WO2014148291A1 - Lens array unit, imaging device, method for manufacturing lens array unit, and method for manufacturing imaging device - Google Patents

Lens array unit, imaging device, method for manufacturing lens array unit, and method for manufacturing imaging device Download PDF

Info

Publication number
WO2014148291A1
WO2014148291A1 PCT/JP2014/056144 JP2014056144W WO2014148291A1 WO 2014148291 A1 WO2014148291 A1 WO 2014148291A1 JP 2014056144 W JP2014056144 W JP 2014056144W WO 2014148291 A1 WO2014148291 A1 WO 2014148291A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens array
lens
array unit
light
opening
Prior art date
Application number
PCT/JP2014/056144
Other languages
French (fr)
Japanese (ja)
Inventor
松井一生
飯島康司
藤井雄一
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2014148291A1 publication Critical patent/WO2014148291A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/41Extracting pixel data from a plurality of image sensors simultaneously picking up an image, e.g. for increasing the field of view by combining the outputs of a plurality of sensors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0018Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor

Definitions

  • the present invention relates to a lens array unit having a plurality of lens elements arranged one-dimensionally or two-dimensionally, an imaging device, a manufacturing method of the lens array unit, and a manufacturing method of the imaging device.
  • a compound eye imaging device using a lens array is known, and in order to prevent light that has passed through one lens from entering a light receiving region of an imaging element that is not associated with the lens, in other words, an adjacent lens
  • Patent Documents 1 and 2 it has been proposed to arrange a light-shielding wall or a light-shielding block between the lens array and the image sensor.
  • Patent Documents 1 and 2 it has been proposed to arrange a light-shielding wall or a light-shielding block between the lens array and the image sensor.
  • Patent Documents 1 and 2 when installing such light-shielding walls and light-blocking blocks, in addition to the problem that the number of parts increases and the manufacturing process for aligning and joining them increases, the ends and inner walls of these members A ghost is generated due to the reflection of the light, which may lead to a decrease in image quality.
  • Patent Document 3 describes a compound-eye imaging device in which a stray light blocking member having a single rectangular opening with a size including all lenses is provided on the object side of the lens array.
  • a stray light blocking member having a single rectangular opening with a size including all lenses is provided on the object side of the lens array.
  • Patent Document 4 discloses a glass substrate provided with a diaphragm layer formed of a light-shielding resist.
  • Patent Document 4 it is assumed that a wafer level lens is diced into individual lenses, and a compound eye imaging device using a lens array in which a plurality of lenses are arranged in a one-dimensional or two-dimensional manner. Is not described, and the specific aperture shape of the diaphragm layer when the lens array is used in a compound-eye imaging device is not described.
  • the present invention has been made in view of the problems of the background art described above, and is a thin lens that can prevent adjacent single-eye images from overlapping and prevent warping and strength reduction while ensuring ease of manufacture. It is an object of the present invention to provide an array unit, an imaging apparatus, a lens array unit manufacturing method, and an imaging apparatus manufacturing method.
  • a lens array unit is a lens array unit in which one or more lens arrays each having a plurality of lens elements arranged on at least the image side of a transparent substrate are disposed, and the most image side
  • a light-shielding stop layer having a plurality of openings respectively corresponding to a plurality of lens elements is provided on at least the image-side surface of the transparent substrate, and each lens element covers each opening and each opening edge of the light-shielding stop layer.
  • the plurality of openings each have a non-circular contour shape.
  • the non-circular contour shape includes, for example, a rectangular shape, a barrel shape, a pincushion shape, a horizontally long shape, and the like.
  • the light-shielding diaphragm layer having an opening corresponding to the lens element is provided on the image-side surface of the most image-side transparent substrate.
  • the range of light emitted from the array unit can be limited.
  • each of the plurality of openings covered by the lens elements has a non-circular contour shape, it is possible to suppress or reduce the overlap of the single-eye images by the adjacent lens elements, and increase the arrangement density of the lens elements. be able to.
  • the light-shielding diaphragm layer as described above is provided on the transparent substrate, so that problems relating to warpage and strength are unlikely to occur, and the lens array unit and the imaging device incorporating the lens array unit can be made thin and small.
  • the plurality of openings have a symmetrical shape with respect to two orthogonal axes, and the opening width on the same or narrow side along the two axes is two axes. It is narrower than the opening width in the middle direction inclined with respect to.
  • the opening has a shape closer to a rectangle than a circle or a shape obtained by extending a circle in a specific direction, so that it is possible to prevent adjacent single-eye images from overlapping and increase the arrangement density of lens elements. it can.
  • the plurality of openings have a symmetrical shape with respect to two orthogonal axes, and the first opening width on the relatively wide side and the second opening on the relatively narrow side along the two axes. Width.
  • the opening is rectangular, elliptical, or the like.
  • the ratio between the first opening width and the second opening width is substantially equal to the ratio between the long side and the short side of the sensor to be combined with the lens array.
  • Still another aspect of the present invention includes a first lens array that is relatively disposed on the object side and a second lens array that is disposed on the most image side.
  • the lens array unit includes a pair of lens arrays.
  • the first lens array is disposed on the most object side, and is formed in the first lens array on at least the object side surface of the transparent substrate of the first lens array.
  • An aperture stop layer having a plurality of openings respectively corresponding to the plurality of lens elements is provided.
  • an auxiliary aperture layer having a plurality of openings respectively corresponding to a plurality of lens elements is provided on the image side surface of the transparent substrate of the first lens array.
  • the aperture of the aperture stop layer is a circle or a rectangle with a corner (including a square).
  • the opening of the auxiliary diaphragm layer has a shape substantially similar to the opening of the light-shielding diaphragm layer.
  • the opening of the light-shielding diaphragm layer is a rectangle or a rectangle with corners.
  • a parallel plate is further provided on the image side than the lens array on the most image side.
  • This parallel plate can have another function such as a filter function.
  • an antireflection film is provided on at least one surface of the parallel plates.
  • a light shielding film having a plurality of openings is provided on one surface of the parallel plate.
  • an imaging apparatus includes the above-described lens array unit and a sensor array disposed to face the lens array unit.
  • an antireflection film is formed on the surface of the cover glass of the sensor array in the imaging device. In this case, formation of a ghost image can be further prevented.
  • a method of manufacturing a lens array unit includes a step of forming a light-shielding diaphragm layer having a plurality of openings each having a non-circular contour shape on at least an image-side surface of a transparent substrate.
  • a step of forming a plurality of lens elements so as to cover the edge of each opening on at least the side of the transparent substrate on which the light-shielding diaphragm layer is provided, and the lens so that the lens element covering the opening is closest to the image side.
  • the light-shielding stop layer having an opening corresponding to the lens element closest to the image side is provided, the light-shielding stop layer that can be easily produced is emitted from the lens array unit.
  • the range of light can be limited.
  • each of the plurality of openings covered by the lens elements has a non-circular contour shape, it is possible to suppress or reduce the overlap of the single-eye images by the adjacent lens elements, and increase the arrangement density of the lens elements. be able to.
  • the light-shielding diaphragm layer as described above is provided on the transparent substrate and hardly causes problems regarding warpage and strength, and the lens array unit and the imaging device incorporating the lens array unit can be made thin and small.
  • a manufacturing method of an imaging apparatus uses a common transparent substrate having a size corresponding to a plurality of lens array units as a transparent substrate, and a plurality of lens array units by the manufacturing method described above. Produced integrally, joined the plurality of lens array units to a plurality of integrally fabricated sensor arrays, and cut the joined body of the plurality of lens array units and the plurality of sensor arrays into individual units. Divide into pieces. In this case, the imaging device incorporating the lens array unit can be mass-produced efficiently.
  • FIG. 1A is a side sectional view of an imaging apparatus incorporating the lens array unit of the first embodiment
  • FIG. 1B is a plan view of the imaging apparatus.
  • FIG. 2A is a conceptual diagram for schematically explaining the arrangement relationship in the imaging apparatus of FIG. 1A
  • FIG. 2B is a conceptual diagram for explaining the arrangement relationship of a modification.
  • FIG. 2B is an enlarged view specifically illustrating the arrangement relationship shown in FIG. 2A.
  • 4A to 4C are diagrams illustrating the manufacturing process of the imaging device.
  • 5A to 5C are diagrams for explaining a manufacturing process of the imaging device.
  • 6A to 6C are diagrams illustrating the manufacturing process of the imaging device.
  • 7A to 7C are diagrams illustrating the manufacturing process of the imaging device.
  • FIGS. 15A and 15B are diagrams illustrating a modification of the fourth and fifth embodiments.
  • 16A to 16F are diagrams for explaining a modification of the opening shape of the light-shielding stop layer.
  • 17A to 17D are diagrams for explaining a modification of the opening shape of the light-shielding stop layer.
  • An imaging apparatus 1000 shown in FIGS. 1A and 1B is a compound eye imaging apparatus that generates a plurality of images using a plurality of imaging lenses and reconstructs one image from the plurality of images.
  • the imaging apparatus 1000 includes a lens array unit 100 and an imaging element array 500, and has a structure in which these are stacked. For easy understanding, coloring and hatching are not performed in FIG. 1B. Also in each figure mentioned later, coloring and hatching may be omitted.
  • the lens array unit 100 is a laminated body in which the first lens array 10, the second lens array 20, and the lower spacer 30 are laminated by sequentially bonding with an adhesive.
  • the first and second lens arrays 10 and 20 are flat members extending in parallel to the XY plane.
  • the lower spacer 30 is a frame-shaped member that extends along a plane parallel to the XY plane. These members 10, 20, and 30 are stacked in the Z-axis direction.
  • the central axis AX of the lens array unit 100 is parallel to the Z axis.
  • the first lens array 10 is an optical component having a rectangular plate shape (including a square plate shape), and is secondarily arranged along the XY plane as an optical element constituting the optical component.
  • the first lens array 10 includes a parallel plate-like transparent substrate 11, a first resin layer 12 disposed on the object side of the transparent substrate 11, and an aperture stop layer 14 similarly disposed on the object side of the transparent substrate 11.
  • the second resin layer 13 disposed on the image side of the transparent substrate 11 and the auxiliary diaphragm layer 15 disposed on the image side of the transparent substrate 11 are provided.
  • the first and second resin layers 12 and 13 are composed of a large number of portions (partial elements of the compound lens 10e) arranged on lattice points, and the respective portions are aligned with each other and bonded to the transparent substrate 11. Has been.
  • the transparent substrate 11 of the first lens array 10 is a glass plate that is formed of an optical glass material and extends over the entire first lens array 10.
  • Substrate surfaces 11a and 11b, which are a pair of surfaces of the transparent substrate 11, are covered with IR cut filter layers 11c and 11d, respectively.
  • the thickness of the transparent substrate 11 including the IR cut filter layers 11c and 11d is basically determined by optical specifications, but is a thickness that does not damage the first lens array 10 when it is released.
  • the transparent substrate 11 constitutes the central portion of the compound lens 10e in the axis AX direction.
  • the transparent substrate 11 may be made of resin or the like.
  • the first resin layer 12 is discretely formed on the object-side substrate surface (most object side surface) 11 a provided on the transparent substrate 11.
  • the first resin layer 12 has a plurality of first lens elements 12e.
  • Each first lens element 12e is independent in a state of being separated from each other, and constitutes an upper portion (a part on the object side) of the compound lens 10e.
  • Each first lens element 12 e is arranged on a two-dimensional lattice point in the XY plane on the transparent substrate 11.
  • Each first lens element 12e is a convex lens portion and has an aspherical first optical surface 12a.
  • the plurality of first optical surfaces 12a constituting the first resin layer 12 are collectively molded by transfer using a transfer mold having a molding surface having a negative shape corresponding to each first optical surface 12a.
  • the aperture stop layer 14 is for preventing useless rays from passing through the first lens array 10 and limiting the incidence of light on the compound lens 10e.
  • the aperture stop 14 is a thin film made of a light-shielding material formed on the substrate surface (most object side surface) 11a of the transparent substrate 11, and includes a layer body 14a in which a plurality of openings 14b are formed.
  • the opening 14b is circular, and is formed as a through hole at a position corresponding to the first lens element 12e of the compound lens 10e.
  • the aperture stop layer 14 can effectively use the light incident on the first lens element 12e of the first lens array 10.
  • the layer body 14a is formed of a resin colored black with a dye or pigment, such as a black photoresist, and blocks incident light by absorption.
  • the diameter of the opening 14b is smaller than the diameter of the first lens element 12e. That is, each first lens element 12 e covers each opening 14 b and each opening edge 14 d of the aperture stop layer 14.
  • the aperture stop layer 14 has a thickness of about 1 to 10 ⁇ m.
  • the aperture stop layer 14 is not formed on the outer edge portion corresponding to the arrangement of the spacer portion 13s described later, but may be formed.
  • the second resin layer 13 is formed on the image-side substrate surface (image side surface) 11 b provided on the transparent substrate 11.
  • the second resin layer 13 includes a plurality of second lens elements 13e and surrounding spacer portions 13s.
  • Each second lens element 13e is independent in a state of being separated from each other, and constitutes a lower portion (image side portion) of the compound lens 10e.
  • the second lens elements 13e are two-dimensionally arranged in the XY plane on the transparent substrate 11.
  • the position of each second lens element 13 e corresponds to the position of each first lens element 12 e on the opposite side of the transparent substrate 11.
  • Each second lens element 13e is a concave lens part and has an aspherical second optical surface 13a.
  • the plurality of second optical surfaces 13a constituting the second resin layer 13 are collectively molded by transfer using a transfer mold having a molding surface having a negative shape corresponding to each second optical surface 13a.
  • the spacer portion 13s is formed in a rectangular frame shape (including a square frame shape) along the edge portion of the transparent substrate 11 outside the second lens element 13e.
  • the spacer portion 13s has a uniform thickness.
  • the auxiliary aperture layer 15 enhances the effect of preventing unnecessary light from being emitted from the first lens array 10 and preventing unnecessary light from entering the second lens array 20, or in the first lens array 10. For suppressing ghosts caused by light propagating in the plane direction.
  • the auxiliary aperture layer 15 is a thin film made of a light-shielding material formed on the substrate surface (image side surface) 11b of the transparent substrate 11, and includes a layer body 15a in which a plurality of openings 15b are formed.
  • the layer body 15a is made of a resin colored black with a dye or pigment, such as a black photoresist, and blocks incident light by absorption.
  • the opening 15b has a horizontally long barrel shape or a rectangular shape corresponding to the longitudinal direction of the image sensor 51 described later, and is formed as a through hole at a position corresponding to the second lens element 13e of the compound lens 10e. ing.
  • the opening 15b of the auxiliary diaphragm layer 15 has a shape substantially similar to an opening 25b of a light shielding diaphragm layer 25 described later.
  • the auxiliary diaphragm 15 can more reliably prevent stray light.
  • the opening width on the long axis side of the opening 15b is smaller than the diameter of the second lens element 13e. As a result, the opening width on the short axis side of the opening 15b is smaller than the diameter of the second lens element 13e. ing.
  • each second lens element 13e covers each opening 15b and each opening edge 15d of the auxiliary aperture layer 15.
  • the auxiliary diaphragm layer 15 has a thickness of about 1 to 10 ⁇ m.
  • the auxiliary diaphragm layer 15 is not formed on the outer edge portion where the spacer portion 13s described later is disposed.
  • the second lens array 20 is a rectangular plate-like (including square plate-like) optical component similar to the first lens array 10, and along the XY plane as an optical element constituting this.
  • the second lens array 20 includes a parallel plate-like transparent substrate 21, a first resin layer 22 disposed on the object side of the transparent substrate 21, a second resin layer 23 disposed on the image side of the transparent substrate 21, And an auxiliary aperture layer 25 disposed on the image side of the transparent substrate 21.
  • the first and second resin layers 22 and 23 are composed of a large number of portions (partial elements of the compound lens 20 e) arranged on the lattice points, and the respective portions are aligned with each other and bonded to the transparent substrate 21. Has been.
  • the transparent substrate 21 of the second lens array 20 is formed of a glass plate extending over the entire second lens array 20.
  • the substrate surfaces 21a and 21b which are a pair of surfaces of the transparent substrate 21 are not covered with the IR cut filter layer.
  • the thickness of the transparent substrate 21 is basically determined by optical specifications, but is a thickness that does not damage the second lens array 20 when it is released.
  • the transparent substrate 21 constitutes the central portion of the compound lens 20e in the axis AX direction.
  • the transparent substrate 21 may be made of resin or the like.
  • the first resin layer 22 is discretely formed on an object-side substrate surface (object side surface) 21 a provided on the transparent substrate 21.
  • the first resin layer 22 includes a plurality of first lens elements 22e and surrounding spacer portions 22s.
  • Each first lens element 22e is independent in a state of being separated from each other, and constitutes an upper part (a part on the object side) of the compound lens 20e.
  • Each first lens element 22 e is arranged on a two-dimensional lattice point in the XY plane on the transparent substrate 21.
  • Each second lens element 22e is a concave lens portion, and has an aspherical first optical surface 22a.
  • the plurality of first optical surfaces 22a constituting the first resin layer 22 are collectively molded by transfer using a transfer mold having a molding surface having a negative shape corresponding to each first optical surface 22a.
  • the spacer portion 22s is formed in a rectangular frame shape (including a square frame shape) along the edge portion of the transparent substrate 21 outside the first lens element 22e.
  • the spacer portion 22s has a uniform thickness.
  • the second resin layer 23 is formed on the image-side substrate surface (image side surface) 21 b provided on the transparent substrate 21.
  • the second resin layer 23 has a plurality of second lens elements 23e.
  • Each second lens element 23e is independent in a state of being separated from each other, and constitutes a lower portion (image side portion) of the compound lens 20e.
  • the second lens elements 23e are two-dimensionally arranged in the XY plane on the transparent substrate 21.
  • the position of each second lens element 23e corresponds to the position of each first lens element 22e on the opposite side of the transparent substrate 21.
  • Each second lens element 23e is a convex lens part and has an aspherical second optical surface 23a.
  • the plurality of second optical surfaces 23a constituting the second resin layer 23 are collectively molded by transfer using a transfer mold having a negative molding surface corresponding to each second optical surface 23a.
  • the light shielding stop layer 25 is for preventing light from entering a region other than the corresponding region of the image sensor 51.
  • the light-shielding diaphragm layer 25 is a thin film made of a light-shielding material formed on the substrate surface (image side surface) 21b of the transparent substrate 21, and is composed of a layer body 25a having a plurality of openings 25b.
  • the layer body 25a is formed of a resin colored black with a dye or pigment, such as a black photoresist, and blocks incident light by absorption.
  • the opening 25b has a horizontally long rectangular corner and is formed as a through hole at a position corresponding to the second lens element 23e of the compound lens 20e.
  • the opening shape of the light-shielding diaphragm layer 25 can be made to correspond to a rectangular imaging element 51 described later.
  • the plurality of openings 25b have a symmetrical shape with respect to two orthogonal axes (X axis and Y axis), and relative to the first opening width b2 on the relatively wide side along the two axes.
  • Second opening width a2 The first opening width b2 on the long axis side of the opening 25b is smaller than the diameter of the second lens element 23e.
  • the second opening width a2 on the short axis side of the opening 25b is the second lens element 23e. It is smaller than the diameter.
  • each second lens element 23e covers each opening 25b and each opening edge 25d of the light-shielding diaphragm layer 25.
  • the thickness of the light-shielding diaphragm layer 25 is about 1 to 10 ⁇ m.
  • the light-shielding diaphragm layer 25 is not formed on the outer edge portion to be joined with the lower spacer 30.
  • the outline of the opening 25b of the light-shielding diaphragm layer 25 may be a rectangle with no corners. Since each aperture layer 14, 15, 25 is formed on the transparent substrates 11, 21, it is integrated with the transparent substrates 11, 21, and the aperture member, which is a separate member after the lens array is manufactured, is used as a lens. There is no need to assemble the array.
  • the aperture stop layer 14 is not disposed on the object side with respect to the first lens element 12e, and the stop layers 15 and 25 are not disposed on the image side with respect to the lens elements 13e and 23e. Therefore, the thickness as the lens array unit 100 and the imaging device 1000 can be reduced. Further, for example, the shape (circular shape) of the second lens element 23e viewed from the optical axis direction is inconsistent with the shape of the opening 25b of the light-shielding diaphragm layer 25 (non-circular shape that fits in the lens element 23e viewed from the optical axis direction). Nevertheless, the lens element 23e and the light shielding stop layer 25 can be disposed sufficiently close to each other.
  • the lower spacer 30 is a square cylindrical member formed of glass, ceramics, resin, or the like.
  • the lower spacer 30 is a part that functions as a support member for the second lens array 20, and is provided between the second lens array 20 and the imaging element array 500.
  • the lower spacer 30 is arranged outside the second lens element 23e and along the edge portion of the transparent substrate 21 so as not to interfere with the second resin layer 23 or the second lens element 23e of the second lens array 20. ing.
  • the lower spacer 30 has a uniform thickness or height in the axis AX direction.
  • a plurality of subject images are formed on the image sensor array 500 by the optical system 1e formed by the pair of compound lenses 10e and 20e of the first and second lens arrays 10 and 20.
  • the imaging element array 500 includes imaging elements 51 that are two-dimensionally arranged in the XY directions perpendicular to the optical axes of the compound lenses 10e and 20e.
  • the image sensor 51 is a sensor chip made of a solid-state image sensor.
  • the photoelectric conversion unit (not shown) of the image pickup device 51 includes a CCD (Charge-Coupled Device) or a CMOS (Complementary Metal-Oxide Semiconductor), photoelectrically converts incident light for each RGB, and outputs an analog signal corresponding to the incident light amount. .
  • the surface of the photoelectric conversion unit as the light receiving unit is an imaging surface (projected surface) I.
