WO2014147026A1 - Roue de type francis pour machine hydraulique, machine hydraulique equipee d'une telle roue et installation de conversion d'energie comprenant une telle machine hydraulique - Google Patents

Roue de type francis pour machine hydraulique, machine hydraulique equipee d'une telle roue et installation de conversion d'energie comprenant une telle machine hydraulique Download PDF

Info

Publication number
WO2014147026A1
WO2014147026A1 PCT/EP2014/055306 EP2014055306W WO2014147026A1 WO 2014147026 A1 WO2014147026 A1 WO 2014147026A1 EP 2014055306 W EP2014055306 W EP 2014055306W WO 2014147026 A1 WO2014147026 A1 WO 2014147026A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
edge
hydraulic machine
axis
blade
Prior art date
Application number
PCT/EP2014/055306
Other languages
English (en)
Inventor
Eric Gaudin
Antoine BOMBENGER
Jean-Bernard HOUDELINE
Original Assignee
Alstom Renewable Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Renewable Technologies filed Critical Alstom Renewable Technologies
Publication of WO2014147026A1 publication Critical patent/WO2014147026A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/02Machines or engines of reaction type; Parts or details peculiar thereto with radial flow at high-pressure side and axial flow at low-pressure side of rotors, e.g. Francis turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • F03B3/121Blades, their form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • F03B3/125Rotors for radial flow at high-pressure side and axial flow at low-pressure side, e.g. for Francis-type turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present invention relates to a Francis type wheel for a hydraulic machine intended to be traversed by a forced flow of water, a hydraulic machine that can operate in pump mode or in turbine mode equipped with such a wheel. and an energy conversion plant comprising such a hydraulic machine.
  • a turbine In the field of the conversion of hydraulic energy into electric or mechanical energy, it is known to use a turbine to drive in rotation a shaft carrying a wheel of the turbine, this shaft being connected, for example, to an alternator.
  • Some hydraulic machines, called pump turbines are reversible, in that they can be used to convert electrical energy or mechanical energy into hydraulic energy by moving a quantity of water to a pool located upstream of the hydraulic machine. This operation of the hydraulic machine in pump mode generally takes place in periods when the energy requirements are the lowest. During periods of high energy requirements, the hydraulic machine is used in turbine mode.
  • a persistent issue for hydraulic machines remains the improvement of the transient behavior of hydraulic machines during their accidental shutdown. Indeed, the accidental shutdown of a hydraulic machine operating in turbine mode can cause dangerous transient phenomena. These phenomena are due to a significant increase in the transient drop across the hydraulic machine which is manifested by an increase in the pressure upstream of the turbine and a decrease in the pressure downstream of the turbine. In the case where the pressure level downstream of the turbine reaches the vacuum level, there is then a risk of rupture of the water collar followed by a "water hammer" effect. The increase of the transient drop across the hydraulic machine may therefore damage the mechanical structure of the machine, it is necessary to avoid that the transient fall of the machine increases too much during the accidental stop of the hydraulic machine so to avoid the appearance of transient phenomena.
  • FIG. 4 shows a wheel 100 of the Francis type of the prior art, which comprises a belt 101 and a ceiling 102 situated opposite the belt 101.
  • the wheel 100 further comprises nine blades 104 integral with the belt 101 and the ceiling 102 and which extend between the belt 101 and the ceiling 102.
  • Each blade 104 has a leading edge 204 in turbine operating mode which is rectilinear and generally parallel to an axis X2 of rotation of the wheel.
  • the graph of FIG. 5 shows, on the abscissa, a quantity ⁇ ,, called “speed factor”, expressed in revolutions per minute, and proportional to the ratio of the speed of rotation of a turbine wheel to the square root. the height of fall.
  • FIG. 5 shows, on the ordinate, a quantity Qn called "flow factor”, expressed in m 3 / second and proportional to the ratio of the flow rate of water passing through the wheel on the square root of the height of fall.
  • Each curve C1 to C2 of the graph gives the rate of flow of a wheel according to its speed factor.
  • the curve C1 corresponds to the operation of a turbine equipped with a wheel according to the invention and the curve C2 corresponds to the operation of a turbine equipped with the wheel 100 of the prior art.
  • the small turbine speed factor ⁇ corresponds to large drop heights, while the large naked speed factor values, on the right side of the graph, correspond to low fall heights. It is known that in such a graph, the operating points for which the slope of the curve is negative correspond to a stable operation of the turbine for which the height of drop across the hydraulic machine decreases when the flow factor decreases. Conversely, the operating points for which the slope of the curve is strongly positive correspond to a highly unstable operation of the turbine for which dangerous transient phenomena occur since the transient drop height at the terminals of the hydraulic machine increases when the flow factor decreases.
  • the slope of the curve C2 is strongly positive.
  • the fall of the turbine increases sharply, which creates a downstream depression and an overpressure upstream of the turbine. This can lead to the appearance of dangerous transient phenomena such as the separation of the water column and therefore the appearance of a water hammer phenomenon related to the separation of the water column.
  • the wheel 100 of the prior art does not, on its own, prevent the occurrence of potentially dangerous transient phenomena during the accidental shutdown of a hydraulic machine in turbine mode.
  • control devices such as the ball valve of an installation energy conversion system comprising the hydraulic machine, in order to modify the hydraulic characteristics of the circuit containing such a hydraulic machine, by applying a fast closing law to it during an accidental stop.
  • This solution requires rapid operation of the ball valve at each accidental shutdown sequence of the turbine.
  • This solution can generate mechanical stress levels on the valve structure which, if not properly taken into account in its design, can cause a mechanical failure thereof.
  • the implementation of such a solution complicates the control command of an installation comprising such a turbine.
  • the invention intends to remedy more particularly by proposing a new wheel for a hydraulic machine making it possible to limit the transient phenomena during the accidental shutdown of a hydraulic machine, without requiring a particular maneuvering of a tap. spherical.
  • the invention relates to a Francis type wheel for hydraulic machine, intended to be traversed by a forced flow of water, comprising a rotationally symmetrical ceiling about an axis of rotation of the wheel, a belt to symmetry of revolution about the axis of rotation of the wheel and located opposite the ceiling, and blades that extend between the ceiling and the belt, each blade extending between a first edge forming a leading edge when the hydraulic machine operates in turbine mode and a second edge forming a trailing edge when the hydraulic machine is operating in turbine mode.
  • the first edge of at least one blade is inclined relative to the axis of rotation of the wheel and the ratio between, on the one hand, the radius of a first circle centered on the axis of rotation of the wheel, perpendicular to this axis and passing through a point of attachment of the first edge of the blade on the ceiling and, secondly, the radius of a second circle centered on the axis of rotation of the wheel perpendicular to this axis and passing through a point of attachment of the first edge of the same blade on the belt is strictly greater than 1 and less than or equal to 1, 1.
