WO2014148198A1 - Liquid-crystal display and method for manufacturing liquid-crystal display - Google Patents

Liquid-crystal display and method for manufacturing liquid-crystal display Download PDF

Info

Publication number
WO2014148198A1
WO2014148198A1 PCT/JP2014/054156 JP2014054156W WO2014148198A1 WO 2014148198 A1 WO2014148198 A1 WO 2014148198A1 JP 2014054156 W JP2014054156 W JP 2014054156W WO 2014148198 A1 WO2014148198 A1 WO 2014148198A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
light
crystal display
display device
mark
Prior art date
Application number
PCT/JP2014/054156
Other languages
French (fr)
Japanese (ja)
Inventor
淳子 梅澤
英俊 中川
大樹 速井
Original Assignee
堺ディスプレイプロダクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺ディスプレイプロダクト株式会社 filed Critical 堺ディスプレイプロダクト株式会社
Publication of WO2014148198A1 publication Critical patent/WO2014148198A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/337Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133631Birefringent elements, e.g. for optical compensation with a spatial distribution of the retardation value
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects

Definitions

  • the present invention relates to a liquid crystal display device provided with a pattern retardation film used in passive stereoscopic video display and a method for manufacturing the liquid crystal display device.
  • a display method using a passive method (polarized glasses method) is known.
  • the light emitted from the liquid crystal panel is set to two different polarization states, a polarizing plate that transmits only one polarized light is used for the right eye, and a polarizing plate that transmits only the other polarized light is used for the left eye.
  • the image is recognized as a stereoscopic image.
  • a pattern retardation film is used in order to change the light emitted from the liquid crystal panel into two different polarization states (see, for example, Patent Document 1).
  • the pattern retardation film includes a pattern retardation layer in which regions having different retardations are regularly arranged. For example, by transmitting linearly polarized light, the linearly polarized light transmitted through each region has two different polarization states. It is configured to convert to circularly polarized light (or elliptically polarized light).
  • linearly polarized light transmitted through the liquid crystal panel can be converted into two types of circularly polarized light (or elliptically polarized light) having different polarization states. Therefore, the right-eye video and the left-eye video are respectively displayed in one screen, the right-eye video is converted into one polarization state, and the left-eye video is converted into the other polarization state. Thus, the image is recognized as a stereoscopic image when observed through the above-described polarizing glasses.
  • one of the two types of retardation regions of the pattern retardation film is made to correspond to the pixel group in the display region for displaying the right-eye image, and the other is used for the left-eye image. Since it is necessary to correspond to the pixel group in the display area to display, the positional accuracy at the time of bonding the pattern phase difference film with respect to a liquid crystal panel was calculated
  • An object of the present invention is to provide a liquid crystal display device capable of bonding a film on a color filter substrate with high accuracy and a method for manufacturing the liquid crystal display device.
  • the liquid crystal display device of the present application includes a liquid crystal panel in which a liquid crystal material is sealed between a light-transmitting color filter substrate and a TFT substrate, and two types of polarization states in which the polarization state of light transmitted through the liquid crystal panel is different.
  • the film for the liquid crystal panel is provided at two locations on the color filter substrate that are separated from each end of the color filter substrate by an appropriate length from both ends of the color filter substrate. A mark for positioning the bonding position is provided.
  • the liquid crystal display device of the present application is characterized in that the mark is provided at a position separated from the both ends by 10.0 mm or more.
  • the color filter substrate includes a colored layer that transmits light of a plurality of colors, and a light shielding grid that partitions the colored layer in a lattice pattern, and is made of the same material as the light shielding grid. The mark is formed.
  • the liquid crystal display device of the present application is characterized in that the mark is formed in a region on the color filter substrate that does not face a wiring pattern provided on a peripheral portion of the TFT substrate.
  • the liquid crystal display device manufacturing method of the present application includes a liquid crystal panel in which a liquid crystal substance is sealed between a light-transmitting color filter substrate and a TFT substrate, and two types of polarization states of light transmitted through the liquid crystal panel are different.
  • a manufacturing method of a liquid crystal display device comprising a pattern retardation film for converting to a polarized state of a mark, marks are formed at two positions on the color filter substrate that are separated from each other by an appropriate length from both ends of one side of the color filter substrate. It is characterized by forming.
  • the manufacturing method of the liquid crystal display device of the present application is characterized in that the mark is formed at a position separated by 10.0 mm or more from the both ends.
  • the manufacturing method of the liquid crystal display device of the present application is characterized in that the retardation film is bonded to the liquid crystal panel based on the formed mark.
  • the method of manufacturing a liquid crystal display device includes: a color layer that transmits light of a plurality of colors; and a light-shielding lattice that partitions the colored layer in a lattice pattern on a light-transmitting substrate.
  • the mark is formed in the same step as the step of forming a substrate and forming the light-shielding grating on the light-transmitting substrate.
  • the present application it is possible to form a mark on the color filter substrate that indicates the reference of the bonding position of the pattern retardation film without adding a new process. Since this mark does not exist in the four corner regions of the color filter substrate, even if the sealing material bulges out near the four corners of the substrate when sealing the liquid crystal material between the substrates, the mark is not hidden by the sealing material.
  • the pattern retardation film can be bonded with reference to the marks with certainty.
  • FIG. 8 is a cross-sectional view taken along line AA shown in FIG. It is a schematic diagram which shows the other shape of an alignment mark. It is a schematic diagram which shows the process of forming an alignment mark on a CF side glass substrate. It is a schematic diagram which shows the other example of the formation position of an alignment mark.
  • FIG. FIG. 1 is a diagram showing a schematic configuration of a liquid crystal display device according to the present embodiment
  • FIG. 2 is a cross-sectional view of the liquid crystal display device according to the present embodiment.
  • the liquid crystal display device according to the present embodiment includes a liquid crystal panel 100, a pattern retardation film (hereinafter referred to as an FPR film 200 (FPR: Film-type Patterned Retarder)) bonded to the liquid crystal panel, and a backlight unit 300. .
  • FPR film 200 FPR: Film-type Patterned Retarder
  • the liquid crystal panel 100 includes a TFT side glass substrate 110 (TFT: Thin-Film transistor), a liquid crystal layer 120 formed by sealing a liquid crystal substance, a CF side glass substrate 130 (CF: Color Filter), and the like.
  • TFT Thin-Film transistor
  • CF Color Filter
  • the CF side glass substrate 130 has, on one side thereof, for example, colored layers 11 to 13 (see FIG. 10) that transmit light of colors corresponding to RGB colors, and the colored layers 11 to 13 are arranged in a lattice shape.
  • a color filter 131 including a light shielding grid 15 (see FIG. 10) partitioned by a black matrix as a pattern, a counter electrode 132, and an alignment film 133 are stacked.
  • a backlight unit 300, a diffusion plate 301, and a polarizing plate 135 are provided on the back side of the liquid crystal panel 100 (the other side of the TFT side glass substrate 110).
  • a polarizing plate 134 is provided on the front side of the liquid crystal panel 100 (the other side of the CF side glass substrate 130).
  • the backlight unit 300 is, for example, an edge light type backlight having a light source that emits light to the light guide plate from the side and a light guide plate that emits light incident from the side to the LCD module side, or the TFT side It is comprised by the direct type
  • the diffusion plate 301 is disposed between the polarizing plate 135 and the backlight unit 300 and has a function of diffusing light emitted from the backlight unit 300 toward the liquid crystal panel 100.
  • the polarizing plate 135 is disposed on the surface of the TFT side glass substrate 110, and the polarizing plate 134 is disposed on the surface of the CF side glass substrate 130.
  • the polarizing plates 134 and 135 are provided so as to transmit linearly polarized light orthogonal to each other.
  • the linearly polarized light transmitted through the polarizing plate 135 out of the light emitted from the backlight unit 300 passes through the liquid crystal layer 120 and enters the CF side polarizing plate 134.
  • the polarization state of the light transmitted through the liquid crystal layer 120 can be changed by a voltage applied to the liquid crystal layer 120. Therefore, a voltage corresponding to the video signal is applied to the pixel electrode 111 and the counter electrode 132, and an electric field is applied to the liquid crystal layer 120, thereby changing the polarization state of the light passing through the liquid crystal layer 120 and passing through the polarizing plate 134.
  • An optical image can be formed by controlling the amount of light to be emitted.
  • the liquid crystal display device includes the FPR film 200 separately from the polarizing plates 134 and 135 provided on both sides of the liquid crystal panel 100, and enables stereoscopic image display.
  • the FPR film 200 converts linearly polarized light transmitted through the polarizing plates 134 and 135 into two types of polarized light (for example, circularly polarized light) having different polarization states.
  • FIG. 3 is a plan view showing an example of the FPR film 200
  • FIG. 4 is a longitudinal sectional view thereof.
  • the FPR film 200 includes, for example, a first region 201 and a second region 202 that are different from each other in at least one of an in-plane slow axis and an in-plane retardation, and the first region 201 and the second region 202 are alternately arranged. It has a striped pattern.
  • Each of the first region 201 and the second region 202 has a strip shape extending in parallel to the lateral direction (X-axis direction shown in the drawing).
  • the FPR film 200 converts the linearly polarized light transmitted through the first region 201 into, for example, right circularly polarized light, and converts the linearly polarized light transmitted through the second region 202 into, for example, left circularly polarized light. Creating a state.
