 made of, for example, glass epoxy resin by vapor deposition or coating. A reference electrode 36 is provided. In FIG. 5, the working electrode 32, the counter electrode 34, and the reference electrode 36 are exposed on the substrate 30 in the terminal portion 42 on the left side of the horizontally long substrate 30, and are connected to the measuring device 16 described later. It functions as a terminal. In the right sensor unit 46, the working electrode 32, the counter electrode 34, and the reference electrode 36 are exposed on the substrate 30, and the extraction liquid of the measurement object 8 extracted by the extraction container 12 is dropped. For example, the working electrode 32, the counter electrode 34, and the reference electrode 36 can be attached so as to cover them. On the other hand, in the intermediate portion 44 between the terminal portion 42 and the sensor portion 46, the three electrodes of the substrate and the working electrode 32, the counter electrode 34, and the reference electrode 36 are covered with the insulating portion 40. The insulating part 40 is made of, for example, an insulating film or an insulating resist, so that these three electrodes are not electrically connected by an extract or the like at a place other than the sensor part 46.
 また、センサ部46側においては、作用極32および対極34は、好適には白金、金、グラッシーカーボン、カーボンペーストが、また、参照極36は、銀/塩化銀などが用いられる。 Further, on the sensor unit 46 side, the working electrode 32 and the counter electrode 34 are preferably made of platinum, gold, glassy carbon, or carbon paste, and the reference electrode 36 is made of silver / silver chloride or the like.
 作用極32の表面には、その作用極を含む電気化学センサ14によって検出しようとする核酸関連物質と反応する酵素をアセチルセルロース、コラーゲン、ポリビニルクロリド、ポリビニルアルコール、ポリビニルグルタミン酸、ポリビニルブチラール、ポリビニルアクリルアミド、ニトロセルロース、カルボキシメチルセルロース、光硬化樹脂などの固定化素材を用いて固定化した酵素固定部38が設けられている。具体的には、検出しようとする核酸関連物質がATPである場合、酵素固定部38に固定される酵素は例えばグリセロールキナーゼ(GK)およびグリセロール3リン酸オキシダーゼ(G3PO)である。また、検出しようとする核酸関連物質がIMPである場合、酵素固定部38に固定される酵素は5’-ヌクレオチダーゼ(NT)またはアルカリフォスファターゼ(AP)、ヌクレオチドフォスフォリラーゼ(NP)、キサンチンオキシダーゼ(XOD)等であり、検出しようとする核酸関連物質がHxR、Hxである場合、酵素固定部38に固定される酵素はヌクレオチドフォスフォリラーゼ(NP)、キサンチンオキシダーゼ(XOD)等である。また、測定対象物に含まれる干渉物質、具体的には例えばアスコルビン酸(ビタミンC)、アセトアミノフェン、尿酸などは、後述する電気化学センサにおいて、作用極32と対極34との間に電位差を生ずるように電圧を印可した場合にその電圧以下において分解しうる。これら干渉物質の影響を低減するためにアセチルセルロース、ナフィオン(登録商標)などのイオン交換膜、ポリビニルアルコール等を作用極32の酵素固定部38よりも基板側に設けてもよい。このようにすれば、これらの干渉物質が作用極32の表面に到達し分解されることを防止あるいは低減できる。 On the surface of the working electrode 32, acetyl cellulose, collagen, polyvinyl chloride, polyvinyl alcohol, polyvinyl glutamic acid, polyvinyl butyral, polyvinyl acrylamide, an enzyme that reacts with a nucleic acid-related substance to be detected by the electrochemical sensor 14 including the working electrode. An enzyme immobilization section 38 is provided that is immobilized using an immobilization material such as nitrocellulose, carboxymethylcellulose, or a photocurable resin. Specifically, when the nucleic acid-related substance to be detected is ATP, enzymes immobilized on the enzyme immobilization unit 38 are, for example, glycerol kinase (GK) and glycerol 3-phosphate oxidase (G3PO). In addition, when the nucleic acid-related substance to be detected is IMP, the enzyme immobilized on the enzyme immobilization unit 38 is 5′-nucleotidase (NT) or alkaline phosphatase (AP), nucleotide phosphorylase (NP), xanthine oxidase. (XOD) or the like, and when the nucleic acid-related substance to be detected is HxR or Hx, the enzyme immobilized on the enzyme immobilization unit 38 is nucleotide phosphorylase (NP), xanthine oxidase (XOD), or the like. Further, interfering substances contained in the measurement object, specifically, for example, ascorbic acid (vitamin C), acetaminophen, uric acid, etc., cause a potential difference between the working electrode 32 and the counter electrode 34 in the electrochemical sensor described later. When a voltage is applied to occur, it can decompose below that voltage. In order to reduce the influence of these interfering substances, an ion exchange membrane such as acetyl cellulose or Nafion (registered trademark), polyvinyl alcohol, or the like may be provided on the substrate side of the enzyme fixing part 38 of the working electrode 32. In this way, it is possible to prevent or reduce these interference substances from reaching the surface of the working electrode 32 and being decomposed.
 図6は、電気化学センサ14の作用極32における核酸関連物質と酵素との反応の一例を説明する図である。図6を用いてその原理を説明する。なお、図6においては、電気化学センサ14においてATPを検出する場合を例としている。作用極32の酵素固定部38に付着した抽出液に含まれるATPは、酵素固定部38に固定された酵素であるGKによりADPに分解されるとともに、グリセロール3リン酸を生ずる。このグリセロール3リン酸は同じく酵素固定部38に固定された酵素であるG3POにより分解され、過酸化水素を生ずる。なお、参照極36は作用極32および対極34の電位の測定の際に基準となる電圧を参照するために設けられるものであり、作用極32と対極34との相対的な電位差が得られる場合には必ずしも必須ではない。 FIG. 6 is a diagram for explaining an example of the reaction between the nucleic acid-related substance and the enzyme at the working electrode 32 of the electrochemical sensor 14. The principle will be described with reference to FIG. FIG. 6 shows an example in which the electrochemical sensor 14 detects ATP. ATP contained in the extract adhering to the enzyme fixing part 38 of the working electrode 32 is decomposed into ADP by GK, which is an enzyme fixed to the enzyme fixing part 38, and glycerol triphosphate is generated. This glycerol triphosphate is also decomposed by G3PO, which is an enzyme fixed to the enzyme fixing part 38, to generate hydrogen peroxide. The reference electrode 36 is provided to refer to a reference voltage when measuring the potential of the working electrode 32 and the counter electrode 34, and a relative potential difference between the working electrode 32 and the counter electrode 34 can be obtained. Is not necessarily required.
 図1に戻って、計測装置16は、電気化学センサ14の出力に基づいて電気化学センサ14が検出しようとした核酸関連物質の濃度を計測する。また、計測された核酸関連物質の濃度に基づいて測定対象物8の品質に関する値を算出する。本実施例においては、計測装置16はたとえばディスプレイ装置を含む表示部50を有しており、計測された核酸関連物質の濃度や、算出された品質に関する値などが表示部50に表示される。 Returning to FIG. 1, the measuring device 16 measures the concentration of the nucleic acid-related substance that the electrochemical sensor 14 attempts to detect based on the output of the electrochemical sensor 14. Further, a value related to the quality of the measurement object 8 is calculated based on the measured concentration of the nucleic acid-related substance. In the present embodiment, the measurement device 16 has a display unit 50 including, for example, a display device, and the measured concentration of the nucleic acid-related substance, the value related to the calculated quality, and the like are displayed on the display unit 50.
 計測装置16と電気化学センサ14の各電極32、34、36とはそれぞれケーブル18で接続されており、電気化学センサ14の各電極間に電圧を印可したり、あるいは各電極間を流れる電流を計測したりすることができるようになっている。本実施例において、前述の図5および図6で説明したように電気化学センサ14がATPを検出対象とする場合において、作用極32の電圧が対極34の電圧よりも例えば0.7Vだけ高くなるように電位差を生ずるように電圧を印可すると、過酸化水素が酸化され、図6に示すように作用極32に対し電子が渡される。すなわち作用極32から対極34に電流が流れる。この0.7Vは過酸化水素の分解電圧に相当するものであり、過酸化水素が分解し得る電圧であればこれより大きいものであっても小さいものであってもよい。計測装置16はこの電流の大きさを検出する。このように、計測装置16は電気化学センサ14の各電極32、34、36のそれぞれについて設定された値の電圧を印加する機能を有しており、また、電気化学センサ14の作用極32と対極34との間を流れる電流を測定する機能を有している。 The measuring device 16 and each electrode 32, 34, 36 of the electrochemical sensor 14 are connected by a cable 18, and a voltage is applied between the electrodes of the electrochemical sensor 14, or a current flowing between the electrodes is applied. It can be measured. In the present embodiment, when the electrochemical sensor 14 detects ATP as described above with reference to FIGS. 5 and 6, the voltage of the working electrode 32 is higher than the voltage of the counter electrode 34 by, for example, 0.7 V. Thus, when a voltage is applied to generate a potential difference, hydrogen peroxide is oxidized and electrons are transferred to the working electrode 32 as shown in FIG. That is, a current flows from the working electrode 32 to the counter electrode 34. This 0.7 V corresponds to the decomposition voltage of hydrogen peroxide, and may be larger or smaller as long as hydrogen peroxide can be decomposed. The measuring device 16 detects the magnitude of this current. Thus, the measuring device 16 has a function of applying a voltage having a value set for each of the electrodes 32, 34, and 36 of the electrochemical sensor 14, and the working electrode 32 of the electrochemical sensor 14 It has a function of measuring the current flowing between the counter electrode 34.
 図7は、図5の電気化学センサ14においてATPを検出対象とした場合に計測装置16で検出される電流値の時間変化を表したものである。具体的には、ATP濃度が予め2.5、1.0、0.75、0.5、0.25、0.1mM(mmol/L、体積モル濃度)となるように調製された溶液と、ATPを含まない液体(Blank)のそれぞれを測定対象物8とした場合に、本実施例の計測装置16において検出される電流の時間変化を示している。図7に示すように各濃度のそれぞれについて、検出開始から一定時間経過すると、測定対象物8におけるATP濃度の変化が落ち着き、検出される電流の勾配が安定している。 FIG. 7 shows the time change of the current value detected by the measuring device 16 when ATP is the detection target in the electrochemical sensor 14 of FIG. Specifically, a solution prepared so that the ATP concentration is 2.5, 1.0, 0.75, 0.5, 0.25, 0.1 mM (mmol / L, volume molar concentration) in advance. In addition, when each of the liquids (Blank) not containing ATP is the measurement object 8, the time change of the current detected by the measuring device 16 of the present embodiment is shown. As shown in FIG. 7, when a certain period of time elapses from the start of detection for each concentration, the change in the ATP concentration in the measurement object 8 is settled, and the gradient of the detected current is stable.
 一方、図8は、図7においてATPの測定対象とされた測定対象物8のそれぞれについて、ATP濃度と図7で示したように測定された電流値との相関関係を示した図である。ここで図7で説明したように、検出開始から一定時間経過し、検出される電流の勾配が安定することから、電流値としては、電流の勾配が安定した後において、具体的には図7の例において検出開始から10秒後から60秒後までの間において、複数回測定した電流値の平均が用いられる。このようにして得られた相関関係をたとえば最小二乗法などにより近似することで、計測装置16により計測された作用極32と対極34との間を流れる電流値に基づいてATP濃度を算出することが可能となる。すなわち、計測装置16は図8に例示する作用極32および対極34間を流れる電流の値と測定対象物8の核酸関連物質の濃度との関係を各核酸関連物質ごとに有しておき、測定された電流の値に対する核酸関連物質の値を出力する機能を有している。なお、上記関係は図8に示すような図であってもよいが、これに限られず、式やデータテーブルの形態であってもよい。 On the other hand, FIG. 8 is a diagram showing the correlation between the ATP concentration and the current value measured as shown in FIG. 7 for each of the measurement objects 8 that are ATP measurement objects in FIG. Here, as described with reference to FIG. 7, since a certain time elapses from the start of detection and the gradient of the detected current is stabilized, the current value is specifically shown in FIG. 7 after the gradient of the current is stabilized. In the example, an average of current values measured a plurality of times is used from 10 seconds to 60 seconds after the start of detection. The ATP concentration is calculated based on the value of the current flowing between the working electrode 32 and the counter electrode 34 measured by the measuring device 16 by approximating the correlation obtained in this way by, for example, the least square method. Is possible. That is, the measuring device 16 has a relationship between the value of the current flowing between the working electrode 32 and the counter electrode 34 illustrated in FIG. 8 and the concentration of the nucleic acid-related substance of the measurement target 8 for each nucleic acid-related substance. A function of outputting the value of the nucleic acid-related substance with respect to the value of the generated current. The above relationship may be a diagram as shown in FIG. 8, but is not limited to this, and may be in the form of a formula or a data table.
 図9乃至図10は、図8と同様の方法で得られたIMP濃度と電流値との相関関係、HxR濃度と電流値との相関関係をそれぞれ示した図である。 FIGS. 9 to 10 are diagrams showing the correlation between the IMP concentration and the current value and the correlation between the HxR concentration and the current value, respectively, obtained by the same method as in FIG.
 すなわち、計測装置16は図8に例示する作用極32および対極34間を流れる電流の値と測定対象物8の核酸関連物質の濃度との関係を各核酸関連物質ごとに有しておき、測定された電流の値に対する核酸関連物質の値を出力する機能を有している。なお、上記関係は図8に示すような図であってもよいが、これに限られず、式やデータテーブルの形態であってもよい。 That is, the measuring device 16 has a relationship between the value of the current flowing between the working electrode 32 and the counter electrode 34 illustrated in FIG. 8 and the concentration of the nucleic acid-related substance of the measurement target 8 for each nucleic acid-related substance. A function of outputting the value of the nucleic acid-related substance with respect to the value of the generated current. The above relationship may be a diagram as shown in FIG. 8, but is not limited to this, and may be in the form of a formula or a data table.
 さらに計測装置16は、上述のようにして得られた核酸関連物質の濃度に基づいて品質に関する値を算出する。具体的には、上述のように電気化学センサ14がATPを検出対象とする場合には、計測装置16は、測定対象物8について得られたATP濃度の、その測定対象物8の最大の、すなわち死後直後のATP濃度に対する比を百分率で表したものを鮮度に関する値として算出する。すなわち、
(鮮度に関する値)=(測定対象物8のATP濃度)/(測定対象物8の死直後のATP濃度)×100 ・・・(1)
である。ここで、測定対象物8の最大のATP濃度とは、測定対象物8ごと、すなわち魚の種類ごと、あるいは同じ魚であってもその部位や産地ごとに設定される値である。一般的に、魚肉、魚介類、食肉、畜肉など、本発明の品質計測装置の測定対象物8においては、ATPの濃度は死直後に最大値となるのでその最大値となる値を予め実験的にあるいは統計的に得ておけばよい。この値は予め計測装置16内の図示しない記憶装置(メモリなど)に記憶されていてもよいし、計測装置16を用いた計測が行われるごとに操作者によって入力されてもよい。 
Furthermore, the measuring device 16 calculates a value relating to the quality based on the concentration of the nucleic acid-related substance obtained as described above. Specifically, when the electrochemical sensor 14 detects ATP as described above, the measurement device 16 has the maximum ATP concentration obtained for the measurement object 8, and the maximum of the measurement object 8. That is, the ratio of the ratio to the ATP concentration immediately after death expressed as a percentage is calculated as a value relating to freshness. That is,
(Value relating to freshness) = (ATP concentration of measurement object 8) / (ATP concentration immediately after death of measurement object 8) × 100 (1)
It is. Here, the maximum ATP concentration of the measurement object 8 is a value set for each measurement object 8, that is, for each type of fish, or even for the same fish, for each part or production area. In general, in the measurement object 8 of the quality measuring device of the present invention such as fish meat, seafood, meat, livestock meat, etc., the concentration of ATP becomes the maximum value immediately after death. Or just get it statistically. This value may be stored in advance in a storage device (memory or the like) (not shown) in the measurement device 16 or may be input by the operator every time measurement using the measurement device 16 is performed.
 測定対象物8におけるATP濃度は、前述のように死直後に最大となる一方、その後は時間の経過とともに減少するので上記(1)式のように得られる鮮度に関する値は鮮度を表す指標として有効である。また、魚種、産地などを問わず鮮度を評価することが可能となる。 While the ATP concentration in the measurement object 8 becomes maximum immediately after death as described above, and thereafter decreases with the passage of time, the value relating to freshness obtained as in the above equation (1) is effective as an index representing freshness. It is. In addition, it is possible to evaluate the freshness regardless of fish species, production area, and the like.
