WO2014147275A1 - Método y dispositivo para la diferenciación de descargas parciales y ruido eléctrico - Google Patents

Método y dispositivo para la diferenciación de descargas parciales y ruido eléctrico Download PDF

Info

Publication number
WO2014147275A1
WO2014147275A1 PCT/ES2014/070199 ES2014070199W WO2014147275A1 WO 2014147275 A1 WO2014147275 A1 WO 2014147275A1 ES 2014070199 W ES2014070199 W ES 2014070199W WO 2014147275 A1 WO2014147275 A1 WO 2014147275A1
Authority
WO
WIPO (PCT)
Prior art keywords
prh
prl
pulse signal
frequencies
power ratio
Prior art date
Application number
PCT/ES2014/070199
Other languages
English (en)
French (fr)
Inventor
Jorge Alfredo ARDILA REY
Juan Manuel MARTÍNEZ TARIFA
Guillermo ROBLES MUÑOZ
Original Assignee
Universidad Carlos Iii De Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Carlos Iii De Madrid filed Critical Universidad Carlos Iii De Madrid
Publication of WO2014147275A1 publication Critical patent/WO2014147275A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements

Definitions

  • the present invention has its application within the electrical sector and, especially, in the industrial area dedicated to providing condition analysis analyzers of electrical machinery and insulated cables based on the detection, location and identification of partial discharges in any kind of electrical equipment installed. In any environment.
  • Partial discharges are one of the most important classes of aging processes that occur within electrical insulation. PDs are ionizations that occur within trajectories or small volumes due to high electric field divergences. There are three main types of PD phenomena that can be found in power equipment:
  • Superficial PD associated with the ionization of gas along a trajectory on solid-gas dielectric contact surfaces, the superficial DPs appear in bushing, insulators, and in windings of electrical machines.
  • Crown DP normally produced near the tip in point-gas-plane samples, the crown DPs are the result of local ionizations in the surrounding gas or air.
  • the PD measurement is useful in the diagnosis of electrical equipment because the PD activity is related to different aging mechanisms.
  • Partial discharge patterns with phase resolution have been used for years to identify sources of DP and noise.
  • Figure 1 illustrates graphic examples of PRPD patterns showing respectively internal DP (A), surface DP (B) and crown DP (C) in an electrical equipment under test.
  • the conventional representation of DP using a PRPD pattern uses a phase parameter (f) on the x axis and an amplitude parameter (v) on the y axis.
  • He Phase parameter (f) consists of the phase of the alternating voltage that feeds the electrical equipment under test at the instant of detection and, therefore, correlated with the intensity of the electric field that generates the DP.
  • the amplitude parameter (v) consists in the amplitude of the electrical pulses generated by the DPs and, therefore, correlated with the intensity of the DPs themselves.
  • Each PRPD pattern usually also comprises a third axis related to the number of pulses, in the context of the pulse group of the acquisition being performed, which have similar values of amplitude and phase parameters.
  • the magnitudes of the DP pulses are measured at the terminals of an impedance and are represented as a signal superimposed on the waveform of a high voltage sinusoid taken from a capacitive divider used for acquisition and connected in parallel to the electrical equipment.
  • PRPD patterns This classic standardized technique of PRPD patterns, or phase-amplitude, allows the separation of DP and noise by comparing the phase values of the DP pulses and noise.
  • PD sources according to their associated physical process, show different pulse forms, but PRPD detection systems do not include this additional data so that this technique is limited to the identification of DP sources when they are related to clear degradation processes and when the signals show a large SNR (signal-to-noise ratio).
  • SNR signal-to-noise ratio
  • classical PRPD patterns allow the identification of DP sources when they are related to a clear degradation process and when the noise level is low compared to the amplitudes of the DP.
  • real isolation systems usually have various DP sources and the noise level is high, especially if measurements are made online.
  • US7579843 describes a system for monitoring and analyzing DP in electrical machinery based on verifying the phase angle of the PDs against a reference voltage and the pulse shape of DP and noise.
  • the system also includes a complete instrumentation to measure load current, rotor vibrations, H 2 pressure, temperature, humidity and power factor to correlate these detected variables with DP data. Therefore, the system requires a plurality of sensors to extract measurement data to create a historical data record, which is also used for predefined rules and model features, all of which are associated with known pulse characteristics of various locations within similar machines. . After collecting all this data, the characterization of DP and noise is based again on the time-frequency maps proposed by Cavallini et al.
  • WO 201 1/151481 is an example of a method based on wavelet transform to eliminate noise from DP signals, in which various strategies for the characterization of DP signals are proposed, being the analysis of the variances of the wavelets, the estimated frequency with the Prony method, and the signal energy, the most relevant for the grouping procedure.
  • Waveform transform analysis makes use of sequentially applied complementary low pass and high pass filters (LPF and HPF respectively) which divide the total signal bandwidth into various stages to analyze their energy after each partition.
  • LPF and HPF complementary low pass and high pass filters
  • the lower (HPF) and higher (LPF) cutoff frequencies of the filters must be the same, so that this technique is not flexible to analyze the signal strength at the frequency intervals in which they may exist. characteristic features that would otherwise be omitted.
  • the objective technical problem is to provide pulse differentiation for DP and noise sources using configurable parameters that are independent of signal amplitudes in order to make accurate measurements in environments where the SNR is low. It is preferable to transform the signals of each pulse in the frequency domain and parameterize them by means of a power spectral analysis. Even in the case where the initial calculation of these parameters does not result in an appropriate pulse source classification, it is desirable that the user can change their configuration online, based on the spectral forms of observed pulses.
  • the present invention serves to solve the aforementioned problems by providing a method and a device for identifying the different sources of partial discharges (DP) and noise based on the analysis of the spectral power of the detected pulses, calculating power ratios for ups and downs. frequencies
  • the total spectral power and the power in the bands of (high and low) selected frequencies of each detected pulse are calculated and represented on a two-dimensional frequency-frequency map (in 2D), defined graphically placing the low frequency power ratio on the x-axis and the high frequency power ratio on the y-axis (or vice versa). This representation is the key point to identify the noise and the different sources of DP.
  • the fast Fourier transform (FFT) of each detected pulse is calculated up to a maximum frequency under analysis (f T ), and the overall bandwidth [0, f T ] is divided into three frequency bands.
  • the spectrum depends on the types of the sources of the detected pulse, since the spectral form in certain frequency bands is not the same for pulses of different types of PD (superficial, internal and corona) and noise.
  • the cumulative spectral power calculated for two frequency bands is normalized to the total spectral power. Therefore, the two quantities obtained are power ratios (measured in%):
  • s (f) is the magnitude of the FFT of the pulse signal, s (t);
  • fiL and ⁇ 2L define the low frequency band to calculate the low frequency power ratio (PRL), the interval [f 1 L , it is a frequency range that determines a low frequency band selected and configurable correspondingly for the type of signal determined by s (f), since s (f) represents the distribution for different frequency changes for noise and various sources of DP;
  • f 1H and ⁇ 2H define the high frequency band to calculate the power ratio for high frequencies (PRH), the interval [f 1H , ⁇ 2H] is a frequency range that determines a high frequency band selected and configurable according to the characteristics of signals taking into account the IIL ⁇ H restriction;
  • f T is the maximum frequency under analysis.
  • the calculated information of these two bands, PRH and PRL can be explicitly represented in one plane, while the third band (covering the lower frequencies) can be avoided in 2D representation.
  • the present invention allows to represent each signal in a plane as a point with coordinates (PRL, PRH).
  • a method for the identification and differentiation of partial discharges and noise having detected at least one signal of electric pulse s (t), in which the fast Fourier transform (FFT) is calculated, for each frequency from 0 to a selected maximum frequency (f T ).
  • the fast Fourier transform calculated from the pulse signal s (t) is indicated as s (f), which determines that the signal distribution for different frequency changes for noise and various DP sources and so that it provides certain characteristics of said signal, the method identifies the pulse signal s (t) detected which is either noise or a partial discharge of a type selected between superficial, internal and corona partial discharge by:
  • f 1 L , ⁇ 2L, ⁇ I H, hn are frequencies that define a low frequency band [f 1 L , ⁇ 2L] configured to calculate the power ratio for low frequencies (PRL) and a high frequency band [f 1 H , f 2H ] configured to calculate the power ratio for high frequencies (PRH);
  • a device for differentiating partial discharges and electrical noise comprising processing means for performing the method described above.
  • a further aspect of the invention relates to a computer program product comprising computer executable instructions for performing any of the steps of the method previously disclosed, when the program is run on a computer, a digital signal processor (DSP) , an array of programmable field doors (FPGA), a specific application integrated circuit (ASIC), a microprocessor, a microcontroller, or any other form of programmable hardware.
  • DSP digital signal processor
  • FPGA array of programmable field doors
  • ASIC specific application integrated circuit
  • microprocessor a microcontroller, or any other form of programmable hardware.
  • each type of DP source (internal, surface and crown) leads either to a cluster located in a different position or to a different form on the power relationship map. This has been demonstrated by measuring sets of thousands of pulses, so that the statistical reliability of the system has been verified.
  • Figure 1 shows three examples of PRPD patterns used for years to identify sources of DP and noise, as is known in the prior art.
  • Figure 2 shows the two-dimensional representation of PRL and PRH power relationships that differentiate regions of the spectral power map, according to a possible embodiment of the invention.
  • Figure 3 shows a circuit for detecting partial discharges of a test object, as is known in the prior art.