  • the meridian trace of the first edge of the blade has a radius gradient, which optimizes the shape of the operating characteristic of the hydraulic machine, comprising a wheel according to the invention, in order to to limit the transient phenomena during the accidental shutdown of the hydraulic machine operating in turbine mode.
  • such a wheel may incorporate one or more of the following features, taken in any technically permissible combination:
  • the ratio between, on the one hand, the radius of the first circle and, on the other hand, the radius of the second circle is between 1.02 and 1.06, preferably of the order of 1.04.
  • the first edge of all the blades is tilted while all the points of attachment of the first edge of each blade on the ceiling are on the first circle and all the points of attachment of the first edge of each blade on the belt are on the second circle.
  • the angle formed by the first edge and a straight line parallel to the axis of rotation of the wheel and passing through the point of attachment of the first edge to the ceiling is strictly greater than 0 ° and less or equal to 50 °, preferably between 5 ° and 25 °.
  • the first edge of at least one blade of the wheel has a generally rectilinear profile.
  • the first edge of all the vanes of the wheel has a generally straight profile.
  • the first edge of at least one blade of the wheel has a non-rectilinear profile.
  • the invention also relates to a hydraulic machine equipped with such a wheel.
  • the invention also relates to an installation for converting hydraulic energy into electrical or mechanical energy, or converting mechanical or electrical energy into hydraulic energy, which comprises a hydraulic machine as mentioned above, as well as air ducts. supplying water to the hydraulic machine and discharging water therefrom.
  • FIG. 1 is a basic section of an energy conversion plant equipped with a hydraulic machine comprising a wheel according to the invention
  • FIG. 2 is a perspective view of a wheel of the hydraulic machine of the installation of FIG. 1;
  • FIG. 3 is a meridian section of the wheel of Figure 2, when it is used in turbine mode;
  • FIG. 4 is a view similar to FIG. 2 for a hydraulic machine wheel of the prior art
  • FIG. 5 is a graph which shows two curves, of which a first shows the speed factor as a function of the speed factor of the wheel of FIG. 2, and a second shows the speed factor as a function of the speed factor of FIG. wheel of Figure 4.
  • the installation ⁇ represented in FIG. 1 comprises a reversible hydraulic machine M, which is a Francis-type turbine-pump, the wheel R of which is supplied with water from a tank 3 connected to a penstock 4.
  • the wheel R rotates about a generally vertical axis of rotation X2.
  • the machine M is coupled to an alternator 5 by a shaft 15 rotating about the axis X2.
  • static front-guides 6 and steerable guides 7, whose function is to guide a flow of water E, coming from the pipe 4 and intended to pass through the wheel R, in the direction of 8.
  • the guides 7 perform the function of a distributor because they make it possible to regulate the flow rate of the flow E.
  • the installation ⁇ may comprise several hydraulic machines M supplied from the same water reservoir, this water reservoir being not shown.
  • the shaft 15 can be coupled to a mechanical assembly in which case the installation ⁇ converts the hydraulic energy of the flow E into mechanical energy when the hydraulic machine is operating in turbine mode.
  • the hydraulic machine M can also operate in pump mode, that is to say in a mode where the wheel R is rotated by an alternator 5 in the direction of rotation opposite to the direction of rotation when the hydraulic machine M is operating in the operating mode. turbine.
  • pump mode the alternator 5 operates as a motor, to move a quantity of water to the unrepresented water reservoir. The water then flows in the opposite direction of the arrows E in FIGS. 1 and 3.
  • the wheel R is driven by this mechanical assembly when the hydraulic machine M operates in pump mode.
  • FIGS 2 and 3 illustrate the wheel R according to the invention.
  • This wheel comprises a belt 1 and a ceiling 2 located next to the belt 1.
  • the belt 1 and the ceiling 2 are symmetrical of revolution about the axis X2.
  • the belt 1 and the ceiling 2 respectively have an outer peripheral edge 10 and 20 centered on the axis X2.
  • the wheel R comprises nine vanes 12 generally identical, integral with the belt 1 and the ceiling 2 and which extend between the belt 1 and the ceiling 2, about the axis of rotation X2.
  • the connection areas between the blades 12, on the one hand, and the ceiling 2, on the other hand, are shown in dashed lines.
  • Each blade 12 also extends between a first edge 13, which forms a leading edge when the hydraulic machine operates in turbine mode, and a trailing edge when operating in pump mode, and a second edge 14, which forms a trailing edge when the hydraulic machine is operating in turbine mode and a leading edge when operating in pump mode.
  • Each blade 12 has a curved shape between the first edge 13 and the second edge 14. This curved shape constitutes a main curvature of the blade 12.
  • B is a point of attachment of the second edge 14 of a blade 12 on the belt 1.
  • C is a point of attachment of the first edge 13 of a blade 12 on the ceiling 2 and D a point of attachment of its second edge 14 on the ceiling 2.
  • the attachment points C of the various blades 12 are located on the same geometric circle LC1 centered on and perpendicular to the axis X2, whose radius is noted R1.
  • the attachment points A are located on the same geometric circle LC2 centered on and perpendicular to the axis X2, whose radius R2 is noted. Circles LC1 and LC2 are visible in Figure 2.
  • the first edge 13 of each blade 12 is inclined relative to the axis of rotation X2 of the wheel R, approaching the axis X2 towards the belt 1.
  • the value of the radius R1 is chosen greater than the value of the radius R2.
  • the point of attachment C of the first edge 13 on the ceiling 2 of a blade 12 is located, with respect to the point of attachment A of the first edge 13 on the belt 1 of a blade 12, further from the X2 axis.
  • the ratio between, on the one hand, the radius R1 and, on the other hand, the radius R2 is strictly greater than 1 and less than or equal to 1, 1, preferably between 1, 02 and 1, 06, more preferably of the order of 1, 04.
  • first edge 13 of each blade 12 is inclined and an angle formed by the first edge 13 and a straight line D1 parallel to the axis of rotation X2 of the wheel R and passing through the point of attachment C of the first edge 13 on the ceiling 2 is strictly greater than 0 ° and less than or equal to 50 °, preferably between 5 ° and 25 °.
  • each blade has a generally rectilinear profile.
  • the design of the first rim 13 of the wheel R of the hydraulic machine M makes it possible to avoid a too high downstream vacuum level that can reach the level of vacuum during an accidental stoppage of the hydraulic machine M. It is the inclination of the first edge 13 of the blades 12 which offers this improved operating characteristic C1.
  • the first edges 13 of the blades 12 may not be rectilinear and have in the plane of Figure 3 a shape of a portion of a circle, ellipse, parabola, or any curve, while the radius R1 is greater than radius R2.
  • the first edge 13 of at least one blade 12 has a non-rectilinear profile or the first edge 13 of all the blades 12 has a non-rectilinear profile.
  • the first edge 13 of at least one blade 12 of the wheel R has a generally rectilinear profile.
  • only some blades 12 have their first edge 13 inclined relative to the axis X2 of rotation of the wheel R.
  • the number of blades 12 of the wheel R is different from nine.
  • the axis of rotation of the wheel R is a horizontal axis.
  • the hydraulic machine M is a Francis-type turbine and not a turbine-pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Turbines (AREA)

