WO2014147866A1 - High-frequency electromagnetic field measurement device - Google Patents

High-frequency electromagnetic field measurement device Download PDF

Info

Publication number
WO2014147866A1
WO2014147866A1 PCT/JP2013/074059 JP2013074059W WO2014147866A1 WO 2014147866 A1 WO2014147866 A1 WO 2014147866A1 JP 2013074059 W JP2013074059 W JP 2013074059W WO 2014147866 A1 WO2014147866 A1 WO 2014147866A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
magnetic force
magnetic
force sensor
signal
Prior art date
Application number
PCT/JP2013/074059
Other languages
French (fr)
Japanese (ja)
Inventor
遠藤 恭
山口 正洋
島田 寛
翔 室賀
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2015506537A priority Critical patent/JP6327614B2/en
Publication of WO2014147866A1 publication Critical patent/WO2014147866A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/038Measuring direction or magnitude of magnetic fields or magnetic flux using permanent magnets, e.g. balances, torsion devices
    • G01R33/0385Measuring direction or magnitude of magnetic fields or magnetic flux using permanent magnets, e.g. balances, torsion devices in relation with magnetic force measurements

Definitions

  • the present invention relates to a high-frequency electromagnetic field measuring apparatus.
  • the present inventors pay attention to the probe of a magnetic force microscope (MFM) as a detection sensor and beat the field (A high-frequency near-field magnetic field measurement method using a “Beating field” method has been developed (see Japanese Patent Application No. 2012-083425).
  • MFM magnetic force microscope
  • CPW coplanar waveguide
  • beat signal a field beat
  • the force F M acting on the probe of a magnetic force microscope by the magnetic field generated by the CPW is represented by (1) (See Non-Patent Document 5, for example).
  • H Z vertical (Z) direction of the magnetic field components H C is the magnetic field component of the carrier signal
  • theta C vertical (Z) direction of angle of the magnetic field component of the carrier signal H ref is the magnetic field component of the reference wave signal
  • ⁇ ref is the angle in the vertical (Z) direction of the magnetic field component of the reference wave signal
  • f Res is the resonance frequency of the probe (cantilever)
  • t is the time
  • f 0 is the frequency of the carrier signal.
  • an intermediate value (frequency) of the frequency of the reference wave signal, and ⁇ is a phase.
  • is the dielectric constant
  • S is the area of the cantilever
  • h is the distance (lift height) between the tip of the probe and the CPW
  • V CPW is the CPW potential
  • V tip is the probe potential
  • Z is the CPW characteristic.
  • Impedance E C is the electric field component of the carrier wave signal
  • E ref is the electric field component of the reference wave signal.
  • the conventional near-field high-frequency magnetic field measurement method can satisfy both sub-micron spatial resolution and high-frequency characteristics in the gigahertz band at the same time. There is a problem that the influence of the magnetic field and the influence of the high frequency electric field cannot be separated, and the measurement accuracy of the high frequency magnetic field is lowered.
  • the present invention has been made paying attention to such problems, and can separate the influence of the high-frequency magnetic field generated by the input of the high-frequency signal from the influence of the high-frequency electric field, and can measure the high-frequency magnetic field with high accuracy.
  • An object of the present invention is to provide a high-frequency electromagnetic field measuring apparatus.
  • a high-frequency electromagnetic field measurement apparatus is a high-frequency electromagnetic field measurement apparatus for measuring a high-frequency magnetic field emitted from a measurement object to which a high-frequency signal is input, and is based on magnetic action
  • a magnetic force sensor capable of detecting a magnetic field using vibration; a current line disposed in proximity to the measurement object; a carrier introduction means for inputting a high-frequency carrier signal to the measurement object; and the current line
  • a reference wave introducing means configured to be able to change the frequency of the reference wave signal to be inputted, and the carrier wave signal is transferred from the carrier introducing means to the measurement object.
  • the input potential is configured to be equal to the potential of the magnetic force sensor.
  • the high-frequency electromagnetic field measuring apparatus can measure a high-frequency magnetic field generated by a measurement object to which a high-frequency signal is input as follows. That is, a high frequency carrier signal is input to the measurement object by the carrier introduction means to generate a high frequency magnetic field having a certain intensity and frequency. Further, the reference wave introducing means inputs a high-frequency reference wave signal to a current line arranged close to the object to be measured, thereby generating a high-frequency magnetic field having a certain intensity and frequency.
  • the potential when the carrier wave signal is input from the carrier wave introducing means to the measurement object is equal to the potential of the magnetic force sensor, the high frequency generated together with the high frequency magnetic field by the input of the high frequency signal
  • the force received by the magnetic force sensor from the electric field can be suppressed.
  • the influence by a high frequency magnetic field and the influence by a high frequency electric field can be isolate
  • the potential when the carrier signal is input from the carrier introduction means to the object to be measured and the potential of the magnetic force sensor are exactly the same because the closer to the same value, the higher the magnetic field measurement accuracy. However, some deviation may occur in the circuit configuration. For this reason, even if these electric potentials are not exactly the same, it is sufficient that they are almost equal.
  • the high-frequency electromagnetic field measuring apparatus increases the effect of separating a high-frequency magnetic field and a high-frequency electric field, and further improves measurement accuracy. It is preferable to align the phase and amplitude with the phase and amplitude of the potential of the magnetic force sensor. In order to align the phases, for example, a phase adjuster or the like can be used.
  • the high-frequency electromagnetic field measuring apparatus includes a magnetic force microscope, the magnetic force sensor includes a cantilever of the magnetic force microscope, and the magnetic force microscope includes a mounting table on which the measurement object is placed; It is preferable to have displacement measuring means for measuring displacement due to vibration of the magnetic force sensor, and scanning means for scanning the magnetic force sensor relative to the measurement object.
  • the force that the magnetic force sensor receives from the high-frequency magnetic field can be measured by the displacement measuring means.
  • a two-dimensional distribution of a high-frequency magnetic field generated on a measurement object such as a circuit can be obtained by scanning with a scanning unit. Thereby, the generation source, propagation path, mixing destination, etc. of electromagnetic noise on the measurement target can be specified, which can contribute to the solution of the EMI problem.
  • the current line is made of a coil
  • the cantilever is made of an insulator
  • a magnetic film is formed on the surface of the tip of the tip.
  • the coil mainly generates a high-frequency magnetic field
  • the insulator cantilever beam is not affected by the high-frequency electric field, so that the high-frequency magnetic field can be measured with high accuracy.
  • the electric field that can eliminate the influence is a high-frequency electric field of 100 MHz or more, and in particular, the influence of the electric field in the GHz order can also be removed.
  • the cantilever may have a magnetic film formed on the surface of the beam opposite to the probe in order to increase the measurement accuracy of the high-frequency magnetic field.
  • an AC power source for applying an alternating magnetic field to the current line and a magnetization of the magnetic material of the magnetic film of the cantilever are reattached so that the magnetization of the magnetic material of the magnetic film of the cantilever can be AC demagnetized.
  • a DC power source for generating a DC magnetic field in the current line may be provided so as to be magnetized.
  • the current line may be an open transmission line, and the cantilever may be made of silicon.
  • the open-type transmission line mainly generates a high-frequency electric field, and the silicon cantilever is easily affected by the high-frequency electric field. Can do.
  • the cantilever is not limited to silicon but may be made of other conductive materials, but silicon is particularly preferable because of good workability.
  • the high-frequency electromagnetic field measuring apparatus according to the present invention may be configured such that both the high-frequency magnetic field and the high-frequency electric field can be measured, and the current line can be switched between the coil and the open transmission line.
  • the cantilever may also be configured to be switchable between an insulator and a magnetic film formed on the tip of the tip and a silicon one.
  • the high-frequency electromagnetic field measuring apparatus when the reference wave signal is input while changing the frequency by the reference wave introducing means, from the displacement due to the vibration of the magnetic force sensor measured by the displacement measuring means, Obtaining the amplitude when the magnetic force sensor vibrates at the resonance frequency, obtaining the frequency of the reference wave signal by the reference wave introducing means at that time, and obtaining the obtained amplitude of the magnetic force sensor and the frequency of the reference wave signal And analyzing means for calculating the amplitude and frequency of the high-frequency signal emitted from the measurement object in response to the input of the carrier wave signal.
  • the high-frequency signal emitted from the measurement object to which the high-frequency signal is input can be quantitatively grasped by the analyzing means.
  • the high-frequency magnetic field can be quantitatively obtained using the equation (1).
  • the high frequency electric field can be quantitatively obtained using the formula (2).
  • the magnetic force sensor may be made of an insulator.
  • the insulating magnetic force sensor is not affected by the high frequency electric field, the high frequency magnetic field can be measured with high accuracy.
  • a high-frequency electromagnetic field measuring apparatus capable of separating the influence of a high-frequency magnetic field generated by the input of a high-frequency signal and the influence of a high-frequency electric field and measuring the high-frequency magnetic field with high accuracy.
  • FIG. 1A is a perspective view showing the overall configuration of a high-frequency magnetic field measuring apparatus using a field beat method
  • FIG. 1B is a measurement of a coplanar waveguide (CPW) used for the measurement. It is an enlarged plan view showing a position, and (c) an enlarged sectional view.
  • CPW coplanar waveguide
  • FIG. 6 is a combined spectrum of a carrier wave signal and a reference wave signal used in measurement of a high-frequency magnetic field by the measurement apparatus shown in FIG.
  • a high-frequency magnetic field is measured by the measuring apparatus shown in FIG. 5
  • the frequency of the carrier signal is 100 MHz and 2 GHz.
  • 6 is a graph showing the relationship between the vibration amplitude value of the probe near the resonance frequency of the cantilever and the current value of the carrier wave signal. It is a graph which shows the relationship between the frequency of a carrier wave signal, the vibration amplitude value of a probe, and Q value when a high frequency magnetic field is measured with the measuring apparatus shown in FIG.
  • FIG. 6 is a perspective view showing an overall configuration of a high-frequency magnetic field measurement apparatus improved from FIG. 5A with respect to the high-frequency electromagnetic field measurement apparatus according to the embodiment of the present invention.
  • the position of the probe with respect to the CPW when the frequency of the carrier signal is 2 GHz It is a graph which shows the relationship with the vibration amplitude value of a probe. Relationship between the probe position relative to the CPW and the magnetic field (Hz) ⁇ magnetic field gradient (dHz / dz) when the frequency of the carrier wave signal is 1.1 GHz when the high-frequency magnetic field is measured by the measuring apparatus shown in FIG. It is a graph which shows.
  • a high frequency magnetic field is measured by the field beat method using the high frequency electromagnetic field measuring apparatus shown in FIG.
  • FIG. 11 is a measurement principle diagram of a high-frequency magnetic field measurement apparatus using a field beat method, and (d) an improved high-frequency magnetic field measurement apparatus shown in FIG.
  • a high-frequency electromagnetic field measurement apparatus 10 is a high-frequency electromagnetic field measurement apparatus 10 for measuring a high-frequency magnetic field generated by a measurement object 1 to which a high-frequency signal is input, and includes a magnetic force microscope 11 and a current.
  • Line 12, carrier wave introducing means 13, reference wave introducing means 14, and computer 15 are provided.
  • the measurement object 1 includes, for example, active elements such as transistors and diodes, passive elements such as capacitors and inductors, power supply circuits, LSI chips, and high-frequency transmission lines.
  • the magnetic force microscope 11 includes a magnetic force sensor 21, a mounting table 22, a displacement measuring unit 23, and a scanning unit 24.
  • the magnetic force sensor 21 includes an insulating cantilever provided with a probe 21b at the tip of a beam 21a.
  • a magnetic film is formed on the surface of the probe 21b and the surface of the beam 21a opposite to the probe 21b.
  • the magnetic force sensor 21 is configured to be able to detect a magnetic field using vibration caused by a magnetic action.
  • the magnetic force sensor 21 is preferably made of a material having a soft magnetic property with a high magnetic permeability or a material having a coercive force of about 50 to 100 Oe and a magnetic permeability.
  • the mounting table 22 is composed of a stepping motor drive stage, and is provided so that the measuring object 1 can be mounted thereon.
  • the mounting table 22 is configured such that the height can be adjusted in a state where the measuring object 1 is placed.
  • the displacement measuring means 23 includes a laser 23a, an optical position sensor (PSD) 23b, and a detection circuit 23c.
  • the displacement measuring means 23 applies the light from the laser 23 a to the magnetic force sensor 21, receives the reflected light by the optical position sensor 23 b, and sends the signal to the detection circuit 23 c, whereby the displacement due to the vibration of the magnetic force sensor 21. Can be measured.
  • the scanning means 24 is composed of a piezo element driving type stage, to which the magnetic force sensor 21 is attached.
  • the scanning unit 24 is configured to be able to move the magnetic force sensor 21 in a horizontal plane with respect to the measurement object 1.
  • the current line 12 is formed by a one-turn or two-turn circular or semi-circular coil (Coil), and is disposed in the vicinity of the measurement object 1.
  • the carrier introduction means 13 includes a signal generator (SG) 25 that transmits a high-frequency carrier signal and a splitter (Power Splitter) 26 that divides the transmitted carrier signal into two. is doing.
  • the carrier wave introduction means 13 inputs one signal divided by the splitter 26 to the measurement object (DUT) 1 and inputs the other signal to the magnetic force sensor 21 via the phase adjuster 27 and the bypass capacitor 28.
  • the high frequency electromagnetic field measuring apparatus 10 is configured such that the potential when the carrier wave signal is input to the measurement object 1 and the potential of the magnetic force sensor 21 are equal.
  • the reference wave introducing means 14 has a signal generator 29 that transmits a high-frequency carrier signal, and is configured to be able to input a high-frequency reference wave signal to the current line 12.
  • the reference wave introducing means 14 is configured to be able to change the frequency of the input reference wave signal.
  • the computer 15 is connected to the detection circuit 23c of the displacement measuring means 23 via the lock-in amplifier 30, and the carrier wave introducing means 13 and the reference wave introducing means via the lock-in amplifier 30 and the frequency mixer 31. 14.