  • Figures 4a, 4b and 4c show, respectively for three experimental examples, PRPD patterns and the 2D representation of PRL and PRH relationships for surface partial discharges and noise, according to a possible embodiment of the invention.
  • Figure 5 shows the 2D representation of PRL and PRH relationships associated with noise in an experimental case for measuring internal partial discharges, according to a possible embodiment of the invention.
  • Figures 6a, 6b, 6c and 6d show, respectively for four experimental cases, the 2D representation of PRL and PRH relationships associated with internal partial discharges, according to a possible embodiment of the invention.
  • Figures 7a, 7b, 7c and 7d show, respectively for four experimental cases, the 2D representation of PRL and PRH relationships associated with internal partial discharges and noise, according to another possible embodiment of the invention.
  • Figure 8 shows PRPD patterns and 2D representation of PRL and PRH ratios for partial corona and noise discharges, according to a possible embodiment of the invention.
  • Figures 9a, 9b, 9c and 9d show, respectively for noise and the three different types of partial discharges, the 2D representation of PRL and PRH relationships, according to a possible embodiment of the invention.
  • Figure 10 shows a flow chart of a method for differentiating pulse sources in 2D representation of PRL and PRH relationships using PRPD patterns, according to a possible embodiment of the invention.
  • Figure 2 shows a graphical representation in a plane of two power ratios, measured in percentage values (%): power ratio for low frequencies (PRL) calculated by equation 1 and power ratio for high frequencies (PRH ) calculated by equation 2.
  • PRL power ratio for low frequencies
  • PRH power ratio for high frequencies
  • IsOT (Equation 2) Having represented each pulse detected in the plane of Figure 2 as a point with coordinates (PRL, PRH), the points that fall within a first region (R ⁇ of the classification map represent the pulses that have low spectral power in the interval [f 1L , f 2H ], that is, low values of PRH and PRL.
  • a second region (R 2 ) is distinguished that represents those points with relatively high spectral power in the frequency band [f 1 L , f 2H ]
  • the points located near the diagonal at the top of the map have low spectral power in the band [f 1L , f 2L ] and high values in the band [f 1 H , f 2H ], that is, values High PRH and low PRL, and vice versa if represented at the bottom of the f Figure 2.
  • a prohibited region is defined because the percentages of spectral power added PRL + PRH cannot exceed 100% for this frequency selection.
  • a method for distinguishing signals from partial discharges and noise is provided using the power ratios mentioned above and is applicable in isolation of real equipment, for example, using a high frequency current transformer (HFCT ) as a pulse detection sensor.
  • HFCT high frequency current transformer
  • To identify the sources of partial discharge and noise three experiments were performed for each test object (31) using different trigger levels and applied voltage, as shown in Figure 3. All experiments began with noise characterization in the laboratory as described below. In experimental measurements for the identification of partial discharges, the partial discharges to be measured are detected in a high voltage laboratory using a conventional indirect detection circuit (30) as shown in Figure 3.
  • a coupling capacitor (34) is a low impedance path, 1 nF sized for 100 kV, for the high frequency current transients of the partial discharge pulses that were measured using an HFCT (35).
  • a voltage divider provides the synchronization signal to obtain conventional PRPD patterns in relation to 50/60 Hz sinusoidal voltage waveforms.
  • a specific acquisition system (32) was developed to detect the patterns of PRPD, pulse waveforms and PRL-PRH values. Each pulse waveform detected was transformed to the frequency domain by means of an FFT algorithm.
  • the data acquisition card processes the data from one synchronization channel while another channel measures the DP pulses of an HFCT with a bandwidth of up to 80 MHz.
  • the characteristics of the acquisition system are outside the scope of this invention and are described in "A Partial Discharges acquisition and statistical analysis software" by Ardila-Rey et al., Instrumentation and Measurement Technology Conference, I2MTC, 2012 IEEE International, p. 1670-1675, May 13-16, 2012.
  • a commercial DP detector (33) was used to monitor DP activity and to confirm PD identification, in the presence of noise, by means of time-frequency maps .
  • the DP detector (33) receives the same synchronization signal as the acquisition system (32), which uses the proposed method to separate DP signals from noise.
  • the synchronization signal (37) is in phase with the voltage supplied by the high voltage source (38) and is detected through a load impedance (Z m ).
  • the noise characterization is carried out by performing measurements with a low trigger level and applying a voltage to the test object (31), between 800 and 1200 V, which provides synchronization to the DP detector (33) and the acquisition system (32)
  • Another HFCT (36) was used to measure the DP pulses for the commercial DP detector in this experimental configuration of the indirect detection circuit (30).
  • Figure 4c represents the data obtained when a low trigger level is set and with the same high applied voltage of 8 kV.
  • Superficial noise and DP act simultaneously, as clearly seen in the PRPD pattern, on the left.
  • the power relations map, on the right, can also identify the two groupings located in positions similar to those observed in Figure 4a, that is, only the case of noise, and Figure 4b that is, only the case of DP superficial. Again, noise is clearly differentiated as a cloud of points near the diagonal of the map.
  • Figure 5 shows that the values for the PRL and PRH parameters associated with noise have the same position on the power relationship map as the clouds of noise points in the case of the test object (31) studied for surface discharges , shown in Figure 4a, when the internal DPs with a low trip level are measured and a voltage of 800 V is applied to the test object (31). Therefore, the change in the equivalent capacity of the test objects (31) does not induce changes in the position of the noise grouping.
  • the samples used to create internal discharges in the experimental measurements consist of eleven 0.35 mm thick polyamide insulating sheets, normally used in high voltage generators such as slot insulation systems. In all samples, the central papers were pierced with a needle, creating a hole with a circular shape of approximately 1 mm in diameter. Therefore, these test objects (31) have a disk-shaped vacuole created inside the solid insulation system with different heights depending on the number of perforated papers, which leads to four configurations:
  • Figures 6a-6d show the 2D representation of the power relations -PR-, the PR map, of DP pulses obtained by applying a high voltage (of 10 kV, which corresponds to a stable DP activity) to the vacuoles Cylindrical of the slot insulation sheets used as test object (31) with different vacuum heights: - Figure 6a illustrates the internal PRL-PRH DP points for the configuration of 2 + 7 + 2 sheets,
  • FIG. 6d illustrates the internal DP PRL-PRH points for the 5 + 1 + 5 sheet configuration.
  • Figures 7a-7d show the data obtained with the same high voltage applied, of 10 kV, to the different test objects (31) with sheet configuration 2 + 7 + 2, sheet configuration 3 + 5 + 3, configuration of 4 + 3 + 4 sheets and 5 + 1 + 5 sheets configuration respectively, but with a trip circuit set at a low level. Again, two different large groupings of points are visible: one of them, associated with noise, with the same shape and position near the diagonal of the map as those shown in Figure 5, and the other, associated with internal DPs, which coincides in position and dispersion with the grouping of points obtained when a high trigger level is used as in Figure 6a-6d.
  • the voltage applied to the test object (31) was 3.2 kV.
  • the test object (31) is constructed using a 0.5 mm thick needle that is located at a relative distance, for example, 1 mm, above a plane of metallic earth, with a mechanical support made of Teflon.
  • the results for corona discharge measurements are displayed on the power relations map presented in Figure 8, on the right;
  • the graph on the left is the conventional PRPD pattern of this particular case.
  • the PRL and PRH values for the crown pulses are located far from the diagonal of the map, in the first region (R ⁇ .
  • Figure 9a represents the point cloud associated with the electrical noise in all experiments for the different test objects, which tends to be located in the same area near the diagonal of the power relations map within the second region (R 2 ) as shown in Figures 2, 4a and 5. This location of the grouping is different from that of the clusters of any of the DP sources: superficial, internal or crown.
  • FIG. 9b represents the point clouds related to surface PD. Despite being in an area that overlaps with that of the internal DP groupings, these superficial DP groupings show a lower dispersion in the PRH than that of the internal DPs. The relative spectral power for high frequencies is much greater than that of the crown DP. These clouds are located in the second region (R 2 ) but further away than the noise grouping of the diagonal of the power relations map, as shown in Figures 4b-4c.
  • - Figure 9c represents the internal DPs: The relative spectral power for high frequencies is also greater for the internal DPs than for the crown DPs. Another common feature that internal DPs share with surface DPs is that they are also further away from the diagonal of the power relationship map than noise. The grouping for internal PDs tends to occupy the same region as that of surface discharges, but the grouping shows a significantly greater dispersion in PRH, which can be used to differentiate them.
  • - Figure 9d represents the crown DP: Because the spectral power for the corona DP pulses is confined at low frequencies, the values for PRL and PRH in the range of [5, 25] MHz are very low, both by below 30%.
  • the frequencies f 1 Li f 2L, fi H, hn which define the low frequency band [f 1 L , f 2L ] and the high frequency band [f 1H , f 2H ], to calculate
  • the power ratios respectively for low frequencies (PRL) and high frequencies (PRH) are acquired (102) two 2D graphical representations: the known of the prior art, the PRPD pattern, and the proposed PR map representing PRL and PRH values for each pulse detected.
  • one of the groupings is selected (105) and the PRPD pattern associated with the grouping is acquired (106) of points selected by the user to proceed to analyze the associated PRPD pattern (107).
  • the user can visually distinguish (108) if the grouping of points associated with the PRPD pattern comes either from a noise source or from a crown, surface or internal DP source (109 ).
  • the new detected pulses (110) can be identified as noise or different DP sources by observing their location on the updated PR map (11). If the differentiation of noise and DP sources is not possible in the PRPD pattern obtained, the analysis of both PRPD and PR maps is repeated (112) for other selected values of frequencies f 1 L, f 2 i_, fiH , n.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Image Processing (AREA)
  • Facsimiles In General (AREA)