Abstract

Cette roue (R) de type Francis pour machine hydraulique comprend un plafond (2) et une ceinture (1) à symétrie de révolution autour d'un axe (X2) de rotation de la roue (R) ainsi que des aubes (12). Chaque aube (12) s'étend entre un premier bord (13) et un deuxième bord (14). Le rapport entre, d'une part, le rayon (R1) d'un cercle centré sur l'axe (X2) de rotation de la roue (R), perpendiculaire à cet axe et passant par un point (C) d'attache du premier bord (13) de l'aube (12) sur le plafond (2) et, d'autre part, le rayon (R2) d'un cercle centré sur l'axe (X2) de rotation de la roue (R) perpendiculaire à cet axe et passant par un point d'attache (A) du premier bord (13) de la même aube (12) sur la ceinture (1) est strictement supérieur à 1 et inférieur ou égal à 1,1.

Description

ROUE DE TYPE FRANCIS POUR MACHINE HYDRAULIQUE, MACHINE HYDRAULIQUE EQUIPEE D'UNE TELLE ROUE ET INSTALLATION DE CONVERSION
D'ENERGIE COMPRENANT UNE TELLE MACHINE HYDRAULIQUE La présente invention concerne une roue de type Francis pour machine hydraulique destinée à être traversée par un écoulement forcé d'eau, une machine hydraulique pouvant fonctionner en mode pompe ou en mode turbine équipée d'une telle roue et une installation de conversion d'énergie comprenant une telle machine hydraulique.
Dans le domaine de la conversion d'énergie hydraulique en énergie électrique ou mécanique, il est connu d'utiliser une turbine pour entraîner en rotation un arbre portant une roue de la turbine, cet arbre étant relié, par exemple, à un alternateur. Certaines machines hydrauliques, dites turbines pompes sont réversibles, en ce sens qu'elles peuvent être utilisées pour convertir l'énergie électrique ou l'énergie mécanique en énergie hydraulique par le déplacement d'une quantité d'eau vers un bassin situé en amont de la machine hydraulique. Ce fonctionnement de la machine hydraulique en mode pompe a généralement lieu dans des périodes où les besoins en énergie sont les plus faibles. Pendant les périodes de forts besoins en énergie, la machine hydraulique est utilisée en mode turbine.
Un enjeu persistant pour les machines hydrauliques reste l'amélioration du comportement transitoire des machines hydrauliques lors de leur arrêt accidentel. En effet, l'arrêt accidentel d'une machine hydraulique fonctionnant en mode turbine peut provoquer de dangereux phénomènes transitoires. Ces phénomènes sont dus à une augmentation importante de la chute transitoire aux bornes de la machine hydraulique qui se manifeste par une augmentation de la pression en amont de la turbine et une diminution de la pression en aval de la turbine. Dans le cas ou le niveau de pression en aval de la turbine atteint le niveau de vide, il y a alors risque de rupture de la collone d'eau suivi d'un effet de « coup de bélier >>. L'augmentation de la chute transitoire aux bornes de la machine hydraulique risque donc d'endommager la structure mécanique de la machine, il faut donc éviter que la chute transitoire de la machine augmente trop fortement lors de l'arrêt accidentel de la machine hydraulique afin d'éviter l'apparition des phénomènes transitoires.
La figure 4 montre une roue 100 de type Francis de l'art antérieur, qui comporte une ceinture 101 et un plafond 102 situé en regard de la ceinture 101 . La roue 100 comporte, en outre, neuf aubes 104 solidaires de la ceinture 101 et du plafond 102 et qui s'étendent entre la ceinture 101 et le plafond 102. Chaque aube 104 présente un bord d'attaque 204 en mode de fonctionnement turbine qui est rectiligne et globalement parallèle à un axe X2 de rotation de la roue.
Le graphique de la figure 5 montre, en abscisse une grandeur η,, appelée « facteur de vitesse >>, exprimée en tour/minute, et proportionnelle au rapport de la vitesse de rotation d'une roue d'une turbine sur la racine carrée de la hauteur de chute. La figure 5 montre, en ordonnée, une grandeur Qn appelée « facteur de débit », exprimée en m3/seconde et proportionnelle au rapport du débit d'eau traversant la roue sur la racine carrée de la hauteur de chute. Chaque courbe C1 à C2 du graphique donne le facteur de débit d'une roue en fonction de son facteur de vitesse. La courbe C1 correspond au fonctionnement d'une turbine équipée d'une roue conforme à l'invention et la courbe C2 correspond au fonctionnement d'une turbine équipée de la roue 100 de l'art antérieur.
