WO2014017352A1 - Antenna device and communication device - Google Patents

Antenna device and communication device Download PDF

Info

Publication number
WO2014017352A1
WO2014017352A1 PCT/JP2013/069404 JP2013069404W WO2014017352A1 WO 2014017352 A1 WO2014017352 A1 WO 2014017352A1 JP 2013069404 W JP2013069404 W JP 2013069404W WO 2014017352 A1 WO2014017352 A1 WO 2014017352A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
antenna
loop antenna
antennas
loop
Prior art date
Application number
PCT/JP2013/069404
Other languages
French (fr)
Japanese (ja)
Inventor
久村 達雄
佑介 久保
弘幸 良尊
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2014017352A1 publication Critical patent/WO2014017352A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Definitions

  • the present invention relates to an antenna device having a plurality of antennas, and more particularly to an antenna device in which another antenna is arranged on the inner diameter of a loop antenna and a communication device using the antenna device.
  • Recent wireless communication devices are equipped with a plurality of RF antennas such as a telephone communication antenna, a GPS antenna, a wireless LAN / BLUETOOTH (registered trademark) antenna, and an RFID (Radio Frequency Identification).
  • antenna coils for power transmission have also been mounted.
  • Examples of the power transmission method used in the non-contact charging method include an electromagnetic induction method, a radio wave reception method, and a magnetic resonance method. These all use electromagnetic induction and magnetic resonance between the primary side coil and the secondary side coil, and the above-described RFID also uses electromagnetic induction.
  • a general antenna has a configuration in which a magnetic flux concentrating magnetic shielding sheet 42 is attached to a spiral coil-shaped loop antenna element 2 with an adhesive layer 41 coated with an adhesive.
  • each antenna occupies a mounting space in an electronic device in which the antenna is mounted, so that the mounting area increases with an increase in the type and quantity of antennas to be mounted. For this reason, there is an increasing demand for downsizing and thinning of these antennas, as well as integration and integration.
  • the magnetic shield sheet 42 of the loop antenna using the spiral coil shown in FIG. 10 prevents interference with the periphery of the loop antenna, particularly interference with the metal portion, and further increases the transmission efficiency by the magnetic flux focusing action.
  • a plurality of antennas are installed close to each other in order to save space, there is a problem that interference between antennas increases when the performance of each antenna is improved by increasing the magnetic permeability of the magnetic shielding sheet or the like. .
  • an object of the present invention is to provide an antenna device that suppresses mutual interference between antennas while efficiently arranging a plurality of antennas in a space-saving manner.
  • an antenna device includes a loop antenna and one or more antennas arranged on the inner diameter of the loop antenna.
  • the loop antenna has a magnetic shield layer, and the one or more antennas have another magnetic shield layer.
  • At least one of the magnetic shield layer or the other magnetic shield layer has a magnetic resin layer made of a resin containing magnetic particles, and each of the magnetic shield layer and the other magnetic shield layer is physically It is separated.
  • the communication device includes an antenna device having a loop antenna and one or more other antennas arranged on the inner diameter of the loop antenna, and each power receiving input of the loop antenna and the one or more other antennas.
  • the loop antenna has a magnetic shield layer containing a magnetic material, and the other antenna has another magnetic shield layer containing a magnetic material, and the magnetic shield layer or other magnetic At least one of the shield layers has a magnetic resin layer made of a resin containing magnetic particles, and each of the magnetic shield layer and the other magnetic shield layer is physically separated.
  • the antenna device and the communication device since one or more other antennas are arranged on the inner diameter of the loop antenna, the mounting area of the antenna device becomes the occupied area of the loop antenna, and the mounting space can be reduced. become.
  • the loop antenna and the other antennas have magnetic shield layers that are physically separated from each other, it is possible to realize an antenna having high electrical characteristics with little interference between the antennas.
  • FIG. 1A is a plan view of an antenna device to which the present invention is applied.
  • FIG. 1B is a cross-sectional view taken along the line AA ′ of FIG.
  • FIG. 2A is a plan view of an antenna device to which the present invention is applied.
  • FIG. 2B is a cross-sectional view taken along the line AA ′ of FIG.
  • FIG. 3A is a plan view of an antenna device to which the present invention is applied.
  • FIG. 3B is a cross-sectional view taken along line AA ′ of FIG.
  • FIG. 4A is a plan view of an antenna device according to a modification of the present invention.
  • FIG. 4B is a cross-sectional view taken along line AA ′ of FIG.
  • FIG. 5A is a plan view of an antenna device according to a modification of the present invention.
  • FIG. 5B is a cross-sectional view taken along line AA ′ of FIG.
  • FIG. 6A is a plan view of an antenna device according to a modification of the present invention.
  • FIG. 6B is a cross-sectional view taken along the line AA ′ in FIG.
  • FIG. 7A is a plan view of an antenna device according to a modification of the present invention.
  • FIG. 7B is a cross-sectional view taken along the line AA ′ of FIG.
  • FIG. 8A is a plan view of an antenna device according to a modification of the present invention.
  • FIG. 8B is a cross-sectional view taken along the line AA ′ of FIG. FIG.
  • FIG. 9A is a plan view of an antenna device for comparing characteristics of the antenna device of the present invention.
  • FIG. 9B is a cross-sectional view taken along the line AA ′ of FIG.
  • FIG. 10A is a plan view of a conventional single antenna device.
  • FIG. 10B is a cross-sectional view taken along line AA ′ of FIG.
  • an antenna device 10 includes a spiral coil-shaped loop antenna element 2 formed by winding a conducting wire 1 in a spiral shape, and a loop antenna element. 2 is provided with a loop antenna portion 3 having a magnetic sheet 4b for mounting 2 and a magnetic resin layer 4a formed so as to embed the entire loop antenna element 2.
  • the antenna unit 13 is disposed on the inner diameter 7 of the loop antenna unit 3.
  • the antenna portion 13 is formed so as to embed the entire antenna element 12, a spiral coil-shaped antenna element 12 formed by winding the conducting wire 11 in a spiral shape, a magnetic sheet 14 b on which the antenna element 12 is placed, and the antenna element 12. And a magnetic resin layer 14a.
  • the magnetic sheet 4b of the loop antenna unit 3 is formed in an annular shape having an inner diameter 7 and the magnetic sheet 4b of the loop antenna unit 3 and the magnetic sheet 14b of the antenna unit 13 are physically separated.
  • the magnetic resin layers 4a and 14a of the loop antenna part 3 and the antenna part 13 are also physically separated. Therefore, since the loop antenna unit 3 and the antenna unit 13 are arranged via air having a low magnetic permeability (high magnetic resistance), the magnetic coupling is weakened.
  • the loop antenna unit 3 and the antenna unit 13 are preferably placed on the same plane, but may be on different planes depending on the mounting location of the electronic device to be mounted.
  • the loop antenna unit 3 and the antenna unit 13 may be fixed to an insulating material having a high magnetic resistance, for example, a sub-substrate such as epoxy or phenol, or a flexible substrate such as polyimide. Good.
  • the antenna element 12 is not limited to the loop antenna as shown in FIG. 1, but may be another antenna element.
  • the power feeding to the antenna and the output from the antenna are connected to an external circuit by the lead portions 5 and 15 formed at the ends of the lead wires 1 and 11 of the loop antenna element 2 and the antenna element 12.
  • the magnetic resin layers 4a and 14a contain magnetic particles made of soft magnetic powder and a resin as a binder.
  • the magnetic particles are oxide magnetic materials such as ferrite, Fe-based, Co-based, Ni-based, Fe-Ni-based, Fe-Co-based, Fe-Al-based, Fe-Si-based, Fe-Si-Al-based, Fe- Ni-Si-Al-based crystal system, microcrystalline metal magnetic material, or Fe-Si-B system, Fe-Si-BC system, Co-Si-B system, Co-Zr system, Co-Nb Or amorphous metal magnetic particles such as Co—Ta.
  • the magnetic particles spherical or flat powder having a particle size of several ⁇ m to several tens of ⁇ m is used, but crushed powder may be mixed.
  • the complex permeability has frequency characteristics, and loss occurs due to the skin effect when the operating frequency becomes high, so the particle size and shape are adjusted according to the frequency band to be used.
  • the inductance value of the antenna device 10 is determined by the real part magnetic permeability (hereinafter simply referred to as magnetic permeability) of the magnetic material, but the magnetic permeability can be adjusted by the mixing ratio of the magnetic particles and the resin. .
  • the magnetic resin layers 4a and 14a are not limited to being composed of a single magnetic material. Two or more kinds of magnetic materials may be mixed and used, and a magnetic resin layer may be formed by laminating in multiple layers. Moreover, even if it is the same magnetic material, the particle size and / or shape of magnetic particles may be selected and mixed, or may be laminated in multiple layers. Further, the magnetic material or composition may be changed for each antenna. Since these variations are possible, desired magnetic characteristics can be realized.
  • a resin that is cured by heat, ultraviolet irradiation, or the like is used.
  • a known material such as a resin such as an epoxy resin, a phenol resin, a melamine resin, a urea resin, or an unsaturated polyester, or a rubber such as silicone rubber, urethane rubber, acrylic rubber, butyl rubber, or ethylene propylene rubber is used.
  • the material is not limited to these, and a known material can be used.
  • An appropriate amount of a surface treatment agent such as a flame retardant, a reaction modifier, a crosslinking agent, or a silane coupling agent may be added to the above-described resin or rubber.
  • the magnetic sheets 4b and 14b are generally made of ferrite having a high electrical resistivity.
  • a magnetic material similar to the magnetic particles for example, an amorphous metal magnetic material such as Fe-based or Co-based material may be used.
  • Fe-based crystalline metal magnetic materials such as permalloy, microcrystalline magnetic materials, and the like can be used.
  • the magnetic sheets 4b and 14b may be sheets prepared by mixing one or more materials selected from the above magnetic bodies and a resin, such as the magnetic resin layers 4a and 14a. Needless to say, as with the magnetic resin layers 4a and 14a, the magnetic material or composition may be changed for each antenna.
  • the conductive wire 1 forming the loop antenna element 2 is used when the loop antenna unit 3 is used as a secondary charging coil for non-contact charging having a charging output capacity of about 5 W, and when used at a frequency of about 120 kHz. It is preferable to use a single wire made of Cu having a diameter of 0.20 mm to 0.45 mm or an alloy containing Cu as a main component. Alternatively, in order to reduce the skin effect of the conducting wire 1, a parallel line obtained by bundling a plurality of fine wires thinner than the above-described single wire, a knitted wire may be used, one layer using a thin rectangular wire or a flat wire, Or it is good also as alpha winding of 2 layers.
  • the antenna unit 13 can also be arbitrarily determined in consideration of the frequency and current capacity used. Note that a Cu foil or the like patterned on a predetermined substrate may be used according to the current capacity.
  • the antenna portion 13 is disposed on the inner diameter 7 of the loop antenna portion 3, the inner diameter 7 of the loop antenna portion 3 does not become a dead space, and space saving.
  • An integrated antenna device can be realized. Even if the loop antenna portion 3 and the antenna portion 13 are arranged close to each other in this manner, the magnetic resin layers 4a and 14a and the magnetic sheets 4b and 14b are physically separated from each other. Mutual interference between the respective antennas is reduced.
  • the antenna device 10 of the present invention has the loop antenna element 2 and the antenna element 12 embedded in the magnetic resin layers 4a and 14a, respectively, the magnetic flux density near the coil can be increased and the number of turns is small. However, a desired inductance value can be obtained. Since the number of turns can be reduced in order to obtain a desired inductance value, the direct current resistance of the conducting wires 1 and 11 can be reduced, and the loss can be reduced. Further, the high heat conduction characteristics of the magnetic resin layers 4a and 14a allow heat to be radiated more efficiently, and it is also possible to reduce the heat radiation space in the electronic device due to a decrease in heat generation.
  • ⁇ A mixture of ferrite raw materials is pressed into a mold and molded, fired to form bulk ferrite, and then molded into a sheet by slicing.
  • the magnetic sheets 4b and 14b thus molded are further arranged in a mold, and after placing the loop antenna element 2 and the antenna element 12 on the magnetic sheets 4b and 14b, respectively, the magnetic resin layer 4a , 14a are injected into the mold. Then, the magnetic resin is cured by heating or ultraviolet irradiation, and the antenna device 10 is removed from the mold. Further, the loop antenna element 2 and the antenna element 12 may be embedded after the magnetic resin is injected. Alternatively, when the magnetic resin is injected into the mold, the loop antenna element 2 and the antenna element 12 are embedded, and the magnetic resin layers 4a and 14a are covered with the sintered magnetic sheets 4b and 14b. Thereafter, the magnetic resin may be cured.
  • ferrite slurry prepared by mixing ferrite raw material powder and a binder is molded into a thin sheet by a doctor blade method (green sheet), and then the green sheet molded into a predetermined shape by a punching die is sintered.
  • a ferrite sheet method may be used.
  • the antenna device 10 of the present invention can be formed by applying the same processing as described above to the sintered ferrite magnetic sheets 4b and 14b.
  • the notched portion may be formed in a bulk state after the bulk ferrite is sintered, or the notched portion may be formed by grooving after slicing the magnetic sheets 4b and 14b. Further, when the magnetic sheets 4b and 14b are formed from green sheets, it is possible to form the magnetic sheets 4b and 14b in which the notches are formed by preparing a cutting die that takes into account the notches in advance. .
  • the amount of resin or the like may be an amount for completely embedding the loop antenna element 2 and the antenna element 12 as shown in FIG. 1 or an amount for exposing a part of the loop antenna element 2 and the antenna element 12. Good. Further, as will be described later, the position of the resin or the like may be a position embedded so as to fill all or part of the outer diameter portion or the inner diameter portion of the loop antenna element 2 and / or the antenna element 12.
  • the antenna device 10 is configured by arranging the formed antenna portion 13 on the inner diameter 7 of the formed loop antenna portion 3. When mounted in an electronic device, they may be arranged separately.
  • the loop antenna portion 3 and the antenna portion 13 are arranged on the inner diameter 7 on a sub-substrate such as a phenol substrate or a flexible substrate such as polyimide. May be.
  • the loop antenna element 2 and the antenna element 12 and the magnetic resin layers 4a and 14a are fixed by the manufacturing method as described above, it is not necessary to use an adhesive. Accordingly, the number of steps for applying the adhesive is reduced, and the antenna device 10 can be made thinner by the amount of the adhesive layer formed by applying the adhesive.
  • the antenna device 10 may be configured without connecting the high permeability magnetic sheets 4b and 14b.
  • the magnetic resin layers 4a and 14a are kneaded with the resin as described above, and therefore do not cause breakage such as cracking against external impacts. There is no need to affix. Therefore, the protective sheet sticking process can be reduced, and an increase in the thickness of the antenna device over the protective sheet can be suppressed.
  • an antenna device 10 includes a spiral coil loop antenna element 2 formed by winding a conducting wire 1 in a spiral shape, and a loop antenna element. 2 is provided with a loop antenna portion 3 having a magnetic sheet 4b on which 2 is placed and an adhesive layer 41 for fixing the loop antenna element 2 on the magnetic sheet 4b.
  • the antenna unit 13 is disposed on the inner diameter 7 of the loop antenna unit 3.
  • the antenna portion 13 is formed so as to embed the entire antenna element 12, a spiral coil-shaped antenna element 12 formed by winding the conducting wire 11 in a spiral shape, a magnetic sheet 14 b on which the antenna element 12 is placed, and the antenna element 12. And a magnetic resin layer 14a.
  • the magnetic sheet 4b of the loop antenna unit 3 and the magnetic sheet 14b of the antenna unit 13 are physically separated. Therefore, the loop antenna unit 3 and the antenna unit 13 are weakly magnetically coupled via air having a higher magnetic resistance than a magnetic circuit.
  • the loop antenna unit 3 and the antenna unit 13 are placed on the same plane. For mounting on the same plane, it may be fixed to an insulating material having a high magnetic resistance, for example, a sub-board such as epoxy or phenol.
  • the magnetic resin layer 14a is formed so as to embed the entire antenna element 12 only for the antenna portion 13 disposed on the inner diameter side of the loop antenna portion 3.
  • an adhesive is applied on the magnetic sheet 4 b and the loop antenna element 2 is fixed via the adhesive layer 41.
  • the magnetic resin layer 14a of only the antenna portion 13 is formed so as to embed the entire antenna element 12.
  • the amount of magnetic resin can be reduced, and the antenna device 10 can be reduced in weight and cost.
  • the magnetic resin layer 14a is formed on the magnetic circuit without embedding the entire loop antenna element 2 and antenna element 12, it is possible to improve electrical characteristics such as an improvement in inductance.
  • Joule heat (copper loss) generated in the conductive wire 11 can be efficiently radiated, which contributes to reduction of the heat radiation space in the electronic device.
  • an antenna device 10 includes a spiral coil loop antenna element 2 formed by winding a conducting wire 1 in a spiral shape, and a loop antenna element. 2 is provided with a loop antenna portion 3 having a magnetic sheet 4b for mounting 2 and a magnetic resin layer 4a formed so as to embed the entire loop antenna element 2.
  • the antenna unit 13 is disposed on the inner diameter 7 of the loop antenna unit 3.
  • the antenna unit 13 is used for fixing the antenna element 12 on the magnetic sheet 14b, a spiral coil-shaped antenna element 12 formed by winding the conducting wire 11 in a spiral shape, a magnetic sheet 14b on which the antenna element 12 is placed, and the antenna element 12.
  • Adhesive layer 41 Adhesive layer 41.
  • the magnetic sheet 4b of the loop antenna unit 3 and the magnetic sheet 14b of the antenna unit 13 are physically separated. Therefore, the loop antenna unit 3 and the antenna unit 13 are weakly magnetically coupled via air having a higher magnetic resistance than a magnetic circuit.
  • the loop antenna unit 3 and the antenna unit 13 are preferably placed on the same plane, but may be placed on different planes depending on the mounting location of the electronic device to be mounted. For mounting on the same plane, it may be fixed to an insulating material having a high magnetic resistance, for example, a sub-board such as epoxy or phenol.
  • the magnetic resin layer 4a is formed so as to embed the entire loop antenna element 2 only for the loop antenna element 2.
  • the antenna unit 13 is configured by applying an adhesive on the magnetic sheet 14 b and fixing the antenna element 12 via the adhesive layer 41.
  • the entire loop antenna element 2 and antenna element 12 are not embedded in the magnetic resin layer 4a, so the amount of magnetic resin is reduced and the weight of the antenna device 10 is reduced. Contributes to cost reduction. Furthermore, since the magnetic resin layer 4a is formed on the magnetic circuit without embedding the entire loop antenna element 2 and antenna element 12, it is possible to improve electrical characteristics such as an improvement in inductance. In addition, the high heat conduction characteristics of the magnetic resin enable efficient heat dissipation, contributing to the reduction of the heat dissipation space in the electronic device.
  • an antenna device 10 includes a spiral coil-shaped loop antenna element 2 formed by winding a conducting wire 1 in a spiral shape, and a loop antenna element. 2 is provided with a loop antenna portion 3 having a magnetic sheet 4b on which 2 is placed and an adhesive layer 41 for fixing the loop antenna element 2 on the magnetic sheet 4b.
  • the antenna unit 13 is disposed on the inner diameter 7 of the loop antenna unit 3.
  • the antenna unit 13 is embedded so as to fill a spiral coil-shaped antenna element 12 formed by winding the conducting wire 11 in a spiral shape, a magnetic sheet 14 b on which the antenna element 12 is placed, and an inner diameter portion of the antenna element 12. And a magnetic resin layer 14a formed as described above.
  • the magnetic sheet 4b of the loop antenna unit 3 and the magnetic sheet 14b of the antenna unit 13 are physically separated. Therefore, the loop antenna unit 3 and the antenna unit 13 are weakly magnetically coupled via air having a higher magnetic resistance than a magnetic circuit.
  • the magnetic resin layer 14a is formed so as to fill a part of the antenna part 13 arranged on the inner diameter 7 of the loop antenna part 3, that is, the inner diameter part of the antenna part 13.
  • the antenna element 12 is embedded at a portion excluding the inner diameter portion.
  • the magnetic resin layer 14a may be formed.
  • the presence of the magnetic resin layer 14a can improve the electrical characteristics such as the inductance value, and the amount of the magnetic resin can reduce the weight and cost of the antenna device. It becomes.
  • the magnetic resin layer 4a and the magnetic resin layer 14a in which the loop antenna element 2 and the antenna element 12 are respectively embedded are attached to the magnetic sheet 4b and the magnetic sheet 14b by the adhesive layer 41, respectively.
  • the magnetic resin layers 4a and 14a are formed in a sheet shape in advance, and the loop antenna element 2 and the antenna element 12 are placed on the sheet and subjected to pressure or pressure heat treatment, whereby the loop antenna element 2
  • the loop antenna portion 3 and the antenna portion 13 can also be formed by forming a sheet in which the antenna element 12 is embedded and attaching the sheet to the magnetic sheets 4b and 14b with the adhesive layer 41.
  • the antenna device 10 of the present invention includes a loop antenna unit 3, a first antenna unit 13 disposed on the inner diameter 7 of the loop antenna unit 3, and And a second antenna portion 23 disposed on the inner diameter 7 of the first antenna portion 13.
  • the loop antenna unit 3, the first antenna unit 13, and the second antenna unit 23 (hereinafter referred to as the loop antenna unit 3 etc.) are all formed in a spiral coil shape formed by winding the conductive wires 1, 11 and 21 in a spiral shape.
  • Loop antenna element 2 first antenna element 12 and second antenna element 22 (hereinafter referred to as loop antenna element 2 etc.), magnetic sheets 4b, 14b, 24b on which loop antenna element 2 etc. are placed, It has magnetic resin layers 4a, 14a, 24a formed so as to embed the entire loop antenna element 2 and the like.
  • Each of the magnetic sheets 4b, 14b, 24b such as the loop antenna portion 3 is physically separated, and the magnetic resin layers 4a, 14a, 24a are also physically separated. Therefore, since the loop antenna unit 3 and the like are coupled with air having high magnetic resistance in terms of a magnetic circuit, interference between antennas is reduced. Needless to say, a part of the loop antenna element 2 or the like may be embedded without being embedded as shown in FIGS.
  • the antenna device 10 of the present invention by arranging the loop antennas in a nested manner, even three antennas can be arranged in a smaller space. Since the magnetic sheets 4b, 14b, and 24b and the magnetic resin layers 4a, 14a, and 24a are physically separated from each other, mutual interference between the antennas can be reduced.
  • the shape and size of the antenna are limited to some extent by the frequency of radio waves to be transmitted and received. For this reason, as shown in FIG. 7 described above, there are cases where all the antennas cannot be arranged in a nested state.
  • the first and second antenna sections 13 are not nested and the first and second antenna sections 13 and 23 are not nested. , 23 may be arranged side by side on the inner diameter 7 of the loop antenna portion 3 so that they do not overlap each other.
  • the number of antennas that can be combined by arranging the antenna parts arranged on the inner diameter of the loop antenna part 3 without overlapping each other, or arranging them on the inner diameters of other antennas, and further combining them is 2 as described above.
  • the number is not limited to three and may be four or more.
  • Example 1, Example 2, and Comparative Example to be described are all antenna device models having the same antenna shape and size except for the presence or absence of a magnetic resin layer and an adhesive layer.
  • Example 1 In the first embodiment, the configuration of FIG. 2 is used as the antenna device 10. That is, in the antenna device 10, only the antenna element 12 on the inner diameter 7 side of the loop antenna portion 3 is embedded in the magnetic resin layer 14a.
  • the coil of the loop antenna unit 3 was a 1T flat coil having an outer diameter of 44.8 mm made of a flat rectangular wire having a line width of 2.4 mm and a wire thickness of 0.25 mm.
  • An adhesive layer 41 having a thickness of 0.1 mm is inserted between the loop antenna element 2 and the magnetic sheet 4b.
  • the coil of the antenna unit 13 arranged on the inner diameter 7 of the loop antenna unit 3 is a 1T flat coil having a flat width of 5.6 mm and a thickness of 0.25 mm and an outer diameter of 29.2 mm.
  • the magnetic resin layer 14a is formed so that the entire antenna element 12 is buried.
  • Example 2 the structure of FIG. 1 was used as the configuration of the antenna device. That is, in the antenna device, both the loop antenna element 2 and the antenna element 12 are embedded in the magnetic resin layers 4a and 14a.
  • the coil of the loop antenna unit 3 was a 1T flat coil having an outer diameter of 44.8 mm made of a flat rectangular wire having a line width of 2.4 mm and a wire thickness of 0.25 mm.
  • the coil of the antenna unit 13 arranged on the inner diameter 7 of the loop antenna unit 3 is a 1T flat coil having a flat width of 5.6 mm and a thickness of 0.25 mm and an outer diameter of 29.2 mm.
  • the magnetic resin layer 14a is formed so that the entire antenna element 12 is buried.
  • the structure of FIG. 9 was used as the configuration of the antenna device. That is, in the antenna device 10, the loop antenna element 2 and the antenna element 12 are bonded to the magnetic sheets 4 b and 14 b by the adhesive layer 41 without using the magnetic resin layer.
  • the coil of the loop antenna unit 3 was a 1T flat coil having an outer diameter of 44.8 mm made of a flat rectangular wire having a line width of 2.4 mm and a wire thickness of 0.25 mm.
  • An adhesive layer 41 having a thickness of 0.1 mm was inserted between the loop antenna element 2 and the magnetic sheet 4b.
  • the coil of the antenna unit 13 arranged on the inner diameter 7 of the loop antenna unit 3 is a 1T flat coil having a flat width of 5.6 mm and a thickness of 0.25 mm and an outer diameter of 29.2 mm.
  • An adhesive layer 41 having a thickness of 0.1 mm was inserted between the loop antenna element 2 and the magnetic sheet 4b.
  • the inductances of Examples 1 and 2 showed a value about 10% larger than that of the comparative example. This is because the entire antenna element 12 is embedded in the magnetic resin layer 14a in the antenna section 13, so that the volume of the magnetic material increases and the magnetic flux density around the antenna element 12 increases. Q was significantly increased to 40% or more in Examples 1 and 2 than in the comparative example.
  • Example 2 Regarding the electrical characteristics of the loop antenna part 3, the inductance of Example 2 was about 20% larger than that of the comparative example. This is because the entire loop antenna element 2 is embedded in the loop antenna unit 3 to increase the volume of the magnetic material and increase the magnetic flux density around the antenna element 12. On the other hand, in Example 1, since the magnetic resin layer was not added to the loop antenna element 2, the value equivalent to the comparative example was shown. Q was significantly increased in Example 2 by 40% compared to the comparative example.
  • a coupling coefficient k is used as an index representing the degree of electromagnetic coupling between the coils.
  • the inductance value and the Q value are compared with the comparative example in both the loop antenna unit 3 and the antenna unit 13.
  • the numerical value is equal to or lower than that of the comparative example. Therefore, by adopting the configuration of the antenna device of the present invention, it is possible to improve the electrical characteristics such as inductance and Q value without deteriorating the mutual interference between the antennas.
  • the inductance and Q value can be increased without deteriorating interference between antennas, and the performance of each antenna can be improved.
  • this increase in inductance can reduce the number of turns of the antenna element when adjusting to a desired inductance value, so that the DC resistance value of the antenna element can be reduced, resulting in a reduction in power consumption. can do.
  • the heat generated from the antenna device is reduced, and the heat radiation space in the electronic device on which the antenna device is mounted can be reduced, contributing to the substantial downsizing and thinning of the device. it can.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

Provided is an antenna device wherein mutual interference between antennas is minimized while a plurality of antennas is efficiently positioned in a space saving manner. The antenna device (10) is provided with a loop antenna (3) having a spiral coil-shaped loop antenna element (2), a magnetic sheet (4b) on which the loop antenna element (2) is mounted, and a magnetic resin layer (4a). Moreover, an antenna section (13), which is positioned in an inner diameter (7) of the loop antenna (3), comprises a spiral coil-shaped antenna element (12), a magnetic sheet (14b) on which the antenna element (12) is mounted, and a magnetic resin layer (14a). The magnetic sheet (4b) of the loop antenna (3) is annularly formed with an empty inner diameter (7), and the magnetic sheet (4b) of the loop antenna (3) and the magnetic sheet (14b) of the antenna section (13) are physically isolated. The magnetic resin layers (4a, 14a) of the loop antenna (3) and the antenna section (13) are also physically isolated.

Description

アンテナ装置及び通信装置Antenna device and communication device
 本発明は、複数のアンテナを有するアンテナ装置に関し、特にループアンテナの内径に他のアンテナを配置したアンテナ装置及びそのアンテナ装置を用いた通信装置に関する。本出願は、日本国において2012年7月26日に出願された日本特許出願番号特願2012-165973を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。 The present invention relates to an antenna device having a plurality of antennas, and more particularly to an antenna device in which another antenna is arranged on the inner diameter of a loop antenna and a communication device using the antenna device. This application claims priority on the basis of Japanese Patent Application No. 2012-165993 filed on July 26, 2012 in Japan, and is incorporated herein by reference. Is done.
 近年の無線通信機器においては、電話通信用アンテナ、GPS用アンテナ、無線LAN/BLUETOOTH(登録商標)用アンテナ、さらにはRFID(Radio Frequency Identification)といった複数のRFアンテナが搭載されている。これらに加えて、非接触充電の導入に伴って、電力伝送用のアンテナコイルも搭載されるようになってきた。非接触充電方式で用いられる電力伝送方式には、電磁誘導方式、電波受信方式、磁気共鳴方式等が挙げられる。これらは、いずれも一次側コイルと二次側コイル間の電磁誘導や磁気共鳴を利用したものであり、上述したRFIDも電磁誘導を利用している。 Recent wireless communication devices are equipped with a plurality of RF antennas such as a telephone communication antenna, a GPS antenna, a wireless LAN / BLUETOOTH (registered trademark) antenna, and an RFID (Radio Frequency Identification). In addition to these, with the introduction of non-contact charging, antenna coils for power transmission have also been mounted. Examples of the power transmission method used in the non-contact charging method include an electromagnetic induction method, a radio wave reception method, and a magnetic resonance method. These all use electromagnetic induction and magnetic resonance between the primary side coil and the secondary side coil, and the above-described RFID also uses electromagnetic induction.
 これらのアンテナは、アンテナ単体で目的の周波数において最大の特性が得られるように設計されていても、実際に電子機器に実装されると、目的の特性を得ることは困難である。これは、アンテナ周辺の磁界成分が周辺に位置する金属等と干渉(結合)し、アンテナコイルのインダクタンスが実質的に減少するために、共振周波数がシフトしてしまうことによる。また、インダクタンスの実質的減少によって、受信感度が低下してしまう。これらの対策として、アンテナコイルとその周辺に存在する金属との間に磁気シールド材を挿入することによって、アンテナコイルから発生した磁束を磁気シールド材に集めることによって、金属による干渉を低減させることができる。 Even if these antennas are designed so that the maximum characteristics can be obtained at the target frequency with the antenna itself, it is difficult to obtain the target characteristics when actually mounted on an electronic device. This is because the magnetic field component around the antenna interferes (couples) with the surrounding metal and the like, and the inductance of the antenna coil is substantially reduced, so that the resonance frequency is shifted. In addition, the reception sensitivity is lowered due to a substantial decrease in inductance. As countermeasures against these problems, by inserting a magnetic shield material between the antenna coil and the metal existing around it, the magnetic flux generated from the antenna coil is collected on the magnetic shield material, thereby reducing the interference caused by the metal. it can.
 電子機器の小型化、高機能化の動向に伴い、携帯端末機器等の電子機器に上述のような複数のアンテナを搭載するのに割り当てられるスペースは極めて小さい。一般的なアンテナは、図10に示すように、スパイラルコイル状のループアンテナ素子2に磁束集束用の防磁シート42を、接着剤を塗布した接着剤層41によって貼付した構成となっている。しかしながら、このようなループアンテナでは、アンテナごとに、アンテナが搭載される電子機器内の実装スペースを占有してしまうので、搭載するアンテナの種類・数量の増大とともに実装面積も増大してしまう。このため、これらのアンテナの小型化、薄型化、さらには、複合化、集積化の要求が強まっている。 With the trend toward downsizing and higher functionality of electronic devices, the space allocated for mounting a plurality of antennas as described above on electronic devices such as portable terminal devices is extremely small. As shown in FIG. 10, a general antenna has a configuration in which a magnetic flux concentrating magnetic shielding sheet 42 is attached to a spiral coil-shaped loop antenna element 2 with an adhesive layer 41 coated with an adhesive. However, in such a loop antenna, each antenna occupies a mounting space in an electronic device in which the antenna is mounted, so that the mounting area increases with an increase in the type and quantity of antennas to be mounted. For this reason, there is an increasing demand for downsizing and thinning of these antennas, as well as integration and integration.
 また、図10に示したスパイラルコイルを用いたループアンテナの防磁シート42は、ループアンテナの周辺との干渉、特に金属部分との干渉を防ぎ、さらに磁束集束作用による伝送効率の高効率化をはかる目的を有する。しかしながら、省スペース化のために複数のアンテナを近接して設置する場合には、防磁シートの透磁率を上げる等により、それぞれのアンテナを高性能化するとアンテナ間の干渉が大きくなるという問題が生じる。 Further, the magnetic shield sheet 42 of the loop antenna using the spiral coil shown in FIG. 10 prevents interference with the periphery of the loop antenna, particularly interference with the metal portion, and further increases the transmission efficiency by the magnetic flux focusing action. Have a purpose. However, when a plurality of antennas are installed close to each other in order to save space, there is a problem that interference between antennas increases when the performance of each antenna is improved by increasing the magnetic permeability of the magnetic shielding sheet or the like. .
 そこで、本発明は、複数のアンテナを効率よく省スペースに配置しつつ、アンテナ間の相互の干渉を抑制したアンテナ装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an antenna device that suppresses mutual interference between antennas while efficiently arranging a plurality of antennas in a space-saving manner.
 上述した課題を解決するための手段として、本発明に係るアンテナ装置は、ループアンテナと、ループアンテナの内径に配置された1つ以上のアンテナとを備える。そして、ループアンテナは、磁気シールド層を有し、1つ以上のアンテナは、他の磁気シールド層を有している。磁気シールド層又は他の磁気シールド層のうちの少なくとも1つは、磁性粒子を含有する樹脂からなる磁性樹脂層を有しており、磁気シールド層及び他の磁気シールド層のそれぞれは、物理的に分離されている。また本発明に係る通信装置は、ループアンテナとループアンテナの内径に配置された1つ以上の他のアンテナとを有するアンテナ装置と、ループアンテナ及び上記1つ以上の他のアンテナのそれぞれの受電入力を整流する整流回路とを備え、ループアンテナは、磁性材料を含む磁気シールド層を有し、他のアンテナは、磁性材料を含む他の磁気シールド層をそれぞれ有し、磁気シールド層又は他の磁気シールド層のうちの少なくとも1つは、磁性粒子を含有する樹脂からなる磁性樹脂層を有しており、磁気シールド層及び他の磁気シールド層のそれぞれは、物理的に分離されている。 As a means for solving the above-described problems, an antenna device according to the present invention includes a loop antenna and one or more antennas arranged on the inner diameter of the loop antenna. The loop antenna has a magnetic shield layer, and the one or more antennas have another magnetic shield layer. At least one of the magnetic shield layer or the other magnetic shield layer has a magnetic resin layer made of a resin containing magnetic particles, and each of the magnetic shield layer and the other magnetic shield layer is physically It is separated. The communication device according to the present invention includes an antenna device having a loop antenna and one or more other antennas arranged on the inner diameter of the loop antenna, and each power receiving input of the loop antenna and the one or more other antennas. The loop antenna has a magnetic shield layer containing a magnetic material, and the other antenna has another magnetic shield layer containing a magnetic material, and the magnetic shield layer or other magnetic At least one of the shield layers has a magnetic resin layer made of a resin containing magnetic particles, and each of the magnetic shield layer and the other magnetic shield layer is physically separated.
 本発明に係るアンテナ装置及び通信装置によれば、ループアンテナの内径に他のアンテナが1つ以上配置されるので、アンテナ装置の実装面積は、ループアンテナの占有面積となり、実装スペースの低減が可能になる。また、ループアンテナ、他のアンテナは、それぞれ物理的に分離された磁気シールド層を有しているので、アンテナ同士の干渉が少ないながら高い電気的特性を有するアンテナを実現することができる。 According to the antenna device and the communication device according to the present invention, since one or more other antennas are arranged on the inner diameter of the loop antenna, the mounting area of the antenna device becomes the occupied area of the loop antenna, and the mounting space can be reduced. become. In addition, since the loop antenna and the other antennas have magnetic shield layers that are physically separated from each other, it is possible to realize an antenna having high electrical characteristics with little interference between the antennas.
図1(A)は、本発明が適用されたアンテナ装置の平面図である。図1(B)は、図1(A)のAA’線における断面図である。FIG. 1A is a plan view of an antenna device to which the present invention is applied. FIG. 1B is a cross-sectional view taken along the line AA ′ of FIG. 図2(A)は、本発明が適用されたアンテナ装置の平面図である。図2(B)は、図2(A)のAA’線における断面図である。FIG. 2A is a plan view of an antenna device to which the present invention is applied. FIG. 2B is a cross-sectional view taken along the line AA ′ of FIG. 図3(A)は、本発明が適用されたアンテナ装置の平面図である。図3(B)は、図3(A)のAA’線における断面図である。FIG. 3A is a plan view of an antenna device to which the present invention is applied. FIG. 3B is a cross-sectional view taken along line AA ′ of FIG. 図4(A)は、本発明の変形例のアンテナ装置の平面図である。図4(B)は、図4(A)のAA’線における断面図である。FIG. 4A is a plan view of an antenna device according to a modification of the present invention. FIG. 4B is a cross-sectional view taken along line AA ′ of FIG. 図5(A)は、本発明の変形例のアンテナ装置の平面図である。図5(B)は、図5(A)のAA’線における断面図である。FIG. 5A is a plan view of an antenna device according to a modification of the present invention. FIG. 5B is a cross-sectional view taken along line AA ′ of FIG. 図6(A)は、本発明の変形例のアンテナ装置の平面図である。図6(B)は、図6(A)のAA’線における断面図である。FIG. 6A is a plan view of an antenna device according to a modification of the present invention. FIG. 6B is a cross-sectional view taken along the line AA ′ in FIG. 図7(A)は、本発明の変形例のアンテナ装置の平面図である。図7(B)は、図7(A)のAA’線における断面図である。FIG. 7A is a plan view of an antenna device according to a modification of the present invention. FIG. 7B is a cross-sectional view taken along the line AA ′ of FIG. 図8(A)は、本発明の変形例のアンテナ装置の平面図である。図8(B)は、図8(A)のAA’線における断面図である。FIG. 8A is a plan view of an antenna device according to a modification of the present invention. FIG. 8B is a cross-sectional view taken along the line AA ′ of FIG. 図9(A)は、本発明のアンテナ装置の特性を比較するためのアンテナ装置の平面図である。図9(B)は、図9(A)のAA’線における断面図である。FIG. 9A is a plan view of an antenna device for comparing characteristics of the antenna device of the present invention. FIG. 9B is a cross-sectional view taken along the line AA ′ of FIG. 図10(A)は、従来の単一のアンテナ装置の平面図である。図10(B)は、図10(A)のAA’線における断面図である。FIG. 10A is a plan view of a conventional single antenna device. FIG. 10B is a cross-sectional view taken along line AA ′ of FIG.
 以下、本発明を実施するための形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることはもちろんである。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited only to the following embodiment, Of course, a various change is possible in the range which does not deviate from the summary of this invention.
 [アンテナ装置の構成]
 図1(A)及び図1(B)に示すように、本発明に係るアンテナ装置10は、導線1を渦巻状に巻回して形成されたスパイラルコイル状のループアンテナ素子2と、ループアンテナ素子2を載置する磁性シート4bと、ループアンテナ素子2の全体を埋設するように形成された磁性樹脂層4aとを有するループアンテナ部3を備える。そして、ループアンテナ部3の内径7にアンテナ部13が配置される。アンテナ部13は、導線11を渦巻状に巻回して形成されたスパイラルコイル状のアンテナ素子12と、アンテナ素子12を載置する磁性シート14bと、アンテナ素子12の全体を埋設するように形成された磁性樹脂層14aとを有する。ループアンテナ部3の磁性シート4bは、内径7が空いた環状に形成されており、ループアンテナ部3の磁性シート4bとアンテナ部13の磁性シート14bとは、物理的に分離される。ループアンテナ部3とアンテナ部13の磁性樹脂層4a,14a同士も物理的に分離される。したがって、ループアンテナ部3とアンテナ部13とは、透磁率の低い(磁気抵抗の高い)空気を介して配置されるので、磁気結合は弱くなる。ループアンテナ部3とアンテナ部13とは、同一平面上に載置されるのが好ましいが、搭載される電子機器の実装箇所に応じて異なる平面上であってもよい。同一平面上に載置する場合には、高磁気抵抗を有する絶縁材料、たとえばエポキシやフェノール等のサブ基板やポリイミド等によるフレキシブル基板等にループアンテナ部3及びアンテナ部13を固定するようにしてもよい。
[Configuration of antenna device]
As shown in FIGS. 1A and 1B, an antenna device 10 according to the present invention includes a spiral coil-shaped loop antenna element 2 formed by winding a conducting wire 1 in a spiral shape, and a loop antenna element. 2 is provided with a loop antenna portion 3 having a magnetic sheet 4b for mounting 2 and a magnetic resin layer 4a formed so as to embed the entire loop antenna element 2. The antenna unit 13 is disposed on the inner diameter 7 of the loop antenna unit 3. The antenna portion 13 is formed so as to embed the entire antenna element 12, a spiral coil-shaped antenna element 12 formed by winding the conducting wire 11 in a spiral shape, a magnetic sheet 14 b on which the antenna element 12 is placed, and the antenna element 12. And a magnetic resin layer 14a. The magnetic sheet 4b of the loop antenna unit 3 is formed in an annular shape having an inner diameter 7 and the magnetic sheet 4b of the loop antenna unit 3 and the magnetic sheet 14b of the antenna unit 13 are physically separated. The magnetic resin layers 4a and 14a of the loop antenna part 3 and the antenna part 13 are also physically separated. Therefore, since the loop antenna unit 3 and the antenna unit 13 are arranged via air having a low magnetic permeability (high magnetic resistance), the magnetic coupling is weakened. The loop antenna unit 3 and the antenna unit 13 are preferably placed on the same plane, but may be on different planes depending on the mounting location of the electronic device to be mounted. When mounting on the same plane, the loop antenna unit 3 and the antenna unit 13 may be fixed to an insulating material having a high magnetic resistance, for example, a sub-substrate such as epoxy or phenol, or a flexible substrate such as polyimide. Good.
 アンテナ素子12は、図1のようなループアンテナに限らず、他のアンテナ素子であってもよい。アンテナへの給電、アンテナからの出力は、ループアンテナ素子2、アンテナ素子12の導線1,11の端部に形成された引出部5,15により外部回路に接続する。 The antenna element 12 is not limited to the loop antenna as shown in FIG. 1, but may be another antenna element. The power feeding to the antenna and the output from the antenna are connected to an external circuit by the lead portions 5 and 15 formed at the ends of the lead wires 1 and 11 of the loop antenna element 2 and the antenna element 12.
 磁性樹脂層4a,14aは、軟磁性粉末からなる磁性粒子と結合剤としての樹脂とを含んでいる。磁性粒子は、フェライト等の酸化物磁性体、Fe系、Co系、Ni系、Fe-Ni系、Fe-Co系、Fe-Al系、Fe-Si系、Fe-Si-Al系、Fe-Ni-Si-Al系等の結晶系、微結晶系金属磁性体、あるいはFe-Si-B系、Fe-Si-B-C系、Co-Si-B系、Co-Zr系、Co-Nb系、Co-Ta系等のアモルファス金属磁性体の粒子である。磁性粒子は、粒径が数μm~数10μmの球形又は扁平粉を用いるが、破砕粉を混合させてもよい。上述した金属磁性体の場合には、複素透磁率が周波数特性を有しており、動作周波数が高くなると表皮効果により損失が生じるので、使用する周波数の帯域に応じて粒径及び形状を調整する。また、アンテナ装置10のインダクタンス値は、磁性体の実部透磁率(以下、単に透磁率という。)によって決定されるが、透磁率は、磁性粒子と樹脂との混合比率により調整することができる。磁性樹脂層4a,14aの平均透磁率と、配合する磁性粒子の透磁率の関係は、配合量に対して一般的に対数混合則に従うので、粒子間の相互作用が増していく体積充填率40vol%以上とすることが好ましい。なお、磁性樹脂層4a,14aの熱伝導特性も磁性粒子の充填率の増大とともに向上する。 The magnetic resin layers 4a and 14a contain magnetic particles made of soft magnetic powder and a resin as a binder. The magnetic particles are oxide magnetic materials such as ferrite, Fe-based, Co-based, Ni-based, Fe-Ni-based, Fe-Co-based, Fe-Al-based, Fe-Si-based, Fe-Si-Al-based, Fe- Ni-Si-Al-based crystal system, microcrystalline metal magnetic material, or Fe-Si-B system, Fe-Si-BC system, Co-Si-B system, Co-Zr system, Co-Nb Or amorphous metal magnetic particles such as Co—Ta. As the magnetic particles, spherical or flat powder having a particle size of several μm to several tens of μm is used, but crushed powder may be mixed. In the case of the above-described metal magnetic material, the complex permeability has frequency characteristics, and loss occurs due to the skin effect when the operating frequency becomes high, so the particle size and shape are adjusted according to the frequency band to be used. . Further, the inductance value of the antenna device 10 is determined by the real part magnetic permeability (hereinafter simply referred to as magnetic permeability) of the magnetic material, but the magnetic permeability can be adjusted by the mixing ratio of the magnetic particles and the resin. . Since the relationship between the average magnetic permeability of the magnetic resin layers 4a and 14a and the magnetic permeability of the magnetic particles to be blended generally follows the logarithmic mixing rule with respect to the blending amount, the volume filling factor 40 vol at which the interaction between the particles increases. % Or more is preferable. Note that the heat conduction characteristics of the magnetic resin layers 4a and 14a also improve as the filling rate of the magnetic particles increases.
 磁性樹脂層4a,14aは、単一の磁性材料で構成する場合のみに限らない。2種類以上の磁性材料を混合して用いてもよく、多層に積層して磁性樹脂層を形成してもよい。また、同一の磁性材料であっても、磁性粒子の粒径及び/又は形状を複数選択して混合してもよく、多層に積層してもよい。また、アンテナごとに磁性材料あるいは組成を変えてもよい。これらのバリエーションが可能であるため、所望の磁気特性を実現することが可能になる。 The magnetic resin layers 4a and 14a are not limited to being composed of a single magnetic material. Two or more kinds of magnetic materials may be mixed and used, and a magnetic resin layer may be formed by laminating in multiple layers. Moreover, even if it is the same magnetic material, the particle size and / or shape of magnetic particles may be selected and mixed, or may be laminated in multiple layers. Further, the magnetic material or composition may be changed for each antenna. Since these variations are possible, desired magnetic characteristics can be realized.
 結合剤は、熱、紫外線照射等により硬化する樹脂等を用いる。結合剤としては、たとえばエポキシ樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル等の樹脂、あるいはシリコーンゴム、ウレタンゴム、アクリルゴム、ブチルゴム、エチレンブロピレンゴム等のゴム等周知の材料を用いることができるが、これらに限られず周知の材質を用いることができる。なお、上述の樹脂又はゴムに、難燃剤、反応調整材、架橋剤又はシランカップリング剤等の表面処理剤を適量加えてもよい。 As the binder, a resin that is cured by heat, ultraviolet irradiation, or the like is used. As the binder, for example, a known material such as a resin such as an epoxy resin, a phenol resin, a melamine resin, a urea resin, or an unsaturated polyester, or a rubber such as silicone rubber, urethane rubber, acrylic rubber, butyl rubber, or ethylene propylene rubber is used. However, the material is not limited to these, and a known material can be used. An appropriate amount of a surface treatment agent such as a flame retardant, a reaction modifier, a crosslinking agent, or a silane coupling agent may be added to the above-described resin or rubber.
 磁性シート4b,14bは、一般的には、電気抵抗率の高いフェライトを用いるが、磁性粒子と同様の磁性材料、たとえばFe系あるいはCo系等のアモルファス金属磁性体を用いてもよく、センダスト、パーマロイ等のFe系の結晶金属磁性体、微結晶磁性体等を用いることができるのはもちろんである。また、磁性シート4b,14bは、磁性樹脂層4a、14aのように上記磁性体から選ばれる一つ以上の材料と樹脂を混合して作製したシートでもよい。磁性樹脂層4a,14aと同様に、アンテナごとに磁性材料あるいは組成を変えてもよいのは言うまでもない。 The magnetic sheets 4b and 14b are generally made of ferrite having a high electrical resistivity. However, a magnetic material similar to the magnetic particles, for example, an amorphous metal magnetic material such as Fe-based or Co-based material may be used. Of course, Fe-based crystalline metal magnetic materials such as permalloy, microcrystalline magnetic materials, and the like can be used. Further, the magnetic sheets 4b and 14b may be sheets prepared by mixing one or more materials selected from the above magnetic bodies and a resin, such as the magnetic resin layers 4a and 14a. Needless to say, as with the magnetic resin layers 4a and 14a, the magnetic material or composition may be changed for each antenna.
 ループアンテナ素子2を形成する導線1は、ループアンテナ部3を、5W程度の充電出力容量を有する非接触充電用の二次側充電コイルとして用いる場合であって、120kHz程度の周波数で用いられるときには、0.20mm~0.45mmの径のCu又はCuを主成分とする合金からなる単線を用いることが好ましい。あるいは、導線1の表皮効果を低減させるために、上述の単線よりも細い細線を複数本束ねた並行線、編線を用いてもよく、厚みの薄い平角線又は扁平線を用いて1層、又は2層のα巻としてもよい。アンテナ部13についても、用いられる周波数、電流容量を考慮して任意に決定することができる。なお、電流容量に応じて、所定の基板上にパターン形成されたCu箔等を用いてもよい。 The conductive wire 1 forming the loop antenna element 2 is used when the loop antenna unit 3 is used as a secondary charging coil for non-contact charging having a charging output capacity of about 5 W, and when used at a frequency of about 120 kHz. It is preferable to use a single wire made of Cu having a diameter of 0.20 mm to 0.45 mm or an alloy containing Cu as a main component. Alternatively, in order to reduce the skin effect of the conducting wire 1, a parallel line obtained by bundling a plurality of fine wires thinner than the above-described single wire, a knitted wire may be used, one layer using a thin rectangular wire or a flat wire, Or it is good also as alpha winding of 2 layers. The antenna unit 13 can also be arbitrarily determined in consideration of the frequency and current capacity used. Note that a Cu foil or the like patterned on a predetermined substrate may be used according to the current capacity.
 このようにして構成された本発明のアンテナ装置10は、ループアンテナ部3の内径7にアンテナ部13が配置されているので、ループアンテナ部3の内径7がデッドスペースにならずに、省スペース化されたアンテナ装置が実現できる。ループアンテナ部3とアンテナ部13を、このように近接させて配置しても、磁性樹脂層4a,14a及び磁性シート4b,14bがそれぞれ物理的に分離しているので、磁気抵抗が高くなり、それぞれのアンテナ同士の相互干渉は少なくなる。 In the antenna device 10 of the present invention configured as described above, since the antenna portion 13 is disposed on the inner diameter 7 of the loop antenna portion 3, the inner diameter 7 of the loop antenna portion 3 does not become a dead space, and space saving. An integrated antenna device can be realized. Even if the loop antenna portion 3 and the antenna portion 13 are arranged close to each other in this manner, the magnetic resin layers 4a and 14a and the magnetic sheets 4b and 14b are physically separated from each other. Mutual interference between the respective antennas is reduced.
 さらに、本発明のアンテナ装置10は、ループアンテナ素子2及びアンテナ素子12がそれぞれ磁性樹脂層4a,14aに埋設されているので、コイル近傍の磁束密度を高くすることができ、少ないターン数であっても所望のインダクタンス値を得ることができる。所望のインダクタンス値を得るためにターン数を減らすことができるので、導線1,11の直流抵抗を減らすことができ、低損失化が可能になる。また、磁性樹脂層4a,14aの高熱伝導特性により、より効率よく放熱することができ、発熱の低下による電子機器内の放熱スペースを削減することも可能になる。 Furthermore, since the antenna device 10 of the present invention has the loop antenna element 2 and the antenna element 12 embedded in the magnetic resin layers 4a and 14a, respectively, the magnetic flux density near the coil can be increased and the number of turns is small. However, a desired inductance value can be obtained. Since the number of turns can be reduced in order to obtain a desired inductance value, the direct current resistance of the conducting wires 1 and 11 can be reduced, and the loss can be reduced. Further, the high heat conduction characteristics of the magnetic resin layers 4a and 14a allow heat to be radiated more efficiently, and it is also possible to reduce the heat radiation space in the electronic device due to a decrease in heat generation.
 [アンテナ装置の製造方法]
 次にこのアンテナ装置10の作製方法の一例について説明する。まず磁性シート4b、14bを用意するが、ここでは磁性シート4b、14bとしてフェライトを用いた例で説明する。
[Manufacturing method of antenna device]
Next, an example of a method for manufacturing the antenna device 10 will be described. First, magnetic sheets 4b and 14b are prepared. Here, an example in which ferrite is used as the magnetic sheets 4b and 14b will be described.
 フェライト原料の混合物を型枠に押し込んで成型し、焼成してバルク状のフェライトとし、その後スライシングによってシート状に成型する。 ¡A mixture of ferrite raw materials is pressed into a mold and molded, fired to form bulk ferrite, and then molded into a sheet by slicing.
 このようにして成型された磁性シート4b、14bを、さらに型枠に配設して、磁性シート4b、14b上にそれぞれ、ループアンテナ素子2、アンテナ素子12を載置した後、磁性樹脂層4a、14aを型枠に注入する。その後、加熱し、又は紫外線照射等して磁性樹脂を硬化させて型枠からアンテナ装置10を抜く。また、磁性樹脂を注入した後に、ループアンテナ素子2、アンテナ素子12を埋め込むようにしてもよい。あるいは、型枠に磁性樹脂を注入したところに、ループアンテナ素子2、アンテナ素子12を埋設し、更に焼結された磁性シート4b、14bで磁性樹脂層4a、14aを覆うように載置して、その後、磁性樹脂を硬化させるようにしてもよい。 The magnetic sheets 4b and 14b thus molded are further arranged in a mold, and after placing the loop antenna element 2 and the antenna element 12 on the magnetic sheets 4b and 14b, respectively, the magnetic resin layer 4a , 14a are injected into the mold. Then, the magnetic resin is cured by heating or ultraviolet irradiation, and the antenna device 10 is removed from the mold. Further, the loop antenna element 2 and the antenna element 12 may be embedded after the magnetic resin is injected. Alternatively, when the magnetic resin is injected into the mold, the loop antenna element 2 and the antenna element 12 are embedded, and the magnetic resin layers 4a and 14a are covered with the sintered magnetic sheets 4b and 14b. Thereafter, the magnetic resin may be cured.
 磁性シート4b、14bを形成する場合に、スライシングによらず他の方法を使うこともできる。たとえば、フェライト原料粉末とバインダを混合して作製したフェライトスラリーをドクターブレード法等により薄いシート状に成型し(グリーンシート)、その後、抜き型等で所定の形状に成型したグリーンシートを焼結してフェライトシートとする方法を用いても良い。焼結されたフェライトの磁性シート4b、14b上に上述と同様の加工を施すことによって本発明のアンテナ装置10を形成することができる。 When forming the magnetic sheets 4b and 14b, other methods can be used regardless of slicing. For example, a ferrite slurry prepared by mixing ferrite raw material powder and a binder is molded into a thin sheet by a doctor blade method (green sheet), and then the green sheet molded into a predetermined shape by a punching die is sintered. Alternatively, a ferrite sheet method may be used. The antenna device 10 of the present invention can be formed by applying the same processing as described above to the sintered ferrite magnetic sheets 4b and 14b.
 なお、磁性シート4b、14bに導線1、11の引出部5、15を収納するための切欠部を形成してもよい。この場合には、バルク状のフェライトの焼結後に、バルク状態で切欠部を形成してもよく、磁性シート4b、14bにスライシング後に切欠部を溝加工により形成してもよい。また、グリーンシートから磁性シート4b、14bを形成する場合には、あらかじめ切欠部を考慮した抜き型を用意することによって、切欠部の形成された磁性シート4b、14bを形成することが可能である。 In addition, you may form the notch part for accommodating the drawer | drawing-out parts 5 and 15 of the conducting wires 1 and 11 in the magnetic sheets 4b and 14b. In this case, the notched portion may be formed in a bulk state after the bulk ferrite is sintered, or the notched portion may be formed by grooving after slicing the magnetic sheets 4b and 14b. Further, when the magnetic sheets 4b and 14b are formed from green sheets, it is possible to form the magnetic sheets 4b and 14b in which the notches are formed by preparing a cutting die that takes into account the notches in advance. .
 樹脂等の量は、図1のようにループアンテナ素子2及びアンテナ素子12を完全に埋設させる量であってもよく、ループアンテナ素子2及びアンテナ素子12の一部が露出する量であってもよい。また、後述するように、樹脂等の位置は、ループアンテナ素子2及び/又はアンテナ素子12の外径部分又は内径部分の全部あるいは一部を充填するように埋設する位置であってもよい。 The amount of resin or the like may be an amount for completely embedding the loop antenna element 2 and the antenna element 12 as shown in FIG. 1 or an amount for exposing a part of the loop antenna element 2 and the antenna element 12. Good. Further, as will be described later, the position of the resin or the like may be a position embedded so as to fill all or part of the outer diameter portion or the inner diameter portion of the loop antenna element 2 and / or the antenna element 12.
 形成されたループアンテナ部3の内径7に、形成されたアンテナ部13を配置して、アンテナ装置10を構成する。電子機器内に搭載する際に、それぞれ別個に配置してもよく、フェノール基板等によるサブ基板やポリイミド等によるフレキシブル基板等に、ループアンテナ部3と、その内径7にアンテナ部13とを配置してもよい。 The antenna device 10 is configured by arranging the formed antenna portion 13 on the inner diameter 7 of the formed loop antenna portion 3. When mounted in an electronic device, they may be arranged separately. The loop antenna portion 3 and the antenna portion 13 are arranged on the inner diameter 7 on a sub-substrate such as a phenol substrate or a flexible substrate such as polyimide. May be.
 上述したような製造方法によって、ループアンテナ素子2及びアンテナ素子12と磁性樹脂層4a,14aとを固定する場合に、接着剤を用いる必要がない。したがって、接着剤を塗布する工程が削減され、さらに接着剤塗布により形成される接着剤層がない分だけアンテナ装置10の薄型化が可能になる。 When the loop antenna element 2 and the antenna element 12 and the magnetic resin layers 4a and 14a are fixed by the manufacturing method as described above, it is not necessary to use an adhesive. Accordingly, the number of steps for applying the adhesive is reduced, and the antenna device 10 can be made thinner by the amount of the adhesive layer formed by applying the adhesive.
 なお、アンテナの特性上、高透磁率の磁性シート4b,14bを接続するのが好ましいが、高透磁率の磁性シート4b,14bを接続せずにアンテナ装置10を構成してもよい。その場合には、磁性樹脂層4a,14aは、上述のような樹脂が混錬されているために、外部からの衝撃に対して、割れ等の破損を生じることがないので、表面に保護シートを貼付する必要がない。したがって、保護シート貼付工程を削減でき、保護シートにかかるアンテナ装置の厚さの増大を抑えることができる。 Although it is preferable to connect the high permeability magnetic sheets 4b and 14b in terms of the characteristics of the antenna, the antenna device 10 may be configured without connecting the high permeability magnetic sheets 4b and 14b. In that case, the magnetic resin layers 4a and 14a are kneaded with the resin as described above, and therefore do not cause breakage such as cracking against external impacts. There is no need to affix. Therefore, the protective sheet sticking process can be reduced, and an increase in the thickness of the antenna device over the protective sheet can be suppressed.
 [変形例1]
 図2(A)及び図2(B)に示すように、本発明に係るアンテナ装置10は、導線1を渦巻状に巻回して形成されたスパイラルコイル状のループアンテナ素子2と、ループアンテナ素子2を載置する磁性シート4bと、ループアンテナ素子2を磁性シート4b上に固定するための接着剤層41とを有するループアンテナ部3を備える。そして、アンテナ部13は、ループアンテナ部3の内径7に配置される。アンテナ部13は、導線11を渦巻状に巻回して形成されたスパイラルコイル状のアンテナ素子12と、アンテナ素子12を載置する磁性シート14bと、アンテナ素子12の全体を埋設するように形成された磁性樹脂層14aとを有する。ループアンテナ部3の磁性シート4bとアンテナ部13の磁性シート14bとは、物理的に分離されている。したがって、ループアンテナ部3とアンテナ部13とは、磁気回路的により高い磁気抵抗を有する空気を介して弱い磁気結合をしている。ループアンテナ部3とアンテナ部13とは、同一平面上に載置される。同一平面上に載置するのに、高磁気抵抗を有する絶縁材料、たとえばエポキシやフェノール等のサブ基板に固定するようにしてもよい。
[Modification 1]
As shown in FIGS. 2A and 2B, an antenna device 10 according to the present invention includes a spiral coil loop antenna element 2 formed by winding a conducting wire 1 in a spiral shape, and a loop antenna element. 2 is provided with a loop antenna portion 3 having a magnetic sheet 4b on which 2 is placed and an adhesive layer 41 for fixing the loop antenna element 2 on the magnetic sheet 4b. The antenna unit 13 is disposed on the inner diameter 7 of the loop antenna unit 3. The antenna portion 13 is formed so as to embed the entire antenna element 12, a spiral coil-shaped antenna element 12 formed by winding the conducting wire 11 in a spiral shape, a magnetic sheet 14 b on which the antenna element 12 is placed, and the antenna element 12. And a magnetic resin layer 14a. The magnetic sheet 4b of the loop antenna unit 3 and the magnetic sheet 14b of the antenna unit 13 are physically separated. Therefore, the loop antenna unit 3 and the antenna unit 13 are weakly magnetically coupled via air having a higher magnetic resistance than a magnetic circuit. The loop antenna unit 3 and the antenna unit 13 are placed on the same plane. For mounting on the same plane, it may be fixed to an insulating material having a high magnetic resistance, for example, a sub-board such as epoxy or phenol.
 この変形例では、ループアンテナ部3の内径側に配置されるアンテナ部13のみについて、磁性樹脂層14aがアンテナ素子12の全体を埋設するように形成される。ループアンテナ部3においては、磁性シート4b上に接着剤を塗布して、接着剤層41を介してループアンテナ素子2を固定する。 In this modification, the magnetic resin layer 14a is formed so as to embed the entire antenna element 12 only for the antenna portion 13 disposed on the inner diameter side of the loop antenna portion 3. In the loop antenna unit 3, an adhesive is applied on the magnetic sheet 4 b and the loop antenna element 2 is fixed via the adhesive layer 41.
 この変形例においては、アンテナ部13のみの磁性樹脂層14aがアンテナ素子12の全体を埋設するように形成されている。図1の場合と比べて、ループアンテナ素子2及びアンテナ素子12の全体を磁性樹脂層14aに埋設していないので、磁性樹脂の量を少なくすることができ、アンテナ装置10の軽量化、低コスト化に貢献する。さらにループアンテナ素子2及びアンテナ素子12の全体を埋設しなくても、磁性樹脂層14aが磁気回路上に形成されているので、インダクタンスの向上等の電気的特性の向上が可能である。また、磁性樹脂の高熱伝導特性により、導線11で発生したジュール熱(銅損)を効率よく放熱することが可能となるので、電子機器内の放熱スペースの削減にも貢献する。 In this modification, the magnetic resin layer 14a of only the antenna portion 13 is formed so as to embed the entire antenna element 12. Compared to the case of FIG. 1, since the entire loop antenna element 2 and antenna element 12 are not embedded in the magnetic resin layer 14 a, the amount of magnetic resin can be reduced, and the antenna device 10 can be reduced in weight and cost. Contribute to Furthermore, since the magnetic resin layer 14a is formed on the magnetic circuit without embedding the entire loop antenna element 2 and antenna element 12, it is possible to improve electrical characteristics such as an improvement in inductance. In addition, due to the high thermal conductivity characteristics of the magnetic resin, Joule heat (copper loss) generated in the conductive wire 11 can be efficiently radiated, which contributes to reduction of the heat radiation space in the electronic device.
 図3(A)及び図3(B)に示すように、本発明に係るアンテナ装置10は、導線1を渦巻状に巻回して形成されたスパイラルコイル状のループアンテナ素子2と、ループアンテナ素子2を載置する磁性シート4bと、ループアンテナ素子2の全体を埋設するように形成された磁性樹脂層4aとを有するループアンテナ部3を備える。そして、アンテナ部13は、ループアンテナ部3の内径7に配置される。アンテナ部13は、導線11を渦巻状に巻回して形成されたスパイラルコイル状のアンテナ素子12と、アンテナ素子12を載置する磁性シート14bと、アンテナ素子12を磁性シート14b上に固定するための接着剤層41とを有する。ループアンテナ部3の磁性シート4bとアンテナ部13の磁性シート14bとは、物理的に分離されている。したがって、ループアンテナ部3とアンテナ部13とは、磁気回路的により高い磁気抵抗を有する空気を介して弱い磁気結合となる。ループアンテナ部3とアンテナ部13とは、同一平面上に載置されるのが好ましいが、搭載される電子機器の実装箇所に応じて異なる平面上に載置されてもよい。同一平面上に載置するのに、高磁気抵抗を有する絶縁材料、たとえばエポキシやフェノール等のサブ基板に固定するようにしてもよい。 As shown in FIGS. 3A and 3B, an antenna device 10 according to the present invention includes a spiral coil loop antenna element 2 formed by winding a conducting wire 1 in a spiral shape, and a loop antenna element. 2 is provided with a loop antenna portion 3 having a magnetic sheet 4b for mounting 2 and a magnetic resin layer 4a formed so as to embed the entire loop antenna element 2. The antenna unit 13 is disposed on the inner diameter 7 of the loop antenna unit 3. The antenna unit 13 is used for fixing the antenna element 12 on the magnetic sheet 14b, a spiral coil-shaped antenna element 12 formed by winding the conducting wire 11 in a spiral shape, a magnetic sheet 14b on which the antenna element 12 is placed, and the antenna element 12. Adhesive layer 41. The magnetic sheet 4b of the loop antenna unit 3 and the magnetic sheet 14b of the antenna unit 13 are physically separated. Therefore, the loop antenna unit 3 and the antenna unit 13 are weakly magnetically coupled via air having a higher magnetic resistance than a magnetic circuit. The loop antenna unit 3 and the antenna unit 13 are preferably placed on the same plane, but may be placed on different planes depending on the mounting location of the electronic device to be mounted. For mounting on the same plane, it may be fixed to an insulating material having a high magnetic resistance, for example, a sub-board such as epoxy or phenol.
 この変形例では、ループアンテナ素子2のみについて、磁性樹脂層4aがループアンテナ素子2の全体を埋設するように形成される。アンテナ部13は、磁性シート14b上に接着剤を塗布して、接着剤層41を介してアンテナ素子12を固定して構成する。 In this modification, the magnetic resin layer 4a is formed so as to embed the entire loop antenna element 2 only for the loop antenna element 2. The antenna unit 13 is configured by applying an adhesive on the magnetic sheet 14 b and fixing the antenna element 12 via the adhesive layer 41.
 この変形例においては、図2の場合と同様に、ループアンテナ素子2及びアンテナ素子12の全体を磁性樹脂層4aに埋設していないので、磁性樹脂の量が少なくなり、アンテナ装置10の軽量化、低コスト化に貢献する。さらにループアンテナ素子2及びアンテナ素子12の全体を埋設しなくても、磁性樹脂層4aが磁気回路上に形成されているので、インダクタンスの向上等の電気的特性の向上が可能である。また、磁性樹脂の高熱伝導特性により、効率よく放熱することが可能となるので、電子機器内の放熱スペースの削減にも貢献する。 In this modification, as in the case of FIG. 2, the entire loop antenna element 2 and antenna element 12 are not embedded in the magnetic resin layer 4a, so the amount of magnetic resin is reduced and the weight of the antenna device 10 is reduced. Contributes to cost reduction. Furthermore, since the magnetic resin layer 4a is formed on the magnetic circuit without embedding the entire loop antenna element 2 and antenna element 12, it is possible to improve electrical characteristics such as an improvement in inductance. In addition, the high heat conduction characteristics of the magnetic resin enable efficient heat dissipation, contributing to the reduction of the heat dissipation space in the electronic device.
 [変形例2]
 図4(A)及び図4(B)に示すように、本発明に係るアンテナ装置10は、導線1を渦巻状に巻回して形成されたスパイラルコイル状のループアンテナ素子2と、ループアンテナ素子2を載置する磁性シート4bと、ループアンテナ素子2を磁性シート4b上に固定するための接着剤層41とを有するループアンテナ部3を備える。そして、ループアンテナ部3の内径7にアンテナ部13が配置される。アンテナ部13は、導線11を渦巻状に巻回して形成されたスパイラルコイル状のアンテナ素子12と、アンテナ素子12を載置する磁性シート14bと、アンテナ素子12の内径部分を充填するように埋設して形成された磁性樹脂層14aとを有する。ループアンテナ部3の磁性シート4bとアンテナ部13の磁性シート14bとは、物理的に分離されている。したがって、ループアンテナ部3とアンテナ部13とは、磁気回路的により高い磁気抵抗を有する空気を介して弱く磁気結合している。
[Modification 2]
As shown in FIGS. 4A and 4B, an antenna device 10 according to the present invention includes a spiral coil-shaped loop antenna element 2 formed by winding a conducting wire 1 in a spiral shape, and a loop antenna element. 2 is provided with a loop antenna portion 3 having a magnetic sheet 4b on which 2 is placed and an adhesive layer 41 for fixing the loop antenna element 2 on the magnetic sheet 4b. The antenna unit 13 is disposed on the inner diameter 7 of the loop antenna unit 3. The antenna unit 13 is embedded so as to fill a spiral coil-shaped antenna element 12 formed by winding the conducting wire 11 in a spiral shape, a magnetic sheet 14 b on which the antenna element 12 is placed, and an inner diameter portion of the antenna element 12. And a magnetic resin layer 14a formed as described above. The magnetic sheet 4b of the loop antenna unit 3 and the magnetic sheet 14b of the antenna unit 13 are physically separated. Therefore, the loop antenna unit 3 and the antenna unit 13 are weakly magnetically coupled via air having a higher magnetic resistance than a magnetic circuit.
 この変形例では、ループアンテナ部3の内径7に配置されるアンテナ部13のうちの一部、すなわちアンテナ部13の内径部分を充填するように、磁性樹脂層14aが形成される。 In this modification, the magnetic resin layer 14a is formed so as to fill a part of the antenna part 13 arranged on the inner diameter 7 of the loop antenna part 3, that is, the inner diameter part of the antenna part 13.
 図5(A)及び図5(B)に示すように、図4のアンテナ部13の内径部分に磁性樹脂を充填するのに代えて、内径部分を除いた部分で、アンテナ素子12を埋設するように磁性樹脂層14aを形成してもよい。 As shown in FIGS. 5A and 5B, instead of filling the inner diameter portion of the antenna portion 13 of FIG. 4 with magnetic resin, the antenna element 12 is embedded at a portion excluding the inner diameter portion. Thus, the magnetic resin layer 14a may be formed.
 図4及び図5の場合においても、磁性樹脂層14aの存在によりインダクタンス値等の電気的特性の向上がはかられ、磁性樹脂の量が少ないことによるアンテナ装置の軽量化、低コスト化が可能となる。 4 and 5, the presence of the magnetic resin layer 14a can improve the electrical characteristics such as the inductance value, and the amount of the magnetic resin can reduce the weight and cost of the antenna device. It becomes.
 図6に示すように、ループアンテナ素子2及びアンテナ素子12をそれぞれ埋設した磁性樹脂層4a及び磁性樹脂層14aが、接着剤層41により磁性シート4b及び磁性シート14bにそれぞれ取り付けられるようにしてもよい。上述のように磁性樹脂層4a、14aを予めシート状に形成し、そのシートの上にループアンテナ素子2及びアンテナ素子12を載置し、加圧あるいは加圧熱処理することで、ループアンテナ素子2及びアンテナ素子12が埋設されたシートとし、これを接着剤層41により、磁性シート4b、14bに貼り付けることでループアンテナ部3及びアンテナ部13を形成することもできる。 As shown in FIG. 6, the magnetic resin layer 4a and the magnetic resin layer 14a in which the loop antenna element 2 and the antenna element 12 are respectively embedded are attached to the magnetic sheet 4b and the magnetic sheet 14b by the adhesive layer 41, respectively. Good. As described above, the magnetic resin layers 4a and 14a are formed in a sheet shape in advance, and the loop antenna element 2 and the antenna element 12 are placed on the sheet and subjected to pressure or pressure heat treatment, whereby the loop antenna element 2 In addition, the loop antenna portion 3 and the antenna portion 13 can also be formed by forming a sheet in which the antenna element 12 is embedded and attaching the sheet to the magnetic sheets 4b and 14b with the adhesive layer 41.
 [変形例3]
 本発明のアンテナ装置10では、3つのアンテナを複合的に配置することもできる。図7(A)及び図7(B)に示すように、本発明のアンテナ装置10は、ループアンテナ部3と、ループアンテナ部3の内径7に配置された第1のアンテナ部13と、さらに第1のアンテナ部13の内径7に配置された第2のアンテナ部23とを備える。ループアンテナ部3、第1のアンテナ部13及び第2のアンテナ部23(以下、ループアンテナ部3等という。)ともに、導線1,11,21を渦巻状に巻回して形成されたスパイラルコイル状のループアンテナ素子2、第1のアンテナ素子12及び第2のアンテナ素子22(以下、ループアンテナ素子2等という。)と、ループアンテナ素子2等を載置する磁性シート4b,14b,24bと、ループアンテナ素子2等の全体をそれぞれ埋設するように形成された磁性樹脂層4a,14a,24aとを有する。ループアンテナ部3等の磁性シート4b,14b,24bのそれぞれは、物理的に分離されており、磁性樹脂層4a,14a,24aもそれぞれ物理的に分離されている。したがって、ループアンテナ部3等は、磁気回路的には高い磁気抵抗を有する空気で結合されることになるので、アンテナ同士の干渉が低減される。なお、図4及び図5のように、ループアンテナ素子2等の全体を埋設させずに、一部を埋設させるようにしてもよいのは言うまでもない。
[Modification 3]
In the antenna device 10 of the present invention, three antennas can be combined. As shown in FIG. 7A and FIG. 7B, the antenna device 10 of the present invention includes a loop antenna unit 3, a first antenna unit 13 disposed on the inner diameter 7 of the loop antenna unit 3, and And a second antenna portion 23 disposed on the inner diameter 7 of the first antenna portion 13. The loop antenna unit 3, the first antenna unit 13, and the second antenna unit 23 (hereinafter referred to as the loop antenna unit 3 etc.) are all formed in a spiral coil shape formed by winding the conductive wires 1, 11 and 21 in a spiral shape. Loop antenna element 2, first antenna element 12 and second antenna element 22 (hereinafter referred to as loop antenna element 2 etc.), magnetic sheets 4b, 14b, 24b on which loop antenna element 2 etc. are placed, It has magnetic resin layers 4a, 14a, 24a formed so as to embed the entire loop antenna element 2 and the like. Each of the magnetic sheets 4b, 14b, 24b such as the loop antenna portion 3 is physically separated, and the magnetic resin layers 4a, 14a, 24a are also physically separated. Therefore, since the loop antenna unit 3 and the like are coupled with air having high magnetic resistance in terms of a magnetic circuit, interference between antennas is reduced. Needless to say, a part of the loop antenna element 2 or the like may be embedded without being embedded as shown in FIGS.
 このように、本発明のアンテナ装置10では、ループ状のアンテナを入れ子のように配置することによって、3つのアンテナであっても、より少ないスペースで配置することができる。磁性シート4b,14b,24b及び磁性樹脂層4a,14a,24aは、それぞれ物理的に分離しているので、それぞれのアンテナの相互の干渉を少なくすることができる。 Thus, in the antenna device 10 of the present invention, by arranging the loop antennas in a nested manner, even three antennas can be arranged in a smaller space. Since the magnetic sheets 4b, 14b, and 24b and the magnetic resin layers 4a, 14a, and 24a are physically separated from each other, mutual interference between the antennas can be reduced.
 また、ループアンテナ素子2等の少なくとも一部を磁性樹脂層4a,14a,24aに埋設させることによって、インダクタンス等の電気的特性を向上させ、放熱特性を増大させることができるので、より一層の小型化を実現することができる。 Further, by embedding at least a part of the loop antenna element 2 or the like in the magnetic resin layers 4a, 14a, and 24a, it is possible to improve electrical characteristics such as inductance and increase heat dissipation characteristics. Can be realized.
 アンテナの形状や大きさは、送受信する電波の周波数等によりある程度制約される。そのため、上述の図7のように、すべてのアンテナを入れ子状態で配置することができない場合も生じる。 The shape and size of the antenna are limited to some extent by the frequency of radio waves to be transmitted and received. For this reason, as shown in FIG. 7 described above, there are cases where all the antennas cannot be arranged in a nested state.
 図8(A)及び図8(B)に示すように、本発明のアンテナ装置10では、第1及び第2のアンテナ部13,23を入れ子としないで、第1及び第2のアンテナ部13,23が互いに重複することがないように、ループアンテナ部3の内径7に並べて配列するように構成してもよい。 As shown in FIGS. 8 (A) and 8 (B), in the antenna device 10 of the present invention, the first and second antenna sections 13 are not nested and the first and second antenna sections 13 and 23 are not nested. , 23 may be arranged side by side on the inner diameter 7 of the loop antenna portion 3 so that they do not overlap each other.
 ループアンテナ部3の内径におけるアンテナ部の配置については、さまざまなバリエーションをとることができる。ループアンテナ部3の内径に配置するアンテナ部を、互いに重複することなく配列させ、あるいは他のアンテナの内径に配置し、さらにはこれらを組み合わせることによって、複合化できるアンテナの数は、上述した2つ、3つに限らず、4つ以上とすることもできる。 Various variations can be taken for the arrangement of the antenna portion in the inner diameter of the loop antenna portion 3. The number of antennas that can be combined by arranging the antenna parts arranged on the inner diameter of the loop antenna part 3 without overlapping each other, or arranging them on the inner diameters of other antennas, and further combining them is 2 as described above. The number is not limited to three and may be four or more.
 [従来のアンテナ装置との特性比較]
 シミュレーションプログラムを用いることによって、本発明に係るアンテナ装置10の特性の評価を行った。
[Characteristic comparison with conventional antenna devices]
The characteristics of the antenna device 10 according to the present invention were evaluated by using a simulation program.
 以下、説明する実施例1、実施例2、比較例については、いずれも、磁性樹脂層、接着剤層の有無以外は、まったく同一のアンテナ形状、大きさを有するアンテナ装置モデルである。 Hereinafter, Example 1, Example 2, and Comparative Example to be described are all antenna device models having the same antenna shape and size except for the presence or absence of a magnetic resin layer and an adhesive layer.
 <実施例1>
 実施例1には、アンテナ装置10として、図2の構成を用いた。すなわち、アンテナ装置10は、ループアンテナ部3の内径7側のアンテナ素子12のみが磁性樹脂層14aに埋設されている。
<Example 1>
In the first embodiment, the configuration of FIG. 2 is used as the antenna device 10. That is, in the antenna device 10, only the antenna element 12 on the inner diameter 7 side of the loop antenna portion 3 is embedded in the magnetic resin layer 14a.
 ループアンテナ部3のコイルは、線幅2.4mm×線厚0.25mmの平角導線を外径44.8mmの1T扁平コイルとした。磁性シート4bとして、外径48mm、内径36mm、厚さ0.4mmの環状形状のNi-Znフェライト(透磁率=100)とした。ループアンテナ素子2と磁性シート4bとの間には0.1mm厚の接着剤層41を挿入している。 The coil of the loop antenna unit 3 was a 1T flat coil having an outer diameter of 44.8 mm made of a flat rectangular wire having a line width of 2.4 mm and a wire thickness of 0.25 mm. The magnetic sheet 4b was an annular Ni—Zn ferrite (permeability = 100) having an outer diameter of 48 mm, an inner diameter of 36 mm, and a thickness of 0.4 mm. An adhesive layer 41 having a thickness of 0.1 mm is inserted between the loop antenna element 2 and the magnetic sheet 4b.
 ループアンテナ部3の内径7に配置されるアンテナ部13のコイルは、線幅5.6mm×線厚0.25mmの平角導線を外径29.2mmの1T扁平コイルとした。磁性シート14bとして、34mm×34mm×0.4mmのNi-Znフェライト(透磁率=100)とし、磁性樹脂層14aとして、透磁率=15に設定した。 The coil of the antenna unit 13 arranged on the inner diameter 7 of the loop antenna unit 3 is a 1T flat coil having a flat width of 5.6 mm and a thickness of 0.25 mm and an outer diameter of 29.2 mm. The magnetic sheet 14b was 34 mm × 34 mm × 0.4 mm Ni—Zn ferrite (permeability = 100), and the magnetic resin layer 14a was set to have permeability = 15.
 磁性樹脂層14aは、アンテナ素子12全体が埋没するように形成する。 The magnetic resin layer 14a is formed so that the entire antenna element 12 is buried.
 <実施例2>
 実施例2には、アンテナ装置の構成としては、図1の構造を用いた。すなわち、アンテナ装置は、ループアンテナ素子2及びアンテナ素子12の両方が磁性樹脂層4a,14aに埋設されている。
<Example 2>
In Example 2, the structure of FIG. 1 was used as the configuration of the antenna device. That is, in the antenna device, both the loop antenna element 2 and the antenna element 12 are embedded in the magnetic resin layers 4a and 14a.
 ループアンテナ部3のコイルは、線幅2.4mm×線厚0.25mmの平角導線を外径44.8mmの1T扁平コイルとした。磁性シート4bとして、外径48mm、内径36mm、厚さ0.4mmの環状形状のNi-Znフェライト(透磁率=100)とし、磁性樹脂層4aとして、透磁率=15に設定した。 The coil of the loop antenna unit 3 was a 1T flat coil having an outer diameter of 44.8 mm made of a flat rectangular wire having a line width of 2.4 mm and a wire thickness of 0.25 mm. The magnetic sheet 4b was an annular Ni—Zn ferrite (permeability = 100) having an outer diameter of 48 mm, an inner diameter of 36 mm, and a thickness of 0.4 mm, and the magnetic resin layer 4a was set to have permeability = 15.
 ループアンテナ部3の内径7に配置されるアンテナ部13のコイルは、線幅5.6mm×線厚0.25mmの平角導線を外径29.2mmの1T扁平コイルとした。磁性シート14bとして、34mm×34mm×0.4mmのNi-Znフェライト(透磁率=100)とし、磁性樹脂層14aとして、透磁率=15に設定した。 The coil of the antenna unit 13 arranged on the inner diameter 7 of the loop antenna unit 3 is a 1T flat coil having a flat width of 5.6 mm and a thickness of 0.25 mm and an outer diameter of 29.2 mm. The magnetic sheet 14b was 34 mm × 34 mm × 0.4 mm Ni—Zn ferrite (permeability = 100), and the magnetic resin layer 14a was set to have permeability = 15.
 磁性樹脂層14aは、アンテナ素子12全体が埋没するように形成する。 The magnetic resin layer 14a is formed so that the entire antenna element 12 is buried.
 <比較例>
 比較例には、アンテナ装置の構成としては、図9の構造を用いた。すなわち、アンテナ装置10は、磁性樹脂層を用いずに、ループアンテナ素子2及びアンテナ素子12が接着剤層41によって磁性シート4b,14bに貼着されている。
<Comparative example>
In the comparative example, the structure of FIG. 9 was used as the configuration of the antenna device. That is, in the antenna device 10, the loop antenna element 2 and the antenna element 12 are bonded to the magnetic sheets 4 b and 14 b by the adhesive layer 41 without using the magnetic resin layer.
 ループアンテナ部3のコイルは、線幅2.4mm×線厚0.25mmの平角導線を外径44.8mmの1T扁平コイルとした。磁性シート4bとして、外径48mm、内径36mm、厚さ0.4mmの環状形状のNi-Znフェライト(透磁率=100)とした。ループアンテナ素子2と磁性シート4bとの間には0.1mm厚の接着剤層41を挿入した。 The coil of the loop antenna unit 3 was a 1T flat coil having an outer diameter of 44.8 mm made of a flat rectangular wire having a line width of 2.4 mm and a wire thickness of 0.25 mm. The magnetic sheet 4b was an annular Ni—Zn ferrite (permeability = 100) having an outer diameter of 48 mm, an inner diameter of 36 mm, and a thickness of 0.4 mm. An adhesive layer 41 having a thickness of 0.1 mm was inserted between the loop antenna element 2 and the magnetic sheet 4b.
 ループアンテナ部3の内径7に配置されるアンテナ部13のコイルは、線幅5.6mm×線厚0.25mmの平角導線を外径29.2mmの1T扁平コイルとした。磁性シート14bとして、34mm×34mm×0.4mmのNi-Znフェライト(透磁率=100)とした。ループアンテナ素子2と磁性シート4bとの間には0.1mm厚の接着剤層41を挿入した。 The coil of the antenna unit 13 arranged on the inner diameter 7 of the loop antenna unit 3 is a 1T flat coil having a flat width of 5.6 mm and a thickness of 0.25 mm and an outer diameter of 29.2 mm. The magnetic sheet 14b was 34 mm × 34 mm × 0.4 mm Ni—Zn ferrite (permeability = 100). An adhesive layer 41 having a thickness of 0.1 mm was inserted between the loop antenna element 2 and the magnetic sheet 4b.
 <結果>
 結果を表1に示す。インダクタンス及びQ値についての結果は、比較例を基準に正規化した値で示す。
<Result>
The results are shown in Table 1. The results for the inductance and the Q value are shown as normalized values based on the comparative example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ループアンテナ部3の内径7に配置されたアンテナ部13の電気的特性に関して、インダクタンスについては、実施例1~2が比較例よりも10%程度大きな値を示した。アンテナ部13には、アンテナ素子12の全体を磁性樹脂層14aに埋設させているため磁性体の体積が大きくなり、アンテナ素子12周辺の磁束密度が増大したためである。Qは、実施例1~2が比較例よりも40%以上と大幅に上昇した。 Regarding the electrical characteristics of the antenna part 13 arranged on the inner diameter 7 of the loop antenna part 3, the inductances of Examples 1 and 2 showed a value about 10% larger than that of the comparative example. This is because the entire antenna element 12 is embedded in the magnetic resin layer 14a in the antenna section 13, so that the volume of the magnetic material increases and the magnetic flux density around the antenna element 12 increases. Q was significantly increased to 40% or more in Examples 1 and 2 than in the comparative example.
 ループアンテナ部3の電気的特性に関して、インダクタンスは、実施例2が比較例よりも20%程度大きな値を示した。ループアンテナ部3には、ループアンテナ素子2の全体を埋設させて、磁性体の体積が大きくなり、アンテナ素子12周辺の磁束密度が増大したためである。一方、実施例1においては、ループアンテナ素子2には、磁性樹脂層を追加していないため、比較例と同等の値を示した。Qは、実施例2が比較例よりも40%と大幅に上昇した。 Regarding the electrical characteristics of the loop antenna part 3, the inductance of Example 2 was about 20% larger than that of the comparative example. This is because the entire loop antenna element 2 is embedded in the loop antenna unit 3 to increase the volume of the magnetic material and increase the magnetic flux density around the antenna element 12. On the other hand, in Example 1, since the magnetic resin layer was not added to the loop antenna element 2, the value equivalent to the comparative example was shown. Q was significantly increased in Example 2 by 40% compared to the comparative example.
 コイル間の電磁結合の度合いを表す指標として結合係数kが使われるが、この結合係数kに関しては、実施例2において、インダクタンス値及びQ値がループアンテナ部3及びアンテナ部13ともに比較例に対して大幅に向上している一方で、比較例と同等以下の数値を示している。したがって、本発明のアンテナ装置の構成をとることによって、インダクタンス、Q値等電気的特性を向上させつつ、アンテナ間の相互干渉を悪化させることなく、むしろ改善することができる。 A coupling coefficient k is used as an index representing the degree of electromagnetic coupling between the coils. Regarding the coupling coefficient k, in Example 2, the inductance value and the Q value are compared with the comparative example in both the loop antenna unit 3 and the antenna unit 13. On the other hand, the numerical value is equal to or lower than that of the comparative example. Therefore, by adopting the configuration of the antenna device of the present invention, it is possible to improve the electrical characteristics such as inductance and Q value without deteriorating the mutual interference between the antennas.
 本発明のアンテナ装置では、アンテナ間の干渉を悪化させることなく、インダクタンス及びQ値を大きくすることができ各アンテナの性能を向上させることができる。また、このインダクタンスの増大は、所望のインダクタンス値に調整する場合、アンテナ素子の巻き数を減らすことができるので、アンテナ素子の直流抵抗値を小さくすることができ、結果として低消費電力化に寄与することができる。低消費電力化に伴って、アンテナ装置から発生する熱も少なくなり、アンテナ装置を搭載する電子機器内の放熱スペースを削減することができ、実質的機器の小型化・薄型化に貢献することができる。 In the antenna device of the present invention, the inductance and Q value can be increased without deteriorating interference between antennas, and the performance of each antenna can be improved. In addition, this increase in inductance can reduce the number of turns of the antenna element when adjusting to a desired inductance value, so that the DC resistance value of the antenna element can be reduced, resulting in a reduction in power consumption. can do. Along with the reduction in power consumption, the heat generated from the antenna device is reduced, and the heat radiation space in the electronic device on which the antenna device is mounted can be reduced, contributing to the substantial downsizing and thinning of the device. it can.
 1,11,21 導線、2 ループアンテナ素子、12,22 アンテナ素子、3 ループアンテナ部、13,23 アンテナ部、4a,14a,24a 磁性樹脂層、4b,14b,24b 磁性シート、5,15 引出部、7,17 内径、10 アンテナ装置、41 接着剤層、42 防磁シート 1,11,21 conducting wire, 2 loop antenna element, 12, 22 antenna element, 3 loop antenna part, 13, 23 antenna part, 4a, 14a, 24a magnetic resin layer, 4b, 14b, 24b magnetic sheet, 5,15 drawer Part, 7, 17 inner diameter, 10 antenna device, 41 adhesive layer, 42 magnetic shielding sheet

Claims (9)

  1.  ループアンテナと、
     上記ループアンテナの内径に配置された1つ以上の他のアンテナとを備え、
     上記ループアンテナは、磁性材料を含む磁気シールド層を有し、
     上記他のアンテナは、磁性材料を含む他の磁気シールド層をそれぞれ有し、
     上記磁気シールド層又は上記他の磁気シールド層のうちの少なくとも1つは、磁性粒子を含有する樹脂からなる磁性樹脂層を有しており、上記磁気シールド層及び他の磁気シールド層のそれぞれは、物理的に分離されていることを特徴とするアンテナ装置。
    A loop antenna,
    One or more other antennas arranged on the inner diameter of the loop antenna,
    The loop antenna has a magnetic shield layer containing a magnetic material,
    Each of the other antennas has another magnetic shield layer containing a magnetic material,
    At least one of the magnetic shield layer or the other magnetic shield layer has a magnetic resin layer made of a resin containing magnetic particles, and each of the magnetic shield layer and the other magnetic shield layer includes: An antenna device characterized by being physically separated.
  2.  上記ループアンテナ又は1つ以上の上記他のアンテナのうちの少なくとも1つは、少なくともその一部が上記磁性樹脂層に埋設されることを特徴とする請求項1記載のアンテナ装置。 The antenna device according to claim 1, wherein at least a part of at least one of the loop antenna or the one or more other antennas is embedded in the magnetic resin layer.
  3.  上記ループアンテナ又は1つ以上の上記他のアンテナのうちの少なくとも1つは、その全部が該磁性樹脂層に埋設されることを特徴とする請求項1記載のアンテナ装置。 The antenna device according to claim 1, wherein at least one of the loop antenna or the one or more other antennas is entirely embedded in the magnetic resin layer.
  4.  上記ループアンテナの磁気シールド層は、磁性シートを含み、
     1つ以上の上記他のアンテナの磁気シールド層は、磁性シートを含むことを特徴とする請求項1~3いずれか1項記載のアンテナ装置。
    The magnetic shield layer of the loop antenna includes a magnetic sheet,
    The antenna device according to any one of claims 1 to 3, wherein the magnetic shield layer of the one or more other antennas includes a magnetic sheet.
  5.  上記他のアンテナは、2つ以上のアンテナであることを特徴とする請求項1記載のアンテナ装置。 The antenna device according to claim 1, wherein the other antennas are two or more antennas.
  6.  2つ以上の上記アンテナは、上記ループアンテナの内径に、互いに重複することなく配列されることを特徴とする請求項5記載のアンテナ装置。 The antenna device according to claim 5, wherein the two or more antennas are arranged on the inner diameter of the loop antenna without overlapping each other.
  7.  2つ以上の上記アンテナは、いずれもループ状であり、
     2つ以上の上記アンテナのうちの1つのアンテナは、残りのアンテナの内径に配置されることを特徴とする請求項5記載のアンテナ装置。
    Two or more of the antennas are both loop-shaped,
    6. The antenna device according to claim 5, wherein one of the two or more antennas is disposed on an inner diameter of the remaining antenna.
  8.  2つ以上の上記アンテナは、上記残りのアンテナの内径にそれぞれ同心円状に配置されることを特徴とする請求項7記載のアンテナ装置。 The antenna device according to claim 7, wherein the two or more antennas are concentrically arranged on an inner diameter of the remaining antenna.
  9.  ループアンテナと該ループアンテナの内径に配置された1つ以上の他のアンテナとを有するアンテナ装置と、
     上記ループアンテナ及び上記1つ以上の他のアンテナのそれぞれの受電入力を整流する整流回路とを備え、
     上記ループアンテナは、磁性材料を含む磁気シールド層を有し、
     上記他のアンテナは、磁性材料を含む他の磁気シールド層をそれぞれ有し、
     上記磁気シールド層又は上記他の磁気シールド層のうちの少なくとも1つは、磁性粒子を含有する樹脂からなる磁性樹脂層を有しており、上記磁気シールド層及び他の磁気シールド層のそれぞれは、物理的に分離されていることを特徴とする通信装置。
    An antenna device having a loop antenna and one or more other antennas disposed on an inner diameter of the loop antenna;
    A rectifier circuit for rectifying each power receiving input of the loop antenna and the one or more other antennas,
    The loop antenna has a magnetic shield layer containing a magnetic material,
    Each of the other antennas has another magnetic shield layer containing a magnetic material,
    At least one of the magnetic shield layer or the other magnetic shield layer has a magnetic resin layer made of a resin containing magnetic particles, and each of the magnetic shield layer and the other magnetic shield layer includes: A communication device that is physically separated.
PCT/JP2013/069404 2012-07-26 2013-07-17 Antenna device and communication device WO2014017352A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012165973A JP6005430B2 (en) 2012-07-26 2012-07-26 Antenna device
JP2012-165973 2012-07-26

Publications (1)

Publication Number Publication Date
WO2014017352A1 true WO2014017352A1 (en) 2014-01-30

Family

ID=49997166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069404 WO2014017352A1 (en) 2012-07-26 2013-07-17 Antenna device and communication device

Country Status (3)

Country Link
JP (1) JP6005430B2 (en)
TW (1) TW201414085A (en)
WO (1) WO2014017352A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158641A1 (en) * 2015-03-27 2016-10-06 デクセリアルズ株式会社 Antenna device, transmission module, electronic device, and transmission system
JP2017123547A (en) * 2016-01-06 2017-07-13 アルプス電気株式会社 Antenna device and keyless entry device
WO2021171204A1 (en) * 2020-02-28 2021-09-02 3M Innovative Properties Company Antenna for transfer of information or energy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131128A1 (en) 2019-12-23 2021-07-01 株式会社村田製作所 Near-field wireless communication device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126901A (en) * 2004-10-26 2006-05-18 Mitsubishi Materials Corp Tag and rfid system
JP2007116347A (en) * 2005-10-19 2007-05-10 Mitsubishi Materials Corp Tag antenna and mobile radio equipment
JP2010219652A (en) * 2009-03-13 2010-09-30 Nec Tokin Corp Antenna device
JP2011103533A (en) * 2009-11-10 2011-05-26 Tdk Corp Booster, rfid system, and wireless communication device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033408A1 (en) * 2004-09-22 2006-03-30 Matsushita Electric Industrial Co., Ltd. Loop antenna unit and wireless communication media processing apparatus
JP2013138404A (en) * 2011-11-29 2013-07-11 Panasonic Corp Transmission coil and portable wireless terminal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126901A (en) * 2004-10-26 2006-05-18 Mitsubishi Materials Corp Tag and rfid system
JP2007116347A (en) * 2005-10-19 2007-05-10 Mitsubishi Materials Corp Tag antenna and mobile radio equipment
JP2010219652A (en) * 2009-03-13 2010-09-30 Nec Tokin Corp Antenna device
JP2011103533A (en) * 2009-11-10 2011-05-26 Tdk Corp Booster, rfid system, and wireless communication device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158641A1 (en) * 2015-03-27 2016-10-06 デクセリアルズ株式会社 Antenna device, transmission module, electronic device, and transmission system
JP2017123547A (en) * 2016-01-06 2017-07-13 アルプス電気株式会社 Antenna device and keyless entry device
WO2021171204A1 (en) * 2020-02-28 2021-09-02 3M Innovative Properties Company Antenna for transfer of information or energy
US11962367B2 (en) 2020-02-28 2024-04-16 3M Innovative Properties Company Antenna for transfer of information or energy

Also Published As

Publication number Publication date
JP6005430B2 (en) 2016-10-12
TW201414085A (en) 2014-04-01
JP2014027464A (en) 2014-02-06

Similar Documents

Publication Publication Date Title
WO2014017351A1 (en) Coil module and power receiver
KR102043087B1 (en) Coil module
US10658740B2 (en) Antenna unit and wireless power transmission module including same
WO2014148313A1 (en) Antenna apparatus and electronic device
CN107112789B (en) Heat dissipation unit and wireless power transceiver with same
JP6034644B2 (en) Composite coil module and portable device
US20150222017A1 (en) Antenna device, non-contact power transmission antenna unit, and electronic apparatus
KR101977254B1 (en) Multi-function complex module and Mobile device comprising the same
WO2014077098A1 (en) Multi-coil module and electronic device
CN107912075A (en) vehicle wireless power transmission module
WO2014148312A1 (en) Antenna apparatus and electronic device
WO2014148311A1 (en) Coil module, antenna device, and electronic device
EP2752943A1 (en) Soft magnetic layer, receiving antenna, and wireless power receiving apparatus comprising the same
WO2015029327A1 (en) Antenna device, composite antenna device, and electronic devices using these devices
JP6005430B2 (en) Antenna device
EP3016203B1 (en) Receiving antenna and wireless power receiving apparatus comprising same
KR20190058024A (en) Antenna mudule comprising shielding element
WO2016158641A1 (en) Antenna device, transmission module, electronic device, and transmission system
KR20200093957A (en) Receving apparatus for wireless charging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823292

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13823292

Country of ref document: EP

Kind code of ref document: A1