WO2014147892A1 - Casting device - Google Patents

Casting device Download PDF

Info

Publication number
WO2014147892A1
WO2014147892A1 PCT/JP2013/082182 JP2013082182W WO2014147892A1 WO 2014147892 A1 WO2014147892 A1 WO 2014147892A1 JP 2013082182 W JP2013082182 W JP 2013082182W WO 2014147892 A1 WO2014147892 A1 WO 2014147892A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
molten metal
opening
pressurizing chamber
pressurizing
Prior art date
Application number
PCT/JP2013/082182
Other languages
French (fr)
Japanese (ja)
Inventor
佐々木 寛人
三吉 博晃
晴生 明本
Original Assignee
宇部興産機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51175757&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014147892(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 宇部興産機械株式会社 filed Critical 宇部興産機械株式会社
Priority to US14/779,002 priority Critical patent/US20160045955A1/en
Priority to CN201380074842.5A priority patent/CN105073302B/en
Priority to KR1020157030092A priority patent/KR20150131384A/en
Priority to EP13878814.6A priority patent/EP2977127A4/en
Publication of WO2014147892A1 publication Critical patent/WO2014147892A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • B22C9/067Venting means for moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/02Pressure casting making use of mechanical pressure devices, e.g. cast-forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/06Vacuum casting, i.e. making use of vacuum to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/08Controlling, supervising, e.g. for safety reasons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/14Machines with evacuated die cavity
    • B22D17/145Venting means therefor

Definitions

  • the present invention relates to a casting apparatus.
  • a casting apparatus for producing an aluminum composite product such as an aluminum wheel by low pressure casting or low / medium pressure casting is known.
  • the pressure in the pressurizing chamber is increased while the molten metal is contained in the pressurizing chamber (crucible), and the pressure in the cavity of the mold is evacuated.
  • the melt is filled into the cavity from the pressurizing chamber through the stalk by the pressure difference between the pressurization and the vacuuming (Patent Document 1).
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a casting apparatus capable of preventing the molten metal from splashing and improving the quality of the cast product.
  • the casting apparatus includes a mold, a pressurizing chamber, stalk, a pressurizing means, a decompressing means, and a control device.
  • the mold forms a cavity having an opening below.
  • the pressurizing chamber is disposed below the mold and accommodates the molten metal, and forms a sealed space above the molten metal.
  • the stalk is formed in a cylindrical shape in which the upper end opening communicates with the cavity opening and the lower end opening is immersed in the molten metal in the pressurizing chamber.
  • the pressurizing means supplies gas to the sealed space of the pressurizing chamber to pressurize the pressurizing chamber.
  • the decompression means exhausts gas from the cavity and decompresses the inside of the cavity.
  • the control device When filling the melt from the pressurizing chamber to the cavity, the control device pressurizes the pressurizing chamber until the molten metal reaches the opening of the cavity, and pressurizes the pressurizing chamber after the molten metal reaches the opening of the cavity. , The inside of the cavity is decompressed by the decompression means.
  • the pressurizing chamber when filling the cavity from the pressurizing chamber, the pressurizing chamber is pressurized by the pressurizing means until the molten metal reaches the opening of the cavity, and after the molten metal reaches the opening of the cavity, While continuing the pressurization, the inside of the cavity is decompressed by the decompression means. According to the timing of such pressurization and decompression, the present invention can prevent the molten metal from splashing and improve the quality of the product.
  • FIG. 1 is a schematic view showing a casting apparatus according to an embodiment.
  • the casting apparatus has a pressurizing chamber (crucible) 10 for pressurizing the molten metal A.
  • a container 11 for holding the molten metal A is provided in the pressurizing chamber 10.
  • the upper end opening of the pressurizing chamber 10 is closed by the fixing plate 12, and the inside of the pressurizing chamber 10 is a sealed space.
  • a gas supply path 13 and a gas discharge path 14 communicate with the sealed space (pressurizing chamber 10).
  • the gas supply path 13 is connected to a pressurization source 16 through a valve 15 and supplies an inert gas into the pressurization chamber 10.
  • the gas discharge path 14 opens the pressurizing chamber 10 to the atmosphere via the valve 17.
  • a fixed mold 19 is attached to the upper surface of the fixed plate 12.
  • a movable mold 21 is mounted on the lower surface of the movable plate 20 configured to be movable upward with respect to the fixed mold 19.
  • the fixed mold 19 and the movable mold 21 form a cavity 22 when the mold is closed.
  • An opening 23 a is formed in a gate portion communicating with the cavity 22 at the center of the fixed mold 19, and an upper end portion of the stalk 18 is communicated with the opening 23 a.
  • a degassing passage 23b for extracting gas from the cavity 22 is connected to the fixed mold 19, and the molten metal A is prevented from entering the degassing passage 23b between the cavity 22 and the degassing passage 23b.
  • a chill vent 23c is provided.
  • the movable mold 21 is provided with a gate seal pin 24, a center pressure pin 25, and a partial pressure pin 26.
  • the gate seal pin 24 is configured to move forward and backward with respect to the opening 23a, and opens and closes the opening 23a.
  • the gate seal pin 24 is formed in a substantially rod shape.
  • the center pressurizing pin 25 is configured to be movable forward and backward with respect to the hot water puddle 27 communicating with the cavity 22 and pressurizes the cavity 22.
  • the center pressurizing pin 25 is formed in a cylindrical shape surrounding the gate seal pin 24.
  • the partial pressure pin 26 is configured to move forward and backward with respect to the hot water reservoir 28 communicating with the cavity 22 and pressurizes the cavity 22.