Les petites valeurs de facteur de vitesse η,, de la turbine, sur la partie gauche du graphique, correspondent à des grandes hauteurs de chute, tandis que les grandes valeurs de facteur de vitesse nu , sur la partie droite du graphique, correspondent à des hauteurs de chute faibles. Il est connu que dans un tel graphique, les points de fonctionnement pour lesquels la pente de la courbe est négative correspondent à un fonctionnement stable de la turbine pour lequel la hauteur de chute aux bornes de la machine hydraulique diminue lorsque le facteur de débit diminue. A l'inverse, les points de fonctionnement pour lesquels la pente de la courbe est fortement positive correspondent à un fonctionnement fortement instable de la turbine pour lequel de dangereux phénomènes transitoires apparaissent puisque la hauteur de chute transitoire aux bornes de la machine hydraulique augmente lorsque le facteur de débit diminue.
Pour la roue 100 de l'art antérieur, on observe que pour des valeurs de facteur de débit Qn inférieures à 0.5m3/s, la pente de la courbe C2 est fortement positive. Il existe donc, lors de l'arrêt accidentel d'une turbine comprenant la roue de la figure 4, un passage dans la partie de la courbe C2 ayant une pente fortement positive et un risque d'endommager la turbine puisque, lors du passage dans la partie de pente fortement positive de la courbe C2, la chute de la turbine augmente fortement, ce qui crée une dépression à l'aval et une surpression à l'amont de la turbine. Ceci peut conduire à l'apparition de dangereux phénomènes transitoires tels que la séparation de la colonne d'eau et donc l'apparition d'un phénomène de coup de bélier lié à la séparation de la colonne d'eau. En conclusion, la roue 100 de l'art antérieur ne permet pas, à elle seule, d'empêcher l'apparition de phénomènes transitoires potentiellement dangereux lors de l'arrêt accidentel d'une machine hydraulique en mode turbine.
Pour limiter l'apparition et l'influence des phénomènes transitoires potentiellement dangereux lors de l'arrêt accidentel d'une machine hydraulique fonctionnant en mode turbine, il est connu, d'utiliser des dispositifs de contrôle tels que le robinet sphérique d'une installation de conversion d'énergie comprenant la machine hydraulique, afin de modifier les caractéristiques hydraulique du circuit contenant une telle machine hydraulique, en lui appliquant une loi de fermeture rapide lors d'un arrêt accidentel. Cette solution nécessite une manœuvre rapide du robinet sphérique à chaque séquence d'arrêt accidentel de la turbine. Cette solution peut engendrer des niveaux de contraintes mécanique sur la structure du robinet qui, si elles ne sont pas prises en compte correctement dans son dimensionnement, peuvent engendrer une défaillance mécanique de celui-ci. De plus, la mise en œuvre d'une telle solution complexifie le contrôle commande d'une installation comprenant une telle turbine.
C'est à ces inconvénients qu'entend plus particulièrement remédier l'invention en proposant une nouvelle roue pour machine hydraulique permettant de limiter les phénomènes transitoires lors de l'arrêt accidentel d'une machine hydraulique, sans nécessiter une manœuvre particulière d'un robinet sphérique.
A cet effet, l'invention concerne une roue de type Francis pour machine hydraulique, destinée à être traversée par un écoulement forcé d'eau, comprenant un plafond à symétrie de révolution autour d'un axe de rotation de la roue, une ceinture à symétrie de révolution autour de l'axe de rotation de la roue et située en regard du plafond, et des aubes qui s'étendent entre le plafond et la ceinture, chaque aube s'étendant entre un premier bord formant un bord d'attaque lorsque la machine hydraulique fonctionne en mode turbine et un deuxième bord formant un bord de fuite lorsque la machine hydraulique fonctionne en mode turbine. Conformément à l'invention, le premier bord d'au moins une aube est incliné par rapport à l'axe de rotation de la roue et le rapport entre, d'une part, le rayon d'un premier cercle centré sur l'axe de rotation de la roue, perpendiculaire à cet axe et passant par un point d'attache du premier bord de l'aube sur le plafond et, d'autre part, le rayon d'un deuxième cercle centré sur l'axe de rotation de la roue perpendiculaire à cet axe et passant par un point d'attache du premier bord de la même aube sur la ceinture est strictement supérieur à 1 et inférieur ou égal à 1 ,1 . Grâce à l'invention, la trace méridienne du premier bord de l'aube présente un gradient de rayon, qui permet d'optimiser la forme de la caractéristique de fonctionnement de la machine hydraulique, comprenant une roue conforme à l'invention, afin de limiter les phénomènes transitoires lors de l'arrêt accidentel de la machine hydraulique fonctionnant en mode turbine.
Selon des aspects avantageux mais non obligatoires de l'invention, une telle roue peut incorporer une ou plusieurs des caractéristiques suivantes, prises dans toute combinaison techniquement admissible :
- Le rapport entre, d'une part, le rayon du premier cercle et, d'autre part, le rayon du deuxième cercle est compris entre 1 ,02 et 1 ,06 de préférence de l'ordre de 1 ,04.
- Le premier bord de toutes les aubes est incliné alors que tous les points d'attache du premier bord de chaque aube sur le plafond sont sur le premier cercle et tous les points d'attache du premier bord de chaque aube sur la ceinture sont sur le deuxième cercle.
- Pour au moins une aube, l'angle formé par le premier bord et une droite parallèle à l'axe de rotation de la roue et passant par le point d'attache du premier bord sur le plafond est strictement supérieur à 0 ° et inférieur ou égal à 50°, de préférence compris entre 5° et 25°.
- Le premier bord d'au moins une aube de la roue présente un profil globalement rectiligne.
- Le premier bord de toutes les aubes de la roue présente un profil globalement rectiligne.
- Le premier bord d'au moins une aube de la roue présente un profil non rectiligne.
- Le premier bord de toutes les aubes de la roue présente un profil non rectiligne. L'invention a également pour objet une machine hydraulique équipée d'une telle roue.
Enfin, l'invention concerne également une installation de conversion d'énergie hydraulique en énergie électrique ou mécanique, ou de conversion d'énergie mécanique ou électrique en énergie hydraulique qui comprend une machine hydraulique telle que mentionnée ci-dessus, ainsi que des conduits d'amenée d'eau à la machine hydraulique et d'évacuation d'eau à partir de celle-ci.
L'invention sera mieux comprise et d'autres avantages de celle-ci apparaîtront à la lumière de la description qui va suivre d'une roue équipant une machine hydraulique qui appartient à une installation de conversion d'énergie, donnée seulement à titre d'exemple et faite en référence aux dessins annexés dans lesquels :
- la figure 1 est une coupe de principe d'une installation de conversion d'énergie équipée d'une machine hydraulique comprenant une roue conforme à l'invention ; - la figure 2 est une vue en perspective d'une roue de la machine hydraulique de l'installation de la figure 1 ;
- la figure 3 est une section méridienne de la roue de la figure 2, lorsque celle-ci est utilisée en mode turbine ;
- la figure 4 est une vue analogue à la figure 2 pour une roue de machine hydraulique de l'art antérieur ;
- la figure 5 est un graphique qui montre deux courbes, dont une première montre le facteur de débit en fonction du facteur de vitesse de la roue de la figure 2, et une deuxième montre le facteur de débit en fonction du facteur de vitesse de la roue de la figure 4.
L'installation ί représentée à la figure 1 comprend une machine hydraulique réversible M, qui est une turbine-pompe de type Francis, dont la roue R est alimentée en eau à partir d'une bâche 3 reliée à une conduite forcée 4. En fonctionnement, la roue R tourne autour d'un axe de rotation X2 généralement vertical. Afin de produire de l'électricité en mode turbine, la machine M est couplée à un alternateur 5 par un arbre 15 tournant autour de l'axe X2. Entre la bâche 3 et la roue R sont disposées des avant- directrices 6 statiques et des directrices orientables 7, dont la fonction est de guider un écoulement d'eau E, provenant de la conduite 4 et destiné à traverser la roue R, en direction d'un conduit d'évacuation 8. De plus les directrices 7 assurent la fonction d'un distributeur car elles permettent de réguler le débit de l'écoulement E.
L'installation ί peut comprendre plusieurs machines hydrauliques M alimentées à partir de la même retenue d'eau, cette retenue d'eau étant non représentée.
En variante l'arbre 15 peut être couplé à un ensemble mécanique auquel cas l'installation ί convertit l'énergie hydraulique de l'écoulement E en énergie mécanique lorsque la machine hydraulique fonctionne en mode turbine.
La machine hydraulique M peut également fonctionner en mode pompe c'est-à- dire dans un mode où la roue R est entraînée en rotation par un alternateur 5 dans le sens de rotation inverse au sens de rotation lorsque la machine hydraulique M fonctionne en mode turbine. En mode pompe, l'alternateur 5 fonctionne en moteur, pour déplacer une quantité d'eau vers la retenue d'eau non représentée. L'eau s'écoule alors dans le sens inverse des flèches E sur les figures 1 et 3. Dans la variante où l'arbre 15 est couplé à un ensemble mécanique, la roue R est entraînée par cet ensemble mécanique lorsque la machine hydraulique M fonctionne en mode pompe.
Les figures 2 et 3 illustrent la roue R conforme à l'invention. Cette roue comprend une ceinture 1 et un plafond 2 situé en regard de la ceinture 1 . La ceinture 1 et le plafond 2 sont à symétrie de révolution autour de l'axe X2. La ceinture 1 et le plafond 2 présentent respectivement un bord périphérique externe 10 et 20 centré sur l'axe X2.
Par ailleurs, la roue R comporte neuf aubes 12 généralement identiques, solidaires de la ceinture 1 et du plafond 2 et qui s'étendent entre la ceinture 1 et le plafond 2, autour de l'axe de rotation X2. A la figure 2, les zones de raccordement entre les aubes 12, d'une part, et le plafond 2, d'autre part, sont représentées en pointillés.
