WO2014148313A1 - Antenna apparatus and electronic device - Google Patents

Antenna apparatus and electronic device Download PDF

Info

Publication number
WO2014148313A1
WO2014148313A1 PCT/JP2014/056314 JP2014056314W WO2014148313A1 WO 2014148313 A1 WO2014148313 A1 WO 2014148313A1 JP 2014056314 W JP2014056314 W JP 2014056314W WO 2014148313 A1 WO2014148313 A1 WO 2014148313A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
magnetic
resin layer
loop antenna
loop
Prior art date
Application number
PCT/JP2014/056314
Other languages
French (fr)
Japanese (ja)
Inventor
久村 達雄
佑介 久保
弘幸 良尊
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2014148313A1 publication Critical patent/WO2014148313A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material

Definitions

  • the present invention relates to an antenna device having a plurality of antennas, and more particularly to an antenna device in which a plurality of antennas are stacked and an electronic apparatus using the antenna device.
  • Recent wireless communication devices are equipped with a plurality of RF antennas such as a telephone communication antenna, a GPS antenna, a wireless LAN / BLUETOOTH (registered trademark) antenna, and an RFID (Radio Frequency Identification).
  • antenna coils for power transmission have also been mounted.
  • Examples of the power transmission method used in the non-contact charging method include an electromagnetic induction method, a radio wave reception method, and a magnetic resonance method. All of these transmit power by electromagnetic induction or magnetic resonance between the primary side coil and the secondary side coil.
  • a general antenna has a configuration in which a magnetic flux concentrating magnetic shielding sheet 42 is attached to a spiral coil-shaped loop antenna element 2 with an adhesive layer 41 coated with an adhesive. Yes.
  • each antenna occupies a mounting space in an electronic device in which the antenna is mounted, so that the mounting area increases with an increase in the type and quantity of antennas to be mounted. For this reason, there is an increasing demand for downsizing and thinning of these antennas, as well as integration and integration.
  • Non-Patent Document 1 reports that the ferrite core has a significant decrease in DC superposition characteristics due to magnetic saturation.
  • a metal magnetic foil having a high saturation magnetic flux density is generally as thin as several tens of microns, the problem of magnetic saturation occurs similarly if it is not used by overlapping several tens of sheets.
  • a wireless power consortium (Wireless Power Consortium, WPC) defines a magnet-mounted transmission coil unit (design A1 described in Non-Patent Document 2) and is already on the market.
  • WPC Wireless Power Consortium
  • the resonance frequency on the power receiving coil side is greatly deviated, resulting in a problem that the transmission efficiency of the transmission power from the primary side to the secondary side is lowered and the heat generation of the power receiving coil is increased.
  • transmission itself cannot be performed if the resonance frequency shift is significant.
  • an object of the present invention is to provide an antenna device having improved antenna performance while efficiently arranging a plurality of antennas in a space-saving manner.
  • an antenna device includes a loop antenna and one or more other antennas arranged on the inner diameter of the loop antenna.
  • the loop antenna and other antennas have one or more magnetic resin layers containing magnetic particles. At least one of the loop antenna or one or more other antennas is at least partially embedded in the magnetic resin layer.
  • an electronic apparatus includes an antenna device having a loop antenna and one or more other antennas arranged on the inner diameter of the loop antenna.
  • the loop antenna and other antennas have one or more magnetic resin layers containing magnetic particles. At least one of the loop antenna or one or more other antennas is at least partially embedded in the magnetic resin layer.
  • At least one of the one or more magnetic resin layers has a spherical shape or a dimensional ratio represented by a ratio of a major axis to a minor axis. 6 or less spheroidal magnetic particles are included.
  • one or more other antennas are arranged on the inner diameter of the loop antenna, so that the mounting area of the antenna device becomes the occupied area of the loop antenna, and the mounting space can be reduced.
  • the magnetic shield layer has a magnetic resin layer with little deterioration of magnetic properties due to magnetic saturation, there is little change in coil inductance and stable communication even in environments where a strong magnetic field is applied. Can do.
  • FIG. 1A is a plan view showing a configuration example of an antenna device according to an embodiment of the present invention.
  • 1B is a cross-sectional view taken along the line AA ′ of FIG. 1A.
  • FIG. 2A is a plan view showing a modification of the antenna device according to one embodiment of the present invention.
  • 2B is a cross-sectional view taken along the line AA ′ of FIG. 2A.
  • FIG. 3A is a plan view showing a modification of the antenna device according to one embodiment of the present invention.
  • 3B is a cross-sectional view taken along the line AA ′ of FIG. 3A.
  • FIG. 4A is a plan view showing a modification of the antenna device according to one embodiment of the present invention.
  • FIG. 4B is a cross-sectional view taken along the line AA ′ of FIG. 4A.
  • FIG. 5A is a plan view showing a modification of the antenna device according to one embodiment of the present invention.
  • FIG. 5B is a cross-sectional view taken along line AA ′ in FIG. 5A.
  • FIG. 6A is a plan view showing a modification of the antenna device according to one embodiment of the present invention.
  • 6B is a cross-sectional view taken along the line AA ′ of FIG. 6A.
  • FIG. 7A is a plan view showing a modification of the antenna device according to one embodiment of the present invention.
  • FIG. 7B is a cross-sectional view taken along line AA ′ in FIG. 7A.
  • FIG. 8 is a block diagram illustrating a configuration example of a contactless communication system using an antenna device.
  • FIG. 9 is a block diagram showing the main part of the resonance circuit.
  • FIG. 10 is a block diagram illustrating a configuration example of a non-contact charging system using an antenna device.
  • FIG. 11 is a diagram illustrating the configuration of a measurement antenna device for measuring the influence of the magnetic resin layer and the magnetic layer on the magnetic characteristics.
  • 11A is a plan view
  • FIG. 11B is a cross-sectional view taken along the line AA ′ of FIG. 11A, and is a cross-sectional view when the magnetic shield layer is only a magnetic resin layer.
  • FIG. 11C is a cross-sectional view taken along the line AA of FIG.
  • FIG. 12 is a side view showing a configuration of a coil module for characteristic evaluation of the present invention.
  • 12A is a side view showing a configuration of a single coil module
  • FIG. 12B is a side view of the coil module shown together with a transmission coil unit including a magnet that generates a DC magnetic field.
  • FIG. 13 is a graph plotted by changing the thickness of the magnetic shield layer with the inductance change value when the DC magnetic field is applied relative to the inductance value of the coil when no DC magnetic field is applied as the relative value ⁇ L of the inductance. .
  • FIG. 14 is a graph of a comparative example in which the relative value ⁇ L of inductance is plotted by changing the thickness of the magnetic shield layer.
  • FIG. 14A shows a case where a relative magnetic permeability is about 100 using a magnetic shield layer using sendust having a major axis / minor axis of about 50.
  • FIG. 14B shows a relative permeability of 1500 using MnZn ferrite as the magnetic shield layer. ⁇ L in the case of the degree is shown.
  • FIG. 15 is a graph obtained by measuring a difference in inductance value when a magnetic layer is added to the magnetic resin layer.
  • FIG. 15A is a diagram in which measured values of inductance in the absence of a DC magnetic field and FIG. 15B in the presence of a DC magnetic field are plotted against the thickness of the magnetic shield layer.
  • FIG. 16A is a plan view of a conventional single antenna device. 16B is a cross-sectional view taken along the line AA ′ of FIG. 16A.
  • an antenna device 10 has a spiral coil shape formed by spirally winding a conductive wire 1 on one surface of a flat support base 8.
  • a loop antenna part 3 having the loop antenna element 2 and an antenna part 13 in which the entire antenna element 12 around which the conducting wire 11 is wound are embedded in the magnetic resin layer 4a are provided.
  • the magnetic resin layer 4a of the antenna part 13 is extended on the outer peripheral part of the antenna part 13, and the magnetic sheet 4d is placed on the upper surface of the extended part of the antenna part 13 at a position overlapping the loop antenna element 2.
  • the entire layer 4a is embedded, and the upper surface is disposed so as to be exposed from the magnetic resin layer 4a.
  • the loop antenna unit 3 is disposed on the upper surface of the antenna unit 13.
  • Another magnetic resin layer 4b is disposed on the lower surface of the magnetic resin layer 4a, that is, the surface opposite to the side where the antenna element 12 is embedded.
  • the antenna unit 13 is arranged on the inner diameter of the loop antenna unit 3, it is preferable to arrange the antenna units so that the central axes of the respective antennas substantially coincide.
  • the antenna element 12 and the loop antenna element 2 can be electrically connected to an external circuit through lead wires from the conductive wires 1 and 11 embedded in the magnetic resin layers 4a and 4b. Since the magnetic resin layers 4a and 4b can be easily deformed in an uncured state, the lead wires are embedded in the magnetic resin layers 4a and 4b in a pressing process at the time of manufacturing described later.
  • the antenna element 12 is not limited to the loop antenna as shown in FIGS. 1A and 1B, and may be another antenna element such as a cellular phone communication such as a planar antenna or a dielectric antenna.
  • the magnetic particles used for the magnetic resin layer 4a spherical, flat, or pulverized powders having a particle size of several ⁇ m to several tens of ⁇ m can be used. You may mix and use powder.
  • the complex permeability has frequency characteristics, and loss occurs due to the skin effect when the operating frequency is high. Adjust particle size and shape.
  • the magnetic particles used in the magnetic resin layer 4b are spherical, slender (cigar type), or flat (disc type) spheroids with a particle size of several to 100 ⁇ m, and their dimensional ratio (major axis / minor axis). Is 6 or less. Also in this case, not only a single magnetic powder but also powders having different powder diameters, materials, and dimensional ratios may be mixed and used.
  • the magnetic resin layer 4a is a layer in which the conductive wire 11 is embedded, the filling rate of the magnetic powder is reduced to ensure fluidity and deformability in an uncured state, whereas the magnetic resin layer 4b
  • the filling rate of the magnetic powder is set to be larger than that of the magnetic resin layer 4a so that the magnetic shield characteristics are improved.
  • a powder magnetic core obtained by mixing and molding metal magnetic powder, resin, lubricant, and the like can also be used as the magnetic resin layer 4b.
  • the particle shape of the magnetic resin layer 4b is a spheroid having a small dimensional ratio from a spherical shape, and has a large demagnetizing field coefficient and is not easily saturated with an external magnetic field. Since the particles having a large demagnetizing field coefficient form the magnetic resin layer 4b through the resin, the magnetic characteristics exhibit little influence of magnetic saturation even in a large DC magnetic field environment.
  • the magnetic resin layers 4a and 4b contain magnetic particles made of soft magnetic powder and a resin as a binder.
  • the magnetic particles are oxide magnetic materials such as ferrite, Fe-based, Co-based, Ni-based, Fe-Ni-based, Fe-Co-based, Fe-Al-based, Fe-Si-based, Fe-Si-Al-based, Fe- Ni-Si-Al-based crystal system, microcrystalline metal magnetic material, or Fe-Si-B system, Fe-Si-BC system, Co-Si-B system, Co-Zr system, Co-Nb Or amorphous metal magnetic particles such as Co—Ta.
  • the inductance value of the antenna device 10 is determined by the real part magnetic permeability (hereinafter simply referred to as magnetic permeability) of the magnetic material, but the magnetic permeability can be adjusted by the mixing ratio of the magnetic particles and the resin. . Since the relationship between the average magnetic permeability of the magnetic resin layers 4a and 4b and the magnetic permeability of the magnetic particles to be blended generally follows the logarithmic mixing rule with respect to the blending amount, the volume filling rate at which the interaction between the particles increases. It is preferable to set it to 40 vol% or more. The heat conduction characteristics of the magnetic resin layers 4a and 4b are also improved as the filling rate of the magnetic particles is increased.
  • the magnetic resin layers 4a and 4b are not limited to being composed of a single magnetic material. Two or more kinds of magnetic materials may be mixed and used, and a magnetic resin layer may be formed by laminating in multiple layers. Moreover, even if it is the same magnetic material, the particle size and / or shape of magnetic particles may be selected and mixed, or may be laminated in multiple layers. Further, the magnetic material or composition may be changed for each antenna. In addition to the magnetic particles, the magnetic resin layers 4a and 4b can contain a filler for improving thermal conductivity, particle filling property, and the like.
  • the magnetic sheet 4d is used for magnetic shielding of the loop antenna element 2, and is made of an oxide magnetic material such as ferrite, Fe-based, Co-based, Ni-based, Fe-Ni-based, Fe-Co-based, Fe-Al-based. Fe-Si-based, Fe-Si-Al-based, Fe-Ni-Si-Al-based crystalline or microcrystalline metal magnetic materials, or Fe-Si-B-based, Fe-Si-BC-based, Amorphous metal magnetic materials such as Co—Si—B, Co—Zr, Co—Nb, and Co—Ta can be used. In addition, a sheet prepared by compression molding or baking these magnetic particles with a binder may be used. The magnetic sheet 4d may be omitted when the performance of the antenna is sufficient or when it is affected by a DC magnetic field described later.
  • a resin that is cured by heat, ultraviolet irradiation, or the like is used.
  • a known material such as a resin such as an epoxy resin, a phenol resin, a melamine resin, a urea resin, or an unsaturated polyester, or a rubber such as silicone rubber, urethane rubber, acrylic rubber, butyl rubber, or ethylene propylene rubber is used.
  • a surface treatment agent such as a flame retardant, a reaction modifier, a crosslinking agent, or a silane coupling agent may be added to the above-described resin or rubber.
  • the conducting wire 11 forming the antenna element 12 is used when the antenna unit 13 is used as a secondary charging coil for non-contact power feeding having a charging output capacity of about 5 W, and when used at a frequency of about 120 kHz, 0 is used. It is preferable to use a single wire made of Cu or an alloy containing Cu as a main component with a diameter of 20 mm to 0.45 mm. Alternatively, in order to reduce the skin effect of the conductive wire 11, a parallel line formed by bundling a plurality of fine wires thinner than the above-mentioned single wire, a knitted wire may be used, and one layer using a thin rectangular wire or a flat wire, Or it is good also as alpha winding of 2 layers.
  • the loop antenna unit 3 can also be arbitrarily determined in consideration of the frequency and current capacity used.
  • the loop antenna element 2 and the antenna element 12 a substrate in which a coil is formed by patterning a conductor on one side or both sides of a sub-substrate such as a phenol substrate or a flexible substrate such as polyimide can be used.
  • a substrate in which a coil is formed by patterning a conductor on one side or both sides of a sub-substrate such as a phenol substrate or a flexible substrate such as polyimide
  • the thickness of the antenna element can be reduced, so that the thickness of the antenna device 10 can be further reduced. Since a relatively large current flows in a contactless power supply application, the antenna element 12 is constituted by a coil using, for example, a single wire or a double wire, and the loop antenna element 2 for communication is patterned on one or both surfaces of a base material.
  • the coil may be formed of a so-called FPC (Flexible Printed Circuit) coil.
  • the number of turns can be increased by patterning the conductive wires 1 on both sides of the substrate and connecting the respective patterns in series via through holes.
  • the current capacity can be increased by connecting the conductive wires 1 patterned on both surfaces of the substrate in parallel through the through holes.
  • the antenna device 10 of the present invention configured as described above is formed by stacking a plurality of antennas in the thickness direction, space saving can be realized.
  • the antenna element 12 is embedded in the magnetic resin layer 4a, the magnetic flux density near the coil can be increased, and a desired inductance value can be obtained even with a small number of turns. be able to. As a result, the number of turns can be reduced in order to obtain a desired inductance value, so that the direct current resistance of the conducting wire 11 can be reduced and a reduction in loss can be achieved.
  • the heat conduction characteristics of the magnetic resin layer 4a can radiate heat more efficiently, and it is also possible to reduce the heat radiation space in the electronic device due to a decrease in heat generation.
  • the magnetic resin layer 4b serving as the magnetic shield layer of the antenna unit 13 can be widened, and the magnetic resin layer 4b is configured to be hard to be magnetically saturated, so there is no strong magnetic field in the vicinity. Regardless, good magnetic shielding performance can be exhibited.
  • sheets used for the magnetic resin layers 4a and 4b are prepared.
  • spherical metal magnetic particles having an average particle diameter of 5 ⁇ m are added to an acrylic resin together with a diluent and kneaded. This is processed using a sheet molding machine and dried to form a sheet having a predetermined thickness.
  • a sheet is formed in the same manner as the magnetic resin layer 4a. In order to enhance the magnetic shielding performance, the magnetic particles are filled more than in the case of the magnetic resin layer 4a.
  • spherical amorphous metal magnetic particles having an average particle size of 25 ⁇ m and 5 ⁇ m are used, and the filling rate is increased by inserting particles having a small particle size between particles having a large particle size.
  • Each sheet formed in this manner is processed into a predetermined shape to form magnetic resin layers 4a and 4b.
  • the magnetic resin layer 4b is disposed in a mold and heated and pressed to obtain a hardened magnetic resin layer 4b having a predetermined shape.
  • a powder-molded material may be used as the magnetic resin layer 4b.
  • the loop antenna part 3 in which the loop antenna element 2 and the magnetic sheet 4d are bonded to the support base 8 and the antenna element 12 are placed so as to be embedded in the magnetic resin layer 4a having a predetermined thickness.
  • the lead wire of the lead wire 11 and the lead wire of the lead wire 1 penetrating the support base material 8 are on the magnetic resin layer 4b side, and the end portion is provided on a part of the outer frame of the mold. Install so that it goes out along the groove.
  • the antenna device 10 is completed by heating and pressing to cure the magnetic resin layer 4a and removing it from the mold.
  • the lead wires of the conducting wires 1 and 11 are embedded in the magnetic resin layers 4a and 4b, and coil end portions for connection to an external circuit are drawn out.
  • the amount of the magnetic resin layer 4a may be an amount for completely embedding the loop antenna element 2 and the antenna element 12, or an amount for exposing a part of the loop antenna element 2 and the antenna element 12. Further, the position of the magnetic resin layer 4a may be a position embedded so as to fill all or part of the outer diameter portion or the inner diameter portion of the loop antenna element 2 and / or the antenna element 12.
  • the loop antenna element 2 and the antenna element 12 and the magnetic resin layers 4a and 4b are fixed by the manufacturing method as described above, it is not necessary to use an adhesive. Accordingly, the number of steps for applying the adhesive is reduced, and the antenna device 10 can be made thinner by the amount of the adhesive layer formed by applying the adhesive.
  • the magnetic resin layers 4a and 4b are kneaded with the resin as described above, they do not cause breakage such as cracking against an external impact, so it is necessary to stick a protective sheet on the surface. There is no. Therefore, the protective sheet sticking process can be reduced, and an increase in the thickness of the antenna device over the protective sheet can be suppressed.
  • the magnetic resin layers 4a and 4b are formed by kneading magnetic particles and a resin and have an appropriate flexibility even after curing. Therefore, the magnetic resin layers 4a and 4b are processed in accordance with the shape inside the casing of the electronic device. Can be installed.
  • [Modification 1] 2A and 2B are examples in which the cross-sectional structure of the magnetic resin layer 4b is convex.
  • a magnetic material having higher permeability on the inner diameter side of the antenna element 12, the inductance of the antenna and the coupling coefficient between the transmitting and receiving antennas can be increased, and the communication characteristics can be improved.
  • the antenna device 10a includes a loop antenna unit 3 having a spiral coil-shaped loop antenna element 2 formed by winding a conducting wire 1 around a support base 8, and an antenna having a conducting wire 11 wound in a spiral shape.
  • the entire element 12 includes an antenna portion 13 embedded in the magnetic resin layer 4a.
  • the magnetic resin layer 4a of the antenna part 13 is extended on the outer peripheral part of the antenna part 13, and the magnetic sheet 4d is placed on the upper surface of the extended part of the antenna part 13 at a position overlapping the loop antenna element 2.
  • the entire layer 4a is embedded, and the upper surface is disposed so as to be exposed from the magnetic resin layer 4a.
  • the loop antenna unit 3 is disposed on the upper surface of the antenna unit 13.
  • Another magnetic resin layer 4b is disposed on the lower surface of the magnetic resin layer 4a, that is, the surface opposite to the side where the antenna element 12 is embedded.
  • the magnetic resin layer 4b is disposed on the inner diameter side of the loop antenna element 2 and on the lower surface of the magnetic resin layer 4a so as to fill the vicinity of the center of the inner diameter of the loop antenna element 2 until the surface is exposed. .
  • the shape of the magnetic resin layer 4b is not limited to a flat plate shape as shown in FIGS. 1A and 1B or a convex shape as shown in FIGS. 2A and 2B.
  • the size and shape of the magnetic resin layer 4b can be arbitrarily set according to the required specifications such as the size and communication characteristics of the antenna device. Further, since the magnetic resin layer 4a flows by pressing, the shape, thickness and the like can be controlled, and the position where the magnetic resin layer 4a is filled is, for example, only near the inner diameter side of the antenna element 12, Arbitrary control such as extending between the antenna element 2 and the antenna element 12 is possible.
  • the magnetic layer 4c is disposed on the lower surface of the magnetic resin layer 4b in order to further improve the magnetic shield characteristics. Since the magnetic resin layer 4b is obtained by blending magnetic particles in a resin, the magnetic permeability is lower than that of a bulk material having a high magnetic permeability configuration. For this reason, the magnetic shielding effect can be enhanced by adding the magnetic layer 4c having a high magnetic permeability to the magnetic resin layer 4b.
  • the magnetic layer 4c is made of a magnetic material having a high magnetic permeability and will be described later, it is generally a material that is easily magnetically saturated.
  • the magnetic resin layer 4b is mainly used, and the magnetic layer 4c is supplementarily added.
  • the magnetic layer 4c is disposed on the lower surface side of the magnetic resin layer 4b in FIGS. 3A and 3B, but may be used so as to be embedded in the upper surface of the magnetic resin layer 4b or inside the magnetic resin layer 4b. Moreover, it can be used as an arbitrary shape such as a smaller shape or a larger shape than the magnetic resin layer 4b.
  • the magnetic layer 4c is a material having a high magnetic permeability, and is a magnetic oxide such as ferrite, Fe-based, Co-based, Ni-based, Fe-Ni-based, Fe-Co-based, Fe-Al-based, Fe-Si-based. , Fe-Si-Al-based, Fe-Ni-Si-Al-based crystalline, microcrystalline metallic magnetic materials, or Fe-Si-B, Fe-Si-BC, Co-Si-B Amorphous metal magnetic materials such as Co, Zr, Co—Nb, and Co—Ta can be used.
  • a magnetic oxide such as ferrite, Fe-based, Co-based, Ni-based, Fe-Ni-based, Fe-Co-based, Fe-Al-based, Fe-Si-based. , Fe-Si-Al-based, Fe-Ni-Si-Al-based crystalline, microcrystalline metallic magnetic materials, or Fe-Si-B, Fe-Si-BC, Co-Si-
  • a sheet prepared by kneading can also be used.
  • a lead-out portion 6 is further provided in the magnetic resin layer 4b and the magnetic layer 4c for storing lead-out wires of the conducting wires 1 and 11.
  • the lead portions 6 are provided in the magnetic resin layer 4b or the magnetic layer 4c or both.
  • the antenna device 10 can be reduced in height by storing the lead wires of the conducting wires 1 and 11.
  • [Modification 3] 4A and 4B show an example in which another antenna element 22 is provided on the inner diameter side of the loop antenna element 2.
  • the antenna device 10 c has a loop antenna element 2 composed of a spiral conductive wire 1 and an antenna element 22 composed of a spiral conductive wire 21 on the inner diameter of the loop antenna element 2 on the same support base 8.
  • the magnetic resin layer 4a of the antenna part 13 is extended on the outer peripheral part of the antenna part 13, and the magnetic sheet 4d is placed on the upper surface of the extended part of the antenna part 13 at a position overlapping the loop antenna element 2.
  • the entire layer 4a is embedded, and the upper surface is disposed so as to be exposed from the magnetic resin layer 4a.
  • the loop antenna unit 3 and the antenna unit 23 are disposed on the upper surface of the antenna unit 13.
  • Another magnetic resin layer 4b is disposed on the lower surface of the magnetic resin layer 4a, that is, the surface opposite to the side where the antenna element 12 is embedded.
  • the loop antenna element 2 constitutes the loop antenna portion 3 together with the magnetic sheet 4d and the magnetic resin layers 4a and 4b, and the antenna element 22 arranged on the inner diameter of the loop antenna element 2 includes the antenna portion 23 together with the magnetic resin layers 4a and 4b.
  • the antenna element 12 constitutes an antenna portion 13 together with the magnetic resin layers 4a and 4b.
  • the antenna unit 13 can be used for non-contact power feeding
  • the loop antenna unit 3 can be used for an NFC antenna
  • the antenna unit 23 can be used as a foreign object detection coil.
  • the loop antenna unit 3 can be used for non-contact power feeding
  • the antenna unit 23 can be used for another communication antenna.
  • the loop antenna element 2 and the antenna element 12 are configured with respect to the same support base material 8, but the antenna element 12 and another antenna element 22 are formed using different support base materials, It is good also as a structure arrange
  • the magnetic sheet 4d used for the loop antenna element 2 is omitted below the other antenna element 22, but a magnetic layer is provided to improve the characteristics as with the loop antenna element 2. You may do it. In this case, it is necessary to pay attention to the characteristics, size, and arrangement location when using the shape and pattern of the conductor 21 of the antenna element 22 and the magnetic layer so as not to greatly affect the characteristics of the antenna element 12. .
  • the loop antenna elements 2 and 22 can be constituted by a so-called FPC (Flexible Printed Circuit) coil produced by patterning a metal conductor on one or both surfaces of the same base material. Needless to say, the loop antenna elements 2 and 22 may be FPC coils formed on different substrates.
  • FPC Flexible Printed Circuit
  • the magnetic resin layer 4 b is disposed so as to overlap only the antenna portion 13, and a spacer 7 for supporting the loop antenna element 2 is disposed below the loop antenna element 2.
  • a spacer 7 for supporting the loop antenna element 2 is disposed below the loop antenna element 2.
  • the antenna device 10d includes a loop antenna portion 3 having a spiral coil-shaped loop antenna element 2 formed by winding a conducting wire 1 around a support base 8, and a conducting wire 11 wound in a spiral shape.
  • the entire antenna element 12 includes an antenna portion 13 embedded in the magnetic resin layer 4a.
  • the magnetic resin layer 4a of the antenna part 13 is extended on the outer peripheral part of the antenna part 13, and the magnetic sheet 4d is placed on the upper surface of the extended part of the antenna part 13 at a position overlapping the loop antenna element 2.
  • the entire layer 4a is embedded, and the upper surface is disposed so as to be exposed from the magnetic resin layer 4a.
  • the loop antenna unit 3 is disposed on the upper surface of the antenna unit 13.
  • Another magnetic resin layer 4b is disposed on the lower surface of the magnetic resin layer 4a, that is, the surface opposite to the side where the antenna element 12 is embedded.
  • the spacer 7 When a nonmagnetic material is used as the spacer 7, magnetic interference between the loop antenna unit 3 and the antenna unit 13 can be reduced. Further, when a material having excellent thermal conductivity is used for the spacer 7, heat generated in the antenna unit 13 used for non-contact charging can be effectively radiated.
  • the magnetic sheet 4d on which the loop antenna element 2 is placed can be fixed without using an adhesive by the magnetic resin layer 4a, but the loop antenna element 2 is bonded in advance.
  • the loop antenna portion 3 may be configured by joining with an agent or the like, and then fixed by one or both of the antenna portion 13 and the magnetic resin layers 4a and 4b.
  • the spacer 7 and the magnetic resin layer 4b can be used in a state where they are fixed in advance.
  • the thickness of the spacer 7 is adjusted, the thickness of the portion where the loop antenna element 2 outside the antenna device 10 is formed, and the center of the antenna device 10 You may make it the thickness of the part in which the nearby antenna element 12 was comprised become substantially the same.
  • the overall thickness of the antenna device 10e can be made thinner than in the case of FIGS. 1A and 1B to 5A and 5B.
  • the loop antenna portion 3 and the antenna portion 13 are separately manufactured, and the magnetic resin layer 4a and the supporting base material are used regardless of the spacers as shown in FIGS. 5A, 5B, 6A, and 6B.
  • the two may be connected together by fixing them together.
  • the antenna device of the present invention uses a magnetic resin layer that is hard to be magnetically saturated as the main magnetic shield, it can perform stable communication with little change in the inductance value of the coil even in an environment where a DC magnetic field is applied. Furthermore, in the antenna device of the present invention, since the periphery of the coil is covered with a magnetic resin layer having magnetism and thermal conductivity, it is possible to increase the inductance of the coil and to release the heat generated in the coil. Heat generation is a problem especially when sending and receiving large electric power, but since heat can be released efficiently, it is possible to reduce the heat dissipation space in the electronic equipment due to the decrease in heat generation, which effectively reduces the size of the equipment. ⁇ Contributes to thinning.
  • the magnetic resin layers 4a and 4b are formed by kneading the resin with the magnetic particles, the magnetic resin layers 4a and 4b have flexibility even after curing, and are mounted and mounted according to the internal shape of the electronic device. Is possible.
  • An antenna device 10 forms a resonance circuit as a resonance coil (antenna) together with a resonance capacitor. And the comprised resonant circuit is mounted in a non-contact communication apparatus, and it communicates non-contact with this and another non-contact communication apparatus.
  • the non-contact communication device is a non-contact communication module 150 such as NFC (Near Field Communication) mounted on a mobile phone.
  • Another non-contact communication apparatus is, for example, a reader / writer 140 in a non-contact communication system.
  • the non-contact communication module 150 includes a secondary antenna unit 160 including a resonance circuit including a resonance capacitor and the antenna device 10 functioning as a resonance coil.
  • the non-contact communication module 150 In order to use the AC signal transmitted from the reader / writer 140 as a power source for each block, the non-contact communication module 150 generates a voltage corresponding to each block, and a rectification unit 166 that rectifies and converts the AC signal into DC power.
  • the non-contact communication module 150 includes a demodulation unit 164, a modulation unit 163, and a reception control unit 165 that operate by DC power supplied from the constant voltage unit 167, and a system control unit 161 that controls the overall operation. It has.
  • the signal received by the secondary antenna unit 160 is demodulated by the demodulator together with the DC power conversion by the rectification unit 166, and the transmission data from the reader / writer 140 is analyzed by the system control unit 161. Further, transmission data of the non-contact communication module 150 is generated by the system control unit 161, and the transmission data is modulated into a signal to be transmitted to the reader / writer 140 by the modulation unit 163 and is transmitted via the secondary antenna unit 160. Sent.
  • the reception control unit 165 generates a signal for adjusting the resonance frequency of the secondary antenna unit 160 based on the control of the system control unit 161 and adjusts the resonance frequency according to the communication state. Can do.
  • the reader / writer 140 of the non-contact communication system includes a primary side antenna unit 120 including a resonance circuit having a variable capacitance circuit composed of a resonance capacitor and the antenna device 10.
  • the reader / writer 140 is modulated by a system control unit 121 that controls the operation of the reader / writer 140, a modulation unit 124 that modulates a transmission signal based on a command from the system control unit 121, and a transmission signal from the modulation unit 124.
  • a transmission signal unit 125 for transmitting the carrier signal to the primary antenna unit 120.
  • the reader / writer 140 further includes a demodulator 123 that demodulates the modulated carrier signal transmitted by the transmission signal unit 125.
  • FIG. 9 shows a configuration example of the secondary side antenna unit 160.
  • the secondary side antenna unit 160 includes a series-parallel resonant circuit including variable capacitance capacitors CS1, CP1, CS2, and CP2 that form a resonance capacitor and an antenna device 10 that forms an inductance.
  • the primary antenna unit 120 has the same configuration.
  • Each capacitor CS1, CP1, CS2, CP2 of the variable capacitance circuit is controlled to have a DC bias voltage by the reception control unit 165 (in the case of the reader / writer 140, the transmission / reception control unit 122), set to an appropriate capacitance value, and the antenna.
  • the resonance frequency is adjusted together with the device 10 (Lant).
  • the reader / writer 140 performs impedance matching with the primary antenna unit 120 based on the carrier signal transmitted by the transmission signal unit 125, and based on the reception state of the non-contact communication module 150 on the reception side, Adjust the resonance frequency.
  • a modulation method and a coding method used in a general reader / writer are a Manchester coding method, an ASK (Amplitude Shift Keying) modulation method, and the like.
  • the carrier frequency is typically 13.56 MHz.
  • the transmission / reception control unit 122 monitors the transmission voltage and transmission current to control the variable voltage Vc of the primary antenna unit 120 so that impedance matching is obtained, and adjusts the impedance of the transmitted carrier signal.
  • the signal transmitted from the reader / writer 140 is received by the secondary antenna unit 160 of the non-contact communication module 150, and the signal is demodulated by the demodulation unit 164.
  • the content of the demodulated signal is determined by the system control unit 161, and the system control unit 161 generates a response signal based on the result.
  • the reception control unit 165 adjusts the resonance frequency and the like of the secondary antenna unit 160 based on the amplitude and voltage / current phase of the received signal so as to optimize the reception state. can do.
  • the non-contact communication module 150 modulates the response signal by the modulation unit 163 and transmits the response signal to the reader / writer 140 by the secondary side antenna unit 160.
  • the reader / writer 140 demodulates the response signal received by the primary antenna unit 120 by the demodulation unit 123, and executes necessary processing by the system control unit 121 based on the demodulated contents.
  • a resonance circuit using the antenna device 10 according to the present invention can constitute a power receiving device 190 that charges a secondary battery built in a mobile terminal such as a mobile phone in a contactless manner by the contactless charging device 180.
  • a non-contact charging method an electromagnetic induction method, magnetic resonance, or the like can be applied.
  • FIG. 10 shows a configuration example of a non-contact charging system including a power receiving device 190 such as a portable terminal to which the present invention is applied and a non-contact charging device 180 that charges the power receiving device 190 in a non-contact manner.
  • a power receiving device 190 such as a portable terminal to which the present invention is applied
  • a non-contact charging device 180 that charges the power receiving device 190 in a non-contact manner.
  • the power receiving apparatus 190 has substantially the same configuration as the non-contact communication module 150 described above.
  • the configuration of the non-contact charging device 180 is almost the same as the configuration of the reader / writer 140 described above. Accordingly, the reader / writer 140 and the non-contact communication module 150 having the same functions as the blocks described in FIG.
  • the carrier frequency to be transmitted / received is 13.56 MHz in many cases, whereas in the non-contact charging device 180, the frequency may be 100 kHz to several hundred kHz.
  • the non-contact charging device 180 performs impedance matching with the primary antenna unit 120 based on the carrier signal transmitted by the transmission signal unit 125, and resonates based on the reception state of the non-contact communication module on the receiving side. Adjust the resonant frequency of the circuit.
  • the transmission / reception control unit 122 monitors the transmission voltage and transmission current to control the variable voltage Vc of the primary antenna unit 120 so that impedance matching is obtained, and adjusts the impedance of the transmitted carrier signal.
  • the power receiving device 190 rectifies the signal received by the secondary antenna unit 160 by the rectifying unit 166, and charges the battery 169 with the rectified DC voltage according to the control of the charging control unit 170. Even when no signal is received by the secondary antenna unit 160, the battery 169 can be charged by driving the charging control unit 170 by an external power source 168 such as an AC adapter.
  • the signal transmitted from the non-contact charging device 180 is received by the secondary side antenna unit 160, and the signal is demodulated by the demodulation unit 164.
  • the content of the demodulated signal is determined by the system control unit 161, and the system control unit 161 generates a response signal based on the result.
  • the reception control unit 165 adjusts the resonance frequency and the like of the secondary antenna unit 160 based on the amplitude and voltage / current phase of the received signal so as to optimize the reception state. can do.
  • the characteristics when the magnetic resin layer 4b was used were evaluated as the influence of magnetic saturation on the inductance value of the coil.
  • the characteristic evaluation was performed by measuring the inductance value of a single coil shown in FIG. 11A.
  • FIG. 11B shows a cross section of the antenna device 10g for characteristic evaluation.
  • the antenna device 10g includes a loop antenna element 2 formed by a conductive wire 1 wound in a rectangular shape, and a magnetic resin layer 4b having a predetermined thickness connected to the loop antenna element 2 via an adhesive layer 5. Prepare. Moreover, it has the leader lines 3a and 3b for electrical connection with the loop antenna element 2 and an external circuit.
  • FIG. 11C shows a configuration of an antenna device 10h for characteristic evaluation for measuring the influence on the magnetic characteristics when a magnetic layer 4c described later is further added.
  • the measurement environment is shown in FIGS. 12A and 12B.
  • FIG. 12A shows a configuration of a receiving coil unit that evaluates a state without an external DC magnetic field.
  • the power receiving coil unit is an antenna device 10g for characteristic evaluation, and includes a loop antenna element 2 and a magnetic resin layer 4b.
  • a metal plate 31 simulating a battery pack was disposed on the surface of the magnetic resin layer 4b opposite to the surface on which the loop antenna element 2 is mounted.
  • the power receiving coil unit is a 14T rectangular coil (outer diameter 31 ⁇ 43 mm).
  • FIG. 12B shows a configuration of a receiving coil unit that evaluates a state where there is an external DC magnetic field by a magnet.
  • the power receiving coil unit is an antenna device 10h for evaluation, and includes a loop antenna element 2 and a magnetic resin layer 4b.
  • a metal plate 31 simulating a battery pack was disposed on the surface of the magnetic resin layer 4b opposite to the surface on which the loop antenna element 2 is mounted.
  • the power transmission coil unit was disposed so as to face the power reception coil unit.
  • the power transmission coil unit includes a spiral coil 30a and a magnetic shield material 30b, and is arranged so that the center and the central axis of the power reception coil unit are aligned.
  • a magnet 40 for generating a DC magnetic field is arranged at the center of the power transmission coil unit 30.
  • the transmission coil unit to which this magnet is attached is created based on the design A1 described in Non-Patent Document 2.
  • the power receiving coil unit and the power transmitting coil unit were arranged to face each other with a 2.5 mm acrylic plate therebetween.
  • an impedance analyzer 4294A manufactured by Agilent the inductance value of the coil was measured by changing the configuration of the magnetic resin layer 4b in each case.
  • the inductance value of the antenna device 10g having a magnetic shield layer composed only of the magnetic resin layer 4b as shown in FIG. 11B was measured.
  • FIG. 13A, FIG. 13B, FIG. 14A, and FIG. 14B show graphs in which the inductance value of the power receiving coil unit equipped with a magnetic shield layer using various magnetic materials is measured.
  • the amount of change in the measured inductance value in the presence of a DC magnetic field with respect to the measured inductance value in the absence of a DC magnetic field is expressed as a percentage and is referred to as a relative inductance value ⁇ L.
  • the relative value ⁇ L of the inductance was plotted while changing the thickness tm of the magnetic resin layer 4b.
  • a negative inductance relative value ⁇ L indicates that the inductance value has decreased, and a positive value indicates that the inductance value has increased.
  • FIG. 13A shows the relative value ⁇ L of the inductance when the magnetic resin layer 4b having an average permeability of about 20 in which a spherical amorphous powder having a dimensional ratio (major axis / minor axis) of 6 or less is used as the magnetic resin layer 4b. Indicates.
  • FIG. 13B shows a relative inductance value ⁇ L when the magnetic resin layer 4b is a magnetic resin layer 4b having an average magnetic permeability of about 16 blended with spherical sendust powder having a dimensional ratio (major axis / minor axis) of 6 or less. Indicates.
  • FIG. 14A shows a case where a magnetic sheet having an average permeability of about 100 prepared by mixing flat powder having a sendust-based dimensional ratio (major axis / minor axis) of about 50 with a binder is used as the magnetic shield layer. Indicates the relative value of inductance.
  • FIG. 14B shows the relative value of the inductance when MnZn-based bulk ferrite having a magnetic permeability of about 1500 is used as the magnetic shield layer.
  • the inductance value of the coil is applied with a DC magnetic field. It has not decreased so much.
  • the reason why the relative value ⁇ L of the inductance is positive is that the magnetic shield layer constituting the power transmission coil unit is large, so that the magnetic flux is concentrated in the vicinity of the power reception coil unit.
  • FIG. 14A when a magnetic sheet made of flat magnetic powder is used as the magnetic shield layer, the magnetic shield layer is magnetically saturated due to the influence of the DC magnetic field of the magnet mounted on the transmission coil unit. And the inductance value is greatly reduced. This shows that this tendency is more remarkable because the thinner the shield layer, the more likely it is to become magnetically saturated.
  • FIG. 14B it is shown that when ferrite is used as the magnetic shield layer, the inductance value is greatly reduced as in the case of FIG. 14A.
  • the change in coil inductance is small even in a magnet-mounted transmission coil unit or in an environment with a large DC magnetic field, and thus the change in the resonance frequency of the power receiving module is small and stable. Power transmission is possible.
  • the power receiving coil unit is a 14T rectangular coil (outer diameter 31 mm ⁇ 43 mm).
  • FIG. 11B and FIG. 11C As a characteristic evaluation method, as shown in FIG. 11B and FIG. 11C, when only the magnetic resin layer 4b is used as the magnetic shield layer (FIG. 11B), a 50 ⁇ m thick magnetic layer 4c is formed on the lower surface of the magnetic resin layer 4b. In the case of pasting (FIG. 11C), the inductance value of each coil was measured. In these cases, the inductance value was measured by changing the thickness of the magnetic resin layer 4b. Therefore, the total thickness of the magnetic shield layer is the magnetic resin layer 4b plus the thickness of the magnetic layer 4c of 50 ⁇ m.
  • the magnetic resin layer 4b of the power receiving coil unit (evaluation antenna apparatus 10h) one having an average magnetic permeability of about 30 blended with spherical amorphous powder having a size ratio of 6 or less is used, and for the magnetic layer 4c, a sendust-based one is used.
  • a powder having a magnetic permeability of about 100 was prepared by mixing flat powder having a size ratio of about 50 with a binder.
  • 15A and 15B are graphs plotting the inductance value L with respect to the thickness tm of the magnetic shield layer 4.
  • the inductance value was measured using an impedance analyzer 4294A manufactured by Agilent, and plotted as an inductance value L at a frequency of 120 kHz generally used in a non-contact charging system.
  • FIG. 15A shows a measurement result of the inductance value L of the coil when no DC magnetic field is applied, that is, in the case of the configuration of the power receiving coil unit of FIG. 12A.
  • FIG. 15B shows the measurement result of the inductance value L in the case of the configuration of the receiving coil unit of FIG. 12B in which a DC magnetic field is applied by a magnet.
  • the inductance value of the coil can be improved by replacing a part of the magnetic resin layer 4b with the thin magnetic layer 4c.
  • the influence of magnetic saturation is large, so that the inductance value is reduced for all coils.
  • the magnetic layer 4c has a higher effect of increasing the inductance than the magnetic resin layer 4b.
  • the magnetic resin layer 4b has a higher effect of improving the inductance when a strong magnetic field is applied.
  • the antenna device of the present invention has a magnetic resin layer that is strong against magnetic saturation, it is possible to stably supply power with little change in coil inductance even in an environment where a strong magnetic field is applied. Furthermore, by adjusting the thicknesses of the magnetic resin layer and the magnetic layer, the balance between the magnitude of the coil inductance and the rate of change of the coil inductance under a strong magnetic field environment can be adjusted. It can be used not only for non-contact communication but also for non-contact power transmission (non-contact charging), and each loop antenna part and antenna part can be optimally designed according to the application and the electronic equipment installed. it can.