  • the image sensor array 500 is fixed to a wiring board (not shown). This wiring board receives supply of a voltage and a signal for driving the image sensor 51 from an external circuit, and outputs a signal from the image sensor 51 to the external circuit.
  • Each imaging device 51 or imaging surface I has a rectangular shape that is long in the X direction.
  • FIG. 2A is a schematic diagram for explaining the arrangement relationship between the light-shielding diaphragm layer 25 of the second lens array 20 and the image sensor 51 of the image sensor array 500.
  • the compound lens 20e or the second lens element 23e is formed in an aligned state so as to cover the entire opening 25b of the light-shielding diaphragm layer 25.
  • the image pickup device 51 is formed in a state in which the opening 25b is enlarged by one size.
  • FIG. 3 is an enlarged view more specifically illustrating the arrangement relationship shown in FIG. 2A.
  • the effective area of the lens is circular, but the effective area of the image sensor is non-circular, and is often set in a horizontally long rectangular shape according to the human eye.
  • a plurality of light receiving areas corresponding to each lens are required.
  • a plurality of imaging elements 51 each having a horizontally long effective area composed of a plurality of pixels are spaced apart.
  • the arranged image sensor array 500 is used.
  • the opening 25b of the light-shielding diaphragm layer 25 is slightly smaller than the effective area EA1 of the image sensor 51.
  • the effective area EA1 of the image sensor 51 is circular and has a size that sufficiently covers the opening 25b.
  • the aspect ratio of the effective area EA1 of the image sensor 51 is a1: b1
  • the light from the second lens element 23e can be formed on the rectangular area corresponding to the image sensor 51 that is a sensor through the opening 25b of the light-shielding diaphragm layer 25, and the second lens element 23e is not wasted.
  • the lens array unit 100 and the imaging device 1000 incorporating the lens array unit 100 can be reduced in size.
  • the opening width c2 in the diagonal direction of the opening 25b is larger than both the second opening width a2 in the vertical direction and the first opening width b2 in the horizontal direction.
  • the diagonal direction means an intermediate direction determined by a pair of opening widths a2 and b2 along the axis.
  • the contour shape of the opening 25b is non-circular, and as a result of reducing the curvature of the arc in both the x direction and the y direction, it can be considered that the opening shape is relatively long in the diagonal direction.
  • the imaging element array 500 in which the plurality of imaging elements 51 are arranged in an island shape as described above, one pixel in which pixels are arranged over the entire region corresponding to all of the compound lenses 10e and 20e on the XY plane.
  • An image sensor may be used.
  • the compound lenses 10e and 20e are arranged at substantially equal pitches (Y-direction pitch P1 ⁇ X-direction pitch P2), but the shape of the opening 25b of the light-shielding diaphragm layer 25 is long in the X direction. Since it is a horizontally long shape in the Y direction, for example, as shown in FIG. 2B, the pitch in the Y direction can be reduced from P1 to P1 ′ (P1 ′ ⁇ P2). Thereby, the size of the lens arrays 10 and 20 can be reduced. Assuming a comparative example in which the light blocking diaphragm layer 25 is not provided, unlike the case shown in FIG.
  • the light beam passing through the compound lens 20e is not limited, and the light beam has a wide elliptical range L0 wider than the range L1. Will be illuminated. For this reason, in the case of the comparative example, it is not easy to reduce the pitches P1 and P2 of the image sensor 51, and it is not easy to reduce the pitches P1 and P2.
  • the compound lens array 110 including the first lens array 10 of FIG. 1A is manufactured. Specifically, as shown in FIG. 4A, a common transparent substrate 111 is prepared for a plurality of lens arrays, and IR cut filter layers 11 c and 11 d are formed on the substrate surfaces 11 a and 11 b of the transparent substrate 111.
  • the IR cut filter layers 11c and 11d are formed of, for example, a dielectric multilayer film.
  • the IR cut filter layers 11c and 11d can be formed in a batch with the same film forming apparatus, for example. In addition, by forming the IR cut filter layers 11c and 11d on both sides of the transparent substrate 111, it contributes to suppression of warpage of the transparent substrate 111.
  • a black photoresist layer 111r is formed by spin coating or the like so as to cover one IR cut filter layer 11c on the transparent substrate 111 (see FIG. 4B), and exposure and development are performed with a round hole mask. Then, a pattern such as the opening 14b is formed (see FIG. 4C). Thereby, the first pattern layer 114 including the aperture stop layer 14 is obtained. That is, as shown in FIG. 8A and the like, the first pattern layer 114 including the aperture stop layer 14 having the circular openings 14b arranged in a lattice point shape is obtained.
  • a black photoresist layer 111r is formed by spin coating or the like so as to cover the other IR cut filter layer 11d on the transparent substrate 111 (see FIG. 5A), and exposure and development are performed with a square hole mask. Then, a pattern such as an opening 15b is formed (see FIG. 5B). As a result, as shown in FIG. 8B and the like, the second pattern layer 115 including the auxiliary aperture layer 15 having a plurality of rectangular openings 15b arranged in a lattice point is obtained. Each opening 15b formed in the auxiliary aperture layer 15 is provided in a narrow region that is within the effective region EA3 of the second lens element 13e to be formed later, as shown in an enlarged view in FIG. 8C. However, the opening 15b has a contour that partially protrudes from the effective area EA3 of the second lens element 13e as indicated by the alternate long and short dash line in a range in which interference does not occur between the adjacent imaging elements 51. You can also.
  • the first resin layer 12 and the second resin layer 13 are formed on a pair of surfaces of the substrate member 119 in which the IR cut filter layers 11c and 11d and the pattern layers 114 and 115 are formed on the transparent substrate 111 ( (See FIG. 5C).
  • a pretreatment such as a hydrophilization treatment is performed on the surfaces 111a and 111b of the substrate member 119.
  • a transfer mold (not shown) having optical transparency is prepared, and an energy curable resin material is individually supplied onto the separated transfer surface corresponding to the first lens element 12e.
  • One surface 111a of the substrate member 119 is brought close to and pressed with a predetermined pressure.
  • another transfer mold (not shown) having optical transparency is prepared, and an energy curable resin material is individually supplied onto the separated transfer surface corresponding to the second lens element 13e, and the transfer mold is supplied to the transfer mold.
  • the other surface 111b of the substrate member 119 is brought close to each other and pressed with a predetermined pressure.
  • the substrate member 119 is sandwiched between the pair of transfer molds via the resin material. Thereafter, the substrate member 119 is irradiated with ultraviolet rays or the like from behind the pair of transfer molds to cure the resin sandwiched between the substrate member 119 and the pair of transfer molds, and thereby the first and second resin layers 12, 13, the pair of transfer molds are released from the substrate member 119 side (see FIG. 5C). Thereby, a composite lens array 110 in which a plurality of (for example, 2 ⁇ 2) first lens arrays 10 are connected in the surface direction can be obtained.
  • the first resin layer 12 includes a large number of first lens elements 12e
  • the second resin layer 13 includes a large number of second lens elements 13e and a certain number (4 ⁇ 4 in this example). And a spacer portion 113s surrounded by
  • the compound lens array 120 including the second lens array 20 of FIG. 1A is manufactured.
  • a common transparent substrate 121 is prepared for a plurality of lens arrays, and a black photoresist layer 121r is formed so as to cover the surface (substrate surface 21b) of the transparent substrate 121.
  • patterns such as openings 25b are formed by exposure and development using a square hole mask (see FIG. 6B).
  • the second pattern layer 125 including the light-shielding diaphragm layer 25 having a plurality of rectangular openings 25b arranged in a lattice point shape is obtained.
  • each opening 25b constituting the light-shielding diaphragm layer 25 is narrower than the effective area EA1 of the image sensor 51 and the effective area EA2 of the second lens element 23e (see FIG. 3).
  • the first resin layer 22 and the second resin layer 23 are formed on a pair of surfaces of the substrate member 129 on which the second pattern layer 125 is formed on one side of the transparent substrate 121 (see FIG. 6C).
  • the surface of the substrate member 129 (substrate surface 21a) is subjected to a pretreatment such as a hydrophilic treatment.
  • a transfer mold (not shown) having optical transparency is prepared, and an energy curable resin material is individually supplied onto the separated transfer surface corresponding to the first lens element 22e.
  • One surface (substrate surface 21a) of the substrate member 129 is brought close to each other and pressed with a predetermined pressure.
  • another transfer mold (not shown) having optical transparency is prepared, and an energy curable resin material is individually supplied onto the separated transfer surface corresponding to the second lens element 23e, and the transfer mold is supplied to the transfer mold.
  • the other surface (substrate surface 21b) of the substrate member 129 is brought close to and pressed with a predetermined pressure.
  • the substrate member 129 is sandwiched between the pair of transfer molds via the resin material.
  • the substrate member 129 is irradiated with ultraviolet rays or the like from behind the pair of transfer molds to cure the resin sandwiched between the substrate member 129 and the pair of transfer molds, and the first and second resin layers 22, 23, the pair of transfer molds are released from the substrate member 129 side (see FIG. 6C).
  • a compound lens array 120 in which a plurality of second lens arrays 20 are connected can be obtained.
  • the second resin layer 22 includes a large number of first lens elements 22e and spacer portions 122s surrounding the first lens elements 22e every predetermined number (4 ⁇ 4 in this example).
  • the second resin layer 23 includes a large number of second resin layers 23. Second lens element 23e.
  • the composite lens array 110 of FIG. 5C and the composite lens array 120 of FIG. 6C are joined by the adhesive 91, and the spacer 130 including the lower spacer 30 is joined by the adhesive 92 on the composite lens array 120 side.
  • the optical array unit 100U is obtained (see FIG. 7A).
  • the imaging array unit 500U is bonded to the optical array unit 100U of FIG. 7A using the adhesive 93 (see FIG. 7B).
  • a photo-curable adhesive can be used as shown in FIG.
  • the composite member or joined body U shown in FIG. 7B is divided by dicing or the like to obtain a plurality of (for example, 2 ⁇ 2) imaging devices 1000.
  • the inside of the image pickup apparatus 1000 is hermetically sealed by bonding through the spacer portions 13 s and 22 s and the lower spacer 30.
  • the imaging device 1000 can be coated with a light-blocking protective film on the side surface and can be stored in a light-blocking holder.
  • the light-shielding stop layer having the opening 25b corresponding to the second lens element 23e on the image-side surface of the transparent substrate 21 constituting the second lens array 20 on the most image side. 25 is provided, the range of light emitted from the lens array unit 100 can be limited by the light-shielding diaphragm layer 25 that can be easily manufactured.
  • the plurality of openings 25b covered by the second lens element 23e each have a non-circular contour shape that matches the shape of the effective area EA1 on the imaging element 51 side, so that a single-eye image by the adjacent second lens element 23e is obtained. Can be prevented, and the arrangement density of the second lens elements 23e or the image sensor 51 can be increased.
  • the light blocking aperture layer 25 as described above is formed on the surface of the transparent substrate 21 and is integrated with the transparent substrate 21. Therefore, it is not necessary to arrange a diaphragm after molding the lens part as a separate part, and problems relating to warpage and strength are unlikely to occur. Therefore, the lens array unit 100 and the imaging device 1000 incorporating the lens array unit 100 can be made thin and small. Further, since the light-shielding diaphragm layer 25 is in close contact with the transparent substrate 21, even if the shape of the second lens element 23e is different from the shape of the opening 25b of the light-shielding diaphragm layer 25, it is in close contact with the lens element 23e on the light incident side.
  • the light-shielding diaphragm layer 25 can be disposed, and it is not necessary to arrange the light-shielding diaphragm layer 25 at an interval on the image side of the lens element as in a separate diaphragm member. Therefore, it contributes to the thinning of the lens array unit 100 and the imaging device 1000.
  • the lens array unit and the like according to the second embodiment will be described below.
  • the lens array unit of the second embodiment is a modification of the lens array unit of the first embodiment, and items not specifically described are the same as those of the first embodiment.
  • FIG. 9 is a side sectional view for explaining the structure of an imaging apparatus incorporating the lens array unit of this embodiment.
  • an upper spacer 230 having a frame shape is disposed between the first and second lens arrays 10 and 20, similarly to the lower spacer 30.
  • the upper spacer 230 is provided in place of the spacer portions 13s and 22s shown in FIG. 1A, and is used for adjusting the distance when the first lens array 10 and the second lens array 20 are joined.
  • the second resin layer 13 of the first lens array 10 and the first resin layer 22 of the second lens array 20 are formed.
  • the lens array unit according to the third embodiment will be described below.
  • the lens array unit of the third embodiment is a modification of the lens array unit of the first embodiment, and items not specifically described are the same as those of the first embodiment.
  • FIG. 10 is a side sectional view for explaining the structure of an imaging apparatus incorporating the lens array unit of the present embodiment.
  • the second resin layer 13 provided on the image side of the first lens array 10 has a flat flange portion 13c between the plurality of second lens elements 13e. That is, the second resin layer 13 is not an individual drop but a sheet-like portion formed integrally.
  • the flange portion 13c functions in the same manner as the spacer portion 13s shown in FIG. 1A and the like.
  • the first resin layer 22 provided on the object side of the second lens array 20 has a flat flange portion 22c between the plurality of first lens elements 22e.
  • the first resin layer 22 is not an individual drop but a sheet-like portion formed integrally, and the flange portion 22c functions similarly to the spacer portion 22s shown in FIG. 1A and the like.
  • the 1st lens array 10 and the 2nd lens array 20 are joined via the flange parts 13c and 22c.
  • the light-shielding diaphragm layer may be provided on both the image-side surface and the object-side surface of the transparent substrate 21 on the most image side.
  • the opening of the light-shielding stop layer provided on the object-side surface may have the same shape as the opening of the light-shielding stop layer provided on the image-side surface or a similar shape smaller than that. Furthermore, it may be a shape with rounded corners or a rounded shape.
  • the lens array unit according to the fourth embodiment will be described below.
  • the lens array unit of the fourth embodiment is a modification of the lens array unit of the first embodiment and the like, and items not specifically described are the same as those of the first embodiment. Note that FIG. 11 is illustrated with the object side facing down.
  • FIG. 11 is a side sectional view for explaining the structure of an imaging apparatus incorporating the lens array unit of the present embodiment.
  • the lens array unit 100 includes one lens array 410 and a filter plate 70 that is a parallel plate.
  • the light-shielding diaphragm layer 415 formed on the second resin layer 13 side of the lens array 410 has the same function as the light-shielding diaphragm layer 25 shown in FIG. That is, the opening 15b of the light-shielding diaphragm layer 415 has a non-circular shape like the opening 25b of the light-shielding diaphragm layer 25 shown in FIG.
  • the opening 15b is a horizontally long rectangle and is narrower than the effective area of the second lens element 13e.
  • the lens array unit 100 and the imaging element array 500 are assembled to a light-shielding holder 80 and fixed to each other.
  • the composite lens array 110 including the lens array 410 is manufactured. Specifically, as shown in FIG. 12A, a transparent substrate 111 is prepared, and as shown in FIG. 12B, a black photoresist layer 111r is formed so as to cover the substrate surface 11b of the transparent substrate 111 by spin coating or the like. . As shown in FIG. 12C, a pattern such as openings 15b is formed in the black photoresist layer 111r by exposure and development using a square hole mask.
  • a pattern layer 415U including a light-shielding diaphragm layer 415 having rectangular openings 15b arranged in a lattice point like the light-shielding diaphragm layer 25 or the openings 25b shown in FIG. 8D and the like is obtained.
  • each opening 15b constituting the light-shielding diaphragm layer 415 is slightly narrower than the effective area EA1 of the image sensor 51 and the effective area of the second lens element 13e.
  • the composite lens array 110 is obtained by forming the first resin layer 12 and the second resin layer 13 on a pair of surfaces of the substrate member 419 on which the pattern layer 415U is formed on one side of the transparent substrate 111 (FIG. 12D). reference). Since the formation method of the 1st resin layer 12 and the 2nd resin layer 13 is substantially the same as 1st Embodiment, description is abbreviate
  • the lens array 410 so that the lens elements 12e are accommodated in the openings 80o of the holder 80.
  • the adhesive may be filled between the wall portion 81b of the holder 80 and the side surface of the lens array 410, or may be applied to the plate surface 81a in which the opening 80o of the holder 80 is formed. Further, a separately prepared filter plate 70 is fixed to the holder 80.
  • the filter plate 70 is placed on the step portion 82 provided on the wall portion 81b of the holder 80 (see FIG. 13B). Thereafter, the lens array unit 100 including the lens array 410 and the holder 80 is sealed with the imaging device array 500 at the upper end of the wall portion 81b of the holder 80, and the both are overlapped and fixed with an adhesive or the like (see FIG. 13B). .
  • the imaging apparatus 1000 incorporating the lens array 410 can be manufactured.
  • the filter plate 70 is obtained by coating an IR cut filter layer 72 on both sides or one side of the transparent substrate 71.
  • the IR cut filter layer 72 is formed of, for example, a dielectric multilayer film, similar to the IR cut filter layers 11c and 11d formed in the first lens array 10 of the first embodiment.
  • the filter plate 70 can have another filter function.
  • the lens array unit according to the fifth embodiment will be described below.
  • the lens array unit etc. of the fifth embodiment is a modification of the lens array unit etc. of the first and fourth embodiments, and matters not specifically described are the same as those of the first embodiment.
  • a light shielding film 75 is formed on one surface of the filter plate 70.
  • the light shielding film 75 has a rectangular opening 75b in the same manner as the light shielding aperture layer 25 shown in FIG. 8D.
  • the opening 75b reduces reflection at the filter plate 70 and suppresses stray light from entering the image sensor array 500 side. That is, stray light can be prevented more reliably by the light shielding film 75.
  • the image sensor 51 constituting the image sensor array 500 is protected by a cover glass.
  • FIG. 15A is a diagram illustrating a modification of the imaging apparatus 1000 illustrated in FIG.
  • an antireflection film 52 a is formed on the cover glass 52 of the image sensor array 500.
  • it can prevent that multiple reflection arises between the cover glass 52 and filter board 70 which oppose, and causes a stray light. That is, stray light can be prevented from being generated by the filter plate 70 that is a parallel plate.
  • a light shielding film 75 can be formed on the surface of the filter plate 70 facing the cover glass 52 as in FIG.
  • the light shielding film 75 has a role of reducing not only unintentional reflection but also reducing the light incident on the image sensor 51.
  • an AR coat can be formed on the surface of the filter plate 70.
  • the manufacturing method of the lens array unit according to the present invention is not limited to the above.
  • the lens array unit 100 and the image sensor array 500 can be independently fixed to the holder 80 shown in FIG.
  • the outlines of the openings 25b and 15b of the light-shielding diaphragm layers 25 and 415 are not limited to horizontally long rectangles, and can be various shapes depending on applications and specifications as long as they are non-circular.
  • FIG. 16A shows a modification of the opening 25b of the light-shielding diaphragm layer 25 shown in FIG.
  • the illustrated opening 25b has a rectangular outline with four corners removed from the opening 25b shown in FIG.
  • the light-shielding diaphragm layer 25 and its opening 25b can be expected to have effects such as ease of manufacture and prevention of peeling from the substrate.
  • the opening 25b shown to FIG. 16B is another modification, and has a barrel shape or an oval outline.
  • the side in the horizontal direction is linear and the side in the vertical direction is curved outward, but the side in the vertical direction is linear and the side in the horizontal direction is curved outward, Both the vertical and horizontal sides may be curved outward.
  • the opening 25b shown in FIG. 16C is still another modified example, and has a pincushion-shaped contour.
  • the side in the horizontal direction is linear and the side in the vertical direction is curved inward, but the side in the vertical direction is linear and the side in the horizontal direction is curved inward, Both the vertical and horizontal sides may be curved inward.
  • An opening 25b shown in FIG. 16D is still another modified example and has an elliptical outline.
  • FIGS. 16B to 16D are horizontally long shapes.
  • the opening 25b shown in FIG. 16E has an octagonal shape extended in the long side direction of the rectangle, and the opening 25b shown in FIG. 16F has a hexagonal shape extended in the long side direction of the rectangle.
  • the opening width on the narrow side along the y-axis is narrower than the opening width in the intermediate direction or diagonal direction inclined with respect to the x-axis and the y-axis.
  • FIGS. 17A to 17D show still another modified example of the opening 25b of the light-shielding diaphragm layer 25 shown in FIG. 3 and the like, and correspond to a mode in which the effective area EA1 of the image sensor 51 is a square.
  • the opening 25b shown in FIG. 17A has a square outline.
  • the opening 25b shown in FIG. 17B has a square outline with four corners.
  • the opening 25b shown in FIG. 17C has a barrel-shaped outline.
  • the side in the horizontal direction is linear and the side in the vertical direction is curved outward, but the side in the vertical direction is linear and the side in the horizontal direction is curved outward, Both the vertical and horizontal sides may be curved outward.
  • the 17D has a pincushion-shaped outline.
  • the side in the horizontal direction is linear and the side in the vertical direction is curved inward, but the side in the vertical direction is linear and the side in the horizontal direction is curved inward, Both the vertical and horizontal sides may be curved inward.
  • the equal opening width along the x-axis and the y-axis is narrower than the opening width in the intermediate direction or diagonal direction inclined with respect to the x-axis and y-axis.
  • the aperture stop layer 14, the auxiliary stop layer 15, the light blocking stop layers 25, 415, and the like can be applied to an object using not only spin coating but ink jet printing, silk screen printing, pad printing, and the like.
  • the optical surface shape and the like of the lens elements 12e and 13e of the first lens array 10 can be appropriately changed according to the use and function.
  • the arrangement pattern of the lens elements 12e and 13e is not limited to the illustrated one, and can be appropriately set in consideration of workability and the like.
  • the optical surface shapes and the like of the lens elements 22e and 23e of the second lens array 20 can be appropriately changed according to the application and function, and the arrangement pattern of the lens elements 22e and 23e is not limited to that shown in the drawing. It can be appropriately set in consideration of workability and the like.
  • the manufacturing method of the first and second lens arrays 10 and 20 described in the above embodiment is merely an example, and various methods not illustrated can be used.
  • the imaging apparatus 1000 described in the above embodiment is not limited to the one in which the optical array unit 100U and the imaging array unit 500U are joined to form a composite member.
  • the individual first and second lens arrays 10 and 20 can be prepared in advance, and the first lens array 10, the second lens array 20, and the imaging element array 500 can be sequentially stacked.
  • the number of the first and second lens arrays 10 and 20 is not limited to two, and three or more similar lens arrays may be stacked.
  • the outline of the opening 14b of the aperture stop layer 14 is not limited to a circle but may be a rectangle with a corner.
  • the plurality of lens elements 12e, 13e and the like are arranged two-dimensionally, but may be arranged one-dimensionally.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Lens Barrels (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

Provided is a thin lens array unit such that overlapping between adjacent single-element images can be prevented, and such that warping and reduction in strength can be prevented while simplicity in production is ensured. A flare stop layer (25) having openings (25b) corresponding to second lens elements (23e) is provided on the image-side surface of a transparent substrate (21) which is part of a second lens array (20) nearest to the image side, and thus the flare stop layer (25), which can be easily manufactured, can limit the range of light emitted from the lens array unit (100). Particularly, each of the plurality of openings (25b) covered by a second lens element (23e) has a rectangular or an elongated contour, thus allowing overlapping of single-element images due to adjacent second lens elements (23e) to be prevented and allowing the array density of the second lens elements (23e) or imaging elements (51) to be increased.

Description

レンズアレイユニット、撮像装置、レンズアレイユニットの製造方法、及び撮像装置の製造方法Lens array unit, imaging device, method for manufacturing lens array unit, and method for manufacturing imaging device
 本発明は、1次元的又は2次元的に配列された複数のレンズ要素を有するレンズアレイユニット、撮像装置、レンズアレイユニットの製造方法、及び撮像装置の製造方法に関する。 The present invention relates to a lens array unit having a plurality of lens elements arranged one-dimensionally or two-dimensionally, an imaging device, a manufacturing method of the lens array unit, and a manufacturing method of the imaging device.
 レンズアレイを用いた複眼撮像装置が知られており、一つのレンズを通過した光がそのレンズに対応付けられていない撮像素子の受光領域に入射することを防ぐために、換言すれば、隣接するレンズ要素による個眼像に重なりが生じることを防止するために、遮光壁や遮光ブロックをレンズアレイと撮像素子との間に配置することが提案されている(特許文献1、2)。しかしながら、このような遮光壁や遮光ブロックを設置する場合、部品点数が多くなったり位置合わせして接合するための製造工程が増えたりするという問題に加えて、これらの部材の端部や内壁での反射によってゴーストが生じ、画像品質の低下につながるおそれがある。これを防止するため、遮光壁や遮光ブロックを板状に薄くしようとすると、これらの部材が反りを生じてしまい、位置精度、遮光精度等に関して課題が生じる。また、これらの部材を薄くすると機械的な強度が低下するため、組立て又は組付けが難しくなる。さらに、遮光壁や遮光ブロックを設置する場合、装置全体の厚みが大きくなりやすく、装置の薄型化に不利となる。さらにまた、遮光壁や遮光ブロックは、形状が複雑で部品の加工が難しく、複数のレンズを密に配列しづらくなり、レンズアレイのサイズを大きくせざるを得なくなるという問題もある。 A compound eye imaging device using a lens array is known, and in order to prevent light that has passed through one lens from entering a light receiving region of an imaging element that is not associated with the lens, in other words, an adjacent lens In order to prevent the single-eye images due to the elements from overlapping, it has been proposed to arrange a light-shielding wall or a light-shielding block between the lens array and the image sensor (Patent Documents 1 and 2). However, when installing such light-shielding walls and light-blocking blocks, in addition to the problem that the number of parts increases and the manufacturing process for aligning and joining them increases, the ends and inner walls of these members A ghost is generated due to the reflection of the light, which may lead to a decrease in image quality. In order to prevent this, if an attempt is made to thin the light shielding wall or the light shielding block into a plate shape, these members are warped, causing problems with respect to positional accuracy, light shielding accuracy, and the like. Further, when these members are thinned, the mechanical strength is lowered, so that assembly or assembly becomes difficult. Furthermore, when a light shielding wall or a light shielding block is installed, the thickness of the entire apparatus tends to increase, which is disadvantageous for making the apparatus thinner. Furthermore, the light shielding wall and the light shielding block are complicated in shape, and it is difficult to process parts, and it is difficult to arrange a plurality of lenses closely, and there is a problem that the size of the lens array must be increased.
 特許文献3には、レンズアレイよりも物体側に、全レンズを包含するような大きさの一つの矩形開口を有する迷光遮断部材を設けた複眼撮像装置が記載されている。しかしながら、この複眼撮像装置の場合もレンズアレイと迷光遮断部材とが別体になっているため、部品点数や製造工程の増加、迷光遮断部材の反りの発生、及び装置全体の厚みの増大といった点で、上記と同じ課題がある。また、レンズの出射側に絞りがないため、隣の領域への光入射を防止しにくくなる。 Patent Document 3 describes a compound-eye imaging device in which a stray light blocking member having a single rectangular opening with a size including all lenses is provided on the object side of the lens array. However, in the case of this compound-eye imaging device, since the lens array and the stray light blocking member are separated, the number of parts and manufacturing processes are increased, the stray light blocking member is warped, and the thickness of the entire device is increased. There are the same problems as above. In addition, since there is no stop on the exit side of the lens, it is difficult to prevent light from entering the adjacent area.
 なお、レンズアレイとしては、透明基板上に多数の樹脂製レンズを2次元的に配列した構造を有するウェハーレベルレンズが知られている。例えば、特許文献4には、ガラス基板上に遮光性のレジストで形成された絞り層を設けたものが開示されている。しかしながら、特許文献4では、ウェハーレベルレンズをダイシングして個々のレンズに個片化することが想定されており、複数のレンズが1次元状又は2次元状に並んだレンズアレイを用いる複眼撮像装置については記載がなく、レンズアレイを複眼撮像装置に用いる場合の絞り層の具体的な開口形状が記載されていない。 As a lens array, a wafer level lens having a structure in which a large number of resin lenses are two-dimensionally arranged on a transparent substrate is known. For example, Patent Document 4 discloses a glass substrate provided with a diaphragm layer formed of a light-shielding resist. However, in Patent Document 4, it is assumed that a wafer level lens is diced into individual lenses, and a compound eye imaging device using a lens array in which a plurality of lenses are arranged in a one-dimensional or two-dimensional manner. Is not described, and the specific aperture shape of the diaphragm layer when the lens array is used in a compound-eye imaging device is not described.
特開2011-147079号公報JP 2011-147079 A 特開2009-164654号公報JP 2009-164654 A 特開2009-27311号公報JP 2009-27311 A 国際公開第2009/133756号International Publication No. 2009/133756
 本発明は、上記背景技術の課題に鑑みてなされたものであり、隣接する個眼像に重なりが生じることを防止でき、製造の容易性を確保しながら反りや強度低下を防止できる薄型のレンズアレイユニット、撮像装置、レンズアレイユニットの製造方法、及び撮像装置の製造方法を提供することを目的とする。 The present invention has been made in view of the problems of the background art described above, and is a thin lens that can prevent adjacent single-eye images from overlapping and prevent warping and strength reduction while ensuring ease of manufacture. It is an object of the present invention to provide an array unit, an imaging apparatus, a lens array unit manufacturing method, and an imaging apparatus manufacturing method.
 上記課題を解決するため、本発明に係るレンズアレイユニットは、透明基板の少なくとも像側に配列された複数のレンズ要素を有するレンズアレイを1枚以上配置したレンズアレイユニットであって、最像側の透明基板の少なくとも像側の表面に、複数のレンズ要素にそれぞれ対応する複数の開口を有する遮光絞り層が設けられており、各レンズ要素は、遮光絞り層の各開口及び各開口縁を覆っており、複数の開口は、非円形の輪郭形状をそれぞれ有する。ここで、非円形の輪郭形状は、例えば矩形状、樽形、糸巻き形、横長等を含む。 In order to solve the above problems, a lens array unit according to the present invention is a lens array unit in which one or more lens arrays each having a plurality of lens elements arranged on at least the image side of a transparent substrate are disposed, and the most image side A light-shielding stop layer having a plurality of openings respectively corresponding to a plurality of lens elements is provided on at least the image-side surface of the transparent substrate, and each lens element covers each opening and each opening edge of the light-shielding stop layer. The plurality of openings each have a non-circular contour shape. Here, the non-circular contour shape includes, for example, a rectangular shape, a barrel shape, a pincushion shape, a horizontally long shape, and the like.
 上記レンズアレイユニットによれば、最像側の透明基板の像側の表面にレンズ要素に対応して開口を有する遮光絞り層が設けられているので、簡易に作製可能な遮光絞り層によって、レンズアレイユニットから射出される光の範囲を制限することができる。特に、レンズ要素によって覆われる複数の開口が非円形の輪郭形状をそれぞれ有することにより、隣接するレンズ要素による個眼像に重なりが生じることを抑制又は低減可能になり、レンズ要素の配列密度を高めることができる。ここで、上記のような遮光絞り層は、透明基板に設けられており、反りや強度に関する問題が生じにくく、レンズアレイユニットやこれを組み込んだ撮像装置を薄く小型にすることができる。 According to the lens array unit, the light-shielding diaphragm layer having an opening corresponding to the lens element is provided on the image-side surface of the most image-side transparent substrate. The range of light emitted from the array unit can be limited. In particular, since each of the plurality of openings covered by the lens elements has a non-circular contour shape, it is possible to suppress or reduce the overlap of the single-eye images by the adjacent lens elements, and increase the arrangement density of the lens elements. be able to. Here, the light-shielding diaphragm layer as described above is provided on the transparent substrate, so that problems relating to warpage and strength are unlikely to occur, and the lens array unit and the imaging device incorporating the lens array unit can be made thin and small.
 本発明の具体的な態様又は側面では、上記レンズアレイユニットにおいて、複数の開口は、直交する2軸に関して対称な形状を有し、2軸に沿って等しい又は狭い側の開口幅は、2軸に対して傾いた中間方向の開口幅よりも狭い。この場合、開口は、円よりも矩形に近い形状又は円を特定方向に引き伸ばした形状となっており、隣接する個眼像に重なりが生じることを防止でき、レンズ要素の配列密度を高めることができる。 In a specific aspect or aspect of the present invention, in the lens array unit, the plurality of openings have a symmetrical shape with respect to two orthogonal axes, and the opening width on the same or narrow side along the two axes is two axes. It is narrower than the opening width in the middle direction inclined with respect to. In this case, the opening has a shape closer to a rectangle than a circle or a shape obtained by extending a circle in a specific direction, so that it is possible to prevent adjacent single-eye images from overlapping and increase the arrangement density of lens elements. it can.
 本発明の別の側面では、複数の開口は、直交する2軸に関して対称な形状を有し、2軸に沿って相対的に広い側の第1開口幅と相対的に狭い側の第2開口幅とを有する。この場合、開口は、長方形、楕円形等である。 In another aspect of the present invention, the plurality of openings have a symmetrical shape with respect to two orthogonal axes, and the first opening width on the relatively wide side and the second opening on the relatively narrow side along the two axes. Width. In this case, the opening is rectangular, elliptical, or the like.
 本発明のさらに別の側面では、第1開口幅と第2開口幅との比は、レンズアレイと組み合わせるべきセンサーの長辺と短辺との比に略等しい。 In yet another aspect of the present invention, the ratio between the first opening width and the second opening width is substantially equal to the ratio between the long side and the short side of the sensor to be combined with the lens array.
 本発明のさらに別の側面では、相対的に物体側に配置される第1のレンズアレイと、最像側に配置される第2のレンズアレイとを備える。この場合、レンズアレイユニットは、一対のレンズアレイを含むものとなる。 Still another aspect of the present invention includes a first lens array that is relatively disposed on the object side and a second lens array that is disposed on the most image side. In this case, the lens array unit includes a pair of lens arrays.
 本発明のさらに別の側面では、第1のレンズアレイは、最物体側に配置されており、第1のレンズアレイの透明基板の少なくとも物体側の表面に、第1のレンズアレイに形成された複数のレンズ要素にそれぞれ対応する複数の開口を有する開口絞り層が設けられている。 In yet another aspect of the present invention, the first lens array is disposed on the most object side, and is formed in the first lens array on at least the object side surface of the transparent substrate of the first lens array. An aperture stop layer having a plurality of openings respectively corresponding to the plurality of lens elements is provided.
 本発明のさらに別の側面では、第1のレンズアレイの透明基板の像側の表面に、複数のレンズ要素にそれぞれ対応する複数の開口を有する補助絞り層が設けられている。 In still another aspect of the present invention, an auxiliary aperture layer having a plurality of openings respectively corresponding to a plurality of lens elements is provided on the image side surface of the transparent substrate of the first lens array.
 本発明のさらに別の側面では、開口絞り層の開口は、円形又は角が取れた矩形(正方形を含む)である。 In yet another aspect of the present invention, the aperture of the aperture stop layer is a circle or a rectangle with a corner (including a square).
 本発明のさらに別の側面では、補助絞り層の開口は、遮光絞り層の開口と略相似な形状である。 In yet another aspect of the present invention, the opening of the auxiliary diaphragm layer has a shape substantially similar to the opening of the light-shielding diaphragm layer.
 本発明のさらに別の側面では、遮光絞り層の開口は、矩形又は角が取れた矩形である。 In yet another aspect of the present invention, the opening of the light-shielding diaphragm layer is a rectangle or a rectangle with corners.
 本発明のさらに別の側面では、最像側のレンズアレイよりも像側に平行平板をさらに備える。この平行平板には、フィルター機能等の別の機能を持たせることができる。 In yet another aspect of the present invention, a parallel plate is further provided on the image side than the lens array on the most image side. This parallel plate can have another function such as a filter function.
 本発明のさらに別の側面では、平行平板の少なくとも一面には、反射防止膜が設けられている。 In yet another aspect of the present invention, an antireflection film is provided on at least one surface of the parallel plates.
 本発明のさらに別の側面では、平行平板の一面には、複数の開口を有する遮光膜が設けられている。 In still another aspect of the present invention, a light shielding film having a plurality of openings is provided on one surface of the parallel plate.
 上記課題を解決するため、本発明に係る撮像装置は、上述のレンズアレイユニットと、当該レンズアレイユニットに対向して配置されるセンサーアレイとを備える。 In order to solve the above-described problem, an imaging apparatus according to the present invention includes the above-described lens array unit and a sensor array disposed to face the lens array unit.
 本発明の具体的な態様又は側面では、上記撮像装置において、センサーアレイのカバーガラスの表面には、反射防止膜が形成されている。この場合、ゴースト像の形成をさらに防止できる。 In a specific mode or aspect of the present invention, an antireflection film is formed on the surface of the cover glass of the sensor array in the imaging device. In this case, formation of a ghost image can be further prevented.
 上記課題を解決するため、本発明に係るレンズアレイユニットの製造方法は、透明基板の少なくとも像側の表面に非円形の輪郭形状をそれぞれ有する複数の開口を設けた遮光絞り層を形成する工程と、少なくとも透明基板のうち遮光絞り層を設けた側に、各開口の縁部を覆うように複数のレンズ要素を形成する工程と、開口を覆うレンズ要素が最も像側になるように、当該レンズ要素を有するレンズアレイに、当該レンズアレイを通過した光を受光するためのセンサーアレイとの距離を規定するためのスペーサーを設ける工程と備える。 In order to solve the above problems, a method of manufacturing a lens array unit according to the present invention includes a step of forming a light-shielding diaphragm layer having a plurality of openings each having a non-circular contour shape on at least an image-side surface of a transparent substrate. A step of forming a plurality of lens elements so as to cover the edge of each opening on at least the side of the transparent substrate on which the light-shielding diaphragm layer is provided, and the lens so that the lens element covering the opening is closest to the image side. Providing a lens array having an element with a spacer for defining a distance from a sensor array for receiving light that has passed through the lens array.
 上記レンズアレイユニットの製造方法によれば、最も像側のレンズ要素に対応する開口を有する遮光絞り層が設けられているので、簡易に作製可能な遮光絞り層によって、レンズアレイユニットから射出される光の範囲を制限することができる。特に、レンズ要素によって覆われる複数の開口が非円形の輪郭形状をそれぞれ有することにより、隣接するレンズ要素による個眼像に重なりが生じることを抑制又は低減可能になり、レンズ要素の配列密度を高めることができる。上記のような遮光絞り層は、透明基板に設けられて反りや強度に関する問題が生じにくく、レンズアレイユニットやこれを組み込んだ撮像装置を薄く小型にすることができる。 According to the manufacturing method of the lens array unit, since the light-shielding stop layer having an opening corresponding to the lens element closest to the image side is provided, the light-shielding stop layer that can be easily produced is emitted from the lens array unit. The range of light can be limited. In particular, since each of the plurality of openings covered by the lens elements has a non-circular contour shape, it is possible to suppress or reduce the overlap of the single-eye images by the adjacent lens elements, and increase the arrangement density of the lens elements. be able to. The light-shielding diaphragm layer as described above is provided on the transparent substrate and hardly causes problems regarding warpage and strength, and the lens array unit and the imaging device incorporating the lens array unit can be made thin and small.
 上記課題を解決するため、本発明に係る撮像装置の製造方法は、透明基板として複数のレンズアレイユニットに対応するサイズの共通透明基板を用いて、上述した製造方法によって、複数のレンズアレイユニットを一体的に作製し、当該複数のレンズアレイユニットを一体的に作製された複数のセンサーアレイに接合し、複数のレンズアレイユニットと複数のセンサーアレイとの接合体を切断することによって個々のユニットに個片化する。この場合、レンズアレイユニットを組み込んだ撮像装置を効率良く量産することができる。 In order to solve the above-described problems, a manufacturing method of an imaging apparatus according to the present invention uses a common transparent substrate having a size corresponding to a plurality of lens array units as a transparent substrate, and a plurality of lens array units by the manufacturing method described above. Produced integrally, joined the plurality of lens array units to a plurality of integrally fabricated sensor arrays, and cut the joined body of the plurality of lens array units and the plurality of sensor arrays into individual units. Divide into pieces. In this case, the imaging device incorporating the lens array unit can be mass-produced efficiently.
図1Aは、第1実施形態のレンズアレイユニットを組み込んだ撮像装置の側方断面図であり、図1Bは、撮像装置の平面図である。FIG. 1A is a side sectional view of an imaging apparatus incorporating the lens array unit of the first embodiment, and FIG. 1B is a plan view of the imaging apparatus. 図2Aは、図1Aの撮像装置における配置関係を模式的に説明する概念図であり、図2Bは、変形例の配置関係を説明する概念図である。FIG. 2A is a conceptual diagram for schematically explaining the arrangement relationship in the imaging apparatus of FIG. 1A, and FIG. 2B is a conceptual diagram for explaining the arrangement relationship of a modification. 図2Aに示す配置関係を具体的に例示する拡大図である。FIG. 2B is an enlarged view specifically illustrating the arrangement relationship shown in FIG. 2A. 図4A~4Cは、撮像装置の製造工程を説明する図である。4A to 4C are diagrams illustrating the manufacturing process of the imaging device. 図5A~5Cは、撮像装置の製造工程を説明する図である。5A to 5C are diagrams for explaining a manufacturing process of the imaging device. 図6A~6Cは、撮像装置の製造工程を説明する図である。6A to 6C are diagrams illustrating the manufacturing process of the imaging device. 図7A~7Cは、撮像装置の製造工程を説明する図である。7A to 7C are diagrams illustrating the manufacturing process of the imaging device. 図8A~8Dは、絞り層の開口パターンを説明する図である。8A to 8D are diagrams for explaining the aperture pattern of the aperture layer. 第2実施形態のレンズアレイユニットを組み込んだ撮像装置の側方断面図である。It is side sectional drawing of the imaging device incorporating the lens array unit of 2nd Embodiment. 第3実施形態のレンズアレイユニットを組み込んだ撮像装置の側方断面図である。It is side sectional drawing of the imaging device incorporating the lens array unit of 3rd Embodiment. 第4実施形態のレンズアレイユニットを組み込んだ撮像装置の側方断面図である。It is side sectional drawing of the imaging device incorporating the lens array unit of 4th Embodiment. 図12A~12Dは、撮像装置の製造工程を説明する図である。12A to 12D are diagrams illustrating the manufacturing process of the imaging device. 図13A及び13Bは、撮像装置の製造工程を説明する図である。13A and 13B are diagrams illustrating a manufacturing process of the imaging device. 第5実施形態のレンズアレイユニットを組み込んだ撮像装置の側方断面図である。It is a sectional side view of the imaging device incorporating the lens array unit of 5th Embodiment. 図15A及び15Bは、第4及び第5実施形態の変形例を説明する図である。FIGS. 15A and 15B are diagrams illustrating a modification of the fourth and fifth embodiments. 図16A~16Fは、遮光絞り層の開口形状の変形例を説明する図である。16A to 16F are diagrams for explaining a modification of the opening shape of the light-shielding stop layer. 図17A~17Dは、遮光絞り層の開口形状の変形例を説明する図である。17A to 17D are diagrams for explaining a modification of the opening shape of the light-shielding stop layer.
〔第1実施形態〕
 以下、第1実施形態に係るレンズアレイユニットを組み込んだ撮像装置及びそれらの製造方法について、図面を参照しつつ説明する。
[First Embodiment]
Hereinafter, an imaging device incorporating the lens array unit according to the first embodiment and a manufacturing method thereof will be described with reference to the drawings.
 図1A及び1Bに示す撮像装置1000は、複数の撮像レンズを用いて複数の画像を生成し、それら複数の画像から1つの画像を再構成する複眼撮像装置である。撮像装置1000は、レンズアレイユニット100と撮像素子アレイ500とを備え、これらを積層した構造を有している。なお、理解を容易にするため、図1Bでは、着色やハッチングを行っていない。後述する各図においても、着色やハッチングを省略していることがある。 An imaging apparatus 1000 shown in FIGS. 1A and 1B is a compound eye imaging apparatus that generates a plurality of images using a plurality of imaging lenses and reconstructs one image from the plurality of images. The imaging apparatus 1000 includes a lens array unit 100 and an imaging element array 500, and has a structure in which these are stacked. For easy understanding, coloring and hatching are not performed in FIG. 1B. Also in each figure mentioned later, coloring and hatching may be omitted.
 レンズアレイユニット100は、第1レンズアレイ10と、第2レンズアレイ20と、下側スペーサー30とを、接着剤で順次貼り合わせることによって積層した積層体である。第1及び第2レンズアレイ10,20は、XY面に平行に延びる平板状の部材である。下側スペーサー30は、XY面に平行な面に沿って延びる枠状の部材である。これらの部材10,20,30は、Z軸方向に積層されている。レンズアレイユニット100の中心の軸AXはZ軸に平行である。 The lens array unit 100 is a laminated body in which the first lens array 10, the second lens array 20, and the lower spacer 30 are laminated by sequentially bonding with an adhesive. The first and second lens arrays 10 and 20 are flat members extending in parallel to the XY plane. The lower spacer 30 is a frame-shaped member that extends along a plane parallel to the XY plane. These members 10, 20, and 30 are stacked in the Z-axis direction. The central axis AX of the lens array unit 100 is parallel to the Z axis.
 レンズアレイユニット100のうち、第1レンズアレイ10は、矩形板状(正方形板状を含む)の光学部品であり、これを構成する光学素子として、XY面に沿って2次的に配列されている多数の複合レンズ10eを備える。第1レンズアレイ10は、平行平板状の透明基板11と、透明基板11の物体側に配置される第1樹脂層12と、同様に透明基板11の物体側に配置される開口絞り層14と、透明基板11の像側に配置される第2樹脂層13と、同様に透明基板11の像側に配置される補助絞り層15とを備える。ここで、第1及び第2樹脂層12,13は、格子点上に配列された多数の部分(複合レンズ10eの部分的な要素)からなり、各部が相互にアライメントされて透明基板11に接合されている。 In the lens array unit 100, the first lens array 10 is an optical component having a rectangular plate shape (including a square plate shape), and is secondarily arranged along the XY plane as an optical element constituting the optical component. A plurality of compound lenses 10e. The first lens array 10 includes a parallel plate-like transparent substrate 11, a first resin layer 12 disposed on the object side of the transparent substrate 11, and an aperture stop layer 14 similarly disposed on the object side of the transparent substrate 11. The second resin layer 13 disposed on the image side of the transparent substrate 11 and the auxiliary diaphragm layer 15 disposed on the image side of the transparent substrate 11 are provided. Here, the first and second resin layers 12 and 13 are composed of a large number of portions (partial elements of the compound lens 10e) arranged on lattice points, and the respective portions are aligned with each other and bonded to the transparent substrate 11. Has been.
 第1レンズアレイ10のうち透明基板11は、光学ガラス材で形成され第1レンズアレイ10の全体に亘って延びるガラス板である。透明基板11の一対の表面である基板面11a,11bは、IRカットフィルター層11c,11dでそれぞれ被覆されている。IRカットフィルター層11c,11dを含む透明基板11の厚さは、基本的には光学的仕様によって決定されるが、第1レンズアレイ10の離型時において破損しない程度の厚さとなっている。透明基板11は、複合レンズ10eの、軸AX方向に関する中央部を構成する。なお、透明基板11は樹脂等で形成されていてもよい。 The transparent substrate 11 of the first lens array 10 is a glass plate that is formed of an optical glass material and extends over the entire first lens array 10. Substrate surfaces 11a and 11b, which are a pair of surfaces of the transparent substrate 11, are covered with IR cut filter layers 11c and 11d, respectively. The thickness of the transparent substrate 11 including the IR cut filter layers 11c and 11d is basically determined by optical specifications, but is a thickness that does not damage the first lens array 10 when it is released. The transparent substrate 11 constitutes the central portion of the compound lens 10e in the axis AX direction. The transparent substrate 11 may be made of resin or the like.
 第1樹脂層12は、透明基板11に設けられた物体側の基板面(最物体側面)11a上に離散的に形成されている。第1樹脂層12は、複数の第1レンズ要素12eを有する。各第1レンズ要素12eは、互いに分離した状態で独立しており、複合レンズ10eの上部(物体側の部位)を構成する。各第1レンズ要素12eは、透明基板11上のXY面内で2次元の格子点上に配列されている。各第1レンズ要素12eは、凸形状のレンズ部であり、非球面型の第1光学面12aを有している。第1樹脂層12を構成する複数の第1光学面12aは、各第1光学面12aに対応するネガ形状からなる成形面を備える転写型を用いた転写によって一括成形される。 The first resin layer 12 is discretely formed on the object-side substrate surface (most object side surface) 11 a provided on the transparent substrate 11. The first resin layer 12 has a plurality of first lens elements 12e. Each first lens element 12e is independent in a state of being separated from each other, and constitutes an upper portion (a part on the object side) of the compound lens 10e. Each first lens element 12 e is arranged on a two-dimensional lattice point in the XY plane on the transparent substrate 11. Each first lens element 12e is a convex lens portion and has an aspherical first optical surface 12a. The plurality of first optical surfaces 12a constituting the first resin layer 12 are collectively molded by transfer using a transfer mold having a molding surface having a negative shape corresponding to each first optical surface 12a.
 開口絞り層14は、第1レンズアレイ10において無駄な光線が通過するのを防止し複合レンズ10eへの光の入射を制限するためのものである。開口絞り14は、透明基板11の基板面(最物体側面)11a上に形成された遮光性材料からなる薄膜であり、複数の開口14bが形成された層本体14aからなる。開口14bは、円形であり、複合レンズ10eの第1レンズ要素12eに対応する位置に貫通孔として形成されている。この開口絞り層14によって第1レンズアレイ10の第1レンズ要素12eに入射した光線を有効に活用することができる。層本体14aは、黒色フォトレジストなどの、染料や顔料によって黒色に着色された樹脂で形成されており、入射光を吸収によって遮断する。開口14bの直径は、第1レンズ要素12eの直径よりも小さくなっている。つまり、各第1レンズ要素12eは、開口絞り層14の各開口14b及び各開口縁14dを覆っている。開口絞り層14の厚みは、1~10μm程度とされている。なお、開口絞り層14は、後述するスペーサー部13sの配置に対応する外縁部分には形成されていないが、形成してもよい。 The aperture stop layer 14 is for preventing useless rays from passing through the first lens array 10 and limiting the incidence of light on the compound lens 10e. The aperture stop 14 is a thin film made of a light-shielding material formed on the substrate surface (most object side surface) 11a of the transparent substrate 11, and includes a layer body 14a in which a plurality of openings 14b are formed. The opening 14b is circular, and is formed as a through hole at a position corresponding to the first lens element 12e of the compound lens 10e. The aperture stop layer 14 can effectively use the light incident on the first lens element 12e of the first lens array 10. The layer body 14a is formed of a resin colored black with a dye or pigment, such as a black photoresist, and blocks incident light by absorption. The diameter of the opening 14b is smaller than the diameter of the first lens element 12e. That is, each first lens element 12 e covers each opening 14 b and each opening edge 14 d of the aperture stop layer 14. The aperture stop layer 14 has a thickness of about 1 to 10 μm. The aperture stop layer 14 is not formed on the outer edge portion corresponding to the arrangement of the spacer portion 13s described later, but may be formed.
 第2樹脂層13は、透明基板11に設けられた像側の基板面(像側面)11b上に形成されている。第2樹脂層13は、複数の第2レンズ要素13eと、周囲のスペーサー部13sとを有する。各第2レンズ要素13eは、互いに分離した状態で独立しており、複合レンズ10eの下部(像側の部位)を構成する。各第2レンズ要素13eは、透明基板11上のXY面内で2次元的に配列されている。各第2レンズ要素13eの位置は、透明基板11の反対側の各第1レンズ要素12eの位置に対応するものとなっている。各第2レンズ要素13eは、凹形状のレンズ部であり、非球面型の第2光学面13aを有している。第2樹脂層13を構成する複数の第2光学面13aは、各第2光学面13aに対応するネガ形状からなる成形面を備える転写型を用いた転写によって一括成形される。一方、スペーサー部13sは、第2レンズ要素13eの外側であって透明基板11の縁部分に沿って矩形枠状(正方形枠状を含む)に形成されている。スペーサー部13sは、一様な厚みを有している。 The second resin layer 13 is formed on the image-side substrate surface (image side surface) 11 b provided on the transparent substrate 11. The second resin layer 13 includes a plurality of second lens elements 13e and surrounding spacer portions 13s. Each second lens element 13e is independent in a state of being separated from each other, and constitutes a lower portion (image side portion) of the compound lens 10e. The second lens elements 13e are two-dimensionally arranged in the XY plane on the transparent substrate 11. The position of each second lens element 13 e corresponds to the position of each first lens element 12 e on the opposite side of the transparent substrate 11. Each second lens element 13e is a concave lens part and has an aspherical second optical surface 13a. The plurality of second optical surfaces 13a constituting the second resin layer 13 are collectively molded by transfer using a transfer mold having a molding surface having a negative shape corresponding to each second optical surface 13a. On the other hand, the spacer portion 13s is formed in a rectangular frame shape (including a square frame shape) along the edge portion of the transparent substrate 11 outside the second lens element 13e. The spacer portion 13s has a uniform thickness.
 補助絞り層15は、第1レンズアレイ10から不要な光が出射するのを防止して第2レンズアレイ20へ無駄な光線が入射するのを防止する効果を高めたり、第1レンズアレイ10内を面方向に伝播する光によって生じるゴーストを抑制したりするためのものである。補助絞り層15は、透明基板11の基板面(像側面)11b上に形成された遮光性材料からなる薄膜であり、複数の開口15bが形成された層本体15aからなる。層本体15aは、黒色フォトレジストなどの、染料や顔料によって黒色に着色された樹脂で形成されており、入射光を吸収によって遮断する。開口15bは、後述する撮像素子51の長手方向に対応して横長の樽型又は長方形の角を取った形状であり、複合レンズ10eの第2レンズ要素13eに対応する位置に貫通孔として形成されている。補助絞り層15の開口15bは、後述する遮光絞り層25の開口25bと略相似な形状となっている。この補助絞り15によって迷光の防止をより確実にできる。開口15bの長軸側の開口幅は、第2レンズ要素13eの直径よりも小さくなっており、結果的に開口15bの短軸側の開口幅は、第2レンズ要素13eの直径よりも小さくなっている。つまり、各第2レンズ要素13eは、補助絞り層15の各開口15b及び各開口縁15dを覆っている。補助絞り層15の厚みは、1~10μm程度とされている。なお、補助絞り層15は、後述するスペーサー部13sが配置される外縁部分には形成されていない。 The auxiliary aperture layer 15 enhances the effect of preventing unnecessary light from being emitted from the first lens array 10 and preventing unnecessary light from entering the second lens array 20, or in the first lens array 10. For suppressing ghosts caused by light propagating in the plane direction. The auxiliary aperture layer 15 is a thin film made of a light-shielding material formed on the substrate surface (image side surface) 11b of the transparent substrate 11, and includes a layer body 15a in which a plurality of openings 15b are formed. The layer body 15a is made of a resin colored black with a dye or pigment, such as a black photoresist, and blocks incident light by absorption. The opening 15b has a horizontally long barrel shape or a rectangular shape corresponding to the longitudinal direction of the image sensor 51 described later, and is formed as a through hole at a position corresponding to the second lens element 13e of the compound lens 10e. ing. The opening 15b of the auxiliary diaphragm layer 15 has a shape substantially similar to an opening 25b of a light shielding diaphragm layer 25 described later. The auxiliary diaphragm 15 can more reliably prevent stray light. The opening width on the long axis side of the opening 15b is smaller than the diameter of the second lens element 13e. As a result, the opening width on the short axis side of the opening 15b is smaller than the diameter of the second lens element 13e. ing. That is, each second lens element 13e covers each opening 15b and each opening edge 15d of the auxiliary aperture layer 15. The auxiliary diaphragm layer 15 has a thickness of about 1 to 10 μm. The auxiliary diaphragm layer 15 is not formed on the outer edge portion where the spacer portion 13s described later is disposed.
 レンズアレイユニット100のうち、第2レンズアレイ20は、第1レンズアレイ10に類似する矩形板状(正方形板状を含む)の光学部品であり、これを構成する光学素子として、XY面に沿って2次的に配列されている多数の複合レンズ20eを備える。第2レンズアレイ20は、平行平板状の透明基板21と、透明基板21の物体側に配置される第1樹脂層22と、透明基板21の像側に配置される第2樹脂層23と、透明基板21の像側に配置される補助絞り層25とを備える。ここで、第1及び第2樹脂層22,23は、格子点上に配列された多数の部分(複合レンズ20eの部分的な要素)からなり、各部が相互にアライメントされて透明基板21に接合されている。 Of the lens array unit 100, the second lens array 20 is a rectangular plate-like (including square plate-like) optical component similar to the first lens array 10, and along the XY plane as an optical element constituting this. A plurality of compound lenses 20e that are secondarily arranged. The second lens array 20 includes a parallel plate-like transparent substrate 21, a first resin layer 22 disposed on the object side of the transparent substrate 21, a second resin layer 23 disposed on the image side of the transparent substrate 21, And an auxiliary aperture layer 25 disposed on the image side of the transparent substrate 21. Here, the first and second resin layers 22 and 23 are composed of a large number of portions (partial elements of the compound lens 20 e) arranged on the lattice points, and the respective portions are aligned with each other and bonded to the transparent substrate 21. Has been.
 第2レンズアレイ20のうち透明基板21は、第2レンズアレイ20の全体に亘って延びるガラス板で形成されている。透明基板21の一対の表面である基板面21a,21bは、IRカットフィルター層で被覆されていない。透明基板21の厚さは、基本的には光学的仕様によって決定されるが、第2レンズアレイ20の離型時において破損しない程度の厚さとなっている。透明基板21は、複合レンズ20eの、軸AX方向の中央部を構成する。なお、透明基板21は樹脂等で形成されていてもよい。 The transparent substrate 21 of the second lens array 20 is formed of a glass plate extending over the entire second lens array 20. The substrate surfaces 21a and 21b which are a pair of surfaces of the transparent substrate 21 are not covered with the IR cut filter layer. The thickness of the transparent substrate 21 is basically determined by optical specifications, but is a thickness that does not damage the second lens array 20 when it is released. The transparent substrate 21 constitutes the central portion of the compound lens 20e in the axis AX direction. The transparent substrate 21 may be made of resin or the like.
 第1樹脂層22は、透明基板21に設けられた物体側の基板面(物体側面)21a上に離散的に形成されている。第1樹脂層22は、複数の第1レンズ要素22eと、周囲のスペーサー部22sとを有する。各第1レンズ要素22eは、互いに分離した状態で独立しており、複合レンズ20eの上部(物体側の部位)を構成する。各第1レンズ要素22eは、透明基板21上のXY面内で2次元の格子点上に配列されている。各第2レンズ要素22eは、凹形状のレンズ部であり、非球面型の第1光学面22aを有している。第1樹脂層22を構成する複数の第1光学面22aは、各第1光学面22aに対応するネガ形状からなる成形面を備える転写型を用いた転写によって一括成形される。一方、スペーサー部22sは、第1レンズ要素22eの外側であって透明基板21の縁部分に沿って矩形枠状(正方形枠状を含む)に形成されている。スペーサー部22sは、一様な厚みを有している。 The first resin layer 22 is discretely formed on an object-side substrate surface (object side surface) 21 a provided on the transparent substrate 21. The first resin layer 22 includes a plurality of first lens elements 22e and surrounding spacer portions 22s. Each first lens element 22e is independent in a state of being separated from each other, and constitutes an upper part (a part on the object side) of the compound lens 20e. Each first lens element 22 e is arranged on a two-dimensional lattice point in the XY plane on the transparent substrate 21. Each second lens element 22e is a concave lens portion, and has an aspherical first optical surface 22a. The plurality of first optical surfaces 22a constituting the first resin layer 22 are collectively molded by transfer using a transfer mold having a molding surface having a negative shape corresponding to each first optical surface 22a. On the other hand, the spacer portion 22s is formed in a rectangular frame shape (including a square frame shape) along the edge portion of the transparent substrate 21 outside the first lens element 22e. The spacer portion 22s has a uniform thickness.
 第2樹脂層23は、透明基板21に設けられた像側の基板面(像側面)21b上に形成されている。第2樹脂層23は、複数の第2レンズ要素23eを有する。各第2レンズ要素23eは、互いに分離した状態で独立しており、複合レンズ20eの下部(像側の部位)を構成する。各第2レンズ要素23eは、透明基板21上のXY面内で2次元的に配列されている。各第2レンズ要素23eの位置は、透明基板21の反対側の各第1レンズ要素22eの位置に対応するものとなっている。各第2レンズ要素23eは、凸形状のレンズ部であり、非球面型の第2光学面23aを有している。第2樹脂層23を構成する複数の第2光学面23aは、各第2光学面23aに対応するネガ形状からなる成形面を備える転写型を用いた転写によって一括成形される。 The second resin layer 23 is formed on the image-side substrate surface (image side surface) 21 b provided on the transparent substrate 21. The second resin layer 23 has a plurality of second lens elements 23e. Each second lens element 23e is independent in a state of being separated from each other, and constitutes a lower portion (image side portion) of the compound lens 20e. The second lens elements 23e are two-dimensionally arranged in the XY plane on the transparent substrate 21. The position of each second lens element 23e corresponds to the position of each first lens element 22e on the opposite side of the transparent substrate 21. Each second lens element 23e is a convex lens part and has an aspherical second optical surface 23a. The plurality of second optical surfaces 23a constituting the second resin layer 23 are collectively molded by transfer using a transfer mold having a negative molding surface corresponding to each second optical surface 23a.
 遮光絞り層25は、撮像素子51の対応領域以外の領域への光の入射を防止するためのものである。遮光絞り層25は、透明基板21の基板面(像側面)21b上に形成された遮光性材料からなる薄膜であり、複数の開口25bが形成された層本体25aからなる。層本体25aは、黒色フォトレジストなどの、染料や顔料によって黒色に着色された樹脂で形成されており、入射光を吸収によって遮断する。開口25bは、横長の長方形の角を取った形状であり、複合レンズ20eの第2レンズ要素23eに対応する位置に貫通孔として形成されている。遮光絞り層25の開口形状を後述する矩形の撮像素子51に対応させたものとできる。図3に示すように、複数の開口25bは、直交する2軸(X軸及びY軸)に関して対称な形状を有し、2軸に沿って相対的に広い側の第1開口幅b2と相対的に狭い第2開口幅a2とを有する。開口25bの長軸側の第1開口幅b2は、第2レンズ要素23eの直径よりも小さくなっており、結果的に開口25bの短軸側の第2開口幅a2は、第2レンズ要素23eの直径よりも小さくなっている。つまり、各第2レンズ要素23eは、遮光絞り層25の各開口25b及び各開口縁25dを覆っている。遮光絞り層25の厚みは、1~10μm程度とされている。なお、遮光絞り層25は、下側スペーサー30との接合の対象となる外縁部分には形成されていない。また、遮光絞り層25の開口25bの輪郭は、角が取れていない矩形でもよい。
 なお、各絞り層14,15,25は、透明基板11,21上に形成されるものであるため、透明基板11,21と一体化しており、レンズアレイ作製後に別部材である絞り部材をレンズアレイに組み付ける必要がない。また、開口絞り層14は、第1レンズ要素12eよりも物体側に配置されず、絞り層15,25は、レンズ要素13e,23eよりも像側に配置されない。そのため、レンズアレイユニット100及び撮像装置1000としての厚みを小さくすることができる。また、例えば第2レンズ要素23eの光軸方向から見た形状(円形)が、遮光絞り層25の開口25bの形状(光軸方向から見てレンズ要素23e内に収まる非円形)と不一致であるにもかかわらず、レンズ要素23eと遮光絞り層25とを十分に近づけて配置できる。
The light shielding stop layer 25 is for preventing light from entering a region other than the corresponding region of the image sensor 51. The light-shielding diaphragm layer 25 is a thin film made of a light-shielding material formed on the substrate surface (image side surface) 21b of the transparent substrate 21, and is composed of a layer body 25a having a plurality of openings 25b. The layer body 25a is formed of a resin colored black with a dye or pigment, such as a black photoresist, and blocks incident light by absorption. The opening 25b has a horizontally long rectangular corner and is formed as a through hole at a position corresponding to the second lens element 23e of the compound lens 20e. The opening shape of the light-shielding diaphragm layer 25 can be made to correspond to a rectangular imaging element 51 described later. As shown in FIG. 3, the plurality of openings 25b have a symmetrical shape with respect to two orthogonal axes (X axis and Y axis), and relative to the first opening width b2 on the relatively wide side along the two axes. Second opening width a2. The first opening width b2 on the long axis side of the opening 25b is smaller than the diameter of the second lens element 23e. As a result, the second opening width a2 on the short axis side of the opening 25b is the second lens element 23e. It is smaller than the diameter. That is, each second lens element 23e covers each opening 25b and each opening edge 25d of the light-shielding diaphragm layer 25. The thickness of the light-shielding diaphragm layer 25 is about 1 to 10 μm. Note that the light-shielding diaphragm layer 25 is not formed on the outer edge portion to be joined with the lower spacer 30. Further, the outline of the opening 25b of the light-shielding diaphragm layer 25 may be a rectangle with no corners.
Since each aperture layer 14, 15, 25 is formed on the transparent substrates 11, 21, it is integrated with the transparent substrates 11, 21, and the aperture member, which is a separate member after the lens array is manufactured, is used as a lens. There is no need to assemble the array. The aperture stop layer 14 is not disposed on the object side with respect to the first lens element 12e, and the stop layers 15 and 25 are not disposed on the image side with respect to the lens elements 13e and 23e. Therefore, the thickness as the lens array unit 100 and the imaging device 1000 can be reduced. Further, for example, the shape (circular shape) of the second lens element 23e viewed from the optical axis direction is inconsistent with the shape of the opening 25b of the light-shielding diaphragm layer 25 (non-circular shape that fits in the lens element 23e viewed from the optical axis direction). Nevertheless, the lens element 23e and the light shielding stop layer 25 can be disposed sufficiently close to each other.
 レンズアレイユニット100のうち、下側スペーサー30は、ガラス、セラミックス、樹脂等で形成された四角筒状の部材である。下側スペーサー30は、第2レンズアレイ20の支持部材として機能する部分であり、第2レンズアレイ20と撮像素子アレイ500との間に設けられている。下側スペーサー30は、第2レンズアレイ20の第2樹脂層23又は第2レンズ要素23eと干渉しないように、第2レンズ要素23eの外側であって透明基板21の縁部分に沿って配置されている。下側スペーサー30は、軸AX方向に関して一様な厚み又は高さを有している。 In the lens array unit 100, the lower spacer 30 is a square cylindrical member formed of glass, ceramics, resin, or the like. The lower spacer 30 is a part that functions as a support member for the second lens array 20, and is provided between the second lens array 20 and the imaging element array 500. The lower spacer 30 is arranged outside the second lens element 23e and along the edge portion of the transparent substrate 21 so as not to interfere with the second resin layer 23 or the second lens element 23e of the second lens array 20. ing. The lower spacer 30 has a uniform thickness or height in the axis AX direction.
 撮像素子アレイ500には、第1及び第2レンズアレイ10,20の各複合レンズ10e,20e対によって形成された光学系1eにより、複数の被写体像が結像される。撮像素子アレイ500は、複合レンズ10e,20eの光軸に垂直なXY方向に2次元的に配列された撮像素子51を備える。撮像素子51は、固体撮像素子からなるセンサーチップである。撮像素子51の光電変換部(不図示)は、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)からなり、入射光をRGB毎に光電変換し、入射光量に応じたアナログ信号を出力する。受光部としての光電変換部の表面は、撮像面(被投影面)Iとなっている。撮像素子アレイ500は、不図示の配線基板に固定されている。この配線基板は、外部回路から撮像素子51を駆動するための電圧や信号の供給を受けたり、撮像素子51からの信号を上記外部回路へ出力したりする。各撮像素子51又は撮像面IはX方向に長い矩形形状を有している。 A plurality of subject images are formed on the image sensor array 500 by the optical system 1e formed by the pair of compound lenses 10e and 20e of the first and second lens arrays 10 and 20. The imaging element array 500 includes imaging elements 51 that are two-dimensionally arranged in the XY directions perpendicular to the optical axes of the compound lenses 10e and 20e. The image sensor 51 is a sensor chip made of a solid-state image sensor. The photoelectric conversion unit (not shown) of the image pickup device 51 includes a CCD (Charge-Coupled Device) or a CMOS (Complementary Metal-Oxide Semiconductor), photoelectrically converts incident light for each RGB, and outputs an analog signal corresponding to the incident light amount. . The surface of the photoelectric conversion unit as the light receiving unit is an imaging surface (projected surface) I. The image sensor array 500 is fixed to a wiring board (not shown). This wiring board receives supply of a voltage and a signal for driving the image sensor 51 from an external circuit, and outputs a signal from the image sensor 51 to the external circuit. Each imaging device 51 or imaging surface I has a rectangular shape that is long in the X direction.
 図2Aは、第2レンズアレイ20の遮光絞り層25や撮像素子アレイ500の撮像素子51の配置関係を説明する模式図である。図からも明らかなように、遮光絞り層25の開口25bを全体的にカバーするようなサイズで複合レンズ20e又は第2レンズ要素23eがアライメントされた状態で形成されている。また、開口25bを一回り大きくしたサイズで撮像素子51がアライメントされた状態で形成されている。 FIG. 2A is a schematic diagram for explaining the arrangement relationship between the light-shielding diaphragm layer 25 of the second lens array 20 and the image sensor 51 of the image sensor array 500. FIG. As is apparent from the figure, the compound lens 20e or the second lens element 23e is formed in an aligned state so as to cover the entire opening 25b of the light-shielding diaphragm layer 25. Further, the image pickup device 51 is formed in a state in which the opening 25b is enlarged by one size.
 図3は、図2Aに示す配置関係をより具体的に例示する拡大図である。一般的に、レンズの有効領域は円形であるが、撮像素子の有効領域は非円形であり、人間の眼に合わせて横長の矩形状に設定されることが多い。複眼撮像装置の場合、各レンズに対応した複数の受光領域が必要であり、本実施形態においては、各々が複数画素からなる横長の長方形の有効領域を持つ複数の撮像素子51が間隔をあけて配置された撮像素子アレイ500が用いられている。遮光絞り層25の開口25bは、撮像素子51の有効領域EA1よりも一回り小さいが、光線は複合レンズ20eを拡がりながら通過するので、撮像素子51の有効領域EA1を十分カバーするような範囲L1を照明する。ここで、第2レンズ要素23eの有効領域EA2は、円形であり、開口25bを十分カバーするようなサイズとなっている。撮像素子51の有効領域EA1の縦横比はa1:b1であり、開口25bの開口幅に関する縦横比はa2:b2であるが、これらは相似形となっており、a1:b1=a2:b2となる。これにより、第2レンズ要素23eからの光を遮光絞り層25の開口25bを介してセンサーである撮像素子51に対応する矩形領域上に形成することができ、第2レンズ要素23eの無駄のない配列によってレンズアレイユニット100やこれを組み込んだ撮像装置1000を小型にすることができる。また、開口25bの対角方向の開口幅c2は、縦方向の第2開口幅a2及び横方向の第1開口幅b2のいずれに比べても大きくなっている。ここで、対角方向とは、軸に沿った一対の開口幅a2,b2によって定まる中間方向を意味する。開口25bの輪郭形状は、非円形状であり、x方向及びy方向の双方において円弧の曲率を小さくした結果として、開口形状が対角方向に相対的に長くなったものと見ることができる。なお、上記のように複数の撮像素子51が島状に配置された撮像素子アレイ500に代えて、XY面において各複合レンズ10e,20eの全てに対応する領域全体にわたって画素が配列された一つの撮像素子を用いてもよい。 FIG. 3 is an enlarged view more specifically illustrating the arrangement relationship shown in FIG. 2A. In general, the effective area of the lens is circular, but the effective area of the image sensor is non-circular, and is often set in a horizontally long rectangular shape according to the human eye. In the case of a compound-eye imaging device, a plurality of light receiving areas corresponding to each lens are required. In the present embodiment, a plurality of imaging elements 51 each having a horizontally long effective area composed of a plurality of pixels are spaced apart. The arranged image sensor array 500 is used. The opening 25b of the light-shielding diaphragm layer 25 is slightly smaller than the effective area EA1 of the image sensor 51. However, since the light passes through the compound lens 20e while spreading, a range L1 that sufficiently covers the effective area EA1 of the image sensor 51. Illuminate. Here, the effective area EA2 of the second lens element 23e is circular and has a size that sufficiently covers the opening 25b. The aspect ratio of the effective area EA1 of the image sensor 51 is a1: b1, and the aspect ratio related to the opening width of the opening 25b is a2: b2, which are similar, and are a1: b1 = a2: b2. Become. As a result, the light from the second lens element 23e can be formed on the rectangular area corresponding to the image sensor 51 that is a sensor through the opening 25b of the light-shielding diaphragm layer 25, and the second lens element 23e is not wasted. Depending on the arrangement, the lens array unit 100 and the imaging device 1000 incorporating the lens array unit 100 can be reduced in size. The opening width c2 in the diagonal direction of the opening 25b is larger than both the second opening width a2 in the vertical direction and the first opening width b2 in the horizontal direction. Here, the diagonal direction means an intermediate direction determined by a pair of opening widths a2 and b2 along the axis. The contour shape of the opening 25b is non-circular, and as a result of reducing the curvature of the arc in both the x direction and the y direction, it can be considered that the opening shape is relatively long in the diagonal direction. Note that, instead of the imaging element array 500 in which the plurality of imaging elements 51 are arranged in an island shape as described above, one pixel in which pixels are arranged over the entire region corresponding to all of the compound lenses 10e and 20e on the XY plane. An image sensor may be used.
 本実施形態においては、各複合レンズ10e,20eをほぼ等ピッチで配列している(Y方向のピッチP1≒X方向のピッチP2)が、遮光絞り層25の開口25bの形状がX方向に長くY方向に短い横長形状であるため、例えば図2Bに示すように、Y方向のピッチをP1からP1'に減少させることができる(P1'<P2)。これにより、レンズアレイ10,20のサイズを小さくすることができる。なお、遮光絞り層25を設けない比較例を想定すると、図3に示すものと異なり、複合レンズ20eを通過する光線は制限を受けず、光線は範囲L1よりも広い楕円状の範囲L0を広く照明することになる。このため、上記比較例の場合、撮像素子51のピッチP1,P2を詰めることが容易でなくなり、ピッチP1,P2を減少させることが容易でなくなる。 In the present embodiment, the compound lenses 10e and 20e are arranged at substantially equal pitches (Y-direction pitch P1≈X-direction pitch P2), but the shape of the opening 25b of the light-shielding diaphragm layer 25 is long in the X direction. Since it is a horizontally long shape in the Y direction, for example, as shown in FIG. 2B, the pitch in the Y direction can be reduced from P1 to P1 ′ (P1 ′ <P2). Thereby, the size of the lens arrays 10 and 20 can be reduced. Assuming a comparative example in which the light blocking diaphragm layer 25 is not provided, unlike the case shown in FIG. 3, the light beam passing through the compound lens 20e is not limited, and the light beam has a wide elliptical range L0 wider than the range L1. Will be illuminated. For this reason, in the case of the comparative example, it is not easy to reduce the pitches P1 and P2 of the image sensor 51, and it is not easy to reduce the pitches P1 and P2.
 以下、図4~8を参照して、図1A等に示すレンズアレイユニット100や撮像装置1000の製造方法について説明する。 Hereinafter, a method for manufacturing the lens array unit 100 and the imaging apparatus 1000 shown in FIG. 1A and the like will be described with reference to FIGS.
 まず、図1Aの第1レンズアレイ10を含む複合レンズアレイ110を製造する。具体的には、図4Aに示すように、複数レンズアレイに共通の透明基板111を準備し、透明基板111の基板面11a,11bにIRカットフィルター層11c,11dを形成する。IRカットフィルター層11c,11dは、例えば誘電体多層膜で形成される。IRカットフィルター層11c,11dは、例えば同一の成膜装置で一括して形成することができる。なお、透明基板111の両側にIRカットフィルター層11c,11dを形成することで、透明基板111の反りの抑制に寄与する。 First, the compound lens array 110 including the first lens array 10 of FIG. 1A is manufactured. Specifically, as shown in FIG. 4A, a common transparent substrate 111 is prepared for a plurality of lens arrays, and IR cut filter layers 11 c and 11 d are formed on the substrate surfaces 11 a and 11 b of the transparent substrate 111. The IR cut filter layers 11c and 11d are formed of, for example, a dielectric multilayer film. The IR cut filter layers 11c and 11d can be formed in a batch with the same film forming apparatus, for example. In addition, by forming the IR cut filter layers 11c and 11d on both sides of the transparent substrate 111, it contributes to suppression of warpage of the transparent substrate 111.
 次に、スピンコート等によって、透明基板111上の一方のIRカットフィルター層11cを覆うように黒色フォトレジスト層111rを成膜し(図4B参照)、丸孔のマスクで露光及び現像を行って、開口14b等のパターンを形成する(図4C参照)。これにより、開口絞り層14を含む第1パターン層114が得られる。すなわち、図8A等に示すように格子点状に配列された円形の開口14bを有する開口絞り層14を含む第1パターン層114が得られる。 Next, a black photoresist layer 111r is formed by spin coating or the like so as to cover one IR cut filter layer 11c on the transparent substrate 111 (see FIG. 4B), and exposure and development are performed with a round hole mask. Then, a pattern such as the opening 14b is formed (see FIG. 4C). Thereby, the first pattern layer 114 including the aperture stop layer 14 is obtained. That is, as shown in FIG. 8A and the like, the first pattern layer 114 including the aperture stop layer 14 having the circular openings 14b arranged in a lattice point shape is obtained.
 次に、スピンコート等によって、透明基板111上の他方のIRカットフィルター層11dを覆うように黒色フォトレジスト層111rを成膜し(図5A参照)、角孔のマスクで露光及び現像を行って、開口15b等のパターンを形成する(図5B参照)。これにより、図8B等に示すように格子点状に配列された複数の長方形の開口15bを有する補助絞り層15を含む第2パターン層115が得られる。補助絞り層15に形成された各開口15bは、図8Cに拡大して示すように、後で形成する第2レンズ要素13eの有効領域EA3内となるような狭い領域に設けられている。ただし、開口15bは、隣接する撮像素子51との間で干渉が生じない範囲で、一点鎖線で示すような第2レンズ要素13eの有効領域EA3から部分的にはみ出した輪郭を有するものとすることもできる。 Next, a black photoresist layer 111r is formed by spin coating or the like so as to cover the other IR cut filter layer 11d on the transparent substrate 111 (see FIG. 5A), and exposure and development are performed with a square hole mask. Then, a pattern such as an opening 15b is formed (see FIG. 5B). As a result, as shown in FIG. 8B and the like, the second pattern layer 115 including the auxiliary aperture layer 15 having a plurality of rectangular openings 15b arranged in a lattice point is obtained. Each opening 15b formed in the auxiliary aperture layer 15 is provided in a narrow region that is within the effective region EA3 of the second lens element 13e to be formed later, as shown in an enlarged view in FIG. 8C. However, the opening 15b has a contour that partially protrudes from the effective area EA3 of the second lens element 13e as indicated by the alternate long and short dash line in a range in which interference does not occur between the adjacent imaging elements 51. You can also.
 次に、透明基板111上にIRカットフィルター層11c,11dとパターン層114,115とを形成した基板部材119の一対の表面上に第1樹脂層12と第2樹脂層13とを形成する(図5C参照)。 Next, the first resin layer 12 and the second resin layer 13 are formed on a pair of surfaces of the substrate member 119 in which the IR cut filter layers 11c and 11d and the pattern layers 114 and 115 are formed on the transparent substrate 111 ( (See FIG. 5C).
 具体的には、基板部材119の表面111a,111bに親水化処理等の前処理を施す。次に、光透過性を有する転写型(不図示)を用意し、第1レンズ要素12eに対応する分離した転写面上にエネルギー硬化性の樹脂材料を個別に供給し、この転写型に対して基板部材119の一方の表面111aを近接させ所定圧力で押圧する。同様に、光透過性を有する別の転写型(不図示)を用意し、第2レンズ要素13eに対応する分離した転写面上にエネルギー硬化性の樹脂材料を個別に供給し、この転写型に対して基板部材119の他方の表面111bを近接させ所定圧力で押圧する。結果的に、一対の転写型の間に樹脂材料を介して基板部材119が挟まれた状態となる。その後、一対の転写型の背後から基板部材119に向けて紫外線等を照射し、基板部材119と一対の転写型との間に挟まれた樹脂を硬化させて第1及び第2樹脂層12,13とし、一対の転写型を基板部材119側から離型させる(図5C参照)。これにより、第1レンズアレイ10を面方向に複数(例えば、2×2枚)連結した複合レンズアレイ110を得ることができる。なお、第1樹脂層12は、多数の第1レンズ要素12eを含み、第2樹脂層13は、多数の第2レンズ要素13eと、これらを一定の数(本例では4×4個)毎に囲むスペーサー部113sとを含む。 Specifically, a pretreatment such as a hydrophilization treatment is performed on the surfaces 111a and 111b of the substrate member 119. Next, a transfer mold (not shown) having optical transparency is prepared, and an energy curable resin material is individually supplied onto the separated transfer surface corresponding to the first lens element 12e. One surface 111a of the substrate member 119 is brought close to and pressed with a predetermined pressure. Similarly, another transfer mold (not shown) having optical transparency is prepared, and an energy curable resin material is individually supplied onto the separated transfer surface corresponding to the second lens element 13e, and the transfer mold is supplied to the transfer mold. On the other hand, the other surface 111b of the substrate member 119 is brought close to each other and pressed with a predetermined pressure. As a result, the substrate member 119 is sandwiched between the pair of transfer molds via the resin material. Thereafter, the substrate member 119 is irradiated with ultraviolet rays or the like from behind the pair of transfer molds to cure the resin sandwiched between the substrate member 119 and the pair of transfer molds, and thereby the first and second resin layers 12, 13, the pair of transfer molds are released from the substrate member 119 side (see FIG. 5C). Thereby, a composite lens array 110 in which a plurality of (for example, 2 × 2) first lens arrays 10 are connected in the surface direction can be obtained. The first resin layer 12 includes a large number of first lens elements 12e, and the second resin layer 13 includes a large number of second lens elements 13e and a certain number (4 × 4 in this example). And a spacer portion 113s surrounded by
 以上と並行して又は前後して、図1Aの第2レンズアレイ20を含む複合レンズアレイ120を製造する。具体的には、図6Aに示すように、複数のレンズアレイに共通の透明基板121を準備し、透明基板121の表面(基板面21b)を覆うように黒色フォトレジスト層121rを成膜し、図6Bに示すように、角孔のマスクを用いた露光及び現像によって開口25b等のパターンを形成する(図6B参照)。これにより、図8D等に示すように格子点状に配列された複数の長方形の開口25bを有する遮光絞り層25を含む第2パターン層125が得られる。遮光絞り層25を構成する各開口25bは、既に説明したように、撮像素子51の有効領域EA1や第2レンズ要素23eの有効領域EA2よりも一回り狭いものとなる(図3参照)。 In parallel with or before or after the above, the compound lens array 120 including the second lens array 20 of FIG. 1A is manufactured. Specifically, as shown in FIG. 6A, a common transparent substrate 121 is prepared for a plurality of lens arrays, and a black photoresist layer 121r is formed so as to cover the surface (substrate surface 21b) of the transparent substrate 121. As shown in FIG. 6B, patterns such as openings 25b are formed by exposure and development using a square hole mask (see FIG. 6B). Thereby, as shown in FIG. 8D and the like, the second pattern layer 125 including the light-shielding diaphragm layer 25 having a plurality of rectangular openings 25b arranged in a lattice point shape is obtained. As already described, each opening 25b constituting the light-shielding diaphragm layer 25 is narrower than the effective area EA1 of the image sensor 51 and the effective area EA2 of the second lens element 23e (see FIG. 3).
 次に、透明基板121の片側に第2パターン層125を形成した基板部材129の一対の表面上に第1樹脂層22と第2樹脂層23とを形成する(図6C参照)。 Next, the first resin layer 22 and the second resin layer 23 are formed on a pair of surfaces of the substrate member 129 on which the second pattern layer 125 is formed on one side of the transparent substrate 121 (see FIG. 6C).
 具体的には、基板部材129の表面(基板面21a)に親水化処理等の前処理を施す。次に、光透過性を有する転写型(不図示)を用意し、第1レンズ要素22eに対応する分離した転写面上にエネルギー硬化性の樹脂材料を個別に供給し、この転写型に対して基板部材129の一方の表面(基板面21a)を近接させ所定圧力で押圧する。同様に、光透過性を有する別の転写型(不図示)を用意し、第2レンズ要素23eに対応する分離した転写面上にエネルギー硬化性の樹脂材料を個別に供給し、この転写型に対して基板部材129の他方の表面(基板面21b)を近接させ所定圧力で押圧する。結果的に、一対の転写型の間に樹脂材料を介して基板部材129が挟まれた状態となる。その後、一対の転写型の背後から基板部材129に向けて紫外線等を照射し、基板部材129と一対の転写型との間に挟まれた樹脂を硬化させて第1及び第2樹脂層22,23とし、一対の転写型を基板部材129側から離型させる(図6C参照)。これにより、第2レンズアレイ20を複数連結した複合レンズアレイ120を得ることができる。なお、第2樹脂層22は、多数の第1レンズ要素22eと、これらを一定の数(本例では4×4個)毎に囲むスペーサー部122sとを含み、第2樹脂層23は、多数の第2レンズ要素23eを含む。 Specifically, the surface of the substrate member 129 (substrate surface 21a) is subjected to a pretreatment such as a hydrophilic treatment. Next, a transfer mold (not shown) having optical transparency is prepared, and an energy curable resin material is individually supplied onto the separated transfer surface corresponding to the first lens element 22e. One surface (substrate surface 21a) of the substrate member 129 is brought close to each other and pressed with a predetermined pressure. Similarly, another transfer mold (not shown) having optical transparency is prepared, and an energy curable resin material is individually supplied onto the separated transfer surface corresponding to the second lens element 23e, and the transfer mold is supplied to the transfer mold. On the other hand, the other surface (substrate surface 21b) of the substrate member 129 is brought close to and pressed with a predetermined pressure. As a result, the substrate member 129 is sandwiched between the pair of transfer molds via the resin material. Thereafter, the substrate member 129 is irradiated with ultraviolet rays or the like from behind the pair of transfer molds to cure the resin sandwiched between the substrate member 129 and the pair of transfer molds, and the first and second resin layers 22, 23, the pair of transfer molds are released from the substrate member 129 side (see FIG. 6C). Thereby, a compound lens array 120 in which a plurality of second lens arrays 20 are connected can be obtained. The second resin layer 22 includes a large number of first lens elements 22e and spacer portions 122s surrounding the first lens elements 22e every predetermined number (4 × 4 in this example). The second resin layer 23 includes a large number of second resin layers 23. Second lens element 23e.
 次に、図5Cの複合レンズアレイ110と図6Cの複合レンズアレイ120とを接着剤91で接合し、複合レンズアレイ120側に下側スペーサー30を含むスペーサー130を接着剤92で接合することにより、光学アレイユニット100Uを得る(図7A参照)。さらに、図7Aの光学アレイユニット100Uに対して接着剤93を利用して撮像アレイユニット500Uを接合する(図7B参照)。接着剤91~93としては、光硬化型の接着剤を用いることができる。光硬化型接着剤を用いる場合、図7Cに示すように、絞り層14,15,25に、スペーサー部13s,22s、及び、下側スペーサー30に対応する位置に開口を設けておくことで、光照射により容易に接着剤91~93の硬化を行うことができる。
 最後に、図7Bに示す複合部材又は接合体Uをダイシング等によって分割し、複数個(例えば、2×2個)の撮像装置1000を得る。撮像装置1000の内部は、スペーサー部13s,22s及び下側スペーサー30を介しての接合によって気密にシールされている。なお、撮像装置1000は、側面に遮光性の保護膜を塗布することができ、遮光性のホルダー内に収納することができる。
Next, the composite lens array 110 of FIG. 5C and the composite lens array 120 of FIG. 6C are joined by the adhesive 91, and the spacer 130 including the lower spacer 30 is joined by the adhesive 92 on the composite lens array 120 side. The optical array unit 100U is obtained (see FIG. 7A). Further, the imaging array unit 500U is bonded to the optical array unit 100U of FIG. 7A using the adhesive 93 (see FIG. 7B). As the adhesives 91 to 93, a photo-curable adhesive can be used. When using a photo-curing adhesive, as shown in FIG. 7C, by providing openings in the diaphragm layers 14, 15, 25 at positions corresponding to the spacer portions 13s, 22s and the lower spacer 30, The adhesives 91 to 93 can be easily cured by light irradiation.
Finally, the composite member or joined body U shown in FIG. 7B is divided by dicing or the like to obtain a plurality of (for example, 2 × 2) imaging devices 1000. The inside of the image pickup apparatus 1000 is hermetically sealed by bonding through the spacer portions 13 s and 22 s and the lower spacer 30. Note that the imaging device 1000 can be coated with a light-blocking protective film on the side surface and can be stored in a light-blocking holder.
 以上のように、第1実施形態によれば、最像側の第2レンズアレイ20を構成する透明基板21の像側の表面に第2レンズ要素23eに対応して開口25bを有する遮光絞り層25が設けられているので、簡易に作製可能な遮光絞り層25によって、レンズアレイユニット100から射出される光の範囲を制限することができる。特に、第2レンズ要素23eによって覆われる複数の開口25bが撮像素子51側の有効領域EA1の形状に合った非円形の輪郭形状をそれぞれ有することにより、隣接する第2レンズ要素23eによる個眼像に重なりを生じることを防止でき、第2レンズ要素23e又は撮像素子51の配列密度を高めることができる。ここで、上記のような遮光絞り層25は、透明基板21の表面に形成されており、透明基板21と一体化している。従って、別部品としてレンズ部の成形後に絞りを配置する必要がなく、反りや強度に関する問題が生じにくい。このため、レンズアレイユニット100やこれを組み込んだ撮像装置1000を薄く小型にすることができる。また、遮光絞り層25が透明基板21に密着しているので、第2レンズ要素23eの形状と遮光絞り層25の開口25bの形状とが異なっていても、光入射側でレンズ要素23eに密着して遮光絞り層25を配置することができ、別体の絞り部材のように、レンズ要素の像側に間隔をあけて配置しなくてもよい。従って、レンズアレイユニット100や撮像装置1000の薄型化に寄与する。 As described above, according to the first embodiment, the light-shielding stop layer having the opening 25b corresponding to the second lens element 23e on the image-side surface of the transparent substrate 21 constituting the second lens array 20 on the most image side. 25 is provided, the range of light emitted from the lens array unit 100 can be limited by the light-shielding diaphragm layer 25 that can be easily manufactured. In particular, the plurality of openings 25b covered by the second lens element 23e each have a non-circular contour shape that matches the shape of the effective area EA1 on the imaging element 51 side, so that a single-eye image by the adjacent second lens element 23e is obtained. Can be prevented, and the arrangement density of the second lens elements 23e or the image sensor 51 can be increased. Here, the light blocking aperture layer 25 as described above is formed on the surface of the transparent substrate 21 and is integrated with the transparent substrate 21. Therefore, it is not necessary to arrange a diaphragm after molding the lens part as a separate part, and problems relating to warpage and strength are unlikely to occur. Therefore, the lens array unit 100 and the imaging device 1000 incorporating the lens array unit 100 can be made thin and small. Further, since the light-shielding diaphragm layer 25 is in close contact with the transparent substrate 21, even if the shape of the second lens element 23e is different from the shape of the opening 25b of the light-shielding diaphragm layer 25, it is in close contact with the lens element 23e on the light incident side. Thus, the light-shielding diaphragm layer 25 can be disposed, and it is not necessary to arrange the light-shielding diaphragm layer 25 at an interval on the image side of the lens element as in a separate diaphragm member. Therefore, it contributes to the thinning of the lens array unit 100 and the imaging device 1000.
〔第2実施形態〕
 以下、第2実施形態に係るレンズアレイユニット等について説明する。なお、第2実施形態のレンズアレイユニット等は第1実施形態のレンズアレイユニット等を変形したものであり、特に説明しない事項は第1実施形態と同様である。
[Second Embodiment]
The lens array unit and the like according to the second embodiment will be described below. The lens array unit of the second embodiment is a modification of the lens array unit of the first embodiment, and items not specifically described are the same as those of the first embodiment.
 図9は、本実施形態のレンズアレイユニットを組み込んだ撮像装置の構造を説明する側方断面図である。この撮像装置1000において、第1及び第2レンズアレイ10,20の間には、下側スペーサー30と同様に枠状の形状を有する上側スペーサー230が配置されている。この上側スペーサー230は、図1Aに示すスペーサー部13s,22sに代えて設けられたものであり、第1レンズアレイ10と第2レンズアレイ20とを接合する際に間隔調整に利用される。このように、別部材のスペーサーを用いて2つのレンズアレイ10,20間の間隔を決めることで、第1レンズアレイ10の第2樹脂層13や第2レンズアレイ20の第1樹脂層22を形成する際に、スペーサー部の成形を考慮しなくてよい。そのため、成形に求められる精度が緩和される。また、精度良く作製されたスペーサーを用いることにより、基板間ギャップの正確な調整を行いやすい。 FIG. 9 is a side sectional view for explaining the structure of an imaging apparatus incorporating the lens array unit of this embodiment. In the imaging apparatus 1000, an upper spacer 230 having a frame shape is disposed between the first and second lens arrays 10 and 20, similarly to the lower spacer 30. The upper spacer 230 is provided in place of the spacer portions 13s and 22s shown in FIG. 1A, and is used for adjusting the distance when the first lens array 10 and the second lens array 20 are joined. As described above, by determining the distance between the two lens arrays 10 and 20 using the spacers of the separate members, the second resin layer 13 of the first lens array 10 and the first resin layer 22 of the second lens array 20 are formed. When forming, it is not necessary to consider the formation of the spacer portion. Therefore, the accuracy required for molding is relaxed. Moreover, it is easy to accurately adjust the gap between the substrates by using a spacer manufactured with high accuracy.
〔第3実施形態〕
 以下、第3実施形態に係るレンズアレイユニット等について説明する。なお、第3実施形態のレンズアレイユニット等は第1実施形態のレンズアレイユニット等を変形したものであり、特に説明しない事項は第1実施形態と同様である。
[Third Embodiment]
The lens array unit according to the third embodiment will be described below. The lens array unit of the third embodiment is a modification of the lens array unit of the first embodiment, and items not specifically described are the same as those of the first embodiment.
 図10は、本実施形態のレンズアレイユニットを組み込んだ撮像装置の構造を説明する側方断面図である。この撮像装置1000において、第1レンズアレイ10の像側に設けられた第2樹脂層13は、複数の第2レンズ要素13e間に平板状のフランジ部13cを有するものとなっている。つまり、第2樹脂層13は、個別滴下ではなく、一体的に形成されたシート状の部分である。このフランジ部13cが図1A等に示すスペーサー部13sと同様に機能する。また、第2レンズアレイ20の物体側に設けられた第1樹脂層22は、複数の第1レンズ要素22e間に平板状のフランジ部22cを有するものとなっている。つまり、第1樹脂層22も、個別滴下ではなく、一体的に形成されたシート状の部分であり、このフランジ部22cが図1A等に示すスペーサー部22sと同様に機能する。第1レンズアレイ10と第2レンズアレイ20とは、フランジ部13c,22cを介して接合される。このような構成を採用することで、別体のスペーサーを無くすことができ、構成が簡単となり、コスト低減に有利である。また、レンズとなる樹脂材料を個別に滴下しなくてよいので、製造が容易になる。 FIG. 10 is a side sectional view for explaining the structure of an imaging apparatus incorporating the lens array unit of the present embodiment. In the imaging apparatus 1000, the second resin layer 13 provided on the image side of the first lens array 10 has a flat flange portion 13c between the plurality of second lens elements 13e. That is, the second resin layer 13 is not an individual drop but a sheet-like portion formed integrally. The flange portion 13c functions in the same manner as the spacer portion 13s shown in FIG. 1A and the like. The first resin layer 22 provided on the object side of the second lens array 20 has a flat flange portion 22c between the plurality of first lens elements 22e. That is, the first resin layer 22 is not an individual drop but a sheet-like portion formed integrally, and the flange portion 22c functions similarly to the spacer portion 22s shown in FIG. 1A and the like. The 1st lens array 10 and the 2nd lens array 20 are joined via the flange parts 13c and 22c. By adopting such a configuration, a separate spacer can be eliminated, the configuration is simplified, and it is advantageous for cost reduction. Moreover, since it is not necessary to drop individually the resin material used as a lens, manufacture becomes easy.
 なお、上記第1実施形態~第3実施形態において、遮光絞り層は、最像側の透明基板21の像側の表面と物体側の表面との両方に設けられていてもよい。この場合、物体側の表面に設けられる遮光絞り層の開口は、像側の表面に設けられる遮光絞り層の開口と同じ形状あるいはそれより小さい相似形状としてもよい。さらに、隅の角がとれた形状にしたり、丸みを帯びた形状にしてもよい。 In the first to third embodiments, the light-shielding diaphragm layer may be provided on both the image-side surface and the object-side surface of the transparent substrate 21 on the most image side. In this case, the opening of the light-shielding stop layer provided on the object-side surface may have the same shape as the opening of the light-shielding stop layer provided on the image-side surface or a similar shape smaller than that. Furthermore, it may be a shape with rounded corners or a rounded shape.
〔第4実施形態〕
 以下、第4実施形態に係るレンズアレイユニット等について説明する。なお、第4実施形態のレンズアレイユニット等は第1実施形態等のレンズアレイユニット等を変形したものであり、特に説明しない事項は第1実施形態等と同様である。なお、図11は、物体側が下になるように図示してある。
[Fourth Embodiment]
The lens array unit according to the fourth embodiment will be described below. The lens array unit of the fourth embodiment is a modification of the lens array unit of the first embodiment and the like, and items not specifically described are the same as those of the first embodiment. Note that FIG. 11 is illustrated with the object side facing down.
 図11は、本実施形態のレンズアレイユニットを組み込んだ撮像装置の構造を説明する側方断面図である。この撮像装置1000の場合、レンズアレイユニット100が1つのレンズアレイ410と平行平板であるフィルター板70とを含む。このため、レンズアレイ410の第2樹脂層13側に形成された遮光絞り層415が、図3等に示す遮光絞り層25と同様の機能を有する。つまり、遮光絞り層415の開口15bは、図3等に示す遮光絞り層25の開口25bと同様に、非円形の形状であり、撮像素子51の形状に合わせて隣接する個眼像が重ならないように遮光を行う。具体的には、開口15bは、横長の矩形であり、第2レンズ要素13eの有効領域よりも狭くなっている。レンズアレイユニット100や撮像素子アレイ500は、遮光性を有するホルダー80に組み付けられて相互に固定されている。 FIG. 11 is a side sectional view for explaining the structure of an imaging apparatus incorporating the lens array unit of the present embodiment. In the case of this imaging apparatus 1000, the lens array unit 100 includes one lens array 410 and a filter plate 70 that is a parallel plate. For this reason, the light-shielding diaphragm layer 415 formed on the second resin layer 13 side of the lens array 410 has the same function as the light-shielding diaphragm layer 25 shown in FIG. That is, the opening 15b of the light-shielding diaphragm layer 415 has a non-circular shape like the opening 25b of the light-shielding diaphragm layer 25 shown in FIG. 3 and the like, and adjacent single-eye images do not overlap with the shape of the image sensor 51. As shown in FIG. Specifically, the opening 15b is a horizontally long rectangle and is narrower than the effective area of the second lens element 13e. The lens array unit 100 and the imaging element array 500 are assembled to a light-shielding holder 80 and fixed to each other.
 以下、図11に示すレンズアレイユニット100や撮像装置1000の製造方法について説明する。 Hereinafter, a method for manufacturing the lens array unit 100 and the imaging apparatus 1000 shown in FIG. 11 will be described.
 まず、レンズアレイ410を含む複合レンズアレイ110を製造する。具体的には、図12Aに示すように、透明基板111を準備し、図12Bに示すように、スピンコート等によって透明基板111の基板面11bを覆うように黒色フォトレジスト層111rを成膜する。図12Cに示すように、角孔のマスクを用いた露光及び現像によって黒色フォトレジスト層111rに開口15b等のパターンを形成する。これにより、図8D等に示す遮光絞り層25又は開口25bと同様に格子点状に配列された長方形の開口15bを有する遮光絞り層415を含むパターン層415Uが得られる。遮光絞り層415を構成する各開口15bは、既に説明したように、撮像素子51の有効領域EA1や第2レンズ要素13eの有効領域よりも一回り狭いものとなる。 First, the composite lens array 110 including the lens array 410 is manufactured. Specifically, as shown in FIG. 12A, a transparent substrate 111 is prepared, and as shown in FIG. 12B, a black photoresist layer 111r is formed so as to cover the substrate surface 11b of the transparent substrate 111 by spin coating or the like. . As shown in FIG. 12C, a pattern such as openings 15b is formed in the black photoresist layer 111r by exposure and development using a square hole mask. As a result, a pattern layer 415U including a light-shielding diaphragm layer 415 having rectangular openings 15b arranged in a lattice point like the light-shielding diaphragm layer 25 or the openings 25b shown in FIG. 8D and the like is obtained. As already described, each opening 15b constituting the light-shielding diaphragm layer 415 is slightly narrower than the effective area EA1 of the image sensor 51 and the effective area of the second lens element 13e.
 次に、透明基板111の片側にパターン層415Uを形成した基板部材419の一対の表面上に第1樹脂層12と第2樹脂層13とを形成することによって複合レンズアレイ110を得る(図12D参照)。第1樹脂層12と第2樹脂層13との形成方法は、第1実施形態と略同様であるので、ここでは説明を省略する。
 その後、図12Dに示す複合レンズアレイ110をダイシング等によって分割し、図13Aに示す複数個のレンズアレイ410を得る。このレンズアレイ410の切断面4aや側面4bに対しては、遮光性を有する材料を塗布等することによって遮光層を形成することができる。
Next, the composite lens array 110 is obtained by forming the first resin layer 12 and the second resin layer 13 on a pair of surfaces of the substrate member 419 on which the pattern layer 415U is formed on one side of the transparent substrate 111 (FIG. 12D). reference). Since the formation method of the 1st resin layer 12 and the 2nd resin layer 13 is substantially the same as 1st Embodiment, description is abbreviate | omitted here.
Thereafter, the compound lens array 110 shown in FIG. 12D is divided by dicing or the like to obtain a plurality of lens arrays 410 shown in FIG. 13A. A light shielding layer can be formed on the cut surface 4a and the side surface 4b of the lens array 410 by applying a light shielding material or the like.
 次に、レンズアレイ410の各レンズ要素12eに対応して格子点状に複数の開口80oを有するホルダー80に対して、各レンズ要素12eがホルダー80の各開口80oに収まるように、レンズアレイ410をアライメントし、接着剤等でホルダー80に固定する(図13B参照)。接着剤は、ホルダー80の壁部81bとレンズアレイ410の側面との間に満たしたり、ホルダー80の開口80oが形成された板面81aに塗布したりすればよい。さらに、別途準備したフィルター板70をホルダー80に固定する。この際、フィルター板70をホルダー80の壁部81bに設けた段差部82に載置する(図13B参照)。その後、ホルダー80の壁部81b上端に撮像素子アレイ500でレンズアレイ410及びホルダー80で構成されるレンズアレイユニット100を封止するようにして両者を重ね接着剤等で固定する(図13B参照)。以上の工程により、レンズアレイ410を組み込んだ撮像装置1000を製造することができる。 Next, with respect to the holder 80 having a plurality of openings 80o in the form of lattice points corresponding to the lens elements 12e of the lens array 410, the lens array 410 so that the lens elements 12e are accommodated in the openings 80o of the holder 80. Are fixed to the holder 80 with an adhesive or the like (see FIG. 13B). The adhesive may be filled between the wall portion 81b of the holder 80 and the side surface of the lens array 410, or may be applied to the plate surface 81a in which the opening 80o of the holder 80 is formed. Further, a separately prepared filter plate 70 is fixed to the holder 80. At this time, the filter plate 70 is placed on the step portion 82 provided on the wall portion 81b of the holder 80 (see FIG. 13B). Thereafter, the lens array unit 100 including the lens array 410 and the holder 80 is sealed with the imaging device array 500 at the upper end of the wall portion 81b of the holder 80, and the both are overlapped and fixed with an adhesive or the like (see FIG. 13B). . Through the above steps, the imaging apparatus 1000 incorporating the lens array 410 can be manufactured.
 なお、フィルター板70は、透明基板71の両面又は片面上にIRカットフィルター層72をコートしたものである。IRカットフィルター層72は、第1実施形態の第1レンズアレイ10に形成したIRカットフィルター層11c,11dと同様に例えば誘電体多層膜で形成される。また、フィルター板70には、IRカットの他に別のフィルター機能を持たせることもできる。 The filter plate 70 is obtained by coating an IR cut filter layer 72 on both sides or one side of the transparent substrate 71. The IR cut filter layer 72 is formed of, for example, a dielectric multilayer film, similar to the IR cut filter layers 11c and 11d formed in the first lens array 10 of the first embodiment. In addition to the IR cut, the filter plate 70 can have another filter function.
〔第5実施形態〕
 以下、第5実施形態に係るレンズアレイユニット等について説明する。なお、第5実施形態のレンズアレイユニット等は第1及び第4実施形態等のレンズアレイユニット等を変形したものであり、特に説明しない事項は第1実施形態等と同様である。
[Fifth Embodiment]
The lens array unit according to the fifth embodiment will be described below. The lens array unit etc. of the fifth embodiment is a modification of the lens array unit etc. of the first and fourth embodiments, and matters not specifically described are the same as those of the first embodiment.
 図14に示すように、第5実施形態の撮像装置1000においては、フィルター板70の一方の表面上に遮光膜75が形成されている。遮光膜75は、図8Dに示す遮光絞り層25と同様に、長方形の開口75bを有する。開口75bは、フィルター板70での反射を低減して迷光が撮像素子アレイ500側に入射することを抑制している。つまり、遮光膜75によって迷光の防止をより確実にできる。なお、撮像素子アレイ500を構成する撮像素子51は、カバーガラスによって保護されている。 As shown in FIG. 14, in the imaging apparatus 1000 of the fifth embodiment, a light shielding film 75 is formed on one surface of the filter plate 70. The light shielding film 75 has a rectangular opening 75b in the same manner as the light shielding aperture layer 25 shown in FIG. 8D. The opening 75b reduces reflection at the filter plate 70 and suppresses stray light from entering the image sensor array 500 side. That is, stray light can be prevented more reliably by the light shielding film 75. Note that the image sensor 51 constituting the image sensor array 500 is protected by a cover glass.
 図15Aは、図11に示す撮像装置1000の変形例を説明する図である。この場合、撮像素子アレイ500のカバーガラス52上に反射防止膜52aが形成されている。これにより、対向するカバーガラス52とフィルター板70との間で多重反射が生じて迷光の原因となることを防止できる。つまり、平行平板であるフィルター板70による迷光の発生を防止できる。また、図15Bに示すように、カバーガラス52に対向するフィルター板70の表面に図14と同様に遮光膜75を形成することができる。この場合、遮光膜75は、撮像素子51に入射する光線を絞るだけでなく、意図しない反射を低減する役割を有する。なお、図15B等に示す撮像装置1000において、フィルター板70の表面にARコートを形成することもできる。 FIG. 15A is a diagram illustrating a modification of the imaging apparatus 1000 illustrated in FIG. In this case, an antireflection film 52 a is formed on the cover glass 52 of the image sensor array 500. Thereby, it can prevent that multiple reflection arises between the cover glass 52 and filter board 70 which oppose, and causes a stray light. That is, stray light can be prevented from being generated by the filter plate 70 that is a parallel plate. Further, as shown in FIG. 15B, a light shielding film 75 can be formed on the surface of the filter plate 70 facing the cover glass 52 as in FIG. In this case, the light shielding film 75 has a role of reducing not only unintentional reflection but also reducing the light incident on the image sensor 51. In addition, in the imaging apparatus 1000 illustrated in FIG. 15B and the like, an AR coat can be formed on the surface of the filter plate 70.
 以上、本実施形態に係るレンズアレイユニット及びその製造方法等について説明したが、本発明に係るレンズアレイユニットの製造方法等は上記のものには限られない。例えば、第1実施形態等において、レンズアレイユニット100と撮像素子アレイ500とを下側スペーサー30を介することなく図11等に示すホルダー80に独立して固定することもできる。 Although the lens array unit and the manufacturing method thereof according to the present embodiment have been described above, the manufacturing method of the lens array unit according to the present invention is not limited to the above. For example, in the first embodiment or the like, the lens array unit 100 and the image sensor array 500 can be independently fixed to the holder 80 shown in FIG.
 また、遮光絞り層25,415の開口25b,15bの輪郭は、横長の長方形に限らず、非円形であれば用途や仕様に応じて様々な形状とすることができる。 Further, the outlines of the openings 25b and 15b of the light-shielding diaphragm layers 25 and 415 are not limited to horizontally long rectangles, and can be various shapes depending on applications and specifications as long as they are non-circular.
 具体的には、横長の有効領域形状を持つ撮像素子に対しては、図16A~16Fに示すような形状が考えられる。図16Aは、図3等に示す遮光絞り層25の開口25bの変形例を示している。図示の開口25bは、図3に示す開口25bより四隅の角が取れた長方形の輪郭を有している。遮光絞り層25及びその開口25bの、製造の容易性や基板からの剥がれの防止などの効果が期待できる。また、図16Bに示す開口25bは、別の変形例であり、樽形又は長円形の輪郭を有している。なお、図示の例では、横方向の辺が直線的で縦方向の辺が外に湾曲しているが、縦方向の辺が直線的で横方向の辺が外に湾曲しているものや、縦方向及び横方向の辺がともに外に湾曲しているものであってもよい。図16Cに示す開口25bは、さらに別の変形例であり、糸巻き形の輪郭を有している。なお、図示の例では、横方向の辺が直線的で縦方向の辺が内に湾曲しているが、縦方向の辺が直線的で横方向の辺が内に湾曲しているものや、縦方向及び横方向の辺がともに内に湾曲しているものであってもよい。図16Dに示す開口25bは、さらに別の変形例であり、楕円形の輪郭を有している。例えば、光学系の設計によっては、横長を基調としつつも絞りの開口形状を矩形とは異ならせておく方が良い光学特性を発揮する場合も想定される。このような場合に、図16B~16Dのような開口形状を採用することで光学性能を高めることが期待される。以上の図16A~16Dの形状は、横長の形状である。図16Eに示す開口25bは、長方形の長辺方向に引き伸ばした八角形形状であり、図16Fに示す開口25bは、長方形の長辺方向に引き伸ばした六角形形状である。図16A~16Fの形状において、y軸に沿った狭い側の開口幅は、x軸及びy軸に対して傾いた中間方向又は対角方向の開口幅よりも狭くなっている。 Specifically, for an image sensor having a horizontally long effective area shape, shapes as shown in FIGS. 16A to 16F are conceivable. FIG. 16A shows a modification of the opening 25b of the light-shielding diaphragm layer 25 shown in FIG. The illustrated opening 25b has a rectangular outline with four corners removed from the opening 25b shown in FIG. The light-shielding diaphragm layer 25 and its opening 25b can be expected to have effects such as ease of manufacture and prevention of peeling from the substrate. Moreover, the opening 25b shown to FIG. 16B is another modification, and has a barrel shape or an oval outline. In the illustrated example, the side in the horizontal direction is linear and the side in the vertical direction is curved outward, but the side in the vertical direction is linear and the side in the horizontal direction is curved outward, Both the vertical and horizontal sides may be curved outward. The opening 25b shown in FIG. 16C is still another modified example, and has a pincushion-shaped contour. In the illustrated example, the side in the horizontal direction is linear and the side in the vertical direction is curved inward, but the side in the vertical direction is linear and the side in the horizontal direction is curved inward, Both the vertical and horizontal sides may be curved inward. An opening 25b shown in FIG. 16D is still another modified example and has an elliptical outline. For example, depending on the design of the optical system, it may be assumed that it is possible to exhibit better optical characteristics by making the aperture shape of the aperture different from a rectangular shape while taking a horizontal shape as a keynote. In such a case, it is expected that the optical performance is improved by adopting the aperture shapes as shown in FIGS. 16B to 16D. The above-described shapes in FIGS. 16A to 16D are horizontally long shapes. The opening 25b shown in FIG. 16E has an octagonal shape extended in the long side direction of the rectangle, and the opening 25b shown in FIG. 16F has a hexagonal shape extended in the long side direction of the rectangle. In the shapes of FIGS. 16A to 16F, the opening width on the narrow side along the y-axis is narrower than the opening width in the intermediate direction or diagonal direction inclined with respect to the x-axis and the y-axis.
 図17A~17Dは、図3等に示す遮光絞り層25の開口25bのさらに別の変形例を示しており、撮像素子51の有効領域EA1が正方形である態様に対応するものである。図17Aに示す開口25bは、正方形の輪郭を有している。また、図17Bに示す開口25bは、四隅の角が取れた正方形の輪郭を有している。図17Cに示す開口25bは、樽形の輪郭を有している。なお、図示の例では、横方向の辺が直線的で縦方向の辺が外に湾曲しているが、縦方向の辺が直線的で横方向の辺が外に湾曲しているものや、縦方向及び横方向の辺がともに外に湾曲しているものであってもよい。図17Dに示す開口25bは、糸巻き形の輪郭を有している。なお、図示の例では、横方向の辺が直線的で縦方向の辺が内に湾曲しているが、縦方向の辺が直線的で横方向の辺が内に湾曲しているものや、縦方向及び横方向の辺がともに内に湾曲しているものであってもよい。以上の図17A~17Dの形状において、x軸及びy軸に沿った等しい開口幅は、x軸及びy軸に対して傾いた中間方向又は対角方向の開口幅よりも狭くなっている。 FIGS. 17A to 17D show still another modified example of the opening 25b of the light-shielding diaphragm layer 25 shown in FIG. 3 and the like, and correspond to a mode in which the effective area EA1 of the image sensor 51 is a square. The opening 25b shown in FIG. 17A has a square outline. Moreover, the opening 25b shown in FIG. 17B has a square outline with four corners. The opening 25b shown in FIG. 17C has a barrel-shaped outline. In the illustrated example, the side in the horizontal direction is linear and the side in the vertical direction is curved outward, but the side in the vertical direction is linear and the side in the horizontal direction is curved outward, Both the vertical and horizontal sides may be curved outward. The opening 25b shown in FIG. 17D has a pincushion-shaped outline. In the illustrated example, the side in the horizontal direction is linear and the side in the vertical direction is curved inward, but the side in the vertical direction is linear and the side in the horizontal direction is curved inward, Both the vertical and horizontal sides may be curved inward. In the shapes of FIGS. 17A to 17D described above, the equal opening width along the x-axis and the y-axis is narrower than the opening width in the intermediate direction or diagonal direction inclined with respect to the x-axis and y-axis.
 また、開口絞り層14、補助絞り層15、遮光絞り層25,415等は、スピンコートに限らず、インクジェット印刷、シルクスクリーン印刷、パッド印刷等を利用して対象物に塗布することができる。 Further, the aperture stop layer 14, the auxiliary stop layer 15, the light blocking stop layers 25, 415, and the like can be applied to an object using not only spin coating but ink jet printing, silk screen printing, pad printing, and the like.
 また、上記実施形態において、第1レンズアレイ10のレンズ要素12e,13eの光学面形状等は、用途や機能に応じて適宜変更することができる。また、レンズ要素12e,13eの配置パターンも、図示のものに限らず、加工性等を考慮して適宜設定することができる。同様に、第2レンズアレイ20のレンズ要素22e,23eの光学面形状等も、用途や機能に応じて適宜変更することができ、レンズ要素22e,23eの配置パターンも、図示のものに限らず、加工性等を考慮して適宜設定することができる。 Further, in the above embodiment, the optical surface shape and the like of the lens elements 12e and 13e of the first lens array 10 can be appropriately changed according to the use and function. Further, the arrangement pattern of the lens elements 12e and 13e is not limited to the illustrated one, and can be appropriately set in consideration of workability and the like. Similarly, the optical surface shapes and the like of the lens elements 22e and 23e of the second lens array 20 can be appropriately changed according to the application and function, and the arrangement pattern of the lens elements 22e and 23e is not limited to that shown in the drawing. It can be appropriately set in consideration of workability and the like.
 また、上記実施形態で説明した第1及び第2レンズアレイ10,20等の製造方法は、単なる例示であり、例示されていない様々な手法を用いることができる。 In addition, the manufacturing method of the first and second lens arrays 10 and 20 described in the above embodiment is merely an example, and various methods not illustrated can be used.
 また、上記実施形態で説明した撮像装置1000は、光学アレイユニット100Uと撮像アレイユニット500Uとを接合して複合部材を形成したものに限らない。例えば予め個々の第1及び第2レンズアレイ10,20を作製し、第1レンズアレイ10と第2レンズアレイ20と撮像素子アレイ500とを順次積層することもできる。 Further, the imaging apparatus 1000 described in the above embodiment is not limited to the one in which the optical array unit 100U and the imaging array unit 500U are joined to form a composite member. For example, the individual first and second lens arrays 10 and 20 can be prepared in advance, and the first lens array 10, the second lens array 20, and the imaging element array 500 can be sequentially stacked.
 また、上記実施形態において、第1及び第2レンズアレイ10,20の2枚に限らず、同様のレンズアレイを3枚以上積層してもよい。 In the above embodiment, the number of the first and second lens arrays 10 and 20 is not limited to two, and three or more similar lens arrays may be stacked.
 また、上記実施形態において、開口絞り層14の開口14bの輪郭は、円形に限らず、角が取れた矩形とすることができる。 Further, in the above embodiment, the outline of the opening 14b of the aperture stop layer 14 is not limited to a circle but may be a rectangle with a corner.
 また、上記実施形態において、複数のレンズ要素12e,13e等を2次元的に配列させたが、1次元的に配列させてもよい。 In the above embodiment, the plurality of lens elements 12e, 13e and the like are arranged two-dimensionally, but may be arranged one-dimensionally.

Claims (17)

  1.  透明基板の少なくとも像側に配列された複数のレンズ要素を有するレンズアレイを1枚以上配置したレンズアレイユニットであって、
     最像側の透明基板の少なくとも像側の表面に、前記複数のレンズ要素にそれぞれ対応する複数の開口を有する遮光絞り層が設けられており、
     各レンズ要素は、前記遮光絞り層の各開口及び各開口縁を覆っており、
     前記複数の開口は、非円形の輪郭形状をそれぞれ有するレンズアレイユニット。
    A lens array unit in which one or more lens arrays having a plurality of lens elements arranged on at least the image side of a transparent substrate are arranged,
    A light-shielding stop layer having a plurality of openings respectively corresponding to the plurality of lens elements is provided on at least the image-side surface of the most image-side transparent substrate;
    Each lens element covers each opening and each opening edge of the light blocking diaphragm layer,
    The plurality of openings are lens array units each having a non-circular contour shape.
  2.  前記複数の開口は、直交する2軸に関して対称な形状を有し、前記2軸に沿って等しい又は狭い側の開口幅は、前記2軸に対して傾いた中間方向の開口幅よりも狭い、請求項1に記載のレンズアレイユニット。 The plurality of openings have a symmetrical shape with respect to two orthogonal axes, and an opening width on the same or narrow side along the two axes is narrower than an opening width in an intermediate direction inclined with respect to the two axes. The lens array unit according to claim 1.
  3.  前記複数の開口は、直交する2軸に関して対称な形状を有し、前記2軸に沿って相対的に広い側の第1開口幅と相対的に狭い側の第2開口幅とを有する、請求項1及び2のいずれか一項に記載のレンズアレイユニット。 The plurality of openings have a symmetrical shape with respect to two orthogonal axes, and have a first opening width on a relatively wide side and a second opening width on a relatively narrow side along the two axes. Item 3. The lens array unit according to any one of Items 1 and 2.
  4.  前記第1開口幅と前記第2開口幅との比は、前記レンズアレイと組み合わせるべきセンサーの長辺と短辺との比に略等しい、請求項3に記載のレンズアレイユニット。 The lens array unit according to claim 3, wherein a ratio between the first opening width and the second opening width is substantially equal to a ratio between a long side and a short side of a sensor to be combined with the lens array.
  5.  相対的に物体側に配置される第1のレンズアレイと、最像側に配置される第2のレンズアレイとを備える、請求項1から4までのいずれか一項に記載のレンズアレイユニット。 The lens array unit according to any one of claims 1 to 4, comprising a first lens array disposed relatively on the object side and a second lens array disposed on the most image side.
  6.  前記第1のレンズアレイは、最物体側に配置されており、前記第1のレンズアレイの透明基板の少なくとも物体側の表面に、前記第1のレンズアレイに形成された複数のレンズ要素にそれぞれ対応する複数の開口を有する開口絞り層が設けられている、請求項5に記載のレンズアレイユニット。 The first lens array is disposed on the most object side, and each of the plurality of lens elements formed in the first lens array is provided on at least the object side surface of the transparent substrate of the first lens array. The lens array unit according to claim 5, wherein an aperture stop layer having a plurality of corresponding openings is provided.
  7.  前記第1のレンズアレイの前記透明基板の像側の表面に、前記複数のレンズ要素にそれぞれ対応する複数の開口を有する補助絞り層が設けられている、請求項6に記載のレンズアレイユニット。 The lens array unit according to claim 6, wherein an auxiliary aperture layer having a plurality of apertures respectively corresponding to the plurality of lens elements is provided on the image side surface of the transparent substrate of the first lens array.
  8.  前記開口絞り層の開口は、円形又は角が取れた矩形である、請求項6及び7のいずれか一項に記載のレンズアレイユニット。 The lens array unit according to any one of claims 6 and 7, wherein the aperture of the aperture stop layer is a circle or a rectangle with a corner.
  9.  前記補助絞り層の開口は、前記遮光絞り層の開口と略相似な形状である、請求項7に記載のレンズアレイユニット。 The lens array unit according to claim 7, wherein the opening of the auxiliary diaphragm layer has a shape substantially similar to the opening of the light-shielding diaphragm layer.
  10.  前記遮光絞り層の開口は、矩形又は角が取れた矩形である、請求項1から9までのいずれか一項に記載のレンズアレイユニット。 The lens array unit according to any one of claims 1 to 9, wherein the opening of the light-shielding diaphragm layer is a rectangle or a rectangle with a rounded corner.
  11.  最像側のレンズアレイよりも像側に平行平板をさらに備える、請求項1から10までのいずれか一項に記載のレンズアレイユニット。 The lens array unit according to any one of claims 1 to 10, further comprising a parallel plate on the image side of the lens array on the most image side.
  12.  前記平行平板の少なくとも一面には、反射防止膜が設けられている、請求項11に記載のレンズアレイユニット。 The lens array unit according to claim 11, wherein an antireflection film is provided on at least one surface of the parallel plate.
  13.  前記平行平板の一面には、複数の開口を有する遮光膜が設けられている、請求項11及び12のいずれか一項に記載のレンズアレイユニット。 The lens array unit according to any one of claims 11 and 12, wherein a light shielding film having a plurality of openings is provided on one surface of the parallel plate.
  14.  請求項1から13までのいずれか一項に記載のレンズアレイユニットと、
     前記レンズアレイユニットに対向して配置されるセンサーアレイと
    を備える撮像装置。
    The lens array unit according to any one of claims 1 to 13,
    An imaging apparatus comprising: a sensor array disposed to face the lens array unit.
  15.  センサーアレイのカバーガラスの表面には、反射防止膜が形成されている、請求項14に記載の撮像装置。 The imaging device according to claim 14, wherein an antireflection film is formed on a surface of the cover glass of the sensor array.
  16.  透明基板の少なくとも像側の表面に、非円形の輪郭形状をそれぞれ有する複数の開口を設けた遮光絞り層を形成する工程と、
     少なくとも前記透明基板のうち前記遮光絞り層を設けた側に、各開口の縁部を覆うように複数のレンズ要素を形成する工程と、
     前記開口を覆うレンズ要素が最も像側になるように、当該レンズ要素を有するレンズアレイに、当該レンズアレイを通過した光を受光するためのセンサーアレイとの距離を規定するためのスペーサーを設ける工程と
    備えるレンズアレイユニットの製造方法。
    Forming a light-shielding diaphragm layer having a plurality of openings each having a noncircular contour shape on at least the image-side surface of the transparent substrate;
    Forming a plurality of lens elements so as to cover the edge of each opening on at least the side of the transparent substrate on which the light-shielding diaphragm layer is provided;
    A step of providing a spacer for defining the distance from the sensor array for receiving the light that has passed through the lens array in the lens array having the lens element so that the lens element covering the opening is closest to the image side. A method of manufacturing a lens array unit.
  17.  前記透明基板として、複数のレンズアレイユニットに対応するサイズの共通透明基板を用いて、請求項16に記載の製造方法によって、複数のレンズアレイユニットを一体的に作製し、当該複数のレンズアレイユニットを一体的に作製された複数のセンサーアレイに接合し、前記複数のレンズアレイユニットと前記複数のセンサーアレイとの接合体を切断することによって個々のユニットに個片化する撮像装置の製造方法。 A plurality of lens array units are integrally manufactured by the manufacturing method according to claim 16 using a common transparent substrate having a size corresponding to the plurality of lens array units as the transparent substrate. Is bonded to a plurality of integrally manufactured sensor arrays, and a joined body of the plurality of lens array units and the plurality of sensor arrays is cut into individual units, thereby producing an image pickup apparatus.
PCT/JP2014/056144 2013-03-19 2014-03-10 Lens array unit, imaging device, method for manufacturing lens array unit, and method for manufacturing imaging device WO2014148291A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-057327 2013-03-19
JP2013057327 2013-03-19

Publications (1)

Publication Number Publication Date
WO2014148291A1 true WO2014148291A1 (en) 2014-09-25

Family

ID=51579978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056144 WO2014148291A1 (en) 2013-03-19 2014-03-10 Lens array unit, imaging device, method for manufacturing lens array unit, and method for manufacturing imaging device

Country Status (1)

Country Link
WO (1) WO2014148291A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3525034A1 (en) * 2018-02-09 2019-08-14 Coretronic Corporation Display apparatus
CN110662994A (en) * 2017-06-02 2020-01-07 宁波舜宇光电信息有限公司 Optical lens, optical assembly, optical module and manufacturing method
WO2022184837A1 (en) * 2021-03-05 2022-09-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Tandem stop architecture for increasing the fill factor of compact multi-channel imaging systems

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025687A (en) * 1988-06-22 1990-01-10 Toshiba Glass Co Ltd Front glass for image sensor
JP2007094103A (en) * 2005-09-29 2007-04-12 Funai Electric Co Ltd Compound eye imaging system
JP2009225064A (en) * 2008-03-14 2009-10-01 Ricoh Co Ltd Image input device, authentication device, and electronic apparatus having them mounted thereon
JP2012186434A (en) * 2011-02-18 2012-09-27 Sony Corp Solid-state imaging apparatus
WO2012173252A1 (en) * 2011-06-17 2012-12-20 コニカミノルタアドバンストレイヤー株式会社 Method for manufacturing wafer lens, wafer lens, method for manufacturing lens unit, and lens unit
JP2013001055A (en) * 2011-06-21 2013-01-07 Konica Minolta Advanced Layers Inc Method of manufacturing wafer lens, wafer lens, and lens unit
JP2013012859A (en) * 2011-06-28 2013-01-17 Sharp Corp Imaging lens and imaging module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025687A (en) * 1988-06-22 1990-01-10 Toshiba Glass Co Ltd Front glass for image sensor
JP2007094103A (en) * 2005-09-29 2007-04-12 Funai Electric Co Ltd Compound eye imaging system
JP2009225064A (en) * 2008-03-14 2009-10-01 Ricoh Co Ltd Image input device, authentication device, and electronic apparatus having them mounted thereon
JP2012186434A (en) * 2011-02-18 2012-09-27 Sony Corp Solid-state imaging apparatus
WO2012173252A1 (en) * 2011-06-17 2012-12-20 コニカミノルタアドバンストレイヤー株式会社 Method for manufacturing wafer lens, wafer lens, method for manufacturing lens unit, and lens unit
JP2013001055A (en) * 2011-06-21 2013-01-07 Konica Minolta Advanced Layers Inc Method of manufacturing wafer lens, wafer lens, and lens unit
JP2013012859A (en) * 2011-06-28 2013-01-17 Sharp Corp Imaging lens and imaging module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110662994A (en) * 2017-06-02 2020-01-07 宁波舜宇光电信息有限公司 Optical lens, optical assembly, optical module and manufacturing method
EP3525034A1 (en) * 2018-02-09 2019-08-14 Coretronic Corporation Display apparatus
CN110133861A (en) * 2018-02-09 2019-08-16 中强光电股份有限公司 Display device
CN110133861B (en) * 2018-02-09 2021-11-02 中强光电股份有限公司 Three-dimensional display device
US11327335B2 (en) 2018-02-09 2022-05-10 Coretronic Corporation Display apparatus
WO2022184837A1 (en) * 2021-03-05 2022-09-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Tandem stop architecture for increasing the fill factor of compact multi-channel imaging systems

Similar Documents

Publication Publication Date Title
TWI722068B (en) Optical lens, optical lens
TWI667525B (en) Camera module and assembly method thereof
JP5009209B2 (en) Wafer-like optical device and manufacturing method thereof, electronic element wafer module, sensor wafer module, electronic element module, sensor module, and electronic information device
US8184195B2 (en) Lens shielding structures for digital image sensors
US8796798B2 (en) Imaging module, fabricating method therefor, and imaging device
US8885258B2 (en) Stack-type lens array and lens module
TWI611202B (en) Wafer stacks and optical devices
TWI475674B (en) Camera module and fabrication thereof
US20080073734A1 (en) Camera module and method of fabricating the same
US20100321564A1 (en) Camera system and associated methods
WO2016009972A1 (en) Solid state imaging device and manufacturing method therefor
WO2014148291A1 (en) Lens array unit, imaging device, method for manufacturing lens array unit, and method for manufacturing imaging device
JP2007094103A (en) Compound eye imaging system
WO2019062610A1 (en) Camera module for reducing stray light and photosensitive assembly thereof, and electronic device
WO2014119646A1 (en) Laminated lens array, aperture member for laminated lens array, and related device and method
JP6740628B2 (en) Solid-state image sensor and manufacturing method thereof
TW201340302A (en) Optical devices and opto-electronic modules and methods for manufacturing the same
WO2015019768A1 (en) Lens array, lens array stack, and method for fabrication thereof
JPH03175403A (en) Solid-state image pickup device
JP2005037884A (en) Lens plate, its manufacturing method, and image transmitting apparatus
JP2006080597A (en) Image pickup module and method of manufacturing the same
JP2014056063A (en) Imaging apparatus, lens unit, and method for manufacturing lens unit
US11798966B2 (en) Light ray direction control element, manufacturing method for light ray direction control element, and imaging element
JP3998234B2 (en) Imaging device
WO2022050345A1 (en) Solid-state imaging element and manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14767653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14767653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP