WO2014148508A1 - Cell culture vessel - Google Patents

Cell culture vessel Download PDF

Info

Publication number
WO2014148508A1
WO2014148508A1 PCT/JP2014/057390 JP2014057390W WO2014148508A1 WO 2014148508 A1 WO2014148508 A1 WO 2014148508A1 JP 2014057390 W JP2014057390 W JP 2014057390W WO 2014148508 A1 WO2014148508 A1 WO 2014148508A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell culture
container
culture container
film body
film
Prior art date
Application number
PCT/JP2014/057390
Other languages
French (fr)
Japanese (ja)
Inventor
聖真 田中
健一 森井
裕美 河原
弓削 類
Original Assignee
株式会社ジェイ・エム・エス
株式会社スペース・バイオ・ラボラトリーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイ・エム・エス, 株式会社スペース・バイオ・ラボラトリーズ filed Critical 株式会社ジェイ・エム・エス
Publication of WO2014148508A1 publication Critical patent/WO2014148508A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/08Flask, bottle or test tube
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/24Gas permeable parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/38Caps; Covers; Plugs; Pouring means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/10Rotating vessel

Definitions

  • the present invention relates to a cell culture vessel capable of efficiently culturing cells such as somatic stem cells, embryonic stem cells (ES cells), and induced pluripotent stem cells (iPS cells).
  • somatic stem cells embryonic stem cells (ES cells)
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • the cell culture is performed by filling a liquid culture medium together with the cells to be cultured in the cell culture container, and allowing the cell culture container filled with the cells and the medium to stand in a predetermined environment.
  • an object of the present invention is to provide a cell culture vessel capable of culturing cells more efficiently in a microgravity environment.
  • the present invention includes a container body having an opening, a cap that is detachably attached to the opening, a gas-permeable region that is provided in the cap, has liquid-tightness, and allows gas flow, It is related with a cell culture container provided with the film body which can be arranged inside the container main body and to which a cultured cell can adhere.
  • the film body is accommodated in the container body in a state of being folded in a pleated shape by a plurality of fold lines extending in parallel with each other at a predetermined interval.
  • the container body has a bottom wall part, a side wall part rising from the periphery of the bottom wall part, and a main body part having an upper wall part arranged in parallel with the bottom wall part at the standing end of the side wall part, A cylindrical neck part having one end side connected to the side wall part and the opening part formed on the other end side, and the length between the two folding lines arranged adjacent to each other in the film body is
  • the diameter is preferably equal to or smaller than the diameter of the opening.
  • the container body includes a cylindrical portion in which the opening is formed on one end side, and a reduced diameter portion that is disposed on the other end side of the cylindrical portion and decreases in diameter from the proximal end side toward the distal end side. It is preferable to provide.
  • the film body is folded in a pleated shape by a plurality of fold lines extending in parallel with each other at a predetermined interval, and the plurality of fold lines are arranged along the longitudinal direction of the container body.
  • the plurality of broken lines are parallel to a direction in which gravity is applied when the cell culture container is centrifuged.
  • the film body is accommodated in the container body in a state of being rolled into a cylindrical shape.
  • the length between the two broken lines arranged adjacent to each other is equal to or less than the radius of the cylindrical portion.
  • the film body is preferably composed of a polyethylene terephthalate film.
  • the surface of the film body is preferably subjected to charge treatment.
  • the cell of the present invention can be cultured more efficiently in a microgravity environment.
  • FIG. 5 is a sectional view taken along line AA in FIG. 4.
  • FIG. 5 is a sectional view taken along line BB in FIG. 4.
  • FIG. 9 is a sectional view taken along line DD of FIG.
  • FIG. 9 is a sectional view taken along line DD of FIG.
  • FIG. 9 is a disassembled perspective view which shows the modification of the cell culture container of 2nd Embodiment.
  • sectional drawing which shows the other modification of the cell culture container of 2nd Embodiment, and is a figure corresponding to FIG.
  • FIG. 9 is a perspective view which shows the other modification of the cell culture container of 2nd Embodiment.
  • the cell culture container 1 of the present invention is suitably used in a microgravity environment.
  • the microgravity environment refers to a very gravity smaller environment than on the ground, for example, and the environment (10 -3 G) in the space station, gravity distributed simulated microgravity device (e.g., JP 2003-9852 An environment that can be realized using a gazette).
  • the above-mentioned cell culture vessel can be suitably used for a Rotary Cell Culture System (RCCS; Synthecon), which is a three-dimensional culture system.
  • RCCS Rotary Cell Culture System
  • cells can reduce the effect of gravity. Therefore, the cells can grow by adhering not only to the upper surface of the horizontal plane but also to all surfaces inside the cell culture container 1.
  • the gravity-dispersed simulated microgravity device 100 includes a container accommodating portion 110 that can accommodate a plurality of or a single cell culture container 1, and the container accommodating portion 110 that has a first shaft 125.
  • the simulated microgravity device 100 disperses the gravity applied to the container housing portion 110 by rotating the container housing portion 110 about two orthogonal axes 125 and 135, thereby simulating a microgravity environment. Realize.
  • the cell culture container 1 according to the first embodiment of the present invention will be described with reference to FIGS.
  • the cell culture container 1 of the first embodiment includes a container body 10 having an opening 11, a cap 20 that is detachably attached to the container body 10, and the interior of the container body 10. And a film body 30 accommodated in the container.
  • the container main body 10 includes a box-shaped main body portion 12 and a neck portion 13.
  • the main body 12 includes a bottom wall 121 having a hexagonal shape in plan view, a side wall 122 rising from each of six sides that are peripheral edges of the bottom wall 121, and a side wall An upper wall portion 123 disposed parallel to the bottom wall portion 121 is provided at the standing end of 122. An opening is formed in one of the six side walls 122.
  • the neck 13 is configured in a cylindrical shape. One end side of the neck portion 13 is connected to a portion where the opening of the side wall portion 122 where the opening is formed is formed. The other end side of the neck 13 constitutes the opening 11 of the container body 10. A thread 131 is formed on the outer peripheral surface of the neck 13 near the end on the opening 11 side.
  • the neck 13 is slightly inclined so that the end on the opening 11 side is located on the upper wall 123 side than the end on the side wall 122 side. It extends. Further, the diameter of the neck portion 13 is substantially equal to the height of the side wall portion 122.
  • the container body 10 described above is made of a synthetic resin or glass having transparency.
  • the material of the container body 10 is generally composed of polystyrene from the viewpoints of the above-described transparency and cell adhesion.
  • PP polypropylene
  • PET polyethylene terephthalate
  • the inner surface of the container body 10 is preferably subjected to charge treatment such as plasma discharge in order to improve cell adhesion.
  • the cap 20 includes a cap main body 21, a gas permeable region 22 provided in the cap main body 21, and an O-ring 23 (see FIG. 3).
  • the cap main body 21 includes a cylindrical fitting portion 211 that is fitted on the outer peripheral surface of the container main body 10 (neck portion 13), and an end surface portion 212 that closes one end side of the fitting portion 211.
  • a thread groove 213 having a shape corresponding to the thread 131 formed in the container body 10 (neck portion 13) is formed on the inner surface of the fitted portion 211.
  • the gas permeable region 22 is a region having liquid-tightness and allowing a gas flow.
  • the gas permeable region 22 is provided on the end surface portion 212 of the cap body 21.
  • the gas permeable region 22 includes a plurality of through holes 221 formed in the end surface portion 212 and a gas permeable film 222 disposed on the inner surface side of the end surface portion 212 in the cap body 21.
  • the gas permeable membrane 222 allows a gas such as carbon dioxide or oxygen to flow without passing a liquid.
  • a film of polytetrafluoroethylene (PTFE), polyethylene, silicone resin, poly-4-methylpentene-1, polyisoprene, polybutadiene, ethylene vinyl acetate copolymer, polystyrene, and the like is about 100 ⁇ m thick.
  • PTFE polytetrafluoroethylene
  • silicone resin silicone resin
  • poly-4-methylpentene-1 polyisoprene
  • polybutadiene ethylene vinyl acetate copolymer
  • polystyrene polystyrene
  • the O-ring 23 is disposed on the inner surface side of the cap body 21.
  • the O-ring 23 maintains the liquid tightness between the cap 20 and the container body 10 when the cap 20 is attached to the container body 10.
  • the film body 30 is composed of a polyethylene terephthalate film (hereinafter also referred to as a PET film).
  • the film body 30 is formed by alternately folding rectangular PET films at a plurality of fold lines 31 formed in parallel with each other at a predetermined interval. It is composed of folds.
  • a length L ⁇ b> 1 (see FIG. 5) between two folding lines 31 arranged adjacent to each other in the film body 30 is equal to or smaller than the diameter of the opening 11.
  • the length L1 between the two folding lines 31 is preferably substantially equal to the diameter of the opening 11 from the viewpoint of increasing the surface area of the film body 30 accommodated in the container body 10.
  • the surface (both sides) of the film body 30 is preferably subjected to charge treatment such as plasma discharge in order to improve cell adhesion.
  • the charge treatment on the surface of the film body 30 is performed on the PET film in a state before the folding line 31 is formed. Thereby, the charge process to the film body 30 can be performed easily and uniformly.
  • the thickness of the film body 30 is preferably 30 ⁇ m to 150 ⁇ m, more preferably 50 ⁇ m to 100 ⁇ m, from the viewpoint of maintaining good foldability.
  • the contact angle of water on the surface of the film body 30 subjected to the charge treatment is preferably 50 ° to 70 ° at room temperature (25 ° C.) from the viewpoint of improving cell adhesion.
  • the film body 30 is accommodated in the container body 10 in the following procedure. First, the film body 30 is contracted so that the pleats of the film body 30 folded in a pleat shape are close to each other. Next, the contracted film body 30 is pushed into the container body 10 from the opening 11. Then, the film body 30 that passes through the neck portion 13 and reaches the main body portion 12 is released from the contracted state and spreads inside the main body portion 12. Thereby, the cell culture container 1 by which the film body 30 folded in the shape of a pleat is arrange
  • the above cell culture container 1 is used as follows. First, the cap 20 of the sterilized cell culture container 1 is removed, the container body 10 in which the film body 30 is accommodated is filled with a liquid medium, and then the cells are seeded. Thereafter, the cap 20 is attached to the container body 10 filled with the liquid medium and seeded with the cells.
  • the liquid medium is preferably filled and filled so that no air remains in the container body 10.
  • the cell culture vessel 1 is placed in a microgravity environment, for example, by mounting it on a simulated microgravity device 100 as shown in FIG.
  • the cells cultured in the cell culture vessel 1 include somatic stem cells, embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), embryonic germ cells (EG cells), mesenchymal stem cells,
  • stem cells such as neural stem cells, vascular endothelial stem cells, hematopoietic stem cells, hepatic stem cells, bone cells, chondrocytes, muscle cells, cardiomyocytes, nerve cells, tendon cells, fat cells, pancreatic cells, hepatocytes, kidney cells
  • stem cells such as neural stem cells, vascular endothelial stem cells, hematopoietic stem cells, hepatic stem cells, bone cells, chondrocytes, muscle cells, cardiomyocytes, nerve cells, tendon cells, fat cells, pancreatic cells, hepatocytes, kidney cells
  • differentiated cells such as hair matrix cells and blood cells, or precursor cells thereof.
  • liquid medium those usually used for cell culture can be used without particular limitation. Specific examples include alpha ⁇ -MEM medium, RPMI-1640 medium, and MEM basic medium.
  • these liquid media contain serum and A biological component such as a cell growth factor (cytokine) may be contained.
  • cytokine a cell growth factor
  • stem cells can be accelerated while maintaining an undifferentiated state without using biological components such as serum and cell growth factors (cytokines).
  • the liquid medium filled in the cell culture container 1 is removed, and then a cell peeling agent such as trypsin is added to the container body 10, so that the container body 10 and the film body 30 are added. Peel off the cells attached to the.
  • the detached cells are transferred to a centrifuge tube using a pipette or the like, and centrifuged, for example, under conditions of 1000 rpm, 4 ° C., and 5 minutes. Thereby, the cells cultured using the cell culture container 1 are collected.
  • the cell culture container 1 was configured to include a film body 30 disposed inside the container body 10. Thereby, when cells are cultured in a microgravity environment, the cells can be adhered on the inner surface of the container body 10 and the surface of the film body 30, so that the area of the region to which the cells can adhere can be increased. Moreover, in the cell culture container 1, as a technique for increasing a region to which cells can adhere, that is, a technique for increasing the surface area of a cell adhesion target, a porous material, hollow fiber, or microbead is accommodated in the container body. A method can be considered. However, when these materials are used as cell adhesion targets, sterilization of these materials and surface treatment such as charge treatment become difficult.
  • the film body 30 was used as a cell adhesion target. As a result, sterilization and surface treatment can be easily performed, and the proliferated cells can be easily detached. Furthermore, since the adhesiveness of the cells is excellent, the proliferation of the cells can be improved.
  • the container body 10 is configured to include the body portion 12 and the neck portion 13, and the length L1 between the fold lines 31 of the film body 30 is configured to be equal to or smaller than the diameter of the opening portion 11.
  • the cell culture container 1 is mainly manufactured from polystyrene from the viewpoints of cell adhesion, ease of processing, and the like.
  • the film body is made of polystyrene, the film body is easily broken when the film body is folded, and it is difficult to process the film body into a pleated shape.
  • the film body 30 was comprised with the polyethylene terephthalate film. Thereby, generation
  • the surface of the film body 30 was subjected to charge treatment. Thereby, a functional group can be provided to the surface of the film body 30, and the hydrophilicity of the film body 30 can be enhanced. Therefore, the adhesiveness of the cells to the surface of the film body 30 can be further improved.
  • the cell culture container 1A of the second embodiment is different from the first embodiment in the shape of the container body 10A and the arrangement of the film body 30 inside the container body 10A.
  • the same constituent elements are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the container body 10A is formed in a cylindrical shape in which an opening 11A is formed on one end side and the other end side is closed, as shown in FIG.
  • the container body 10 ⁇ / b> A includes a cylindrical portion 14 and a reduced diameter portion 15.
  • the cylindrical portion 14 is disposed on one end side of the container body 10A, that is, on the side where the opening portion 11A is formed.
  • a screw thread 141 is formed on the outer peripheral surface of the cylindrical portion 14 near the end on the opening 11A side.
  • the reduced diameter portion 15 is disposed at the end of the cylindrical portion 14 opposite to the side where the opening 11A is formed.
  • the reduced diameter portion 15 is formed in a conical shape having a reduced diameter from the proximal end side toward the distal end side.
  • the container body 10A is formed in the same shape and size as a centrifuge tube that can be used in a centrifuge (for example, the same shape and size as a centrifuge tube (conical tube) having a capacity of 50 ml).
  • the cap 20 includes a cap body 21, a gas permeable region 22 provided in the cap body 21, and an O-ring 23.
  • the cap main body 21 includes a cylindrical fitting portion 211 that is fitted on the outer peripheral surface of the container main body 10, and an end surface portion 212 that closes one end side of the fitting portion 211.
  • a thread groove 213 having a shape corresponding to the thread 121 formed on the container body 10 (cylindrical portion 14) is formed on the inner surface of the fitted portion 211.
  • the O-ring 23 is disposed on the inner surface side of the cap body 21.
  • the O-ring 23 maintains the liquid tightness between the cap 20 and the container body 10 when the cap 20 is attached to the container body 10.
  • the film body 30 folded in the shape of a pleat is accommodated in the inside of 10 A of container main bodies so that the fold line 31 may follow the longitudinal direction of 10 A of container main bodies. That is, the surface of the film body 30 is disposed along the longitudinal direction of the container body 10A. More specifically, the film body 30 is rolled into a cylindrical shape and accommodated in the container body 10 so that the extending direction of the fold line 31 is the height direction in a state of being folded in a pleat shape.
  • the height H of the folds that is, the length between the two folding lines 31 arranged adjacent to each other is equal to or less than the radius r of the cylindrical portion 14, and more preferably, the radius r of the cylindrical portion 14. 70% to 90% (see FIG. 11).
  • the container body 10A was configured in a cylindrical shape, and the container body 10A was configured to include the cylindrical portion 14 and the reduced diameter portion 15.
  • the cells cultured on the surface of the container body 10A and the film body 30 are peeled off, and then the cell culture container 1A is placed in a centrifuge and centrifuged.
  • the cultured cells are easily collected at the bottom of the cylindrical container body 10A.
  • the cell culture container 1A after culturing the cells is centrifuged, the cells are collected in the reduced diameter portion 15 while preventing the film body 30 from moving to the tip side of the container body 10A. Therefore, the efficiency of cell culture using the cell culture vessel 1A can be further improved.
  • the cultured cells can be collected without being transferred to another container, it is difficult to cause contamination during cell collection.
  • the film body 30 was folded in a pleated shape at a plurality of fold lines 31, and accommodated in the container body 10A so that the fold line was along the longitudinal direction of the container body 10A.
  • the surface area of the film body 30 accommodated in 10 A of container main bodies can be increased, the area of the area
  • the folding line 31 is arranged along the longitudinal direction of the container main body 10A, the surface of the film body 30 can be aligned in the separation direction (the direction in which gravity is applied) by centrifugation when performing centrifugation. Therefore, the cultured cells are easily separated and collected at the bottom of the cylindrical container body 10A.
  • the film body 30 was accommodated in the container body 10A in a state of being rolled into a cylindrical shape. Thereby, the film body 30 folded in a pleat shape can be accommodated in the container main body 10A with a larger surface area. Further, since the film body 30 can be evenly arranged inside the container body 10A, it is difficult to cause a bias in the fluidity of the medium filled in the cell culture container 1A. Therefore, the efficiency of cell culture can be further improved.
  • the arrangement of the film body 30 inside the container body 10 is not limited to the arrangement of the first embodiment and the second embodiment. That is, as shown in FIG. 12, a plate-like PET film 32 smaller than the inner diameter of the container main body 10A is arranged in a plurality of layers at predetermined intervals in the thickness direction on the container main body 10A of the second embodiment.
  • the film body 30 may be configured by integrating the plurality of PET films 32 with a disk-shaped support plate 33 that is substantially equal to the inner diameter of the container body 10.
  • the film body 30 is made of a PET film, but the present invention is not limited to this. That is, you may comprise a film body with other synthetic resin films, such as a polystyrene film and a polypropylene film.
  • the shape of the container body 10 is not limited to the shape of the first embodiment and the second embodiment. That is, the container body may be formed in a rectangular parallelepiped shape or a cubic shape.

Landscapes

  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Clinical Laboratory Science (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Provided is a cell culture vessel capable of culturing cells more efficiently in a microgravity environment. A cell culture vessel (1) provided with: a vessel main body (10) having an opening (11); a cap (20) removably mounted on the opening (11); a gas-permeable region (22) for permitting the passage of gas, having liquid tightness and being provided in the cap (20); and a film (30) which allows cultured cells to adhere thereto, disposed in the interior of the vessel main body (10). The film (30) is preferably housed in the vessel main body (10) in a folded state folded by a plurality of folding lines (31) extending parallel to each other at a predetermined distance.

Description

細胞培養容器Cell culture vessel
 本発明は、体性幹細胞や、胚性幹細胞(ES細胞)、人工多能性幹細胞(iPS細胞)等の細胞を効率的に培養できる細胞培養容器に関する。 The present invention relates to a cell culture vessel capable of efficiently culturing cells such as somatic stem cells, embryonic stem cells (ES cells), and induced pluripotent stem cells (iPS cells).
 従来、体性幹細胞や、胚性幹細胞(ES細胞)、人工多能性幹細胞(iPS細胞)等の細胞を培養する場合には、滅菌された樹脂製の細胞培養容器が用いられる(例えば、特許文献1参照)。より具体的には、細胞の培養は、細胞培養容器に培養する細胞と共に液体の培地を充填し、この細胞及び培地が充填された細胞培養容器を所定の環境下に静置して行われる。 Conventionally, when culturing cells such as somatic stem cells, embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), sterilized resin cell culture containers are used (for example, patents) Reference 1). More specifically, the cell culture is performed by filling a liquid culture medium together with the cells to be cultured in the cell culture container, and allowing the cell culture container filled with the cells and the medium to stand in a predetermined environment.
 また、近年、重力分散型の模擬微小重力装置を用いた微小重力環境(例えば、10-3G)において幹細胞を培養することにより、幹細胞の分化を抑制しながら細胞を増殖させる技術も提案されている(例えば、特許文献2参照)。 In recent years, there has also been proposed a technique for growing cells while suppressing stem cell differentiation by culturing stem cells in a microgravity environment (for example, 10 −3 G) using a gravity-dispersed simulated microgravity device. (For example, refer to Patent Document 2).
特開平10-179137号公報Japanese Patent Laid-Open No. 10-179137 特開2003-9852号公報Japanese Patent Laid-Open No. 2003-9852
 ところで、細胞は、多くの場合、細胞培養容器の内面に接着して増殖する。通常の重力環境において、特許文献1で提案されたような細胞培養容器を用いて細胞を培養した場合、細胞は、細胞培養容器の底面に接着して増殖していく。
 一方、微小重力環境において同様の細胞培養容器を用いて細胞を培養した場合、細胞は、細胞培養容器の内面の全面に接着して増殖する。そのため、微小重力環境においては、細胞の分化を抑制すると共に、細胞の培養効率を向上させることもできる。
 幹細胞を用いた再生医療技術が発展していく現状において、より効率的に細胞を培養できる細胞培養容器が求められている。
By the way, in many cases, cells grow by adhering to the inner surface of the cell culture container. When cells are cultured using a cell culture container as proposed in Patent Document 1 in a normal gravity environment, the cells grow while adhering to the bottom surface of the cell culture container.
On the other hand, when cells are cultured using a similar cell culture container in a microgravity environment, the cells grow while adhering to the entire inner surface of the cell culture container. Therefore, in a microgravity environment, cell differentiation can be suppressed and cell culture efficiency can be improved.
In the present situation where regenerative medical technology using stem cells is developed, a cell culture container capable of culturing cells more efficiently is required.
 従って、本発明は、微小重力環境において、より効率的に細胞を培養できる細胞培養容器を提供することを目的とする。 Therefore, an object of the present invention is to provide a cell culture vessel capable of culturing cells more efficiently in a microgravity environment.
 本発明は、開口部を有する容器本体と、前記開口部に着脱可能に取り付けられるキャップと、前記キャップに設けられ、液密性を有し、かつ、気体の流通を許容するガス透過領域と、前記容器本体の内部に配置され、培養細胞が接着可能なフィルム体と、を備える細胞培養容器に関する。 The present invention includes a container body having an opening, a cap that is detachably attached to the opening, a gas-permeable region that is provided in the cap, has liquid-tightness, and allows gas flow, It is related with a cell culture container provided with the film body which can be arranged inside the container main body and to which a cultured cell can adhere.
 また、前記フィルム体は、所定間隔をあけて互いに平行に延びる複数の折線によりひだ状に折り畳まれた状態で前記容器本体に収容されることが好ましい。 Further, it is preferable that the film body is accommodated in the container body in a state of being folded in a pleated shape by a plurality of fold lines extending in parallel with each other at a predetermined interval.
 また、前記容器本体は、底壁部、該底壁部の周縁から起立する側壁部、及び該側壁部の起立端に前記底壁部と平行に配置される上壁部を有する本体部と、一端側が前記側壁部に接続され他端側に前記開口部が形成される筒状の首部と、を備え、前記フィルム体における隣り合って配置される2つの前記折線の間の長さは、前記開口部の径以下であることが好ましい。 Further, the container body has a bottom wall part, a side wall part rising from the periphery of the bottom wall part, and a main body part having an upper wall part arranged in parallel with the bottom wall part at the standing end of the side wall part, A cylindrical neck part having one end side connected to the side wall part and the opening part formed on the other end side, and the length between the two folding lines arranged adjacent to each other in the film body is The diameter is preferably equal to or smaller than the diameter of the opening.
 また、前記容器本体は、一端側に前記開口部が形成される円筒部と、前記円筒部の他端側に配置され、基端側から先端側に向かって縮径する縮径部と、を備えることが好ましい。 Further, the container body includes a cylindrical portion in which the opening is formed on one end side, and a reduced diameter portion that is disposed on the other end side of the cylindrical portion and decreases in diameter from the proximal end side toward the distal end side. It is preferable to provide.
 また、前記フィルム体は、所定間隔をあけて互いに平行に延びる複数の折線によりひだ状に折り畳まれると共に、該複数の折線が前記容器本体の長手方向に沿って配置されることが好ましい。 Further, it is preferable that the film body is folded in a pleated shape by a plurality of fold lines extending in parallel with each other at a predetermined interval, and the plurality of fold lines are arranged along the longitudinal direction of the container body.
 また、前記複数の折線が、該細胞培養容器を遠心する際に重力がかかる方向と平行であることが好ましい。 Further, it is preferable that the plurality of broken lines are parallel to a direction in which gravity is applied when the cell culture container is centrifuged.
 また、前記フィルム体は、筒状に丸められた状態で前記容器本体の内部に収容されることが好ましい。 Further, it is preferable that the film body is accommodated in the container body in a state of being rolled into a cylindrical shape.
 また、隣り合って配置される2つの前記折線の間の長さは、前記円筒部の半径以下であることが好ましい。 Moreover, it is preferable that the length between the two broken lines arranged adjacent to each other is equal to or less than the radius of the cylindrical portion.
 また、前記フィルム体は、ポリエチレンテレフタレートフィルムにより構成されることが好ましい。 The film body is preferably composed of a polyethylene terephthalate film.
 また、前記フィルム体の表面には、電荷処理が施されていることが好ましい。 The surface of the film body is preferably subjected to charge treatment.
 本発明の細胞によれば、微小重力環境において、より効率的に細胞を培養できる。 The cell of the present invention can be cultured more efficiently in a microgravity environment.
本発明の細胞培養容器を微小重力環境において培養するために用いる装置の一例を示す図である。It is a figure which shows an example of the apparatus used in order to culture the cell culture container of this invention in a microgravity environment. 本発明の第1実施形態に係る細胞培養容器を示す斜視図である。It is a perspective view which shows the cell culture container which concerns on 1st Embodiment of this invention. 第1実施形態の細胞培養容器を示す分解斜視図である。It is a disassembled perspective view which shows the cell culture container of 1st Embodiment. 第1実施形態の細胞培養容器を示す平面図である。It is a top view which shows the cell culture container of 1st Embodiment. 図4のA-A線断面図である。FIG. 5 is a sectional view taken along line AA in FIG. 4. 図4のB-B線断面図である。FIG. 5 is a sectional view taken along line BB in FIG. 4. 本発明の第2実施形態に係る細胞培養容器を示す斜視図である。It is a perspective view which shows the cell culture container which concerns on 2nd Embodiment of this invention. 第2実施形態の細胞培養容器を示す正面図である。It is a front view which shows the cell culture container of 2nd Embodiment. 第2実施形態の細胞培養容器を示す分解斜視図である。It is a disassembled perspective view which shows the cell culture container of 2nd Embodiment. 図8のC-C線断面図である。It is CC sectional view taken on the line of FIG. 図8のD-D線断面図である。FIG. 9 is a sectional view taken along line DD of FIG. 第2実施形態の細胞培養容器の変形例を示す分解斜視図である。It is a disassembled perspective view which shows the modification of the cell culture container of 2nd Embodiment. 第2実施形態の細胞培養容器の他の変形例を示す断面図であり、図11に対応する図であり。It is sectional drawing which shows the other modification of the cell culture container of 2nd Embodiment, and is a figure corresponding to FIG. 第2実施形態の細胞培養容器の更に他の変形例を示す斜視図である。It is a perspective view which shows the other modification of the cell culture container of 2nd Embodiment.
 以下、本発明の細胞培養容器の好ましい各実施形態について、図面を参照しながら説明する。
 本発明の細胞培養容器1は、微小重力環境において好適に用いられる。微小重力環境とは、地上に比して極めて重力の小さい環境をいい、例えば、宇宙ステーションにおける環境(10-3G)や、重力分散型の模擬微小重力装置(例えば、特開2003-9852号公報参照)を用いて実現できる環境をいう。或いは、重力の影響を減少するという点から、上記の細胞培養容器は3次元培養システムであるRotary Cell Culture System(RCCS;シンセコン社)にも、好適に使用できる。
 微小重力環境、或いはRCCSのような単軸の回転培養容器で実現できる重力の影響を減少する環境においては、細胞は、重力の影響を小さくすることができる。そのため、細胞は、水平面の上面のみではなく、細胞培養容器1の内部におけるすべての面に接着して増殖できる。
Hereinafter, preferred embodiments of the cell culture container of the present invention will be described with reference to the drawings.
The cell culture container 1 of the present invention is suitably used in a microgravity environment. The microgravity environment, refers to a very gravity smaller environment than on the ground, for example, and the environment (10 -3 G) in the space station, gravity distributed simulated microgravity device (e.g., JP 2003-9852 An environment that can be realized using a gazette). Alternatively, from the viewpoint of reducing the influence of gravity, the above-mentioned cell culture vessel can be suitably used for a Rotary Cell Culture System (RCCS; Synthecon), which is a three-dimensional culture system.
In a microgravity environment or an environment that reduces the effect of gravity that can be achieved with a single-axis rotating culture vessel such as RCCS, cells can reduce the effect of gravity. Therefore, the cells can grow by adhering not only to the upper surface of the horizontal plane but also to all surfaces inside the cell culture container 1.
 重力分散型の模擬微小重力装置100は、図1に示すように、複数、或いは単一の細胞培養容器1を収容可能な容器収容部110と、この容器収容部110を第1の軸125を回転軸として回転可能に支持する第1支持部120と、容器収容部110を第1の軸125に直交する第2の軸135を回転軸として回転可能に支持する第2支持部130と、容器収容部110の回転を制御する制御部(図示せず)と、を備える。そして、模擬微小重力装置100は、容器収容部110を、直交する2つの軸125,135を中心として回転させることで、容器収容部110にかかる重力を分散させて、模擬的に微小重力環境を実現する。 As shown in FIG. 1, the gravity-dispersed simulated microgravity device 100 includes a container accommodating portion 110 that can accommodate a plurality of or a single cell culture container 1, and the container accommodating portion 110 that has a first shaft 125. A first support portion 120 that rotatably supports a rotation shaft, a second support portion 130 that rotatably supports a container housing portion 110 with a second shaft 135 orthogonal to the first shaft 125 as a rotation shaft, and a container A control unit (not shown) that controls the rotation of the housing unit 110. Then, the simulated microgravity device 100 disperses the gravity applied to the container housing portion 110 by rotating the container housing portion 110 about two orthogonal axes 125 and 135, thereby simulating a microgravity environment. Realize.
 まず、本発明の第1実施形態に係る細胞培養容器1につき、図2~図6を参照しながら説明する。
 第1実施形態の細胞培養容器1は、図2及び図3に示すように、開口部11を有する容器本体10と、この容器本体10に着脱可能に取り付けられるキャップ20と、容器本体10の内部に収容されるフィルム体30と、を備える。
First, the cell culture container 1 according to the first embodiment of the present invention will be described with reference to FIGS.
As shown in FIGS. 2 and 3, the cell culture container 1 of the first embodiment includes a container body 10 having an opening 11, a cap 20 that is detachably attached to the container body 10, and the interior of the container body 10. And a film body 30 accommodated in the container.
 容器本体10は、箱状の本体部12と、首部13と、を備える。
 本体部12は、図4~図6に示すように、平面視六角形形状の底壁部121と、この底壁部121の周縁である六つの辺からそれぞれ起立する側壁部122と、側壁部122の起立端に、底壁部121と平行に配置される上壁部123と、を備える。六つの側壁部122のうちの一の側壁部122には、開口が形成される。
The container main body 10 includes a box-shaped main body portion 12 and a neck portion 13.
As shown in FIGS. 4 to 6, the main body 12 includes a bottom wall 121 having a hexagonal shape in plan view, a side wall 122 rising from each of six sides that are peripheral edges of the bottom wall 121, and a side wall An upper wall portion 123 disposed parallel to the bottom wall portion 121 is provided at the standing end of 122. An opening is formed in one of the six side walls 122.
 首部13は、筒状に構成される。首部13の一端側は、開口が形成された側壁部122の開口が形成された部分に接続される。首部13の他端側は、容器本体10の開口部11を構成する。首部13における開口部11側の端部近傍の外周面には、ねじ山131が形成される。
 第1実施形態では、図2及び図6に示すように、首部13は、側壁部122側の端部よりも開口部11側の端部が上壁部123側に位置するように若干傾斜して延びている。また、首部13の直径は、側壁部122の高さと略等しく構成される。
The neck 13 is configured in a cylindrical shape. One end side of the neck portion 13 is connected to a portion where the opening of the side wall portion 122 where the opening is formed is formed. The other end side of the neck 13 constitutes the opening 11 of the container body 10. A thread 131 is formed on the outer peripheral surface of the neck 13 near the end on the opening 11 side.
In the first embodiment, as shown in FIGS. 2 and 6, the neck 13 is slightly inclined so that the end on the opening 11 side is located on the upper wall 123 side than the end on the side wall 122 side. It extends. Further, the diameter of the neck portion 13 is substantially equal to the height of the side wall portion 122.
 以上の容器本体10は、透明性を有する、合成樹脂、又はガラスにより構成される。容器本体10の材質としては、上述の透明性、及び細胞の接着良好性の観点から、通常はポリスチレンにより構成されることが一般的である。ただし、遠心時の強度改善のため、PP(ポリプロピレン)、又はPET(ポリエチレンテレフタレート)で構成されてもよい。
 また、容器本体10の内面には、細胞の接着性を向上させるために、プラズマ放電等の電荷処理が施されていることが好ましい。
The container body 10 described above is made of a synthetic resin or glass having transparency. The material of the container body 10 is generally composed of polystyrene from the viewpoints of the above-described transparency and cell adhesion. However, PP (polypropylene) or PET (polyethylene terephthalate) may be used to improve the strength during centrifugation.
The inner surface of the container body 10 is preferably subjected to charge treatment such as plasma discharge in order to improve cell adhesion.
 キャップ20は、キャップ本体21と、このキャップ本体21に設けられたガス透過領域22と、Oリング23(図3参照)と、を備える。
 キャップ本体21は、容器本体10(首部13)の外周面に被嵌される筒状の被嵌部211と、この被嵌部211の一端側を塞ぐ端面部212と、を備える。被嵌部211の内面には、容器本体10(首部13)に形成されたねじ山131に対応する形状のねじ溝213が形成される。
The cap 20 includes a cap main body 21, a gas permeable region 22 provided in the cap main body 21, and an O-ring 23 (see FIG. 3).
The cap main body 21 includes a cylindrical fitting portion 211 that is fitted on the outer peripheral surface of the container main body 10 (neck portion 13), and an end surface portion 212 that closes one end side of the fitting portion 211. A thread groove 213 having a shape corresponding to the thread 131 formed in the container body 10 (neck portion 13) is formed on the inner surface of the fitted portion 211.
 ガス透過領域22は、液密性を有し、かつ、気体の流通を許容する領域である。このガス透過領域22は、キャップ本体21の端面部212に設けられる。ガス透過領域22は、端面部212に形成された複数の貫通孔221と、キャップ本体21における端面部212の内面側に配置されたガス透過膜222と、により構成される。
 ガス透過膜222は、液体を通さずに、二酸化炭素や酸素等の気体の流通を許容する。ガス透過膜222としては、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、シリコーン樹脂、ポリ4-メチルペンテン-1、ポリイソプレン、ポリブタジエン、エチレン酢酸ビニル共重合体及びポリスチレン等のフィルムを、厚さ100μm程度の膜状に構成したものが挙げられる。
The gas permeable region 22 is a region having liquid-tightness and allowing a gas flow. The gas permeable region 22 is provided on the end surface portion 212 of the cap body 21. The gas permeable region 22 includes a plurality of through holes 221 formed in the end surface portion 212 and a gas permeable film 222 disposed on the inner surface side of the end surface portion 212 in the cap body 21.
The gas permeable membrane 222 allows a gas such as carbon dioxide or oxygen to flow without passing a liquid. As the gas permeable membrane 222, a film of polytetrafluoroethylene (PTFE), polyethylene, silicone resin, poly-4-methylpentene-1, polyisoprene, polybutadiene, ethylene vinyl acetate copolymer, polystyrene, and the like is about 100 μm thick. The film-like structure is mentioned.
 Oリング23は、キャップ本体21の内面側に配置される。このOリング23は、容器本体10にキャップ20を取り付けた場合に、キャップ20と容器本体10との間の液密性を維持する。 The O-ring 23 is disposed on the inner surface side of the cap body 21. The O-ring 23 maintains the liquid tightness between the cap 20 and the container body 10 when the cap 20 is attached to the container body 10.
 フィルム体30は、ポリエチレンテレフタレートフィルム(以下、PETフィルムともいう)により構成される。第1実施形態では、フィルム体30は、図4及び図5に示すように、矩形形状のPETフィルムが、所定間隔をあけて互いに平行に形成された複数の折線31において交互に折り返されて、ひだ状に折り畳まれて構成されている。
 フィルム体30における隣り合って配置される2つの折線31の間の長さL1(図5参照)は、開口部11の直径以下となっている。この2つの折線31の間の長さL1は、容器本体10に収容するフィルム体30の表面積を多くする観点から、開口部11の直径と略等しいことが好ましい。
The film body 30 is composed of a polyethylene terephthalate film (hereinafter also referred to as a PET film). In the first embodiment, as shown in FIGS. 4 and 5, the film body 30 is formed by alternately folding rectangular PET films at a plurality of fold lines 31 formed in parallel with each other at a predetermined interval. It is composed of folds.
A length L <b> 1 (see FIG. 5) between two folding lines 31 arranged adjacent to each other in the film body 30 is equal to or smaller than the diameter of the opening 11. The length L1 between the two folding lines 31 is preferably substantially equal to the diameter of the opening 11 from the viewpoint of increasing the surface area of the film body 30 accommodated in the container body 10.
 フィルム体30の表面(両面)には、細胞の接着性を向上させるために、プラズマ放電等の電荷処理が施されていることが好ましい。このフィルム体30の表面の電荷処理は、折線31が形成される前の状態のPETフィルムに施される。これにより、フィルム体30への電荷処理を容易かつ均一に施せる。
 フィルム体30の厚さは、折り畳み性を良好に保つ観点から、好ましくは30μm~150μm、より好ましくは50μm~100μmである。
 また、電荷処理を施したフィルム体30の表面における水の接触角は、細胞の接着性を向上させる観点から、室温(25℃)において、50度~70度であることが好ましい。
The surface (both sides) of the film body 30 is preferably subjected to charge treatment such as plasma discharge in order to improve cell adhesion. The charge treatment on the surface of the film body 30 is performed on the PET film in a state before the folding line 31 is formed. Thereby, the charge process to the film body 30 can be performed easily and uniformly.
The thickness of the film body 30 is preferably 30 μm to 150 μm, more preferably 50 μm to 100 μm, from the viewpoint of maintaining good foldability.
Further, the contact angle of water on the surface of the film body 30 subjected to the charge treatment is preferably 50 ° to 70 ° at room temperature (25 ° C.) from the viewpoint of improving cell adhesion.
 以上の細胞培養容器1において、フィルム体30は、以下の手順で容器本体10の内部に収容される。まず、ひだ状に折り畳んだフィルム体30のひだ同士が近接するようにフィルム体30を縮める。次いで、縮めた状態のフィルム体30を開口部11から容器本体10の内部に押しこむ。すると、首部13を通過して本体部12に到達したフィルム体30は、縮められた状態から解放されて本体部12の内部で広がる。これにより、容器本体10の内部にひだ状に折り畳まれたフィルム体30が配置された細胞培養容器1が製造される。 In the cell culture container 1 described above, the film body 30 is accommodated in the container body 10 in the following procedure. First, the film body 30 is contracted so that the pleats of the film body 30 folded in a pleat shape are close to each other. Next, the contracted film body 30 is pushed into the container body 10 from the opening 11. Then, the film body 30 that passes through the neck portion 13 and reaches the main body portion 12 is released from the contracted state and spreads inside the main body portion 12. Thereby, the cell culture container 1 by which the film body 30 folded in the shape of a pleat is arrange | positioned inside the container main body 10 is manufactured.
 以上の細胞培養容器1は、以下のようにして用いられる。
 まず、滅菌された状態の細胞培養容器1のキャップ20を取り外し、フィルム体30が収容された容器本体10に液体培地を充填し、次いで、細胞を播種する。その後、液体培地が充填され、細胞が播種された容器本体10にキャップ20を取り付ける。ここで、液体培地は、容器本体10に空気が残存しないように満たして充填することが好ましい。これにより、微小重力環境において細胞を培養する場合に、細胞と空気とが接触することを防げるので、容器本体10の内面の全面及びフィルム体30の全面に細胞を接着させられる。
 次いで、細胞培養容器1を、例えば、図1に示すように模擬微小重力装置100に装着する等して微小重力環境におき、細胞を培養する。
The above cell culture container 1 is used as follows.
First, the cap 20 of the sterilized cell culture container 1 is removed, the container body 10 in which the film body 30 is accommodated is filled with a liquid medium, and then the cells are seeded. Thereafter, the cap 20 is attached to the container body 10 filled with the liquid medium and seeded with the cells. Here, the liquid medium is preferably filled and filled so that no air remains in the container body 10. Thus, when cells are cultured in a microgravity environment, the cells can be prevented from coming into contact with air, so that the cells can be adhered to the entire inner surface of the container body 10 and the entire surface of the film body 30.
Next, the cell culture vessel 1 is placed in a microgravity environment, for example, by mounting it on a simulated microgravity device 100 as shown in FIG.
 尚、細胞培養容器1により培養される細胞としては、体性幹細胞、胚性幹細胞(ES細胞)、人工多能性幹細胞(iPS細胞)、胚性生殖細胞(EG細胞)、間葉系幹細胞、神経幹細胞、血管内皮幹細胞、造血系幹細胞、肝幹細胞等の幹細胞の他に、骨細胞、軟骨細胞、筋細胞、心筋細胞、神経細胞、腱細胞、脂肪細胞、膵細胞、肝細胞、腎細胞、毛母細胞、血球細胞等の分化した細胞又はその前駆細胞が挙げられる。 The cells cultured in the cell culture vessel 1 include somatic stem cells, embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), embryonic germ cells (EG cells), mesenchymal stem cells, In addition to stem cells such as neural stem cells, vascular endothelial stem cells, hematopoietic stem cells, hepatic stem cells, bone cells, chondrocytes, muscle cells, cardiomyocytes, nerve cells, tendon cells, fat cells, pancreatic cells, hepatocytes, kidney cells, Examples thereof include differentiated cells such as hair matrix cells and blood cells, or precursor cells thereof.
 また、液体培地としては、通常、細胞培養に用いられるようなものを、特に制限なく用いることができる。具体的には、アルファα-MEM培地、RPMI-1640培地、MEM基本培地等が挙げられる。 As the liquid medium, those usually used for cell culture can be used without particular limitation. Specific examples include alpha α-MEM medium, RPMI-1640 medium, and MEM basic medium.
 尚、これらの液体培地には、ナトリウム、カリウム、カルシウム、マグネシウム、リン、塩素、アミノ酸、ビタミン、ホルモン、抗生物質、脂肪酸、糖等の化学成分に加えて、細胞増殖効果を高めるため、血清や細胞増殖因子(サイトカイン)のような生体成分を含有させてもよい。ただし、微小重力環境において細胞を培養することで、血清や細胞増殖因子(サイトカイン)のような生体成分を用いることなく、幹細胞を未分化状態を維持しつつ増速させられる。 In addition to chemical components such as sodium, potassium, calcium, magnesium, phosphorus, chlorine, amino acids, vitamins, hormones, antibiotics, fatty acids, sugars, etc., these liquid media contain serum and A biological component such as a cell growth factor (cytokine) may be contained. However, by culturing cells in a microgravity environment, stem cells can be accelerated while maintaining an undifferentiated state without using biological components such as serum and cell growth factors (cytokines).
 次に、培養して増殖させた細胞を回収する手順につき説明する。
 培養した細胞を回収する場合には、まず、細胞培養容器1に充填された液体培地を除去し、その後、容器本体10にトリプシン等の細胞剥離剤を添加して、容器本体10及びフィルム体30に接着した細胞を剥離させる。
 次いで、剥離させた細胞をピペット等を用いて遠心分離管に移し、例えば、1000rpm、4℃、5minの条件にて遠心分離を行う。
 これにより、細胞培養容器1を用いて培養された細胞は回収される。
Next, a procedure for recovering cells grown in culture will be described.
When recovering the cultured cells, first, the liquid medium filled in the cell culture container 1 is removed, and then a cell peeling agent such as trypsin is added to the container body 10, so that the container body 10 and the film body 30 are added. Peel off the cells attached to the.
Next, the detached cells are transferred to a centrifuge tube using a pipette or the like, and centrifuged, for example, under conditions of 1000 rpm, 4 ° C., and 5 minutes.
Thereby, the cells cultured using the cell culture container 1 are collected.
 以上説明した第1実施形態の細胞培養容器1によれば、以下のような効果を奏する。 According to the cell culture container 1 of 1st Embodiment demonstrated above, there exist the following effects.
 (1)細胞培養容器1を、容器本体10の内部に配置されるフィルム体30を含んで構成した。これにより、微小重力環境において細胞を培養した場合に、容器本体10の内面、及びフィルム体30の表面において細胞を接着させられるので、細胞が接着できる領域の面積を増加させられる。また、細胞培養容器1において、細胞が接着可能な領域を増加させる手法、つまり、細胞の接着対象の表面積を増加させる手法としては、容器本体に多孔質材料、中空糸、又はマイクロビーズを収容する手法が考えられる。しかしながら、これらの材料を細胞の接着対象として用いた場合には、これらの材料の滅菌処理や、電荷処理等の表面処理が困難となる。また、増殖させた細胞を剥離させにくく、細胞の回収率が低下してしまう。更には、細胞の増殖性に劣る。そこで、細胞の接着対象としてフィルム体30を用いた。これにより、滅菌処理や表面処理を容易に行え、また、増殖させた細胞を容易に剥離させられる。更に、細胞の接着性に優れるため、細胞の増殖性を向上させられる。 (1) The cell culture container 1 was configured to include a film body 30 disposed inside the container body 10. Thereby, when cells are cultured in a microgravity environment, the cells can be adhered on the inner surface of the container body 10 and the surface of the film body 30, so that the area of the region to which the cells can adhere can be increased. Moreover, in the cell culture container 1, as a technique for increasing a region to which cells can adhere, that is, a technique for increasing the surface area of a cell adhesion target, a porous material, hollow fiber, or microbead is accommodated in the container body. A method can be considered. However, when these materials are used as cell adhesion targets, sterilization of these materials and surface treatment such as charge treatment become difficult. Moreover, it is difficult to peel off the proliferated cells, and the cell recovery rate is lowered. Furthermore, the cell growth is poor. Therefore, the film body 30 was used as a cell adhesion target. As a result, sterilization and surface treatment can be easily performed, and the proliferated cells can be easily detached. Furthermore, since the adhesiveness of the cells is excellent, the proliferation of the cells can be improved.
 (2)フィルム体30をひだ状に折り畳んで容器本体10に収容した。これにより、細胞が接着できる領域の面積をより増加させられるので、細胞培養の効率をより向上させられる。 (2) The film body 30 was folded in a pleat shape and accommodated in the container body 10. Thereby, since the area of the area | region which a cell can adhere | attach can be increased more, the efficiency of cell culture can be improved more.
 (3)容器本体10を、本体部12及び首部13を含んで構成し、フィルム体30の折線31間の長さL1を開口部11の径以下に構成した。これにより、ひだ状に折り畳んだフィルム体30を容器本体10に容易に収容できるので、細胞培養容器1を容易に製造できる。 (3) The container body 10 is configured to include the body portion 12 and the neck portion 13, and the length L1 between the fold lines 31 of the film body 30 is configured to be equal to or smaller than the diameter of the opening portion 11. Thereby, since the film body 30 folded in a pleat shape can be easily accommodated in the container body 10, the cell culture container 1 can be easily manufactured.
 (4)細胞培養容器1は、細胞の接着性、及び加工の容易性等の観点から、主としてポリスチレンにより製造される。しかしながら、ポリスチレンによりフィルム体を構成した場合、このフィルム体を折り畳むとフィルム体が割れやすく、フィルム体をひだ状に加工することが困難であった。そこで、フィルム体30を、ポリエチレンテレフタレートフィルムにより構成した。これにより、フィルム体30を折り畳んだ場合におけるフィルム体30の割れの発生を防げる。よって、フィルム体30の加工の容易性を向上させられるので、細胞培養に適した形状のフィルム体30を容易に製造できる。 (4) The cell culture container 1 is mainly manufactured from polystyrene from the viewpoints of cell adhesion, ease of processing, and the like. However, when the film body is made of polystyrene, the film body is easily broken when the film body is folded, and it is difficult to process the film body into a pleated shape. Then, the film body 30 was comprised with the polyethylene terephthalate film. Thereby, generation | occurrence | production of the crack of the film body 30 at the time of folding the film body 30 can be prevented. Therefore, since the ease of processing of the film body 30 can be improved, the film body 30 having a shape suitable for cell culture can be easily manufactured.
 (5)フィルム体30の表面に電荷処理を施した。これにより、フィルム体30の表面に官能基を付与でき、フィルム体30の親水性を高められる。よって、フィルム体30の表面に対する細胞の接着性をより向上させられる。 (5) The surface of the film body 30 was subjected to charge treatment. Thereby, a functional group can be provided to the surface of the film body 30, and the hydrophilicity of the film body 30 can be enhanced. Therefore, the adhesiveness of the cells to the surface of the film body 30 can be further improved.
 次に、本発明の細胞培養容器の第2実施形態につき、図7~図11を参照しながら説明する。
 第2実施形態の細胞培養容器1Aは、容器本体10Aの形状、及び容器本体10Aの内部におけるフィルム体30の配置において第1実施形態と異なる。尚、第2実施形態以降の説明にあたって、同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
Next, a second embodiment of the cell culture container of the present invention will be described with reference to FIGS.
The cell culture container 1A of the second embodiment is different from the first embodiment in the shape of the container body 10A and the arrangement of the film body 30 inside the container body 10A. In the description after the second embodiment, the same constituent elements are denoted by the same reference numerals, and the description thereof is omitted or simplified.
 第2実施形態の細胞培養容器1Aでは、容器本体10Aは、図10に示すように、一端側に開口部11Aが形成され、他端側が閉止された筒状に形成される。この容器本体10Aは、円筒部14と、縮径部15と、を備える。
 円筒部14は、容器本体10Aの一端側、即ち、開口部11Aが形成された側に配置される。この円筒部14の開口部11A側の端部近傍の外周面には、ねじ山141が形成される。
 縮径部15は、円筒部14における開口部11Aが形成された側と反対側の端部に配置される。この縮径部15は、基端側から先端側に向かって縮径した円錐形状に形成される。
In the cell culture container 1A of the second embodiment, the container body 10A is formed in a cylindrical shape in which an opening 11A is formed on one end side and the other end side is closed, as shown in FIG. The container body 10 </ b> A includes a cylindrical portion 14 and a reduced diameter portion 15.
The cylindrical portion 14 is disposed on one end side of the container body 10A, that is, on the side where the opening portion 11A is formed. A screw thread 141 is formed on the outer peripheral surface of the cylindrical portion 14 near the end on the opening 11A side.
The reduced diameter portion 15 is disposed at the end of the cylindrical portion 14 opposite to the side where the opening 11A is formed. The reduced diameter portion 15 is formed in a conical shape having a reduced diameter from the proximal end side toward the distal end side.
 容器本体10Aは、遠心分離器に使用可能な遠心分離管と同様の形状及び大きさ(例えば、容量50mlの遠心分離管(コニカルチューブ)と同形同大)に形成される。 The container body 10A is formed in the same shape and size as a centrifuge tube that can be used in a centrifuge (for example, the same shape and size as a centrifuge tube (conical tube) having a capacity of 50 ml).
 キャップ20は、キャップ本体21と、このキャップ本体21に設けられたガス透過領域22と、Oリング23と、を備える。
 キャップ本体21は、容器本体10の外周面に被嵌される筒状の被嵌部211と、この被嵌部211の一端側を塞ぐ端面部212と、を備える。被嵌部211の内面には、容器本体10(円筒部14)に形成されたねじ山121に対応する形状のねじ溝213が形成される。
The cap 20 includes a cap body 21, a gas permeable region 22 provided in the cap body 21, and an O-ring 23.
The cap main body 21 includes a cylindrical fitting portion 211 that is fitted on the outer peripheral surface of the container main body 10, and an end surface portion 212 that closes one end side of the fitting portion 211. A thread groove 213 having a shape corresponding to the thread 121 formed on the container body 10 (cylindrical portion 14) is formed on the inner surface of the fitted portion 211.
 Oリング23は、キャップ本体21の内面側に配置される。このOリング23は、容器本体10にキャップ20を取り付けた場合に、キャップ20と容器本体10との間の液密性を維持する。 The O-ring 23 is disposed on the inner surface side of the cap body 21. The O-ring 23 maintains the liquid tightness between the cap 20 and the container body 10 when the cap 20 is attached to the container body 10.
 第2実施形態では、ひだ状に折り畳まれたフィルム体30は、図9及び図11に示すように、折線31が容器本体10Aの長手方向に沿うように容器本体10Aの内部に収容される。即ち、フィルム体30の表面は、容器本体10Aの長手方向に沿うように配置される。
 より詳細には、フィルム体30は、ひだ状に折り畳まれた状態で、折線31の延びる方向が高さ方向となるように筒状に丸められて容器本体10に収容される。
 第2実施形態では、ひだの高さH、つまり隣り合って配置される2つの折線31の間の長さは、円筒部14の半径r以下であり、より好ましくは、円筒部14の半径rの70%~90%である(図11参照)。
In 2nd Embodiment, as shown in FIG.9 and FIG.11, the film body 30 folded in the shape of a pleat is accommodated in the inside of 10 A of container main bodies so that the fold line 31 may follow the longitudinal direction of 10 A of container main bodies. That is, the surface of the film body 30 is disposed along the longitudinal direction of the container body 10A.
More specifically, the film body 30 is rolled into a cylindrical shape and accommodated in the container body 10 so that the extending direction of the fold line 31 is the height direction in a state of being folded in a pleat shape.
In the second embodiment, the height H of the folds, that is, the length between the two folding lines 31 arranged adjacent to each other is equal to or less than the radius r of the cylindrical portion 14, and more preferably, the radius r of the cylindrical portion 14. 70% to 90% (see FIG. 11).
 以上説明した第2実施形態の細胞培養容器1によれば、上述した(1)、(2)、(4)、(5)の効果を奏する他、以下のような効果を奏する。 According to the cell culture container 1 of 2nd Embodiment demonstrated above, there exist the following effects other than the effect of (1), (2), (4), (5) mentioned above.
 (6)容器本体10Aを筒状に構成すると共に、この容器本体10Aを円筒部14と縮径部15とを含んで構成した。これにより、培養した細胞を回収する場合に、容器本体10A及びフィルム体30の表面で培養した細胞を剥離させた後、この細胞培養容器1Aを遠心分離器に設置して遠心分離することで、培養した細胞を容易に筒状の容器本体10Aの底部に集められる。また、細胞を培養した後の細胞培養容器1Aを遠心分離した場合に、フィルム体30が容器本体10Aの先端側に移動することを防ぎつつ、細胞を縮径部15に集められる。よって、細胞培養容器1Aを用いた細胞培養の効率をより向上させられる。また、培養した細胞を別の容器に移すことなく回収できるので、細胞回収時にコンタミネーションを起こしにくくできる。 (6) The container body 10A was configured in a cylindrical shape, and the container body 10A was configured to include the cylindrical portion 14 and the reduced diameter portion 15. Thereby, when recovering the cultured cells, the cells cultured on the surface of the container body 10A and the film body 30 are peeled off, and then the cell culture container 1A is placed in a centrifuge and centrifuged. The cultured cells are easily collected at the bottom of the cylindrical container body 10A. Further, when the cell culture container 1A after culturing the cells is centrifuged, the cells are collected in the reduced diameter portion 15 while preventing the film body 30 from moving to the tip side of the container body 10A. Therefore, the efficiency of cell culture using the cell culture vessel 1A can be further improved. In addition, since the cultured cells can be collected without being transferred to another container, it is difficult to cause contamination during cell collection.
 (7)フィルム体30を、複数の折線31においてひだ状に折り畳むと共に、この折線が容器本体10Aの長手方向に沿うように容器本体10Aに収容した。これにより、容器本体10Aに収容するフィルム体30の表面積を増加させられるので、細胞が接着できる領域の面積をより増加させられる。また、折線31を容器本体10Aの長手方向に沿うように配置したので、遠心分離を行う場合において、フィルム体30の表面を遠心分離による分離方向(重力がかかる方向)に沿わせられる。よって、培養した細胞を容易に分離して筒状の容器本体10Aの底部に集められる。 (7) The film body 30 was folded in a pleated shape at a plurality of fold lines 31, and accommodated in the container body 10A so that the fold line was along the longitudinal direction of the container body 10A. Thereby, since the surface area of the film body 30 accommodated in 10 A of container main bodies can be increased, the area of the area | region which a cell can adhere | attach can be increased more. In addition, since the folding line 31 is arranged along the longitudinal direction of the container main body 10A, the surface of the film body 30 can be aligned in the separation direction (the direction in which gravity is applied) by centrifugation when performing centrifugation. Therefore, the cultured cells are easily separated and collected at the bottom of the cylindrical container body 10A.
 (8)フィルム体30を筒状に丸めた状態で容器本体10Aに収容した。これにより、ひだ状に折り畳んだフィルム体30を、より表面積を多くした状態で容器本体10Aに収容できる。また、容器本体10Aの内部において、フィルム体30を均等に配置できるので、細胞培養容器1Aに充填された培地の流動性に偏りを起こしにくくできる。よって、細胞培養の効率を更に向上させられる。 (8) The film body 30 was accommodated in the container body 10A in a state of being rolled into a cylindrical shape. Thereby, the film body 30 folded in a pleat shape can be accommodated in the container main body 10A with a larger surface area. Further, since the film body 30 can be evenly arranged inside the container body 10A, it is difficult to cause a bias in the fluidity of the medium filled in the cell culture container 1A. Therefore, the efficiency of cell culture can be further improved.
 以上、本発明の細胞培養容器の好ましい各実施形態につき説明したが、本発明は、上述の実施形態に制限されるものではなく、適宜変更が可能である。 The preferred embodiments of the cell culture container of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and can be appropriately changed.
 例えば、容器本体10の内部におけるフィルム体30の配置は、第1実施形態及び第2実施形態の配置に限らない。即ち、図12に示すように、第2実施形態の容器本体10Aに、この容器本体10Aの内径よりも小さい板状のPETフィルム32を厚さ方向に所定間隔をあけて複数枚層状に配置する共に、これら複数枚のPETフィルム32を容器本体10の内径と略等しい円板状の支持板33により一体化させてフィルム体30を構成してもよい。また、図13に示すように、PETフィルムを渦巻き状に丸めた状態で容器本体10に収容してフィルム体30を構成してもよい。また、図14に示すように、ひだ状に折り畳んだフィルム体30を、筒状に丸めることなく容器本体10Aに収容してもよい。 For example, the arrangement of the film body 30 inside the container body 10 is not limited to the arrangement of the first embodiment and the second embodiment. That is, as shown in FIG. 12, a plate-like PET film 32 smaller than the inner diameter of the container main body 10A is arranged in a plurality of layers at predetermined intervals in the thickness direction on the container main body 10A of the second embodiment. In addition, the film body 30 may be configured by integrating the plurality of PET films 32 with a disk-shaped support plate 33 that is substantially equal to the inner diameter of the container body 10. Moreover, as shown in FIG. 13, you may accommodate the PET film in the container main body 10 in the state rolled round, and may comprise the film body 30. As shown in FIG. Moreover, as shown in FIG. 14, you may accommodate the film body 30 folded in the shape of a pleat in 10 A of container main bodies, without rounding into a cylinder shape.
 また、第1実施形態及び第2実施形態では、フィルム体30をPETフィルムにより構成したが、これに限らない。即ち、フィルム体を、ポリスチレンフィルム、ポリプロピレンフィルム等の他の合成樹脂フィルムにより構成してもよい。 In the first embodiment and the second embodiment, the film body 30 is made of a PET film, but the present invention is not limited to this. That is, you may comprise a film body with other synthetic resin films, such as a polystyrene film and a polypropylene film.
 また、容器本体10の形状は、第1実施形態及び第2実施形態の形状に限らない。即ち、容器本体を、直方体形状や立方体形状に形成してもよい。 Further, the shape of the container body 10 is not limited to the shape of the first embodiment and the second embodiment. That is, the container body may be formed in a rectangular parallelepiped shape or a cubic shape.
 1,1A 細胞培養容器
 10,10A 容器本体
 11,11A 開口部
 12 本体部
 13 首部
 14 円筒部
 15 縮径部
 20 キャップ
 22 ガス透過領域
 30 フィルム体
 31 折線
DESCRIPTION OF SYMBOLS 1,1A Cell culture container 10,10A Container main body 11,11A Opening part 12 Main body part 13 Neck part 14 Cylindrical part 15 Reduced diameter part 20 Cap 22 Gas permeation area 30 Film body 31 Folding line

Claims (10)

  1.  開口部を有する容器本体と、
     前記開口部に着脱可能に取り付けられるキャップと、
     前記キャップに設けられ、液密性を有し、かつ、気体の流通を許容するガス透過領域と、
     前記容器本体の内部に配置され、培養細胞が接着可能なフィルム体と、を備える細胞培養容器。
    A container body having an opening;
    A cap detachably attached to the opening;
    A gas permeable region provided in the cap, having liquid tightness and allowing a gas flow;
    A cell culture container comprising: a film body disposed inside the container main body and capable of adhering cultured cells.
  2.  前記フィルム体は、所定間隔をあけて互いに平行に延びる複数の折線によりひだ状に折り畳まれた状態で前記容器本体に収容される請求項1に記載の細胞培養容器。 The cell culture container according to claim 1, wherein the film body is accommodated in the container body in a state of being folded in a pleated shape by a plurality of fold lines extending in parallel with each other at a predetermined interval.
  3.  前記容器本体は、
      底壁部、該底壁部の周縁から起立する側壁部、及び該側壁部の起立端に前記底壁部と平行に配置される上壁部を有する本体部と、
      一端側が前記側壁部に接続され他端側に前記開口部が形成される筒状の首部と、を備え、
     前記フィルム体における隣り合って配置される2つの前記折線の間の長さは、前記開口部の径以下である請求項2に記載の細胞培養容器。
    The container body is
    A main body portion having a bottom wall portion, a side wall portion standing up from a peripheral edge of the bottom wall portion, and an upper wall portion arranged in parallel to the bottom wall portion at an upright end of the side wall portion;
    A cylindrical neck having one end connected to the side wall and the opening formed on the other end;
    The cell culture container according to claim 2, wherein a length between two fold lines arranged adjacent to each other in the film body is equal to or less than a diameter of the opening.
  4.  前記容器本体は、
      一端側に前記開口部が形成される円筒部と、
      前記円筒部の他端側に配置され、基端側から先端側に向かって縮径する縮径部と、を備える請求項1に記載の細胞培養容器。
    The container body is
    A cylindrical portion in which the opening is formed on one end side;
    The cell culture container according to claim 1, further comprising a reduced diameter portion disposed on the other end side of the cylindrical portion and having a diameter reduced from the proximal end side toward the distal end side.
  5.  前記フィルム体は、所定間隔をあけて互いに平行に延びる複数の折線によりひだ状に折り畳まれると共に、該複数の折線が前記容器本体の長手方向に沿って配置される請求項4に記載の細胞培養容器。 The cell culture according to claim 4, wherein the film body is folded in a pleated shape by a plurality of fold lines extending in parallel with each other at a predetermined interval, and the plurality of fold lines are arranged along a longitudinal direction of the container body. container.
  6.  前記複数の折線が、該細胞培養容器を遠心する際に重力がかかる方向と平行である請求項5に記載の細胞培養容器。 The cell culture container according to claim 5, wherein the plurality of broken lines are parallel to a direction in which gravity is applied when the cell culture container is centrifuged.
  7.  前記フィルム体は、筒状に丸められた状態で前記容器本体の内部に収容される請求項5又は6に記載の細胞培養容器。 The cell culture container according to claim 5 or 6, wherein the film body is accommodated inside the container body in a state of being rolled into a cylindrical shape.
  8.  隣り合って配置される2つの前記折線の間の長さは、前記円筒部の半径以下である請求項7に記載の細胞培養容器。 The cell culture container according to claim 7, wherein a length between two fold lines arranged adjacent to each other is equal to or less than a radius of the cylindrical portion.
  9.  前記フィルム体は、ポリエチレンテレフタレートフィルムにより構成される請求項1~8のいずれかに記載の細胞培養容器。 The cell culture container according to any one of claims 1 to 8, wherein the film body is composed of a polyethylene terephthalate film.
  10.  前記フィルム体の表面には、電荷処理が施されている請求項1~9のいずれかに記載の細胞培養容器。 10. The cell culture container according to claim 1, wherein the surface of the film body is subjected to charge treatment.
PCT/JP2014/057390 2013-03-22 2014-03-18 Cell culture vessel WO2014148508A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-059703 2013-03-22
JP2013059703A JP6153357B2 (en) 2013-03-22 2013-03-22 Cell culture vessel

Publications (1)

Publication Number Publication Date
WO2014148508A1 true WO2014148508A1 (en) 2014-09-25

Family

ID=51580185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057390 WO2014148508A1 (en) 2013-03-22 2014-03-18 Cell culture vessel

Country Status (2)

Country Link
JP (1) JP6153357B2 (en)
WO (1) WO2014148508A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3401387A4 (en) * 2016-01-08 2019-10-16 JTEC Corporation Rotating culture device and culture vessel for use in rotating culture device
WO2021132121A1 (en) * 2019-12-26 2021-07-01 東洋製罐グループホールディングス株式会社 Adherent cell culture vessel, and method for producing adherent cell culture vessel
EP4023742A4 (en) * 2019-10-25 2022-11-23 Toyo Seikan Group Holdings, Ltd. Adherent cell culture substrate, culture vessel, peeling method of cell, and method for manufacturing adherent cell culture substrate
EP4253518A1 (en) * 2022-03-31 2023-10-04 Pall Corporation Cell culture arrangement, device and method of use

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6732245B2 (en) * 2016-03-31 2020-07-29 株式会社ツーセル Cell culture device
EP3505613A1 (en) * 2017-12-27 2019-07-03 Industrial Technology Research Institute Cell culture module, cell culture system and cell culture method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003009845A (en) * 2001-06-27 2003-01-14 Menicon Co Ltd Method for storing/transporting membrane tissue
JP2004515237A (en) * 2000-12-08 2004-05-27 フレックスセル・インターナショナル・コーポレイション Methods and apparatus for growing and dynamically acclimating cell cultures
JP2007500505A (en) * 2003-07-31 2007-01-18 ブルー メンブレーンス ゲーエムベーハー Cell culture and proliferation method
JP2009502165A (en) * 2005-07-26 2009-01-29 コーニング インコーポレイテッド Multi-layer cell culture device
JP2010509935A (en) * 2006-11-20 2010-04-02 コーニング インコーポレイテッド Large-scale cell culture vessel
JP2010518879A (en) * 2007-02-26 2010-06-03 コーニング インコーポレイテッド Apparatus and method for reducing bubble formation in cell culture
JP2012192348A (en) * 2011-03-16 2012-10-11 Fujifilm Corp Crystalline polymer microporous film, method for manufacturing the same, and filtration filter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004515237A (en) * 2000-12-08 2004-05-27 フレックスセル・インターナショナル・コーポレイション Methods and apparatus for growing and dynamically acclimating cell cultures
JP2003009845A (en) * 2001-06-27 2003-01-14 Menicon Co Ltd Method for storing/transporting membrane tissue
JP2007500505A (en) * 2003-07-31 2007-01-18 ブルー メンブレーンス ゲーエムベーハー Cell culture and proliferation method
JP2009502165A (en) * 2005-07-26 2009-01-29 コーニング インコーポレイテッド Multi-layer cell culture device
JP2010509935A (en) * 2006-11-20 2010-04-02 コーニング インコーポレイテッド Large-scale cell culture vessel
JP2010518879A (en) * 2007-02-26 2010-06-03 コーニング インコーポレイテッド Apparatus and method for reducing bubble formation in cell culture
JP2012192348A (en) * 2011-03-16 2012-10-11 Fujifilm Corp Crystalline polymer microporous film, method for manufacturing the same, and filtration filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3401387A4 (en) * 2016-01-08 2019-10-16 JTEC Corporation Rotating culture device and culture vessel for use in rotating culture device
EP4023742A4 (en) * 2019-10-25 2022-11-23 Toyo Seikan Group Holdings, Ltd. Adherent cell culture substrate, culture vessel, peeling method of cell, and method for manufacturing adherent cell culture substrate
WO2021132121A1 (en) * 2019-12-26 2021-07-01 東洋製罐グループホールディングス株式会社 Adherent cell culture vessel, and method for producing adherent cell culture vessel
EP4253518A1 (en) * 2022-03-31 2023-10-04 Pall Corporation Cell culture arrangement, device and method of use

Also Published As

Publication number Publication date
JP6153357B2 (en) 2017-06-28
JP2014183753A (en) 2014-10-02

Similar Documents

Publication Publication Date Title
JP6153357B2 (en) Cell culture vessel
JP6524188B2 (en) Method of separating live cell products by cap filtration
US5527705A (en) Roller bottle for trans-membrane co-culture of cells and method for its use
US20170073625A1 (en) Systems and methods for growing and harvesting cells
WO2016117281A1 (en) Cell culture container, cell culture method, and method for using cell culture container
JP6588845B2 (en) Cell culture vessel and jig for fixing cell culture vessel
JP6169869B2 (en) Cell culture vessel
US10053663B2 (en) Centrifugation chamber with gas permeable membrane layers for cell cultivation
JP2016059355A (en) Cell culture container
EP3421587B1 (en) Culture-containing production method and immobilizing apparatus
WO2018038032A1 (en) Annular culture container, cell culture system, and cell culture method
JP2016007170A (en) Cell culture vessel
CN105886398A (en) Soft-film bioreactor with three-dimensional inner cavity and supporting frame of soft-film bioreactor
US10308906B2 (en) Cell culture apparatus and method of culturing cells
JP6732245B2 (en) Cell culture device
EP2821145B1 (en) Centrifugation chamber with gas-permeable membranes layers for cell cultivation
JP2007222037A (en) Cell-culturing and centrifuging tube
JP2021052619A (en) Base film body and cell culture device using the same
JP2015012862A (en) Centrifuge chamber with gas permeable membrane for cell cultivation
WO2018066287A1 (en) Cell culture container, cell culture system, cell culture method and method for manufacturing cell culture container
WO2019017463A1 (en) Fragile object preserving device
JP2021052620A (en) Method for manufacturing base film body
CN216712123U (en) Ventilative digestion culture dish
WO2022210034A1 (en) Cell culture vessel and method for culturing cells
JP2004097045A (en) Culture container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14770595

Country of ref document: EP

Kind code of ref document: A1