  • the stripe pattern in the FPR film 200 is set according to the position of the pixel provided in the liquid crystal panel 100. Further, the width in the vertical direction (Y-axis direction shown in FIG. 3) of the first region 201 and the width in the vertical direction of the second region 201 can be set according to the dimensions of the pixels of the liquid crystal panel 100.
  • a right-eye image for observation with the right eye and a left-eye image for observation with the left eye are displayed in the display area of the liquid crystal panel 100. indicate.
  • the right-eye video is a right circle.
  • Polarized (or left-circularly polarized) optical characteristics and the left-eye image has left-circularly polarized (or right-circularly polarized) optical characteristics.
  • a polarizing plate that transmits only one polarized light is used for the right eye and a polarizing plate that transmits only the other polarized light is used for the left eye. Be recognized.
  • FIG. 5 is a schematic diagram showing an example of an image displayed during stereoscopic image display.
  • the right-eye video and the left-eye video are alternately displayed in the display area of the liquid crystal panel 100 line by line.
  • the liquid crystal panel 100 has a resolution of full HD (that is, 1920 dots ⁇ 1080 lines)
  • a right eye image and a left eye image for 1920 dots ⁇ 540 lines are prepared, as shown in FIG.
  • the right eye image and the left eye image are alternately displayed line by line.
  • FIG. 5 for the sake of simplification, a three-dimensional image including nine lines R1 to R9 for the right eye and nine lines L1 to L9 for the left eye is shown.
  • the FPR for the liquid crystal panel 100 is set so that the positions of the right-eye video and the left-eye video for each line correspond to the positions of the first region 201 and the second region 202 of the FPR film 200.
  • the film 200 is bonded.
  • one of the features is that an alignment mark 16 (see FIG. 6) for positioning the bonding position of the FPR film 200 to the liquid crystal panel 100 is formed on the CF-side glass substrate 130.
  • the position of the alignment mark 16 As a reference, the position of the pixel (more specifically, the pixel group of each line displaying the image for the right eye and the image for the left eye) formed on the CF side glass substrate 130 is set. It becomes possible to make each phase area of FPR film 200 correspond.
  • FIG. 6 is a schematic diagram showing an example of the position where the alignment mark 16 is formed.
  • the CF side glass substrate 130 is provided with a display area 10 formed by the colored layers 11 to 13 and the light shielding grid 15, and a frame portion 20 formed in the same process as the light shielding grid 15 around the display area 10. Is provided.
  • a plurality of TFT side tabs 60 including a wiring pattern connected to the TFT 112 and the like are provided on the peripheral portion on one side of the TFT side glass substrate 110.
  • the alignment marks 16 are formed at two locations on one side of the substrate on the one surface side of the CF side glass substrate 130. In the example shown in FIG. 6, the alignment marks 16 and 16 are formed at two locations on the upper side and the lower side of the CF side glass substrate 130, respectively. The structure which forms may be sufficient. Moreover, the alignment mark 16,16 formed in two places of the left side of CF side glass substrate 130, or two places of the right side may be included. Furthermore, the number of alignment marks 16 per side is not limited to two, and may be three or more.
  • Each alignment mark 16 is preferably formed at a position separated from the four corners of the CF side glass substrate 130 by an appropriate length (for example, 10.0 mm or more) along one side.
  • the sealing material 31 is drawn when the liquid crystal substance is sealed. However, the drawing speed is reduced in the regions near the four corners of the substrate, so the other regions In many cases, the width of the sealing material 31 is thick and finished. That is, in the region near the four corners of the CF side glass substrate 130, the sealing material 31 may spread outward in the plane, and even if the alignment mark 16 is formed near this region, it is difficult to observe from the outside. There is a possibility. Therefore, in the present embodiment, the alignment marks 16 are formed excluding regions near the four corners of the substrate.
  • each alignment mark 16 is preferably formed in a region that does not face the TFT side tab 60 provided on the TFT side glass substrate 110. Since the TFT side tab 60 has a wiring pattern connected to the TFT 112 or the like, when such a wiring pattern and the alignment mark 16 face each other in the thickness direction of the liquid crystal panel 100, the alignment mark 16 is recognized from the outside. It is difficult to do.
  • the alignment marks 16 are formed at two locations on the upper side and the lower side of the CF-side glass substrate 130, respectively, in positions symmetrical with respect to the vertical direction of the substrate. It is preferable to form two alignment marks 16 and 16 on the upper side and two alignment marks 16 and 16 on the lower side. By forming the alignment marks 16 and 16 at positions symmetrical with respect to the vertical direction of the substrate, even if a reading failure occurs in the two alignment marks 16 and 16 on the upper side (or the lower side), the liquid crystal panel 100 By reversing the upper and lower sides, the other two alignment marks 16 and 16 can be read.
  • FIG. 7 is a partially enlarged view of a region near the alignment mark 16
  • FIG. 8 is a cross-sectional view taken along the line AA shown in FIG.
  • the alignment mark 16 has a square shape of about 0.2 mm ⁇ 0.2 mm.
  • the alignment mark 16 is formed on the CF side glass substrate 130 with the same material as the light shielding grid 15 in the same process as the process for forming the light shielding grid 15 (black matrix). Formed.
  • the camera field of view for reading the alignment mark 16 is an area of about 3.8 mm ⁇ 3.8 mm, and it is desirable that there is no similar pattern that causes an error in reading the alignment mark 16 in this area. For this reason, the alignment mark 16 is formed in a region outside the sealing region 30 where the sealing material 31 is formed and in a region not facing the wiring pattern of the TFT side tab 60 in the thickness direction of the liquid crystal panel 100.
  • the alignment mark 16 has a square shape, but is not limited to a square shape.
  • FIG. 9 is a schematic diagram showing another shape of the alignment mark 16.
  • a circle FIG. 9A
  • a cross FIG. 9B
  • a triangle FIG. 9C
  • the mark may have an appropriate shape as shown in FIGS. 9D to 9F.
  • FIG. 10 is a schematic diagram showing a process of forming the alignment mark 16 on the CF side glass substrate 130.
  • the alignment mark 16 can be formed in the same process as the process of forming the light shielding grid 15 on the CF side glass substrate 130.
  • the light shielding grid 15 is formed by a photolithography technique using a black photoresist.
  • CF side glass substrate 130 such as a glass substrate
  • a photoresist having a thickness of about 1 ⁇ m is applied by applying a black photoresist to one side of the substrate.
  • Layer 130b is formed (FIG. 10B).
  • the surface of the photoresist layer 130b is exposed using a photomask in which a pattern to be projected is formed of a light-shielding film such as chromium (Cr), and unnecessary portions are removed by development processing (FIG. 10C).
  • a photomask in which a pattern to be projected is formed of a light-shielding film such as chromium (Cr)
  • unnecessary portions are removed by development processing (FIG. 10C).
  • a photoresist layer 130r having a thickness of about 1 ⁇ m is formed on the entire surface of the substrate on which the light shielding grid 15 is formed by applying a photoresist that transmits light of a specific color (for example, red) (FIG. 10D). Then, the photoresist layer 130r is exposed and developed using a photomask for forming a pixel pattern, thereby forming a colored layer 11 (pixel) that transmits light of a specific color with a predetermined pixel pattern. (FIG. 10E). In the same process, the colored layers 12 and 13 corresponding to other colors (for example, green and blue) are formed on the CF side glass substrate 130 (FIG. 10F).
  • the FPR film can be bonded to the other surface side of the CF side glass substrate 130 with the position of the alignment mark 16 formed in this way as a reference.
  • a line segment connecting the two alignment marks 16 and 16 formed on the upper side (or the lower side) of the CF side glass substrate 130 is parallel to a horizontal pixel line in the display region 10 (X-axis direction shown in FIG. 3).
  • the line segment connecting the two alignment marks 16, 16 is parallel to the first region 201 and the second region 202 (for example, the boundary line between the first region 201 and the second region 202) of the FPR film 200.
  • the alignment mark 16 is formed using the same material as the light-shielding grating 15, but the colored layers 11 to 13 are formed using the same material as the colored layers 11 to 13.
  • the alignment mark 16 may be formed in the same process as the process.
  • the alignment mark 16 may have any one of a single layer structure using a black matrix, a single layer structure using the colored layers 11 (12, 13), and a stacked structure of the black matrix and the colored layers 11 to 13.
  • the signal wiring (metal) conventionally formed on the TFT side glass substrate 110 is formed on the CF side glass substrate 130, the alignment mark 16 may be formed using the same material as the signal wiring.
  • the alignment mark 16 is formed at a position that is symmetric with respect to the vertical direction of the CF side glass substrate 130. However, some pattern on the CF side glass substrate 130 (for example, connected to the counter electrode 132). If the alignment mark 16 cannot be formed symmetrically or vertically symmetrical due to interference with the wiring pattern), the alignment mark 16 may be formed at another position.
  • the same components as those in the first embodiment will be described with the same reference numerals as those in the first embodiment.
  • FIG. 11 is a schematic diagram showing another example of the position where the alignment mark 16 is formed.
  • the alignment marks 16 are formed at two locations on one side of the substrate on one side of the CF side glass substrate 130.
  • alignment marks 16 are formed at two locations on the left side and the right side of the CF side glass substrate 130.
  • these alignment marks 16 and 16 are not left-right symmetric, they are provided at point-symmetrical positions with respect to the center of the substrate. Therefore, as in the first embodiment, even if a reading failure occurs in the two alignment marks 16 and 16 on the left side (or right side), the other two alignment marks 16 are inverted by turning the liquid crystal panel 180 degrees. , 16 can be continued.
  • the alignment mark 16 is formed at a line-symmetrical or point-symmetrical position in the plane of the substrate, but the symmetrical position is not an essential requirement.
  • Two alignment marks 16 may be formed at asymmetric positions on the upper side and the lower side (or the left side and the right side).

Abstract

The provision of a liquid-crystal display and a method for manufacturing a liquid-crystal display wherein a patterned retardation film can be bonded to a liquid-crystal panel with high precision. In this method for manufacturing a liquid-crystal display provided with a liquid-crystal panel comprising a liquid-crystal substance enclosed between a light-transmitting color-filter substrate and a TFT substrate and a patterned retardation film that converts the polarization state of light that has passed through said liquid-crystal panel to two different polarization states, marks are formed on the color-filter substrate at two points that are appropriate distances away, along one edge of the color-filter substrate, from the respective ends of said edge, and using said marks as references, the patterned retardation film is bonded to the liquid-crystal panel.

Description

液晶表示装置及び液晶表示装置の製造方法Liquid crystal display device and method of manufacturing liquid crystal display device
 本発明は、パッシブ方式の立体映像表示で用いられるパターン位相差フィルムを備えた液晶表示装置及び液晶表示装置の製造方法に関する。 The present invention relates to a liquid crystal display device provided with a pattern retardation film used in passive stereoscopic video display and a method for manufacturing the liquid crystal display device.
 立体映像表示方式の1つとして、パッシブ方式(偏光眼鏡方式)による表示方式が知られている。この表示方式では、液晶パネルからの出射光を異なる2種の偏光状態とし、一方の偏光のみを透過する偏光板を右眼用に、他方の偏光のみを透過する偏光板を左眼用にして構成された偏光眼鏡を通じて表示画面を観察させることで、立体感のある画像として認識させるものである。 As one of the stereoscopic image display methods, a display method using a passive method (polarized glasses method) is known. In this display method, the light emitted from the liquid crystal panel is set to two different polarization states, a polarizing plate that transmits only one polarized light is used for the right eye, and a polarizing plate that transmits only the other polarized light is used for the left eye. By observing the display screen through the configured polarized glasses, the image is recognized as a stereoscopic image.
 液晶パネルからの出射光を異なる2種の偏光状態にするために、パターン位相差フィルムが利用される(例えば、特許文献1を参照)。パターン位相差フィルムは、位相差が異なる領域を規則的に配置したパターン位相差層を含み、例えば、直線偏光を透過させることによって、夫々の領域を透過する直線偏光を偏光状態が異なる2種類の円偏光(又は楕円偏光)に変換するように構成されている。 A pattern retardation film is used in order to change the light emitted from the liquid crystal panel into two different polarization states (see, for example, Patent Document 1). The pattern retardation film includes a pattern retardation layer in which regions having different retardations are regularly arranged. For example, by transmitting linearly polarized light, the linearly polarized light transmitted through each region has two different polarization states. It is configured to convert to circularly polarized light (or elliptically polarized light).
 このようなパターン位相差フィルムを液晶パネルに貼り合わせることにより、液晶パネルを透過する直線偏光を偏光状態の異なる2種類の円偏光(又は楕円偏光)に変換することができる。したがって、1つの画面内で右眼用の映像及び左眼用の映像をそれぞれ表示し、右眼用の映像を一方の偏光状態に変換し、左眼用の映像を他方の偏光状態に変換することで、上述の偏光眼鏡を通じて観察したときに立体感を有する映像として認識されることになる。 By sticking such a pattern retardation film to a liquid crystal panel, linearly polarized light transmitted through the liquid crystal panel can be converted into two types of circularly polarized light (or elliptically polarized light) having different polarization states. Therefore, the right-eye video and the left-eye video are respectively displayed in one screen, the right-eye video is converted into one polarization state, and the left-eye video is converted into the other polarization state. Thus, the image is recognized as a stereoscopic image when observed through the above-described polarizing glasses.
特許第4508280号公報Japanese Patent No. 4508280 特開2007-4111号公報Japanese Patent Laid-Open No. 2007-4111
 パッシブ方式の立体映像表示では、パターン位相差フィルムが有する2種類の位相差領域のうち一方を、右眼用映像を表示する表示領域内の画素群に対応させ、他方を、左眼用映像を表示する表示領域内の画素群に対応させる必要があるため、液晶パネルに対するパターン位相差フィルムを貼り合わせる際の位置精度が求められていた。 In the passive stereoscopic image display, one of the two types of retardation regions of the pattern retardation film is made to correspond to the pixel group in the display region for displaying the right-eye image, and the other is used for the left-eye image. Since it is necessary to correspond to the pixel group in the display area to display, the positional accuracy at the time of bonding the pattern phase difference film with respect to a liquid crystal panel was calculated | required.
 従来、液晶パネルに含まれる遮光層としてのブラックマトリクスを加工して、貼り合わせ位置の基準を示す櫛状のアライメントマークを形成し、このようなアライメントマークを基準として偏光板を整列させる技術が提案されていた(例えば、特許文献2を参照)。 Conventionally, a technique has been proposed in which a black matrix as a light-shielding layer included in a liquid crystal panel is processed to form a comb-shaped alignment mark indicating the reference of the bonding position, and a polarizing plate is aligned based on such an alignment mark. (For example, refer to Patent Document 2).
 しかしながら、特許文献2に記載のアライメントマークを形成するためには、カラーフィルタ基板上のブラックマトリクスを削り出す必要があるため、アライメントマーク部分に隙間が生じる可能性があり、この隙間からバックライトの光が漏れる虞があるという懸念が生じていた。 However, in order to form the alignment mark described in Patent Document 2, it is necessary to cut out the black matrix on the color filter substrate. Therefore, a gap may be formed in the alignment mark portion. There was concern that light could leak.
 本発明は、斯かる事情に鑑みてなされたものであり、新たな工程を加えることなくパターン位相差フィルムの貼り合わせ位置の基準を示すマークを形成し、このマークを利用することによりパターン位相差フィルムをカラーフィルタ基板上に精度良く貼り合わせることができる液晶表示装置及び液晶表示装置の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and forms a mark indicating a reference of a bonding position of a pattern retardation film without adding a new process, and by using this mark, a pattern retardation is obtained. An object of the present invention is to provide a liquid crystal display device capable of bonding a film on a color filter substrate with high accuracy and a method for manufacturing the liquid crystal display device.
 本願の液晶表示装置は、透光性を有するカラーフィルタ基板とTFT基板との間に液晶物質を封入してなる液晶パネルと、該液晶パネルを透過した光の偏光状態を異なる2種類の偏光状態に変換するパターン位相差フィルムとを備える液晶表示装置において、前記カラーフィルタ基板の一辺の両端から該一辺に沿って夫々適長離隔した前記カラーフィルタ基板上の2箇所に、前記液晶パネルに対する前記フィルムの貼り合わせ位置を位置決めするためのマークを備えることを特徴とする。 The liquid crystal display device of the present application includes a liquid crystal panel in which a liquid crystal material is sealed between a light-transmitting color filter substrate and a TFT substrate, and two types of polarization states in which the polarization state of light transmitted through the liquid crystal panel is different. The film for the liquid crystal panel is provided at two locations on the color filter substrate that are separated from each end of the color filter substrate by an appropriate length from both ends of the color filter substrate. A mark for positioning the bonding position is provided.
 本願の液晶表示装置は、前記マークを前記両端から10.0mm以上離隔した位置に備えることを特徴とする。 The liquid crystal display device of the present application is characterized in that the mark is provided at a position separated from the both ends by 10.0 mm or more.
 本願の液晶表示装置は、前記カラーフィルタ基板は、複数の色の光を透過させる着色層と、該着色層を格子状のパターンで区画する遮光格子とを含み、前記遮光格子と同一の材料にて前記マークを形成してあることを特徴とする。 In the liquid crystal display device of the present application, the color filter substrate includes a colored layer that transmits light of a plurality of colors, and a light shielding grid that partitions the colored layer in a lattice pattern, and is made of the same material as the light shielding grid. The mark is formed.
 本願の液晶表示装置は、前記TFT基板の周縁部に設けられている配線パターンと対向しない前記カラーフィルタ基板上の領域に前記マークを形成してあることを特徴とする。 The liquid crystal display device of the present application is characterized in that the mark is formed in a region on the color filter substrate that does not face a wiring pattern provided on a peripheral portion of the TFT substrate.
 本願の液晶表示装置の製造方法は、透光性を有するカラーフィルタ基板とTFT基板との間に液晶物質を封入してなる液晶パネルと、該液晶パネルを透過した光の偏光状態を異なる2種類の偏光状態に変換するパターン位相差フィルムとを備える液晶表示装置の製造方法において、前記カラーフィルタ基板の一辺の両端から該一辺に沿って夫々適長離隔した前記カラーフィルタ基板上の2箇所にマークを形成することを特徴とする。 The liquid crystal display device manufacturing method of the present application includes a liquid crystal panel in which a liquid crystal substance is sealed between a light-transmitting color filter substrate and a TFT substrate, and two types of polarization states of light transmitted through the liquid crystal panel are different. In a manufacturing method of a liquid crystal display device comprising a pattern retardation film for converting to a polarized state of a mark, marks are formed at two positions on the color filter substrate that are separated from each other by an appropriate length from both ends of one side of the color filter substrate. It is characterized by forming.
 本願の液晶表示装置の製造方法は、前記マークを前記両端から10.0mm以上離隔した位置に形成することを特徴とする。 The manufacturing method of the liquid crystal display device of the present application is characterized in that the mark is formed at a position separated by 10.0 mm or more from the both ends.
 本願の液晶表示装置の製造方法は、形成したマークを基準として前記液晶パネルに対して前記位相差フィルムを貼り合わせることを特徴とする。 The manufacturing method of the liquid crystal display device of the present application is characterized in that the retardation film is bonded to the liquid crystal panel based on the formed mark.
 本願の液晶表示装置の製造方法は、複数の色の光を透過させる着色層と、該着色層を格子状のパターンで区画する遮光格子とを透光性基板上に形成することにより前記カラーフィルタ基板を形成し、前記透光性基板上に前記遮光格子を形成する工程と同一の工程にて前記マークを形成することを特徴とする。 The method of manufacturing a liquid crystal display device according to the present application includes: a color layer that transmits light of a plurality of colors; and a light-shielding lattice that partitions the colored layer in a lattice pattern on a light-transmitting substrate. The mark is formed in the same step as the step of forming a substrate and forming the light-shielding grating on the light-transmitting substrate.