Chaque aube 12 s'étend aussi entre un premier bord 13, qui forme un bord d'attaque lorsque la machine hydraulique fonctionne en mode turbine, et un bord de fuite lorsqu'elle fonctionne en mode pompe, et un deuxième bord 14, qui forme un bord de fuite lorsque la machine hydraulique fonctionne en mode turbine et un bord d'attaque lorsqu'elle fonctionne en mode pompe.
Chaque aube 12 présente une forme incurvée entre le premier bord 13 et le deuxième bord 14. Cette forme incurvée constitue une courbure principale de l'aube 12.
Lorsque la machine hydraulique M fonctionne en mode turbine, le fluide s'écoule dans la roue R le long d'une aube 12, du premier bord 13 vers le deuxième bord 14.
On note A un point d'attache du premier bord 13 d'une aube 12 sur la ceinture 1 .
On note B un point d'attache du deuxième bord 14 d'une aube 12 sur la ceinture 1 . De façon analogue, on note C un point d'attache du premier bord 13 d'une aube 12 sur le plafond 2 et D un point d'attache de son deuxième bord 14 sur le plafond 2.
Les points d'attache C des différents aubes 12 sont situés sur un même cercle géométrique LC1 centré sur et perpendiculaire à l'axe X2, dont on note R1 le rayon. Les points d'attache A sont situés sur un même cercle géométrique LC2 centré sur et perpendiculaire à l'axe X2, dont on note R2 le rayon. Les cercles LC1 et LC2 sont visibles à la figure 2.
Le premier bord 13 de chaque aube 12 est incliné par rapport à l'axe de rotation X2 de la roue R en se rapprochant de l'axe X2 en allant vers la ceinture 1 . En d'autres termes, la valeur du rayon R1 est choisie supérieure à la valeur du rayon R2. Ainsi le point d'attache C du premier bord 13 sur le plafond 2 d'une aube 12 est situé, par rapport au point d'attache A du premier bord 13 sur la ceinture 1 d'une aube 12, plus loin de l'axe X2. Le rapport entre, d'une part, le rayon R1 et, d'autre part, le rayon R2 est strictement supérieur à 1 et inférieur ou égal à 1 ,1 , de préférence compris entre 1 ,02 et 1 ,06, de préférence encore de l'ordre de 1 ,04.
Ainsi le premier bord 13 de chaque aube 12 est incliné et un angle a formé par le premier bord 13 et une droite D1 parallèle à l'axe de rotation X2 de la roue R et passant par le point d'attache C du premier bord 13 sur le plafond 2 est strictement supérieur à 0° et inférieur ou égal à 50°, de préférence compris entre 5 ° et 25°.
De plus, sur les figures 1 à 4, le premier bord de chaque aube présente un profil globalement rectiligne.
La sécurité de l'installation i lors de son arrêt accidentel peut être observée à l'aide de la figure 5. On observe que la caractéristique de fonctionnement représentée par la courbe C1 de la machine hydraulique M conforme à l'invention a une pente positive beaucoup moins marquée que la caractéristique de fonctionnement représentée par la courbe C2 d'une machine hydraulique comprenant la roue 100 de l'art antérieur. Ainsi l'apparition des phénomènes transitoires lors de l'arrêt accidentel de la machine M est limitée puisque, lorsque le facteur de débit diminue, la hauteur de chute de la machine augmente très faiblement, il n'y a donc pas apparition d'une forte dépression à l'aval de la machine M.
En conclusion, le design du premier bord 13 de la roue R de la machine hydraulique M permet d'éviter un niveau de dépression à l'aval trop important pouvant atteindre le niveau de vide lors d'un arrêt accidentel de la machine hydraulique M. C'est l'inclinaison du premier bord 13 des aubes 12 qui offre cette caractéristique de fonctionnement amélioré C1 .
Selon une variante, non représentée, les premiers bords 13 des aubes 12 peuvent ne pas être rectilignes et présenter dans le plan de la figure 3 une forme de portion de cercle, d'ellipse, de parabole, voire de courbe quelconque, alors que le rayon R1 est supérieur au rayon R2. Ainsi, dans cette variante, le premier bord 13 d'au moins une aube 12 présente un profil non rectiligne ou, le premier bord 13 de toutes les aubes 12 présente un profil non rectiligne.
Selon une autre variante, le premier bord 13 d'au moins une aube 12 de la roue R présente un profil globalement rectiligne.
Selon une autre variante, seules certaines aubes 12 ont leur premier bord 13 incliné par rapport à l'axe X2 de rotation de la roue R.
Selon une autre variante, le nombre d'aubes 12 de la roue R est différent de neuf.
Selon une autre variante, l'axe de rotation de la roue R est un axe horizontal. Selon une variante supplémentaire, la machine hydraulique M est une turbine de type Francis et non une turbine-pompe.
Les différentes variantes décrites ci-dessus peuvent être combinées entre elles totalement ou partiellement, pour donner lieu à d'autres modes de réalisation de l'invention.

Claims

REVENDICATIONS
1 . - Roue (R) de type Francis pour machine hydraulique (M), destinée à être traversée par un écoulement (E) forcé d'eau, comprenant :
- un plafond (2) à symétrie de révolution autour d'un axe (X2) de rotation de la roue,
- une ceinture (1 ) à symétrie de révolution autour de l'axe (X2) de rotation de la roue et situé en regard du plafond (2),
- des aubes (12) qui s'étendent entre le plafond (2) et la ceinture (1 ), chaque aube s'étendant entre un premier bord (13) formant un bord d'attaque lorsque la machine hydraulique fonctionne en mode turbine et un deuxième bord (14) formant un bord de fuite lorsque la machine hydraulique fonctionne en mode turbine,
caractérisée en ce que le premier bord (13) d'au moins une aube (12) est incliné par rapport à l'axe (X2) de rotation de la roue et en ce que le rapport entre, d'une part, le rayon (R1 ) d'un premier cercle (LC1 ) centré sur l'axe (X2) de rotation de la roue, perpendiculaire à cet axe et passant par un point (C) d'attache du premier bord (13) de l'aube (12) sur le plafond (2) et, d'autre part, le rayon (R2) d'un deuxième cercle (LC2) centré sur l'axe (X2) de rotation de la roue perpendiculaire à cet axe et passant par un point d'attache (A) du premier bord de la même aube sur la ceinture est strictement supérieur à 1 et inférieur ou égal à 1 ,1 .
2. - Roue selon la revendication 1 , caractérisée en ce que le rapport entre, d'une part, le rayon (R1 ) du premier cercle (LC1 ) et, d'autre part, le rayon (R2) du deuxième cercle (LC2) est compris entre 1 ,02 et 1 ,06 de préférence de l'ordre de 1 ,04.
3. - Roue de type Francis selon l'une des revendications précédentes, caractérisée en ce que le premier bord (13) de toutes les aubes (12) est incliné et en ce que tous les points (C) d'attache du premier bord (13) de chaque aube (12) sur le plafond (2) sont sur le premier cercle (LC1 ) et tous les points (A) d'attache du premier bord (13) de chaque aube (12) sur la ceinture (1 ) sont sur le deuxième cercle (LC2).
4. - Roue selon l'une des revendications précédentes, caractérisée en ce que, pour au moins une aube (12), l'angle (a) formé par le premier bord (13) et une droite (D1 ) parallèle à l'axe (X2) de rotation de la roue et passant par le point (C) d'attache du premier bord sur le plafond (2) est strictement supérieur à 0 ° et inférieur ou égal à 50°, de préférence compris entre 5 ° et 25 °.
5. - Roue selon l'une des revendications précédentes, caractérisée en ce que le premier bord (13) d'au moins une des aubes (12) de la roue (R) présente un profil globalement rectiligne.
6. - Roue selon l'une des revendications précédentes, caractérisée en ce que le premier bord (13) de toutes les aubes (12) de la roue (R) présente un profil globalement rectiligne.
7. - Roue selon l'une des revendications 1 à 5, caractérisée en ce que le premier bord d'au moins une des aubes (12) de la roue (R) présente un profil globalement non rectiligne.
8.- Roue selon l'une des revendications 1 à 4, caractérisée en ce que le premier bord de toutes les aubes (12) de la roue (R) présente un profil globalement non rectiligne.
9. - Machine (M) hydraulique, caractérisée en ce qu'elle est équipée d'une roue (R) selon l'une des revendications précédentes.
10. - Installation (I) de conversion d'énergie hydraulique en énergie électrique ou mécanique et réciproquement, caractérisée en ce que cette installation comprend une machine (M) hydraulique selon la revendication 6 et des conduits (4, 8) d'amenée d'eau à la machine hydraulique et d'évacuation d'eau à partir de celle-ci.
PCT/EP2014/055306 2013-03-18 2014-03-17 Roue de type francis pour machine hydraulique, machine hydraulique equipee d'une telle roue et installation de conversion d'energie comprenant une telle machine hydraulique WO2014147026A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1352405 2013-03-18
FR1352405A FR3003309A1 (fr) 2013-03-18 2013-03-18 Roue de type francis pour machine hydraulique, machine hydraulique equipee d'une telle roue et installation de conversion d'energie comprenant une telle machine hydraulique