 一方、電気化学センサ14がIMPを検出対象とする場合には、計測装置16は、測定対象物8について得られたIMP濃度のその測定対象物8の最大のATP濃度に対する比を百分率で表したものを品質に関する値として算出する。すなわち、
(品質に関する値)=(測定対象物8のIMP濃度)/(測定対象物8の最大のATP濃度)×100 ・・・(2)
である。ここで、測定対象物8の最大のATP濃度とは、前述の鮮度に関する値について説明したのと同様であり、予め実験的にあるいは統計的に得られる値である。
On the other hand, when the electrochemical sensor 14 uses IMP as a detection target, the measuring device 16 expresses the ratio of the IMP concentration obtained for the measurement object 8 to the maximum ATP concentration of the measurement object 8 as a percentage. Things are calculated as quality values. That is,
(Value related to quality) = (IMP concentration of measurement object 8) / (maximum ATP concentration of measurement object 8) × 100 (2)
It is. Here, the maximum ATP concentration of the measurement object 8 is the same as that described for the above-described value relating to freshness, and is a value obtained experimentally or statistically in advance.
 測定対象物8が魚類である場合には、その測定対象物8である魚肉において、ATPの減少に伴ってIMPが増加することとなる。すなわち、ATPが分解した分だけIMPが増加することとなる。したがって式(2)で得られる品質に関する値が大きいほどATPの分解が進んでいるといえる。また、IMPはいわゆるうまみ成分に対応するものであるので、式(2)で得られる品質に関する値が高いとうまみが多くなっていると判断しうる。 When the measurement object 8 is a fish, the IMP increases with the decrease in ATP in the fish meat that is the measurement object 8. That is, IMP increases by the amount of ATP decomposition. Therefore, it can be said that the higher the quality-related value obtained by Equation (2) is, the more ATP is decomposed. Further, since IMP corresponds to a so-called umami component, it can be determined that the umami is increased when the value related to the quality obtained by equation (2) is high.
 なお、電気化学センサ14がIMPの濃度を直接検出することができない場合には、たとえば、IMP、HxR、およびHxの濃度の合計と、HxRおよびHxの濃度の合計をそれぞれ検出可能な電気化学センサ14を用いて検出を行い、IMP、HxR、およびHxの濃度の合計から、HxRおよびHxの濃度の合計を減ずることによってIMPの濃度を得ることも可能である。 When the electrochemical sensor 14 cannot directly detect the concentration of IMP, for example, an electrochemical sensor capable of detecting the total concentration of IMP, HxR, and Hx and the total concentration of HxR and Hx, respectively. It is also possible to obtain the IMP concentration by subtracting the sum of the HxR and Hx concentrations from the sum of the IMP, HxR and Hx concentrations.
 また、電気化学センサ14がIMPを検出対象とする場合には、計測装置16は、測定対象物8について得られたIMP濃度のその測定対象物8のIMP濃度の基準値に対する比を百分率で表したものを品質に関する値として算出することもできる。すなわち、
(品質に関する値)=(測定対象物8のIMP濃度)/(測定対象物8のIMP濃度の基準値)×100 ・・・(3)
である。ここで、測定対象物8のIMP濃度の基準値とは、測定対象物8の種類ごとに予め設定される値であり、たとえばIMP濃度の最大値が用いられる。
When the electrochemical sensor 14 uses IMP as a detection target, the measuring device 16 displays the ratio of the IMP concentration obtained for the measurement target 8 to the reference value of the IMP concentration of the measurement target 8 as a percentage. It can also be calculated as a quality value. That is,
(Value relating to quality) = (IMP concentration of measurement object 8) / (Reference value of IMP concentration of measurement object 8) × 100 (3)
It is. Here, the reference value of the IMP concentration of the measurement object 8 is a value set in advance for each type of the measurement object 8, and for example, the maximum value of the IMP concentration is used.
 このように上記式(3)により得られる品質に関する値は、ATP濃度を用いることなく定義されているので、測定対象物8が魚肉の加工品のような場合、すなわち、加工前もしくは加工段階でATPがすでに分解されている場合であっても式(3)により得られる品質に関する値を用いて品質の評価を行うことができる。 Thus, since the value regarding the quality obtained by the above formula (3) is defined without using the ATP concentration, when the measurement object 8 is a processed fish product, that is, before or at the processing stage. Even when ATP has already been decomposed, the quality can be evaluated using the value relating to the quality obtained by the equation (3).
 本実施例の品質計測装置10の効果を検証するために行った実験の結果を以下に示す。ATPのほぼ全量が分解するのに十分な時間が死後において経過した魚(アジ)の魚肉を、本実施例の抽出容器12に入れ、抽出液を抽出した。抽出された抽出液に、ATP標準溶液を混ぜ、実際の魚の体液に近いATP濃度の液体(以下、ATP溶液という。)を作製し、測定対象とした。複数のATP濃度のATP溶液のそれぞれについて、計測装置16の電気化学センサ14において所定の電圧を加えた際の電流値を測定した。このとき、電気化学センサ14の酵素固定部38には上述のATPを分解するための酵素が固定化素材により固定されている。図11はこの結果を示す図である。図11に示すように、この結果はATP濃度と測定された電流の値とが一定の線形となる関係を有していることを示している。従って計測装置16においては、この関係に基づいて、ある測定対象物8について電気化学センサ14により電流が測定された場合に、その電流の値からATP濃度を算出可能なことがわかる。 The result of the experiment conducted for verifying the effect of the quality measuring apparatus 10 of the present embodiment is shown below. Fish (Aji) fish meat that had passed a sufficient amount of time to decompose almost the entire amount of ATP was put into the extraction container 12 of this example, and the extract was extracted. The extracted extract was mixed with an ATP standard solution to produce a liquid having an ATP concentration close to the actual body fluid of fish (hereinafter referred to as an ATP solution) and used as a measurement object. For each of the ATP solutions having a plurality of ATP concentrations, the current value when a predetermined voltage was applied in the electrochemical sensor 14 of the measuring device 16 was measured. At this time, the enzyme for decomposing ATP described above is fixed to the enzyme fixing portion 38 of the electrochemical sensor 14 by the fixing material. FIG. 11 shows the results. As shown in FIG. 11, this result shows that the ATP concentration and the measured current value have a certain linear relationship. Therefore, it can be seen that, based on this relationship, the measuring device 16 can calculate the ATP concentration from the value of the current when the electrochemical sensor 14 measures the current to be measured 8.
 また、IMP、HxR及びHxについても、ATPの場合と同様に、濃度と測定された電流の値とが一定の線形となる関係を有していることを確認している。従って、計測装置16はこの関係に基づいて、ある測定対象物8について電気化学センサ14により電流が測定された場合、その電流の値から濃度を算出可能である。 Also for IMP, HxR, and Hx, as in ATP, it has been confirmed that the concentration and the measured current value have a certain linear relationship. Therefore, when the current is measured by the electrochemical sensor 14 for a certain measurement object 8 based on this relationship, the measuring device 16 can calculate the concentration from the value of the current.
 本実施例の品質計測装置10によれば、(a)魚類、魚介類、食肉、畜肉及びこれらを用いた加工品を含んでなる測定対象物8に含まれ、鮮度および品質の指標となる核酸関連物質を抽出する抽出容器12と、(b)作用極32、対極34及び参照極36の3種類の電極のうち少なくとも作用極32および対極34を有し、作用極32の表面には核酸関連物質と反応する酵素を固定化させた酵素固定部38を含み、抽出容器12により抽出された核酸関連物質がもたらされるとともに作用極32および対極34間に電圧が印加される電気化学センサ14と、(c)電気化学センサ14の出力に基づいて核酸関連物質の濃度を計測し、前記品質に関する値を算出する計測装置16と、を有する。これにより、抽出容器12により測定対象物8から抽出液を容易に取り出すことが可能となるとともに、電気化学センサ14および計測装置16によりその抽出液中の核酸関連物質の濃度が計測されるとともに、計測された値に基づいて測定対象物8の品質に関する値が算出されるので、簡便な方法により手軽かつ迅速に測定対象物の品質に関する値を得ることができる。 According to the quality measuring apparatus 10 of the present embodiment, (a) a nucleic acid that is included in the measurement object 8 including fish, seafood, meat, livestock meat, and processed products using these, and serves as an index of freshness and quality. An extraction container 12 for extracting a related substance; and (b) a working electrode 32, a counter electrode 34, and a reference electrode 36, and at least the working electrode 32 and the counter electrode 34. An electrochemical sensor 14 that includes an enzyme immobilization unit 38 that immobilizes an enzyme that reacts with a substance, and that provides a nucleic acid-related substance extracted by the extraction container 12 and a voltage is applied between the working electrode 32 and the counter electrode 34; (C) a measurement device 16 that measures the concentration of the nucleic acid-related substance based on the output of the electrochemical sensor 14 and calculates a value related to the quality. Thereby, the extraction liquid can be easily taken out from the measurement object 8 by the extraction container 12, and the concentration of the nucleic acid-related substance in the extraction liquid is measured by the electrochemical sensor 14 and the measuring device 16. Since the value related to the quality of the measurement object 8 is calculated based on the measured value, the value related to the quality of the measurement object can be obtained easily and quickly by a simple method.