Abstract

Método y dispositivo para diferenciar descargas parciales y ruido calculando una relación de potencia para bajas frecuencias (PRL) y una relación de potencia para altas frecuencias (PRH): formula (I) donde s(f) es la FFT de la señal de pulso s(t), fT es una frecuencia máxima seleccionada, f1L, f2L, f1H, f2H, fT son frecuencias que definen una banda de bajas frecuencias [f1L, f2L] y una banda de altas frecuencias [f1H, f2H] configuradas para calcular la relación de potencia para bajas y altas frecuencias (PRL, PRH) respectivamente y que cumplen con las condiciones: 0<f1L<f2L; f1H<f2H≤fTy f1L<f2H. El método diferencia la señal del pulso s(t) detectada entre ruido y una descarga parcial determinando una ubicación en un mapa en 2D del punto definido por las coordenadas (PRL, PRH) asociado con la señal del pulso s(t). Es una herramienta flexible para la identificación de ruido y útil para la caracterización de pulsos porque las bandas de frecuencias pueden cambiarse en línea.

Description

DESCRIPCIÓN
Método y dispositivo para la diferenciación de descargas parciales y ruido eléctrico CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención tiene su aplicación dentro del sector eléctrico y, especialmente, en el área industrial dedicada a proporcionar analizadores de evaluación de condición de maquinaria eléctrica y cables aislados basándose en la detección, localización e identificación de descargas parciales en cualquier clase de equipo eléctrico instalado en cualquier entorno.
ANTECEDENTES DE LA INVENCIÓN
El fallo del aislamiento eléctrico es una de las causas más importantes de cortes de potencia en equipos. Se ha informado - que muchas máquinas eléctricas y cables aislados experimentan fallos a la tensión nominal siendo las descargas parciales una de las principales causas de tales fallos. Las descargas parciales (DP) son una de las clases más importantes de procesos de envejecimiento que se producen dentro del aislamiento eléctrico. Las DP son ionizaciones que se producen dentro de trayectorias o volúmenes pequeños debido a altas divergencias de campo eléctrico. Existen tres tipos principales de fenómenos de DP que pueden encontrarse en equipos de potencia:
a) DP internas: producidas en vacuolas gaseosas rodeadas por aislamiento sólido o líquido, normalmente en materiales aislantes no homogéneos o debido a impurezas de aire inevitables en el interior de dieléctricos sólidos.
b) DP superficiales: asociadas con la ionización de gas a lo largo de una trayectoria en superficies de contacto dieléctrico sólido-gas, las DP superficiales aparecen en pasatapas, aisladores, y en bobinados de máquinas eléctricas.
c) DP corona: producidas normalmente cerca de la punta en muestras de punto-gas-plano, las DP corona son el resultado de ionizaciones locales en el gas o aire circundante.
La medida de DP es útil en el diagnóstico de equipos eléctricos porque la actividad de las DP está relacionada con mecanismos de envejecimiento diferentes. Se han usado patrones de descarga parcial con resolución en fase (PRPD) durante años para identificar fuentes de DP y ruido. La figura 1 ilustra ejemplos gráficos de patrones de PRPD que muestran respectivamente DP internas (A), DP superficiales (B) y DP corona (C) en un equipo eléctrico sometido a prueba. La representación convencional de DP usando un patrón de PRPD usa un parámetro de fase (f) en el eje x y un parámetro de amplitud (v) en el eje y. El parámetro de fase (f) consiste en la fase de la tensión alterna que alimenta el equipo eléctrico sometido a prueba en el instante de detección y, por tanto, correlacionado con la intensidad del campo eléctrico que genera las DP. El parámetro de amplitud (v) consiste en la amplitud de los pulsos eléctricos generados por las DP y, por tanto, correlacionado con la intensidad de las propias DP. Cada patrón de PRPD comprende además habitualmente un tercer eje relacionado con el número de pulsos, en el contexto del grupo de pulsos de la adquisición que se realiza, que tienen valores similares de parámetros de amplitud y de fase. Las magnitudes de los pulsos de DP se miden en los terminales de una impedancia y se representan como una señal superpuesta a la forma de onda de una sinusoide de alta tensión tomada de un divisor capacitivo usado para la adquisición y conectado en paralelo al equipo eléctrico.
Esta técnica clásica normalizada de patrones de PRPD, o fase-amplitud, permite la separación de DP y ruido mediante la comparación de los valores de fase de los pulsos de DP y el ruido. Sin embargo, las fuentes de DP, según su proceso físico asociado, muestran formas de pulso diferentes, pero los sistemas de detección de PRPD no incluyen estos datos adicionales de modo que esta técnica se limita a la identificación de fuentes de DP cuando están relacionadas con procesos de degradación claros y cuando las señales muestran una SNR (relación señal-ruido) grande. En conclusión, los patrones de PRPD clásicos permiten la identificación de fuentes de DP cuando están relacionadas con un proceso de degradación claro y cuando el nivel de ruido es bajo en comparación con las amplitudes de las DP. Desafortunadamente, los sistemas de aislamiento reales habitualmente presentan diversas fuentes de DP y el nivel de ruido es alto, especialmente si las mediciones se realizan en línea.
Las medidas de DP se realizan habitualmente en línea para obtener resultados más significativos y para evitar desconexiones de equipo periódicas. En estas circunstancias, los patrones de PRPD pueden no ser precisos por sí mismos. Por tanto, una tendencia de investigación interesante para la clasificación de fuentes de DP y la identificación de ruido es la medición y la clasificación apropiada de formas de onda de pulsos tal como se da a conocer en "Partial discharge pulse shape recognition using and inductive loop sensor" por J. M. Martínez-Tarifa, G. Robles, M. V. Rojas-Moreno y J. Sanz-Feito [Measurement Science and Technology, vol. 21 , página 105706, 10 p.p., 2010]. Sin embargo, esta técnica caracteriza fuentes de DP diferentes por medio de relaciones de energía espectral, pero no se proporciona ninguna herramienta para separar fuentes. Adicionalmente, no se consigue fiabilidad estadística verificando su comportamiento para diversos pulsos, lo que es obligatorio para una herramienta industrial que mide este fenómeno estocástico.
Otra solución existente para detectar, localizar e interpretar DP diferentes se da a conocer en el documento US8126664. En esta solución se elimina ruido correlacionando formas de onda de pulsos en el dominio de tiempo. Esta técnica siempre requiere dos sensores para detectar y medir los pulsos en cables aislados.
Han existido diversos enfoques para analizar formas de onda de pulsos, basándose en el agrupamiento de los mismos por medio de mapas de tiempo-frecuencia, como el planteamiento descrito por A. Cavallini et al. en "A new approach to the diagnosis of solid insulation systems based on DP signal inference" [IEEE Electrical Insulation Magazine, vol. 19, págs. 22-30, 2003]. Estos mapas de tiempo-frecuencia se han aplicado de manera satisfactoria a equipos industriales pero las ecuaciones usadas en ellos son invariables y los estudios de frecuencia y tiempo no pueden parametrizarse para extraer características de señal que podrían estar ocultas; como consecuencia, la separación de fuentes de DP a veces resulta difícil.
Otro enfoque existente que usa mapas de tiempo-frecuencia es el documento US7579843, que describe un sistema para monitorizar y analizar DP en maquinaria eléctrica basándose en verificar el ángulo de fase de las DP frente a una tensión de referencia y la forma de los pulsos de las DP y el ruido. El sistema incluye también una instrumentación completa para medir corriente de carga, vibraciones de rotor, presión de H2, temperatura, humedad y factor de potencia para correlacionar estas variables detectadas con datos de DP. Por tanto, el sistema requiere una pluralidad de sensores para extraer datos de medición para crear un registro histórico de datos, que se usa además para reglas predefinidas y características de modelo estando todas ellas asociadas con características de pulsos conocidos de diversas ubicaciones dentro de máquinas similares. Después de recopilar todos estos datos, la caracterización de DP y ruido se basa de nuevo en los mapas de tiempo-frecuencia propuestos por Cavallini et al.
El documento WO 201 1/151481 es un ejemplo de un método basado en transformada de ondículas (wavelet) para eliminar el ruido de señales de DP, en el que se proponen diversas estrategias para la caracterización de las señales de DP, siendo el análisis de las varianzas de las ondículas, la frecuencia estimada con el método Prony, y la energía de señal, lo más relevante para el procedimiento de agrupamiento. El análisis de transformada de ondículas hace uso de filtros paso bajo y paso alto complementarios secuencialmente aplicados (LPF y HPF respectivamente) que dividen el ancho de banda total de señal en diversas etapas para analizar su energía después de cada partición. Sin embargo, las frecuencias de corte inferior (del HPF) y superior (del LPF) de los filtros deben ser las mismas, de modo que esta técnica no es flexible para analizar la potencia de señal en los intervalos de frecuencia en los que pueden existir rasgos característicos que de otro modo se omitirían.
El problema técnico objetivo es proporcionar la diferenciación de pulsos para fuentes de DP y ruido usando parámetros configurables que son independientes de las amplitudes de las señales con el fin de realizar mediciones precisas en entornos en los que la SNR es baja. Es preferible transformar las señales de cada pulso en el dominio de frecuencia y parametrizarlas por medio de un análisis espectral de potencia. Incluso en el caso en que el cálculo inicial de estos parámetros no da como resultado una clasificación de fuentes de pulso apropiada, es deseable que el usuario pueda cambiar su configuración en línea, basándose en las formas espectrales de pulsos observadas.
SUMARIO DE LA INVENCIÓN
La presente invención sirve para resolver los problemas mencionados anteriormente proporcionando un método y un dispositivo para identificar las diferentes fuentes de descargas parciales (DP) y ruido basándose en el análisis de la potencia espectral de los pulsos detectados, calculando relaciones de potencia para altas y bajas frecuencias. La potencia espectral total y la potencia en las bandas de (altas y bajas) frecuencias seleccionadas de cada pulso detectado se calculan y representan en un mapa frecuencia- frecuencia bidimensional (en 2D), definido de manera gráfica situando la relación de potencia de baja frecuencia en el eje x y la relación de potencia de alta frecuencia en el eje y (o viceversa). Esta representación es el punto clave para identificar el ruido y las diferentes fuentes de DP.
La transformada rápida de Fourier (FFT) de cada pulso detectado se calcula hasta una frecuencia máxima bajo análisis (fT), y el ancho de banda global [0, fT] se divide en tres bandas de frecuencias.
El espectro depende de los tipos de las fuentes del pulso detectado, puesto que la forma espectral en determinadas bandas de frecuencias no es la misma para pulsos de diferentes tipos de DP (superficial, interna y corona) y ruido. La potencia espectral acumulada calculada para dos bandas de frecuencias se normaliza a la potencia espectral total. Por tanto, las dos cantidades obtenidas son relaciones de potencia (medidas en %):
- una para la banda de frecuencias más bajas, PRL (relación de potencia para bajas frecuencias) tal como se muestra en la ecuación 1 ; y
- otra para la banda de frecuencias más altas, PRH (relación de potencia para altas frecuencias) tal como se muestra en la ecuación 2. ts(f%* (Ecuación 1)
PÉM
¾ isif 'Ñ* (Ecuación 2)
donde:
s(f) es la magnitud de la FFT de la señal del pulso, s(t);
fiL y Í2L definen la banda de bajas frecuencias para calcular la relación de potencia para bajas frecuencias (PRL), el intervalo [f1 L,
Figure imgf000007_0001
es un rango de frecuencias que determina una banda de bajas frecuencias seleccionada y configurable de manera correspondiente para el tipo de señal determinada por s(f), ya que s(f) representa la distribución para cambios de frecuencias diferentes para ruido y diversas fuentes de DP;
f1H y Í2H definen la banda de altas frecuencias para calcular la relación de potencia para altas frecuencias (PRH), el intervalo [f1H, Í2H] es un rango de frecuencias que determina una banda de altas frecuencias seleccionada y configurable según las características de las señales teniendo en cuenta la restricción ÍIL^H;
y fT es la frecuencia máxima bajo análisis.
Obsérvese que existe una tercera banda, que incluye el rango de frecuencias más bajas [0, f1L], en el que la potencia espectral relativa no se calcula para evitar una duplicidad en la información calculada de PRH-PRL; ésta es la razón para definir el parámetro PRL relativo como "bajo". En una realización de la invención, la información calculada de estas dos bandas, PRH y PRL, puede representarse de manera explícita en un plano, mientras que la tercera banda (que cubre las frecuencias más bajas) puede evitarse en la representación en 2D. La presente invención permite representar cada señal en un plano como un punto con coordenadas (PRL, PRH).
Según un aspecto de la invención, se proporciona un método para la identificación y diferenciación de descargas parciales y ruido, habiendo detectado al menos una señal de pulso eléctrico s(t), en la que se calcula la transformada rápida de Fourier (FFT), para cada frecuencia desde 0 hasta una frecuencia máxima seleccionada (fT). Estando indicada la transformada rápida de Fourier calculada de la señal del pulso s(t) como s(f), que determina que la distribución de la señal para cambios de frecuencias diferentes para ruido y diversas fuentes de DP y de modo que proporciona determinadas características de dicha señal, el método identifica la señal de pulso s(t) detectada que es o bien ruido o bien una descarga parcial de un tipo seleccionado entre descarga parcial superficial, interna y corona mediante:
- calcular una relación de potencia para bajas frecuencias (PRL) y una relación de potencia para altas frecuencias (PRH) tal como sigue:
Figure imgf000008_0001
donde f1 L, Í2L, ÍI H, hn, son frecuencias que definen una banda de bajas frecuencias [f1 L, Í2L] configurada para calcular la relación de potencia para bajas frecuencias (PRL) y una banda de altas frecuencias [f1 H, f2H] configurada para calcular la relación de potencia para altas frecuencias (PRH);
- determinar una ubicación de un punto definido por las coordenadas (PRL, PRH) en un plano bidimensional, viniendo dadas las coordenadas (PRL, PRH) del punto, que está asociado con dicha señal del pulso s(t) detectada, por la relación de potencia calculada para bajas frecuencias (PRL) y la relación de potencia para altas frecuencias (PRH) para la señal del pulso s(t) detectada.
Las frecuencias f1 L, f2L, fiH, f∑H y son configurables, cumplen con las condiciones 0<f1 L<f2L, fiH<f2H≤fT y fi L<f2H, y son acordes a las características de la señal del pulso s(t) extraídas del cálculo de la transformada rápida de Fourier s(f).
Según otro aspecto de la invención, se proporciona un dispositivo para diferenciar descargas parciales y ruido eléctrico, que comprende medios de procesamiento para realizar el método descrito anteriormente. Un aspecto adicional de la invención se refiere a un producto de programa informático que comprende instrucciones ejecutables por ordenador para realizar cualquiera de las etapas del método dado a conocer previamente, cuando el programa se ejecuta en un ordenador, un procesador de señal digital (DSP), una disposición de puertas programables de campo (FPGA), un circuito integrado de aplicación específica (ASIC), un microprocesador, un microcontrolador, o cualquier otra forma de hardware programable. Los aspectos presentados de la invención tienen potencialmente las siguientes ventajas cuando se comparan con la técnica anterior:
- No se requieren mapas de tiempo-frecuencia. En su lugar se propone un mapa de frecuencia-frecuencia en 2D.
- La representación gráfica en 2D de la información de potencia espectral da mejores pistas al usuario para separar ruido y DP o para caracterizar las fuentes de DP. Esta aproximación no fue presentada en Martínez-Tarifa et al.
- El uso de un mapa bidimensional para las relaciones de potencia de señal que representan el contenido espectral en bandas de bajas y altas frecuencias (PRL, PRH) es una técnica flexible, puesto que las bandas de frecuencias para mediciones son configurables y se definen opcionalmente para permitir la separación de agrupaciones. Por el contrario, los mapas de tiempo-frecuencia definidos por Cavallini et al. se limitan a una banda de frecuencias seleccionada del espectro observado. El filtrado complementario basado en aproximaciones de transformada de ondículas (tal como el presentado en el documento WO 201 1/151481) muestra limitaciones similares. - El análisis de potencia espectral propuesto para identificación de DP y ruido en mediciones de alta frecuencia da como resultado agrupaciones claramente diferentes para ruido y fuentes de DP. Además, cada tipo de fuente de DP (interna, superficial y corona) conduce o bien a una agrupación ubicada en una posición diferente o bien a una forma diferente en el mapa de relaciones de potencia. Esto se ha demostrado midiendo conjuntos de miles de pulsos, de modo que se ha verificado la fiabilidad estadística del sistema.
- La sensibilidad significativa en la identificación de tipos diferentes de pulsos de DP, especialmente en descargas internas, ya que se observan ligeros cambios en el aislamiento del equipo observado (por ejemplo, cuando se cambia el tamaño de una vacuola creada en el interior del aislamiento sólido para medir DP internas, tal como se explica posteriormente en la descripción detallada de la invención con diversas pruebas).
- Esta alta sensibilidad al identificar los tipos de DP es una ayuda relevante para el diagnóstico de mecanismos de fallo en el aislamiento del equipo durante el proceso de envejecimiento. - Los cálculos de las relaciones de potencia (PRL-PRH) propuestos pueden adaptarse fácilmente por el usuario si la representación de potencia espectral se realiza en línea en un sistema de adquisición. Por ejemplo, el sistema de adquisición usa patrones de PRPD y visualización de forma de onda de pulsos, para desarrollar un algoritmo de clasificación de DP para los tres tipos típicos de fuentes de DP: DP corona, superficial e internas.
- La potencia de señal se usa para el análisis de DP en lugar de la energía de señal, a diferencia del documento WO 201 1/151481 y Martínez-Tarifa et al. DESCRIPCIÓN DE LOS DIBUJOS
Para completar la descripción que está realizándose y con el objeto de ayudar a una mejor comprensión de las características de la invención, según un ejemplo preferido de realización práctica de la misma, acompañando a dicha descripción como parte integrante de la misma, hay un juego de dibujos, en los que, a modo de ilustración y de manera no restrictiva, se ha representado lo siguiente:
La figura 1 muestra tres ejemplos de patrones de PRPD usados durante años para identificar fuentes de DP y ruido, tal como se conoce en la técnica anterior.
La figura 2 muestra la representación bidimensional de relaciones de potencia PRL y PRH que diferencian regiones del mapa de potencia espectral, según una posible realización de la invención. La figura 3 muestra un circuito para detectar descargas parciales de un objeto de prueba, tal como se conoce en la técnica anterior.
Las figuras 4a, 4b y 4c muestran, respectivamente para tres ejemplos experimentales, patrones de PRPD y la representación en 2D de relaciones PRL y PRH para descargas parciales superficiales y ruido, según una posible realización de la invención.
La figura 5 muestra la representación en 2D de relaciones PRL y PRH asociadas con ruido en un caso experimental para medir descargas parciales internas, según una posible realización de la invención. Las figuras 6a, 6b, 6c y 6d muestran, respectivamente para cuatro casos experimentales, la representación en 2D de relaciones PRL y PRH asociadas con descargas parciales internas, según una posible realización de la invención. Las figuras 7a, 7b, 7c y 7d muestran, respectivamente para cuatro casos experimentales, la representación en 2D de relaciones PRL y PRH asociadas con descargas parciales internas y ruido, según otra posible realización de la invención.
La figura 8 muestra patrones de PRPD y la representación en 2D de relaciones PRL y PRH para descargas parciales corona y ruido, según una posible realización de la invención.
Las figuras 9a, 9b, 9c y 9d muestran, respectivamente para ruido y los tres tipos diferentes de descargas parciales, la representación en 2D de relaciones PRL y PRH, según una posible realización de la invención.
La figura 10 muestra un diagrama de flujo de un método para diferenciar fuentes de pulsos en la representación en 2D de relaciones PRL y PRH usando patrones de PRPD, según una posible realización de la invención. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
En una posible realización de la invención, la potencia espectral total, por ejemplo de hasta 25 MHz, se divide en tres bandas de frecuencias, por ejemplo,
Figure imgf000011_0001
MHz, f2H=25 MHz, y se calcula la relación de potencia en bandas de frecuencias seleccionadas de cada pulso detectado para su representación en un mapa en 2D con el fin de identificar las fuentes de descargas parciales y ruido. La figura 2 muestra una representación gráfica en un plano de dos relaciones de potencia, medidas en los valores de porcentaje (%): relación de potencia para bajas frecuencias (PRL) calculada mediante la ecuación 1 y la relación de potencia para altas frecuencias (PRH) calculada mediante la ecuación 2. ¾' ¾* (Ecuación 1)
IsOT (Ecuación 2) Habiendo representado cada pulso detectado en el plano de la figura 2 como un punto con coordenadas (PRL, PRH), los puntos que caen dentro de una primera región (R^ del mapa de clasificación representan los pulsos que tienen potencia espectral baja en el intervalo [f1L, f2H], es decir, valores bajos de PRH y PRL. Por tanto, la potencia de la mayoría de los puntos en la primera región (R^ está en el intervalo de [0, 5] MHz, el intervalo de frecuencias más bajas excluido de los cálculos de potencia espectral relativa, y que no se representa en el mapa. Se distingue una segunda región (R2) que representa aquellos puntos con potencia espectral relativamente alta en la banda de frecuencias [f1 L, f2H]. Los puntos ubicados próximos a la diagonal en la parte superior del mapa tienen potencia espectral baja en la banda [f1L, f2L] y valores altos en la banda [f1 H, f2H], es decir, valores PRH altos y PRL bajos, y viceversa si se representa en la parte inferior de la figura 2. Se define una región prohibida (R0) porque los porcentajes de potencia espectral sumados PRL+PRH no pueden exceder del 100% para esta selección de frecuencias. Según una realización preferida de la invención, se proporciona un método para distinguir señales de descargas parciales y de ruido usando las relaciones de potencia mencionadas anteriormente y es aplicable en aislamiento de equipos reales, por ejemplo, usando un transformador de corriente de alta frecuencia (HFCT) como sensor de detección de pulsos. Para identificar las fuentes de descarga parcial y ruido, se realizaron tres experimentos para cada objeto de prueba (31) usando diferentes niveles de disparo y de tensión aplicada, tal como se muestra en la figura 3. Todos los experimentos comenzaron con la caracterización del ruido en el laboratorio tal como se describe a continuación. En las mediciones experimentales para la identificación de descargas parciales, las descargas parciales que van a medirse se detectan en un laboratorio de alta tensión usando un circuito de detección indirecta convencional (30) tal como se muestra en la figura 3. Se aplica alta tensión por medio de un transformador de 750 VA. Un condensador de acoplamiento (34) es una trayectoria de baja impedancia, 1 nF dimensionado para 100 kV, para los transitorios de corriente de alta frecuencia de los pulsos de descarga parcial que se midieron usando un HFCT (35). Un divisor de tensión proporciona la señal de sincronización para obtener los patrones de PRPD convencionales en relación con formas de onda de tensión sinusoidal de 50/60 Hz. En este experimento, se desarrolló un sistema de adquisición (32) específico para detectar los patrones de PRPD, las formas de onda de los pulsos y los valores de PRL-PRH. Cada forma de onda de pulso detectada se transformó al dominio de frecuencia por medio de un algoritmo de FFT. La tarjeta de adquisición de datos procesa los datos desde un canal de sincronización mientras que otro canal mide los pulsos de DP de un HFCT con un ancho de banda de hasta 80 MHz. Las características del sistema de adquisición están fuera del alcance de esta invención y se describen en "A Partial Discharges acquisition and statistical analysis software" por Ardila-Rey et al., Instrumentation and Measurement Technology Conference, I2MTC, 2012 IEEE International, págs. 1670-1675, 13-16 mayo de 2012. Simultáneamente, se usó un detector de DP comercial (33) para monitorizar la actividad de DP y para confirmar la identificación de DP, en presencia de ruido, por medio de mapas de tiempo-frecuencia. El detector de DP (33) recibe la misma señal de sincronización que el sistema de adquisición (32), que usa el método propuesto para separar señales de DP del ruido. La señal de sincronización (37) está en fase con la tensión suministrada por la fuente de alta tensión (38) y se detecta a través de una impedancia de carga (Zm).
La caracterización del ruido se lleva a cabo realizando mediciones con un nivel de disparo bajo y aplicando una tensión al objeto de prueba (31), de entre 800 y 1200 V, que proporciona sincronización al detector de DP (33) y al sistema de adquisición (32). Se usó otro HFCT (36) para medir los pulsos de DP para el detector de DP comercial en esta configuración experimental del circuito de detección indirecto (30).
En ausencia de actividad de DP, las mediciones sólo representan ruido. A continuación, el nivel de tensión de la fuente de alta tensión (38) se aumenta a un valor por encima de la tensión de inicio de descarga parcial o DPIV, en la que la actividad de DP se encuentra que es estable y con un nivel de disparo alto, que permite evitar la adquisición de señales de ruido por el sistema de adquisición (32). Finalmente, se realizan mediciones para el mismo nivel de tensión, pero con un nivel de disparo reducido para permitir la adquisición de DP y ruido simultáneamente. Se adquirieron más de 3000 pulsos en cada experimento para obtener resultados estadísticamente significativos en cada caso. Se realizaron mediciones de descargas parciales en diversos sistemas de aislamiento que representan los tres tipos principales de DP: descargas superficiales representadas en las figuras 4a-4c, descargas internas representadas en las figuras 5, 6a-6d y 7a-7d, y descargas corona representadas en la figura 8. Las figuras 4a, 4b y 4c muestran los resultados respectivamente para ruido, DP superficiales y DP superficiales con ruido en un objeto de prueba (31) que consiste en un aislador cerámico contaminado. La figura 4a ilustra:
- En la gráfica tiempo-tensión, a la izquierda, el patrón de PRPD típico observado para ruido eléctrico, con pulsos no correlacionados en fase, obtenidos en el laboratorio aplicando 800 V al objeto de prueba (31) con un nivel de disparo bajo.
- En la gráfica frecuencia-frecuencia, a la derecha, el mapa de relaciones de potencia usando las ecuaciones 1 y 2 para calcular los parámetros PRL y PRH, respectivamente. En esta representación gráfica PRL-PRH, una nube bien definida de puntos se observa en paralelo y próxima a la diagonal que define el límite con la región prohibida (R0). Puesto que esta agrupación está en la parte más alta del mapa de relaciones de potencia, las relaciones de potencia espectral son más altas en la banda de [15, 25] MHz que en la banda de [5, 15] MHz. La figura 4b muestra el patrón de PRPD, a la izquierda, y el mapa de relaciones de potencia, a la derecha, que se observan para este objeto de prueba (31) a 8 kV, usando un nivel de disparo alto para rechazar los pulsos de ruido y obtener sólo los pulsos de DP. Una nube homogénea de puntos, que corresponde a pulsos de DP superficiales, se observa de nuevo en el mapa de relaciones de potencia con baja dispersión en los parámetros PRL y PRH. Esta agrupación se sitúa ligeramente por debajo de la correspondiente al ruido.
La figura 4c representa los datos obtenidos cuando se ajusta un nivel de disparo bajo y con la misma alta tensión aplicada de 8 kV. El ruido y DP superficiales actúan simultáneamente, como se observa claramente en el patrón de PRPD, a la izquierda. El mapa de relaciones de potencia, a la derecha, también puede identificar las dos agrupaciones situadas en posiciones similares a las observadas en la figura 4a, es decir, sólo el caso de ruido, y la figura 4b es decir, sólo el caso de DP superficiales. De nuevo, se diferencia claramente el ruido como una nube de puntos próxima a la diagonal del mapa. La figura 5 muestra que los valores para los parámetros PRL y PRH asociados con el ruido presentan la misma posición en el mapa de relaciones de potencia que las nubes de puntos de ruido en el caso del objeto de prueba (31) estudiado para las descargas superficiales, mostradas en la figura 4a, cuando se miden las DP internas con un nivel de disparo bajo y se aplica una tensión de 800 V al objeto de prueba (31). Por tanto, el cambio en la capacidad equivalente de los objetos de prueba (31) no induce modificaciones en la posición de la agrupación de ruido. Las muestras usadas para crear descargas internas en las mediciones experimentales consisten en once láminas aislantes de poliamida de 0,35 mm de grosor, usadas normalmente en generadores de alta tensión como sistemas de aislamiento de ranura. En todas las muestras, los papeles centrales se perforaron con una aguja, creando un orificio con una forma circular de aproximadamente 1 mm de diámetro. Por tanto, estos objetos de prueba (31) tienen una vacuola en forma de disco creada en el interior del sistema de aislamiento sólido con alturas diferentes dependiendo del número de papeles perforados, lo que conduce a cuatro configuraciones:
i) 2+7+2, con 7 láminas centrales perforadas.
ii) 3+5+3, con 5 láminas centrales perforadas.
iii) 4+3+4, con 3 láminas centrales perforadas.
iv) 5+1+5, con la lámina central perforada. Estos objetos de prueba (31) diferentes para descargas internas se usaron para observar la variación en la clasificación del mapa de relaciones de potencia con diferentes tamaños de la vacuola. El conjunto del dieléctrico laminado se envolvió en una bolsa de plástico al vacío y todo el sistema se sumergió en aceite mineral para evitar descargas superficiales a bajas tensiones. Las muestras de este tipo garantizan la generación de DP internas.
Las figuras 6a-6d muestran la representación en 2D de las relaciones de potencia -PR-, el mapa de PR, de pulsos de DP obtenido aplicando una alta tensión(de 10 kV, que corresponde a una actividad de DP estable) a las vacuolas cilindricas de las láminas de aislamiento de ranura usadas como objeto de prueba (31) con alturas de vacuola diferentes: - la figura 6a ilustra los puntos PRL-PRH de DP internas para la configuración de láminas 2+7+2,
- la figura 6b ilustra los puntos PRL-PRH de DP internas para la configuración de láminas 3+5+3,
- la figura 6c ilustra los puntos PRL-PRH de DP internas para la configuración de láminas 4+3+4,
- la figura 6d ilustra los puntos PRL-PRH de DP internas para la configuración de láminas 5+1+5.
En estas mediciones, se usó un nivel de disparo alto para rechazar pulsos asociados con ruido. Por tanto, se observan dos efectos en el mapa obtenido en el estudio de descargas internas. En primer lugar, la agrupación asociada a DP internas muestra una potencia espectral relativa altamente dispersa para PRH en la banda de [15, 25] MHz y con valores casi constantes para PRL en el intervalo de [5, 15] MHz. En segundo lugar, cuando se disminuye el tamaño de vacuola, la presencia de dos tipos de pulsos de DP es más evidente porque son visibles dos agrupaciones en los datos desde la muestra 3+5+3 hasta la muestra 5+1+5. Por tanto, las mediciones realizadas en una vacuola cilindrica de tamaño cambiante muestran sensibilidad alta cuando se identifican los tipos diferentes de pulsos de DP para variaciones menores en el tamaño de la vacuola y este método de diferenciación que se describe aquí puede ayudar a la monitorización de aislamiento eléctrico durante el proceso de envejecimiento.
Las figuras 7a-7d muestran los datos obtenidos con la misma alta tensión aplicada, de 10 kV, a los diferentes objetos de prueba (31) con configuración de láminas 2+7+2, configuración de láminas 3+5+3, configuración de láminas 4+3+4 y configuración de láminas 5+1+5 respectivamente, pero con un circuito de disparo ajustado a un nivel bajo. De nuevo, dos diferentes agrupaciones grandes de puntos son visibles: una de ellas, asociada con el ruido, con la misma forma y posición próxima a la diagonal del mapa que las mostradas en la figura 5, y la otra, asociada con DP internas, que coincide en posición y dispersión con la agrupación de puntos obtenida cuando se usa un nivel de disparo alto como en las figura 6a-6d.
En el tercer experimento, la tensión aplicada al objeto de prueba (31) fue de 3,2 kV. En este caso particular, para las mediciones de descarga corona, el objeto de prueba (31) se construye usando una aguja de 0,5 mm de grosor que se sitúa a una distancia relativa, por ejemplo, 1 mm, por encima de un plano de tierra metálico, con un soporte mecánico hecho de teflón. Los resultados para las mediciones de descargas corona se visualizan en el mapa de relaciones de potencia presentado en la figura 8, a la derecha; la gráfica de la izquierda es el patrón de PRPD convencional de este caso particular. Los valores de PRL y PRH para los pulsos de corona se ubican lejos de la diagonal del mapa, en la primera región (R^. Este resultado era de esperar, porque la mayor parte de la potencia espectral observada de las DP corona estaba ubicada en la banda de [0, 5] MHz, de modo que muestran potencia espectral relativa inferior en la banda de [5, 25] MHz representada. Los portadores libres, que surgen de las descargas corona, se mueven desde volúmenes de magnitudes de campo eléctrico altas hasta regiones con campos eléctricos inferiores, de modo que este mecanismo de ionización es más lento que los que se producen dentro de vacuolas microscópicas o bandas secas en aisladores. La agrupación asociada con el ruido en este experimento es muy similar a la de los experimentos previos para mediciones de DP superficiales e internas. Las figuras 9a-9d muestran una comparación resumida de los resultados obtenidos en los tres experimentos mencionados anteriormente y descritos en detalle:
- la figura 9a representa la nube de puntos asociada con el ruido eléctrico en todos los experimentos para los diferentes objetos de prueba, que tiende a ubicarse en la misma área próxima a la diagonal del mapa de relaciones de potencia dentro de la segunda región (R2) tal como se muestra en la figuras 2, 4a y 5. Esta ubicación de la agrupación es diferente de la de las agrupaciones de cualquiera de las fuentes de DP: superficial, interna o de corona.
- La figura 9b representa las nubes de puntos relacionadas con las DP superficiales. A pesar de situarse en un área que se superpone con la de las agrupaciones de DP internas, estas agrupaciones de DP superficiales muestran una dispersión inferior en la PRH que la de las DP internas. La potencia espectral relativa para altas frecuencias es mucho mayor que la de las DP corona. Estas nubes se ubican en la segunda región (R2) pero más alejadas que la agrupación de ruido de la diagonal del mapa de relaciones de potencia, tal como se muestra en la figuras 4b-4c.
- La figura 9c representa las DP internas: La potencia espectral relativa para altas frecuencias es también mayor para las DP internas que para las DP corona. Otra característica común que las DP internas comparten con las DP superficiales es que se ubican también más alejadas de la diagonal del mapa de relaciones de potencia que el ruido. La agrupación para las DP internas tiende a ocupar la misma región que la de las descargas superficiales, pero la agrupación muestra una dispersión perceptiblemente mayor en PRH, lo que puede usarse para diferenciarlas. - La figura 9d representa las DP de corona: Debido a que la potencia espectral para los pulsos de DP corona se confina a bajas frecuencias, los valores para PRL y PRH en el rango de [5, 25] MHz son muy bajos, ambos por debajo del 30%. Esta característica crea una nube de puntos lejos de la diagonal del mapa de clasificación y dentro de la primera región (R^ mostrada en las figuras 2 y 8. El diagrama de flujo mostrado en la figura 10 resume las etapas del método para diferenciar fuentes de descargas parciales y ruido descrito anteriormente usando además los patrones de PRPD clásicos de los pulsos detectados. Una vez seleccionadas (101) las frecuencias f1 Li f2L, fi H, hn, que definen la banda de bajas frecuencias [f1 L, f2L] y la banda de altas frecuencias [f1H, f2H], para calcular las relaciones de potencia respectivamente para bajas frecuencias (PRL) y altas frecuencias (PRH), se adquieren (102) dos representaciones gráficas en 2D: la conocida del estado de la técnica anterior, el patrón de PRPD ,y el mapa de PR propuesto representando los valores de PRL y PRH para cada pulso detectado.
En el caso en el que el usuario reconoce (103) más de una agrupación de puntos (104) en el mapa de PR, se selecciona (105) una de las agrupaciones y se adquiere (106) el patrón de PRPD asociado con la agrupación de puntos seleccionada por el usuario para proceder a analizar el patrón de PRPD asociado (107). Basándose en el análisis del patrón de PRPD, el usuario puede distinguir visualmente (108) si la agrupación de puntos asociada con el patrón de PRPD viene o bien de una fuente de ruido o bien de una fuente de DP corona, superficial o interna (109). A continuación, los nuevos pulsos detectados (110) pueden identificarse como ruido o fuentes de DP diferentes mediante la observación de su ubicación en el mapa de PR actualizado (1 11). Si la diferenciación de fuentes de ruido y de DP no es posible en el patrón de PRPD obtenido, se repite (112) el análisis de ambos mapas de PRPD y de PR para otros valores seleccionados de frecuencias f1 L, f2i_, fiH, n.
Una vez que el ruido y las fuentes de DP diferentes se ubican claramente en regiones determinadas del mapa PRH-PRL, está claro que la posición y forma de agrupación podría ayudar en la identificación de la fuente de pulsos para pruebas adicionales. Además, la selección de agrupación en el mapa PRH-PRL conduce a la selectividad de pulsos para el sistema de adquisición que puede representar patrones de PRPD claros identificados fácilmente como ruido o una fuente de DP específica.
Obsérvese que en este texto, el término "comprende" y sus derivaciones (tal como "que comprende/comprendiendo", etc.) no debe entenderse en un sentido excluyente, es decir, estos términos no deben interpretarse como que excluyen la posibilidad de que lo que se describe y define pueda incluir elementos, etapas, etc. adicionales.