Publications (1)

Publication Number Publication Date
WO2014147026A1 true WO2014147026A1 (fr) 2014-09-25

Family

ID=48570336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/055306 WO2014147026A1 (fr) 2013-03-18 2014-03-17 Roue de type francis pour machine hydraulique, machine hydraulique equipee d'une telle roue et installation de conversion d'energie comprenant une telle machine hydraulique

Country Status (2)

Country Link
FR (1) FR3003309A1 (fr)
WO (1) WO2014147026A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917983B1 (fr) * 1970-11-27 1974-05-07
JPH0712038A (ja) * 1993-06-22 1995-01-17 Hitachi Ltd 溶接構造型応力低減水車ランナ
US20050042104A1 (en) * 2003-06-16 2005-02-24 Kabushiki Kaisha Toshiba Francis turbine
US20050089404A1 (en) * 2003-08-11 2005-04-28 Kabushiki Kaisha Toshiba Francis turbine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917983B1 (fr) * 1970-11-27 1974-05-07
JPH0712038A (ja) * 1993-06-22 1995-01-17 Hitachi Ltd 溶接構造型応力低減水車ランナ
US20050042104A1 (en) * 2003-06-16 2005-02-24 Kabushiki Kaisha Toshiba Francis turbine
US20050089404A1 (en) * 2003-08-11 2005-04-28 Kabushiki Kaisha Toshiba Francis turbine

Also Published As

Publication number Publication date
FR3003309A1 (fr) 2014-09-19

Similar Documents

Publication Publication Date Title
EP2242908B1 (fr) Roue pour machine hydraulique et machine hydraulique comprenant une telle roue
CA2862280C (fr) Aube pour soufflante de turboreacteur
CA2832987C (fr) Roue pour machine hydraulique, machine hydraulique equipee d'une telle roue et installation de conversion d'energie comprenant une telle machine hydraulique
EP2014911A2 (fr) Machine hydraulique et procédé de prévention de l'usure d'une telle machine
EP2399022B1 (fr) Installation de conversion d'énergie hydraulique et procédé de commande d'une telle installation
CA2862705C (fr) Rotor d'hydrolienne comportant au moins une pale mobile en rotation autour d'un axe radial et des moyens de limitation du mouvement en rotation de ladite pale, et hydrolienne comprenant un tel rotor
EP2252788A2 (fr) Roue francis de turbine hydraulique équipée d'un organe formant pointe et procédé de réduction des fluctuations utilisant une telle roue
FR3006717A1 (fr) Procede de rehabilitation d'une installation de conversion d'energie et installation de conversion d'energie rehabilitee
FR2999660A1 (fr) Roue de type francis pour turbine et installation de conversion d'energie comprenant une telle roue
WO2014147026A1 (fr) Roue de type francis pour machine hydraulique, machine hydraulique equipee d'une telle roue et installation de conversion d'energie comprenant une telle machine hydraulique
EP1537330B1 (fr) Roue de type francis
FR3006011A1 (fr) Procede de fabrication d'une partie tournante de machine hydraulique, partie tournante fabriquee selon ce procede, machine hydraulique et installation de conversion d'energie
CA2812691C (fr) Dispositif hydraulique d'un dispositif de commande tel qu'un dispositif de changement de pas d'helice
FR3031537A1 (fr) Systeme d'alimentation d'une turbine a partir d'une descente d'eau pluviale
FR2999243A1 (fr) Turbine-pompe de type francis et installation de conversion d'energie comprenant une telle turbine-pompe
CA2710215A1 (fr) Machine hydraulique, installation de conversion d'energie comprenant une telle machine et utilisation d'un palier-labyrinthe hydrostatique dans une telle machine
FR3100582A1 (fr) Roue de type Francis pour machine hydraulique à stabilité améliorée
FR3027354B1 (fr) Roue a aubes comprenant des percages entre l'intrados et l'extrados de l'aube et moteur associe
EP2596234B1 (fr) Roue de turbine francis avec une répartition angulaire des aubes non périodique
FR3001501A1 (fr) Turbine a double reglage et installation de conversion d'energie comprenant une telle turbine
CH99366A (fr) Turbine hydraulique à nombre de tours spécifique élevé.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14713785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14713785

Country of ref document: EP

Kind code of ref document: A1