Landscapes

  • Details Of Aerials (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

Provided is an antenna apparatus wherein a plurality of antennas are efficiently arranged in a space-saving manner and antenna performance is improved. Said antenna apparatus (10) is provided with a loop-antenna part (3) and an antenna part (13) laid out within said loop-antenna part (3). The loop-antenna part (3) and the antenna part (13) have magnetic-grain-containing magnetic resin layers (4a, 4b). At least part of the loop-antenna part (3) and/or at least part of the antenna part (13) is embedded within said magnetic resin layers (4a, 4b).

Description

アンテナ装置及び電子機器ANTENNA DEVICE AND ELECTRONIC DEVICE
 本発明は、複数のアンテナを有するアンテナ装置に関し、特に複数のアンテナを積み重ねて配置したアンテナ装置、及びこのアンテナ装置を用いた電子機器に関する。本出願は、日本国において2013年3月19日に出願された日本特許出願番号特願2013-056779を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。 The present invention relates to an antenna device having a plurality of antennas, and more particularly to an antenna device in which a plurality of antennas are stacked and an electronic apparatus using the antenna device. This application claims priority on the basis of Japanese Patent Application No. 2013-056779 filed on March 19, 2013 in Japan, and is incorporated herein by reference. Is done.
 近年の無線通信機器においては、電話通信用アンテナ、GPS用アンテナ、無線LAN/BLUETOOTH(登録商標)用アンテナ、さらにはRFID(Radio Frequency Identification)といった複数のRFアンテナが搭載されている。これらに加えて、非接触充電の導入に伴って、電力伝送用のアンテナコイルも搭載されるようになってきた。非接触充電方式で用いられる電力伝送方式には、電磁誘導方式、電波受信方式、磁気共鳴方式等が挙げられる。これらは、いずれも1次側コイルと2次側コイル間の電磁誘導や磁気共鳴によって電力を伝送する。 Recent wireless communication devices are equipped with a plurality of RF antennas such as a telephone communication antenna, a GPS antenna, a wireless LAN / BLUETOOTH (registered trademark) antenna, and an RFID (Radio Frequency Identification). In addition to these, with the introduction of non-contact charging, antenna coils for power transmission have also been mounted. Examples of the power transmission method used in the non-contact charging method include an electromagnetic induction method, a radio wave reception method, and a magnetic resonance method. All of these transmit power by electromagnetic induction or magnetic resonance between the primary side coil and the secondary side coil.
 これらのアンテナは、アンテナ単体で目的の周波数において最大の特性が得られるように設計されていても、実際に電子機器に実装されると、目的の特性を得ることは困難である。これは、アンテナ周辺の磁界成分が周辺に位置する金属等と干渉(結合)し、アンテナコイルのインダクタンスが実質的に減少するために、共振周波数がシフトしてしまうことによる。また、インダクタンスの実質的減少によって、受信感度が低下してしまう。これらの対策として、アンテナコイルとその周辺に存在する金属との間に磁気シールド材を挿入することによって、アンテナコイルから発生した磁束を磁気シールド材に集めることによって、金属による干渉を低減させ、インダクタンスを増加させることができるので受信感度が向上する。 Even if these antennas are designed so that the maximum characteristics can be obtained at the target frequency with the antenna itself, it is difficult to obtain the target characteristics when actually mounted on an electronic device. This is because the magnetic field component around the antenna interferes (couples) with the surrounding metal and the like, and the inductance of the antenna coil is substantially reduced, so that the resonance frequency is shifted. In addition, the reception sensitivity is lowered due to a substantial decrease in inductance. As countermeasures for this, by inserting a magnetic shield material between the antenna coil and the metal existing around it, the magnetic flux generated from the antenna coil is collected in the magnetic shield material, thereby reducing the interference caused by the metal and increasing the inductance. Therefore, the reception sensitivity is improved.
 電子機器の小型化、高機能化の動向に伴い、携帯端末機器等の電子機器に上述のような複数のアンテナを搭載するのに割り当てられるスペースは極めて小さい。一般的なアンテナは、図16A及び図16Bに示すように、スパイラルコイル状のループアンテナ素子2に磁束集束用の防磁シート42を、接着剤を塗布した接着剤層41によって貼付した構成となっている。しかしながら、このようなループアンテナでは、アンテナごとに、アンテナが搭載される電子機器内の実装スペースを占有してしまうので、搭載するアンテナの種類・数量の増大とともに実装面積も増大してしまう。このため、これらのアンテナの小型化、薄型化、さらには、複合化、集積化の要求が強まっている。 With the trend toward downsizing and higher functionality of electronic devices, the space allocated for mounting a plurality of antennas as described above on electronic devices such as portable terminal devices is extremely small. As shown in FIGS. 16A and 16B, a general antenna has a configuration in which a magnetic flux concentrating magnetic shielding sheet 42 is attached to a spiral coil-shaped loop antenna element 2 with an adhesive layer 41 coated with an adhesive. Yes. However, in such a loop antenna, each antenna occupies a mounting space in an electronic device in which the antenna is mounted, so that the mounting area increases with an increase in the type and quantity of antennas to be mounted. For this reason, there is an increasing demand for downsizing and thinning of these antennas, as well as integration and integration.
 ところで、非接触通信や非接触充電に用いられる磁気シールド材は、一般に透磁率が高いとシールド性能が良好となることから、高透磁率のフェライトや金属磁性箔が主に用いられてきた。しかしながら強い直流磁場の印加された環境下で、これらの磁気シールド材を使用する場合には、磁性体が磁気飽和を起こし実効的な透磁率が低下する。たとえば、非特許文献1には、フェライトコアでは磁気飽和による直流重畳特性の低下が著しいことが報告されている。また、高飽和磁束密度の金属磁性箔においては、一般的に厚みが数10ミクロンと薄いため数10枚重ねて用いるようにしないと同様に磁気飽和の問題が生じてしまう。 Incidentally, since magnetic shielding materials used for non-contact communication and non-contact charging generally have good shielding performance when the magnetic permeability is high, high-permeability ferrites and metal magnetic foils have been mainly used. However, when these magnetic shield materials are used in an environment where a strong DC magnetic field is applied, the magnetic material undergoes magnetic saturation and the effective magnetic permeability decreases. For example, Non-Patent Document 1 reports that the ferrite core has a significant decrease in DC superposition characteristics due to magnetic saturation. In addition, since a metal magnetic foil having a high saturation magnetic flux density is generally as thin as several tens of microns, the problem of magnetic saturation occurs similarly if it is not used by overlapping several tens of sheets.
 電磁誘導型の非接触充電について、ワイヤレスパワーコンソーシアム(Wireless Power  Consortium、WPC)において、マグネット装着送信コイルユニットが規定されており(非特許文献2に記載のデザインA1)、すでに市販されている。薄型のコイルユニットを作製しようとする場合には、磁気シールドの厚みを薄くする必要があり、上述した磁気飽和が顕著となりコイルのインダクタンスが大きく低下する。このため受電コイル側の共振周波数が大きくずれることとなり、1次側から2次側への伝送電力の伝送効率が低下し、また受電コイルの発熱が増加するとの問題を生ずる。さらに共振周波数のずれが著しい場合には伝送自体ができなくなるとの問題がある。 Regarding electromagnetic induction type non-contact charging, a wireless power consortium (Wireless Power Consortium, WPC) defines a magnet-mounted transmission coil unit (design A1 described in Non-Patent Document 2) and is already on the market. In order to produce a thin coil unit, it is necessary to reduce the thickness of the magnetic shield, so that the above-described magnetic saturation becomes significant and the inductance of the coil is greatly reduced. For this reason, the resonance frequency on the power receiving coil side is greatly deviated, resulting in a problem that the transmission efficiency of the transmission power from the primary side to the secondary side is lowered and the heat generation of the power receiving coil is increased. Furthermore, there is a problem that transmission itself cannot be performed if the resonance frequency shift is significant.
 そこで、本発明は、複数のアンテナを効率よく省スペースに配置しつつ、アンテナ性能を向上させたアンテナ装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an antenna device having improved antenna performance while efficiently arranging a plurality of antennas in a space-saving manner.
 上述した課題を解決するための手段として、本発明の一実施の形態に係るアンテナ装置は、ループアンテナと、ループアンテナの内径に配置された1つ以上の他のアンテナとを備える。そして、ループアンテナ及び他のアンテナは、磁性粒子を含有する1つ以上の磁性樹脂層を有する。ループアンテナ又は1つ以上の他のアンテナのうちの少なくとも1つは、少なくともその一部が磁性樹脂層に埋設される。 As a means for solving the above-described problems, an antenna device according to an embodiment of the present invention includes a loop antenna and one or more other antennas arranged on the inner diameter of the loop antenna. The loop antenna and other antennas have one or more magnetic resin layers containing magnetic particles. At least one of the loop antenna or one or more other antennas is at least partially embedded in the magnetic resin layer.
 上述した課題を解決するための手段として、本発明に係る電子機器は、ループアンテナと、ループアンテナの内径に配置された1つ以上の他のアンテナとを有するアンテナ装置を備える。そして、ループアンテナ及び他のアンテナは、磁性粒子を含有する1つ以上の磁性樹脂層を有する。ループアンテナ又は1つ以上の他のアンテナのうちの少なくとも1つは、少なくともその一部が磁性樹脂層に埋設される。 As a means for solving the above-described problems, an electronic apparatus according to the present invention includes an antenna device having a loop antenna and one or more other antennas arranged on the inner diameter of the loop antenna. The loop antenna and other antennas have one or more magnetic resin layers containing magnetic particles. At least one of the loop antenna or one or more other antennas is at least partially embedded in the magnetic resin layer.
 好ましくは、アンテナ装置及びこのアンテナ装置を用いた電子機器では、1つ以上の磁性樹脂層のうち、少なくとも1つの磁性樹脂層が、球状、又は長径と短径との比で表わされる寸法比が6以下の回転楕円体状の磁性粒子を含む。 Preferably, in the antenna device and the electronic apparatus using the antenna device, at least one of the one or more magnetic resin layers has a spherical shape or a dimensional ratio represented by a ratio of a major axis to a minor axis. 6 or less spheroidal magnetic particles are included.
 本発明に係るアンテナ装置及び電子機器では、ループアンテナの内径に他のアンテナが1つ以上配置されるので、アンテナ装置の実装面積は、ループアンテナの占有面積となり、実装スペースの低減が可能になる。 In the antenna device and the electronic apparatus according to the present invention, one or more other antennas are arranged on the inner diameter of the loop antenna, so that the mounting area of the antenna device becomes the occupied area of the loop antenna, and the mounting space can be reduced. .
 また、磁気シールド層の全部あるいは一部に磁気飽和による磁気特性の劣化が少ない磁性樹脂層を有しているので、強い磁場が印加されている環境下においてもコイルインダクタンスの変化が少なく安定した通信ができる。 In addition, because all or part of the magnetic shield layer has a magnetic resin layer with little deterioration of magnetic properties due to magnetic saturation, there is little change in coil inductance and stable communication even in environments where a strong magnetic field is applied. Can do.
図1Aは、本発明の一実施の形態に係るアンテナ装置の構成例を示す平面図である。図1Bは、図1AのAA’線における断面図である。FIG. 1A is a plan view showing a configuration example of an antenna device according to an embodiment of the present invention. 1B is a cross-sectional view taken along the line AA ′ of FIG. 1A. 図2Aは、本発明の一実施の形態に係るアンテナ装置の変形例を示す平面図である。図2Bは、図2AのAA’線における断面図である。FIG. 2A is a plan view showing a modification of the antenna device according to one embodiment of the present invention. 2B is a cross-sectional view taken along the line AA ′ of FIG. 2A. 図3Aは、本発明の一実施の形態に係るアンテナ装置の変形例を示す平面図である。図3Bは、図3AのAA’線における断面図である。FIG. 3A is a plan view showing a modification of the antenna device according to one embodiment of the present invention. 3B is a cross-sectional view taken along the line AA ′ of FIG. 3A. 図4Aは、本発明の一実施の形態に係るアンテナ装置の変形例を示す平面図である。図4Bは、図4AのAA’線における断面図である。FIG. 4A is a plan view showing a modification of the antenna device according to one embodiment of the present invention. 4B is a cross-sectional view taken along the line AA ′ of FIG. 4A. 図5Aは、本発明の一実施の形態に係るアンテナ装置の変形例を示す平面図である。図5Bは、図5AのAA’線における断面図である。FIG. 5A is a plan view showing a modification of the antenna device according to one embodiment of the present invention. FIG. 5B is a cross-sectional view taken along line AA ′ in FIG. 5A. 図6Aは、本発明の一実施の形態に係るアンテナ装置の変形例を示す平面図である。図6Bは、図6AのAA’線における断面図である。FIG. 6A is a plan view showing a modification of the antenna device according to one embodiment of the present invention. 6B is a cross-sectional view taken along the line AA ′ of FIG. 6A. 図7Aは、本発明の一実施の形態に係るアンテナ装置の変形例を示す平面図である。図7Bは、図7AのAA’線における断面図である。FIG. 7A is a plan view showing a modification of the antenna device according to one embodiment of the present invention. FIG. 7B is a cross-sectional view taken along line AA ′ in FIG. 7A. 図8は、アンテナ装置を用いた非接触通信システムの構成例を示すブロック図である。FIG. 8 is a block diagram illustrating a configuration example of a contactless communication system using an antenna device. 図9は、共振回路の主要部を示すブロック図である。FIG. 9 is a block diagram showing the main part of the resonance circuit. 図10は、アンテナ装置を用いた非接触充電システムの構成例を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration example of a non-contact charging system using an antenna device. 図11は、磁性樹脂層及び磁性層が磁気特性に与える影響を測定するための測定用のアンテナ装置の構成を示す図である。図11Aは、平面図であり、図11Bは、図11AのAA’線における断面図であって、磁性シールド層が磁性樹脂層のみの場合の断面図であり、図11Cは、図11AのAA’線における断面図であって、磁性シールド層が磁性樹脂層と磁性層からなる場合の断面図である。FIG. 11 is a diagram illustrating the configuration of a measurement antenna device for measuring the influence of the magnetic resin layer and the magnetic layer on the magnetic characteristics. 11A is a plan view, FIG. 11B is a cross-sectional view taken along the line AA ′ of FIG. 11A, and is a cross-sectional view when the magnetic shield layer is only a magnetic resin layer. FIG. 11C is a cross-sectional view taken along the line AA of FIG. It is sectional drawing in a line, Comprising: It is sectional drawing in case a magnetic shield layer consists of a magnetic resin layer and a magnetic layer. 図12は、本発明の特性評価のためのコイルモジュールの構成を示す側面図である。図12Aは、単一のコイルモジュールの構成を示す側面図であり、図12Bは、直流磁場を発生するマグネットを備えた送信コイルユニットとともに示すコイルモジュールの側面図である。FIG. 12 is a side view showing a configuration of a coil module for characteristic evaluation of the present invention. 12A is a side view showing a configuration of a single coil module, and FIG. 12B is a side view of the coil module shown together with a transmission coil unit including a magnet that generates a DC magnetic field. 図13は、直流磁場印加のない場合のコイルのインダクタンス値に対する、直流磁場印加の場合のインダクタンスの変化値をインダクタンスの相対値ΔLとして、磁気シールド層の厚さを変化させてプロットしたグラフである。図13Aは、球状アモルファス合金を磁性樹脂層に用いて比透磁率を20程度とした場合、図13Bは、球状センダストを磁性樹脂層に用いて比透磁率を15程度とした場合のΔLを示す。FIG. 13 is a graph plotted by changing the thickness of the magnetic shield layer with the inductance change value when the DC magnetic field is applied relative to the inductance value of the coil when no DC magnetic field is applied as the relative value ΔL of the inductance. . 13A shows ΔL when the spherical magnetic alloy is used for the magnetic resin layer and the relative permeability is about 20, and FIG. 13B shows ΔL when the spherical magnetic field is used for the magnetic resin layer and the relative permeability is about 15. . 図14は、インダクタンスの相対値ΔLを、磁気シールド層の厚さを変化させてプロットした比較例のグラフである。図14Aは、長径/短径が約50のセンダストを用いた磁気シールド層に用いて比透磁率を100程度とした場合、図14Bは、MnZnフェライトを磁気シールド層に用いて比透磁率を1500程度とした場合のΔLを示す。FIG. 14 is a graph of a comparative example in which the relative value ΔL of inductance is plotted by changing the thickness of the magnetic shield layer. FIG. 14A shows a case where a relative magnetic permeability is about 100 using a magnetic shield layer using sendust having a major axis / minor axis of about 50. FIG. 14B shows a relative permeability of 1500 using MnZn ferrite as the magnetic shield layer. ΔL in the case of the degree is shown. 図15は、磁性樹脂層に磁性層を加えた場合のインダクタンス値の差異を測定したグラフである。図15Aは、直流磁場がない場合、図15Bは直流磁場がある場合のインダクタンスの測定値を磁気シールド層の厚さに対してプロットした図である。FIG. 15 is a graph obtained by measuring a difference in inductance value when a magnetic layer is added to the magnetic resin layer. FIG. 15A is a diagram in which measured values of inductance in the absence of a DC magnetic field and FIG. 15B in the presence of a DC magnetic field are plotted against the thickness of the magnetic shield layer. 図16Aは、従来の単一のアンテナ装置の平面図である。図16Bは、図16AのAA’線における断面図である。FIG. 16A is a plan view of a conventional single antenna device. 16B is a cross-sectional view taken along the line AA ′ of FIG. 16A.
 以下、本発明を実施するための形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施の形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることはもちろんである。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the present invention.
 [アンテナ装置の構成]
 まず、ループアンテナ素子2として通信用のアンテナ、他のアンテナ素子12として非接触給電用アンテナを適用したアンテナ装置10について説明する。
[Configuration of antenna device]
First, an antenna apparatus 10 to which a communication antenna is applied as the loop antenna element 2 and a non-contact power feeding antenna is applied as the other antenna element 12 will be described.
 図1A及び図1Bに示すように、本発明の一実施の形態に係るアンテナ装置10は、平板状の支持基材8の一面に導線1を渦巻状に巻回して形成されたスパイラルコイル状のループアンテナ素子2を有するループアンテナ部3と、渦巻状に導線11が巻回されたアンテナ素子12の全体が磁性樹脂層4aに埋設されたアンテナ部13とを備える。アンテナ部13の磁性樹脂層4aがアンテナ部13の外周部分に延設されており、磁性シート4dは、アンテナ部13の延設部の上面に、ループアンテナ素子2と重畳する位置に、磁性樹脂層4aに全体が埋設され、上面が磁性樹脂層4aから露出するように配設される。ループアンテナ部3は、アンテナ部13の上面に配設される。磁性樹脂層4aの下面、すなわちアンテナ素子12が埋設されている側とは反対側の面には、別の磁性樹脂層4bが配設される。ループアンテナ部3の内径にアンテナ部13を配置する場合には、それぞれのアンテナの中心軸がほぼ一致するように配置するのが好ましい。 As shown in FIGS. 1A and 1B, an antenna device 10 according to an embodiment of the present invention has a spiral coil shape formed by spirally winding a conductive wire 1 on one surface of a flat support base 8. A loop antenna part 3 having the loop antenna element 2 and an antenna part 13 in which the entire antenna element 12 around which the conducting wire 11 is wound are embedded in the magnetic resin layer 4a are provided. The magnetic resin layer 4a of the antenna part 13 is extended on the outer peripheral part of the antenna part 13, and the magnetic sheet 4d is placed on the upper surface of the extended part of the antenna part 13 at a position overlapping the loop antenna element 2. The entire layer 4a is embedded, and the upper surface is disposed so as to be exposed from the magnetic resin layer 4a. The loop antenna unit 3 is disposed on the upper surface of the antenna unit 13. Another magnetic resin layer 4b is disposed on the lower surface of the magnetic resin layer 4a, that is, the surface opposite to the side where the antenna element 12 is embedded. When the antenna unit 13 is arranged on the inner diameter of the loop antenna unit 3, it is preferable to arrange the antenna units so that the central axes of the respective antennas substantially coincide.
 アンテナ素子12、ループアンテナ素子2に対する外部回路との電気的接続は、磁性樹脂層4a,4bに埋設された導線1、11からの引出線を介して行うことができる。磁性樹脂層4a,4bは、未硬化の状態では容易に変形させることができるので後で述べる作製時のプレス工程にて、上記引出線を磁性樹脂層4a,4bの中に埋設させる。 The antenna element 12 and the loop antenna element 2 can be electrically connected to an external circuit through lead wires from the conductive wires 1 and 11 embedded in the magnetic resin layers 4a and 4b. Since the magnetic resin layers 4a and 4b can be easily deformed in an uncured state, the lead wires are embedded in the magnetic resin layers 4a and 4b in a pressing process at the time of manufacturing described later.
 なお、アンテナ素子12は、図1A及び図1Bのようなループアンテナに限らず、平面アンテナや誘電体アンテナといった携帯電話の通信用等の他のアンテナ素子であってもよい。 The antenna element 12 is not limited to the loop antenna as shown in FIGS. 1A and 1B, and may be another antenna element such as a cellular phone communication such as a planar antenna or a dielectric antenna.
 磁性樹脂層4aに用いる磁性粒子には、粒径が数μm~数10μmの球形、扁平、あるいは粉砕された粉末を用いることができ、単体の磁性粉のみならず粉径、材質、形状の異なる粉末を混合して用いてもよい。上述した磁性粒子のうち、特に金属磁性粒子を用いる場合には、複素透磁率が周波数特性を有しており、動作周波数が高くなると表皮効果により損失が生じるので、使用する周波数の帯域に応じて粒径及び形状を調整する。 As the magnetic particles used for the magnetic resin layer 4a, spherical, flat, or pulverized powders having a particle size of several μm to several tens of μm can be used. You may mix and use powder. Among the magnetic particles described above, particularly when metal magnetic particles are used, the complex permeability has frequency characteristics, and loss occurs due to the skin effect when the operating frequency is high. Adjust particle size and shape.
 磁性樹脂層4bに用いる磁性粒子には、粒径が数μm~100μmの球状、あるいは細長(葉巻型)、あるいは扁平(円盤型)な回転楕円体形状で、その寸法比(長径/短径)が6以下の粉末を用いる。この場合も単体の磁性粉のみならず粉径、材質、寸法比の異なる粉末を混合して用いてもよい。 The magnetic particles used in the magnetic resin layer 4b are spherical, slender (cigar type), or flat (disc type) spheroids with a particle size of several to 100 μm, and their dimensional ratio (major axis / minor axis). Is 6 or less. Also in this case, not only a single magnetic powder but also powders having different powder diameters, materials, and dimensional ratios may be mixed and used.
 磁性樹脂層4aは、導線11が埋め込まれる層であるため、未硬化状態で流動性、変形性を確保するために磁性粉の充填率を少なくしているのに対し、磁性樹脂層4bは、磁気シールド特性が高くなるように、磁性粉の充填率を磁性樹脂層4aよりも大きく設定している。特に充填性を上げて磁気特性を改善する目的で、磁性樹脂層4bとして、金属磁性粉、樹脂及び潤滑剤等を混合し圧縮成型した圧粉磁心を用いることもできる。また、磁性樹脂層4bの粒子形状は、球形から寸法比の小さい回転楕円体としており、反磁界係数が大きく外部からの磁場に対して飽和しにくい形状としている。反磁界係数の大きい粒子が樹脂を介して磁性樹脂層4bを形成しているので、大きな直流磁場環境下においても磁気飽和の影響が少ない磁気特性を示す。 Since the magnetic resin layer 4a is a layer in which the conductive wire 11 is embedded, the filling rate of the magnetic powder is reduced to ensure fluidity and deformability in an uncured state, whereas the magnetic resin layer 4b The filling rate of the magnetic powder is set to be larger than that of the magnetic resin layer 4a so that the magnetic shield characteristics are improved. In particular, for the purpose of improving the magnetic properties by increasing the filling property, a powder magnetic core obtained by mixing and molding metal magnetic powder, resin, lubricant, and the like can also be used as the magnetic resin layer 4b. Further, the particle shape of the magnetic resin layer 4b is a spheroid having a small dimensional ratio from a spherical shape, and has a large demagnetizing field coefficient and is not easily saturated with an external magnetic field. Since the particles having a large demagnetizing field coefficient form the magnetic resin layer 4b through the resin, the magnetic characteristics exhibit little influence of magnetic saturation even in a large DC magnetic field environment.
 磁性樹脂層4a,4bは、軟磁性粉末からなる磁性粒子と結合剤としての樹脂とを含んでいる。磁性粒子は、フェライト等の酸化物磁性体、Fe系、Co系、Ni系、Fe-Ni系、Fe-Co系、Fe-Al系、Fe-Si系、Fe-Si-Al系、Fe-Ni-Si-Al系等の結晶系、微結晶系金属磁性体、あるいはFe-Si-B系、Fe-Si-B-C系、Co-Si-B系、Co-Zr系、Co-Nb系、Co-Ta系等のアモルファス金属磁性体の粒子である。また、アンテナ装置10のインダクタンス値は、磁性体の実部透磁率(以下、単に透磁率という。)によって決定されるが、透磁率は、磁性粒子と樹脂との混合比率により調整することができる。磁性樹脂層4a,4bの平均透磁率と、配合する磁性粒子の透磁率の関係は、配合量に対して一般的に対数混合則にしたがうので、粒子間の相互作用が増していく体積充填率40vol%以上とすることが好ましい。なお、磁性樹脂層4a,4bの熱伝導特性も磁性粒子の充填率の増大とともに向上する。 The magnetic resin layers 4a and 4b contain magnetic particles made of soft magnetic powder and a resin as a binder. The magnetic particles are oxide magnetic materials such as ferrite, Fe-based, Co-based, Ni-based, Fe-Ni-based, Fe-Co-based, Fe-Al-based, Fe-Si-based, Fe-Si-Al-based, Fe- Ni-Si-Al-based crystal system, microcrystalline metal magnetic material, or Fe-Si-B system, Fe-Si-BC system, Co-Si-B system, Co-Zr system, Co-Nb Or amorphous metal magnetic particles such as Co—Ta. Further, the inductance value of the antenna device 10 is determined by the real part magnetic permeability (hereinafter simply referred to as magnetic permeability) of the magnetic material, but the magnetic permeability can be adjusted by the mixing ratio of the magnetic particles and the resin. . Since the relationship between the average magnetic permeability of the magnetic resin layers 4a and 4b and the magnetic permeability of the magnetic particles to be blended generally follows the logarithmic mixing rule with respect to the blending amount, the volume filling rate at which the interaction between the particles increases. It is preferable to set it to 40 vol% or more. The heat conduction characteristics of the magnetic resin layers 4a and 4b are also improved as the filling rate of the magnetic particles is increased.
 磁性樹脂層4a,4bは、単一の磁性材料で構成する場合のみに限らない。2種類以上の磁性材料を混合して用いてもよく、多層に積層して磁性樹脂層を形成してもよい。また、同一の磁性材料であっても、磁性粒子の粒径及び/又は形状を複数選択して混合してもよく、多層に積層してもよい。また、アンテナごとに磁性材料あるいは組成を変えてもよい。また、磁性樹脂層4a,4bには上記磁性粒子の他に、熱伝導性や粒子充填性等を向上させるためのフィラーを含むことができる。 The magnetic resin layers 4a and 4b are not limited to being composed of a single magnetic material. Two or more kinds of magnetic materials may be mixed and used, and a magnetic resin layer may be formed by laminating in multiple layers. Moreover, even if it is the same magnetic material, the particle size and / or shape of magnetic particles may be selected and mixed, or may be laminated in multiple layers. Further, the magnetic material or composition may be changed for each antenna. In addition to the magnetic particles, the magnetic resin layers 4a and 4b can contain a filler for improving thermal conductivity, particle filling property, and the like.
 磁性シート4dは、ループアンテナ素子2の磁気シールドのために用いるもので、フェライト等の酸化物磁性体、Fe系、Co系、Ni系、Fe-Ni系、Fe-Co系、Fe-Al系、Fe-Si系、Fe-Si-Al系、Fe-Ni-Si-Al系等の結晶系又は微結晶系金属磁性体、あるいはFe-Si-B系、Fe-Si-B-C系、Co-Si-B系、Co-Zr系、Co-Nb系、Co-Ta系等のアモルファス金属磁性体を使うことができる。また、これらの磁性体の粒子を結合剤で圧縮成型あるいは焼成して作製したシートを使うこともできる。アンテナの性能が十分な場合や、後述する直流磁場の影響を受けるような場合には磁性シート4dを省略してもよい。 The magnetic sheet 4d is used for magnetic shielding of the loop antenna element 2, and is made of an oxide magnetic material such as ferrite, Fe-based, Co-based, Ni-based, Fe-Ni-based, Fe-Co-based, Fe-Al-based. Fe-Si-based, Fe-Si-Al-based, Fe-Ni-Si-Al-based crystalline or microcrystalline metal magnetic materials, or Fe-Si-B-based, Fe-Si-BC-based, Amorphous metal magnetic materials such as Co—Si—B, Co—Zr, Co—Nb, and Co—Ta can be used. In addition, a sheet prepared by compression molding or baking these magnetic particles with a binder may be used. The magnetic sheet 4d may be omitted when the performance of the antenna is sufficient or when it is affected by a DC magnetic field described later.
 結合剤は、熱、紫外線照射等により硬化する樹脂等を用いる。結合剤としては、たとえばエポキシ樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル等の樹脂、あるいはシリコーンゴム、ウレタンゴム、アクリルゴム、ブチルゴム、エチレンブロピレンゴム等のゴム等周知の材料を用いることができるが、これらに限られず他の周知の材質を用いることができる。なお、上述の樹脂又はゴムに、難燃剤、反応調整材、架橋剤又はシランカップリング剤等の表面処理剤を適量加えてもよい。 As the binder, a resin that is cured by heat, ultraviolet irradiation, or the like is used. As the binder, for example, a known material such as a resin such as an epoxy resin, a phenol resin, a melamine resin, a urea resin, or an unsaturated polyester, or a rubber such as silicone rubber, urethane rubber, acrylic rubber, butyl rubber, or ethylene propylene rubber is used. However, the present invention is not limited to these, and other known materials can be used. An appropriate amount of a surface treatment agent such as a flame retardant, a reaction modifier, a crosslinking agent, or a silane coupling agent may be added to the above-described resin or rubber.
 アンテナ素子12を形成する導線11は、アンテナ部13を、5W程度の充電出力容量を有する非接触給電用の2次側充電コイルとして用いる場合であって、120kHz程度の周波数で用いられるときには、0.20mm~0.45mmの径のCu又はCuを主成分とする合金からなる単線を用いることが好ましい。あるいは、導線11の表皮効果を低減するために、上述の単線よりも細い細線を複数本束ねた並行線、編線を用いてもよく、厚みの薄い平角線又は扁平線を用いて1層、又は2層のα巻としてもよい。ループアンテナ部3についても、用いられる周波数、電流容量を考慮して任意に決定することができる。 The conducting wire 11 forming the antenna element 12 is used when the antenna unit 13 is used as a secondary charging coil for non-contact power feeding having a charging output capacity of about 5 W, and when used at a frequency of about 120 kHz, 0 is used. It is preferable to use a single wire made of Cu or an alloy containing Cu as a main component with a diameter of 20 mm to 0.45 mm. Alternatively, in order to reduce the skin effect of the conductive wire 11, a parallel line formed by bundling a plurality of fine wires thinner than the above-mentioned single wire, a knitted wire may be used, and one layer using a thin rectangular wire or a flat wire, Or it is good also as alpha winding of 2 layers. The loop antenna unit 3 can also be arbitrarily determined in consideration of the frequency and current capacity used.
 ループアンテナ素子2及びアンテナ素子12には、フェノール基板等によるサブ基板やポリイミド等によるフレキシブル基板の片面あるいは両面に導電体をパターニングしてコイルを形成した基板を用いることもできる。このような基材の片面あるいは両面に導電体をパターニングして作製したコイルを使った構成では、アンテナ素子の厚みを薄くできるので、アンテナ装置10の厚みをさらに薄くすることができる。非接触給電用途では比較的大きな電流が流れるので、アンテナ素子12は、たとえば単線あるいは複線を使ったコイルで構成し、通信用途のループアンテナ素子2を、基材の片面あるいは両面に金属をパターニングして作製したコイル、いわゆるFPC(Flexible Printed Circuit)コイルで構成する等が可能である。基板の両面に導線1をパターン形成して、それぞれのパターンをスルーホールを介して直列に接続することにより、巻数を増やすことができる。また、基板の両面にパターン配線した導線1をスルーホールを介して並列に接続することによって、電流容量を増大させることもできる。基板として積層基板を用いることにより、さらに多層化をすることもでき、多層配線によって、さらなる巻回数や電流容量の増大が可能である。 As the loop antenna element 2 and the antenna element 12, a substrate in which a coil is formed by patterning a conductor on one side or both sides of a sub-substrate such as a phenol substrate or a flexible substrate such as polyimide can be used. In such a configuration using a coil produced by patterning a conductor on one or both sides of the base material, the thickness of the antenna element can be reduced, so that the thickness of the antenna device 10 can be further reduced. Since a relatively large current flows in a contactless power supply application, the antenna element 12 is constituted by a coil using, for example, a single wire or a double wire, and the loop antenna element 2 for communication is patterned on one or both surfaces of a base material. For example, the coil may be formed of a so-called FPC (Flexible Printed Circuit) coil. The number of turns can be increased by patterning the conductive wires 1 on both sides of the substrate and connecting the respective patterns in series via through holes. Further, the current capacity can be increased by connecting the conductive wires 1 patterned on both surfaces of the substrate in parallel through the through holes. By using a multilayer substrate as a substrate, it is possible to further increase the number of layers, and the multilayer wiring can further increase the number of turns and the current capacity.
 このようにして構成された本発明のアンテナ装置10は、複数のアンテナが厚み方向に積層されて形成されるので、省スペースが実現できる。 Since the antenna device 10 of the present invention configured as described above is formed by stacking a plurality of antennas in the thickness direction, space saving can be realized.
 さらに、本発明のアンテナ装置10は、アンテナ素子12が磁性樹脂層4aに埋設されているので、コイル近傍の磁束密度を高くすることができ、少ないターン数であっても所望のインダクタンス値を得ることができる。これにより所望のインダクタンス値を得るためにターン数を減らすことができるので、導線11の直流抵抗を減らすことができ、低損失化が可能になる。また、磁性樹脂層4aの熱伝導特性により、より効率よく放熱することができ、発熱の低下による電子機器内の放熱スペースを削減することも可能になる。また、アンテナ部13の磁気シールド層となる磁性樹脂層4bを広くとることができ、さらに磁性樹脂層4bは、磁気飽和しにくい構成となっているので、近傍に強い磁界が存在する、しないにかかわらず良好な磁気シールド性能を発揮することができる。 Furthermore, in the antenna device 10 of the present invention, since the antenna element 12 is embedded in the magnetic resin layer 4a, the magnetic flux density near the coil can be increased, and a desired inductance value can be obtained even with a small number of turns. be able to. As a result, the number of turns can be reduced in order to obtain a desired inductance value, so that the direct current resistance of the conducting wire 11 can be reduced and a reduction in loss can be achieved. In addition, the heat conduction characteristics of the magnetic resin layer 4a can radiate heat more efficiently, and it is also possible to reduce the heat radiation space in the electronic device due to a decrease in heat generation. In addition, the magnetic resin layer 4b serving as the magnetic shield layer of the antenna unit 13 can be widened, and the magnetic resin layer 4b is configured to be hard to be magnetically saturated, so there is no strong magnetic field in the vicinity. Regardless, good magnetic shielding performance can be exhibited.
 [アンテナ装置の製造方法]
 次にこのアンテナ装置10の作製方法の一例について説明する。
[Manufacturing method of antenna device]
Next, an example of a method for manufacturing the antenna device 10 will be described.
 まず磁性樹脂層4a,4bに用いるシートを作製する。磁性樹脂層4aの場合には、平均粒径5μmの球状金属磁性粒子を、アクリル系の樹脂に希釈剤とともに加えて混練する。これをシート成型機を用いて加工し、乾燥させて所定の厚みのシートを形成する。磁性樹脂層4bでは、磁性樹脂層4aの場合と同様にしてシートを形成する。磁気シールド性能を高めるために、磁性樹脂層4aの場合よりも磁性粒子を高充填させる。このため平均粒径が25μm、5μmの2種類の球状アモルファス金属磁性粒子を用いて、粒径の大きな粒子の間に粒径の小さい粒子を入れ込むようにして充填率を上げるようにする。このようにして形成したそれぞれのシートを所定の形状に加工して、磁性樹脂層4a,4bとする。 First, sheets used for the magnetic resin layers 4a and 4b are prepared. In the case of the magnetic resin layer 4a, spherical metal magnetic particles having an average particle diameter of 5 μm are added to an acrylic resin together with a diluent and kneaded. This is processed using a sheet molding machine and dried to form a sheet having a predetermined thickness. In the magnetic resin layer 4b, a sheet is formed in the same manner as the magnetic resin layer 4a. In order to enhance the magnetic shielding performance, the magnetic particles are filled more than in the case of the magnetic resin layer 4a. For this reason, two types of spherical amorphous metal magnetic particles having an average particle size of 25 μm and 5 μm are used, and the filling rate is increased by inserting particles having a small particle size between particles having a large particle size. Each sheet formed in this manner is processed into a predetermined shape to form magnetic resin layers 4a and 4b.
 この後、磁性樹脂層4bを型枠に配設して、加熱プレスして所定の形状の硬化した磁性樹脂層4bとする。磁性樹脂層4bとして圧粉成型した材料を用いてもよく、上述した方法で作製した場合には、硬化処理前でも圧縮強度が高い場合には、上記加熱プレスを省略し、後に続く磁性樹脂層4aの硬化処理のときにあわせて硬化させてもよい。 Thereafter, the magnetic resin layer 4b is disposed in a mold and heated and pressed to obtain a hardened magnetic resin layer 4b having a predetermined shape. As the magnetic resin layer 4b, a powder-molded material may be used. When the magnetic resin layer 4b is produced by the above-described method, if the compressive strength is high even before the curing process, the heating press is omitted, and the magnetic resin layer that follows. You may make it harden | cure together with the hardening process of 4a.
 次に、支持基材8にループアンテナ素子2と磁性シート4dを貼り付けたループアンテナ部3と、アンテナ素子12とを、所定の厚みの磁性樹脂層4aに埋設するように載置する。この際に、導線11の引出線、及び支持基材8を貫通して設けた導線1の引出線を磁性樹脂層4bの側にして、その端部が型の外枠の一部に設けた溝に沿って、外側に出るように設置する。この後、加熱プレスして磁性樹脂層4aを硬化させて型枠から取出すことでアンテナ装置10を完成する。このようにして作製されたアンテナ装置10は、導線1,11の引出線は磁性樹脂層4a,4bに埋設され、外部回路と接続するためのコイル端部が引き出されたものとなる。 Next, the loop antenna part 3 in which the loop antenna element 2 and the magnetic sheet 4d are bonded to the support base 8 and the antenna element 12 are placed so as to be embedded in the magnetic resin layer 4a having a predetermined thickness. At this time, the lead wire of the lead wire 11 and the lead wire of the lead wire 1 penetrating the support base material 8 are on the magnetic resin layer 4b side, and the end portion is provided on a part of the outer frame of the mold. Install so that it goes out along the groove. Thereafter, the antenna device 10 is completed by heating and pressing to cure the magnetic resin layer 4a and removing it from the mold. In the antenna device 10 manufactured as described above, the lead wires of the conducting wires 1 and 11 are embedded in the magnetic resin layers 4a and 4b, and coil end portions for connection to an external circuit are drawn out.
 磁性樹脂層4aの量は、ループアンテナ素子2及びアンテナ素子12を完全に埋設させる量であってもよく、ループアンテナ素子2及びアンテナ素子12の一部が露出する量であってもよい。また、磁性樹脂層4aの位置は、ループアンテナ素子2及び/又はアンテナ素子12の外径部分又は内径部分の全部あるいは一部を充填するように埋設する位置であってもよい。 The amount of the magnetic resin layer 4a may be an amount for completely embedding the loop antenna element 2 and the antenna element 12, or an amount for exposing a part of the loop antenna element 2 and the antenna element 12. Further, the position of the magnetic resin layer 4a may be a position embedded so as to fill all or part of the outer diameter portion or the inner diameter portion of the loop antenna element 2 and / or the antenna element 12.
 上述したような製造方法によって、ループアンテナ素子2及びアンテナ素子12と磁性樹脂層4a,4bとを固定する場合には、接着剤を用いる必要がない。したがって、接着剤を塗布する工程が削減され、さらに接着剤塗布により形成される接着剤層がない分だけアンテナ装置10の薄型化が可能になる。また磁性樹脂層4a,4bは、上述のような樹脂が混錬されているために、外部からの衝撃に対して、割れ等の破損を生じることがないので、表面に保護シートを貼付する必要がない。したがって、保護シート貼付工程を削減でき、保護シートにかかるアンテナ装置の厚さの増大を抑えることができる。 When the loop antenna element 2 and the antenna element 12 and the magnetic resin layers 4a and 4b are fixed by the manufacturing method as described above, it is not necessary to use an adhesive. Accordingly, the number of steps for applying the adhesive is reduced, and the antenna device 10 can be made thinner by the amount of the adhesive layer formed by applying the adhesive. In addition, since the magnetic resin layers 4a and 4b are kneaded with the resin as described above, they do not cause breakage such as cracking against an external impact, so it is necessary to stick a protective sheet on the surface. There is no. Therefore, the protective sheet sticking process can be reduced, and an increase in the thickness of the antenna device over the protective sheet can be suppressed.
 また、磁性樹脂層4a,4bは、磁性粒子と樹脂を混練して形成され、硬化後も適度な柔軟性を有しているため、電子機器の筐体内部の形状に合わせて形状を加工して、搭載することができる。 In addition, the magnetic resin layers 4a and 4b are formed by kneading magnetic particles and a resin and have an appropriate flexibility even after curing. Therefore, the magnetic resin layers 4a and 4b are processed in accordance with the shape inside the casing of the electronic device. Can be installed.
 [変形例1]
 図2A及び図2Bは、磁性樹脂層4bの断面構造を凸型にしている例である。アンテナ素子12の内径側に透磁率のより高い磁性体を配することによって、アンテナのインダクタンス及び送受信アンテナ間の結合係数を高くすることができ、通信特性を向上させることができる。
[Modification 1]
2A and 2B are examples in which the cross-sectional structure of the magnetic resin layer 4b is convex. By disposing a magnetic material having higher permeability on the inner diameter side of the antenna element 12, the inductance of the antenna and the coupling coefficient between the transmitting and receiving antennas can be increased, and the communication characteristics can be improved.
 アンテナ装置10aは、支持基材8に導線1を渦巻状に巻回して形成されたスパイラルコイル状のループアンテナ素子2とを有するループアンテナ部3と、渦巻状に導線11が巻回されたアンテナ素子12の全体が磁性樹脂層4aに埋設されたアンテナ部13とを備える。アンテナ部13の磁性樹脂層4aがアンテナ部13の外周部分に延設されており、磁性シート4dは、アンテナ部13の延設部の上面に、ループアンテナ素子2と重畳する位置に、磁性樹脂層4aに全体が埋設され、上面が磁性樹脂層4aから露出するように配設される。ループアンテナ部3は、アンテナ部13の上面に配設される。磁性樹脂層4aの下面、すなわちアンテナ素子12が埋設されている側とは反対側の面には、別の磁性樹脂層4bが配設される。磁性樹脂層4bは、ループアンテナ素子2の内径側であって、磁性樹脂層4aの下面に配置され、ループアンテナ素子2の内径の中心部付近を表面が露出するまで充填するように配置される。 The antenna device 10a includes a loop antenna unit 3 having a spiral coil-shaped loop antenna element 2 formed by winding a conducting wire 1 around a support base 8, and an antenna having a conducting wire 11 wound in a spiral shape. The entire element 12 includes an antenna portion 13 embedded in the magnetic resin layer 4a. The magnetic resin layer 4a of the antenna part 13 is extended on the outer peripheral part of the antenna part 13, and the magnetic sheet 4d is placed on the upper surface of the extended part of the antenna part 13 at a position overlapping the loop antenna element 2. The entire layer 4a is embedded, and the upper surface is disposed so as to be exposed from the magnetic resin layer 4a. The loop antenna unit 3 is disposed on the upper surface of the antenna unit 13. Another magnetic resin layer 4b is disposed on the lower surface of the magnetic resin layer 4a, that is, the surface opposite to the side where the antenna element 12 is embedded. The magnetic resin layer 4b is disposed on the inner diameter side of the loop antenna element 2 and on the lower surface of the magnetic resin layer 4a so as to fill the vicinity of the center of the inner diameter of the loop antenna element 2 until the surface is exposed. .
 磁性樹脂層4bの形状は、図1A及び図1Bに示すような平板状や、図2A及び図2Bに示すような凸型に限らない。アンテナ装置のサイズや通信特性といった要求仕様に合わせて、磁性樹脂層4bの大きさ、形状を任意に設定することができる。また、磁性樹脂層4aは、プレスにより流動するので、形状や厚み等を制御することができ、磁性樹脂層4aを充填させる位置を、たとえばアンテナ素子12の内径側近傍のみとすることや、ループアンテナ素子2とアンテナ素子12の間まで延長するなど任意に制御することが可能である。 The shape of the magnetic resin layer 4b is not limited to a flat plate shape as shown in FIGS. 1A and 1B or a convex shape as shown in FIGS. 2A and 2B. The size and shape of the magnetic resin layer 4b can be arbitrarily set according to the required specifications such as the size and communication characteristics of the antenna device. Further, since the magnetic resin layer 4a flows by pressing, the shape, thickness and the like can be controlled, and the position where the magnetic resin layer 4a is filled is, for example, only near the inner diameter side of the antenna element 12, Arbitrary control such as extending between the antenna element 2 and the antenna element 12 is possible.
 [変形例2]
 図3A及び図3Bには、ループアンテナ素子2の性能を改善するために、ループアンテナ素子2を構成する導線1の一部のうち、内径側の導線1がアンテナ部13に重畳する位置に配置される例を示す。この場合には、アンテナ部13側に重畳している導線1は、ループアンテナ素子2の性能に影響を与えるため、導線1の形状や大きさに留意する必要がある。
[Modification 2]
3A and 3B, in order to improve the performance of the loop antenna element 2, a part of the conductor wire 1 constituting the loop antenna element 2 is arranged at a position where the inner diameter side conductor 1 is superimposed on the antenna unit 13. An example is shown. In this case, since the conducting wire 1 superimposed on the antenna unit 13 side affects the performance of the loop antenna element 2, it is necessary to pay attention to the shape and size of the conducting wire 1.
 また、図3A及び図3Bでは磁気シールド特性をさらに向上させるために、磁性樹脂層4bの下面に磁性層4cを重ねて配設している。磁性樹脂層4bは、磁性粒子を樹脂の中に配合したものであるため、高透磁率構成のバルク材料に比べると透磁率が低い。このため透磁率の高い磁性層4cを磁性樹脂層4bに加えることで磁気シールド効果を高めることができる。ここで、磁性層4cには透磁率の高い磁性体で後述するような材料を用いるが、一般的に磁気飽和しやすい材料である。したがって、直流磁場の存在する環境下で用いる場合は、主に磁性樹脂層4bを用い、磁性層4cを補助的に加えるような構成とする。磁性層4cは、図3A及び図3Bでは磁性樹脂層4bの下面側に配置しているが、磁性樹脂層4bの上面あるいは磁性樹脂層4bの内部に埋め込むようにして用いてもよい。また、磁性樹脂層4bよりも小さな形状、あるいは大きな形状にするなど任意の形状として用いることができる。磁性層4cは、透磁率の高い材料であって、フェライト等の酸化物磁性体、Fe系、Co系、Ni系、Fe-Ni系、Fe-Co系、Fe-Al系、Fe-Si系、Fe-Si-Al系、Fe-Ni-Si-Al系等の結晶系、微結晶系金属磁性体、あるいはFe-Si-B系、Fe-Si-B-C系、Co-Si-B系、Co-Zr系、Co-Nb系、Co-Ta系等のアモルファス金属磁性体を使うことができる。また、これらの磁性体の粒子に結合剤を加えて作製したものや、圧縮成型あるいは焼成して作製したシートやこれらの磁性体を扁平処理等を施して扁平形状にした磁性粉を樹脂等で混練して作製したシートを使うこともできる。 3A and 3B, the magnetic layer 4c is disposed on the lower surface of the magnetic resin layer 4b in order to further improve the magnetic shield characteristics. Since the magnetic resin layer 4b is obtained by blending magnetic particles in a resin, the magnetic permeability is lower than that of a bulk material having a high magnetic permeability configuration. For this reason, the magnetic shielding effect can be enhanced by adding the magnetic layer 4c having a high magnetic permeability to the magnetic resin layer 4b. Here, although the magnetic layer 4c is made of a magnetic material having a high magnetic permeability and will be described later, it is generally a material that is easily magnetically saturated. Therefore, when used in an environment where a DC magnetic field exists, the magnetic resin layer 4b is mainly used, and the magnetic layer 4c is supplementarily added. The magnetic layer 4c is disposed on the lower surface side of the magnetic resin layer 4b in FIGS. 3A and 3B, but may be used so as to be embedded in the upper surface of the magnetic resin layer 4b or inside the magnetic resin layer 4b. Moreover, it can be used as an arbitrary shape such as a smaller shape or a larger shape than the magnetic resin layer 4b. The magnetic layer 4c is a material having a high magnetic permeability, and is a magnetic oxide such as ferrite, Fe-based, Co-based, Ni-based, Fe-Ni-based, Fe-Co-based, Fe-Al-based, Fe-Si-based. , Fe-Si-Al-based, Fe-Ni-Si-Al-based crystalline, microcrystalline metallic magnetic materials, or Fe-Si-B, Fe-Si-BC, Co-Si-B Amorphous metal magnetic materials such as Co, Zr, Co—Nb, and Co—Ta can be used. In addition, a magnetic powder obtained by adding a binder to these magnetic particles, a sheet formed by compression molding or baking, and a magnetic powder obtained by flattening these magnetic materials with a resin, etc. A sheet prepared by kneading can also be used.
 図3A及び図3Bに示すアンテナ装置10bでは、さらに導線1,11の引出線を収納するための引出部6を磁性樹脂層4b及び磁性層4cに設けている。作製時の熱プレスにより導線1,11の引出線が、磁性樹脂層4b又は磁性層4c、あるいは両方に埋設できない場合には、磁性樹脂層4b又は磁性層4c、あるいは両方に引出部6を設けて、導線1,11の引出線を収納することでアンテナ装置10の低背化を図ることができる。 In the antenna device 10b shown in FIGS. 3A and 3B, a lead-out portion 6 is further provided in the magnetic resin layer 4b and the magnetic layer 4c for storing lead-out wires of the conducting wires 1 and 11. When the lead wires of the conductive wires 1 and 11 cannot be embedded in the magnetic resin layer 4b or the magnetic layer 4c or both by hot pressing at the time of production, the lead portions 6 are provided in the magnetic resin layer 4b or the magnetic layer 4c or both. Thus, the antenna device 10 can be reduced in height by storing the lead wires of the conducting wires 1 and 11.
 [変形例3]
 図4A及び図4Bには、ループアンテナ素子2の内径側に、別のアンテナ素子22が設けられた例を示す。アンテナ装置10cは、同一の支持基材8に、渦巻状の導線1からなるループアンテナ素子2と、ループアンテナ素子2の内径に渦巻状の導線21からなるアンテナ素子22とを有する。アンテナ部13の磁性樹脂層4aがアンテナ部13の外周部分に延設されており、磁性シート4dは、アンテナ部13の延設部の上面に、ループアンテナ素子2と重畳する位置に、磁性樹脂層4aに全体が埋設され、上面が磁性樹脂層4aから露出するように配設される。ループアンテナ部3及びアンテナ部23は、アンテナ部13の上面に配設される。磁性樹脂層4aの下面、すなわちアンテナ素子12が埋設されている側とは反対側の面には、別の磁性樹脂層4bが配設される。
[Modification 3]
4A and 4B show an example in which another antenna element 22 is provided on the inner diameter side of the loop antenna element 2. The antenna device 10 c has a loop antenna element 2 composed of a spiral conductive wire 1 and an antenna element 22 composed of a spiral conductive wire 21 on the inner diameter of the loop antenna element 2 on the same support base 8. The magnetic resin layer 4a of the antenna part 13 is extended on the outer peripheral part of the antenna part 13, and the magnetic sheet 4d is placed on the upper surface of the extended part of the antenna part 13 at a position overlapping the loop antenna element 2. The entire layer 4a is embedded, and the upper surface is disposed so as to be exposed from the magnetic resin layer 4a. The loop antenna unit 3 and the antenna unit 23 are disposed on the upper surface of the antenna unit 13. Another magnetic resin layer 4b is disposed on the lower surface of the magnetic resin layer 4a, that is, the surface opposite to the side where the antenna element 12 is embedded.
 ループアンテナ素子2は、磁性シート4d及び磁性樹脂層4a,4bとともにループアンテナ部3を構成し、ループアンテナ素子2の内径に配置されたアンテナ素子22は、磁性樹脂層4a,4bとともにアンテナ部23を構成する。また、アンテナ素子12は、磁性樹脂層4a,4bとともにアンテナ部13を構成する。 The loop antenna element 2 constitutes the loop antenna portion 3 together with the magnetic sheet 4d and the magnetic resin layers 4a and 4b, and the antenna element 22 arranged on the inner diameter of the loop antenna element 2 includes the antenna portion 23 together with the magnetic resin layers 4a and 4b. Configure. The antenna element 12 constitutes an antenna portion 13 together with the magnetic resin layers 4a and 4b.
 このような構成では、たとえばアンテナ部13を非接触給電用、ループアンテナ部3をNFCアンテナ用、アンテナ部23を異物検知コイルとするような場合等に用いることができる。これに限定されることなく、たとえばループアンテナ部3を非接触給電用としたり、アンテナ部23を別の通信アンテナに用いる等、自由に割り振ることができる。 In such a configuration, for example, the antenna unit 13 can be used for non-contact power feeding, the loop antenna unit 3 can be used for an NFC antenna, and the antenna unit 23 can be used as a foreign object detection coil. Without being limited to this, for example, the loop antenna unit 3 can be used for non-contact power feeding, or the antenna unit 23 can be used for another communication antenna.
 図4A及び図4Bでは同一支持基材8に対してループアンテナ素子2とアンテナ素子12が構成されているが、異なる支持基材を用いて、アンテナ素子12、別のアンテナ素子22を形成し、基板平面方向に配設したり、厚み方向に積層する構成としてもよい。また、図4A及び図4Bでは、別のアンテナ素子22の下方には、ループアンテナ素子2に用いる磁性シート4dを省略しているが、ループアンテナ素子2同様、特性改善のために磁性層を設けるようにしてもよい。この場合には、アンテナ素子12の特性に大きな影響を与えないように、アンテナ素子22の導線21の形状、パターン及び、磁性層を用いる場合は特性、大きさ、配置場所に注意する必要がある。 4A and 4B, the loop antenna element 2 and the antenna element 12 are configured with respect to the same support base material 8, but the antenna element 12 and another antenna element 22 are formed using different support base materials, It is good also as a structure arrange | positioned in a board | substrate planar direction, or laminating | stacking on the thickness direction. In FIG. 4A and FIG. 4B, the magnetic sheet 4d used for the loop antenna element 2 is omitted below the other antenna element 22, but a magnetic layer is provided to improve the characteristics as with the loop antenna element 2. You may do it. In this case, it is necessary to pay attention to the characteristics, size, and arrangement location when using the shape and pattern of the conductor 21 of the antenna element 22 and the magnetic layer so as not to greatly affect the characteristics of the antenna element 12. .
 なお、ループアンテナ素子2,22を、同一の基材の片面あるいは両面に金属導体をパターニングして作製したコイル、いわゆるFPC(Flexible Printed Circuit)コイルで構成することができる。また、ループアンテナ素子2,22をそれぞれ異なる基材に形成したFPCコイルとしてもよいのは言うまでもない。 Note that the loop antenna elements 2 and 22 can be constituted by a so-called FPC (Flexible Printed Circuit) coil produced by patterning a metal conductor on one or both surfaces of the same base material. Needless to say, the loop antenna elements 2 and 22 may be FPC coils formed on different substrates.
 [変形例4]
 図5A及び図5Bには、磁性樹脂層4bがアンテナ部13にのみ重畳するように配置され、ループアンテナ素子2の下方には、ループアンテナ素子2を支持するためのスペーサ7が配置される変形例を示す。
[Modification 4]
In FIG. 5A and FIG. 5B, the magnetic resin layer 4 b is disposed so as to overlap only the antenna portion 13, and a spacer 7 for supporting the loop antenna element 2 is disposed below the loop antenna element 2. An example is shown.
 すなわち、アンテナ装置10dは、支持基材8に導線1を渦巻状に巻回して形成されたスパイラルコイル状のループアンテナ素子2とを有するループアンテナ部3と、渦巻状に導線11が巻回されたアンテナ素子12の全体が磁性樹脂層4aに埋設されたアンテナ部13とを備える。アンテナ部13の磁性樹脂層4aがアンテナ部13の外周部分に延設されており、磁性シート4dは、アンテナ部13の延設部の上面に、ループアンテナ素子2と重畳する位置に、磁性樹脂層4aに全体が埋設され、上面が磁性樹脂層4aから露出するように配設される。ループアンテナ部3は、アンテナ部13の上面に配設される。磁性樹脂層4aの下面、すなわちアンテナ素子12が埋設されている側とは反対側の面には、別の磁性樹脂層4bが配設される。 That is, the antenna device 10d includes a loop antenna portion 3 having a spiral coil-shaped loop antenna element 2 formed by winding a conducting wire 1 around a support base 8, and a conducting wire 11 wound in a spiral shape. The entire antenna element 12 includes an antenna portion 13 embedded in the magnetic resin layer 4a. The magnetic resin layer 4a of the antenna part 13 is extended on the outer peripheral part of the antenna part 13, and the magnetic sheet 4d is placed on the upper surface of the extended part of the antenna part 13 at a position overlapping the loop antenna element 2. The entire layer 4a is embedded, and the upper surface is disposed so as to be exposed from the magnetic resin layer 4a. The loop antenna unit 3 is disposed on the upper surface of the antenna unit 13. Another magnetic resin layer 4b is disposed on the lower surface of the magnetic resin layer 4a, that is, the surface opposite to the side where the antenna element 12 is embedded.
 スペーサ7として非磁性材料を用いる場合には、ループアンテナ部3とアンテナ部13との磁気的な干渉を軽減することができる。また、スペーサ7に、熱伝導性の優れた材料を用いると、非接触充電用途に用いるアンテナ部13で発生した熱を効果的に放熱することができる。図5A及び図5Bに示す例では、ループアンテナ素子2が載置された磁性シート4dは、磁性樹脂層4aによって接着剤を用いることなしに固着することができるが、ループアンテナ素子2をあらかじめ接着剤等で接合してループアンテナ部3を構成し、その後、アンテナ部13と磁性樹脂層4a,4bの一方、あるいは両方により固着するようにしてもよい。また、スペーサ7と磁性樹脂層4bはあらかじめ固着させた状態で用いることができる。 When a nonmagnetic material is used as the spacer 7, magnetic interference between the loop antenna unit 3 and the antenna unit 13 can be reduced. Further, when a material having excellent thermal conductivity is used for the spacer 7, heat generated in the antenna unit 13 used for non-contact charging can be effectively radiated. In the example shown in FIGS. 5A and 5B, the magnetic sheet 4d on which the loop antenna element 2 is placed can be fixed without using an adhesive by the magnetic resin layer 4a, but the loop antenna element 2 is bonded in advance. The loop antenna portion 3 may be configured by joining with an agent or the like, and then fixed by one or both of the antenna portion 13 and the magnetic resin layers 4a and 4b. The spacer 7 and the magnetic resin layer 4b can be used in a state where they are fixed in advance.
 [変形例5]
 また、図6A及び図6Bに示すように、アンテナ装置10eでは、スペーサ7の厚みを調整して、アンテナ装置10の外側のループアンテナ素子2が構成された部分の厚みと、アンテナ装置10の中心付近のアンテナ素子12が構成された部分の厚みが略同一となるようにしてもよい。アンテナ装置10eでは、全体の厚みを図1A及び図1B~図5A及び図5B等の場合よりも薄型化することが可能である。
[Modification 5]
6A and 6B, in the antenna device 10e, the thickness of the spacer 7 is adjusted, the thickness of the portion where the loop antenna element 2 outside the antenna device 10 is formed, and the center of the antenna device 10 You may make it the thickness of the part in which the nearby antenna element 12 was comprised become substantially the same. The overall thickness of the antenna device 10e can be made thinner than in the case of FIGS. 1A and 1B to 5A and 5B.
 [変形例6]
 図7A及び図7Bに示すように、ループアンテナ部3とアンテナ部13を別々に作製し、図5A及び図5Bや図6A及び図6Bのようなスペーサによらず磁性樹脂層4aと支持基材8とを固着させることよって両者を接続するようにしてもよい。
[Modification 6]
As shown in FIGS. 7A and 7B, the loop antenna portion 3 and the antenna portion 13 are separately manufactured, and the magnetic resin layer 4a and the supporting base material are used regardless of the spacers as shown in FIGS. 5A, 5B, 6A, and 6B. The two may be connected together by fixing them together.
 このようにして、本発明のアンテナ装置では、1つのアンテナに他のアンテナが重ねて配置されているので、省スペース化されたアンテナ装置が実現できる。 In this way, in the antenna device of the present invention, since another antenna is placed on one antenna, a space-saving antenna device can be realized.
 さらに、本発明のアンテナ装置は、主たる磁性シールドとして磁気飽和し難い磁性樹脂層を用いているので、直流磁場の印加されている環境下でもコイルのインダクタンス値の変化が小さく安定した通信が行える。さらにまた、本発明のアンテナ装置では、コイルの周囲が磁性と熱伝導性を有する磁性樹脂層でおおわれているので、コイルのインダクタンスを高めると同時に、コイルで発生した熱を逃がすことができる。特に大電力を送受する場合は発熱が問題となるが、効率よく熱を逃がすことができるので、発熱の低下による電子機器内の放熱スペースを削減することも可能になり、実質的機器の小型化・薄型化に貢献することができる。 Furthermore, since the antenna device of the present invention uses a magnetic resin layer that is hard to be magnetically saturated as the main magnetic shield, it can perform stable communication with little change in the inductance value of the coil even in an environment where a DC magnetic field is applied. Furthermore, in the antenna device of the present invention, since the periphery of the coil is covered with a magnetic resin layer having magnetism and thermal conductivity, it is possible to increase the inductance of the coil and to release the heat generated in the coil. Heat generation is a problem especially when sending and receiving large electric power, but since heat can be released efficiently, it is possible to reduce the heat dissipation space in the electronic equipment due to the decrease in heat generation, which effectively reduces the size of the equipment.・ Contributes to thinning.
 さらに、磁性樹脂層4a,4bは、磁性粒子に樹脂を混錬して形成するため、硬化後も柔軟性を有しており、電子機器の内部の形状に合わせて、搭載し、実装することが可能である。 Furthermore, since the magnetic resin layers 4a and 4b are formed by kneading the resin with the magnetic particles, the magnetic resin layers 4a and 4b have flexibility even after curing, and are mounted and mounted according to the internal shape of the electronic device. Is possible.
 [非接触通信システム及び非接触充電システムを構成する場合の具体例]
  <非接触通信装置の構成例>
 本発明の一実施の形態に係るアンテナ装置10は、共振コイル(アンテナ)として、共振コンデンサとともに共振回路を構成する。そして、構成された共振回路を非接触通信装置に搭載して、これと他の非接触通信装置と非接触で通信を行う。非接触通信装置は、たとえば携帯電話に搭載されたNFC(Near Field Communication)等の非接触通信モジュール150である。また、他の非接触通信装置は、たとえば非接触通信システムにおけるリーダライタ140である。
[Specific examples of configuring a non-contact communication system and a non-contact charging system]
<Configuration example of non-contact communication device>
An antenna device 10 according to an embodiment of the present invention forms a resonance circuit as a resonance coil (antenna) together with a resonance capacitor. And the comprised resonant circuit is mounted in a non-contact communication apparatus, and it communicates non-contact with this and another non-contact communication apparatus. The non-contact communication device is a non-contact communication module 150 such as NFC (Near Field Communication) mounted on a mobile phone. Another non-contact communication apparatus is, for example, a reader / writer 140 in a non-contact communication system.
 図8に示すように、非接触通信モジュール150は、共振コンデンサと、共振コイルとして機能するアンテナ装置10とからなる共振回路を含む2次側アンテナ部160を備える。非接触通信モジュール150は、リーダライタ140から送信されてきた交流信号を、各ブロックの電源として用いるために、整流して直流電力に変換する整流部166と、各ブロックに対応する電圧を生成する定電圧部167とを備える。非接触通信モジュール150は、定電圧部167により供給される直流電力によって動作する復調部164と変調部163と受信制御部165とを備えており、また、全体の動作を制御するシステム制御部161を備えている。2次側アンテナ部160によって受信された信号は、整流部166による直流電力変換とともに、復調器で復調され、システム制御部161によって、リーダライタ140からの送信データが解析される。また、システム制御部161によって、非接触通信モジュール150の送信データが生成され、送信データは、変調部163によってリーダライタ140に送信するための信号に変調されて2次側アンテナ部160を介して送信される。受信制御部165では、システム制御部161の制御に基づいて、2次側アンテナ部160の共振周波数の調整を行うための信号を生成して、通信の状態に合わせて共振周波数の調整を行うことができる。 As shown in FIG. 8, the non-contact communication module 150 includes a secondary antenna unit 160 including a resonance circuit including a resonance capacitor and the antenna device 10 functioning as a resonance coil. In order to use the AC signal transmitted from the reader / writer 140 as a power source for each block, the non-contact communication module 150 generates a voltage corresponding to each block, and a rectification unit 166 that rectifies and converts the AC signal into DC power. A constant voltage unit 167. The non-contact communication module 150 includes a demodulation unit 164, a modulation unit 163, and a reception control unit 165 that operate by DC power supplied from the constant voltage unit 167, and a system control unit 161 that controls the overall operation. It has. The signal received by the secondary antenna unit 160 is demodulated by the demodulator together with the DC power conversion by the rectification unit 166, and the transmission data from the reader / writer 140 is analyzed by the system control unit 161. Further, transmission data of the non-contact communication module 150 is generated by the system control unit 161, and the transmission data is modulated into a signal to be transmitted to the reader / writer 140 by the modulation unit 163 and is transmitted via the secondary antenna unit 160. Sent. The reception control unit 165 generates a signal for adjusting the resonance frequency of the secondary antenna unit 160 based on the control of the system control unit 161 and adjusts the resonance frequency according to the communication state. Can do.
 また、非接触通信システムのリーダライタ140は、共振コンデンサからなる可変容量回路とアンテナ装置10とを有する共振回路を含む1次側アンテナ部120を備える。リーダライタ140は、リーダライタ140の動作を制御するシステム制御部121と、システム制御部121の指令に基づいて、送信信号の変調を行う変調部124と、変調部124からの送信信号により変調されたキャリア信号を1次側アンテナ部120に送出する送信信号部125とを備える。さらに、リーダライタ140は、送信信号部125によって送出される変調されたキャリア信号を復調する復調部123を備える。 In addition, the reader / writer 140 of the non-contact communication system includes a primary side antenna unit 120 including a resonance circuit having a variable capacitance circuit composed of a resonance capacitor and the antenna device 10. The reader / writer 140 is modulated by a system control unit 121 that controls the operation of the reader / writer 140, a modulation unit 124 that modulates a transmission signal based on a command from the system control unit 121, and a transmission signal from the modulation unit 124. And a transmission signal unit 125 for transmitting the carrier signal to the primary antenna unit 120. The reader / writer 140 further includes a demodulator 123 that demodulates the modulated carrier signal transmitted by the transmission signal unit 125.
 図9に2次側アンテナ部160の構成例を示す。2次側アンテナ部160は、共振容量を構成する可変容量コンデンサCS1,CP1,CS2,CP2と、インダクタンスを形成するアンテナ装置10とからなる直並列共振回路を含む。1次側アンテナ部120についても同様の構成を備える。 FIG. 9 shows a configuration example of the secondary side antenna unit 160. The secondary side antenna unit 160 includes a series-parallel resonant circuit including variable capacitance capacitors CS1, CP1, CS2, and CP2 that form a resonance capacitor and an antenna device 10 that forms an inductance. The primary antenna unit 120 has the same configuration.
 可変容量回路の各コンデンサCS1,CP1,CS2,CP2は、受信制御部165(リーダライタ140の場合には、送受信制御部122)によって直流バイアス電圧を制御され、適切な容量値に設定され、アンテナ装置10(Lant)とともに共振周波数が調整される。 Each capacitor CS1, CP1, CS2, CP2 of the variable capacitance circuit is controlled to have a DC bias voltage by the reception control unit 165 (in the case of the reader / writer 140, the transmission / reception control unit 122), set to an appropriate capacitance value, and the antenna. The resonance frequency is adjusted together with the device 10 (Lant).
  <非接触通信装置の動作>
 次に、アンテナ装置10を含む共振回路からなる1次側アンテナ部120及び2次側アンテナ部160をそれぞれ備えるリーダライタ140及び非接触通信モジュール150の動作について説明する。
<Operation of non-contact communication device>
Next, operations of the reader / writer 140 and the non-contact communication module 150 each including the primary side antenna unit 120 and the secondary side antenna unit 160 formed of a resonance circuit including the antenna device 10 will be described.
 リーダライタ140は、送信信号部125によって送出されるキャリア信号に基づいて、1次側アンテナ部120とのインピーダンスマッチングを行い、受信側である非接触通信モジュール150の受信状態に基づいて、共振回路の共振周波数の調整を行う。変調部124では、一般的なリーダライタで用いられる変調方式、符号化方式は、マンチェスタ符号化方式やASK(Amplitude Shift Keying)変調方式等である。キャリア周波数は、典型的には13.56MHzである。 The reader / writer 140 performs impedance matching with the primary antenna unit 120 based on the carrier signal transmitted by the transmission signal unit 125, and based on the reception state of the non-contact communication module 150 on the reception side, Adjust the resonance frequency. In the modulation unit 124, a modulation method and a coding method used in a general reader / writer are a Manchester coding method, an ASK (Amplitude Shift Keying) modulation method, and the like. The carrier frequency is typically 13.56 MHz.
 送信されるキャリア信号は、送受信制御部122が、送信電圧、送信電流をモニタすることによって、インピーダンスマッチングが得られるよう1次側アンテナ部120の可変電圧Vcを制御して、インピーダンス調整を行う。 The transmission / reception control unit 122 monitors the transmission voltage and transmission current to control the variable voltage Vc of the primary antenna unit 120 so that impedance matching is obtained, and adjusts the impedance of the transmitted carrier signal.
 リーダライタ140から送信された信号は、非接触通信モジュール150の2次側アンテナ部160で受信され、復調部164によって信号が復調される。復調された信号の内容がシステム制御部161によって判断され、システム制御部161は、その結果に基づいて応答信号を生成する。なお、受信制御部165は、受信信号の振幅や電圧・電流位相に基づいて、2次側アンテナ部160の共振パラメータ等を調整して、受信状態が最適になるように、共振周波数の調整をすることができる。 The signal transmitted from the reader / writer 140 is received by the secondary antenna unit 160 of the non-contact communication module 150, and the signal is demodulated by the demodulation unit 164. The content of the demodulated signal is determined by the system control unit 161, and the system control unit 161 generates a response signal based on the result. The reception control unit 165 adjusts the resonance frequency and the like of the secondary antenna unit 160 based on the amplitude and voltage / current phase of the received signal so as to optimize the reception state. can do.
 非接触通信モジュール150は、応答信号を変調部163によって変調し、2次側アンテナ部160によってリーダライタ140に送信する。リーダライタ140は、1次側アンテナ部120で受信した応答信号を復調部123で復調し、復調された内容に基づいて、システム制御部121によって必要な処理を実行する。 The non-contact communication module 150 modulates the response signal by the modulation unit 163 and transmits the response signal to the reader / writer 140 by the secondary side antenna unit 160. The reader / writer 140 demodulates the response signal received by the primary antenna unit 120 by the demodulation unit 123, and executes necessary processing by the system control unit 121 based on the demodulated contents.
  <非接触充電装置及び受電装置の構成例>
 本発明に係るアンテナ装置10を用いた共振回路は、非接触充電装置180によって、非接触で携帯電話等の携帯端末に内蔵される2次電池を充電する受電装置190を構成することができる。非接触充電の方式としては、電磁誘導方式や磁気共鳴等が適応可能である。
<Configuration example of non-contact charging device and power receiving device>
A resonance circuit using the antenna device 10 according to the present invention can constitute a power receiving device 190 that charges a secondary battery built in a mobile terminal such as a mobile phone in a contactless manner by the contactless charging device 180. As a non-contact charging method, an electromagnetic induction method, magnetic resonance, or the like can be applied.
 図10には、本発明が適用された携帯端末等の受電装置190と、受電装置190を非接触で充電する非接触充電装置180とからなる非接触充電システムの構成例を示す。 FIG. 10 shows a configuration example of a non-contact charging system including a power receiving device 190 such as a portable terminal to which the present invention is applied and a non-contact charging device 180 that charges the power receiving device 190 in a non-contact manner.
 受電装置190は、上述した非接触通信モジュール150とほぼ同じ構成を備える。また、非接触充電装置180の構成は、上述したリーダライタ140の構成とほぼ同じである。したがって、リーダライタ140、非接触通信モジュール150として図8に記載されたブロックと同じ機能を有するものについては、同じ符号で示す。ここで、リーダライタ140では、送受信するキャリア周波数が多くの場合に13.56MHzであるのに対して、非接触充電装置180では、100kHz~数100kHzの場合がある。 The power receiving apparatus 190 has substantially the same configuration as the non-contact communication module 150 described above. The configuration of the non-contact charging device 180 is almost the same as the configuration of the reader / writer 140 described above. Accordingly, the reader / writer 140 and the non-contact communication module 150 having the same functions as the blocks described in FIG. Here, in the reader / writer 140, the carrier frequency to be transmitted / received is 13.56 MHz in many cases, whereas in the non-contact charging device 180, the frequency may be 100 kHz to several hundred kHz.
 非接触充電装置180は、送信信号部125によって送出されるキャリア信号に基づいて、1次側アンテナ部120とのインピーダンスマッチングを行い、受信側である非接触通信モジュールの受信状態に基づいて、共振回路の共振周波数の調整を行う。 The non-contact charging device 180 performs impedance matching with the primary antenna unit 120 based on the carrier signal transmitted by the transmission signal unit 125, and resonates based on the reception state of the non-contact communication module on the receiving side. Adjust the resonant frequency of the circuit.
 送信されるキャリア信号は、送受信制御部122が、送信電圧、送信電流をモニタすることによって、インピーダンスマッチングが得られるよう1次側アンテナ部120の可変電圧Vcを制御して、インピーダンス調整を行う。 The transmission / reception control unit 122 monitors the transmission voltage and transmission current to control the variable voltage Vc of the primary antenna unit 120 so that impedance matching is obtained, and adjusts the impedance of the transmitted carrier signal.
 受電装置190は、2次側アンテナ部160で受信された信号を整流部166で整流し、整流された直流電圧を充電制御部170の制御にしたがって、バッテリ169を充電する。2次側アンテナ部160による信号の受信がない場合であっても、ACアダプタ等の外部電源168によって充電制御部170を駆動してバッテリ169を充電することができる。 The power receiving device 190 rectifies the signal received by the secondary antenna unit 160 by the rectifying unit 166, and charges the battery 169 with the rectified DC voltage according to the control of the charging control unit 170. Even when no signal is received by the secondary antenna unit 160, the battery 169 can be charged by driving the charging control unit 170 by an external power source 168 such as an AC adapter.
 非接触充電装置180から送信された信号は、2次側アンテナ部160で受信され、復調部164によって信号は復調される。復調された信号の内容がシステム制御部161によって判断され、システム制御部161は、その結果に基づいて応答信号を生成する。なお、受信制御部165は、受信信号の振幅や電圧・電流位相に基づいて、2次側アンテナ部160の共振パラメータ等を調整して、受信状態が最適になるように、共振周波数の調整をすることができる。 The signal transmitted from the non-contact charging device 180 is received by the secondary side antenna unit 160, and the signal is demodulated by the demodulation unit 164. The content of the demodulated signal is determined by the system control unit 161, and the system control unit 161 generates a response signal based on the result. The reception control unit 165 adjusts the resonance frequency and the like of the secondary antenna unit 160 based on the amplitude and voltage / current phase of the received signal so as to optimize the reception state. can do.
 [磁性粒子の形状を設定した場合のアンテナ装置の特性評価]
 非接触充電システムでは、1次側アンテナと2次側アンテナの相対位置が電力伝送効率に影響する。このため、充電装置(1次側)と受電装置(2次側)の位置を近接して配置できるように、充電装置に強力なマグネットを配して、充電装置の1次側アンテナに、受電装置の2次側アンテナを引き寄せるように工夫されたものがある(非特許文献2記載のデザインA1)。このような強力なマグネットによる直流磁場に対する磁性樹脂層の効果を定量化するために以下のような特性評価を行った。
[Characteristic evaluation of antenna device when magnetic particle shape is set]
In the non-contact charging system, the relative position between the primary antenna and the secondary antenna affects the power transmission efficiency. For this reason, a powerful magnet is arranged in the charging device so that the charging device (primary side) and the power receiving device (secondary side) can be placed close to each other, and the primary antenna of the charging device receives power. Some have been devised to draw the secondary antenna of the device (design A1 described in Non-Patent Document 2). In order to quantify the effect of the magnetic resin layer on the DC magnetic field generated by such a strong magnet, the following characteristic evaluation was performed.
 本発明の実施の形態に係るアンテナ装置10に関して、磁性樹脂層4bを用いた場合の特性を、コイルのインダクタンス値に与える磁気飽和の影響として評価した。具体的には、図11Aに示す単一のコイルのインダクタンス値を測定することによって特性評価を行った。図11Bには、特性評価用のアンテナ装置10gの断面を示す。アンテナ装置10gは、長方形状に巻回された導線1によって形成されるループアンテナ素子2と、ループアンテナ素子2に接着層5を介して接続された所定の厚さを有する磁性樹脂層4bとを備える。また、ループアンテナ素子2と外部回路との電気的接続のための引出線3a,3bを有している。ループアンテナ素子2の内径側の引出線3aは、磁性樹脂層4bに形成された切欠部26を通って外部に引き出される。なお、図11Cは、後述する磁性層4cをさらに付加した場合の磁気特性への影響を測定するための特性評価用のアンテナ装置10hの構成である。 For the antenna device 10 according to the embodiment of the present invention, the characteristics when the magnetic resin layer 4b was used were evaluated as the influence of magnetic saturation on the inductance value of the coil. Specifically, the characteristic evaluation was performed by measuring the inductance value of a single coil shown in FIG. 11A. FIG. 11B shows a cross section of the antenna device 10g for characteristic evaluation. The antenna device 10g includes a loop antenna element 2 formed by a conductive wire 1 wound in a rectangular shape, and a magnetic resin layer 4b having a predetermined thickness connected to the loop antenna element 2 via an adhesive layer 5. Prepare. Moreover, it has the leader lines 3a and 3b for electrical connection with the loop antenna element 2 and an external circuit. The lead wire 3a on the inner diameter side of the loop antenna element 2 is drawn to the outside through a notch 26 formed in the magnetic resin layer 4b. FIG. 11C shows a configuration of an antenna device 10h for characteristic evaluation for measuring the influence on the magnetic characteristics when a magnetic layer 4c described later is further added.
 測定環境を図12A及び図12Bに示す。 The measurement environment is shown in FIGS. 12A and 12B.
 図12Aでは、外部直流磁界のない状態を評価する受電コイルユニットの構成を示す。受電コイルユニットは、特性評価用のアンテナ装置10gであり、ループアンテナ素子2と磁性樹脂層4bとを備える。磁性樹脂層4bのループアンテナ素子2が搭載されている面とは反対側の面には、バッテリパックを模した金属板31を配置した。受電コイルユニットは、14Tの長方形コイル(外径31×43mm)である。 FIG. 12A shows a configuration of a receiving coil unit that evaluates a state without an external DC magnetic field. The power receiving coil unit is an antenna device 10g for characteristic evaluation, and includes a loop antenna element 2 and a magnetic resin layer 4b. A metal plate 31 simulating a battery pack was disposed on the surface of the magnetic resin layer 4b opposite to the surface on which the loop antenna element 2 is mounted. The power receiving coil unit is a 14T rectangular coil (outer diameter 31 × 43 mm).
 図12Bでは、マグネットによる外部直流磁界がある状態を評価する受電コイルユニットの構成を示す。図12Aの場合と同じく、受電コイルユニットは評価用のアンテナ装置10hであり、ループアンテナ素子2と磁性樹脂層4bとを備えている。磁性樹脂層4bのループアンテナ素子2が搭載されている面とは反対側の面には、バッテリパックを模した金属板31を配置した。受電コイルユニットに対向するように送電コイルユニットを配置した。送電コイルユニットは、スパイラルコイル30aと磁性シールド材30bとを備えており、受電コイルユニットの中心と中心軸を合わせるように配置した。送電コイルユニット30の中心に、直流磁界発生のためのマグネット40を配置した。このマグネットを装着した送信コイルユニットは、非特許文献2に記載されるデザインA1に基づいて作成されたものである。受電コイルユニットと送電コイルユニットとは、2.5ミリのアクリル板を介して離間して対向配置した。アジレント社のインピーダンスアナライザ4294Aを用いて、それぞれの場合に対して、磁性樹脂層4bの構成を変えて、コイルのインダクタンス値を測定した。 FIG. 12B shows a configuration of a receiving coil unit that evaluates a state where there is an external DC magnetic field by a magnet. As in the case of FIG. 12A, the power receiving coil unit is an antenna device 10h for evaluation, and includes a loop antenna element 2 and a magnetic resin layer 4b. A metal plate 31 simulating a battery pack was disposed on the surface of the magnetic resin layer 4b opposite to the surface on which the loop antenna element 2 is mounted. The power transmission coil unit was disposed so as to face the power reception coil unit. The power transmission coil unit includes a spiral coil 30a and a magnetic shield material 30b, and is arranged so that the center and the central axis of the power reception coil unit are aligned. A magnet 40 for generating a DC magnetic field is arranged at the center of the power transmission coil unit 30. The transmission coil unit to which this magnet is attached is created based on the design A1 described in Non-Patent Document 2. The power receiving coil unit and the power transmitting coil unit were arranged to face each other with a 2.5 mm acrylic plate therebetween. Using an impedance analyzer 4294A manufactured by Agilent, the inductance value of the coil was measured by changing the configuration of the magnetic resin layer 4b in each case.
 最初に、図11Bに示すような磁性樹脂層4bのみからなる磁性シールド層を有するアンテナ装置10gのインダクタンス値の測定を行った。 First, the inductance value of the antenna device 10g having a magnetic shield layer composed only of the magnetic resin layer 4b as shown in FIG. 11B was measured.
 図13A及び図13B及び図14A及び図14Bには、各種磁性材料を用いた磁気シールド層を搭載した受電コイルユニットのインダクタンス値を測定したグラフを示す。直流磁界がない状態におけるインダクタンスの測定値に対する直流磁界がある状態におけるインダクタンスの測定値の変化量をパーセントで表し、インダクタンスの相対値ΔLと称する。磁性樹脂層4bの厚さtmを変えて、インダクタンスの相対値ΔLをプロットした。マイナスのインダクタンスの相対値ΔLは、インダクタンス値が低下したことを表し、プラスの場合には、インダクタンス値が増加したことを示す。 FIG. 13A, FIG. 13B, FIG. 14A, and FIG. 14B show graphs in which the inductance value of the power receiving coil unit equipped with a magnetic shield layer using various magnetic materials is measured. The amount of change in the measured inductance value in the presence of a DC magnetic field with respect to the measured inductance value in the absence of a DC magnetic field is expressed as a percentage and is referred to as a relative inductance value ΔL. The relative value ΔL of the inductance was plotted while changing the thickness tm of the magnetic resin layer 4b. A negative inductance relative value ΔL indicates that the inductance value has decreased, and a positive value indicates that the inductance value has increased.
  <実施例1>
 図13Aには、磁性樹脂層4bとして、寸法比(長径/短径)が6以下の球状アモルファス粉を配合した平均透磁率20程度を有する磁性樹脂層4bを用いた場合のインダクタンスの相対値ΔLを示す。
<Example 1>
FIG. 13A shows the relative value ΔL of the inductance when the magnetic resin layer 4b having an average permeability of about 20 in which a spherical amorphous powder having a dimensional ratio (major axis / minor axis) of 6 or less is used as the magnetic resin layer 4b. Indicates.
  <実施例2>
 図13Bには、磁性樹脂層4bとして、寸法比(長径/短径)が6以下の球状センダスト粉を配合した平均透磁率16程度を有する磁性樹脂層4bを用いた場合のインダクタンスの相対値ΔLを示す。
<Example 2>
FIG. 13B shows a relative inductance value ΔL when the magnetic resin layer 4b is a magnetic resin layer 4b having an average magnetic permeability of about 16 blended with spherical sendust powder having a dimensional ratio (major axis / minor axis) of 6 or less. Indicates.
  <比較例1>
 図14Aには、磁気シールド層として、センダスト系の寸法比(長径/短径)が50程度の扁平粉を結合剤と混合して作製した平均透磁率100程度を有する磁性シートを用いた場合のインダクタンスの相対値を示す。
<Comparative Example 1>
FIG. 14A shows a case where a magnetic sheet having an average permeability of about 100 prepared by mixing flat powder having a sendust-based dimensional ratio (major axis / minor axis) of about 50 with a binder is used as the magnetic shield layer. Indicates the relative value of inductance.
 <比較例2>
 図14Bには、磁気シールド層として、透磁率1500程度のMnZn系のバルクフェライトを用いた場合のインタクタンスの相対値を示す。
<Comparative example 2>
FIG. 14B shows the relative value of the inductance when MnZn-based bulk ferrite having a magnetic permeability of about 1500 is used as the magnetic shield layer.
  <結果>
 図13A及び図13Bに示すように、球状の磁性粉を用いた磁性樹脂層4bを磁性シールド層とした本発明の実施の形態の構成例では、コイルのインダクタンス値は、直流磁場が印加されてもあまり低下していない。なお、インダクタンスの相対値ΔLがプラスになるのは送電コイルユニットを構成する磁気シールド層が大きいために、磁束が受電コイルユニット近傍に集束したことによる。
<Result>
As shown in FIGS. 13A and 13B, in the configuration example of the embodiment of the present invention in which the magnetic resin layer 4b using spherical magnetic powder is used as the magnetic shield layer, the inductance value of the coil is applied with a DC magnetic field. It has not decreased so much. The reason why the relative value ΔL of the inductance is positive is that the magnetic shield layer constituting the power transmission coil unit is large, so that the magnetic flux is concentrated in the vicinity of the power reception coil unit.
 一方、図14Aに示すように、磁性シールド層として扁平形状の磁性粉からなる磁性シートを用いた場合には、送信コイルユニットに装着されたマグネットの直流磁場の影響によって、磁気シールド層に磁気飽和が生じ、インダクタンス値が大きく低下している。シールド層が薄くなるほど磁気飽和しやすくなるので、この傾向はさらに顕著であることが示される。 On the other hand, as shown in FIG. 14A, when a magnetic sheet made of flat magnetic powder is used as the magnetic shield layer, the magnetic shield layer is magnetically saturated due to the influence of the DC magnetic field of the magnet mounted on the transmission coil unit. And the inductance value is greatly reduced. This shows that this tendency is more remarkable because the thinner the shield layer, the more likely it is to become magnetically saturated.
 図14Bに示すように、磁性シールド層としてフェライトを用いた場合には、図14Aの場合と同様に、インダクタンス値が大きく低下することが示される。 As shown in FIG. 14B, it is shown that when ferrite is used as the magnetic shield layer, the inductance value is greatly reduced as in the case of FIG. 14A.
 このように本発明の構成にすることで、マグネット装着の送信コイルユニットに対しても、あるいは大きな直流磁場のある環境においてもコイルインダクタンスの変化が少なく、したがって受電モジュールの共振周波数の変化が少なく安定した電力伝送が可能となる。 By adopting the configuration of the present invention as described above, the change in coil inductance is small even in a magnet-mounted transmission coil unit or in an environment with a large DC magnetic field, and thus the change in the resonance frequency of the power receiving module is small and stable. Power transmission is possible.
 [磁性層を付加した場合のアンテナ装置の特性評価]
 上述のアンテナ装置の評価で用いた図12A及び図12Bに示すものと同じ受電コイルユニットを使用した。受電コイルユニットは、14Tの長方形コイル(外径31mm×43mm)である。
[Evaluation of antenna device characteristics when a magnetic layer is added]
The same receiving coil unit as that shown in FIGS. 12A and 12B used in the evaluation of the antenna device described above was used. The power receiving coil unit is a 14T rectangular coil (outer diameter 31 mm × 43 mm).
 特性評価の方法としては、図11B及び図11Cに示すように、磁気シールド層として、磁性樹脂層4bのみの場合(図11B)と、磁性樹脂層4bの下面に、50μm厚の磁性層4cを貼り付けた場合(図11C)について、それぞれのコイルのインダクタンス値を測定した。また、これらの場合において、磁性樹脂層4bの厚さを変えてインダクタンス値を測定した。したがって、磁性シールド層の全体の厚さは、磁性樹脂層4bに、磁性層4cの厚さ50μmを加えたものとなる。 As a characteristic evaluation method, as shown in FIG. 11B and FIG. 11C, when only the magnetic resin layer 4b is used as the magnetic shield layer (FIG. 11B), a 50 μm thick magnetic layer 4c is formed on the lower surface of the magnetic resin layer 4b. In the case of pasting (FIG. 11C), the inductance value of each coil was measured. In these cases, the inductance value was measured by changing the thickness of the magnetic resin layer 4b. Therefore, the total thickness of the magnetic shield layer is the magnetic resin layer 4b plus the thickness of the magnetic layer 4c of 50 μm.
 受電コイルユニット(評価用のアンテナ装置10h)の磁性樹脂層4bには、寸法比6以下の球状のアモルファス粉を配合した平均透磁率30程度のものを用い、磁性層4cには、センダスト系の寸法比50程度の扁平粉を結合剤と混合して作製した透磁率100程度のものを用いた。 For the magnetic resin layer 4b of the power receiving coil unit (evaluation antenna apparatus 10h), one having an average magnetic permeability of about 30 blended with spherical amorphous powder having a size ratio of 6 or less is used, and for the magnetic layer 4c, a sendust-based one is used. A powder having a magnetic permeability of about 100 was prepared by mixing flat powder having a size ratio of about 50 with a binder.
 図15A及び図15Bに、磁気シールド層4の厚さtmに対するインダクタンス値Lをプロットしたグラフを示す。なお、インダクタンス値は、アジレント社のインピーダンスアナライザ4294Aを用いて測定し、非接触充電システムで一般に用いられる周波数120kHzにおけるインダクタンス値Lとしてプロットした。 15A and 15B are graphs plotting the inductance value L with respect to the thickness tm of the magnetic shield layer 4. The inductance value was measured using an impedance analyzer 4294A manufactured by Agilent, and plotted as an inductance value L at a frequency of 120 kHz generally used in a non-contact charging system.
  <実施例3>
 図15Aには、直流磁場の印加がない場合、すなわち、図12Aの受電コイルユニットの構成の場合のコイルのインダクタンス値Lの測定結果を示す。図15Bには、マグネットにより直流磁場が印加されている図12Bの受電コイルユニットの構成の場合のインダクタンス値Lの測定結果を示す。
<Example 3>
FIG. 15A shows a measurement result of the inductance value L of the coil when no DC magnetic field is applied, that is, in the case of the configuration of the power receiving coil unit of FIG. 12A. FIG. 15B shows the measurement result of the inductance value L in the case of the configuration of the receiving coil unit of FIG. 12B in which a DC magnetic field is applied by a magnet.
 図15Aに示すように、直流磁場のない場合では、磁性樹脂層4bの一部を薄い磁性層4cで置き換えることによって、コイルのインダクタンス値を向上させることができる。 As shown in FIG. 15A, when there is no DC magnetic field, the inductance value of the coil can be improved by replacing a part of the magnetic resin layer 4b with the thin magnetic layer 4c.
 一方、図15Bで示すように、マグネットによる直流磁場が印加されると、磁気飽和の影響が大きいために、いずれのコイルについてもインダクタンス値が下がっている。磁性層4cは、磁性樹脂層4bよりもインダクタンスを増加させる効果が高いが、逆に強い磁場が印加された状態では磁性樹脂層4bの方がインダクタンスを向上させる効果が高いので、上記2つの層の割合を調整することで、磁気シールド性や回路の共振条件に強く影響するコイルインダクタンスとその磁気飽和特性を所望の性能に調整することができる。 On the other hand, as shown in FIG. 15B, when a DC magnetic field is applied by a magnet, the influence of magnetic saturation is large, so that the inductance value is reduced for all coils. The magnetic layer 4c has a higher effect of increasing the inductance than the magnetic resin layer 4b. On the contrary, the magnetic resin layer 4b has a higher effect of improving the inductance when a strong magnetic field is applied. By adjusting the ratio, the coil inductance that strongly influences the magnetic shielding properties and the circuit resonance conditions and the magnetic saturation characteristics thereof can be adjusted to the desired performance.
 このように、本発明のアンテナ装置では磁気飽和に強い磁性樹脂層を有しているので、強い磁場が印加されている環境下においてもコイルインダクタンスの変化が少なく安定した電力供給が可能である。さらにまた、磁性樹脂層と磁性層の厚みを調整することでコイルインダクタンスの大きさと強い磁場環境下でのコイルインダクタンスの変化率のバランスを調整することができる。非接触通信用はもちろん、非接触電力伝送(非接触充電)用にも用いることができ、また、それぞれのループアンテナ部、アンテナ部を用途や搭載する電子機器に応じて最適に設計することができる。 Thus, since the antenna device of the present invention has a magnetic resin layer that is strong against magnetic saturation, it is possible to stably supply power with little change in coil inductance even in an environment where a strong magnetic field is applied. Furthermore, by adjusting the thicknesses of the magnetic resin layer and the magnetic layer, the balance between the magnitude of the coil inductance and the rate of change of the coil inductance under a strong magnetic field environment can be adjusted. It can be used not only for non-contact communication but also for non-contact power transmission (non-contact charging), and each loop antenna part and antenna part can be optimally designed according to the application and the electronic equipment installed. it can.
1,11,21 導線、2 ループアンテナ素子、12,22 アンテナ素子、3 ループアンテナ部、13,23 アンテナ部、3a,3b 引出線、4 磁気シールド層、4a,4b 磁性樹脂層、4c 磁性層、4d 磁性シート、5 接着層、6 引出部、7 スペーサ、8 支持基材、10,10a~10f アンテナ装置、10g,10h 特性評価用アンテナ装置、26 切欠部、30 送信コイルユニット、30a スパイラルコイル、30b 磁性シールド、31 金属板、40 マグネット、120 1次側アンテナ部、121 システム制御部、122 送受信制御部、123 復調部、124 変調部、125 送信信号部、140 非接触通信装置、150 非接触通信モジュール、160 2次側アンテナ部、161 システム制御部、163 変調部、164 復調部、165 受信制御部、166 整流部、167 定電圧部、168 外部電源、169 バッテリ、170 充電制御部、180 非接触充電装置、190 受電装置 1,11,21 conducting wire, 2 loop antenna element, 12, 22 antenna element, 3 loop antenna part, 13, 23 antenna part, 3a, 3b lead wire, 4 magnetic shield layer, 4a, 4b magnetic resin layer, 4c magnetic layer 4d magnetic sheet, 5 adhesive layer, 6 drawer part, 7 spacer, 8 support base material, 10, 10a to 10f antenna device, 10g, 10h characteristic evaluation antenna device, 26 notch part, 30 transmission coil unit, 30a spiral coil 30b magnetic shield, 31 metal plate, 40 magnet, 120 primary antenna unit, 121 system control unit, 122 transmission / reception control unit, 123 demodulation unit, 124 modulation unit, 125 transmission signal unit, 140 non-contact communication device, 150 non-contact Contact communication module, 160 secondary antenna section, 61 system control unit, 163 modulation unit, 164 demodulation unit, 165 reception control unit, 166 rectifier, 167 constant voltage unit, 168 external power supply, 169 battery, 170 charging control unit, 180 a non-contact charging device, 190 power receiving device

Claims (15)

  1.  上面を有するアンテナと、
     上記アンテナの上面に積み重ねて配置されたループアンテナとを備え、
     上記アンテナ及び上記ループアンテナは、磁性粒子及び樹脂を含有する1つ以上の磁性樹脂層を有し、
     上記アンテナは、上記ループアンテナの内径に配置され、少なくともその一部が上記磁性樹脂層に埋設されることを特徴とするアンテナ装置。
    An antenna having a top surface;
    A loop antenna disposed on the top surface of the antenna,
    The antenna and the loop antenna have one or more magnetic resin layers containing magnetic particles and resin,
    The antenna device, wherein the antenna is disposed on an inner diameter of the loop antenna, and at least a part of the antenna is embedded in the magnetic resin layer.
  2.  上記磁性樹脂層は、上記磁性粒子及び樹脂を混錬して形成することによって柔軟性を有することを特徴とする請求項1記載のアンテナ装置。 2. The antenna device according to claim 1, wherein the magnetic resin layer has flexibility by being formed by kneading the magnetic particles and resin.
  3.  上記アンテナ又は上記ループアンテナのうちの少なくとも1つは、上記磁性樹脂層とは磁気特性が異なる磁性材料を含む磁性層を更に有することを特徴とする請求項1又は2記載のアンテナ装置。 3. The antenna device according to claim 1, wherein at least one of the antenna and the loop antenna further includes a magnetic layer containing a magnetic material having a magnetic characteristic different from that of the magnetic resin layer.
  4.  上記アンテナ及び上記ループアンテナは、互いに一部が重畳するように配置されることを特徴とする請求項1又は2記載のアンテナ装置。 The antenna device according to claim 1 or 2, wherein the antenna and the loop antenna are arranged so as to partially overlap each other.
  5.  上記ループアンテナの内径に配置され、上記アンテナの上面に積み重ねて配置された他のループアンテナを更に備えることを特徴とする請求項1記載のアンテナ装置。 The antenna device according to claim 1, further comprising another loop antenna disposed on an inner diameter of the loop antenna and stacked on the upper surface of the antenna.
  6.  上記アンテナ及び上記他のループアンテナのうちの少なくとも1つは、互いに重畳するように配置されることを特徴とする請求項5記載のアンテナ装置。 6. The antenna device according to claim 5, wherein at least one of the antenna and the other loop antenna is disposed so as to overlap each other.
  7.  上記アンテナ、上記ループアンテナ又は上記他のループアンテナのうちの少なくとも1つは、非磁性材料を含む支持部材により支持されることを特徴とする請求項5又は6記載のアンテナ装置。 7. The antenna device according to claim 5, wherein at least one of the antenna, the loop antenna, and the other loop antenna is supported by a support member including a nonmagnetic material.
  8.  上記アンテナ、上記ループアンテナ又は上記他のループアンテナのうちの少なくとも1つは、高熱伝導性材料を含む支持部材により支持されることを特徴とする請求項5又は6記載のアンテナ装置。 7. The antenna apparatus according to claim 5, wherein at least one of the antenna, the loop antenna, and the other loop antenna is supported by a support member including a high thermal conductivity material.
  9.  上記アンテナは、その全部が上記磁性樹脂層に埋設され、
     上記ループアンテナは、上記磁性樹脂層を有さないことを特徴とする請求項1又は2記載のアンテナ装置。
    The antenna is entirely embedded in the magnetic resin layer,
    3. The antenna device according to claim 1, wherein the loop antenna does not have the magnetic resin layer.
  10.  上記1つ以上の磁性樹脂層のうち、少なくとも1つの磁性樹脂層は、球状、又は長径と短径との比で表わされる寸法比が6以下の回転楕円体状の磁性粒子を含むことを特徴とする請求項1又は2記載のアンテナ装置。 Of the one or more magnetic resin layers, at least one of the magnetic resin layers includes spherical or spheroidal magnetic particles having a dimensional ratio represented by a ratio of a major axis to a minor axis of 6 or less. The antenna device according to claim 1 or 2.
  11.  上記1つ以上の磁性樹脂層のうち、少なくとも1つの磁性樹脂層は、球状、又は長径と短径との比で表わされる寸法比が6以下の回転楕円体状の磁性粒子、樹脂及び潤滑剤を含み、これらを混合して圧縮成型した圧粉磁心であることを特徴とする請求項10記載のアンテナ装置。 Among the one or more magnetic resin layers, at least one of the magnetic resin layers is spherical, or spheroidal magnetic particles having a dimensional ratio represented by a ratio of a major axis to a minor axis of 6 or less, a resin, and a lubricant The antenna device according to claim 10, wherein the antenna device is a dust core formed by mixing and compressing these.
  12.  上記ループアンテナは、基材の少なくとも一面に形成されたコイルからなり、上記他のループアンテナは、該基材上に形成されたコイルからなることを特徴とする請求項1又は2記載のアンテナ装置。 3. The antenna device according to claim 1, wherein the loop antenna is formed of a coil formed on at least one surface of a base material, and the other loop antenna is formed of a coil formed on the base material. .
  13.  上記ループアンテナは、基材の少なくとも一面に形成されたコイルからなり、上記他のループアンテナは、該基材とは異なる基材の少なくとも一面に形成されたコイルからなることを特徴とする請求項1又は2記載のアンテナ装置。 The loop antenna includes a coil formed on at least one surface of a base material, and the other loop antenna includes a coil formed on at least one surface of a base material different from the base material. 3. The antenna device according to 1 or 2.
  14.  上記アンテナ、上記ループアンテナ、又は上記他のループアンテナのうちの1つが非接触電力伝送用アンテナであることを特徴とする請求項5記載のアンテナ装置。 6. The antenna device according to claim 5, wherein one of the antenna, the loop antenna, and the other loop antenna is a non-contact power transmission antenna.
  15.  請求項1~14いずれか1項記載のアンテナ装置を備える電子機器。 An electronic device comprising the antenna device according to any one of claims 1 to 14.
PCT/JP2014/056314 2013-03-19 2014-03-11 Antenna apparatus and electronic device WO2014148313A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-056779 2013-03-19
JP2013056779A JP2014183469A (en) 2013-03-19 2013-03-19 Antenna device and electronic equipment

Publications (1)

Publication Number Publication Date
WO2014148313A1 true WO2014148313A1 (en) 2014-09-25

Family

ID=51580000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056314 WO2014148313A1 (en) 2013-03-19 2014-03-11 Antenna apparatus and electronic device

Country Status (3)

Country Link
JP (1) JP2014183469A (en)
TW (1) TW201448359A (en)
WO (1) WO2014148313A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199637A1 (en) * 2015-06-10 2016-12-15 日東電工株式会社 Coil module and method for producing same
WO2016199638A1 (en) * 2015-06-10 2016-12-15 日東電工株式会社 Coil module and method for producing same
JP6070895B2 (en) * 2014-02-27 2017-02-01 株式会社村田製作所 Multilayer coil element, antenna module, and wireless communication module
KR20170053142A (en) * 2015-11-05 2017-05-15 주식회사 아모텍 Combo type antenna module
CN108695048A (en) * 2017-03-31 2018-10-23 Tdk株式会社 Magnetic coupling device and use its Wireless power transmission system
JP7494810B2 (en) 2021-06-30 2024-06-04 豊田合成株式会社 Vehicle exterior part and manufacturing method thereof

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107112801B (en) 2014-12-22 2020-10-13 阿莫善斯有限公司 Attractor for wireless charging type wireless power receiving module of power supply business alliance, manufacturing method of attractor and wireless power receiving module with attractor
KR101649259B1 (en) * 2014-12-24 2016-08-19 주식회사 아이엠텍 Flexible printed circuit board for wireless communications
KR101646173B1 (en) * 2014-12-26 2016-08-05 주식회사 아모센스 Shielding unit for a wireless charging receiver module of a PMA wireless charging type and a wireless charging receiver module having the same
WO2016111496A1 (en) * 2015-01-05 2016-07-14 주식회사 아모센스 Magnetic field shielding sheet and wireless power transmitting module including same
KR101656260B1 (en) * 2015-01-05 2016-09-09 주식회사 아모센스 Shielding unit for a wireless charging and wireless charging module having the same
KR101554129B1 (en) * 2015-01-23 2015-09-21 주식회사 아이엠텍 Flexible printed circuit board for wireless communications
KR101554133B1 (en) * 2015-01-23 2015-09-21 주식회사 아이엠텍 Flexible printed circuit board for wireless communications
KR102400391B1 (en) * 2015-02-16 2022-05-20 주식회사 아모센스 Shielding unit for combo antenna and wireless charging module having the same
JP6476012B2 (en) * 2015-02-27 2019-02-27 株式会社日立製作所 Wireless communication device
JP6643152B2 (en) * 2016-03-09 2020-02-12 京セラ株式会社 Electronics
KR102516883B1 (en) * 2016-08-04 2023-04-03 삼성전자주식회사 Electronic device with shielding structure
US20190348203A1 (en) * 2016-11-29 2019-11-14 Panasonic Intellectual Property Management Co., Ltd. Combined coil module and magnetic sheet
JP6834698B2 (en) 2017-03-31 2021-02-24 Tdk株式会社 Magnetic coupling device and wireless power transmission system using it
CN107181059A (en) * 2017-06-09 2017-09-19 中山金利宝胶粘制品有限公司 High frequency RFID antenna, preparation method and its RFID tag of application
JP6566181B1 (en) * 2018-01-31 2019-08-28 株式会社村田製作所 Composite antenna element
KR102030577B1 (en) * 2018-06-21 2019-10-10 에이큐 주식회사 Combo antenna with a insert structure
WO2020159230A1 (en) * 2019-01-31 2020-08-06 주식회사 이엠따블유 Nfc antenna module and wireless communication terminal comprising same
KR20210075550A (en) * 2019-12-13 2021-06-23 삼성전자주식회사 Electronic device comprising coils

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126901A (en) * 2004-10-26 2006-05-18 Mitsubishi Materials Corp Tag and rfid system
JP2007116347A (en) * 2005-10-19 2007-05-10 Mitsubishi Materials Corp Tag antenna and mobile radio equipment
JP2010219652A (en) * 2009-03-13 2010-09-30 Nec Tokin Corp Antenna device
JP2011066759A (en) * 2009-09-18 2011-03-31 Sony Chemical & Information Device Corp Antenna device and communication device
JP2013128093A (en) * 2011-11-15 2013-06-27 Panasonic Corp Transmission coil and portable radio terminal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126901A (en) * 2004-10-26 2006-05-18 Mitsubishi Materials Corp Tag and rfid system
JP2007116347A (en) * 2005-10-19 2007-05-10 Mitsubishi Materials Corp Tag antenna and mobile radio equipment
JP2010219652A (en) * 2009-03-13 2010-09-30 Nec Tokin Corp Antenna device
JP2011066759A (en) * 2009-09-18 2011-03-31 Sony Chemical & Information Device Corp Antenna device and communication device
JP2013128093A (en) * 2011-11-15 2013-06-27 Panasonic Corp Transmission coil and portable radio terminal

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6070895B2 (en) * 2014-02-27 2017-02-01 株式会社村田製作所 Multilayer coil element, antenna module, and wireless communication module
WO2016199637A1 (en) * 2015-06-10 2016-12-15 日東電工株式会社 Coil module and method for producing same
WO2016199638A1 (en) * 2015-06-10 2016-12-15 日東電工株式会社 Coil module and method for producing same
KR20170053142A (en) * 2015-11-05 2017-05-15 주식회사 아모텍 Combo type antenna module
KR102030704B1 (en) 2015-11-05 2019-10-10 주식회사 아모텍 Combo type antenna module
CN108695048A (en) * 2017-03-31 2018-10-23 Tdk株式会社 Magnetic coupling device and use its Wireless power transmission system
CN108695048B (en) * 2017-03-31 2021-12-24 Tdk株式会社 Magnetic coupling device and wireless power transmission system using the same
JP7494810B2 (en) 2021-06-30 2024-06-04 豊田合成株式会社 Vehicle exterior part and manufacturing method thereof

Also Published As

Publication number Publication date
TW201448359A (en) 2014-12-16
JP2014183469A (en) 2014-09-29

Similar Documents

Publication Publication Date Title
WO2014148313A1 (en) Antenna apparatus and electronic device
WO2014148312A1 (en) Antenna apparatus and electronic device
JP5985366B2 (en) Composite coil module and electronic device
WO2014148311A1 (en) Coil module, antenna device, and electronic device
JP6034644B2 (en) Composite coil module and portable device
KR101890326B1 (en) Wireless power transfer module and portable auxiliary battery including the same
CN104823324B (en) Coil module
US9460847B2 (en) Soft magnetic layer, receiving antenna, and wireless power receiving apparatus comprising the same
KR20150038186A (en) Coil module and power receiver
KR102067549B1 (en) Electronic device and coil module
KR101489391B1 (en) Soft magnetism sheet
KR102348411B1 (en) Shielding unit for complex-antenna unit and complex-transmission module comprising the same
JP2014207366A (en) Manufacturing method of coil unit, coil unit and electronic apparatus
WO2014017352A1 (en) Antenna device and communication device
KR102707310B1 (en) Magnetic block for wireless power charging module, manufacturing method for the same and wireless power charging module having the same
KR20210051335A (en) Wireless charging pad, wireless charging device, and electric vehicle comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14767659

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14767659

Country of ref document: EP

Kind code of ref document: A1