Claims

REIVINDICACIONES
1 . Método para diferenciar descargas parciales y ruido eléctrico, que comprende:
- detectar al menos una señal de pulso eléctrico s(t) y calcular, para cada frecuencia desde 0 hasta una frecuencia máxima fT, la transformada rápida de Fourier de cada señal de pulso eléctrico s(t) detectada;
caracterizado porque comprende además:
- calcular una relación de potencia para bajas frecuencias (PRL) y una relación de potencia para altas frecuencias (PRH) tal como sigue:
Í^.S ^ S ^ ~~ ' 1
¾ 1.2 { y ¾ IsC ,¾F
donde
s(f) es la transformada rápida de Fourier calculada de la señal del pulso s(t),
fT es la frecuencia máxima,
fiL, Í2L, fiH, Í2H, r son frecuencias que definen una banda de bajas frecuencias [f1L, Í2L] configurada para calcular la relación de potencia para bajas frecuencias (PRL) y una banda de altas frecuencias [f1 H, Í2H] configurada para calcular la relación de potencia para altas frecuencias (PRH); y cumpliendo las frecuencias con las siguientes condiciones: 0<f1L<f2L;
Figure imgf000019_0001
- identificar la señal del pulso s(t) detectada que es o bien ruido o bien una descarga parcial de un tipo seleccionado de entre descarga parcial superficial, interna y corona, determinando una ubicación de un punto definido por las coordenadas (PRL, PRH) en un plano bidimensional, viniendo dadas las coordenadas (PRL, PRH) del punto, que está asociado con dicha señal del pulso s(t) detectada, por la relación de potencia calculada para bajas frecuencias (PRL) y la relación de potencia para altas frecuencias (PRH) para la señal del pulso s(t) detectada.
2. Método según la reivindicación 1 , en el que las frecuencias f1L, Í2L, fi H, y r son configurables según determinadas características de la señal del pulso s(t) extraídas del cálculo de la transformada rápida de Fourier s(f) para diferentes cambios de frecuencias.
3. Método según cualquier reivindicación anterior, en el que la señal del pulso s(t) detectada se identifica como una descarga parcial de tipo corona, en el que el plano bidimensional está dividido por una diagonal que parte el plano en una región prohibida (R0) y una segunda región (R2), estando los puntos en los que la suma de las coordenadas (PRL, PRH) en porcentaje supera el 100% ubicados en la región prohibida (R0) y estando los puntos en los que la suma de las coordenadas (PRL, PRH) en porcentaje es igual o inferior al 100% ubicados en la segunda región (R2), y que tiene un umbral de porcentaje configurado para separar los puntos de la segunda región (R2) de los puntos de una primera región (R^ con ambas coordenadas (PRL, PRH) inferiores a los puntos de la segunda región (R2), si el punto asociado con las coordenadas (PRL, PRH) que vienen dadas por la relación de potencia calculada para bajas frecuencias (PRL) y la relación de potencia para altas frecuencias (PRH) para la señal del pulso s(t) detectada está ubicado en la primera región (R^.
4. Método según la reivindicación 3, en el que la señal del pulso s(t) detectada se identifica como una descarga parcial del tipo seleccionado de descarga parcial superficial e interna, si el punto asociado con las coordenadas (PRL, PRH) que vienen dadas por la relación de potencia calculada para bajas frecuencias (PRL) y la relación de potencia para altas frecuencias (PRH) para la señal del pulso s(t) detectada está ubicado en la segunda región (R2) separada de la primera región (R^.
5. Método según cualquier reivindicación anterior, en el que, si el punto definido por las coordenadas (PRL, PRH) en el plano bidimensional pertenece a una agrupación de puntos y existe una pluralidad de agrupaciones de puntos en dicho plano bidimensional, se selecciona una agrupación de puntos y se usa un patrón de PRPD asociado con la agrupación de puntos para reconocer si la agrupación de puntos está asociada con una señal de pulso s(t) detectada que es ruido o una descarga parcial de un tipo seleccionado de entre descarga parcial superficial, interna y corona.
6. Método según la reivindicación 5, en el que todos los puntos asociados con señales de pulsos detectadas después de la asociación del patrón de PRPD con la agrupación de puntos, se reconocen como el tipo de descarga parcial seleccionado o ruido ubicando los puntos en el plano bidimensional.
7. Dispositivo para diferenciar descargas parciales y ruido eléctrico, que comprende medios de procesamiento para calcular la transformada rápida de Fourier de una señal de pulso eléctrico s(t) detectada para cada frecuencia desde 0 hasta una frecuencia máxima fT, caracterizado porque comprende además medios de procesamiento para calcular una relación de potencia para bajas frecuencias (PRL) y una relación de potencia para altas frecuencias (PRH) tal como sigue:
Figure imgf000020_0001
donde
s(f) es la transformada rápida de Fourier calculada de la señal del pulso s(t),
fT es la frecuencia máxima,
f L, f2i_, fiH> f2H> ίτ son frecuencias que definen una banda de bajas frecuencias [f1L, f2L] configurada para calcular la relación de potencia para bajas frecuencias (PRL) y una banda de altas frecuencias [f1 H, f2H] configurada para calcular la relación de potencia para altas frecuencias (PRH); y cumpliendo las frecuencias con la siguiente condición: 0<f1 L<f2L;
Figure imgf000021_0001
y medios de procesamiento para identificar la señal del pulso s(t) detectada que es o bien ruido o bien un tipo de descarga parcial seleccionado de entre los tipos descarga parcial superficial, interna y corona, determinando una ubicación de un punto definido por las coordenadas (PRL, PRH) en un plano bidimensional, viniendo dadas las coordenadas (PRL, PRH) del punto, que está asociado con dicha señal del pulso s(t) detectada, por la relación de potencia calculada para bajas frecuencias (PRL) y la relación de potencia para altas frecuencias (PRH) para la señal del pulso s(t) detectada.
8. Producto de programa informático que comprende instrucciones ejecutables por ordenador para realizar el método según cualquiera de las reivindicaciones 1-6, cuando el programa se ejecuta en un ordenador, un procesador de señal digital, una FPGA, un ASIC, un microprocesador, un microcontrolador, o cualquier otra forma de hardware programable.
PCT/ES2014/070199 2013-03-22 2014-03-19 Método y dispositivo para la diferenciación de descargas parciales y ruido eléctrico WO2014147275A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201330413A ES2512040B1 (es) 2013-03-22 2013-03-22 Método y dispositivo para la diferenciación de descargas parciales y ruido eléctrico
ESP201330413 2013-03-22

Publications (1)

Publication Number Publication Date
WO2014147275A1 true WO2014147275A1 (es) 2014-09-25

Family

ID=51579343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070199 WO2014147275A1 (es) 2013-03-22 2014-03-19 Método y dispositivo para la diferenciación de descargas parciales y ruido eléctrico

Country Status (2)

Country Link
ES (1) ES2512040B1 (es)
WO (1) WO2014147275A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104914364A (zh) * 2015-05-30 2015-09-16 大连理工大学 电容式油纸变压器套管绝缘状态评估的方法
EP4001936A1 (en) * 2020-11-11 2022-05-25 Space Pte. Ltd. Automatic partial discharge and noise signals separation using arithmetic coding in time domain and magnitude distributions in frequency domain

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ARDILA-REY ET AL.: "A Partial Discharges acquisition and statistical analysis software''.", IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE 2012 (I2MTC)., 13 May 2012 (2012-05-13) - 16 May 2012 (2012-05-16) *
CANDEL ET AL.: "Partial discharge detection in high voltage cables using polyspectra and Recurrence Plot Analysis''.", 9 INTERNATIONAL CONFERENCE ON COMMUNICATIONS (COMM, 21 June 2012 (2012-06-21) *
CAVALLINI ET AL.: "A new approach to the diagnosis of solid insulation systems based on PD signal inference''.", IEEE ELECTRICAL INSULATION MAGAZINE, vol. 11, no. 2, 1 March 2003 (2003-03-01), pages 23 - 30., XP011264889 *
ISHIKURA ET AL.: "Distinction of the partial discharge source in oil by two frequency correlation method''.", INTERNATIONAL CONFERENCE ON CONDITION MONITORING AND DIAGNOSIS, CMD 2008., 21 April 2008 (2008-04-21) - 24 April 2008 (2008-04-24) *
MARTÍNEZ-TARIFA ET AL.: "Partial discharge pulse shape recognition using an inductive loop sensor''.", MEASUREMENT SCIENCE AND TECHNOLOGY, vol. 21, no. 10., 1 October 2010 (2010-10-01) *
RUBIO-SERRANO ET AL.: "Electro-acoustic detection, identification and location of partial discharge sources in oil-paper insulation systems''.", IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, vol. 19, no. 5, 1 October 2012 (2012-10-01), pages 1569 - 1578., XP011472113, DOI: doi:10.1109/TDEI.2012.6311502 *
SARATHI ET AL.: "Investigation of partial discharge activity by a Conducting particle in transformer oil under harmonic AC voltages adopting UHF technique''.", IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, vol. 19, no. 5, 1 October 2012 (2012-10-01), pages 1514 - 1520., XP011466183, DOI: doi:10.1109/TDEI.2012.6311495 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104914364A (zh) * 2015-05-30 2015-09-16 大连理工大学 电容式油纸变压器套管绝缘状态评估的方法
EP4001936A1 (en) * 2020-11-11 2022-05-25 Space Pte. Ltd. Automatic partial discharge and noise signals separation using arithmetic coding in time domain and magnitude distributions in frequency domain

Also Published As

Publication number Publication date
ES2512040A1 (es) 2014-10-23
ES2512040B1 (es) 2015-08-11

Similar Documents

Publication Publication Date Title
Chan et al. Time-frequency sparsity map on automatic partial discharge sources separation for power transformer condition assessment
Alvarez et al. A clustering technique for partial discharge and noise sources identification in power cables by means of waveform parameters
US20180136264A1 (en) Non-contact voltage measurement system using reference signal
JP7199804B2 (ja) 複数のコンデンサを使用する非接触電圧測定システム
Kunicki et al. Statistics based method for partial discharge identification in oil paper insulation systems
EP2579056A2 (en) Novel method for real time tests and diagnosis of the sources of partial discharge in high voltage equipment and installations, which are in service or not in service, and physical system for the practical use of the method
Ilkhechi et al. Generation of acoustic phase-resolved partial discharge patterns by utilizing UHF signals
JP2015503765A (ja) 部分放電を分析して位置を特定するシステム
Martinez-Tarifa et al. Automatic selection of frequency bands for the power ratios separation technique in partial discharge measurements: part I, fundamentals and noise rejection in simple test objects
CN110458248A (zh) 基于多测点振动信号的变压器异常状态检测方法
Mor et al. Effect of acquisition parameters on equivalent time and equivalent bandwidth algorithms for partial discharge clustering
JP6789872B2 (ja) 分析方法、分析装置、およびプログラム
Mitchell et al. Discrimination of partial discharge sources in the UHF domain
WO2014147275A1 (es) Método y dispositivo para la diferenciación de descargas parciales y ruido eléctrico
EP2224255A2 (en) Method of detecting a wet arc fault in AC power distribution wires
Kunicki et al. Analysis on partial discharges variability in mineral oil under long-term AC voltage
Phung Computer-based partial discharge detection and characterisation
Uckol et al. Characterization of DC corona discharge current pulses using high-frequency measurement techniques
Álvarez et al. Classification of partial discharge sources by the characterization of the pulses waveform
Mraz et al. Evaluation and limitations of corona discharge measurements-an application point of view
Elben et al. Modern noise rejection methods and their applicability in partial discharge measurements on HVDC cables
Boettcher et al. Algorithms for a multi-sensor partial discharge expert system applied to medium voltage cable connectors
Ermachikhin et al. The measuring systems of semiconductor structures and its software
Kothoke et al. Analysis of Partial Discharge using Phase-Resolved (nq) Statistical Techniques
Reid et al. Identification of multiple defects in solid insulation using combined RF and IEC60270 measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14767448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14767448

Country of ref document: EP

Kind code of ref document: A1