  • the high frequency electromagnetic field measuring apparatus 10 generates a reference signal by mixing the carrier wave signal from the carrier wave introducing means 13 and the reference wave signal from the reference wave introducing means 14 by the frequency mixer 31, and the lock-in amplifier 30. It is sent to the computer 15 in synchronism with the displacement data from the detection circuit 23c to perform high-sensitivity measurement.
  • the computer 15 has analysis means (not shown) and control means (not shown), and is connected to the mounting table 22 and the scanning means 24 via the controllers 32 and 33, respectively.
  • the analysis means inputs the reference wave signal while changing the frequency by the reference wave introducing means 14, the magnetic force sensor 21 vibrates at the resonance frequency from the displacement caused by the vibration of the magnetic force sensor 21 measured by the displacement measuring means 23.
  • the amplitude of the reference wave signal obtained by the reference wave introduction means 14 at that time is obtained.
  • the control means adjusts the height of the mounting table 22 to control the distance between the measurement object 1 and the probe 21b, and horizontally moves the scanning means 24 to measure the measurement object 1 in the horizontal plane. The position is controlled.
  • the high-frequency electromagnetic field measuring apparatus 10 can measure a high-frequency magnetic field generated by the measurement object (DUT) 1 to which a high-frequency signal is input as follows. That is, a high-frequency carrier signal is input to the measurement object 1 by the carrier introduction means 13 to generate a high-frequency magnetic field (H) having a certain intensity and frequency. Further, the reference wave introducing means 14 inputs a high frequency reference wave signal to the current line 12 arranged close to the measurement object 1 to generate a high frequency magnetic field (H) having a certain intensity and frequency.
  • the frequency of the reference wave signal is changed by the reference wave introducing means 14 so that the frequency of the high frequency magnetic field generated by the measurement object 1 and the frequency of the high frequency magnetic field generated by the current line 12 are slightly shifted.
  • This makes it possible to generate a beat (beat signal) of a magnetic field including each high-frequency magnetic field.
  • a beat beat signal
  • the frequency of the beat signal close to the resonance frequency of the magnetic force sensor 21 composed of a cantilever, a high-frequency magnetic field can be measured.
  • the displacement measuring means 23 measures the displacement received by the magnetic force sensor 21 from the high-frequency magnetic field. Based on the measured data, the analyzing means inputs a high-frequency signal using equation (1).
  • the high-frequency magnetic field generated by the measured object 1 can be obtained quantitatively.
  • the high frequency electromagnetic field measuring apparatus 10 is configured such that the potential when the carrier wave signal is input from the carrier wave introducing means 13 to the measurement object 1 is equal to the potential of the magnetic force sensor 21, and the phase adjustment is performed. Since the phase and amplitude of these potentials are aligned by the capacitor 27 and the bypass capacitor 28, the force received by the magnetic force sensor 21 from the high-frequency electric field generated together with the high-frequency magnetic field by the input of the high-frequency signal can be suppressed. Thereby, the influence by a high frequency magnetic field and the influence by a high frequency electric field can be isolate
  • the coil of the current line 12 mainly generates a high frequency magnetic field and the insulator cantilever beam 21a which is the magnetic force sensor 21 is not affected by the high frequency electric field, the high frequency magnetic field can be measured with higher accuracy. it can.
  • the high-frequency electromagnetic field measuring apparatus 10 can obtain a two-dimensional distribution of a high-frequency magnetic field generated on the measurement object 1 such as a circuit by performing measurement while scanning with the scanning unit 24. Thereby, the generation source, propagation path, mixing destination, etc. of the electromagnetic noise on the measurement object 1 can be specified, which can contribute to the solution of the EMI problem.
  • the high-frequency electromagnetic field measuring apparatus 10 has a DC power source 41 for generating a DC magnetic field on the current line 12 and an AC power source 42 for applying an alternating magnetic field to the current line 12. You may do it.
  • the AC power source 42 to make the current line 12 a high frequency magnetic field source
  • the magnetization of the magnetic material of the magnetic film of the magnetic force sensor 21 can be AC demagnetized.
  • the DC power source 41 to make the current line 12 a DC magnetic field generation source, the magnetization of the magnetic material of the magnetic film of the magnetic force sensor 21 can be re-magnetized and saturated.
  • the current line 12 is formed of an open type transmission line, and the cantilever of the magnetic force sensor 21 may be made of silicon.
  • the measurement principle of the high frequency electromagnetic field measuring apparatus 10 at this time is shown in FIG.
  • the open transmission line mainly generates a high-frequency electric field (E), and the silicon cantilever is susceptible to the influence of the high-frequency electric field. Can be measured. Further, the high-frequency electric field can be obtained quantitatively using the formula (2).
  • the high-frequency electromagnetic field measuring apparatus 10 shown in FIGS. 3 and 4 can be used for high-frequency electric field measurement in a memory or the like.
  • the high frequency electromagnetic field measuring apparatus 10 may be configured such that the current line 12 can be switched between a coil and an open transmission line so that both a high frequency magnetic field and a high frequency electric field can be measured.
  • the cantilever may be made of an insulator, and may be configured to be switchable between a silicon film formed on the surface of the tip 21b and a silicon film.
  • the high frequency magnetic field was measured using the field beat method.
  • a coplanar waveguide (CPW) was produced as the measurement object 1.
  • CPW coplanar waveguide
  • electron beam lithography, DC magnetron sputtering and lift-off methods were used.
  • the produced CPW has a one-port shape with one end terminated, and the structure is Cr (5 nm) laminated on a glass substrate (Glass sub .; thickness: 550 ⁇ m, relative dielectric constant ⁇ r: 7.0). ) / Cu (300 nm) / Cr (5 nm).
  • the CPW line length is 7800 ⁇ m
  • the signal line (SL; Signal Line) width is 5 ⁇ m
  • the ground line (GL; Ground Line) width is 50 ⁇ m
  • the gap width between the signal line and the ground line is 6 ⁇ m.
  • the characteristic impedance of CPW is 189 ⁇ .
  • a point approximately 400 to 600 ⁇ m from the short-circuit point at the center of the CPW signal line is set as the origin.
  • an MFM cantilever coated with Ni-Fe was used as the magnetic force sensor 21, an MFM cantilever coated with Ni-Fe was used.
  • the cantilever has a resonance frequency of about 28 kHz, a spring constant of 1.3 to 1.4 N / m, a Q value of 80, and a tip radius of the probe 21b of 40 to 50 nm.
  • the cantilever fixes the magnetization in the vertical direction before measurement.
  • the distance between the probe (MTM tip) 21b and the CPW (Lift Height) is 500 nm
  • the carrier wave signal is 9.15 mA, 100 MHz and 2 GHz
  • the reference wave signal is 9.15 mA, 100 MHz and 2 GHz
  • the bandwidth of the lock-in amplifier 30 was 80 Hz.
  • the apparatus shown in FIG. 5 (a) was used.
  • the measurement principle of the measurement apparatus shown in FIG. 5 (a) is shown in FIG. 17 (c).
  • the apparatus of FIG. 5A differs from the high-frequency electromagnetic field measuring apparatus 10 in the following points.
  • the carrier wave signal and the reference wave signal shifted by the resonance frequency of the cantilever from the frequency of the carrier wave signal are simultaneously input to the CPW of the measurement object (DUT) without using the current line 12.
  • a high frequency magnetic field is generated by the beat of the field.
  • the output from the function generator (FG) 51 is used as a reference signal for the lock-in amplifier 30. Note that the output frequency of the function generator 51 is set to several hundred kHz or less so as to include the resonance frequency of the cantilever.
  • FIG. 6 shows a spectrum when the frequency of the carrier signal is 100 MHz.
  • two narrow-bandwidth spectra are observed at 100 MHz and 100.028 MHz.
  • no spectrum is observed in the vicinity of 28 kHz corresponding to the frequency difference.
  • This result is the same in all cases where the frequency of the carrier signal is changed from 10 MHz to 10 GHz. Therefore, it was confirmed that even if a carrier wave signal and a reference wave signal are input on the CPW line to generate a beat component of the field, no signal is synthesized in a low frequency band near the resonance frequency band of the cantilever. It was also confirmed that the line widths of these spectra were sufficiently narrow compared to the cantilever resonance frequency band.
  • FIG. 7A shows the measurement result of the vibration amplitude value of the probe 21b when the frequency of the carrier wave signal is 100 MHz.
  • the measurement position of the probe 21b is the center of the gap between the CPW signal line and the ground line.
  • the vibration amplitude value of the probe 21b was the maximum in the vicinity of 28 kHz corresponding to the resonance frequency of the cantilever. From this result, it can be said that the beat of the field caused by the two high-frequency signals can be detected by the MFM probe 21b.
  • the frequency of the carrier signal is 100 MHz and 2 GHz
  • the relationship between the vibration amplitude value of the probe 21b in the vicinity of 28 kHz corresponding to the resonance frequency of the cantilever and the current value of the carrier signal is examined, and the result is shown in FIG. ).
  • the measurement position of the probe 21b is the center of the gap between the CPW signal line and the ground line.
  • FIG. 7B it was confirmed that when the current value of the carrier signal was increased, the vibration amplitude value near the resonance frequency of the cantilever increased linearly.
  • FIG. 8 shows the relationship between the frequency of the carrier wave signal and the vibration amplitude value and Q value of the probe 21b at this time.
  • the measurement position of the probe 21b is the center of the gap between the CPW signal line and the ground line.
  • the vibration amplitude value is almost constant up to around 2 GHz and is 0.60 to 0.75 nm. Further, it was confirmed that at 2 GHz or more, it rapidly decreased to near 0.08 nm and then decreased logarithmically. Further, it was confirmed that the Q value was almost constant regardless of the frequency band, and the value was about 350.
  • the frequency of the carrier wave signal was 100 MHz and 2 GHz
  • the high frequency magnetic field due to the beat of the field was measured while moving the probe 21b in the cross-sectional direction of the CPW.
  • the relationship between the position of the probe 21b and the vibration amplitude value of the probe 21b at this time is shown in FIG.
  • the vibration amplitude value of the probe 21 b decreased with a decrease in the detection area (Detection Area) where the CPW signal line, the ground line, and the cantilever overlap. This suggests that the cantilever detects not only a high-frequency magnetic field but also a high-frequency electric field.
  • FIG. 5A The apparatus shown in FIG. 5A was improved and an attempt was made to separate a high-frequency magnetic field and a high-frequency electric field by a field beat method.
  • CPW shown in FIG. 5 was used as the measurement object 1.
  • the apparatus used for the measurement is shown in FIG.
  • the measurement principle of this measuring apparatus is shown in FIG.
  • the apparatus of FIG. 10 differs from the apparatus of FIG. 5A in that the potential when the carrier wave signal is input to the CPW and the potential of the cantilever are equalized by the splitter 26, the phase adjuster 27, and the bypass capacitor 28. Has been.
  • the configuration is closer to that of the high-frequency electromagnetic field measuring apparatus 10.
  • FIG. 12 (“Non coated” in the figure).
  • the results of a cantilever coated with Ni—Fe in FIG. 11 are also shown (“Ni—Fe” in the figure).
  • FIG. 12 it was confirmed that the vibration amplitude value of the probe 21b is substantially constant in a cantilever that is not magnetically coated. Since the cantilever that is not magnetically coated is considered not to be affected by the high-frequency magnetic field, it can be said from the results shown in FIG. 12 that the apparatus shown in FIG. 10 can suppress the influence of the high-frequency electric field.
  • the magnetic force sensor 21 is a cantilever coated with Ni—Fe. As shown in FIG. 13, it was confirmed that the value of the magnetic field ⁇ magnetic field gradient had a maximum value or a minimum value in the vicinity of the boundary between the CPW ground line or the signal line and the gap. From this, it is considered that the gradient of the high-frequency magnetic field could be detected by the apparatus shown in FIG.
  • a high-frequency magnetic field can be detected by configuring the potential when the carrier wave signal is input to the CPW and the potential of the cantilever to be equal. For this reason, even in the high frequency electromagnetic field measuring apparatus 10 having the same configuration, it is considered that only the high frequency magnetic field can be detected by separating the influence of the high frequency magnetic field and the influence of the high frequency electric field.
  • the high frequency magnetic field was measured by the field beat method.
  • the measurement object 1 CPW shown in FIG. 5 was used.
  • an MFM cantilever in which the surface of the probe 21b and the surface of the beam 21a opposite to the probe 21b are coated with Ni—Fe is used.
  • the frequency of the reference wave signal flowing through the coil of the current line 12 is 1000 MHz
  • the amplitude is 12 dBm
  • the frequency of the carrier wave signal flowing through the CPW of the measurement object 1 is 1000.02797 MHz
  • the amplitude is 9, 12, 15, 18, 21 dBm
  • a high frequency magnetic field was generated by the beat of the field, and the vibration amplitude and phase of the probe 21b were measured.
  • FIG. 14 shows the measurement results when there is no carrier signal
  • FIGS. 14B to 14F show the measurement results when the amplitude of the carrier signal is 9, 12, 15, 18, 21 dBm, respectively.
  • the upper graph shows the probe vibration amplitude
  • the lower graph shows the phase measurement result.
  • FIG. 15 shows changes in the peak value of the vibration amplitude of the probe 21b with respect to the amplitude of the carrier signal. As shown in FIG. 14, it was confirmed that the vibration amplitude of the probe 21b was maximized at 27.7 kHz near the resonance frequency of the cantilever by the field beat method. Further, as shown in FIG. 15, it was confirmed that when the amplitude of the carrier wave signal was increased, the vibration amplitude in the vicinity of the resonance frequency of the cantilever increased substantially linearly.
  • FIG. 16 shows the relationship between the frequency of the reference wave signal at this time and the peak value of the vibration amplitude of the probe 21b.
  • the high frequency electromagnetic field measurement apparatus 10 can be used to measure a high frequency magnetic field by a field beat method.
  • the vibration amplitude of the probe 21b is large, which depends on the high frequency characteristics of the measurement system, By improving the connector or the like, the high-frequency characteristics can be improved.
  • the high frequency electromagnetic field measuring apparatus 10 can detect the high frequency magnetic field. Further, the high frequency electromagnetic field measuring apparatus 10 is configured so that the potential when the carrier wave signal is input to the CPW and the potential of the cantilever are equal, so that the influence of the high frequency electric field is suppressed and only the high frequency magnetic field is detected. It is thought that.
  • the high-frequency electromagnetic field measuring apparatus can be used as a high-frequency magnetic force microscope, a high-frequency electromagnetic noise measuring instrument, and a spin element measuring apparatus.
  • the measurable frequency band can be expanded to a high frequency of at least 6 to 7 GHz and a maximum of 10 GHz.
  • the spatial resolution can be increased to 1 ⁇ m or less, and electromagnetic noise on an LSI chip can be measured.
  • the behavior of a minute magnetic material can be directly observed.

Abstract

[Problem] To provide a high-frequency electromagnetic field measurement device that can separate the impact of a high-frequency electromagnetic field and the impact of a high-frequency electric field, that are generated by the input of a high-frequency signal, and that can measure a high-frequency electromagnetic field with high precision. [Solution] A magnetic force sensor (21) is formed from the cantilever of a magnetic force microscope (11) and can detect a magnetic field. A current line (12) is formed from a coil and is disposed so as to be adjacent to an object of measurement (1). A carrier guide means (13) inputs a high-frequency carrier signal to the object of measurement (1), and a reference wave guide means (14) is configured so as to input a high-frequency reference wave signal to the current line (12). Further, the potential when the carrier signal is input to the object of measurement (1) from the carrier guide means (13) is made to match the potential of the magnetic force sensor (21). The magnetic force microscope (11) has a placement stand (22) onto which the object of measurement (1) is placed, a displacement measurement means (23) for measuring the displacement of the magnetic force sensor (21), and a scanning means (24) for scanning the magnetic force sensor (21).

Description

高周波電磁界測定装置High frequency electromagnetic field measuring device
 本発明は、高周波電磁界測定装置に関する。 The present invention relates to a high-frequency electromagnetic field measuring apparatus.
 近年、携帯情報端末向けのアナログ高周波集積化回路(Radio Frequency Integrated Circuit:RFIC)の微細化の進展とともに、最小配線ピッチが狭くなってきており、配線間のクロストークや電磁ノイズ等の問題が発生する可能性が高まっている。また、無線通信で用いる高周波信号を処理するRFICチップ上では、デジタル回路面積の増加とデジタル・アナログ回路の混在により、デジタル回路で発生した電磁ノイズがアナログ回路に混入して電磁干渉(Electromagnetic Interference:EMI)問題を引き起こしている。このEMI問題に関する対策として、チップ内で発生した電磁ノイズの発生源、伝搬経路、混入先を特定することが重要であり、そのために、チップ上で発生する高周波近傍磁界を計測することは有効である。 In recent years, with the progress of miniaturization of analog high-frequency integrated circuits (Radio Frequency Integrated Circuit: RFIC) for portable information terminals, the minimum wiring pitch has become narrower, and problems such as crosstalk between wires and electromagnetic noise have occurred. The possibility to do is increasing. In addition, on an RFIC chip that processes high-frequency signals used in wireless communication, electromagnetic noise generated in the digital circuit is mixed into the analog circuit due to an increase in the digital circuit area and a mixture of the digital and analog circuits, and electromagnetic interference (Electromagnetic Interference: EMI) is causing problems. As a countermeasure for this EMI problem, it is important to specify the source, propagation path, and mixing destination of electromagnetic noise generated in the chip. For this reason, it is effective to measure the high-frequency magnetic field generated on the chip. is there.
 従来、チップ上で発生する高周波近傍磁界を計測する方法として、シールディドループコイル型磁界プローブや磁気光学プローブ、超伝導量子干渉計(Superconducting Quantum Interference Device:SQUID)、巨大磁気抵抗型(Giant Magnetoresistance:GMR)センサを用いた方法がある(例えば、非特許文献1乃至4参照)。しかし、非特許文献1乃至4に記載の方法では、測定周波数帯域は0.5GHzを超えているものの、検出センサの空間分解能は概ね数十μmにとどまっている。このため,最少配線ピッチがサブミクロン程度であるRFICチップでは、その微細な信号配線や構成する素子を流れる電流が作る磁界成分を検出することは困難であるという問題があった。 Conventionally, as a method of measuring a magnetic field near a high frequency generated on a chip, a shielded loop coil type magnetic field probe, a magneto-optical probe, a superconducting quantum interferometer (Superducting Quantum Interference Device: SQUID), a giant magnetoresistance type (Giant Magnetismistance): There is a method using a GMR) sensor (for example, see Non-Patent Documents 1 to 4). However, in the methods described in Non-Patent Documents 1 to 4, although the measurement frequency band exceeds 0.5 GHz, the spatial resolution of the detection sensor is only approximately several tens of μm. For this reason, an RFIC chip having a minimum wiring pitch of about submicron has a problem that it is difficult to detect a magnetic field component generated by a current flowing through the fine signal wiring and constituent elements.
 そこで、サブミクロンの空間分解能とギガヘルツ帯域の高周波特性とを同時に満たすために、本発明者等は、検出センサとして磁気力顕微鏡(Magnetic Force Microscope:MFM)の探針に着目し、場のうなり(Beating field)方式による高周波近傍磁界計測法を開発している(特願2012-083425号参照)。この場のうなり方式では、周波数帯がわずかに異なる2つの正弦波信号を、コプレーナウェーブガイド(Coplanar Waveguide:CPW)などの高周波伝送線路に入力し、その線路上で場のうなり(ビート信号)を発生させて、MFM探針により高周波近傍磁界を計測している。 Therefore, in order to satisfy both the submicron spatial resolution and the high-frequency characteristics in the gigahertz band, the present inventors pay attention to the probe of a magnetic force microscope (MFM) as a detection sensor and beat the field ( A high-frequency near-field magnetic field measurement method using a “Beating field” method has been developed (see Japanese Patent Application No. 2012-083425). In this field beat system, two sinusoidal signals with slightly different frequency bands are input to a high-frequency transmission line such as a coplanar waveguide (CPW), and a field beat (beat signal) is input on the line. The magnetic field near the high frequency is measured by the MFM probe.
 なお、2つの正弦波信号として、搬送波信号および参照波信号をCPWに入力したとき、CPW上で発生する磁界により磁気力顕微鏡の探針に作用する力Fは、(1)式で表される(例えば、非特許文献5参照)。
Figure JPOXMLDOC01-appb-M000001
 ここで、mは探針の磁気モーメント、Hは垂直(Z)方向の磁界成分、Hは搬送波信号の磁界成分、θは搬送波信号の磁界成分の垂直(Z)方向の角度、Hrefは参照波信号の磁界成分、θrefは参照波信号の磁界成分の垂直(Z)方向の角度、fResは探針(カンチレバー)の共振周波数、tは時間、fは搬送波信号の周波数と参照波信号の周波数の中間値(周波数)、δは位相である。
As the two sinusoidal signals, when the input carrier signal and the reference wave signal CPW, the force F M acting on the probe of a magnetic force microscope by the magnetic field generated by the CPW is represented by (1) (See Non-Patent Document 5, for example).
Figure JPOXMLDOC01-appb-M000001
Here, m the magnetic moment of the probe, H Z vertical (Z) direction of the magnetic field components, H C is the magnetic field component of the carrier signal, theta C vertical (Z) direction of angle of the magnetic field component of the carrier signal, H ref is the magnetic field component of the reference wave signal, θ ref is the angle in the vertical (Z) direction of the magnetic field component of the reference wave signal, f Res is the resonance frequency of the probe (cantilever), t is the time, and f 0 is the frequency of the carrier signal. And an intermediate value (frequency) of the frequency of the reference wave signal, and δ is a phase.
 また、2つの正弦波信号として、搬送波信号および参照波信号をCPWに入力したとき、CPW上で発生する電界により磁気力顕微鏡の探針に作用する力Fは、(2)式で表される(例えば、非特許文献6参照)。
Figure JPOXMLDOC01-appb-M000002
 ここで、εは誘電率、Sはカンチレバーの面積、hは探針先端とCPWとの距離(リフト高さ)、VCPWはCPWの電位、Vtipは探針の電位、ZはCPWの特性インピーダンス、Eは搬送波信号の電界成分、Erefは参照波信号の電界成分である。
Further, as two sinusoidal signals, when the input carrier signal and the reference wave signal CPW, the force F E acting on the probe of a magnetic force microscope by an electric field generated on the CPW is represented by equation (2) (See, for example, Non-Patent Document 6).
Figure JPOXMLDOC01-appb-M000002
Here, ε is the dielectric constant, S is the area of the cantilever, h is the distance (lift height) between the tip of the probe and the CPW, V CPW is the CPW potential, V tip is the probe potential, and Z is the CPW characteristic. Impedance, E C is the electric field component of the carrier wave signal, and E ref is the electric field component of the reference wave signal.
 なお、高周波磁気力顕微鏡(HF-MFM)により、振幅変調方式や周波数変調方式で、高周波近傍磁界を測定する方法もあるが、ICチップ内の回路を実動作させた状態では、配線や電源線を流れる電流から生じる磁界を直接測定することはできない。このため、ICチップの不良解析などには使用することはできない。 There is a method of measuring a magnetic field in the vicinity of a high frequency by an amplitude modulation method or a frequency modulation method using a high frequency magnetic force microscope (HF-MFM). However, in a state where a circuit in an IC chip is actually operated, a wiring or a power line It is not possible to directly measure the magnetic field resulting from the current flowing through For this reason, it cannot be used for failure analysis of IC chips.
 従来の場のうなり方式による高周波近傍磁界計測法では、サブミクロンの空間分解能とギガヘルツ帯域の高周波特性とを同時に満たすことはできるが、演算処理を工夫しても、高周波信号の入力により発生する高周波磁界による影響と高周波電界による影響とを分離しきれず、高周波磁界の測定精度が低下してしまうという課題があった。 The conventional near-field high-frequency magnetic field measurement method can satisfy both sub-micron spatial resolution and high-frequency characteristics in the gigahertz band at the same time. There is a problem that the influence of the magnetic field and the influence of the high frequency electric field cannot be separated, and the measurement accuracy of the high frequency magnetic field is lowered.
 本発明は、このような課題に着目してなされたもので、高周波信号の入力により発生する高周波磁界による影響と高周波電界による影響とを分離可能で、高精度で高周波磁界を測定することができる高周波電磁界測定装置を提供することを目的とする。 The present invention has been made paying attention to such problems, and can separate the influence of the high-frequency magnetic field generated by the input of the high-frequency signal from the influence of the high-frequency electric field, and can measure the high-frequency magnetic field with high accuracy. An object of the present invention is to provide a high-frequency electromagnetic field measuring apparatus.
 上記目的を達成するために、本発明に係る高周波電磁界測定装置は、高周波信号を入力された測定対象物が発する高周波磁界を測定するための高周波電磁界測定装置であって、磁気的作用による振動を利用して磁界を検出可能な磁気力センサと、前記測定対象物に近接して配置された電流線と、前記測定対象物に高周波の搬送波信号を入力する搬送波導入手段と、前記電流線に高周波の参照波信号を入力可能であり、入力する前記参照波信号の周波数を変更可能に構成された参照波導入手段とを有し、前記搬送波導入手段から前記測定対象物に前記搬送波信号を入力するときの電位と、前記磁気力センサの電位とが等しくなるよう構成されていることを特徴とする。 In order to achieve the above object, a high-frequency electromagnetic field measurement apparatus according to the present invention is a high-frequency electromagnetic field measurement apparatus for measuring a high-frequency magnetic field emitted from a measurement object to which a high-frequency signal is input, and is based on magnetic action A magnetic force sensor capable of detecting a magnetic field using vibration; a current line disposed in proximity to the measurement object; a carrier introduction means for inputting a high-frequency carrier signal to the measurement object; and the current line And a reference wave introducing means configured to be able to change the frequency of the reference wave signal to be inputted, and the carrier wave signal is transferred from the carrier introducing means to the measurement object. The input potential is configured to be equal to the potential of the magnetic force sensor.
 本発明に係る高周波電磁界測定装置は、以下のようにして、高周波信号を入力された測定対象物が発する高周波磁界を測定することができる。すなわち、搬送波導入手段により測定対象物に高周波の搬送波信号を入力して、一定の強度および周波数を有する高周波磁界を発生させる。また、参照波導入手段により、測定対象物に近接して配置された電流線に高周波の参照波信号を入力して、一定の強度および周波数を有する高周波磁界を発生させる。このとき、参照波導入手段で参照波信号の周波数を変更して、測定対象物が発生する高周波磁界の周波数と、電流線が発生する高周波磁界の周波数とが僅かにずれるようにすることにより、各高周波磁界を含む磁界のうなり(ビート信号)を発生させることができる。このビート信号の周波数を、磁気力センサの共振周波数に近づけることにより、高周波磁界の測定を行うことができる。 The high-frequency electromagnetic field measuring apparatus according to the present invention can measure a high-frequency magnetic field generated by a measurement object to which a high-frequency signal is input as follows. That is, a high frequency carrier signal is input to the measurement object by the carrier introduction means to generate a high frequency magnetic field having a certain intensity and frequency. Further, the reference wave introducing means inputs a high-frequency reference wave signal to a current line arranged close to the object to be measured, thereby generating a high-frequency magnetic field having a certain intensity and frequency. At this time, by changing the frequency of the reference wave signal by the reference wave introducing means, the frequency of the high-frequency magnetic field generated by the measurement object and the frequency of the high-frequency magnetic field generated by the current line are slightly shifted, Magnetic beats (beat signals) including each high-frequency magnetic field can be generated. By making the frequency of the beat signal close to the resonance frequency of the magnetic force sensor, a high frequency magnetic field can be measured.
 また、このとき、搬送波導入手段から測定対象物に搬送波信号を入力するときの電位と、磁気力センサの電位とが等しくなるよう構成されているため、高周波信号の入力により高周波磁界と共に発生する高周波電界から磁気力センサが受ける力を抑制することができる。これにより、高周波磁界による影響と高周波電界による影響とを分離することができ、高精度で高周波磁界を測定することができる。なお、搬送波導入手段から測定対象物に搬送波信号を入力するときの電位と、磁気力センサの電位とは、同じ値に近づけば近づくほど磁界の測定精度が高くなるため、ぴったり等しくなることが好ましいが、回路の構成上、多少のずれが生じることがある。このため、これらの電位は、ぴったり等しくなっていなくとも、ほぼ等しくなっていればよい。 At this time, since the potential when the carrier wave signal is input from the carrier wave introducing means to the measurement object is equal to the potential of the magnetic force sensor, the high frequency generated together with the high frequency magnetic field by the input of the high frequency signal The force received by the magnetic force sensor from the electric field can be suppressed. Thereby, the influence by a high frequency magnetic field and the influence by a high frequency electric field can be isolate | separated, and a high frequency magnetic field can be measured with high precision. It is preferable that the potential when the carrier signal is input from the carrier introduction means to the object to be measured and the potential of the magnetic force sensor are exactly the same because the closer to the same value, the higher the magnetic field measurement accuracy. However, some deviation may occur in the circuit configuration. For this reason, even if these electric potentials are not exactly the same, it is sufficient that they are almost equal.
 本発明に係る高周波電磁界測定装置は、高周波磁界と高周波電界とを分離する効果を高めて測定精度をさらに向上させるために、搬送波導入手段から測定対象物に搬送波信号を入力するときの電位の位相および振幅と、磁気力センサの電位の位相および振幅とを揃えることが好ましい。位相を揃えるために、例えば位相調整器などを使用することができる。 The high-frequency electromagnetic field measuring apparatus according to the present invention increases the effect of separating a high-frequency magnetic field and a high-frequency electric field, and further improves measurement accuracy. It is preferable to align the phase and amplitude with the phase and amplitude of the potential of the magnetic force sensor. In order to align the phases, for example, a phase adjuster or the like can be used.
 本発明に係る高周波電磁界測定装置は、磁気力顕微鏡を有し、前記磁気力センサは、前記磁気力顕微鏡のカンチレバーから成り、前記磁気力顕微鏡は、前記測定対象物を載せる載置台と、前記磁気力センサの振動による変位を測定する変位測定手段と、前記測定対象物に対して前記磁気力センサを相対的に走査させる走査手段とを有していることが好ましい。この場合、変位測定手段により、磁気力センサが高周波磁界から受ける力を測定することができる。また、走査手段で走査することにより、回路などの測定対象物上で発生する高周波磁界の2次元分布を得ることができる。これにより、測定対象物上の電磁ノイズの発生源や伝搬経路、混入先などを特定することができ、EMI問題の解決に寄与することができる。 The high-frequency electromagnetic field measuring apparatus according to the present invention includes a magnetic force microscope, the magnetic force sensor includes a cantilever of the magnetic force microscope, and the magnetic force microscope includes a mounting table on which the measurement object is placed; It is preferable to have displacement measuring means for measuring displacement due to vibration of the magnetic force sensor, and scanning means for scanning the magnetic force sensor relative to the measurement object. In this case, the force that the magnetic force sensor receives from the high-frequency magnetic field can be measured by the displacement measuring means. Further, a two-dimensional distribution of a high-frequency magnetic field generated on a measurement object such as a circuit can be obtained by scanning with a scanning unit. Thereby, the generation source, propagation path, mixing destination, etc. of electromagnetic noise on the measurement target can be specified, which can contribute to the solution of the EMI problem.
 本発明に係る高周波電磁界測定装置で、前記電流線はコイルから成っており、前記カンチレバーは絶縁体から成り、先端の探針の表面に磁性体膜が形成されていることが好ましい。この場合、コイルが主に高周波磁界を発生し、絶縁体のカンチレバーの梁が高周波電界の影響を受けないため、高周波磁界を高精度で測定することができる。影響を除去できる電界は、100MHz以上の高周波電界であり、特にGHzオーダーの電界の影響も除去することができる。カンチレバーは、高周波磁界の測定精度を高めるために、梁の探針とは反対側の面に磁性体膜が形成されていてもよい。また、前記カンチレバーの前記磁性体膜の磁性材料の磁化を交流消磁可能に、前記電流線に交番磁界を印加するための交流電源と、前記カンチレバーの前記磁性体膜の磁性材料の磁化を再着磁可能に、前記電流線に直流磁界を発生させるための直流電源とを、有していてもよい。 In the high-frequency electromagnetic field measuring apparatus according to the present invention, it is preferable that the current line is made of a coil, the cantilever is made of an insulator, and a magnetic film is formed on the surface of the tip of the tip. In this case, the coil mainly generates a high-frequency magnetic field, and the insulator cantilever beam is not affected by the high-frequency electric field, so that the high-frequency magnetic field can be measured with high accuracy. The electric field that can eliminate the influence is a high-frequency electric field of 100 MHz or more, and in particular, the influence of the electric field in the GHz order can also be removed. The cantilever may have a magnetic film formed on the surface of the beam opposite to the probe in order to increase the measurement accuracy of the high-frequency magnetic field. In addition, an AC power source for applying an alternating magnetic field to the current line and a magnetization of the magnetic material of the magnetic film of the cantilever are reattached so that the magnetization of the magnetic material of the magnetic film of the cantilever can be AC demagnetized. A DC power source for generating a DC magnetic field in the current line may be provided so as to be magnetized.
 また、本発明に係る高周波電磁界測定装置で、前記電流線は開放型伝送線路から成っており、前記カンチレバーはシリコン製であってもよい。この場合、開放型伝送線路が主に高周波電界を発生し、シリコン製のカンチレバーが高周波電界の影響を受けやすいため、高周波磁界の影響を相対的に抑えて、高周波電界を高精度で測定することができる。カンチレバーは、シリコン製に限らず、他の導電性の素材から成っていてもよいが、加工性がよいため、シリコン製が特に好ましい。なお、本発明に係る高周波電磁界測定装置は、高周波磁界および高周波電界の双方を測定可能に、電流線がコイルと開放型伝送線路とを切換可能に構成されていてもよい。また、カンチレバーも、絶縁体から成り、先端の探針の表面に磁性体膜が形成されているものと、シリコン製のものとを切換可能に構成されていてもよい。 Further, in the high frequency electromagnetic field measuring apparatus according to the present invention, the current line may be an open transmission line, and the cantilever may be made of silicon. In this case, the open-type transmission line mainly generates a high-frequency electric field, and the silicon cantilever is easily affected by the high-frequency electric field. Can do. The cantilever is not limited to silicon but may be made of other conductive materials, but silicon is particularly preferable because of good workability. Note that the high-frequency electromagnetic field measuring apparatus according to the present invention may be configured such that both the high-frequency magnetic field and the high-frequency electric field can be measured, and the current line can be switched between the coil and the open transmission line. The cantilever may also be configured to be switchable between an insulator and a magnetic film formed on the tip of the tip and a silicon one.
 本発明に係る高周波電磁界測定装置は、前記参照波導入手段により周波数を変更しながら前記参照波信号を入力したとき、前記変位測定手段により測定された前記磁気力センサの振動による変位から、前記磁気力センサが共振周波数で振動したときの振幅を求めるとともに、そのときの前記参照波導入手段による前記参照波信号の周波数を求め、求められた前記磁気力センサの振幅と前記参照波信号の周波数とに基づいて、前記搬送波信号の入力により前記測定対象物が発する高周波信号の振幅と周波数とを算出する解析手段を有していてもよい。この場合、解析手段により、高周波信号を入力された測定対象物が発する高周波信号を定量的に把握することができる。高周波磁界の測定時には、(1)式を利用して高周波磁界を定量的に求めることができる。また、高周波電界の測定時には、(2)式を利用して高周波電界を定量的に求めることができる。 The high-frequency electromagnetic field measuring apparatus according to the present invention, when the reference wave signal is input while changing the frequency by the reference wave introducing means, from the displacement due to the vibration of the magnetic force sensor measured by the displacement measuring means, Obtaining the amplitude when the magnetic force sensor vibrates at the resonance frequency, obtaining the frequency of the reference wave signal by the reference wave introducing means at that time, and obtaining the obtained amplitude of the magnetic force sensor and the frequency of the reference wave signal And analyzing means for calculating the amplitude and frequency of the high-frequency signal emitted from the measurement object in response to the input of the carrier wave signal. In this case, the high-frequency signal emitted from the measurement object to which the high-frequency signal is input can be quantitatively grasped by the analyzing means. When measuring a high-frequency magnetic field, the high-frequency magnetic field can be quantitatively obtained using the equation (1). Further, at the time of measuring the high frequency electric field, the high frequency electric field can be quantitatively obtained using the formula (2).
 本発明に係る高周波電磁界測定装置で、前記磁気力センサは絶縁体から成っていてもよい。この場合、絶縁体の磁気力センサが高周波電界の影響を受けないため、高周波磁界を高精度で測定することができる。 In the high-frequency electromagnetic field measuring apparatus according to the present invention, the magnetic force sensor may be made of an insulator. In this case, since the insulating magnetic force sensor is not affected by the high frequency electric field, the high frequency magnetic field can be measured with high accuracy.
 本発明によれば、高周波信号の入力により発生する高周波磁界による影響と高周波電界による影響とを分離可能で、高精度で高周波磁界を測定することができる高周波電磁界測定装置を提供することができる。 According to the present invention, it is possible to provide a high-frequency electromagnetic field measuring apparatus capable of separating the influence of a high-frequency magnetic field generated by the input of a high-frequency signal and the influence of a high-frequency electric field and measuring the high-frequency magnetic field with high accuracy. .
本発明の実施の形態の高周波電磁界測定装置を示すブロック図である。It is a block diagram which shows the high frequency electromagnetic field measuring device of embodiment of this invention. 図1に示す高周波電磁界測定装置の測定系の回路図である。It is a circuit diagram of the measurement system of the high frequency electromagnetic field measuring apparatus shown in FIG. 本発明の実施の形態の高周波電磁界測定装置の、高周波電界検出用の変形例を示すブロック図である。It is a block diagram which shows the modification for a high frequency electric field detection of the high frequency electromagnetic field measuring apparatus of embodiment of this invention. 図3に示す高周波電磁界測定装置の測定系の回路図である。It is a circuit diagram of the measurement system of the high frequency electromagnetic field measuring apparatus shown in FIG. 本発明の実施の形態の高周波電磁界測定装置に関し、(a)場のうなり方式による高周波磁界の測定装置の全体構成を示す斜視図、(b)その測定に用いるコプレーナウェーブガイド(CPW)の測定位置を示す拡大平面図、および(c)拡大断面図である。1A is a perspective view showing the overall configuration of a high-frequency magnetic field measuring apparatus using a field beat method, and FIG. 1B is a measurement of a coplanar waveguide (CPW) used for the measurement. It is an enlarged plan view showing a position, and (c) an enlarged sectional view. 図5に示す測定装置による高周波磁界の測定で使用する、搬送波信号と参照波信号との合成スペクトルである。6 is a combined spectrum of a carrier wave signal and a reference wave signal used in measurement of a high-frequency magnetic field by the measurement apparatus shown in FIG. 図5に示す測定装置により高周波磁界を測定したときの、(a)搬送波信号の周波数が100MHzの場合の、探針の振動振幅値を示すグラフ、(b)搬送波信号の周波数が100MHzおよび2GHzの場合の、カンチレバーの共振周波数近傍での探針の振動振幅値と、搬送波信号の電流値との関係を示すグラフである。When a high-frequency magnetic field is measured by the measuring apparatus shown in FIG. 5, (a) a graph showing the vibration amplitude value of the probe when the frequency of the carrier signal is 100 MHz, (b) the frequency of the carrier signal is 100 MHz and 2 GHz. 6 is a graph showing the relationship between the vibration amplitude value of the probe near the resonance frequency of the cantilever and the current value of the carrier wave signal. 図5に示す測定装置により高周波磁界を測定したときの、搬送波信号の周波数と、探針の振動振幅値およびQ値との関係を示すグラフである。It is a graph which shows the relationship between the frequency of a carrier wave signal, the vibration amplitude value of a probe, and Q value when a high frequency magnetic field is measured with the measuring apparatus shown in FIG. 図5に示す測定装置により高周波磁界を測定したときの、搬送波信号の周波数が100MHzおよび2GHzの場合の、CPWに対する探針の位置と、探針の振動振幅値との関係を示すグラフである。It is a graph which shows the relationship between the position of the probe with respect to CPW, and the vibration amplitude value of the probe when the frequency of the carrier wave signal is 100 MHz and 2 GHz when the high frequency magnetic field is measured by the measuring apparatus shown in FIG. 本発明の実施の形態の高周波電磁界測定装置に関し、図5(a)を改良した高周波磁界の測定装置の全体構成を示す斜視図である。FIG. 6 is a perspective view showing an overall configuration of a high-frequency magnetic field measurement apparatus improved from FIG. 5A with respect to the high-frequency electromagnetic field measurement apparatus according to the embodiment of the present invention. 図10に示す測定装置および図5(a)に示す測定装置により高周波磁界を測定したときの、搬送波信号の周波数が2GHzの場合の、CPWに対する探針の位置と、探針の振動振幅値との関係を示すグラフである。When the high-frequency magnetic field is measured by the measuring device shown in FIG. 10 and the measuring device shown in FIG. 5A, the position of the probe with respect to the CPW and the vibration amplitude value of the probe when the frequency of the carrier signal is 2 GHz. It is a graph which shows the relationship. 図10に示す測定装置により、Ni-Feでコーティングされたカンチレバーおよびコーティングされていないカンチレバーを用いて高周波磁界を測定したときの、搬送波信号の周波数が2GHzの場合の、CPWに対する探針の位置と、探針の振動振幅値との関係を示すグラフである。When the high-frequency magnetic field is measured using a Ni—Fe coated cantilever and an uncoated cantilever using the measurement apparatus shown in FIG. 10, the position of the probe with respect to the CPW when the frequency of the carrier signal is 2 GHz It is a graph which shows the relationship with the vibration amplitude value of a probe. 図10に示す測定装置により高周波磁界を測定したときの、搬送波信号の周波数が1.1GHzの場合の、CPWに対する探針の位置と、磁界(Hz)×磁界勾配(dHz/dz)との関係を示すグラフである。Relationship between the probe position relative to the CPW and the magnetic field (Hz) × magnetic field gradient (dHz / dz) when the frequency of the carrier wave signal is 1.1 GHz when the high-frequency magnetic field is measured by the measuring apparatus shown in FIG. It is a graph which shows. 図1に示す高周波電磁界測定装置を用いて、場のうなり方式により高周波磁界を測定したときの、(a)搬送波信号がない場合、(b)搬送波信号の振幅が9dBm、(c)搬送波信号の振幅が12dBm、(d)搬送波信号の振幅が15dBm、(e)搬送波信号の振幅が18dBm、(f)搬送波信号の振幅が21dBmの場合の、探針の振動振幅(上段)および位相(下段)の測定結果を示すグラフである。When a high frequency magnetic field is measured by the field beat method using the high frequency electromagnetic field measuring apparatus shown in FIG. 1, (a) when there is no carrier signal, (b) the amplitude of the carrier signal is 9 dBm, and (c) the carrier signal. (D) carrier wave signal amplitude is 15 dBm, (e) carrier wave signal amplitude is 18 dBm, and (f) carrier wave signal amplitude is 21 dBm, probe vibration amplitude (upper stage) and phase (lower stage) It is a graph which shows the measurement result of). 図1に示す高周波電磁界測定装置を用いて、場のうなり方式により高周波磁界を測定したときの、搬送波信号の振幅に対する探針の振動振幅のピーク値の変化を示すグラフである。It is a graph which shows the change of the peak value of the vibration amplitude of a probe with respect to the amplitude of a carrier wave signal when measuring a high frequency magnetic field by a field beat method using the high frequency electromagnetic field measuring device shown in FIG. 図1に示す高周波電磁界測定装置を用いて、場のうなり方式により高周波磁界を測定したときの、参照波信号の周波数と探針の振動振幅のピーク値との関係を示すグラフである。It is a graph which shows the relationship between the frequency of a reference wave signal, and the peak value of the vibration amplitude of a probe when a high frequency magnetic field is measured by the field beat method using the high frequency electromagnetic field measuring apparatus shown in FIG. (a)図1に示す本発明の実施の形態の高周波電磁界測定装置、(b)図3に示す本発明の実施の形態の高周波電磁界測定装置、(c)図5(a)に示す、場のうなり方式による高周波磁界の測定装置、(d)図10に示す、図5(a)を改良した高周波磁界の測定装置の測定原理図である。(A) The high-frequency electromagnetic field measuring apparatus according to the embodiment of the present invention shown in FIG. 1, (b) the high-frequency electromagnetic field measuring apparatus according to the embodiment shown in FIG. 3, (c) shown in FIG. 5 (a). FIG. 11 is a measurement principle diagram of a high-frequency magnetic field measurement apparatus using a field beat method, and (d) an improved high-frequency magnetic field measurement apparatus shown in FIG.
 以下、図面に基づき、本発明の実施の形態について説明する。
 図1乃至図16は、本発明の実施の形態の高周波電磁界測定装置を示している。
 図1に示すように、高周波電磁界測定装置10は、高周波信号を入力された測定対象物1が発する高周波磁界を測定するための高周波電磁界測定装置10であって、磁気力顕微鏡11と電流線12と搬送波導入手段13と参照波導入手段14とコンピュータ15とを有している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 16 show a high-frequency electromagnetic field measuring apparatus according to an embodiment of the present invention.
As shown in FIG. 1, a high-frequency electromagnetic field measurement apparatus 10 is a high-frequency electromagnetic field measurement apparatus 10 for measuring a high-frequency magnetic field generated by a measurement object 1 to which a high-frequency signal is input, and includes a magnetic force microscope 11 and a current. Line 12, carrier wave introducing means 13, reference wave introducing means 14, and computer 15 are provided.
 なお、測定対象物1としては、例えば、トランジスタやダイオード等の能動素子、コンデンサやインダクタ等の受動素子、電源回路、LSIチップ、高周波伝送線路などである。 The measurement object 1 includes, for example, active elements such as transistors and diodes, passive elements such as capacitors and inductors, power supply circuits, LSI chips, and high-frequency transmission lines.
 磁気力顕微鏡11(MFM)は、磁気力センサ21と載置台22と変位測定手段23と走査手段24とを有している。磁気力センサ21は、梁21aの先端に探針21bが設けられた、絶縁体のカンチレバー(Cantilever)から成っている。磁気力センサ21は、探針21bの表面および、梁21aの探針21bとは反対側の面に磁性体膜が形成されている。磁気力センサ21は、磁気的作用による振動を利用して磁界を検出可能に構成されている。なお、磁気力センサ21は、特に、透磁率の高い軟磁気特性を有するもの、または、保磁力が50~100 Oe程度で、透磁率を有するものから成ることが好ましい。 The magnetic force microscope 11 (MFM) includes a magnetic force sensor 21, a mounting table 22, a displacement measuring unit 23, and a scanning unit 24. The magnetic force sensor 21 includes an insulating cantilever provided with a probe 21b at the tip of a beam 21a. In the magnetic force sensor 21, a magnetic film is formed on the surface of the probe 21b and the surface of the beam 21a opposite to the probe 21b. The magnetic force sensor 21 is configured to be able to detect a magnetic field using vibration caused by a magnetic action. In particular, the magnetic force sensor 21 is preferably made of a material having a soft magnetic property with a high magnetic permeability or a material having a coercive force of about 50 to 100 Oe and a magnetic permeability.
 載置台22は、ステッピングモータ駆動ステージから成り、測定対象物1を載置可能に設けられている。載置台22は、測定対象物1を載せた状態で、高さを調節可能に構成されている。変位測定手段23は、レーザー23aと光位置センサ(PSD)23bと検出回路23cとを有している。変位測定手段23は、レーザー23aからの光を磁気力センサ21に当て、その反射光を光位置センサ23bで受けて、その信号を検出回路23cに送ることにより、磁気力センサ21の振動による変位を測定可能になっている。 The mounting table 22 is composed of a stepping motor drive stage, and is provided so that the measuring object 1 can be mounted thereon. The mounting table 22 is configured such that the height can be adjusted in a state where the measuring object 1 is placed. The displacement measuring means 23 includes a laser 23a, an optical position sensor (PSD) 23b, and a detection circuit 23c. The displacement measuring means 23 applies the light from the laser 23 a to the magnetic force sensor 21, receives the reflected light by the optical position sensor 23 b, and sends the signal to the detection circuit 23 c, whereby the displacement due to the vibration of the magnetic force sensor 21. Can be measured.
 走査手段24は、ピエゾ素子駆動型ステージから成り、磁気力センサ21が取り付けられている。走査手段24は、測定対象物1に対して磁気力センサ21を水平面内で移動可能に構成されている。
 電流線12は、1回巻きまたは2回巻きの円形状または半円形状のコイル(Coil)から成り、測定対象物1に近接して配置されている。
The scanning means 24 is composed of a piezo element driving type stage, to which the magnetic force sensor 21 is attached. The scanning unit 24 is configured to be able to move the magnetic force sensor 21 in a horizontal plane with respect to the measurement object 1.
The current line 12 is formed by a one-turn or two-turn circular or semi-circular coil (Coil), and is disposed in the vicinity of the measurement object 1.
 図1および図2に示すように、搬送波導入手段13は、高周波の搬送波信号を発信するシグナルジェネレータ(SG)25と、発信された搬送波信号を2つに分けるスプリッタ(Power Splitter)26とを有している。搬送波導入手段13は、スプリッタ26により分けられた一方の信号を測定対象物(DUT)1に入力するとともに、他方の信号を位相調整器27およびバイパスコンデンサ28を介して磁気力センサ21に入力するよう構成されている。これにより、高周波電磁界測定装置10は、測定対象物1に搬送波信号を入力するときの電位と、磁気力センサ21の電位とが等しくなるよう構成されている。 As shown in FIGS. 1 and 2, the carrier introduction means 13 includes a signal generator (SG) 25 that transmits a high-frequency carrier signal and a splitter (Power Splitter) 26 that divides the transmitted carrier signal into two. is doing. The carrier wave introduction means 13 inputs one signal divided by the splitter 26 to the measurement object (DUT) 1 and inputs the other signal to the magnetic force sensor 21 via the phase adjuster 27 and the bypass capacitor 28. It is configured as follows. Thereby, the high frequency electromagnetic field measuring apparatus 10 is configured such that the potential when the carrier wave signal is input to the measurement object 1 and the potential of the magnetic force sensor 21 are equal.
 図1および図2に示すように、参照波導入手段14は、高周波の搬送波信号を発信するシグナルジェネレータ29を有し、電流線12に高周波の参照波信号を入力可能に構成されている。また、参照波導入手段14は、入力する参照波信号の周波数を変更可能に構成されている。 As shown in FIGS. 1 and 2, the reference wave introducing means 14 has a signal generator 29 that transmits a high-frequency carrier signal, and is configured to be able to input a high-frequency reference wave signal to the current line 12. The reference wave introducing means 14 is configured to be able to change the frequency of the input reference wave signal.
 図1に示すように、コンピュータ15は、ロックインアンプ30を介して変位測定手段23の検出回路23cに接続され、ロックインアンプ30および周波数ミキサ31を介して搬送波導入手段13と参照波導入手段14とに接続されている。これにより、高周波電磁界測定装置10は、搬送波導入手段13からの搬送波信号と参照波導入手段14からの参照波信号とを周波数ミキサ31で混合して参照信号を発生させ、ロックインアンプ30で検出回路23cからの変位データと同期させてコンピュータ15に送り、高感度の測定を行うようになっている。 As shown in FIG. 1, the computer 15 is connected to the detection circuit 23c of the displacement measuring means 23 via the lock-in amplifier 30, and the carrier wave introducing means 13 and the reference wave introducing means via the lock-in amplifier 30 and the frequency mixer 31. 14. Thus, the high frequency electromagnetic field measuring apparatus 10 generates a reference signal by mixing the carrier wave signal from the carrier wave introducing means 13 and the reference wave signal from the reference wave introducing means 14 by the frequency mixer 31, and the lock-in amplifier 30. It is sent to the computer 15 in synchronism with the displacement data from the detection circuit 23c to perform high-sensitivity measurement.
 また、コンピュータ15は、解析手段(図示せず)と制御手段(図示せず)とを有し、それぞれコントローラ32,33を介して載置台22と走査手段24とに接続されている。解析手段は、参照波導入手段14により周波数を変更しながら参照波信号を入力したとき、変位測定手段23により測定された磁気力センサ21の振動による変位から、磁気力センサ21が共振周波数で振動したときの振幅を求めるとともに、そのときの参照波導入手段14による参照波信号の周波数を求めるようになっている。また、求められた磁気力センサ21の振幅と参照波信号の周波数とに基づいて、搬送波信号の入力により測定対象物1が発する高周波信号の振幅と周波数とを算出するようになっている。制御手段は、載置台22の高さを調整して、測定対象物1と探針21bとの間隔を制御するとともに、走査手段24を水平移動させて、測定対象物1の水平面内での測定位置を制御するようになっている。 Further, the computer 15 has analysis means (not shown) and control means (not shown), and is connected to the mounting table 22 and the scanning means 24 via the controllers 32 and 33, respectively. When the analysis means inputs the reference wave signal while changing the frequency by the reference wave introducing means 14, the magnetic force sensor 21 vibrates at the resonance frequency from the displacement caused by the vibration of the magnetic force sensor 21 measured by the displacement measuring means 23. In addition, the amplitude of the reference wave signal obtained by the reference wave introduction means 14 at that time is obtained. Further, based on the obtained amplitude of the magnetic force sensor 21 and the frequency of the reference wave signal, the amplitude and frequency of the high-frequency signal emitted from the measurement object 1 by the input of the carrier wave signal are calculated. The control means adjusts the height of the mounting table 22 to control the distance between the measurement object 1 and the probe 21b, and horizontally moves the scanning means 24 to measure the measurement object 1 in the horizontal plane. The position is controlled.
 次に、作用について説明する。
 高周波電磁界測定装置10の測定原理を、図17(a)に示す。高周波電磁界測定装置10は、以下のようにして、高周波信号を入力された測定対象物(DUT)1が発する高周波磁界を測定することができる。すなわち、搬送波導入手段13により測定対象物1に高周波の搬送波信号を入力して、一定の強度および周波数を有する高周波磁界(H)を発生させる。また、参照波導入手段14により、測定対象物1に近接して配置された電流線12に高周波の参照波信号を入力して、一定の強度および周波数を有する高周波磁界(H)を発生させる。このとき、参照波導入手段14で参照波信号の周波数を変更して、測定対象物1が発生する高周波磁界の周波数と、電流線12が発生する高周波磁界の周波数とが僅かにずれるようにすることにより、各高周波磁界を含む磁界のうなり(ビート信号)を発生させることができる。このビート信号の周波数を、カンチレバーから成る磁気力センサ21の共振周波数に近づけることにより、高周波磁界の測定を行うことができる。
Next, the operation will be described.
The measurement principle of the high frequency electromagnetic field measuring apparatus 10 is shown in FIG. The high-frequency electromagnetic field measuring apparatus 10 can measure a high-frequency magnetic field generated by the measurement object (DUT) 1 to which a high-frequency signal is input as follows. That is, a high-frequency carrier signal is input to the measurement object 1 by the carrier introduction means 13 to generate a high-frequency magnetic field (H) having a certain intensity and frequency. Further, the reference wave introducing means 14 inputs a high frequency reference wave signal to the current line 12 arranged close to the measurement object 1 to generate a high frequency magnetic field (H) having a certain intensity and frequency. At this time, the frequency of the reference wave signal is changed by the reference wave introducing means 14 so that the frequency of the high frequency magnetic field generated by the measurement object 1 and the frequency of the high frequency magnetic field generated by the current line 12 are slightly shifted. This makes it possible to generate a beat (beat signal) of a magnetic field including each high-frequency magnetic field. By making the frequency of the beat signal close to the resonance frequency of the magnetic force sensor 21 composed of a cantilever, a high-frequency magnetic field can be measured.
 このとき、変位測定手段23により、磁気力センサ21が高周波磁界から受ける変位が測定されるため、その測定データに基づいて、解析手段により、(1)式を利用して、高周波信号を入力された測定対象物1が発する高周波磁界を定量的に求めることができる。 At this time, the displacement measuring means 23 measures the displacement received by the magnetic force sensor 21 from the high-frequency magnetic field. Based on the measured data, the analyzing means inputs a high-frequency signal using equation (1). The high-frequency magnetic field generated by the measured object 1 can be obtained quantitatively.
 また、高周波電磁界測定装置10では、搬送波導入手段13から測定対象物1に搬送波信号を入力するときの電位と、磁気力センサ21の電位とが等しくなるよう構成されており、さらに、位相調整器27およびバイパスコンデンサ28により、それらの電位の位相および振幅が揃っているため、高周波信号の入力により高周波磁界と共に発生する高周波電界から磁気力センサ21が受ける力を抑制することができる。これにより、高周波磁界による影響と高周波電界による影響とを分離することができ、高精度で高周波磁界を測定することができる。また、電流線12のコイルが主に高周波磁界を発生し、磁気力センサ21である絶縁体のカンチレバーの梁21aが高周波電界の影響を受けないため、高周波磁界をさらに高精度で測定することができる。 Further, the high frequency electromagnetic field measuring apparatus 10 is configured such that the potential when the carrier wave signal is input from the carrier wave introducing means 13 to the measurement object 1 is equal to the potential of the magnetic force sensor 21, and the phase adjustment is performed. Since the phase and amplitude of these potentials are aligned by the capacitor 27 and the bypass capacitor 28, the force received by the magnetic force sensor 21 from the high-frequency electric field generated together with the high-frequency magnetic field by the input of the high-frequency signal can be suppressed. Thereby, the influence by a high frequency magnetic field and the influence by a high frequency electric field can be isolate | separated, and a high frequency magnetic field can be measured with high precision. In addition, since the coil of the current line 12 mainly generates a high frequency magnetic field and the insulator cantilever beam 21a which is the magnetic force sensor 21 is not affected by the high frequency electric field, the high frequency magnetic field can be measured with higher accuracy. it can.
 高周波電磁界測定装置10は、走査手段24で走査しながら測定を行うことにより、回路などの測定対象物1上で発生する高周波磁界の2次元分布を得ることができる。これにより、測定対象物1上の電磁ノイズの発生源や伝搬経路、混入先などを特定することができ、EMI問題の解決に寄与することができる。 The high-frequency electromagnetic field measuring apparatus 10 can obtain a two-dimensional distribution of a high-frequency magnetic field generated on the measurement object 1 such as a circuit by performing measurement while scanning with the scanning unit 24. Thereby, the generation source, propagation path, mixing destination, etc. of the electromagnetic noise on the measurement object 1 can be specified, which can contribute to the solution of the EMI problem.
 なお、図1に示すように、高周波電磁界測定装置10は、電流線12に直流磁界を発生させるための直流電源41と、電流線12に交番磁界を印加するための交流電源42とを有していてもよい。この場合、交流電源42で電流線12を高周波磁界源にすることにより、磁気力センサ21の磁性体膜の磁性材料の磁化を交流消磁することができる。また、直流電源41で電流線12を直流磁界発生源にすることにより、磁気力センサ21の磁性体膜の磁性材料の磁化を再着磁して飽和させることができる。 As shown in FIG. 1, the high-frequency electromagnetic field measuring apparatus 10 has a DC power source 41 for generating a DC magnetic field on the current line 12 and an AC power source 42 for applying an alternating magnetic field to the current line 12. You may do it. In this case, by using the AC power source 42 to make the current line 12 a high frequency magnetic field source, the magnetization of the magnetic material of the magnetic film of the magnetic force sensor 21 can be AC demagnetized. In addition, by using the DC power source 41 to make the current line 12 a DC magnetic field generation source, the magnetization of the magnetic material of the magnetic film of the magnetic force sensor 21 can be re-magnetized and saturated.
 また、図3および図4に示すように、電流線12は、開放型伝送線路(Open type transmission line)から成っており、磁気力センサ21のカンチレバーはシリコン製であってもよい。このときの高周波電磁界測定装置10の測定原理を、図17(b)に示す。この場合、開放型伝送線路が主に高周波電界(E)を発生し、シリコン製のカンチレバーが高周波電界の影響を受けやすいため、高周波磁界の影響を相対的に抑えて、高周波電界を高精度で測定することができる。また、(2)式を利用して高周波電界を定量的に求めることができる。図3および図4に示す高周波電磁界測定装置10は、メモリなどでの高周波電界測定に利用することができる。 Further, as shown in FIGS. 3 and 4, the current line 12 is formed of an open type transmission line, and the cantilever of the magnetic force sensor 21 may be made of silicon. The measurement principle of the high frequency electromagnetic field measuring apparatus 10 at this time is shown in FIG. In this case, the open transmission line mainly generates a high-frequency electric field (E), and the silicon cantilever is susceptible to the influence of the high-frequency electric field. Can be measured. Further, the high-frequency electric field can be obtained quantitatively using the formula (2). The high-frequency electromagnetic field measuring apparatus 10 shown in FIGS. 3 and 4 can be used for high-frequency electric field measurement in a memory or the like.
 さらに、高周波電磁界測定装置10は、高周波磁界および高周波電界の双方を測定可能に、電流線12がコイルと開放型伝送線路とを切換可能に構成されていてもよい。また、カンチレバーも、絶縁体から成り、先端の探針21bの表面に磁性体膜が形成されているものと、シリコン製のものとを切換可能に構成されていてもよい。
 以下、高周波電磁界測定装置10の原理について、検証のための実験を行った。
Furthermore, the high frequency electromagnetic field measuring apparatus 10 may be configured such that the current line 12 can be switched between a coil and an open transmission line so that both a high frequency magnetic field and a high frequency electric field can be measured. Further, the cantilever may be made of an insulator, and may be configured to be switchable between a silicon film formed on the surface of the tip 21b and a silicon film.
Hereinafter, an experiment for verifying the principle of the high-frequency electromagnetic field measuring apparatus 10 was performed.
[場のうなり方式による高周波磁界の測定]
 場のうなり方式を利用して高周波磁界の測定を行った。測定対象物1として、コプレーナウェーブガイド(CPW)を作製した。CPWの作製には、電子線リソグラフィ、DCマグネトロンスパッタおよびリフトオフ法を用いた。作製したCPWは、一端が終端された1ポート型形状であり、その構造はガラス基板(Glass sub.;厚さ:550μm、比誘電率εr:7.0)上に積層させた、Cr(5nm)/Cu(300nm)/Cr(5nm)の三層膜である。CPWの線路長は7800μm、信号線(SL;Signal Line)の幅は5μm、グラウンド線(GL;Ground Line)の幅は50μm、信号線とグラウンド線との間のギャップ幅は6μmである。また、CPWの特性インピーダンスは、189Ωである。なお、図5(b)および(c)に示すように、測定時の位置表示として、CPWの信号線の中央の、短絡点から約400~600μmの点を原点としている。
[Measurement of high-frequency magnetic field by field beat method]
The high frequency magnetic field was measured using the field beat method. A coplanar waveguide (CPW) was produced as the measurement object 1. For the production of CPW, electron beam lithography, DC magnetron sputtering and lift-off methods were used. The produced CPW has a one-port shape with one end terminated, and the structure is Cr (5 nm) laminated on a glass substrate (Glass sub .; thickness: 550 μm, relative dielectric constant εr: 7.0). ) / Cu (300 nm) / Cr (5 nm). The CPW line length is 7800 μm, the signal line (SL; Signal Line) width is 5 μm, the ground line (GL; Ground Line) width is 50 μm, and the gap width between the signal line and the ground line is 6 μm. The characteristic impedance of CPW is 189Ω. As shown in FIGS. 5B and 5C, as a position display at the time of measurement, a point approximately 400 to 600 μm from the short-circuit point at the center of the CPW signal line is set as the origin.
 磁気力センサ21として、Ni-FeでコーティングされたMFMのカンチレバーを用いた。このカンチレバーの共振周波数は約28kHz、ばね定数は1.3~1.4N/m、Q値は80、探針21bの先端半径は40~50nmである。カンチレバーは、測定前に磁化を垂直方向に固定している。また、測定条件として、探針(MTM tip)21bとCPWとの間の距離(Lift Height)を500nm、搬送波信号を9.15mA、100MHzおよび2GHz、参照波信号を9.15mA、100MHzおよび2GHz、ロックインアンプ30のバンド幅を80Hzとした。 As the magnetic force sensor 21, an MFM cantilever coated with Ni-Fe was used. The cantilever has a resonance frequency of about 28 kHz, a spring constant of 1.3 to 1.4 N / m, a Q value of 80, and a tip radius of the probe 21b of 40 to 50 nm. The cantilever fixes the magnetization in the vertical direction before measurement. As measurement conditions, the distance between the probe (MTM tip) 21b and the CPW (Lift Height) is 500 nm, the carrier wave signal is 9.15 mA, 100 MHz and 2 GHz, the reference wave signal is 9.15 mA, 100 MHz and 2 GHz, The bandwidth of the lock-in amplifier 30 was 80 Hz.
 測定には、図5(a)に示す装置を用いた。図5(a)に示す測定装置の測定原理を、図17(c)に示す。図5(a)の装置は、高周波電磁界測定装置10とは以下の点で異なっている。まず、電流線12を使用せず、搬送波信号と、搬送波信号の周波数からカンチレバーの共振周波数分だけずらした参照波信号とを、測定対象物(DUT)のCPWに同時に入力することにより、CPW上で場のうなりによる高周波磁界を発生させている。また、ロックインアンプ30の参照信号として、ファンクションジェネレータ(FG)51からの出力を用いている。なお、ファンクションジェネレータ51の出力周波数は、カンチレバーの共振周波数を含むよう、数百kHz以下とした。 For the measurement, the apparatus shown in FIG. 5 (a) was used. The measurement principle of the measurement apparatus shown in FIG. 5 (a) is shown in FIG. 17 (c). The apparatus of FIG. 5A differs from the high-frequency electromagnetic field measuring apparatus 10 in the following points. First, the carrier wave signal and the reference wave signal shifted by the resonance frequency of the cantilever from the frequency of the carrier wave signal are simultaneously input to the CPW of the measurement object (DUT) without using the current line 12. A high frequency magnetic field is generated by the beat of the field. Further, the output from the function generator (FG) 51 is used as a reference signal for the lock-in amplifier 30. Note that the output frequency of the function generator 51 is set to several hundred kHz or less so as to include the resonance frequency of the cantilever.
 まず、搬送波信号と参照波信号とを、パワーコンバイナ52を介して合成した後のスペクトルの評価を行った。一例として、搬送波信号の周波数が100MHzの場合のスペクトルを、図6に示す。図6に示すように、100MHzと100.028MHzで、狭帯域幅の二つのスペクトルが観測されている。一方、その周波数差にあたる28kHz近傍ではスペクトルは観測されていない。この結果は、搬送波信号の周波数を10MHzから10GHzまで変えたすべての場合でも同様となっている。したがって、搬送波信号と参照波信号とを、CPWの線路上に入力して場のうなり成分を発生させても、カンチレバーの共振周波数帯近傍の低周波帯では信号が合成されないことが確認された。また、これらのスペクトルの線幅は、カンチレバーの共振周波数帯域に比べて十分に狭いことも確認された。 First, the spectrum after synthesizing the carrier wave signal and the reference wave signal via the power combiner 52 was evaluated. As an example, FIG. 6 shows a spectrum when the frequency of the carrier signal is 100 MHz. As shown in FIG. 6, two narrow-bandwidth spectra are observed at 100 MHz and 100.028 MHz. On the other hand, no spectrum is observed in the vicinity of 28 kHz corresponding to the frequency difference. This result is the same in all cases where the frequency of the carrier signal is changed from 10 MHz to 10 GHz. Therefore, it was confirmed that even if a carrier wave signal and a reference wave signal are input on the CPW line to generate a beat component of the field, no signal is synthesized in a low frequency band near the resonance frequency band of the cantilever. It was also confirmed that the line widths of these spectra were sufficiently narrow compared to the cantilever resonance frequency band.
 次に、このうなり成分による高周波磁界の測定を行った。一例として、搬送波信号の周波数が100MHzの場合の、探針21bの振動振幅値の測定結果を、図7(a)に示す。探針21bの測定位置は、CPWの信号線とグラウンド線との間のギャップの中央である。図7(a)に示すように、カンチレバーの共振周波数にあたる28kHz近傍で、探針21bの振動振幅値が最大となっているのが確認された。この結果から、2つの高周波信号による場のうなりを、MFMの探針21bで検出可能であるといえる。 Next, a high frequency magnetic field was measured by this beat component. As an example, FIG. 7A shows the measurement result of the vibration amplitude value of the probe 21b when the frequency of the carrier wave signal is 100 MHz. The measurement position of the probe 21b is the center of the gap between the CPW signal line and the ground line. As shown in FIG. 7A, it was confirmed that the vibration amplitude value of the probe 21b was the maximum in the vicinity of 28 kHz corresponding to the resonance frequency of the cantilever. From this result, it can be said that the beat of the field caused by the two high-frequency signals can be detected by the MFM probe 21b.
 また、搬送波信号の周波数が100MHzおよび2GHzの場合に、カンチレバーの共振周波数にあたる28kHz近傍での探針21bの振動振幅値と、搬送波信号の電流値との関係を調べ、その結果を図7(b)に示す。探針21bの測定位置は、CPWの信号線とグラウンド線との間のギャップの中央である。図7(b)に示すように、搬送波信号の電流値を上昇させると、カンチレバーの共振周波数近傍における振動振幅値は線型的に増加していることが確認された。これは、CPW上で発生する磁界のうなりによる波形の振幅強度が、搬送波信号の電流の増加にともない増加し、MFM探針21bがそのうなりにより形成される高周波信号の包絡線に追従していることによるものと考えられる。 Further, when the frequency of the carrier signal is 100 MHz and 2 GHz, the relationship between the vibration amplitude value of the probe 21b in the vicinity of 28 kHz corresponding to the resonance frequency of the cantilever and the current value of the carrier signal is examined, and the result is shown in FIG. ). The measurement position of the probe 21b is the center of the gap between the CPW signal line and the ground line. As shown in FIG. 7B, it was confirmed that when the current value of the carrier signal was increased, the vibration amplitude value near the resonance frequency of the cantilever increased linearly. This is because the amplitude intensity of the waveform due to the beat of the magnetic field generated on the CPW increases as the current of the carrier signal increases, and the MFM probe 21b follows the envelope of the high-frequency signal formed by the beat. This is probably due to this.
 次に、搬送波信号の周波数を変化させながら、場のうなりによる高周波磁界の測定を行った。このときの、搬送波信号の周波数と、探針21bの振動振幅値およびQ値との関係を、図8に示す。探針21bの測定位置は、CPWの信号線とグラウンド線との間のギャップの中央である。図8に示すように、振動振幅値は、2GHz付近までほぼ一定で、0.60~0.75nmとなっている。また、2GHz以上では、0.08nm近くまで急減し、その後、対数関数的に減少しているのが確認された。また、Q値は、周波数帯域に関係なくほぼ一定であり、その値はおよそ350であることが確認された。 Next, the high frequency magnetic field due to the field beat was measured while changing the frequency of the carrier signal. FIG. 8 shows the relationship between the frequency of the carrier wave signal and the vibration amplitude value and Q value of the probe 21b at this time. The measurement position of the probe 21b is the center of the gap between the CPW signal line and the ground line. As shown in FIG. 8, the vibration amplitude value is almost constant up to around 2 GHz and is 0.60 to 0.75 nm. Further, it was confirmed that at 2 GHz or more, it rapidly decreased to near 0.08 nm and then decreased logarithmically. Further, it was confirmed that the Q value was almost constant regardless of the frequency band, and the value was about 350.
 次に、搬送波信号の周波数が100MHzおよび2GHzの場合に、探針21bをCPWの断面方向に移動させながら、場のうなりによる高周波磁界の測定を行った。このときの、探針21bの位置と、探針21bの振動振幅値との関係を、図9に示す。図9に示すように、探針21bの振動振幅値が、CPWの信号線およびグラウンド線とカンチレバーとが重なる検出面積(Detection Area)の減少とともに、減少していることが確認された。このことから,カンチレバーは、高周波磁界だけでなく、高周波電界をも検出していることが示唆される。 Next, when the frequency of the carrier wave signal was 100 MHz and 2 GHz, the high frequency magnetic field due to the beat of the field was measured while moving the probe 21b in the cross-sectional direction of the CPW. The relationship between the position of the probe 21b and the vibration amplitude value of the probe 21b at this time is shown in FIG. As shown in FIG. 9, it was confirmed that the vibration amplitude value of the probe 21 b decreased with a decrease in the detection area (Detection Area) where the CPW signal line, the ground line, and the cantilever overlap. This suggests that the cantilever detects not only a high-frequency magnetic field but also a high-frequency electric field.
[場のうなり方式での磁界と電界の分離]
 図5(a)に示す装置を改良して、場のうなり方式での高周波磁界と高周波電界の分離を試みた。測定対象物1として、図5に示すCPWを使用した。また、磁気力センサ21として、図5(a)と同じNi-Feでコーティングされたカンチレバーを用いた。測定に用いた装置を図10に示す。また、この測定装置の測定原理を、図17(d)に示す。図10の装置は、図5(a)の装置と異なり、スプリッタ26、位相調整器27およびバイパスコンデンサ28により、CPWに搬送波信号を入力するときの電位と、カンチレバーの電位とが等しくなるよう構成されている。これにより、高周波電磁界測定装置10により近い構成になっている。
[Separation of magnetic field and electric field by field beat method]
The apparatus shown in FIG. 5A was improved and an attempt was made to separate a high-frequency magnetic field and a high-frequency electric field by a field beat method. As the measurement object 1, CPW shown in FIG. 5 was used. As the magnetic force sensor 21, a cantilever coated with the same Ni—Fe as in FIG. The apparatus used for the measurement is shown in FIG. Moreover, the measurement principle of this measuring apparatus is shown in FIG. The apparatus of FIG. 10 differs from the apparatus of FIG. 5A in that the potential when the carrier wave signal is input to the CPW and the potential of the cantilever are equalized by the splitter 26, the phase adjuster 27, and the bypass capacitor 28. Has been. Thus, the configuration is closer to that of the high-frequency electromagnetic field measuring apparatus 10.
 図10に示す装置を用いて、搬送波信号の周波数が2GHzの場合に、探針21bをCPWの断面方向に移動させながら、場のうなりによる高周波磁界の測定を行った。このときの、探針21bの位置と、探針21bの振動振幅値との関係を、図11に示す(図中の「改良後」;黒丸)。また、比較のため、図5(a)の装置で測定した、図9の2GHzの場合の結果も示す(図中の「改良前」;白丸)。図11に示すように、図10に示す装置の結果では、探針21bの振動振幅値と、CPWの信号線およびグラウンド線とカンチレバーとが重なる検出面積との相関が認められない。このことから、CPWに搬送波信号を入力するときの電位と、カンチレバーの電位とが等しくなるよう構成することにより、高周波電界による影響を抑制することができると考えられる。 Using the apparatus shown in FIG. 10, when the frequency of the carrier wave signal was 2 GHz, the high frequency magnetic field due to the beat of the field was measured while moving the probe 21b in the CPW cross-sectional direction. The relationship between the position of the probe 21b and the vibration amplitude value of the probe 21b at this time is shown in FIG. 11 ("improved" in the figure; black circle). For comparison, the result of 2 GHz in FIG. 9 measured with the apparatus in FIG. 5A is also shown (“before improvement” in the figure; white circle). As shown in FIG. 11, in the result of the apparatus shown in FIG. 10, there is no correlation between the vibration amplitude value of the probe 21b and the detection area where the CPW signal line and ground line overlap the cantilever. From this, it is considered that the influence of the high frequency electric field can be suppressed by configuring the potential when the carrier wave signal is input to the CPW and the potential of the cantilever to be equal.
 次に、コーティングされていないカンチレバーを用いて同様の測定を行い、その結果を図12に示す(図中の「Non coated」)。比較のために、図11のNi-Feでコーティングされたカンチレバーの結果も示す(図中の「Ni-Fe」)。図12に示すように、磁性コートされていないカンチレバーでは、探針21bの振動振幅値がほぼ一定であることが確認された。磁性コートされていないカンチレバーは、高周波磁界の影響を受けないと考えられるため、図12に示す結果からも、図10に示す装置により、高周波電界の影響を抑制できているといえる。 Next, the same measurement was performed using an uncoated cantilever, and the result is shown in FIG. 12 (“Non coated” in the figure). For comparison, the results of a cantilever coated with Ni—Fe in FIG. 11 are also shown (“Ni—Fe” in the figure). As shown in FIG. 12, it was confirmed that the vibration amplitude value of the probe 21b is substantially constant in a cantilever that is not magnetically coated. Since the cantilever that is not magnetically coated is considered not to be affected by the high-frequency magnetic field, it can be said from the results shown in FIG. 12 that the apparatus shown in FIG. 10 can suppress the influence of the high-frequency electric field.
 次に、図10に示す装置を用いて、搬送波信号の周波数が1.1GHzの場合に、探針21bをCPWの断面方向に移動させながら、場のうなりによる高周波磁界の測定を行った。その測定結果から、(1)式を用いて磁界(Hz)×磁界勾配(dHz/dz)を求め、求めた値と探針21bの位置との関係を、図13に示す。なお、磁気力センサ21は、Ni-Feでコーティングされたカンチレバーである。図13に示すように、磁界×磁界勾配の値は、CPWのグラウンド線や信号線とギャップとの境界付近で、極大値や極小値を示すことが確認された。このことから、図10に示す装置により、高周波磁界の勾配を検出できたと考えられる。 Next, using the apparatus shown in FIG. 10, when the frequency of the carrier wave signal was 1.1 GHz, the high frequency magnetic field due to the beat of the field was measured while moving the probe 21b in the cross-sectional direction of the CPW. From the measurement results, the magnetic field (Hz) × magnetic field gradient (dHz / dz) is obtained using the equation (1), and the relationship between the obtained value and the position of the probe 21b is shown in FIG. The magnetic force sensor 21 is a cantilever coated with Ni—Fe. As shown in FIG. 13, it was confirmed that the value of the magnetic field × magnetic field gradient had a maximum value or a minimum value in the vicinity of the boundary between the CPW ground line or the signal line and the gap. From this, it is considered that the gradient of the high-frequency magnetic field could be detected by the apparatus shown in FIG.
 このように、CPWに搬送波信号を入力するときの電位と、カンチレバーの電位とが等しくなるよう構成することにより、高周波磁界を検出することができるといえる。このため、同様の構成を有する高周波電磁界測定装置10においても、高周波磁界による影響と高周波電界による影響とを分離して、高周波磁界のみを検出可能であると考えられる。 Thus, it can be said that a high-frequency magnetic field can be detected by configuring the potential when the carrier wave signal is input to the CPW and the potential of the cantilever to be equal. For this reason, even in the high frequency electromagnetic field measuring apparatus 10 having the same configuration, it is considered that only the high frequency magnetic field can be detected by separating the influence of the high frequency magnetic field and the influence of the high frequency electric field.
 高周波電磁界測定装置10を用いて、場のうなり方式による高周波磁界の測定を行った。測定対象物1として、図5に示すCPWを使用した。また、磁気力センサ21として、探針21bの表面および、梁21aの探針21bとは反対側の面にNi-Feコーティングが施された、MFMのカンチレバーを用いた。電流線12のコイルに流す参照波信号の周波数を1000MHz、振幅を12dBmとし、測定対象物1のCPWに流す搬送波信号の周波数を1000.02797MHz、振幅を9、12、15、18、21dBmとして、場のうなりによる高周波磁界を発生させ、探針21bの振動振幅および位相の測定を行った。 Using the high frequency electromagnetic field measuring apparatus 10, the high frequency magnetic field was measured by the field beat method. As the measurement object 1, CPW shown in FIG. 5 was used. Further, as the magnetic force sensor 21, an MFM cantilever in which the surface of the probe 21b and the surface of the beam 21a opposite to the probe 21b are coated with Ni—Fe is used. The frequency of the reference wave signal flowing through the coil of the current line 12 is 1000 MHz, the amplitude is 12 dBm, the frequency of the carrier wave signal flowing through the CPW of the measurement object 1 is 1000.02797 MHz, the amplitude is 9, 12, 15, 18, 21 dBm, A high frequency magnetic field was generated by the beat of the field, and the vibration amplitude and phase of the probe 21b were measured.
 これらの測定結果を、搬送波信号がない場合の結果と合わせて、図14に示す。図14(a)が、搬送波信号がない場合、図14(b)~(f)が、それぞれ搬送波信号の振幅が9、12、15、18、21dBmの場合の測定結果である。また、図14(a)~(f)の上段のグラフが探針の振動振幅、下段のグラフが位相の測定結果である。また、搬送波信号の振幅に対する探針21bの振動振幅のピーク値の変化を、図15に示す。図14に示すように、場のうなり方式により、カンチレバーの共振周波数近傍の27.7kHzで、探針21bの振動振幅が最大となっているのが確認された。また、図15に示すように、搬送波信号の振幅を上昇させると、カンチレバーの共振周波数近傍における振動振幅がほぼ線型的に増加することも確認された。 These measurement results are shown in FIG. 14 together with the results when there is no carrier signal. FIG. 14A shows the measurement results when there is no carrier signal, and FIGS. 14B to 14F show the measurement results when the amplitude of the carrier signal is 9, 12, 15, 18, 21 dBm, respectively. 14A to 14F, the upper graph shows the probe vibration amplitude, and the lower graph shows the phase measurement result. FIG. 15 shows changes in the peak value of the vibration amplitude of the probe 21b with respect to the amplitude of the carrier signal. As shown in FIG. 14, it was confirmed that the vibration amplitude of the probe 21b was maximized at 27.7 kHz near the resonance frequency of the cantilever by the field beat method. Further, as shown in FIG. 15, it was confirmed that when the amplitude of the carrier wave signal was increased, the vibration amplitude in the vicinity of the resonance frequency of the cantilever increased substantially linearly.
 次に、参照波信号の振幅を18dBm、搬送波信号の振幅を12dBmとし、参照波信号および搬送波信号の周波数を変化させて、場のうなり方式による高周波磁界の測定を行った。このときの参照波信号の周波数と探針21bの振動振幅のピーク値との関係を、図16に示す。図16に示すように、高周波電磁界測定装置10を用いて、場のうなり方式による高周波磁界が測定できることが確認された。なお、図16では、参照波信号の周波数が1~1.3GHzのとき、探針21bの振動振幅が大きくなっているが、これは測定系の高周波特性に依存するものであり、高周波ケーブルやコネクタ等を改良することにより、その高周波特性を改善することができる。 Next, the amplitude of the reference wave signal was set to 18 dBm, the amplitude of the carrier wave signal was set to 12 dBm, and the frequency of the reference wave signal and the carrier wave signal was changed to measure the high frequency magnetic field by the field beat method. FIG. 16 shows the relationship between the frequency of the reference wave signal at this time and the peak value of the vibration amplitude of the probe 21b. As shown in FIG. 16, it was confirmed that the high frequency electromagnetic field measurement apparatus 10 can be used to measure a high frequency magnetic field by a field beat method. In FIG. 16, when the frequency of the reference wave signal is 1 to 1.3 GHz, the vibration amplitude of the probe 21b is large, which depends on the high frequency characteristics of the measurement system, By improving the connector or the like, the high-frequency characteristics can be improved.
 このように、高周波電磁界測定装置10により、高周波磁界を検出できることが確認された。また、高周波電磁界測定装置10では、CPWに搬送波信号を入力するときの電位と、カンチレバーの電位とが等しくなるよう構成されているため、高周波電界による影響が抑制されて、高周波磁界のみを検出しているものと考えられる。 As described above, it was confirmed that the high frequency electromagnetic field measuring apparatus 10 can detect the high frequency magnetic field. Further, the high frequency electromagnetic field measuring apparatus 10 is configured so that the potential when the carrier wave signal is input to the CPW and the potential of the cantilever are equal, so that the influence of the high frequency electric field is suppressed and only the high frequency magnetic field is detected. It is thought that.
 本発明に係る高周波電磁界測定装置は、高周波磁気力顕微鏡や、高周波電磁ノイズ計測器、スピン素子計測装置として利用可能である。高周波磁気力顕微鏡として利用する場合、測定可能な周波数帯域を少なくとも6~7GHz、最大で10GHzの高周波まで拡げることができる。また、高周波電磁ノイズ計測器として利用する場合、1μm以下まで空間分解能を高めることができ、LSIチップ上の電磁ノイズも計測可能である。また、スピン素子計測装置として利用する場合、微小磁性体の挙動を直接観測することができる。 The high-frequency electromagnetic field measuring apparatus according to the present invention can be used as a high-frequency magnetic force microscope, a high-frequency electromagnetic noise measuring instrument, and a spin element measuring apparatus. When used as a high-frequency magnetic force microscope, the measurable frequency band can be expanded to a high frequency of at least 6 to 7 GHz and a maximum of 10 GHz. When used as a high-frequency electromagnetic noise measuring instrument, the spatial resolution can be increased to 1 μm or less, and electromagnetic noise on an LSI chip can be measured. Further, when used as a spin element measuring apparatus, the behavior of a minute magnetic material can be directly observed.
  1 測定対象物
 10 高周波電磁界測定装置
 11 磁気力顕微鏡
  21 磁気力センサ
   21a 梁
   21b 探針
  22 載置台
  23 変位測定手段
   23a レーザー
   23b 光位置センサ
   23c 検出回路
  24 走査手段
 12 電流線
 13 搬送波導入手段
  25 シグナルジェネレータ
  26 スプリッタ
  27 位相調整器
  28 バイパスコンデンサ
 14 参照波導入手段
  29 シグナルジェネレータ
 15 コンピュータ
  30 ロックインアンプ
  31 周波数ミキサ
  32、33 コントローラ
 
DESCRIPTION OF SYMBOLS 1 Measurement object 10 High frequency electromagnetic field measuring apparatus 11 Magnetic force microscope 21 Magnetic force sensor 21a Beam 21b Probe 22 Mounting stand 23 Displacement measuring means 23a Laser 23b Optical position sensor 23c Detection circuit 24 Scanning means 12 Current line 13 Carrier introduction means 25 Signal generator 26 Splitter 27 Phase adjuster 28 Bypass capacitor 14 Reference wave introducing means 29 Signal generator 15 Computer 30 Lock-in amplifier 31 Frequency mixer 32, 33 Controller

Claims (7)

  1.  高周波信号を入力された測定対象物が発する高周波磁界を測定するための高周波電磁界測定装置であって、
     磁気的作用による振動を利用して磁界を検出可能な磁気力センサと、
     前記測定対象物に近接して配置された電流線と、
     前記測定対象物に高周波の搬送波信号を入力する搬送波導入手段と、
     前記電流線に高周波の参照波信号を入力可能であり、入力する前記参照波信号の周波数を変更可能に構成された参照波導入手段とを有し、
     前記搬送波導入手段から前記測定対象物に前記搬送波信号を入力するときの電位と、前記磁気力センサの電位とが等しくなるよう構成されていることを
     特徴とする高周波電磁界測定装置。
    A high-frequency electromagnetic field measuring device for measuring a high-frequency magnetic field generated by a measurement object to which a high-frequency signal is input,
    A magnetic force sensor capable of detecting a magnetic field using vibration caused by magnetic action;
    A current line disposed in proximity to the measurement object;
    Carrier wave introduction means for inputting a high frequency carrier wave signal to the measurement object;
    A reference wave introduction means configured to be able to input a high frequency reference wave signal to the current line, and to be able to change the frequency of the input reference wave signal;
    A high-frequency electromagnetic field measuring apparatus, wherein a potential when the carrier signal is input from the carrier introduction means to the measurement object is equal to a potential of the magnetic force sensor.
  2.  磁気力顕微鏡を有し、
     前記磁気力センサは、前記磁気力顕微鏡のカンチレバーから成り、
     前記磁気力顕微鏡は、前記測定対象物を載せる載置台と、前記磁気力センサの振動による変位を測定する変位測定手段と、前記測定対象物に対して前記磁気力センサを相対的に走査させる走査手段とを有していることを、
     特徴とする請求項1記載の高周波電磁界測定装置。
    Have a magnetic force microscope,
    The magnetic force sensor comprises a cantilever of the magnetic force microscope,
    The magnetic force microscope includes a mounting table on which the measurement object is placed, a displacement measuring unit that measures displacement due to vibration of the magnetic force sensor, and a scan that relatively scans the magnetic force sensor with respect to the measurement object. Having a means,
    The high-frequency electromagnetic field measuring apparatus according to claim 1, wherein
  3.  前記電流線はコイルから成っており、
     前記カンチレバーは絶縁体から成り、先端の探針の表面に磁性体膜が形成されていることを
     特徴とする請求項2記載の高周波電磁界測定装置。
    The current line comprises a coil;
    The high-frequency electromagnetic field measuring apparatus according to claim 2, wherein the cantilever is made of an insulator, and a magnetic film is formed on a surface of a probe at the tip.
  4.  前記カンチレバーの前記磁性体膜の磁性材料の磁化を交流消磁可能に、前記電流線に交番磁界を印加するための交流電源と、
     前記カンチレバーの前記磁性体膜の磁性材料の磁化を再着磁可能に、前記電流線に直流磁界を発生させるための直流電源とを、
     有することを特徴とする請求項3記載の高周波電磁界測定装置。
    An AC power source for applying an alternating magnetic field to the current line so that the magnetization of the magnetic material of the magnetic film of the cantilever can be AC demagnetized;
    A DC power source for generating a DC magnetic field in the current line so as to remagnetize the magnetization of the magnetic material of the magnetic film of the cantilever,
    The high frequency electromagnetic field measuring apparatus according to claim 3, wherein the high frequency electromagnetic field measuring apparatus is provided.
  5.  前記電流線は開放型伝送線路から成っており、
     前記カンチレバーはシリコン製であることを
     特徴とする請求項2記載の高周波電磁界測定装置。
    The current line consists of an open transmission line,
    The high frequency electromagnetic field measuring apparatus according to claim 2, wherein the cantilever is made of silicon.
  6.  前記参照波導入手段により周波数を変更しながら前記参照波信号を入力したとき、前記変位測定手段により測定された前記磁気力センサの振動による変位から、前記磁気力センサが共振周波数で振動したときの振幅を求めるとともに、そのときの前記参照波導入手段による前記参照波信号の周波数を求め、求められた前記磁気力センサの振幅と前記参照波信号の周波数とに基づいて、前記搬送波信号の入力により前記測定対象物が発する高周波信号の振幅と周波数とを算出する解析手段を有することを特徴とする請求項2乃至5のいずれか1項に記載の高周波電磁界測定装置。 When the reference wave signal is input while changing the frequency by the reference wave introducing means, the magnetic force sensor vibrates at a resonance frequency from the displacement caused by the vibration of the magnetic force sensor measured by the displacement measuring means. Obtaining the amplitude, obtaining the frequency of the reference wave signal by the reference wave introducing means at that time, and by inputting the carrier signal based on the obtained amplitude of the magnetic force sensor and the frequency of the reference wave signal The high-frequency electromagnetic field measuring apparatus according to claim 2, further comprising an analysis unit that calculates an amplitude and a frequency of a high-frequency signal emitted from the measurement object.
  7.  前記磁気力センサは絶縁体から成ることを特徴とする請求項1記載の高周波電磁界測定装置。
     
    The high frequency electromagnetic field measuring apparatus according to claim 1, wherein the magnetic force sensor is made of an insulator.
PCT/JP2013/074059 2013-03-18 2013-09-06 High-frequency electromagnetic field measurement device WO2014147866A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015506537A JP6327614B2 (en) 2013-03-18 2013-09-06 High frequency electromagnetic field measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-054700 2013-03-18
JP2013054700 2013-03-18

Publications (1)

Publication Number Publication Date
WO2014147866A1 true WO2014147866A1 (en) 2014-09-25

Family

ID=51579581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074059 WO2014147866A1 (en) 2013-03-18 2013-09-06 High-frequency electromagnetic field measurement device

Country Status (2)

Country Link
JP (1) JP6327614B2 (en)
WO (1) WO2014147866A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111415687A (en) * 2020-03-16 2020-07-14 大连海事大学 Device and method for measuring high-frequency alternating-current magnetic field of hard disk perpendicular magnetic write head
JP2021056046A (en) * 2019-09-27 2021-04-08 パナソニックIpマネジメント株式会社 Evaluation system and evaluation device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029973A1 (en) * 2010-09-03 2012-03-08 国立大学法人秋田大学 Magnetic field observation device and magnetic field observation method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029973A1 (en) * 2010-09-03 2012-03-08 国立大学法人秋田大学 Magnetic field observation device and magnetic field observation method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Y. ENDO ET AL.: "Radio Frequency Magnetic Near Field Measurements of Coplanar Waveguide Simulated Power and Ground Lines in Radio Frequency Integrated Circuits Using a MFM Tip", IEEE TRANSACTIONS ON MAGNETICS, vol. 48, no. 11, November 2012 (2012-11-01), pages 3666 - 3669 *
YASUSHI ENDO ET AL.: "High Frequency Magnetic Near Field Measurement Using MFM", THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN KENKYUKAI SHIRYO, no. 169-18, 20 December 2012 (2012-12-20), pages 19 - 24 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021056046A (en) * 2019-09-27 2021-04-08 パナソニックIpマネジメント株式会社 Evaluation system and evaluation device
JP7253724B2 (en) 2019-09-27 2023-04-07 パナソニックIpマネジメント株式会社 Evaluation system and evaluation equipment
CN111415687A (en) * 2020-03-16 2020-07-14 大连海事大学 Device and method for measuring high-frequency alternating-current magnetic field of hard disk perpendicular magnetic write head
CN111415687B (en) * 2020-03-16 2021-12-17 大连海事大学 Device and method for measuring high-frequency alternating-current magnetic field of hard disk perpendicular magnetic write head

Also Published As

Publication number Publication date
JP6327614B2 (en) 2018-05-23
JPWO2014147866A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
EP0726444B1 (en) Magnetic resonance method and apparatus for detecting an atomic structure of a sample along a surface thereof
US20060152232A1 (en) Method and apparatus for inspection of high frequency and microwave hybrid circuits and printed circuit boards
US5465046A (en) Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits
CN108519564A (en) The three axis solid-state atom Magnetic Sensors based on diamond NV colour centers and magnetic field detection method
US20040095133A1 (en) Magnetic imaging microscope test system and its application for characterization of read and write heads for magnetic recording
CN108181594A (en) Non- exchange Mesoscopic physics magnetometer
US10539633B2 (en) Ultrahigh resolution magnetic resonance imaging method and apparatus
Ando et al. Miniaturized thin-film magnetic field probe with high spatial resolution for LSI chip measurement
CN109669147A (en) Full light broadband sensing system and its application method based on micron order diamond crystal
Kim et al. Resonance-suppressed magnetic field probe for EM field-mapping system
JP6327614B2 (en) High frequency electromagnetic field measuring device
Amalou et al. Giant magnetoimpedance of chemically thinned and polished magnetic amorphous ribbons
US20120330581A1 (en) Potential obtaining apparatus, magnetic field microscope, inspection apparatus, and potential obtaining method
JP5958895B2 (en) High frequency magnetic field detector
US20110001473A1 (en) Electromagnetic wave detection methods and apparatus
Kantor et al. Measurement of electric-field intensities using scanning near-field microwave microscopy
Harada et al. Near-field magnetic measurements and their application to EMC of digital equipment
US8069492B2 (en) Spin-torque probe microscope
JP2013213707A (en) High frequency magnetic field detection apparatus
CN108333121A (en) A kind of high frequency magneto-optic spectrometer
Kantor et al. Method of increasing spatial resolution of the scanning near-field microwave microscopy
Wang et al. A New Multicomponent Composite Resonant Probe With High Detection Sensitivity
Solovev et al. Magnetic anisotropy and ferromagnetic resonance in inhomogeneous demagnetizing fields near edges of thin magnetic films
Newman et al. Tensor gradiometry with a diamond magnetometer
Endo et al. Radio frequency magnetic near field measurements of coplanar waveguide simulated power and ground lines in radio frequency integrated circuits using a MFM tip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878767

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015506537

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13878767

Country of ref document: EP

Kind code of ref document: A1