  • the partial pressure pin 26 is formed in a substantially rod shape.
  • the upper ends of the gate seal pin 24 and the center pressurizing pin 25 are connected to a piston mechanism 29 as a driving means, and are configured to be vertically movable.
  • the partial pressurizing pins 26 are configured such that their upper ends are connected to a piston mechanism 30 as drive means, and can be moved up and down.
  • the casting apparatus has a vacuum device 32 and a controller 33 connected to the gas vent passage 23 b via a gas vent valve 31.
  • the vacuum device 32 discharges gas from the cavity 22 through the gas vent valve 31 and the gas vent passage 23b, and depressurizes the inside of the cavity 22.
  • the vacuum device 32 includes a vacuum tank 321, a vacuum pump 322 that evacuates the vacuum tank 321, and a motor 323 that drives the vacuum pump 322.
  • the controller 33 pressurizes the inside of the pressurizing chamber 10 by controlling the valve 15 and the pressurizing source 16.
  • the controller 33 controls the valve 17 to open the pressurizing chamber 10 to the atmosphere.
  • the controller 33 controls the valve 31 and the vacuum device 32 to discharge the gas in the cavity 22 and depressurize the inside of the cavity 22.
  • the controller 33 controls the piston mechanism 29 to open and close the opening 23 a by the gate seal pin 24.
  • the controller 33 controls the piston mechanisms 29 and 30 to pressurize the cavity 22 by the center pressurizing pin 25 and the partial pressurizing pin 26.
  • FIG. 2 is a plan view showing the cavity 22.
  • the cavity 22 extends symmetrically in the X direction and the Y direction around the gate seal pin 24 and the center pressurizing pin 25.
  • six partial pressure pins 26 are provided near the end of the cavity 22.
  • FIGS. 3A to 3D and FIG. 4 are schematic views of the filling operation.
  • FIG. 4 shows the pressure P1 applied to the cavity 22 from the pressurizing source 16 over time, the pressure P2 sucking the cavity 22 from the vacuum device 32, and the differential pressure P3 (hereinafter referred to as filling differential pressure) of these pressures P1 and P2. It is a figure which shows a change.
  • the filling operation is executed based on the elapsed time. For example, the time for the molten metal A to reach the opening 23a is measured in advance, and the filling operation is executed based on the measured time.
  • the controller 33 opens the valve 15 at time t11. Then, the controller 33 supplies an inert gas from the pressurization source 16 to the sealed space of the pressurization chamber 10 via the gas supply path 13. Thereby, as shown in FIG. 4, the pressure P1 applied to the pressurization chamber 10 from the pressurization source 16 rises after the time t11. Therefore, as shown in FIG. 4, the filling differential pressure P3 rises, and the molten metal A rises.
  • the controller 33 continues from the pressurizing source 16 through the gas supply path 13 to the pressurizing chamber 10.
  • An inert gas is supplied to the enclosed space.
  • the controller 33 opens the valve 31 so that the cavity 22 and the vacuum tank 321 communicate with each other. Thereby, the gas in the cavity 22 is discharged to the vacuum tank 321 through the gas vent passage 23b.
  • the fact that the molten metal A has reached the opening 23a of the cavity 22 may be detected by a sensor, or the time for the molten metal surface to reach the opening 23a at a predetermined pressure is measured in advance and managed by that time.
  • the pressure P1 applied to the cavity 22 from the pressurization source 16 continues to increase after time t12 as shown in FIG.
  • the increasing speed of the pressure P1 is not constant.
  • the degree of pressure reduction (vacuum) in the mold is increased by the discharge from the cavity 22 by the vacuum device 32. That is, as shown in FIG. 4, the pressure P2 applied to the cavity 22 decreases in the minus direction.
  • the filling differential pressure P3 increases as shown in FIG.
  • the controller 33 opens the valve 17 to release the pressurizing chamber 10 to the atmosphere, and lowers the molten metal surface of the molten metal A in the stalk 18.
  • the controller 33 may press down the center pressurizing pin 25 to pressurize the inside of the cavity 22 and further increase the pressure.
  • the gate seal pin 24 and the center pressurizing pin 25 may have an integral structure. In this case, the gate seal pin 24 and the center pressurizing pin 25 are lowered by a single cylinder, and the gate closing and pressurizing are performed in a continuous operation. After the molten metal A in the cavity 22 is solidified, the movable mold 21 is raised and the product is taken out.
  • the decompressed cavity 22 is sealed with the gate seal pin 24, the inside of the pressurizing chamber 10 is pressurized, the molten metal A is raised to a position directly below the gate seal pin 24, the gate seal pin 24 is opened, and the pressurization and depressurization are performed.
  • the molten metal A flows into the cavity 22 due to the pressure difference, the molten metal A enters the cavity 22 in the form of droplets, and a molten metal and a hot water boundary are generated in the molded product.
  • the inside of the pressurizing chamber 10 is pressurized until the molten metal A reaches the opening 23a of the cavity 22 as described above.
  • this Embodiment can suppress the splash of the molten metal A, and can suppress generation
  • the pressure in the cavity 22 is controlled by the vacuum device 32 and the pressurizing chamber 10. Therefore, compared with the case where a plurality of pressurizing chambers are provided and the pressure in the cavity 22 is controlled, this embodiment can have a simple structure. Further, as compared with the case where the pressure in the cavity 22 is controlled only by the pressurizing chamber 10, the present embodiment can suppress the load applied to the pressurizing chamber 10 and can maintain the airtightness of the pressurizing chamber 10. .
  • FIG. 5 shows a pressure P1 applied to the cavity 22 from the pressurization source 16 with the passage of time, a pressure P2 of the cavity 22, and a differential pressure between these pressures P1 and P2 in a comparative example in which the vacuum device 32 is not used together.
  • the change of P3 is shown.
  • the back pressure in the cavity 22 can be suppressed by the vacuum device 32, the fluidity of the molten metal A in the cavity 22 can be enhanced.

Abstract

This casting device comprises: dies (19, 21) that form a cavity (22) having an opening in the lower section thereof; a pressurizing chamber (10) that is arranged below the dies, contains molten metal (A), and forms a sealed space above the molten metal; a tubular stalk (18), the upper-end opening of which is in communication with the opening of the cavity, and the lower-end opening of which is immersed in the molten metal inside the pressurizing chamber; a pressurizing means (16) that pressurizes the inside of the pressurizing chamber by supplying a gas into the sealed space in the pressurizing chamber; a depressurizing means (32) that depressurizes the inside of the cavity by discharging a gas from the cavity; and a control device (33). When the molten metal is filled into the cavity from the pressurizing chamber, the control device pressurizes the inside of the pressurizing chamber by the pressurizing means until the molten metal reaches the opening of the cavity, and after the molten metal has reached the opening of the cavity, the control device depressurizes the inside of the cavity by the depressurizing means while continuing to pressurize the inside of the pressurizing chamber.

Description

鋳造装置Casting equipment
 本発明は鋳造装置に関する。 The present invention relates to a casting apparatus.
 従来から、アルミホイール等のアルミニウム複合製品を低圧鋳造又は低中圧鋳造により製造する鋳造装置が知られている。この種の鋳造装置では、加圧室(るつぼ)内に溶湯を収容した状態で加圧室内の圧力を高めると共に、金型のキャビティ内の圧力を真空引きする。この加圧と真空引きの圧力差によって溶湯を加圧室からストークを介してキャビティに充填する(特許文献1)。 Conventionally, a casting apparatus for producing an aluminum composite product such as an aluminum wheel by low pressure casting or low / medium pressure casting is known. In this type of casting apparatus, the pressure in the pressurizing chamber is increased while the molten metal is contained in the pressurizing chamber (crucible), and the pressure in the cavity of the mold is evacuated. The melt is filled into the cavity from the pressurizing chamber through the stalk by the pressure difference between the pressurization and the vacuuming (Patent Document 1).
 しかしながら、特許文献1に開示された鋳造装置では、溶湯側を正圧、キャビティ側を負圧とした上でゲートピストンピンを開放するため、開放の瞬間に圧力差によって溶湯が飛沫し、成形品に湯皺及び湯境が生じる。すなわち、成形品の品質低下を招くという問題がある。 However, in the casting apparatus disclosed in Patent Document 1, since the gate piston pin is opened after the molten metal side is set to a positive pressure and the cavity side is set to a negative pressure, the molten metal splashes due to the pressure difference at the moment of opening. A hot water bath and a hot water boundary are generated. That is, there is a problem that the quality of the molded product is deteriorated.
特開平5-146864JP-A-5-146864
 本発明は、上記事情に鑑みてなされたもので、溶湯の飛沫を防止して鋳造製品の品質を向上させることができる鋳造装置及を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a casting apparatus capable of preventing the molten metal from splashing and improving the quality of the cast product.
 本発明に係る鋳造装置は、金型、加圧室、ストーク、加圧手段、減圧手段、及び制御装置を有する。金型は、下方に開口を有するキャビティを形成する。加圧室は、前記金型の下方に配置されて溶湯を収容すると共に溶湯の上部に密閉空間を形成する。ストークは、上端開口がキャビティの開口に連通し下端開口が加圧室内の溶湯の内部に浸漬された筒状に形成される。加圧手段は、加圧室の密閉空間にガスを供給して加圧室内を加圧する。減圧手段は、キャビティからガスを排出して、キャビティ内を減圧する。制御装置は、加圧室からキャビティに溶湯を充填する際、溶湯がキャビティの開口に達するまで加圧手段によって加圧室内を加圧し、溶湯がキャビティの開口に達した後に加圧室内の加圧を続行しつつ、減圧手段によってキャビティ内を減圧する。 The casting apparatus according to the present invention includes a mold, a pressurizing chamber, stalk, a pressurizing means, a decompressing means, and a control device. The mold forms a cavity having an opening below. The pressurizing chamber is disposed below the mold and accommodates the molten metal, and forms a sealed space above the molten metal. The stalk is formed in a cylindrical shape in which the upper end opening communicates with the cavity opening and the lower end opening is immersed in the molten metal in the pressurizing chamber. The pressurizing means supplies gas to the sealed space of the pressurizing chamber to pressurize the pressurizing chamber. The decompression means exhausts gas from the cavity and decompresses the inside of the cavity. When filling the melt from the pressurizing chamber to the cavity, the control device pressurizes the pressurizing chamber until the molten metal reaches the opening of the cavity, and pressurizes the pressurizing chamber after the molten metal reaches the opening of the cavity. , The inside of the cavity is decompressed by the decompression means.
 本発明によれば、加圧室からキャビティに溶湯を充填する際、溶湯がキャビティの開口に達するまで加圧手段によって加圧室内を加圧し、溶湯がキャビティの開口に達した後に加圧室内の加圧を続行しつつ、減圧手段によってキャビティ内を減圧する。このような加圧と減圧のタイミングによって、本発明では溶湯の飛沫を防止して製品の品質向上を図ることができる。 According to the present invention, when filling the cavity from the pressurizing chamber, the pressurizing chamber is pressurized by the pressurizing means until the molten metal reaches the opening of the cavity, and after the molten metal reaches the opening of the cavity, While continuing the pressurization, the inside of the cavity is decompressed by the decompression means. According to the timing of such pressurization and decompression, the present invention can prevent the molten metal from splashing and improve the quality of the product.
実施の形態に係る鋳造装置を示す概略図である。It is the schematic which shows the casting apparatus which concerns on embodiment. 実施の形態に係るキャビティ22を示す平面図である。It is a top view which shows the cavity 22 which concerns on embodiment. 実施の形態に係る充填動作の概略図である。It is the schematic of the filling operation | movement which concerns on embodiment. 実施の形態に係る充填動作の概略図である。It is the schematic of the filling operation | movement which concerns on embodiment. 実施の形態に係る充填動作の概略図である。It is the schematic of the filling operation | movement which concerns on embodiment. 実施の形態に係る充填動作の概略図である。It is the schematic of the filling operation | movement which concerns on embodiment. 実施の形態における経過時間に伴う加圧源16から加圧室10に加わる圧力P1、真空装置32からキャビティ22を吸引する圧力P2及びこれら圧力P1,P2の差圧P3(以下、充填差圧)の変化を示す図である。In the embodiment, the pressure P1 applied to the pressurizing chamber 10 from the pressurizing source 16 with the passage of time, the pressure P2 sucking the cavity 22 from the vacuum device 32, and the differential pressure P3 between these pressures P1, P2 (hereinafter referred to as filling differential pressure) It is a figure which shows the change of. 比較例における経過時間に伴う加圧源16から加圧室10に加わる圧力P1、真空装置32からキャビティ22を吸引する圧力P2及び充填差圧P3の変化を示す図である。It is a figure which shows the change of the pressure P1 applied to the pressurization chamber 10 from the pressurization source 16 in the comparative example, the pressure P2 which attracts | sucks the cavity 22 from the vacuum apparatus 32, and the filling differential pressure P3.
 以下、添付の図面を参照して実施の形態に係る鋳造装置を詳細に説明する。 Hereinafter, a casting apparatus according to an embodiment will be described in detail with reference to the accompanying drawings.
 図1は、実施の形態に係る鋳造装置を示す概略図である。鋳造装置は、図1に示すように、溶湯Aを加圧する加圧室(るつぼ)10を有する。加圧室10内には、溶湯Aを保持する容器11が設けられている。加圧室10の上端開口部は、固定板12によって閉塞され、加圧室10内は密閉空間とされている。この密閉空間(加圧室10)にガス供給路13、及びガス排出路14が連通している。ガス供給路13は、バルブ15を介して加圧源16に接続されて不活性ガスを加圧室10内に供給する。ガス排出路14は、バルブ17を介して加圧室10を大気開放する。 FIG. 1 is a schematic view showing a casting apparatus according to an embodiment. As shown in FIG. 1, the casting apparatus has a pressurizing chamber (crucible) 10 for pressurizing the molten metal A. A container 11 for holding the molten metal A is provided in the pressurizing chamber 10. The upper end opening of the pressurizing chamber 10 is closed by the fixing plate 12, and the inside of the pressurizing chamber 10 is a sealed space. A gas supply path 13 and a gas discharge path 14 communicate with the sealed space (pressurizing chamber 10). The gas supply path 13 is connected to a pressurization source 16 through a valve 15 and supplies an inert gas into the pressurization chamber 10. The gas discharge path 14 opens the pressurizing chamber 10 to the atmosphere via the valve 17.
 固定板12の中央には、両端が開口した筒状のストーク18の上端が固定されている。ストーク18の下端は、加圧室10内の溶湯Aに浸っている。固定板12の上面には、固定金型19が装着されている。また、固定金型19に対して上方に移動可能に構成された可動板20の下面には、可動金型21が装着されている。固定金型19と可動金型21とは、型閉したときにキャビティ22を形成する。固定金型19の中央部には、キャビティ22に連通するゲート部分に開口23aが形成され、この開口23aにストーク18の上端部が連通している。また、固定金型19には、キャビティ22からガスを抜くためのガス抜き用通路23bが接続され、キャビティ22とガス抜き通路23bとの間に溶湯Aのガス抜き用通路23bへの侵入を防止するチルベント23cが設けられている。 At the center of the fixed plate 12, the upper end of a cylindrical stalk 18 having both ends opened is fixed. The lower end of the stalk 18 is immersed in the molten metal A in the pressurizing chamber 10. A fixed mold 19 is attached to the upper surface of the fixed plate 12. A movable mold 21 is mounted on the lower surface of the movable plate 20 configured to be movable upward with respect to the fixed mold 19. The fixed mold 19 and the movable mold 21 form a cavity 22 when the mold is closed. An opening 23 a is formed in a gate portion communicating with the cavity 22 at the center of the fixed mold 19, and an upper end portion of the stalk 18 is communicated with the opening 23 a. Further, a degassing passage 23b for extracting gas from the cavity 22 is connected to the fixed mold 19, and the molten metal A is prevented from entering the degassing passage 23b between the cavity 22 and the degassing passage 23b. A chill vent 23c is provided.
 可動金型21には、ゲートシールピン24、センター加圧ピン25、及び部分加圧ピン26が装着されている。ゲートシールピン24は、開口23aに対して進退自在に構成されて開口23aを開閉する。ゲートシールピン24は略棒状に形成されている。センター加圧ピン25は、キャビティ22に連通する湯だまり27対して進退自在に構成されてキャビティ22内を加圧する。センター加圧ピン25は、ゲートシールピン24を取り囲む筒状に形成されている。部分加圧ピン26は、キャビティ22に連通する湯だまり28対して進退自在に構成されてキャビティ22内を加圧する。部分加圧ピン26は、略棒状に形成されている。 The movable mold 21 is provided with a gate seal pin 24, a center pressure pin 25, and a partial pressure pin 26. The gate seal pin 24 is configured to move forward and backward with respect to the opening 23a, and opens and closes the opening 23a. The gate seal pin 24 is formed in a substantially rod shape. The center pressurizing pin 25 is configured to be movable forward and backward with respect to the hot water puddle 27 communicating with the cavity 22 and pressurizes the cavity 22. The center pressurizing pin 25 is formed in a cylindrical shape surrounding the gate seal pin 24. The partial pressure pin 26 is configured to move forward and backward with respect to the hot water reservoir 28 communicating with the cavity 22 and pressurizes the cavity 22. The partial pressure pin 26 is formed in a substantially rod shape.
 ゲートシールピン24、及びセンター加圧ピン25は、上端部が駆動手段としてのピストン機構29に連結されて、各々上下動可能に構成されている。同様に、部分加圧ピン26は、上端部が駆動手段としてのピストン機構30に連結されて、各々上下動可能に構成されている。 The upper ends of the gate seal pin 24 and the center pressurizing pin 25 are connected to a piston mechanism 29 as a driving means, and are configured to be vertically movable. Similarly, the partial pressurizing pins 26 are configured such that their upper ends are connected to a piston mechanism 30 as drive means, and can be moved up and down.
 また、鋳造装置は、図1に示すように、ガス抜き用通路23bにガス抜き用弁31を介して接続された真空装置32、及びコントローラ33を有する。 Further, as shown in FIG. 1, the casting apparatus has a vacuum device 32 and a controller 33 connected to the gas vent passage 23 b via a gas vent valve 31.
 真空装置32は、ガス抜き用弁31及びガス抜き用通路23bを介してキャビティ22からガスを排出し、キャビティ22内を減圧する。真空装置32は、真空タンク321、真空タンク321を真空引きする真空ポンプ322、及び真空ポンプ322を駆動するモータ323を有する。 The vacuum device 32 discharges gas from the cavity 22 through the gas vent valve 31 and the gas vent passage 23b, and depressurizes the inside of the cavity 22. The vacuum device 32 includes a vacuum tank 321, a vacuum pump 322 that evacuates the vacuum tank 321, and a motor 323 that drives the vacuum pump 322.
 コントローラ33は、バルブ15及び加圧源16を制御して加圧室10内を加圧する。コントローラ33は、バルブ17を制御して加圧室10を大気開放する。コントローラ33は、バルブ31及び真空装置32を制御してキャビティ22内のガスを排出し、キャビティ22内を減圧する。コントローラ33は、ピストン機構29を制御してゲートシールピン24により開口23aを開閉する。コントローラ33は、ピストン機構29,30を制御してセンター加圧ピン25及び部分加圧ピン26によりキャビティ22内を加圧する。 The controller 33 pressurizes the inside of the pressurizing chamber 10 by controlling the valve 15 and the pressurizing source 16. The controller 33 controls the valve 17 to open the pressurizing chamber 10 to the atmosphere. The controller 33 controls the valve 31 and the vacuum device 32 to discharge the gas in the cavity 22 and depressurize the inside of the cavity 22. The controller 33 controls the piston mechanism 29 to open and close the opening 23 a by the gate seal pin 24. The controller 33 controls the piston mechanisms 29 and 30 to pressurize the cavity 22 by the center pressurizing pin 25 and the partial pressurizing pin 26.
 次に、図2を参照して、キャビティ22に対するゲートシールピン24、センター加圧ピン25及び部分加圧ピン26の位置を説明する。図2はキャビティ22を示す平面図である。図2に示すように、キャビティ22は、ゲートシールピン24及びセンター加圧ピン25を中心にX方向及びY方向に対称に広がる。図2に示す例では、部分加圧ピン26は、キャビティ22の端部近傍に6つ設けられている。 Next, the positions of the gate seal pin 24, the center pressure pin 25, and the partial pressure pin 26 with respect to the cavity 22 will be described with reference to FIG. FIG. 2 is a plan view showing the cavity 22. As shown in FIG. 2, the cavity 22 extends symmetrically in the X direction and the Y direction around the gate seal pin 24 and the center pressurizing pin 25. In the example shown in FIG. 2, six partial pressure pins 26 are provided near the end of the cavity 22.
 次に、図3A~図3Dおよび図4を参照して、加圧室10からキャビティ22に溶湯Aを充填する充填動作を説明する。図3A~図3Dは充填動作の概略図である。図4は、経過時間に伴う加圧源16からキャビティ22に加わる圧力P1、真空装置32からキャビティ22を吸引する圧力P2、及びこれら圧力P1,P2の差圧P3(以下、充填差圧)の変化を示す図である。なお、本実施の形態において、充填動作は経過時間に基づき実行される。例えば、溶湯Aの湯面が開口23aに達する時間を予め測定しておき、その測定された時間に基づき充填動作は実行される。 Next, with reference to FIGS. 3A to 3D and FIG. 4, a filling operation for filling the cavity 22 with the melt A from the pressurizing chamber 10 will be described. 3A to 3D are schematic views of the filling operation. FIG. 4 shows the pressure P1 applied to the cavity 22 from the pressurizing source 16 over time, the pressure P2 sucking the cavity 22 from the vacuum device 32, and the differential pressure P3 (hereinafter referred to as filling differential pressure) of these pressures P1 and P2. It is a figure which shows a change. In the present embodiment, the filling operation is executed based on the elapsed time. For example, the time for the molten metal A to reach the opening 23a is measured in advance, and the filling operation is executed based on the measured time.
 充填動作において、先ず、図3Aに示すように、時刻t11にてコントローラ33はバルブ15を開放させる。そして、コントローラ33は、ガス供給路13を介して加圧源16から加圧室10の密閉空間に不活性ガスを供給する。これにより、図4に示すように、時刻t11以降、加圧源16から加圧室10に加わる圧力P1は上昇する。したがって、図4に示すように充填差圧P3は上昇し、溶湯Aの湯面は上昇する。 In the filling operation, first, as shown in FIG. 3A, the controller 33 opens the valve 15 at time t11. Then, the controller 33 supplies an inert gas from the pressurization source 16 to the sealed space of the pressurization chamber 10 via the gas supply path 13. Thereby, as shown in FIG. 4, the pressure P1 applied to the pressurization chamber 10 from the pressurization source 16 rises after the time t11. Therefore, as shown in FIG. 4, the filling differential pressure P3 rises, and the molten metal A rises.
 次に、図3Bに示すように、時刻t12にて溶湯Aがキャビティ22の開口23aに達した後も、コントローラ33は継続してガス供給路13を介して加圧源16から加圧室10の密閉空間に不活性ガスを供給する。また、図3Bに示すように、コントローラ33はバルブ31を開放してキャビティ22と真空タンク321とを連通させる。これにより、キャビティ22内のガスはガス抜き用通路23bを介して真空タンク321に排出される。なお、溶湯Aがキャビティ22の開口23aに達したことは、センサで検知しても良いし、所定圧力で湯面が開口23aに到達する時間を予め計測しておき、その時間で管理するようにしても良い。 Next, as shown in FIG. 3B, after the molten metal A reaches the opening 23 a of the cavity 22 at time t <b> 12, the controller 33 continues from the pressurizing source 16 through the gas supply path 13 to the pressurizing chamber 10. An inert gas is supplied to the enclosed space. Further, as shown in FIG. 3B, the controller 33 opens the valve 31 so that the cavity 22 and the vacuum tank 321 communicate with each other. Thereby, the gas in the cavity 22 is discharged to the vacuum tank 321 through the gas vent passage 23b. The fact that the molten metal A has reached the opening 23a of the cavity 22 may be detected by a sensor, or the time for the molten metal surface to reach the opening 23a at a predetermined pressure is measured in advance and managed by that time. Anyway.
 上記図3Bに示す制御により、図4に示すように、時刻t12以降も加圧源16からキャビティ22に加わる圧力P1は上昇し続ける。ただし、キャビティ22の形状により、圧力P1の上昇スピードは一定でない。また、上記図3Bに示す制御により、キャビティ22から真空装置32による排出により金型内の減圧(真空)度が増大する。すなわち、図4に示すようにキャビティ22に加わる圧力P2はマイナス方向に低下する。これら圧力P1,P2によって、図4に示すように充填差圧P3は上昇する。 3B, the pressure P1 applied to the cavity 22 from the pressurization source 16 continues to increase after time t12 as shown in FIG. However, due to the shape of the cavity 22, the increasing speed of the pressure P1 is not constant. Further, by the control shown in FIG. 3B, the degree of pressure reduction (vacuum) in the mold is increased by the discharge from the cavity 22 by the vacuum device 32. That is, as shown in FIG. 4, the pressure P2 applied to the cavity 22 decreases in the minus direction. By these pressures P1 and P2, the filling differential pressure P3 increases as shown in FIG.
 次に、図3Cに示すように、時刻t13にてキャビティ22内に溶湯Aが充填されると、キャビティ22の周辺に配置したチルベント23cに溶湯Aが突入凝固し、充填工程が完了する。全てのチルベント23cで溶湯Aが凝固したら、コントローラ33はバルブ31を閉じて減圧を停止する。しかし、加圧源16からの圧力は一定圧力に維持され、キャビティ22内の溶湯Aは、この圧力下で凝固する。なお、その際、ゲートシールピン24を押し下げて開口23aを塞ぐ。続いて、図3Dに示すように、コントローラ33はバルブ17を開放させて加圧室10を大気開放させ、ストーク18内の溶湯Aの湯面を下げる。このとき、コントローラ33は、図3Dに示すように、センター加圧ピン25を押し下げて、キャビティ22内を加圧し、この圧力を更に上げるようにしても良い。更に、部分加圧ピン26による加圧を併用するようにしても良い。また、ゲートシールピン24とセンター加圧ピン25は、一体構造でも良く、この場合、単一のシリンダで下降させ、ゲート閉塞と加圧とを連続動作で行うことになる。キャビティ22内の溶湯Aが凝固した後、可動金型21を上昇させて製品を取り出す。 Next, as shown in FIG. 3C, when the molten metal A is filled in the cavity 22 at time t13, the molten metal A rushes and solidifies into the chill vent 23c arranged around the cavity 22, and the filling process is completed. When the molten metal A has solidified in all the chill vents 23c, the controller 33 closes the valve 31 and stops the pressure reduction. However, the pressure from the pressurizing source 16 is maintained at a constant pressure, and the molten metal A in the cavity 22 is solidified under this pressure. At that time, the gate seal pin 24 is pushed down to close the opening 23a. Subsequently, as shown in FIG. 3D, the controller 33 opens the valve 17 to release the pressurizing chamber 10 to the atmosphere, and lowers the molten metal surface of the molten metal A in the stalk 18. At this time, as shown in FIG. 3D, the controller 33 may press down the center pressurizing pin 25 to pressurize the inside of the cavity 22 and further increase the pressure. Furthermore, you may make it use the pressurization by the partial pressurization pin 26 together. Further, the gate seal pin 24 and the center pressurizing pin 25 may have an integral structure. In this case, the gate seal pin 24 and the center pressurizing pin 25 are lowered by a single cylinder, and the gate closing and pressurizing are performed in a continuous operation. After the molten metal A in the cavity 22 is solidified, the movable mold 21 is raised and the product is taken out.
 ここで、減圧されたキャビティ22をゲートシールピン24で封鎖し、加圧室10内を加圧し、溶湯Aをゲートシールピン24直下まで上昇させ、ゲートシールピン24を開放し加圧と減圧との圧力差で溶湯Aをキャビティ22内に流入させる方法では、溶湯Aがキャビティ22内に飛沫となって侵入し、成形品に湯皺、湯境が生じる。これに対して、本実施の形態は、ゲートシールピン24が開放されている状態で、上述したように溶湯Aがキャビティ22の開口23aに達するまで加圧室10内を加圧し、溶湯Aがキャビティ22の開口23aに達した後に加圧室10内の加圧は続行することに加えて、図4に示すように、キャビティ22内を徐々に減圧する。これにより金型への溶湯流入時の充填差圧P3を緩やかに上昇させることができる。したがって、本実施の形態は、溶湯Aの飛沫を抑制し、成形品の湯皺及び湯境の発生を抑制できる。 Here, the decompressed cavity 22 is sealed with the gate seal pin 24, the inside of the pressurizing chamber 10 is pressurized, the molten metal A is raised to a position directly below the gate seal pin 24, the gate seal pin 24 is opened, and the pressurization and depressurization are performed. In the method in which the molten metal A flows into the cavity 22 due to the pressure difference, the molten metal A enters the cavity 22 in the form of droplets, and a molten metal and a hot water boundary are generated in the molded product. On the other hand, in the present embodiment, in the state where the gate seal pin 24 is opened, the inside of the pressurizing chamber 10 is pressurized until the molten metal A reaches the opening 23a of the cavity 22 as described above. In addition to continuing the pressurization in the pressurizing chamber 10 after reaching the opening 23a of the cavity 22, the interior of the cavity 22 is gradually decompressed as shown in FIG. Thereby, the filling differential pressure P3 when the molten metal flows into the mold can be gradually increased. Therefore, this Embodiment can suppress the splash of the molten metal A, and can suppress generation | occurrence | production of the hot water bottle and hot water boundary of a molded article.
 また、本実施の形態においては、真空装置32と加圧室10でキャビティ22内の圧力を制御する。したがって、複数の加圧室を設けてキャビティ22内の圧力を制御する場合と比較して、本実施の形態は簡素な構造とできる。また、加圧室10のみでキャビティ22内の圧力を制御する場合と比較して、本実施の形態は加圧室10にかかる負荷を抑制でき、加圧室10の気密性を保つことができる。参考のために、図5に、真空装置32を併用しない比較例における、経過時間に伴う加圧源16からキャビティ22に加わる圧力P1、キャビティ22の圧力P2、及びこれら圧力P1,P2の差圧P3の変化を示す。キャビティ22の減圧が無い場合、キャビティ22に溶湯Aが流入し充填が進むにつれ、残部には背圧が立ち、その背圧は充填終盤にかけて圧縮されて更に大きくなり、最終充填部への溶湯の充填を阻害する。したがって、加圧室の加圧のみでこれを解消しようとすれば、図5に示すように、必然的に加圧力P1を大きくする必要がある。しかし、700℃の高温の系を抱えた密閉容器にて圧力を増すことは、それだけ気密シール部を強化し熱的な負荷を軽減する施策が必要となる。すなわち、シール材自体が耐熱性を有するものであることに加えて、フランジ等のシール部材の熱膨張や熱歪みを抑制する対策、例えばシール部付近に冷却回路を設けることなどが必要となる。また、使用する材料も高価になることに加えて設備が複雑になる。このような問題を本実施の形態では解決することができる。 Further, in the present embodiment, the pressure in the cavity 22 is controlled by the vacuum device 32 and the pressurizing chamber 10. Therefore, compared with the case where a plurality of pressurizing chambers are provided and the pressure in the cavity 22 is controlled, this embodiment can have a simple structure. Further, as compared with the case where the pressure in the cavity 22 is controlled only by the pressurizing chamber 10, the present embodiment can suppress the load applied to the pressurizing chamber 10 and can maintain the airtightness of the pressurizing chamber 10. . For reference, FIG. 5 shows a pressure P1 applied to the cavity 22 from the pressurization source 16 with the passage of time, a pressure P2 of the cavity 22, and a differential pressure between these pressures P1 and P2 in a comparative example in which the vacuum device 32 is not used together. The change of P3 is shown. When the cavity 22 is not depressurized, as the molten metal A flows into the cavity 22 and the filling proceeds, the back pressure is generated in the remaining portion, and the back pressure is further compressed by the end of the filling, and the molten metal to the final filling portion is increased. Inhibits filling. Therefore, if this is to be solved only by pressurization of the pressurizing chamber, it is necessary to increase the applied pressure P1 as shown in FIG. However, increasing the pressure in a closed container having a high temperature system of 700 ° C. requires measures to reinforce the hermetic seal and reduce the thermal load. That is, in addition to the sealing material itself having heat resistance, it is necessary to take measures to suppress thermal expansion and thermal distortion of a sealing member such as a flange, for example, to provide a cooling circuit in the vicinity of the sealing portion. In addition to the expensive materials used, the equipment becomes complicated. Such a problem can be solved in this embodiment.
 また、本実施の形態においては、真空装置32によりキャビティ22内の背圧を抑えることができるので、キャビティ22内の溶湯Aの流動性を高めることができる。 In the present embodiment, since the back pressure in the cavity 22 can be suppressed by the vacuum device 32, the fluidity of the molten metal A in the cavity 22 can be enhanced.
 以上、発明の実施の形態を説明したが、本発明はこれらに限定されるものではなく、発明の趣旨を逸脱しない範囲内において、種々の変更、追加等が可能である。 Although the embodiments of the invention have been described above, the present invention is not limited to these embodiments, and various modifications and additions can be made without departing from the spirit of the invention.
 A…溶湯、 10…加圧室、 11…容器、 12…固定板、 13…ガス供給路、 14…ガス排出路、 15…バルブ、 16…加圧源、 17…バルブ、 18…ストーク、 19…固定金型、 20…可動板、 21…可動金型、 22…キャビティ、 23a…開口、 23b…ガス抜き用通路、 23c…チルベント、 24…ゲートシールピン、 25…センター加圧ピン、 26…部分加圧ピン、 27,28…湯だまり、 
29,30…ピストン機構、 31…ガス抜き用弁、 32…真空装置、 33…コントローラ。
 
A ... Molten metal, 10 ... Pressurizing chamber, 11 ... Container, 12 ... Fixing plate, 13 ... Gas supply passage, 14 ... Gas discharge passage, 15 ... Valve, 16 ... Pressure source, 17 ... Valve, 18 ... Stoke, 19 DESCRIPTION OF SYMBOLS ... Fixed mold, 20 ... Movable plate, 21 ... Movable mold, 22 ... Cavity, 23a ... Opening, 23b ... Gas vent passage, 23c ... Chill vent, 24 ... Gate seal pin, 25 ... Center pressure pin, 26 ... Partial pressure pins, 27, 28 ...
29, 30 ... piston mechanism, 31 ... degassing valve, 32 ... vacuum device, 33 ... controller.

Claims (3)

  1.  下方に開口を有するキャビティを形成する金型と、
     前記金型の下方に配置されて溶湯を収容すると共に溶湯の上部に密閉空間を形成する加圧室と、
     上端開口が前記キャビティの開口に連通し下端開口が前記加圧室内の溶湯の内部に浸漬された筒状のストークと、
     前記加圧室の密閉空間にガスを供給して前記加圧室内を加圧する加圧手段と、
     前記キャビティからガスを排出して、前記キャビティ内を減圧する減圧手段と、
     前記加圧室から前記キャビティに溶湯を充填する際、前記溶湯が前記キャビティの開口に達するまで前記加圧手段によって前記加圧室内を加圧し、前記溶湯が前記キャビティの開口に達した後に前記加圧室内の加圧を続行しつつ、前記減圧手段によって前記キャビティ内を減圧する制御装置と
     を備えたことを特徴とする鋳造装置。
    A mold for forming a cavity having an opening below;
    A pressurizing chamber that is disposed below the mold and accommodates the molten metal and forms a sealed space above the molten metal;
    A cylindrical stalk in which an upper end opening communicates with the opening of the cavity and a lower end opening is immersed in the molten metal in the pressurized chamber;
    Pressurizing means for supplying gas to the sealed space of the pressurizing chamber to pressurize the pressurizing chamber;
    A pressure reducing means for discharging gas from the cavity and decompressing the inside of the cavity;
    When filling the cavity with the melt from the pressurizing chamber, the pressurizing means pressurizes the pressurizing chamber until the melt reaches the opening of the cavity, and after the molten metal reaches the opening of the cavity, the heating is performed. And a control device for reducing the pressure in the cavity by the pressure reducing means while continuing to pressurize the pressure chamber.
  2.  前記開口に対して進退自在に構成されて前記開口を開閉するゲートシールピンを備え、
     前記制御装置は、前記キャビティに前記溶湯が充填された後に前記ゲートシールピンにより前記開口を閉塞する
     ことを特徴とする請求項1記載の鋳造装置。
    A gate seal pin configured to be movable forward and backward with respect to the opening and opening and closing the opening;
    The casting apparatus according to claim 1, wherein the controller closes the opening with the gate seal pin after the molten metal is filled in the cavity.
  3.  前記前記キャビティに連通する湯だまり対して進退自在に構成されて前記キャビティ内に充填された溶湯を加圧する加圧ピンを更に備える
     ことを特徴とする請求項1又は2記載の鋳造装置。
    3. The casting apparatus according to claim 1, further comprising a pressure pin configured to be capable of moving forward and backward with respect to the puddle communicating with the cavity and pressurizing the molten metal filled in the cavity. 4.
PCT/JP2013/082182 2013-03-21 2013-11-29 Casting device WO2014147892A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/779,002 US20160045955A1 (en) 2013-03-21 2013-11-29 Casting device
CN201380074842.5A CN105073302B (en) 2013-03-21 2013-11-29 Casting device
KR1020157030092A KR20150131384A (en) 2013-03-21 2013-11-29 Casting device
EP13878814.6A EP2977127A4 (en) 2013-03-21 2013-11-29 Casting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-057572 2013-03-21
JP2013057572A JP5527451B1 (en) 2013-03-21 2013-03-21 Casting equipment

Publications (1)

Publication Number Publication Date
WO2014147892A1 true WO2014147892A1 (en) 2014-09-25

Family

ID=51175757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082182 WO2014147892A1 (en) 2013-03-21 2013-11-29 Casting device

Country Status (6)

Country Link
US (1) US20160045955A1 (en)
EP (1) EP2977127A4 (en)
JP (1) JP5527451B1 (en)
KR (1) KR20150131384A (en)
CN (1) CN105073302B (en)
WO (1) WO2014147892A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9533397B2 (en) 2012-06-29 2017-01-03 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
CN107249784A (en) * 2015-02-24 2017-10-13 日产自动车株式会社 Casting device and casting method
EP3238858A4 (en) * 2014-12-24 2017-11-01 Nissan Motor Co., Ltd. Low-pressure casting device and low-pressure casting method
CN107321959A (en) * 2017-09-05 2017-11-07 哈尔滨工业大学 Large ship rises liquid disabling mechanism with copper alloy propeller counter-pressure casting

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10441998B2 (en) 2014-03-31 2019-10-15 Nissan Motor Co., Ltd. Casting method and casting device
JP6406509B2 (en) * 2014-12-26 2018-10-17 日産自動車株式会社 Casting apparatus and casting method
JP6406510B2 (en) * 2014-12-26 2018-10-17 日産自動車株式会社 Casting method and casting apparatus
JP6460326B2 (en) * 2015-02-25 2019-01-30 日産自動車株式会社 Casting apparatus and casting method
JP6489500B2 (en) * 2015-02-26 2019-03-27 日産自動車株式会社 Casting apparatus and casting method
CN105499513A (en) * 2015-12-23 2016-04-20 哈尔滨工业大学 Device for manufacturing automobile aluminum alloy wheel hubs through liquid filling, local pressurizing and feeding and method thereof
CN107639221A (en) * 2017-08-22 2018-01-30 北京北方恒利科技发展有限公司 A kind of casting method of bimetallic cylinder
CN108311668A (en) * 2018-03-13 2018-07-24 中信戴卡股份有限公司 A kind of aluminum alloy low-pressure casting device and technique
CN108580843A (en) * 2018-03-13 2018-09-28 中信戴卡股份有限公司 A kind of aluminum vehicle wheel continuous casting continuous forging forming technology
CN109047721B (en) * 2018-10-18 2020-06-05 四川省犍为恒益铝业有限公司 Low-pressure casting die for vehicle box body
IT201900018053A1 (en) 2019-10-07 2021-04-07 Euromac Srl Apparatus and procedure for the semi-solid state casting and molding of objects in brass, bronze, aluminum alloys, magnesium and light alloys and the like.
WO2022112611A1 (en) * 2020-11-30 2022-06-02 Kurtz Gmbh & Co. Kg Mold, apparatus and method for low pressure casting
KR102409575B1 (en) * 2021-12-20 2022-06-22 (주)서영 Vacuum module device for improving casting quality

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146864A (en) 1991-11-27 1993-06-15 Toyota Motor Corp Casting device
JPH06264157A (en) * 1993-03-09 1994-09-20 Hitachi Metals Ltd Method for casting aluminum alloy and aluminum alloy parts
JP2007253168A (en) * 2006-03-20 2007-10-04 Kosei Aluminum Co Ltd Vertical type casting apparatus and vertical type casting method
JP4897734B2 (en) * 2008-04-17 2012-03-14 谷田合金株式会社 Differential pressure casting equipment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2583321B1 (en) * 1985-06-18 1987-09-18 Etude Dev Metallurg LOW ISOSTATIC PRESSURE CASTING PROCESS AND MACHINE FOR ITS IMPLEMENTATION
WO1993007977A1 (en) * 1991-10-25 1993-04-29 Toyota Jidosha Kabushiki Kaisha Device and method of vacuum casting
JP3097400B2 (en) * 1993-07-20 2000-10-10 トヨタ自動車株式会社 Vacuum casting and its equipment
JP3147285B2 (en) * 1995-07-07 2001-03-19 新東工業株式会社 Low pressure casting equipment
DE19943153C1 (en) * 1998-03-19 2001-01-25 Gut Gieserei Umwelt Technik Gm Apparatus for vacuum or pressure casting workpieces comprises a closing device and a pressure producing device formed as a one-piece piston arranged above a riser pipe
US6742568B2 (en) * 2001-05-29 2004-06-01 Alcoa Inc. Casting apparatus including a gas driven molten metal injector and method
ITPD20020167A1 (en) * 2002-06-21 2003-12-22 Bbs Riva Spa EQUIPMENT FOR MAKING ALUMINUM OBJECTS, ALUMINUM ALLOYS, LIGHT AND SIMILAR ALLOYS, AND PROCEDURE IMPLEMENTED BY THAT EQUIPMENT
US20070215308A1 (en) * 2004-05-18 2007-09-20 Nagayoshi Matsubara Vertical Casting Apparatus and Vertical Casting Method
ITTO20070934A1 (en) * 2007-12-21 2009-06-22 Solmar S A S Di Luisa Maria Ma EQUIPMENT FOR THE MANUFACTURE OF METAL ARTICLES, IN PARTICULAR OF LIGHT ALLOY.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146864A (en) 1991-11-27 1993-06-15 Toyota Motor Corp Casting device
JPH06264157A (en) * 1993-03-09 1994-09-20 Hitachi Metals Ltd Method for casting aluminum alloy and aluminum alloy parts
JP2007253168A (en) * 2006-03-20 2007-10-04 Kosei Aluminum Co Ltd Vertical type casting apparatus and vertical type casting method
JP4897734B2 (en) * 2008-04-17 2012-03-14 谷田合金株式会社 Differential pressure casting equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2977127A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9533397B2 (en) 2012-06-29 2017-01-03 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
EP3238858A4 (en) * 2014-12-24 2017-11-01 Nissan Motor Co., Ltd. Low-pressure casting device and low-pressure casting method
US10272488B2 (en) 2014-12-24 2019-04-30 Nissan Motor Co., Ltd. Low-pressure casting device and low-pressure casting method
CN107249784A (en) * 2015-02-24 2017-10-13 日产自动车株式会社 Casting device and casting method
JPWO2016135843A1 (en) * 2015-02-24 2017-11-24 日産自動車株式会社 Casting apparatus and casting method
US20180029114A1 (en) * 2015-02-24 2018-02-01 Nissan Motor Co., Ltd. Casting Device and Casting Method
EP3263247A4 (en) * 2015-02-24 2018-05-16 Nissan Motor Co., Ltd. Casting device and casting method
US10286449B2 (en) * 2015-02-24 2019-05-14 Nissan Motor Co., Ltd. Casting device and casting method
CN107321959A (en) * 2017-09-05 2017-11-07 哈尔滨工业大学 Large ship rises liquid disabling mechanism with copper alloy propeller counter-pressure casting
CN107321959B (en) * 2017-09-05 2019-04-16 哈尔滨工业大学 Large ship rises liquid disabling mechanism with copper alloy propeller counter-pressure casting

Also Published As

Publication number Publication date
EP2977127A4 (en) 2016-04-06
CN105073302B (en) 2017-08-08
CN105073302A (en) 2015-11-18
EP2977127A1 (en) 2016-01-27
JP2014180696A (en) 2014-09-29
JP5527451B1 (en) 2014-06-18
US20160045955A1 (en) 2016-02-18
KR20150131384A (en) 2015-11-24

Similar Documents

Publication Publication Date Title
JP5527451B1 (en) Casting equipment
CN106975738B (en) Vacuum die casting equipment and high vacuum die casting method
EP3263247B1 (en) Casting device and casting method
KR101555376B1 (en) Casting apparatus
EP3127633B1 (en) Casting method and casting device
CN110958921A (en) Method and apparatus for countergravity mold filling
JP2007253168A (en) Vertical type casting apparatus and vertical type casting method
JP2016043356A (en) Casting apparatus
JP2012148319A (en) Apparatus and method for die casting
JP7172765B2 (en) Casting equipment and casting method
JP6489500B2 (en) Casting apparatus and casting method
KR101870591B1 (en) Low-pressure casting method and low-pressure casting apparatus
JP6406509B2 (en) Casting apparatus and casting method
JP2871358B2 (en) Casting equipment
JP6183272B2 (en) Casting apparatus and casting method
JP2016215243A (en) Molten metal filling control method of casting device
JPH0957422A (en) Reduced pressure casting method
JP2008044008A (en) Low-pressure casting apparatus, and inert gas filling method
JPH05146865A (en) Casting device
JP6268557B2 (en) Casting method and casting apparatus
JP2014136252A (en) Casting apparatus
US20130248134A1 (en) Method and Apparatus for Casting
JP6331643B2 (en) Low pressure casting equipment
JP2008264796A (en) Vertical casting apparatus and vertical casting method
JP2016155152A (en) Casting device and casting method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380074842.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878814

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013878814

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14779002

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157030092

Country of ref document: KR

Kind code of ref document: A