 また、本実施例の抽出容器12は、測定対象物8を破砕するための破砕部26と、測定対象物8を破砕部26に押し付けるための押し子22および押し板22aと、破砕部26によって破砕された測定対象物8から抽出された液体を濾過する濾過部材24と、を含み、破砕部26は、複数の粒状の破砕粒28から構成される。これにより、抽出容器12において測定対象物8を効率よく破砕することができるので、より迅速に測定対象物8の抽出液を得ることができるとともに、濾過部材24により、抽出液から電気化学センサ14において測定対象とされる核酸関連物質以外の物質を取り除くことが可能となる。 Further, the extraction container 12 of the present embodiment includes a crushing portion 26 for crushing the measurement object 8, a pusher 22 and a push plate 22 a for pressing the measurement object 8 against the crushing portion 26, and a crushing portion 26. And a filtering member 24 for filtering the liquid extracted from the crushed measurement object 8, and the crushing portion 26 is composed of a plurality of granular crushed particles 28. Thereby, since the measuring object 8 can be efficiently crushed in the extraction container 12, the extract of the measuring object 8 can be obtained more quickly, and the electrochemical sensor 14 can be obtained from the extract by the filtering member 24. It is possible to remove substances other than nucleic acid-related substances to be measured in step (b).
 また、本実施例の品質計測装置10が計測の対象とする核酸関連物質は、ATP(アデノシン三リン酸)、ADP(アデノシン二リン酸)、AMP(アデノシン一リン酸)、IMP(イノシン酸)、HxR(イノシン)、およびHx(ヒポキサンチン)であるので、ATPとそれが分解することによって生ずる核酸関連物質の濃度を計測することができるので、ATPが含まれる魚肉、魚介類、食肉、畜肉、及びこれらを用いた加工品の品質に関する値を計測することができる。 In addition, the nucleic acid-related substances to be measured by the quality measuring apparatus 10 of this embodiment are ATP (adenosine triphosphate), ADP (adenosine diphosphate), AMP (adenosine monophosphate), and IMP (inosinic acid). , HxR (inosine), and Hx (hypoxanthine), it is possible to measure the concentration of ATP and nucleic acid-related substances produced by the decomposition thereof, so that fish, seafood, meat, and livestock meat containing ATP can be measured. , And a value related to the quality of a processed product using these can be measured.
 また、本実施例の濾過部材24は、測定対象物8から抽出された液体から、油脂成分を選択的に吸収するものであるので、測定対象物8の抽出液に含まれる油脂成分が酵素固定部38において核酸関連物質と酵素とが反応する障害となることが防止され、より適切な計測が可能となる。 Moreover, since the filtration member 24 of a present Example selectively absorbs fat and oil components from the liquid extracted from the measuring object 8, the fat and oil components contained in the extract of the measuring object 8 are enzyme-immobilized. It is possible to prevent the nucleic acid-related substance and the enzyme from becoming obstacles in the unit 38, and more appropriate measurement is possible.
 また、本実施例の品質計測装置10は、測定対象物8から抽出された液体中のATPの濃度に基づいて、測定対象物8の鮮度に関する指標を算出するので、測定対象物が魚肉、魚介類、食肉、畜肉などである場合のように、その死後においてATPが減少するところ、ATPの濃度を計測することにより適切に測定対象物の鮮度に関する指標を得ることができる。 Moreover, since the quality measuring apparatus 10 of the present embodiment calculates an index related to the freshness of the measurement target 8 based on the concentration of ATP in the liquid extracted from the measurement target 8, the measurement target is fish meat or seafood. When ATP decreases after death, as in the case of meat, meat, livestock, etc., an index relating to the freshness of the measurement object can be obtained appropriately by measuring the concentration of ATP.
 また、本実施例の品質計測装置10は、測定対象物8から抽出された液体中のIMPの濃度に基づいて、測定対象物8の品質に関する指標を算出するので、IMPはいわゆるうま味成分に対応することから、IMPの濃度に基づいて測定対象物の品質に関する指標を得ることができる。また、測定対象物が加工食品のように加工時点ですでにATPが失われている場合であってもその品質に関する指標を得ることができる。 Moreover, since the quality measuring apparatus 10 of the present embodiment calculates an index relating to the quality of the measurement object 8 based on the concentration of the IMP in the liquid extracted from the measurement object 8, the IMP corresponds to a so-called umami component. Therefore, an index relating to the quality of the measurement object can be obtained based on the concentration of IMP. Moreover, even if the measurement object is already processed at the time of processing such as processed food, an index relating to the quality can be obtained.
 続いて、本発明の別の実施例について説明する。以下の説明において、実施例相互に共通する部分については、同一の符号を付して説明を省略する。 Subsequently, another embodiment of the present invention will be described. In the following description, portions common to the embodiments are denoted by the same reference numerals and description thereof is omitted.
 図12は、本発明の品質計測装置10の実施態様における電気化学センサ114の構成を説明する図であり、前述の実施例1における図5に対応する図である。図12の電気化学センサ114においても、前述の実施例1における電気化学センサ14と同様に、例えばガラスエポキシ樹脂などにより構成された基板30上に、蒸着あるいは塗布などによって設けられた3種類の電極として作用極32、対極34、および参照極36を有している。しかしながら、本実施例の電気化学センサ114は、複数種類の作用極、すなわち図12の例においては3つの作用極32a、32b、32cを有する点において、実施例1の電気化学センサと異なる。 FIG. 12 is a view for explaining the configuration of the electrochemical sensor 114 in the embodiment of the quality measuring apparatus 10 of the present invention, and corresponds to FIG. 5 in the first embodiment. Also in the electrochemical sensor 114 of FIG. 12, as with the electrochemical sensor 14 in the above-described first embodiment, for example, three types of electrodes provided by vapor deposition or coating on the substrate 30 made of glass epoxy resin or the like. As a working electrode 32, a counter electrode 34, and a reference electrode 36. However, the electrochemical sensor 114 of this embodiment is different from the electrochemical sensor of Embodiment 1 in that it has a plurality of types of working electrodes, that is, three working electrodes 32a, 32b, and 32c in the example of FIG.
 上記3つの作用極32a、32b、32cにはそれぞれ酵素固定部38a、38b、38cが前述の実施例1と同様に設けられている。ここで、好適には、電気化学センサ114が一回の測定で複数種類の核酸関連物質を検出対象とするために、複数の酵素固定部38a、38b、38cのそれぞれに固定される酵素はその複数種類の核酸関連物質のそれぞれに対応した異なったものとされている。具体的にはたとえば、作用極32aはATPを検出するためのものとして、作用極32a上に設けられる固定部38aにはグリセロールキナーゼ(GK)およびグリセロール3リン酸オキシダーゼ(G3PO)が固定される。また作用極32bはIMP,HxRおよびHxを検出するためのものとして、作用極32b上に設けられる固定部38bにはアルカリフォスファターゼ(AP)、または、5’-ヌクレオチダーゼ(NT)、ヌクレオチドフォスフォリラーゼ(NP)、及びキサンチンオキシターゼ(XOD)が固定される。また作用極32cはHxRおよびHxを検出するためのものとして、作用極32c上に設けられる固定部38cにはヌクレオチドフォスフォリラーゼ(NP)、及びキサンチンオキシダーゼ(XOD)が固定される。 The three working electrodes 32a, 32b, and 32c are provided with enzyme fixing portions 38a, 38b, and 38c, respectively, as in the first embodiment. Here, preferably, in order for the electrochemical sensor 114 to detect a plurality of types of nucleic acid-related substances in one measurement, the enzyme immobilized on each of the plurality of enzyme immobilization units 38a, 38b, 38c is Different types of nucleic acid-related substances are used. Specifically, for example, the working electrode 32a is for detecting ATP, and glycerol kinase (GK) and glycerol 3-phosphate oxidase (G3PO) are fixed to the fixing part 38a provided on the working electrode 32a. The working electrode 32b is for detecting IMP, HxR and Hx, and the fixing part 38b provided on the working electrode 32b has an alkaline phosphatase (AP), 5'-nucleotidase (NT), nucleotide phosphoric acid. Rase (NP) and xanthine oxidase (XOD) are immobilized. Further, the working electrode 32c is for detecting HxR and Hx, and nucleotide phosphorylase (NP) and xanthine oxidase (XOD) are fixed to the fixing part 38c provided on the working electrode 32c.
 また、図13は、本実施例における電気化学センサ114の別の形態を説明する図であって、図12に対応する図である。図13に示す電気化学センサ114においては、各電極32、34、36の配置および形状が図12と異なっている。図12及び13に示すように、複数の作用極32が設けられる場合において、作用極32のそれぞれと対極34との間の距離が等しくなるように配置されることができれば、これらの配置に限定されない。 FIG. 13 is a diagram for explaining another embodiment of the electrochemical sensor 114 in the present embodiment, and corresponds to FIG. In the electrochemical sensor 114 shown in FIG. 13, the arrangement and shape of the electrodes 32, 34, and 36 are different from those in FIG. As shown in FIGS. 12 and 13, in the case where a plurality of working electrodes 32 are provided, the arrangement is limited to these arrangements as long as the distances between the working electrodes 32 and the counter electrode 34 can be equal. Not.
 また、図13においては、各電極32、34、36のそれぞれは、センサ部46において抽出液と接触する部分のみが露出される一方、それ以外の部分は絶縁部40によって被覆されている点において図12の例において異なっている。このようにすれば各電極32、34、36のうち測定に用いられない部分を保護することができ、電気化学センサ114の耐久性の向上を図ることができる。なお、図5や図12に示した電気化学センサ14、114においても、同様に絶縁部40が各電極32、34、36の抽出液と接触する部分以外を被覆するような形態としてもよい。 Further, in FIG. 13, each of the electrodes 32, 34, and 36 is such that only a portion in contact with the extraction liquid in the sensor portion 46 is exposed, while the other portions are covered with the insulating portion 40. This is different in the example of FIG. If it does in this way, the part which is not used for a measurement among each electrode 32,34,36 can be protected, and the improvement of durability of the electrochemical sensor 114 can be aimed at. In the electrochemical sensors 14 and 114 shown in FIG. 5 and FIG. 12, the insulating portion 40 may similarly cover the electrodes 32, 34, and 36 except for the portions in contact with the extract.
 上述の実施例2に係る電気化学センサ114は、複数の作用極32a、32b、32cを有し、複数の作用極32a、32b、32cのそれぞれに対応する酵素固定部38a、38b、38cには異なる酵素が固定化されているので、一回の測定により複数種類の酵素と反応する複数種類の核酸関連物質のそれぞれについての濃度を計測することができるので、より効率のよい計測が可能となる。 The electrochemical sensor 114 according to Example 2 described above has a plurality of working electrodes 32a, 32b, and 32c, and the enzyme fixing portions 38a, 38b, and 38c corresponding to the plurality of working electrodes 32a, 32b, and 32c, respectively. Since different enzymes are immobilized, the concentration of each of multiple types of nucleic acid-related substances that react with multiple types of enzymes can be measured with a single measurement, enabling more efficient measurement. .
 以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。 As mentioned above, although the Example of this invention was described in detail based on drawing, this invention is applied also in another aspect.
 例えば、前述の実施例においては、計測装置16は鮮度に関する値、あるいは品質に関する値として前述の式(1)乃至式(3)で示されたものを算出するとされたが、これに代えて、式(1)乃至式(3)で示されたものの自然対数の値を鮮度に関する値、あるいは品質に関する値として算出するようにしてもよい。このようにすれば、値が急峻に変化する場合であっても分かりやすい指標となりうる。また、測定対象物8の種類に応じて、具体的には魚種毎に、算出方法を異ならせてもよい。 For example, in the above-described embodiment, the measuring device 16 calculates the values related to freshness or the values related to quality expressed by the above formulas (1) to (3), but instead, You may make it calculate the value of the natural logarithm of what was shown by Formula (1) thru | or Formula (3) as a value regarding freshness, or a value regarding quality. In this way, even if the value changes sharply, it can be an easily understood index. Further, according to the type of the measurement object 8, specifically, the calculation method may be different for each fish type.
 また、前述の実施例においては、計測装置16は鮮度に関する値、あるいは品質に関する値として前述の式(1)乃至式(3)で示されたものを算出するとされたが、これに代えて、予め定められた所定の数値範囲ごとに設定された指標を表示するようにしてもよい。具体的には例えば、式(1)で算出される鮮度に関する値が、0以上20以下である場合にはクラス1、20を超え40以下である場合にはクラス2、40を超え60以下である場合にはクラス3、60を超え80以下である場合にはクラス4、80を超え100以下である場合にはクラス5のように表示することができる。このクラス分けは、測定対象物8の種類に応じて、具体的には魚種毎に、定義が異なっていてもよい。 In the above-described embodiment, the measuring device 16 calculates the values related to freshness or the values related to quality expressed by the above formulas (1) to (3), but instead, You may make it display the parameter | index set for every predetermined numerical range defined beforehand. Specifically, for example, when the value relating to the freshness calculated by the expression (1) is 0 or more and 20 or less, it is class 1 or more and 20 or more and 40 or less. In some cases, it can be displayed as class 5 if it exceeds class 3, 60 and 80 or less, and class 4 if it exceeds 80 and 100 or less. This classification may be defined differently depending on the type of measurement object 8, specifically for each fish type.
 また、前述の実施例においては、計測装置16は鮮度に関する値、あるいは品質に関する値をそれぞれ示すものとされたが、同一の計測対象物8について両者が計測される場合には、両者を勘案した評価を行ない、表示するようにしてもよい。具体的には例えば、前記鮮度に関する値が高く、前記品質に関する値が低い場合、すなわちATPの含有量が高くIMPの含有量が低い場合には鮮度がよいとの評価を行ない、鮮度に関する値が低く、品質に関する値が高い場合には品質が高い、あるいは食べごろであるとの評価を行ない、鮮度に関する値および品質に関する値がいずれも低い場合には品質が悪いとの評価を行なうようにすることができる。 In the above-described embodiment, the measuring device 16 indicates a value related to freshness or a value related to quality. However, when both are measured for the same measurement object 8, both are taken into consideration. Evaluation may be performed and displayed. Specifically, for example, when the value related to the freshness is high and the value related to the quality is low, that is, when the content of ATP is high and the content of IMP is low, the freshness is evaluated to be good. If the value is low and the quality value is high, the quality is evaluated as being high or eaten, and if both the freshness value and the quality value are low, the quality is evaluated as poor. Can do.
 また、前述の実施例においては鮮度に関する値は(1)式により定義されるものであったがこれに限られない。例えば、測定対象物8について得られたATP濃度の、その測定対象物8の全核酸関連物質の合計の濃度に対する比を百分率で表したものを鮮度に関する値として算出することもできる。すなわち、
(鮮度に関する値)=(測定対象物8のATP濃度)/(測定対象物8のATP、IMP、HxR、Hxの濃度の合計)×100 ・・・(1’)
とすることもできる。同様に、前述の実施例においては品質に関する値は(2)式により定義されるものであったがこれに限られない。例えば、測定対象物8について得られたIMP濃度の、その測定対象物8の全核酸関連物質の合計の濃度に対する比を百分率で表したものを鮮度に関する値として算出することもできる。すなわち、
(品質に関する値)=(測定対象物8のIMP濃度)/(測定対象物8のATP、IMP、HxR、Hxの濃度の合計)×100 ・・・(2’)
とすることもできる。なお全核酸関連物質とは、例えば測定対象物8が魚肉類である場合において、それに含まれる各核酸関連物質であるATP(アデノシン三リン酸)、ADP(アデノシン二リン酸)、AMP(アデノシン一リン酸)、IMP(イノシン酸)、HxR(イノシン)、およびHx(ヒポキサンチン)を指すが、分解に伴って急速に減少する物質であるADPやAMPは、その濃度を0とみなすこともできる。
In the above-described embodiment, the value related to freshness is defined by the equation (1), but is not limited thereto. For example, the ratio of the ATP concentration obtained for the measurement object 8 to the total concentration of all nucleic acid-related substances of the measurement object 8 expressed as a percentage can be calculated as a value related to freshness. That is,
(Value relating to freshness) = (ATP concentration of measurement object 8) / (total of ATP, IMP, HxR, Hx concentration of measurement object 8) × 100 (1 ′)
It can also be. Similarly, in the above-described embodiment, the value related to quality is defined by the equation (2), but is not limited thereto. For example, the ratio of the IMP concentration obtained for the measurement object 8 to the total concentration of all nucleic acid-related substances of the measurement object 8 expressed as a percentage can be calculated as the value related to freshness. That is,
(Value relating to quality) = (IMP concentration of measurement object 8) / (Total of concentrations of ATP, IMP, HxR, Hx of measurement object 8) × 100 (2 ′)
It can also be. The total nucleic acid-related substance means, for example, when the measurement object 8 is fish meat, each nucleic acid-related substance ATP (adenosine triphosphate), ADP (adenosine diphosphate), AMP (adenosine monophosphate) contained therein. Phosphoric acid), IMP (inosinic acid), HxR (inosine), and Hx (hypoxanthine), but ADP and AMP, which are substances that rapidly decrease with degradation, can be considered to have a concentration of 0 .
 また、前述の実施例2においては、基板30上には3つの作用極32a、32b、および32cが設けられ、これら3つの作用極32a、32b、32cにはそれぞれ異なった酵素が固定されていたが、このような態様に限定されない。具体的には例えば、これら3つの作用極32a、32b、32cに全て同じ酵素が固定されることにより、同じ核酸関連物質を同時に3回測定することができる。そして、このように測定された3回分の測定値の平均を測定値とすることで測定値の公差を小さくすることができる。さらには3つの作用極32a、32b、32cのうち2つに同じ酵素が固定される一方、残りの1つの作用極には異なる酵素を固定することもできる。このようにすれば、上述した3つの作用極32a、32b、32cのそれぞれに異なる酵素を固定する場合と、3つの作用極32a、32b、32cのそれぞれに同じ酵素を固定する場合との両方の効果を同時に得ることができる。また、基板30上に設けられる作用極32の数は3つに限定されず、作用極32の数が複数であれば同様の効果を得ることができる。 In Example 2 described above, three working electrodes 32a, 32b, and 32c are provided on the substrate 30, and different enzymes are fixed to the three working electrodes 32a, 32b, and 32c, respectively. However, it is not limited to such an embodiment. Specifically, for example, the same nucleic acid-related substance can be measured three times at the same time by immobilizing the same enzyme on these three working electrodes 32a, 32b, and 32c. And the tolerance of a measured value can be made small by making the average of the measured value for 3 times measured in this way into a measured value. Furthermore, while the same enzyme is fixed to two of the three working electrodes 32a, 32b, and 32c, different enzymes can be fixed to the remaining one working electrode. In this way, both the case where different enzymes are fixed to each of the three working electrodes 32a, 32b and 32c and the case where the same enzyme is fixed to each of the three working electrodes 32a, 32b and 32c. The effect can be obtained at the same time. Further, the number of working electrodes 32 provided on the substrate 30 is not limited to three, and the same effect can be obtained if the number of working electrodes 32 is plural.
 また、前述の実施例においては、計測装置16は鮮度に関する値、あるいは品質に関する値を示すものとされたが、計測装置16において、HxRおよびHxの濃度の合計、および、ATP、ADP、AMP、IMP、HxR、およびHxの濃度の合計がそれぞれ得られる場合には、鮮度に関する値、あるいは品質に関する値に代えて、もしくは加えて、これらの濃度の合計の比であるK値を下記(3)式のように算出し表示するようにすることができる。
(K値)=(測定対象物8のHxRおよびHxの濃度の合計)/(測定対象物8のATP、ADP、AMP,IMP、HxR,及び、Hxの濃度の合計)×100 ・・・(3)
これにより、従来から広く用いられているK値により計測対象物8を評価することが可能となる。また、上記K値に代えて、下記(4)式で表されるような近似的なK値がK値として算出されてもよい。
(近似擬似的なK値)=(測定対象物8のHxRおよびHxの濃度の合計)/(測定対象物8のATP、IMP、HxR、Hxの濃度の合計)×100 ・・・(4)
これは、測定対象物8においてADP、AMPの濃度は時間の経過において大きな割合を占めないものであるため、(4)式のように算出した値であってもK値に準じて測定対象物を評価することが可能であるためである。さらに、上記K値あるいは近似的なK値に代えて、次式(5)で表されるKi値が算出されてもよい。
(Ki値)=(測定対象物8のHxRおよびHxの濃度の合計)/(測定対象物8のIMP、HxR、Hxの濃度の合計)×100 ・・・(5)
このKi値は、測定対象物8中のATP、ADP、AMPがほぼ分解し終えた状態においては、K値に代わる有効な指標の一つとして用いられ得る。
 このようにすれば、本発明の品質評価装置によって従来から用いられているK値あるいはそれに準じる近似的なK値、もしくはKi値を簡便に得ることができる。
In the above-described embodiment, the measurement device 16 indicates a value related to freshness or a value related to quality. However, in the measurement device 16, the total concentration of HxR and Hx, and ATP, ADP, AMP, When the sum of the concentrations of IMP, HxR, and Hx is respectively obtained, the K value, which is the ratio of the sum of these concentrations, is used instead of or in addition to the value relating to freshness or the value relating to quality (3) It can be calculated and displayed as an expression.
(K value) = (total concentration of HxR and Hx of the measurement object 8) / (total concentration of ATP, ADP, AMP, IMP, HxR, and Hx of the measurement object 8) × 100 ( 3)
Thereby, it becomes possible to evaluate the measuring object 8 with the K value widely used conventionally. Instead of the K value, an approximate K value represented by the following equation (4) may be calculated as the K value.
(Approximate pseudo K value) = (sum of concentrations of HxR and Hx of the measuring object 8) / (sum of concentrations of ATP, IMP, HxR and Hx of the measuring object 8) × 100 (4)
This is because the ADP and AMP concentrations in the measurement object 8 do not occupy a large proportion over time, so even if it is a value calculated as in equation (4), the measurement object is in accordance with the K value. It is because it is possible to evaluate. Furthermore, instead of the K value or the approximate K value, a Ki value represented by the following equation (5) may be calculated.
(Ki value) = (total of HxR and Hx concentrations of measurement object 8) / (total of IMP, HxR and Hx concentrations of measurement object 8) × 100 (5)
This Ki value can be used as one of effective indexes that can replace the K value in a state in which ATP, ADP, and AMP in the measurement object 8 are almost completely decomposed.
In this way, the K value conventionally used by the quality evaluation apparatus of the present invention or an approximate K value or Ki value equivalent thereto can be easily obtained.
 また、前述の実施例においては破砕粒28は球状のものとされたが、これに限定されず、多数の破砕粒28が破砕部26としてもうけられた場合に、破砕粒28の形状と破砕粒28の相互の間隙により測定対象物8から液体を抽出しうる形状であればよく、例えば面取りされた多面体のような形状であってもよい。 In the above-described embodiment, the crushed particles 28 are spherical. However, the present invention is not limited to this, and when a large number of crushed particles 28 are provided as the crushing portion 26, the shape of the crushed particles 28 and the crushed particles. The shape may be any shape as long as the liquid can be extracted from the measurement object 8 by the 28 gaps between them. For example, the shape may be a chamfered polyhedron.
 また、前述の実施例においては破砕粒28はガラス製のものとされたが、これに限定されず、例えば、樹脂、金属、セラミック、活性炭など、測定対象物8を押し付けることにより抽出液を抽出可能なものであればよい。 In the above-described embodiment, the crushed particles 28 are made of glass. However, the present invention is not limited to this. For example, the extract is extracted by pressing the measurement object 8 such as resin, metal, ceramic, activated carbon, or the like. Anything is possible.
 また、前述の実施例においては、電気化学センサ14の基盤30はガラスエポキシ樹脂により構成されたが、これに限られず、例えば、アクリル樹脂(PMMA)、ポリスチレン(PS)、ポリエチレンテレフタラート(PET)、ポリカーボネート(PC)などによって構成されてもよい。 In the above-described embodiment, the substrate 30 of the electrochemical sensor 14 is made of glass epoxy resin, but is not limited to this. For example, acrylic resin (PMMA), polystyrene (PS), polyethylene terephthalate (PET). Polycarbonate (PC) or the like may be used.
8:測定対象物
10:品質計測装置
12:抽出容器
14:電気化学センサ
16:計測装置
22:押し子
24:濾過部材
26:破砕部
28:破砕粒
32:作用極
34:対極
36:参照極
38:酵素固定部
8: Measurement object 10: Quality measuring device 12: Extraction container 14: Electrochemical sensor 16: Measuring device 22: Pusher 24: Filtration member 26: Crushing part 28: Crushing particle 32: Working electrode 34: Counter electrode 36: Reference electrode 38: Enzyme fixing part

Claims (8)

  1.  魚類、魚介類、食肉、畜肉及びこれらを用いた加工品を含んでなる測定対象物に含まれ、鮮度および品質の指標となる核酸関連物質を抽出する抽出容器と、
     作用極、対極及び参照極の3種類の電極のうち少なくとも作用極および対極を有し、該作用極表面には前記核酸関連物質と反応する酵素を固定化させた酵素固定部を含み、前記抽出容器により抽出された前記核酸関連物質がもたらされるとともに前記作用極および対極間に電圧が印加される電気化学センサと、
     前記電気化学センサの出力に基づいて前記核酸関連物質の濃度を計測し、前記鮮度及び品質に関する値を算出する計測装置と、
     を有することを特徴とする品質計測装置。
    An extraction container for extracting nucleic acid-related substances, which are included in measurement objects including fish, seafood, meat, livestock meat and processed products using these, and serve as indicators of freshness and quality;
    The working electrode, the counter electrode, and the reference electrode have at least a working electrode and a counter electrode. The surface of the working electrode includes an enzyme immobilization part on which an enzyme that reacts with the nucleic acid-related substance is immobilized, and the extraction An electrochemical sensor in which the nucleic acid-related substance extracted by the container is provided and a voltage is applied between the working electrode and the counter electrode;
    A measurement device that measures the concentration of the nucleic acid-related substance based on the output of the electrochemical sensor, and calculates values relating to the freshness and quality;
    A quality measuring device characterized by comprising:
  2.  前記電気化学センサは複数の作用極を有し、該複数の作用極のそれぞれに対応する酵素固定部にはそれぞれ酵素が固定化されていること、
     を特徴とする請求項1に記載の品質計測装置。
    The electrochemical sensor has a plurality of working electrodes, and each of the plurality of working electrodes has an enzyme immobilized on an enzyme immobilization portion corresponding to each of the working electrodes;
    The quality measuring device according to claim 1, wherein:
  3.  前記抽出容器は、前記測定対象物を破砕するための破砕部と、該測定対象物を該破砕部に押し付けるための押し子と、該破砕部によって破砕された測定対象物から抽出された液体を濾過する濾過部材と、を含み、
     該破砕部は、複数の粒状の破砕粒から構成されること、
     を特徴とする請求項1または2の品質計測装置。
    The extraction container includes a crushing part for crushing the measurement object, a pusher for pressing the measurement object against the crushing part, and a liquid extracted from the measurement object crushed by the crushing part. A filtering member for filtering,
    The crushing part is composed of a plurality of granular crushed particles;
    The quality measuring apparatus according to claim 1 or 2, wherein
  4.  前記核酸関連物質は、ATP(アデノシン三リン酸)、ADP(アデノシン二リン酸)、AMP(アデノシン一リン酸)、IMP(イノシン酸)、HxR(イノシン)、およびHx(ヒポキサンチン)であること
     を特徴とする請求項1乃至3のいずれか1に記載の品質計測装置。
    The nucleic acid-related substance is ATP (adenosine triphosphate), ADP (adenosine diphosphate), AMP (adenosine monophosphate), IMP (inosinic acid), HxR (inosine), and Hx (hypoxanthine). The quality measuring device according to any one of claims 1 to 3, wherein
  5.  前記濾過部材は、前記測定対象物から抽出された液体から、油脂成分を選択的に吸収するものであること、
     を特徴とする請求項2乃至4のいずれか1に記載の品質計測装置。
    The filtration member selectively absorbs fat and oil components from the liquid extracted from the measurement object;
    The quality measuring apparatus according to claim 2, wherein:
  6.  前記測定対象物から抽出された液体中の前記核酸関連物質の濃度に基づいて、該測定対象物の鮮度に関する指標を算出すること
     を特徴とする請求項1乃至5のいずれか1に記載の品質計測装置。
    6. The quality according to claim 1, wherein an index relating to the freshness of the measurement object is calculated based on the concentration of the nucleic acid-related substance in the liquid extracted from the measurement object. Measuring device.
  7.  前記測定対象物から抽出された液体中の前記核酸関連物質の濃度に基づいて、該測定対象物の品質に関する指標を算出すること
     を特徴とする請求項1乃至5のいずれか1に記載の品質計測装置。
    6. The quality according to claim 1, wherein an index relating to the quality of the measurement target is calculated based on the concentration of the nucleic acid-related substance in the liquid extracted from the measurement target. Measuring device.
  8.  前記測定対象物から抽出された液体中の前記核酸関連物質の濃度に基づいて、該測定対象物のK値あるいはKi値を算出すること
     を特徴とする請求項1乃至5のいずれか1に記載の品質計測装置。
    6. The K value or Ki value of the measurement object is calculated based on the concentration of the nucleic acid-related substance in the liquid extracted from the measurement object. 6. Quality measuring device.
PCT/JP2014/057623 2013-03-22 2014-03-19 Quality evaluation device WO2014148583A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-060846 2013-03-22
JP2013060846A JP6192092B2 (en) 2013-03-22 2013-03-22 Quality evaluation device

Publications (1)

Publication Number Publication Date
WO2014148583A1 true WO2014148583A1 (en) 2014-09-25

Family

ID=51580255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057623 WO2014148583A1 (en) 2013-03-22 2014-03-19 Quality evaluation device

Country Status (2)

Country Link
JP (1) JP6192092B2 (en)
WO (1) WO2014148583A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535431A (en) * 2018-03-27 2018-09-14 海南翔泰渔业股份有限公司 A kind of whole fish of aquatic products is cut open the chest formula freshness detecting system
WO2021106124A1 (en) * 2019-11-28 2021-06-03 フジデノロ株式会社 Preparation apparatus, detection system, and detection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016146656A1 (en) * 2015-03-16 2016-09-22 Pro-Ino Development Aps Handheld apparatus for testing a sample of prepared food for allergens and/or food intolerance ingredients and disposable electrochemical test strips therefore

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315599A (en) * 2001-04-24 2002-10-29 Kansei:Kk Bag for preparing sample solution for food inspection
JP2003153797A (en) * 2001-11-20 2003-05-27 Able Corp Tool for squeezing juice and method for squeezing juice
WO2009111338A1 (en) * 2008-02-29 2009-09-11 Biomet Manufacturing Corp. A system and process for separating a material
JP2012504233A (en) * 2008-09-30 2012-02-16 メナイ メディカル テクノロジーズ リミテッド Sample measurement system
JP2012047606A (en) * 2010-08-27 2012-03-08 Fujidenoro Co Ltd Nucleic acid related substance measurement system and nucleic acid related substance measurement method
JP5164193B1 (en) * 2012-05-31 2013-03-13 富山県 Multi-biosensor chip assembly kit, multi-biosensor chip manufacturing method, and multi-biosensor chip

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426426A (en) * 1990-05-22 1992-01-29 T I Eng:Yugen Portable ski plate
JP3063352B2 (en) * 1992-01-16 2000-07-12 東陶機器株式会社 Concentration measuring device
JP2001021525A (en) * 1999-07-02 2001-01-26 Akebono Brake Res & Dev Center Ltd Measuring method using biosensor
JP4653870B2 (en) * 2000-05-31 2011-03-16 株式会社テクノメデイカ Cholesterol measurement sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315599A (en) * 2001-04-24 2002-10-29 Kansei:Kk Bag for preparing sample solution for food inspection
JP2003153797A (en) * 2001-11-20 2003-05-27 Able Corp Tool for squeezing juice and method for squeezing juice
WO2009111338A1 (en) * 2008-02-29 2009-09-11 Biomet Manufacturing Corp. A system and process for separating a material
JP2012504233A (en) * 2008-09-30 2012-02-16 メナイ メディカル テクノロジーズ リミテッド Sample measurement system
JP2012047606A (en) * 2010-08-27 2012-03-08 Fujidenoro Co Ltd Nucleic acid related substance measurement system and nucleic acid related substance measurement method
JP5164193B1 (en) * 2012-05-31 2013-03-13 富山県 Multi-biosensor chip assembly kit, multi-biosensor chip manufacturing method, and multi-biosensor chip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535431A (en) * 2018-03-27 2018-09-14 海南翔泰渔业股份有限公司 A kind of whole fish of aquatic products is cut open the chest formula freshness detecting system
CN108535431B (en) * 2018-03-27 2020-12-15 海南翔泰渔业股份有限公司 Whole fish of aquatic products formula freshness detecting system of opening thorax
WO2021106124A1 (en) * 2019-11-28 2021-06-03 フジデノロ株式会社 Preparation apparatus, detection system, and detection method
JPWO2021106124A1 (en) * 2019-11-28 2021-12-02 フジデノロ株式会社 Preparation equipment, detection system, and detection method

Also Published As

Publication number Publication date
JP2014185934A (en) 2014-10-02
JP6192092B2 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
Franceschelli et al. Sensing technology for fish freshness and safety: A review
Rejczak et al. A review of recent developments and trends in the QuEChERS sample preparation approach
Marolt et al. Analytical methods for determination of phytic acid and other inositol phosphates: A review
Sapozhnikova Evaluation of low-pressure gas chromatography–tandem mass spectrometry method for the analysis of> 140 pesticides in fish
Fletcher et al. Advances in meat spoilage detection: A short focus on rapid methods and technologies
WO2009017721A3 (en) Particle sensor with wide linear range
JP6192092B2 (en) Quality evaluation device
EP4056702A3 (en) Scalable bio-element analysis
Romero-González et al. Simultaneous determination of four biogenic and three volatile amines in anchovy by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry
Hu et al. Changes in the volatile components of candied kumquats in different processing methodologies with headspace–gas chromatography–ion mobility spectrometry
WO2009021131A3 (en) System and method for biological sample collection and analyte detection
Choi et al. Development and validation of an analytical method for carnosol, carnosic acid and rosmarinic acid in food matrices and evaluation of the antioxidant activity of rosemary extract as a food additive
Wallace et al. Blood-borne biomarkers and bioindicators for linking exposure to health effects in environmental health science
CN105378484B (en) The standardized calibration of analyte concentration determination
JP5816912B2 (en) Nucleic acid related substance measuring system and nucleic acid related substance measuring method
Rahman et al. Prediction of K value for fish flesh based on ultraviolet–visible spectroscopy of fish eye fluid using partial least squares regression
Gaca et al. Changes in volatile compound profiles in cold-pressed oils obtained from various seeds during accelerated storage
Sousa et al. Applying fourier transform mid infrared spectroscopy to detect the adulteration of salmo salar with oncorhynchus mykiss
Chao et al. BioChemPen for a Rapid Analysis of Compounds Supported on Solid Surfaces
Yu et al. Pure milk brands classification by means of a voltammetric electronic tongue and multivariate analysis
Cui et al. Real-time profiling and distinction of lipids from different mammalian milks using rapid evaporative ionization mass spectrometry combined with chemometric analysis
Skinner et al. Instrumentation for routine analysis of acrylamide in French Fries: assessing limitations for adoption
Almeida‐Trasviña et al. Vacuum drying optimization and simulation as a preservation method of antioxidants in apple pomace
Mohamad et al. Investigation on interdigitated electrode design for impedance spectroscopy technique targeting lard detection application
Fernandes et al. Graphene-type materials for the dispersive solid-phase extraction step in the QuEChERS method for the extraction of brominated flame retardants from capsicum cultivars

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14767596

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14767596

Country of ref document: EP

Kind code of ref document: A1