 本願によれば、新たな工程を加えることなくパターン位相差フィルムの貼り合わせ位置の基準を示すマークをカラーフィルタ基板上に形成することができる。このマークは、カラーフィルタ基板の四隅の領域に存在しないため、液晶物質を基板間に封入する際にシール材が基板の四隅近傍で外側へ膨らんだとしても、シール材によってマークが隠れることはなく、マークを確実に参照してパターン位相差フィルムの貼り合わせを行うことができる。 According to the present application, it is possible to form a mark on the color filter substrate that indicates the reference of the bonding position of the pattern retardation film without adding a new process. Since this mark does not exist in the four corner regions of the color filter substrate, even if the sealing material bulges out near the four corners of the substrate when sealing the liquid crystal material between the substrates, the mark is not hidden by the sealing material. The pattern retardation film can be bonded with reference to the marks with certainty.
本実施の形態に係る液晶表示装置の概略構成を示す図である。It is a figure which shows schematic structure of the liquid crystal display device which concerns on this Embodiment. 本実施の形態に係る液晶表示装置の断面図である。It is sectional drawing of the liquid crystal display device which concerns on this Embodiment. FPRフィルムの一例を示す平面図である。It is a top view which shows an example of an FPR film. FPRフィルムの一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of an FPR film. 立体映像表示の際に表示する映像の一例を示す模式図である。It is a schematic diagram which shows an example of the image | video displayed in the case of a three-dimensional video display. アライメントマークの形成位置の一例を示す模式図である。It is a schematic diagram which shows an example of the formation position of an alignment mark. アライメントマークの近傍領域の部分拡大図である。It is the elements on larger scale of the neighborhood field of an alignment mark. 図7に示すA-A線における断面図である。FIG. 8 is a cross-sectional view taken along line AA shown in FIG. アライメントマークの他の形状を示す模式図である。It is a schematic diagram which shows the other shape of an alignment mark. アライメントマークをCF側ガラス基板上に形成する工程を示す模式図である。It is a schematic diagram which shows the process of forming an alignment mark on a CF side glass substrate. アライメントマークの形成位置の他の例を示す模式図である。It is a schematic diagram which shows the other example of the formation position of an alignment mark.
 本発明をその実施の形態を示す図面に基づいて具体的に説明する。
 実施の形態1.
 図1は本実施の形態に係る液晶表示装置の概略構成を示す図であり、図2は本実施の形態に係る液晶表示装置の断面図である。本実施の形態に係る液晶表示装置は、液晶パネル100、液晶パネルに貼り合わされるパターン位相差フィルム(以下、FPRフィルム200(FPR : Film-type Patterned Retarder)という)、及びバックライトユニット300を備える。
The present invention will be specifically described with reference to the drawings showing the embodiments thereof.
Embodiment 1 FIG.
FIG. 1 is a diagram showing a schematic configuration of a liquid crystal display device according to the present embodiment, and FIG. 2 is a cross-sectional view of the liquid crystal display device according to the present embodiment. The liquid crystal display device according to the present embodiment includes a liquid crystal panel 100, a pattern retardation film (hereinafter referred to as an FPR film 200 (FPR: Film-type Patterned Retarder)) bonded to the liquid crystal panel, and a backlight unit 300. .
 液晶パネル100は、TFT側ガラス基板110(TFT : Thin-Film transistor)、液晶物質が封入されることによって形成される液晶層120、CF側ガラス基板130(CF : Color Filter)等を備える。TFT側ガラス基板110には、その一面側に、各画素に対応する画素電極111、及び画素電極111に接続されるTFT112、並びに配向膜113が積層される。
 また、CF側ガラス基板130には、その一面側に、例えばRGB各色に対応した色の光を透過する着色層11~13(図10を参照)、及びこの着色層11~13を格子状のパターンであるブラックマトリクスで区画する遮光格子15(図10を参照)からなるカラーフィルタ131、並びに対向電極132及び配向膜133が積層される。
The liquid crystal panel 100 includes a TFT side glass substrate 110 (TFT: Thin-Film transistor), a liquid crystal layer 120 formed by sealing a liquid crystal substance, a CF side glass substrate 130 (CF: Color Filter), and the like. On the one side of the TFT side glass substrate 110, a pixel electrode 111 corresponding to each pixel, a TFT 112 connected to the pixel electrode 111, and an alignment film 113 are laminated.
Further, the CF side glass substrate 130 has, on one side thereof, for example, colored layers 11 to 13 (see FIG. 10) that transmit light of colors corresponding to RGB colors, and the colored layers 11 to 13 are arranged in a lattice shape. A color filter 131 including a light shielding grid 15 (see FIG. 10) partitioned by a black matrix as a pattern, a counter electrode 132, and an alignment film 133 are stacked.
 液晶パネル100の背面側(TFT側ガラス基板110の他面側)には、バックライトユニット300、拡散板301及び偏光板135が設けられている。また、液晶パネル100の表面側(CF側ガラス基板130の他面側)には、偏光板134が設けられている。 A backlight unit 300, a diffusion plate 301, and a polarizing plate 135 are provided on the back side of the liquid crystal panel 100 (the other side of the TFT side glass substrate 110). A polarizing plate 134 is provided on the front side of the liquid crystal panel 100 (the other side of the CF side glass substrate 130).
 バックライトユニット300は、例えば、側方から導光板に対して光を発する光源と、側方から入射した光をLCDモジュール側に出射する導光板とを有するエッジライト式バックライト、又は、TFT側ガラス基板110に対向するように配置した複数のLEDを備える直下型のLEDバックライトにより構成される。 The backlight unit 300 is, for example, an edge light type backlight having a light source that emits light to the light guide plate from the side and a light guide plate that emits light incident from the side to the LCD module side, or the TFT side It is comprised by the direct type | mold LED backlight provided with several LED arrange | positioned so that the glass substrate 110 may be opposed.
 拡散板301は、偏光板135とバックライトユニット300との間に配設され、バックライトユニット300から出射された光を液晶パネル100側に拡散させる機能を有する。
 偏光板135は、TFT側ガラス基板110の表面に配置され、偏光板134は、CF側ガラス基板130の表面に配置される。偏光板134,135は、互いに直交する直線偏光を透過するように設けられる。
The diffusion plate 301 is disposed between the polarizing plate 135 and the backlight unit 300 and has a function of diffusing light emitted from the backlight unit 300 toward the liquid crystal panel 100.
The polarizing plate 135 is disposed on the surface of the TFT side glass substrate 110, and the polarizing plate 134 is disposed on the surface of the CF side glass substrate 130. The polarizing plates 134 and 135 are provided so as to transmit linearly polarized light orthogonal to each other.
 このような構成により、バックライトユニット300から出射された光のうち偏光板135を透過した直線偏光は、液晶層120を通過してCF側の偏光板134に入射する。このとき、液晶層120を透過する光の偏光状態は、液晶層120に印加する電圧によって変化させることができる。このため映像信号に対応した電圧を、画素電極111及び対向電極132に印加し、液晶層120に電界を印加することで、液晶層120を通過する光の偏光状態を変え、偏光板134を透過する光の光量を制御して、光学画像を形成することができる。 With such a configuration, the linearly polarized light transmitted through the polarizing plate 135 out of the light emitted from the backlight unit 300 passes through the liquid crystal layer 120 and enters the CF side polarizing plate 134. At this time, the polarization state of the light transmitted through the liquid crystal layer 120 can be changed by a voltage applied to the liquid crystal layer 120. Therefore, a voltage corresponding to the video signal is applied to the pixel electrode 111 and the counter electrode 132, and an electric field is applied to the liquid crystal layer 120, thereby changing the polarization state of the light passing through the liquid crystal layer 120 and passing through the polarizing plate 134. An optical image can be formed by controlling the amount of light to be emitted.
 本実施の形態に係る液晶表示装置は、液晶パネル100の両側に設けられた偏光板134,135とは別に、FPRフィルム200を備え、立体映像表示を可能にしている。FPRフィルム200は、偏光板134,135を透過する直線偏光を偏光状態が異なる2種類の偏光(例えば、円偏光)に変換する。 The liquid crystal display device according to the present embodiment includes the FPR film 200 separately from the polarizing plates 134 and 135 provided on both sides of the liquid crystal panel 100, and enables stereoscopic image display. The FPR film 200 converts linearly polarized light transmitted through the polarizing plates 134 and 135 into two types of polarized light (for example, circularly polarized light) having different polarization states.
 図3はFPRフィルム200の一例を示す平面図であり、図4はその縦断面図である。FPRフィルム200は、例えば、面内遅相軸及び面内位相差の少なくとも一方が互いに異なる第1領域201と第2領域202とを備え、これらの第1領域201及び第2領域202を交互に配置したストライプ状のパターンを有している。第1領域201及び第2領域202は、それぞれ横方向(図に示すX軸方向)に対して平行に延在する帯状の形状を有している。そして、FPRフィルム200は、第1領域201を透過する直線偏光を例えば右円偏光に変換し、第2領域202を透過する直線偏光を例えば左円偏光に変換することで、異なる2種類の偏光状態を作り出している。 FIG. 3 is a plan view showing an example of the FPR film 200, and FIG. 4 is a longitudinal sectional view thereof. The FPR film 200 includes, for example, a first region 201 and a second region 202 that are different from each other in at least one of an in-plane slow axis and an in-plane retardation, and the first region 201 and the second region 202 are alternately arranged. It has a striped pattern. Each of the first region 201 and the second region 202 has a strip shape extending in parallel to the lateral direction (X-axis direction shown in the drawing). The FPR film 200 converts the linearly polarized light transmitted through the first region 201 into, for example, right circularly polarized light, and converts the linearly polarized light transmitted through the second region 202 into, for example, left circularly polarized light. Creating a state.
 FPRフィルム200におけるストライプ状のパターンは、液晶パネル100が備える画素の位置に応じて設定される。また、第1領域201の縦方向(図3に示すY軸方向)の幅及び第2領域201の縦方向の幅は、液晶パネル100の画素の寸法に合わせて設定することができる。液晶表示装置において立体映像表示を行う場合、後述するように、右眼で観察されるための右眼用映像及び左眼で観察されるための左眼用映像を液晶パネル100の表示領域内に表示する。これらの右眼用映像及び左眼用映像のうち一方をFPRフィルム200の第1領域201に対応させ、他方をFPRフィルム200の第2領域202に対応させることにより、右眼用映像は右円偏光(又は左円偏光)の光学特性を有し、左眼用映像は左円偏光(又は右円偏光)の光学特性を有するようになる。この結果、一方の偏光のみを透過する偏光板を右眼用に、他方の偏光のみを透過する偏光板を左眼用にして構成された偏光眼鏡を通すことにより、観察者には立体映像として認識されるようになる。 The stripe pattern in the FPR film 200 is set according to the position of the pixel provided in the liquid crystal panel 100. Further, the width in the vertical direction (Y-axis direction shown in FIG. 3) of the first region 201 and the width in the vertical direction of the second region 201 can be set according to the dimensions of the pixels of the liquid crystal panel 100. When stereoscopic image display is performed on the liquid crystal display device, as will be described later, a right-eye image for observation with the right eye and a left-eye image for observation with the left eye are displayed in the display area of the liquid crystal panel 100. indicate. By making one of the right-eye video and the left-eye video correspond to the first region 201 of the FPR film 200 and the other to the second region 202 of the FPR film 200, the right-eye video is a right circle. Polarized (or left-circularly polarized) optical characteristics, and the left-eye image has left-circularly polarized (or right-circularly polarized) optical characteristics. As a result, a polarizing plate that transmits only one polarized light is used for the right eye and a polarizing plate that transmits only the other polarized light is used for the left eye. Be recognized.
 図5は立体映像表示の際に表示する映像の一例を示す模式図である。本実施の形態では、液晶表示装置にて立体映像表示を行う場合、液晶パネル100の表示領域内で右眼用映像及び左眼用映像を1ラインずつ交互に表示する。例えば、液晶パネル100がフルHD(すなわち、1920ドット×1080ライン)の解像度を有する場合、1920ドット×540ライン分の右眼用映像及び左眼用映像をそれぞれ用意し、図5に示す如く、右眼用映像及び左眼用映像を1ラインずつ交互に表示する。
 なお、図5では、簡略化のため、右眼用の9つのラインR1~R9及び左眼用の9つラインL1~L9により構成される立体映像を示している。
FIG. 5 is a schematic diagram showing an example of an image displayed during stereoscopic image display. In the present embodiment, when stereoscopic video display is performed on the liquid crystal display device, the right-eye video and the left-eye video are alternately displayed in the display area of the liquid crystal panel 100 line by line. For example, when the liquid crystal panel 100 has a resolution of full HD (that is, 1920 dots × 1080 lines), a right eye image and a left eye image for 1920 dots × 540 lines are prepared, as shown in FIG. The right eye image and the left eye image are alternately displayed line by line.
In FIG. 5, for the sake of simplification, a three-dimensional image including nine lines R1 to R9 for the right eye and nine lines L1 to L9 for the left eye is shown.
 パッシブ方式の立体映像表示方式では、これらの右眼用映像及び左眼用映像の偏光状態を互いに異なる偏光状態に変換する必要がある。このため、ライン毎の右眼用映像及び左眼用映像の夫々の位置と、FPRフィルム200の第1領域201及び第2領域202の夫々の位置とが対応するように、液晶パネル100に対するFPRフィルム200の貼り合わせを行う。本実施の形態では、液晶パネル100に対するFPRフィルム200の貼り合わせ位置を位置決めするためのアライメントマーク16(図6を参照)をCF側ガラス基板130上に形成することを特徴の1つとしている。アライメントマーク16の位置を基準とすることにより、CF側ガラス基板130上に形成される画素(より詳細には、右眼用映像及び左眼用映像を表示する各ラインの画素群)の位置にFPRフィルム200の各位相領域を対応させることが可能となる。 In the passive stereoscopic video display system, it is necessary to convert the polarization state of the right-eye video and the left-eye video into different polarization states. Therefore, the FPR for the liquid crystal panel 100 is set so that the positions of the right-eye video and the left-eye video for each line correspond to the positions of the first region 201 and the second region 202 of the FPR film 200. The film 200 is bonded. In this embodiment, one of the features is that an alignment mark 16 (see FIG. 6) for positioning the bonding position of the FPR film 200 to the liquid crystal panel 100 is formed on the CF-side glass substrate 130. By using the position of the alignment mark 16 as a reference, the position of the pixel (more specifically, the pixel group of each line displaying the image for the right eye and the image for the left eye) formed on the CF side glass substrate 130 is set. It becomes possible to make each phase area of FPR film 200 correspond.
 図6はアライメントマーク16の形成位置の一例を示す模式図である。CF側ガラス基板130には、着色層11~13及び遮光格子15により形成される表示領域10が設けられ、表示領域10の周囲には遮光格子15と同一の工程で形成される額縁部20が設けられている。額縁部20の更に外側には、CF側ガラス基板130とTFT側ガラス基板110との間に液晶物質を封止するためのシール材31(図8を参照)が描画されるシール領域30が存在する。
 また、TFT側ガラス基板110における一面側の周縁部には、TFT112などに接続される配線パターンを含むTFT側タブ60が複数設けられている。
FIG. 6 is a schematic diagram showing an example of the position where the alignment mark 16 is formed. The CF side glass substrate 130 is provided with a display area 10 formed by the colored layers 11 to 13 and the light shielding grid 15, and a frame portion 20 formed in the same process as the light shielding grid 15 around the display area 10. Is provided. A seal region 30 where a sealing material 31 (see FIG. 8) for sealing a liquid crystal material is drawn between the CF side glass substrate 130 and the TFT side glass substrate 110 exists on the outer side of the frame portion 20. To do.
In addition, a plurality of TFT side tabs 60 including a wiring pattern connected to the TFT 112 and the like are provided on the peripheral portion on one side of the TFT side glass substrate 110.
 アライメントマーク16は、CF側ガラス基板130の一面側において、基板の一辺上の2箇所に形成される。図6に示した例では、CF側ガラス基板130の上辺及び下辺の夫々の2箇所にアライメントマーク16,16を形成する構成としたが、上辺又は下辺の一方の2箇所にアライメントマーク16,16を形成する構成であってもよい。また、CF側ガラス基板130の左辺の2箇所又は右辺の2箇所に形成したアライメントマーク16,16を含むものであってもよい。更に、一辺当たりのアライメントマーク16の数は2つに限定されるものではなく、3つ以上であってもよい。 The alignment marks 16 are formed at two locations on one side of the substrate on the one surface side of the CF side glass substrate 130. In the example shown in FIG. 6, the alignment marks 16 and 16 are formed at two locations on the upper side and the lower side of the CF side glass substrate 130, respectively. The structure which forms may be sufficient. Moreover, the alignment mark 16,16 formed in two places of the left side of CF side glass substrate 130, or two places of the right side may be included. Furthermore, the number of alignment marks 16 per side is not limited to two, and may be three or more.
 各アライメントマーク16は、CF側ガラス基板130の四隅から一辺に沿って適長(例えば、10.0mm以上)離隔した位置に形成されることが好ましい。CF側ガラス基板130のシール領域30には、液晶物質を封止する際にシール材31が描画されることになるが、基板の四隅近傍の領域では描画速度が低下するため、それ以外の領域と比較してシール材31の幅が太く仕上がることが多い。すなわち、CF側ガラス基板130の四隅近傍の領域では、シール材31が面内の外側方向へ広がる可能性があり、この領域近傍にアライメントマーク16を形成したとしても外部からは観察することが困難となる可能性がある。したがって、本実施の形態では、基板の四隅近傍の領域を除外してアライメントマーク16を形成している。 Each alignment mark 16 is preferably formed at a position separated from the four corners of the CF side glass substrate 130 by an appropriate length (for example, 10.0 mm or more) along one side. In the sealing region 30 of the CF side glass substrate 130, the sealing material 31 is drawn when the liquid crystal substance is sealed. However, the drawing speed is reduced in the regions near the four corners of the substrate, so the other regions In many cases, the width of the sealing material 31 is thick and finished. That is, in the region near the four corners of the CF side glass substrate 130, the sealing material 31 may spread outward in the plane, and even if the alignment mark 16 is formed near this region, it is difficult to observe from the outside. There is a possibility. Therefore, in the present embodiment, the alignment marks 16 are formed excluding regions near the four corners of the substrate.
 また、各アライメントマーク16は、TFT側ガラス基板110に設けられるTFT側タブ60と対向しない領域に形成されることが好ましい。TFT側タブ60にはTFT112などに接続される配線パターンが形成されているため、このような配線パターンとアライメントマーク16とが液晶パネル100の厚み方向において対向した場合、外部からアライメントマーク16を認識することが困難となるためである。 Further, each alignment mark 16 is preferably formed in a region that does not face the TFT side tab 60 provided on the TFT side glass substrate 110. Since the TFT side tab 60 has a wiring pattern connected to the TFT 112 or the like, when such a wiring pattern and the alignment mark 16 face each other in the thickness direction of the liquid crystal panel 100, the alignment mark 16 is recognized from the outside. It is difficult to do.
 更に、図6に示すように、CF側ガラス基板130の上辺及び下辺の夫々の2箇所にアライメントマーク16,16を形成する構成とする場合、基板の上下方向に対して対称となる位置に、上辺の2箇所のアライメントマーク16,16、及び下辺の2箇所のアライメントマーク16,16を形成することが好ましい。
 基板の上下方向に対して対称となる位置にアライメントマーク16,16を形成することにより、上辺(又は下辺)の2箇所のアライメントマーク16,16について読取り不良が発生したとしても、液晶パネル100の上下を反転させることにより他方の2箇所のアライメントマーク16,16の読取りを行うことが可能となる。
Further, as shown in FIG. 6, when the alignment marks 16 are formed at two locations on the upper side and the lower side of the CF-side glass substrate 130, respectively, in positions symmetrical with respect to the vertical direction of the substrate, It is preferable to form two alignment marks 16 and 16 on the upper side and two alignment marks 16 and 16 on the lower side.
By forming the alignment marks 16 and 16 at positions symmetrical with respect to the vertical direction of the substrate, even if a reading failure occurs in the two alignment marks 16 and 16 on the upper side (or the lower side), the liquid crystal panel 100 By reversing the upper and lower sides, the other two alignment marks 16 and 16 can be read.
 図7はアライメントマーク16の近傍領域の部分拡大図であり、図8は図7に示すA-A線における断面図である。アライメントマーク16は0.2mm×0.2mm程度の正方形をなし、例えば、遮光格子15(ブラックマトリクス)を形成する工程と同一の工程にて、遮光格子15と同一材料によりCF側ガラス基板130上に形成される。アライメントマーク16を読取るためのカメラ視野は3.8mm×3.8mm程度の領域であり、この領域内にはアライメントマーク16の読取り誤りを発生させるような類似のパターンが存在しないことが望ましい。このため、アライメントマーク16は、シール材31が形成されるシール領域30の外側の領域であって、液晶パネル100の厚み方向においてTFT側タブ60の配線パターンと対向しない領域に形成される。 7 is a partially enlarged view of a region near the alignment mark 16, and FIG. 8 is a cross-sectional view taken along the line AA shown in FIG. The alignment mark 16 has a square shape of about 0.2 mm × 0.2 mm. For example, the alignment mark 16 is formed on the CF side glass substrate 130 with the same material as the light shielding grid 15 in the same process as the process for forming the light shielding grid 15 (black matrix). Formed. The camera field of view for reading the alignment mark 16 is an area of about 3.8 mm × 3.8 mm, and it is desirable that there is no similar pattern that causes an error in reading the alignment mark 16 in this area. For this reason, the alignment mark 16 is formed in a region outside the sealing region 30 where the sealing material 31 is formed and in a region not facing the wiring pattern of the TFT side tab 60 in the thickness direction of the liquid crystal panel 100.
 本実施の形態においてアライメントマーク16の形状は正方形としたが、正方形に限定されるものではない。図9はアライメントマーク16の他の形状を示す模式図である。アライメントマーク16の形状としては、正方形の他に、円形(図9A)、十字形(図9B)、三角形(図9C)等を用いることができる。また、図9D~図9Fに示すような適宜の形状を有するマークであってもよい。 In the present embodiment, the alignment mark 16 has a square shape, but is not limited to a square shape. FIG. 9 is a schematic diagram showing another shape of the alignment mark 16. As the shape of the alignment mark 16, in addition to a square, a circle (FIG. 9A), a cross (FIG. 9B), a triangle (FIG. 9C), or the like can be used. Further, the mark may have an appropriate shape as shown in FIGS. 9D to 9F.
 図10はアライメントマーク16をCF側ガラス基板130上に形成する工程を示す模式図である。上述したように、アライメントマーク16は、CF側ガラス基板130上に遮光格子15を形成する工程と同じ工程にて形成することが可能である。遮光格子15は、黒色フォトレジストを用いたフォトリソグラフィ技術によって形成される。 FIG. 10 is a schematic diagram showing a process of forming the alignment mark 16 on the CF side glass substrate 130. As described above, the alignment mark 16 can be formed in the same process as the process of forming the light shielding grid 15 on the CF side glass substrate 130. The light shielding grid 15 is formed by a photolithography technique using a black photoresist.
 まず、ガラス基板などの透光性を有する基板(CF側ガラス基板130)を形成した後(図10A)、黒色フォトレジストを基板の一面側に塗布することにより、1μm程度の厚みを有するフォトレジスト層130bを形成する(図10B)。 First, after forming a translucent substrate (CF side glass substrate 130) such as a glass substrate (FIG. 10A), a photoresist having a thickness of about 1 μm is applied by applying a black photoresist to one side of the substrate. Layer 130b is formed (FIG. 10B).
 その後、投影すべきパターンをクロム(Cr)等の遮光膜により形成したフォトマスクを用いてフォトレジスト層130bの表面を露光し、現像処理により不要な部分を除去する(図10C)。この工程により、表示領域10内の画素に対応した部分、シール領域及びアライメントマーク16を除く領域に塗布されたフォトレジスト層130bが除去され、アライメントマーク16、額縁部20、及び表示領域10内の遮光格子15が形成される。 Thereafter, the surface of the photoresist layer 130b is exposed using a photomask in which a pattern to be projected is formed of a light-shielding film such as chromium (Cr), and unnecessary portions are removed by development processing (FIG. 10C). By this process, the portion corresponding to the pixel in the display region 10, the photoresist region 130 b applied to the region excluding the seal region and the alignment mark 16 is removed, and the alignment mark 16, the frame portion 20, and the display region 10 in the display region 10 are removed. A light shielding grid 15 is formed.
 次いで、特定の色(例えば、赤色)の光を透過するフォトレジストを塗布することにより、遮光格子15を形成した基板の全面にフォトレジスト層130rを1μm程度の厚みで形成する(図10D)。そして、画素パターンを形成するためのフォトマスクを用いてフォトレジスト層130rを露光し、現像することにより、予め定められた画素パターンで特定の色の光を透過させる着色層11(画素)を形成する(図10E)。また、同様の工程にて、他の色(例えば、緑色、青色)に対応した着色層12,13をCF側ガラス基板130上に形成する(図10F)。 Next, a photoresist layer 130r having a thickness of about 1 μm is formed on the entire surface of the substrate on which the light shielding grid 15 is formed by applying a photoresist that transmits light of a specific color (for example, red) (FIG. 10D). Then, the photoresist layer 130r is exposed and developed using a photomask for forming a pixel pattern, thereby forming a colored layer 11 (pixel) that transmits light of a specific color with a predetermined pixel pattern. (FIG. 10E). In the same process, the colored layers 12 and 13 corresponding to other colors (for example, green and blue) are formed on the CF side glass substrate 130 (FIG. 10F).
 このようにして形成したアライメントマーク16の位置を基準として、CF側ガラス基板130の他面側にFPRフィルムを貼り合わせることができる。CF側ガラス基板130の上辺(又は下辺)に形成した2つアライメントマーク16,16を結ぶ線分は、表示領域10内の横方向の画素のライン(図3に示すX軸方向)と平行となる。そこで、2つアライメントマーク16,16を結ぶ線分がFPRフィルム200の第1領域201及び第2領域202(例えば、第1領域201及び第2領域202との境界線)と平行となるように位置決めして、CF側ガラス基板130及びFPRフィルム200を貼り合わせることにより、右眼用映像及び左眼用映像を表示する各ラインの画素群の位置にFPRフィルム200の各位相領域を対応させることができる。 The FPR film can be bonded to the other surface side of the CF side glass substrate 130 with the position of the alignment mark 16 formed in this way as a reference. A line segment connecting the two alignment marks 16 and 16 formed on the upper side (or the lower side) of the CF side glass substrate 130 is parallel to a horizontal pixel line in the display region 10 (X-axis direction shown in FIG. 3). Become. Therefore, the line segment connecting the two alignment marks 16, 16 is parallel to the first region 201 and the second region 202 (for example, the boundary line between the first region 201 and the second region 202) of the FPR film 200. By positioning and bonding the CF side glass substrate 130 and the FPR film 200, each phase region of the FPR film 200 is made to correspond to the position of the pixel group of each line displaying the right eye image and the left eye image. Can do.
 なお、本実施の形態では、遮光格子15と同一の材料を用いてアライメントマーク16を形成する構成としたが、着色層11~13と同一の材料を用いて、着色層11~13を形成する工程と同一の工程でアライメントマーク16を形成する構成としてもよい。また、アライメントマーク16は、ブラックマトリクスによる単層構造、着色層11(12,13)による単層構造、ブラックマトリクス及び着色層11~13の積層構造の何れであってもよい。また、従来ではTFT側ガラス基板110に形成していた信号配線(メタル)をCF側ガラス基板130に形成する場合、その信号配線と同一の材料を用いてアライメントマーク16を形成してもよい。 In the present embodiment, the alignment mark 16 is formed using the same material as the light-shielding grating 15, but the colored layers 11 to 13 are formed using the same material as the colored layers 11 to 13. The alignment mark 16 may be formed in the same process as the process. The alignment mark 16 may have any one of a single layer structure using a black matrix, a single layer structure using the colored layers 11 (12, 13), and a stacked structure of the black matrix and the colored layers 11 to 13. Further, when the signal wiring (metal) conventionally formed on the TFT side glass substrate 110 is formed on the CF side glass substrate 130, the alignment mark 16 may be formed using the same material as the signal wiring.
 実施の形態2.
 実施の形態1では、CF側ガラス基板130の上下方向に対して対称となる位置にアライメントマーク16を形成する構成としたが、CF側ガラス基板130上の何らかのパターン(例えば、対向電極132に接続される配線パターン)と干渉するために上下対称又は左右対称にアライメントマーク16を形成することができない場合には、他の位置にアライメントマーク16を形成してもよい。
 なお、以下では、実施の形態1と同様の構成については、実施の形態1と同一の符号を付して説明を行うものとする。
Embodiment 2. FIG.
In the first embodiment, the alignment mark 16 is formed at a position that is symmetric with respect to the vertical direction of the CF side glass substrate 130. However, some pattern on the CF side glass substrate 130 (for example, connected to the counter electrode 132). If the alignment mark 16 cannot be formed symmetrically or vertically symmetrical due to interference with the wiring pattern), the alignment mark 16 may be formed at another position.
In the following description, the same components as those in the first embodiment will be described with the same reference numerals as those in the first embodiment.
 図11はアライメントマーク16の形成位置の他の例を示す模式図である。実施の形態1と同様に、アライメントマーク16は、CF側ガラス基板130の一面側において、基板の一辺上の2箇所に形成される。図11に示した例では、CF側ガラス基板130の左辺及び右辺の夫々の2箇所にアライメントマーク16,16を形成している。これらのアライメントマーク16,16は、左右対称となっていないものの、基板の中心に対して点対称の位置に設けられている。したがって、実施の形態1と同様に、左辺(又は右辺)の2箇所のアライメントマーク16,16について読取り不良が発生したとしても、液晶パネルを180度反転させることにより他方の2箇所のアライメントマーク16,16の読取りを継続することが可能となる。 FIG. 11 is a schematic diagram showing another example of the position where the alignment mark 16 is formed. As in the first embodiment, the alignment marks 16 are formed at two locations on one side of the substrate on one side of the CF side glass substrate 130. In the example shown in FIG. 11, alignment marks 16 are formed at two locations on the left side and the right side of the CF side glass substrate 130. Although these alignment marks 16 and 16 are not left-right symmetric, they are provided at point-symmetrical positions with respect to the center of the substrate. Therefore, as in the first embodiment, even if a reading failure occurs in the two alignment marks 16 and 16 on the left side (or right side), the other two alignment marks 16 are inverted by turning the liquid crystal panel 180 degrees. , 16 can be continued.
 なお、実施の形態1及び2では、基板の面内において線対称又は点対称の位置にアライメントマーク16を形成する構成としたが、対称位置であることは必須の要件ではない。上辺及び下辺(又は左辺及び右辺)の非対称位置にそれぞれアライメントマーク16を2つずつ形成してもよい。 In the first and second embodiments, the alignment mark 16 is formed at a line-symmetrical or point-symmetrical position in the plane of the substrate, but the symmetrical position is not an essential requirement. Two alignment marks 16 may be formed at asymmetric positions on the upper side and the lower side (or the left side and the right side).
 今回開示された実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。また、各実施の形態で記載されている技術的特徴は、お互いに組み合わせることが可能である。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims. In addition, the technical features described in each embodiment can be combined with each other.
 100 液晶パネル
 110 TFT側ガラス基板
 111 画素電極
 112 TFT
 113 配向膜
 120 液晶層
 130 CF側ガラス基板
 131 カラーフィルタ
 132 対向電極
 133 配向膜
 134,135 偏光板
 200 FPRフィルム
 300 バックライトユニット
 301 拡散板
100 Liquid crystal panel 110 TFT side glass substrate 111 Pixel electrode 112 TFT
DESCRIPTION OF SYMBOLS 113 Alignment film 120 Liquid crystal layer 130 CF side glass substrate 131 Color filter 132 Counter electrode 133 Alignment film 134,135 Polarizing plate 200 FPR film 300 Backlight unit 301 Diffusion plate

Claims (8)

  1.  透光性を有するカラーフィルタ基板とTFT基板との間に液晶物質を封入してなる液晶パネルと、該液晶パネルを透過した光の偏光状態を異なる2種類の偏光状態に変換するパターン位相差フィルムとを備える液晶表示装置において、
     前記カラーフィルタ基板の一辺の両端から該一辺に沿って夫々適長離隔した前記カラーフィルタ基板上の2箇所に、前記液晶パネルに対する前記フィルムの貼り合わせ位置を位置決めするためのマークを備えることを特徴とする液晶表示装置。
    A liquid crystal panel in which a liquid crystal material is sealed between a light-transmitting color filter substrate and a TFT substrate, and a pattern retardation film for converting the polarization state of light transmitted through the liquid crystal panel into two different polarization states In a liquid crystal display device comprising:
    A mark for positioning a bonding position of the film with respect to the liquid crystal panel is provided at two positions on the color filter substrate that are spaced apart from each other by an appropriate length from both ends of the one side of the color filter substrate. A liquid crystal display device.
  2.  前記マークを前記両端から10.0mm以上離隔した位置に備えることを特徴とする請求項1に記載の液晶表示装置。 2. The liquid crystal display device according to claim 1, wherein the mark is provided at a position separated by 10.0 mm or more from the both ends.
  3.  前記カラーフィルタ基板は、複数の色の光を透過させる着色層と、該着色層を格子状のパターンで区画する遮光格子とを含み、
     前記遮光格子と同一の材料にて前記マークを形成してある
     ことを特徴とする請求項1又は請求項2に記載の液晶表示装置。
    The color filter substrate includes a colored layer that transmits light of a plurality of colors, and a light-shielding lattice that partitions the colored layer in a lattice pattern,
    The liquid crystal display device according to claim 1, wherein the mark is formed of the same material as the light shielding grid.
  4.  前記TFT基板の周縁部に設けられている配線パターンと対向しない前記カラーフィルタ基板上の領域に前記マークを形成してあることを特徴とする請求項1から請求項3の何れか1つに記載の液晶表示装置。 4. The mark according to claim 1, wherein the mark is formed in a region on the color filter substrate that is not opposed to a wiring pattern provided on a peripheral portion of the TFT substrate. 5. Liquid crystal display device.
  5.  透光性を有するカラーフィルタ基板とTFT基板との間に液晶物質を封入してなる液晶パネルと、該液晶パネルを透過した光の偏光状態を異なる2種類の偏光状態に変換するパターン位相差フィルムとを備える液晶表示装置の製造方法において、
     前記カラーフィルタ基板の一辺の両端から該一辺に沿って夫々適長離隔した前記カラーフィルタ基板上の2箇所にマークを形成することを特徴とする液晶表示装置の製造方法。
    A liquid crystal panel in which a liquid crystal material is sealed between a light-transmitting color filter substrate and a TFT substrate, and a pattern retardation film for converting the polarization state of light transmitted through the liquid crystal panel into two different polarization states In a manufacturing method of a liquid crystal display device comprising:
    2. A method of manufacturing a liquid crystal display device, comprising: forming marks at two locations on the color filter substrate that are spaced apart from each other by an appropriate length from both ends of the one side of the color filter substrate.
  6.  前記マークを前記両端から10.0mm以上離隔した位置に形成することを特徴とする請求項5に記載の液晶表示装置の製造方法。 6. The method of manufacturing a liquid crystal display device according to claim 5, wherein the mark is formed at a position separated from the both ends by 10.0 mm or more.
  7.  形成したマークを基準として前記液晶パネルに対して前記位相差フィルムを貼り合わせることを特徴とする請求項5又は請求項6に記載の液晶表示装置の製造方法。 The method for manufacturing a liquid crystal display device according to claim 5, wherein the retardation film is bonded to the liquid crystal panel based on the formed mark.
  8.  複数の色の光を透過させる着色層と、該着色層を格子状のパターンで区画する遮光格子とを透光性基板上に形成することにより前記カラーフィルタ基板を形成し、
     前記透光性基板上に前記遮光格子を形成する工程と同一の工程にて前記マークを形成する
     ことを特徴とする請求項5から請求項7の何れか1つに記載の液晶表示装置の製造方法。
    Forming the color filter substrate by forming a colored layer that transmits light of a plurality of colors and a light-shielding grating that partitions the colored layer in a lattice-like pattern on the light-transmitting substrate;
    The liquid crystal display device manufacturing method according to any one of claims 5 to 7, wherein the mark is formed in the same step as the step of forming the light-shielding grating on the light-transmitting substrate. Method.
PCT/JP2014/054156 2013-03-18 2014-02-21 Liquid-crystal display and method for manufacturing liquid-crystal display WO2014148198A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013055274 2013-03-18
JP2013-055274 2013-03-18

Publications (1)

Publication Number Publication Date
WO2014148198A1 true WO2014148198A1 (en) 2014-09-25

Family

ID=51579890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054156 WO2014148198A1 (en) 2013-03-18 2014-02-21 Liquid-crystal display and method for manufacturing liquid-crystal display

Country Status (1)

Country Link
WO (1) WO2014148198A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007094252A (en) * 2005-09-30 2007-04-12 Epson Imaging Devices Corp Liquid crystal display device
JP2008180780A (en) * 2007-01-23 2008-08-07 Dainippon Printing Co Ltd Phase difference control member, liquid crystal display device incorporating phase difference control member, and method of manufacturing phase difference control member
JP2012155351A (en) * 2012-05-24 2012-08-16 Nlt Technologies Ltd Liquid crystal display device and manufacturing method therefor
JP2013029827A (en) * 2011-06-22 2013-02-07 Nippon Zeon Co Ltd Pattern retardation plate, manufacturing method for the same and liquid crystal display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007094252A (en) * 2005-09-30 2007-04-12 Epson Imaging Devices Corp Liquid crystal display device
JP2008180780A (en) * 2007-01-23 2008-08-07 Dainippon Printing Co Ltd Phase difference control member, liquid crystal display device incorporating phase difference control member, and method of manufacturing phase difference control member
JP2013029827A (en) * 2011-06-22 2013-02-07 Nippon Zeon Co Ltd Pattern retardation plate, manufacturing method for the same and liquid crystal display
JP2012155351A (en) * 2012-05-24 2012-08-16 Nlt Technologies Ltd Liquid crystal display device and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US8416352B2 (en) Alignment marker, display device using the same, and fabrication method thereof
JP6027773B2 (en) 3D display panel and phase plate manufacturing method
JPWO2004011987A1 (en) Substrate with parallax barrier layer, method for manufacturing substrate with parallax barrier layer, and three-dimensional display device
US20160011428A1 (en) Three-Dimensional (3D) Display Device
TWI451134B (en) Stereoscopic display panel and display panel
WO2016004685A1 (en) Liquid crystal panel and dual-vision liquid crystal display device
US20100097545A1 (en) Lenticular display systems with offset color filter array
CN102314019A (en) Method for improving viewing angle of liquid crystal display and liquid crystal display
JP5881328B2 (en) Optical plate, method for manufacturing the same, display device, and method for manufacturing the same
JP2010231009A (en) Electro-optical device and electronic apparatus
JP2007072476A (en) Method for producing substrate with parallax barrier layer
US20160109751A1 (en) Color Filter, Liquid Crystal Display Apparatus, and Method of Manufacturing Color Filter
KR101207861B1 (en) The panel structure and methode of manufacture for stereoscopic lcd
KR101314402B1 (en) Dislgay device
WO2015008666A1 (en) Display panel and display device
WO2014148198A1 (en) Liquid-crystal display and method for manufacturing liquid-crystal display
CN102830546B (en) 3D display device and preparation method thereof
CN102722033B (en) Three-dimensional display device and three-dimensional display system
KR101849177B1 (en) 3 dimensional stereography image display device and method of fabricationg the same
WO2014132819A1 (en) Method for manufacturing color filter, and liquid crystal display device
CN102707493B (en) Three-dimensional display device and three-dimensional display system
JP2010079216A (en) Stereoscopic image display
JP5778411B2 (en) Liquid crystal display device and manufacturing method thereof
JP2005352378A (en) Wavelength plate, method for manufacturing wavelength plate and stereoscopic picture display device
US8952871B2 (en) 3D LCD panel, 3D LCD device and driving method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14768135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14768135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP