WO2014142578A1 - 무선 신호를 전송하는 방법 및 이를 위한 장치 - Google Patents

무선 신호를 전송하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2014142578A1
WO2014142578A1 PCT/KR2014/002121 KR2014002121W WO2014142578A1 WO 2014142578 A1 WO2014142578 A1 WO 2014142578A1 KR 2014002121 W KR2014002121 W KR 2014002121W WO 2014142578 A1 WO2014142578 A1 WO 2014142578A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
index
signal
slot
pusch
Prior art date
Application number
PCT/KR2014/002121
Other languages
English (en)
French (fr)
Inventor
양석철
이윤정
안준기
김봉회
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201480015133.4A priority Critical patent/CN105191175B/zh
Priority to EP14764367.0A priority patent/EP2975783B1/en
Priority to US14/771,159 priority patent/US10477524B2/en
Publication of WO2014142578A1 publication Critical patent/WO2014142578A1/ko
Priority to US16/660,767 priority patent/US11032805B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting / receiving a wireless signal.
  • Wireless communication systems have been widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • 0FDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • An object of the present invention is to provide a method and apparatus for transmitting and receiving a wireless signal efficiently in a wireless communication system.
  • a method for receiving control information by a terminal in a wireless communication system comprising: receiving a physical downlink control channel (PDCCH) signal including uplink scheduling information; Transmitting a PUSCHCPhysical Uplink Shared Channel) signal using the uplink scheduling information; And the PUSCH signal Receiving a Physical Hybrid ARQ (PHiCH) signal containing the received voice response information for the reference signal (RS) for the PUSCH signal RS (RB pair) in the RB (Resource Block) set to which the PUSCH signal is transmitted
  • PDCCH physical downlink control channel
  • RS reference signal
  • RB pair Resource Block
  • a terminal configured to receive control information in a wireless communication system, comprising: a radio frequency (RF) unit; And a processor, wherein the processor receives a physical downlink control channel (PDCCH) signal including uplink scheduling information, transmits a physical uplink shared channel (PUSCH) signal using the uplink scheduling information, and the PUSCH Configured to receive a PHICH (Physical Hybrid ARQ) signal including reception response information for the signal, and a reference signal (RS) for the PUSCH signal is an RB pair in a resource block (RB) set in which the PUSCH signal is transmitted.
  • a terminal that exists in only one slot per pair and the resource for receiving the PHICH signal is determined using the index of the slot in which the RS exists.
  • the RS is configured to exist in different slots in the RB set according to an RB index
  • a resource for receiving the PHICH signal is a slot in which an RS exists in a specific RB in the RB set. It can be determined using the index of.
  • the specific RB may be B having the smallest index in the RB set.
  • the RB index may be indexed based on the entire RB in the system band.
  • the RB index may be indexed based on the RB in the RB set.
  • the index of the slot in which the RS exists may indicate an offset used in the process of determining at least one of a PHICH group index and a PHICH sequence index.
  • a wireless communication system is used .
  • the signal can be transmitted / received efficiently.
  • FIG. 1 illustrates physical channels used in a 3GPP LTE system, which is an example of a wireless communication system, and a general signal transmission method using the same.
  • FIG. 2 illustrates a structure of a radio frame.
  • FIG. 3 illustrates a resource grid of a downlink handler.
  • 5 illustrates a structure of an uplink subframe.
  • FIG. 6 illustrates channel allocation for UCKUpl ink Control Information) transmission.
  • FIG. 7 illustrates a process of processing uplink shared channel (UL-SCH) data and control information.
  • UL-SCH uplink shared channel
  • FIG. 9 illustrates a method of transmitting an ACK / NACK signal for uplink data.
  • FIG. 14 illustrates a base station and a terminal that can be applied to the present invention.
  • CDMA code division mult iple access
  • FDMA frequency division mult iple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division mult iple access
  • SC SC—FDM single carrier.
  • frequency division mult iple access may be implemented by a radio technology such as UTRACUni versa 1 Terrestrial Radio Access) or CDMA2000.
  • TDMA may be implemented in a wireless technology such as Global System for Mobile Communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile Communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • 0FDMA can be implemented with wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3GPP LTEdong term evolution (3GPP) is part of E-UMTS (Evolved UMTS) using E-UTRA and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A Advanced is an evolution of 3GPP LTE. For clarity, the following description will focus on 3GPP LTE / LTE-A, but the technical spirit of the present invention is not limited thereto.
  • specific terms used in the following description are provided to help the understanding of the present invention, and the specific terms may be changed into other forms without departing from the technical spirit of the present invention.
  • DM SCDemodulation Reference Signal Represents an SC—FDMA symbol in which DMRS for PUSCH demodulation is transmitted in a subframe to which a PUSCH is allocated. Also referred to as DMRS SC-FDMA symbol. In the present specification, an SC—FDMA symbol may be replaced with a 0FDMA symbol.
  • Non-DMRS Symbol Represents an SC-FDMA symbol in which a DMRS for PUSCH demodulation is not transmitted in a subframe to which a PUSCH is allocated.
  • the non-DMRS symbol includes, for example, a UCKUplink Control Information symbol and a SRS (Sounding Reference Signal) symbol.
  • the UCI symbol represents an SC-FDMA symbol in which UCI (eg, ACK / NACK and / or RI) is transmitted in a subframe to which a PUSCH is allocated.
  • SRS symbol is a cell Represents an SC-FDMA symbol (eg, the last SC-FDMA symbol of a subframe) reserved for SRS transmission in a specific SRS subframe.
  • Legacy DMRS In legacy LTE / LTE-A, a DMRS for PUSCH transmission is transmitted.
  • the legacy DMRS represents a structure in which two DMRSs (ie, one per slot) are transmitted per subframe (see FIG. 8).
  • DMRS variance Uses less time resources (e.g., SC-FDMA symbols) or frequency resources (e.g. subcarriers) for PUSCH demodulation (referred to as reduced DMRS) compared to legacy DMRS. In the case of using more time resources (e.g., SC-FDMA symbols) or frequency resources (e.g., subcarriers), this indicates an increased DMRS.
  • time resources e.g., SC-FDMA symbols
  • frequency resources e.g., subcarriers
  • RB pairs represent two RBs neighboring in the time domain in the subframe. That is, the RB pair includes the RB of the first slot and the B of the second slot, and the two RBs have the same RB index.
  • the RB pair may be referred to by the RB index.
  • a terminal receives information through a downlink (DL) from a base station, and the terminal transmits the information through an uplink (UL) to a base station.
  • the information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist according to the type / use of the information transmitted and received by the base station and the terminal.
  • FIG. 1 is a diagram for describing physical channels used in a 3GPP LTE system and a general signal transmission method using the same.
  • step S101 When the power is turned off again or a new cell enters the cell in step S101, an initial cell search operation such as synchronization with the base station is performed in step S101.
  • the terminal receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S ⁇ SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in the cell.
  • the UE is downward in the initial cell search step
  • a downlink channel state may be checked by receiving a downlink reference signal (DL RS).
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE receives a physical downlink control channel (PDSCH) according to a downlink control channel (PDCCH) and physical downlink control channel information in step S102. More specific system information can be obtained.
  • PDSCH physical downlink control channel
  • PDCCH downlink control channel
  • the terminal may perform a random access procedure such as steps S103 to S106 to complete the access to the base station.
  • the UE transmits a preamble (6 1316) through a physical random access channel (PRACH) (S103), through a physical downlink control channel and a corresponding physical downlink shared channel.
  • a response message for the preamble may be received (S104).
  • contention resolution procedure such as transmission of an additional physical random access channel (S105) and reception of a physical downlink control channel and a corresponding physical downlink shared channel (S106) are performed. can do.
  • the UE After performing the above-described procedure, the UE performs a physical downlink control channel / physical downlink shared channel reception (S107) and a physical uplink shared channel as a general uplink / downlink signal transmission procedure. , PUSCH / Physical Uplink Control Channel (PUCCH) transmission (S108) may be performed.
  • the control information transmitted by the terminal to the own station is collectively referred to as uplink control information (UCI).
  • UCI includes HARQ ACK / NACK (Hybr id Automatic Repeat and reQuest Acknowledgement / Negative-ACK), SR (Scheduling Request), Channel Quality Indicator (CQ I), PMK Precoding Matrix Indicator (RMK), and RKRank Indication (RQ).
  • UCI includes HARQ ACK / NACK (Hybr id Automatic Repeat and reQuest Acknowledgement / Negative-ACK), SR (Scheduling Request), Channel Quality Indicator (CQ I),
  • HARQ ACK / NACK is simply referred to as HARQ-ACK or ACK / NACK (A / N).
  • HARQ-ACK includes at least one of positive ACK (simply ACK), negative ACK (NACK), DTX and NAC / DTX.
  • UCI is generally transmitted through PUCCH, but can be transmitted through PUSCH when control information and traffic data should be transmitted at the same time. have.
  • the UCI can be aperiodically transmitted through the PUSCH according to a network request / instruction.
  • Figure 2 illustrates the structure of a radio frame.
  • uplink / downlink data packet transmission is performed in subframe units, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
  • the 3GPPLTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • FIG. 2 (a) shows the type 1 radio frame of ! Illustrate the structure.
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time taken for one subframe to be transmitted is called a TTK transmission time interval.
  • one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • a resource block (RB) as a resource allocation unit may include a plurality of consecutive subcarriers in one slot.
  • the number of OFDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP).
  • CPs include extended CPs and normal CPs.
  • the number of OFDM symbols included in one slot may be seven.
  • the OFDM symbol is configured by the extended CP, since the length of one 0FDM symbol is increased, the number of 0FOM symbols included in one slot is smaller than that of the normal CP.
  • the number of 0 ⁇ symbols included in one slot may be six. If the channel state is unstable, such as in the case of the terminal moving at a high speed, the extended CP may be used to further reduce the inter-symbol interference.
  • one slot when a CP is used, one slot includes 7 0FM symbols, so that one subframe includes 14 OFDM symbols.
  • the first up to three OFDM symbols of each subframe may be allocated to a PDCOKphysical downlink control channel) and the remaining OFDM symbols may be allocated to a PDSCHC physical downlink shared channel.
  • Type 2 (b) illustrates a structure of a type 2 radio frame.
  • Type 2 radio frames consist of two half frames, each half frame consisting of five subframes, a DwPTSCDownlink Pilot Time Slot, a Guard Period (GP), and an UpPTSCUplink Pilot TimeSlot.
  • One subframe consists of two slots.
  • the DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation in the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a section for removing interference caused by the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • the structure of the radio frame is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of symbols included in the slot may be variously changed.
  • FIG. 3 illustrates a resource grid of a downlink slot.
  • the downlink slot includes a plurality of OFDM symbols in the time domain.
  • One downlink slot may include N DL symb (eg, 7 (6)) OFDM symbols and the resource block may include 12 subcarriers in the frequency domain.
  • Each element on the resource grid is referred to as a resource element (RE).
  • One RB contains 12X7 (6) REs.
  • the number N DL RBs of the RBs included in the downlink slot depends on a downlink: transmission band.
  • the structure of the uplink slot is the same as that of the downlink slot, OFDM symbol is replaced by SC-FDMA symbol, N DL symb is replaced by ⁇ ⁇ , N DL RB is replaced by N UL RB .
  • FIG. 4 illustrates the structure of a downlink subframe.
  • a downlink control channel used in LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe.
  • PHICH carries a HARQ ACK / NAC (Hybr id Automatic Repeat request acknowledgment / negative acknowledgment) signal in response to uplink transmission.
  • HARQ ACK / NAC Hybr id Automatic Repeat request acknowledgment / negative acknowledgment
  • DCI format is defined for uplink format 0, 3, 3A, 4, downlink format 1, 1A, 1B, 1C, ID, 2, 2k, 2B, 2C, etc.
  • Hopping flag RB assignment, Modular ion Coding Scheme (MCS), Redundancy Version (RDV), NDK New Data Indicator, Transmit Power Control (TPC), and cyclic shift demodulat ion reference signal (DMRS)
  • MCS Modular ion Coding Scheme
  • RDV Redundancy Version
  • TPC Transmit Power Control
  • DMRS cyclic shift demodulat ion reference signal
  • CQI Channel Quality Informat ion
  • TPMI transmitted precoding matrix indicator
  • PMI precoding matrix indicator
  • the PDCCH includes transmission format and resource allocation information of a downlink shared channel (DL ⁇ SCH), transmission format and resource allocation information of an uplink shared channel (UL ⁇ SCH), a paging channel.
  • Px information on Paging Channel (PCH) Paging Channel
  • system information on DLi SCH resource allocation information of higher-layer control message such as random access response transmitted on PDSCH
  • Tx power control command set for individual terminals in terminal group Tx power control command
  • activation instruction information of VolKVo ice over IP Multiple PDCCHs may be transmitted in the control region.
  • the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregate of one or a plurality of consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • the CCE is a wireless channel on the PDCCH Logical allocation unit used to provide state based coding rates.
  • the CCE corresponds to a plurality of Resource Element Groups (REGs).
  • the format of the PDCCH and the number of PDCCH bits are determined according to the number of CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and adds a CRC (Cyclic Redundancy Check) to the control information.
  • the CRC is masked with an identifier (eg, Radio Network Temporary Identifier, RNTI) according to the owner or purpose of use of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • an identifier eg, Cell-RNTI, C—RNTI
  • the paging identifier Pag i ng-RNTI, P-RNTI may be masked to the CRC.
  • the PDCCH is for system information (specifically, System Information Block, SIB), SI—RNTI (System Information RNTI) may be masked to the CRC.
  • SIB System Information Block
  • SI—RNTI System Information RNTI
  • RA-RNTI random access-RNTI
  • a CDC set where PDCCH can be located is defined for each UE.
  • the CCE set in which the UE can discover its own PDCCH is referred to as a PDCCH search space (SS), simply a search space.
  • An individual resource to which a PDCCH can be transmitted in a search space is referred to as a PDCCH candidate.
  • One PDCCH candidate is referred to 1, 2, 4 or 8 CCEs according to the CCE aggregation level.
  • the base station transmits the actual PDCCH (DCI) through any PDCCH candidate in the search space, the terminal monitors the search space to find the PDCCH (DCI). Specifically, the UE attempts blind decoding (BD) on PDCCH candidates in the search space.
  • BD blind decoding
  • USS UE-specific Search Space
  • CSS Co on Search Space
  • FIG. 5 illustrates a structure of an uplink subframe used in LTE / LTEL A.
  • the uplink subframe includes a plurality of slots (eg, two).
  • the slot may include different numbers of SC—FDMA symbols according to the CP length.
  • the uplink subframe is divided into a data region and a control region in the frequency domain. Data zero
  • the inverse includes the PUSCH and is used to transmit data signals such as voice.
  • the control region includes a PUCCH and is used to transmit uplink control information (UCI).
  • the PUCCH includes RB pairs located at both ends of the data region on the frequency axis and hops to a slot boundary.
  • the UCI includes the following control information.
  • [50]-HARQ AC information This is a male answer signal for a downlink data packet on a PDSCH. Indicates whether the downlink data packet was successfully received.
  • One bit of ACK / NACK is transmitted in response to a single downlink codeword (Codeword, CW), and two bits of ACK / NACK are transmitted in response to two downlink codewords.
  • [51]-CSK Channel State Information Feedback information on a downlink channel.
  • CQI Channel Quality Indicator
  • PMQPrecoding Matrix Indicator PMQPrecoding Matrix Indicator
  • PTI Precoding Type Indicator
  • FIG. 6 illustrates a channel allocation process for UCI transmission.
  • the UE generates a UCI for transmission in subframe #n (S602).
  • the UCI includes at least one of CQI / PMI, HARQ-ACK, and RI.
  • the UE checks whether there is a PUSCH allocation in subframe #n (S604).
  • PUSCH allocation may be allocated by semi-persistent scheduling (SPS) or may be allocated by UL grant DCI. If there is no PUSCH assignment in subframe #n, UCI is transmitted through PUCCH (S606a), and if there is PUSCH assignment in subframe #n, UCI is transmitted through PUSCH (S606b). For convenience, transmitting the UCI through the PUSCH is called a PUSCH piggyback.
  • the PUSCH may include UL-SCH data or may not include UL-SCH data when the PUSCH is allocated only for CQI transmission. If a PUSCH is allocated as part of a random access procedure, UCI is not transmitted in subframe #n. 7 illustrates a process of UL-SCH data and control information. For more details, please refer to 36.212 V8.8.0 (2009.12). 5.2.2. See 5.2.2.8.
  • error detection is provided to a UL-SCH transport block (TB) through a cyclic redundancy check (CRC) attachment (SIOO).
  • CRC cyclic redundancy check
  • the entire transport block is used to calculate the CRC parity bits.
  • the bit of the transport block is ⁇ '' 612 '" 3 ,..., ⁇ ⁇ ⁇ ).
  • the parity bit is Po'Pi'P ' P3;... 'Pi ⁇ ⁇
  • the size of the transport block is A and the parity bit is The number is L.
  • code block division and code block CRC attachment are performed (S110).
  • the bit input for code block division is fe o ','', — I.
  • B is the number of bits of the transport block (including CRC).
  • the bits after the code block division are reduced.
  • C represents the total number of code blocks.
  • Channel coding is performed after the code block division and the code block CRC (S120).
  • Kr represents the number of bits of the code block r.
  • C represents the total number of code blocks.
  • Turbo coding may be used for channel coding. have.
  • Rate matching is performed after channel coding (S130).
  • the bits after rate matching are 0 , ⁇ 2 , ⁇ , ..., £ ⁇ 1.
  • 0, 1, ... ', 1, and C represents the total number of code blocks.
  • the code block concatenation is performed after rate matching (S140).
  • the bits become messages after the code block concatenation.
  • G represents the total number of coded bits for transmission.
  • the bits used for the control information transmission are not included in G.
  • m ⁇ '' ⁇ — i corresponds to the UL-SCH codeword.
  • Channel coding of RI (") or HARQ-ACK ( [0 ° ] , [0 °° «) or L ° 0 ° ' 0 °'" ⁇ ) is performed independently (S150-S170).
  • Channel coding of UCI is performed based on the number of coded symbols for each control information. For example, the number of coded symbols may be used for rate matching of coded control information.
  • the number of encoded symbols corresponds to the number of modulation symbols, the number of REs, and the like in the subsequent process.
  • the channel coding of the HARQ-ACK is performed by the input bit sequence of step S170 [ 0 ⁇ ⁇ , [ ⁇ ⁇ ° ⁇ ] n ACK n ACK ... n ACK 1 r
  • L 0 1 means HARQ-ACK consisting of two or more bits of information (ie, 0 ACK > 2). ACK is coded as 1 and NACK is coded as 0. For 1-bit HARQ-ACK, repetition coding is used. For 2-bit HARQ-ACK, the (3,2) simplex code is The used and encoded data can be repeated repeatedly. For HARQ-ACK of 3 kHz or more bits, a (32, 0) block code is used.
  • the input of the data / control multiplexing block is, f ⁇ , fi,, -.-, f G — ⁇ which means coded UL-SCH bits, and ⁇ '''which means coded CQI / PMI bits. ' ⁇ ' ⁇ 1 ⁇ 2'— 1 (S180).
  • the output of the data / control multiplexing block is ⁇ ' ⁇ ' Uf ⁇ r- ) .
  • H is the total number of coded bits allocated for UL-SCH data and CQI / PMI.
  • the output of the data / control multiplexing block, ⁇ , coded tank indicator ⁇ ", £", ⁇ ","-, ⁇ and coded HARQ-ACK At least one of them is multiplexed by the channel interleaver (S190).
  • the channel interleaver is used to implement time-first mapping of modulation symbols in association with resource resources for the PUSCH.
  • the output bit sequence of the channel interleaver may be obtained by the procedure of Table 1.
  • Assign C ma N 5ymb to be the number of columns of a matrix.
  • the columns of the matrix are numbered 0 , 1, 2, ..., C mux ⁇ 1 from left to right.
  • N ⁇ is the number of SC— FDMA symbol s per subf rame for PUSCH transmission and given by
  • N SRS is equal to 1 UE is configured to send PUSCH and SRS in the same subf rame or if the PUSCH resource allocation is even partially overlaps with eel 1- speci f ic SRS subf rame / bandwi dth. Otherwise N SRS is equal to 0. is 7 for a normal CP and 6 for an extended CP.
  • the rows of the rectangular matrix are numbered 0 , 1 , 2, ..., R — 1 from top to bo tom.
  • H " H '+ Q R!.
  • the output of the block interleaver is the bit sequence read out column by column from the (R miix x C mlLX ) matrix.
  • the bits after channel interleaving are denoted by h Q , h ⁇ , h 2 ,.,., H H + Q! I! ⁇ .
  • Table 2 shows a column set for inserting HARQ 'ACK information and RI. [68] [Table 2]
  • bit sequence read from the channel interleaver matrix to row-by-row after channel interleaving is performed, 2 2 . Is output.
  • the read bit sequencer is mapped onto the resource grid through scrambling, modulation, Discrete Fourier Transform (DFT) transform precoding, and power control. ⁇ ' + ew modulation symbols are transmitted on the subframe. If the demodulation symbol sequence after DFT transform precoding is defined as 0), ... ⁇ ( sym b-1), 0), ... ⁇ ( symb -l) is the power control factor PTOCH for transmission power control. After being multiplied by, it is sequentially mapped to a PRB (Physical Resource Block) allocated for PUSCH transmission starting from (0).
  • PRB Physical Resource Block
  • z (i) is mapped to RE (k, 1) corresponding to the PRB for PUSCH transmission, starting from the first slot of the subframe, and mapped in the order of increasing 1 after increasing k.
  • k represents a subcarrier index and I represents an SOFDMA symbol index.
  • REs for DMRS and REs reserved for SRS are excluded from the mapping.
  • control information includes at least one of CQI and / or PMKCQI / PMI), HARQ ACK / NACK, and RI. Control information is mapped to exist in both slots of the subframe.
  • the CQI / PMI resources are located at the beginning of UL—SCH data resources and are sequentially mapped to all SC-FDMA deepbulbs on one subcarrier, and then mapped on the next subcarrier.
  • CQI / PMI is left to right within the subcarrier,
  • PUSCH data (UL-SCH data) is rate-matched taking into account the amount of CQI / PMI resources (ie, the number of coded symbols). The same modulation order as the UL-SCH data is used for CQI / PMI.
  • the ACK / NACK is inserted through puncturing to a part of the SOFDMA resource to which the UL—SCH data is mapped.
  • the ACK / NACK is located next to the RS and is filled in the direction of increasing upside, i.e. subcarrier index, starting from the bottom within the corresponding SC—FDMA symbol.
  • the RI is located next to the SOFDMA symbol for ACK / NACK.
  • DMRS is mapped to SC-FDMA symbol # 3 / # 10
  • ACK / NACK is mapped to SC-FDMA symbol # 2/4/9/11
  • RI is SOFDMA symbol # 1. May be mapped to / 5/8/12.
  • DMRS is mapped to SC-FDMA symbol # 2 / # 8
  • ACK / NACK is mapped to SC-FDMA symbol # 1/3/7/9
  • RI is SC-FDMA symbol # 0/4 / 6/10 may be mapped.
  • the SOFDMA symbol index is given by 0, l, ..., N sub -l, where N sub is the number of SC-FDMA symbols in the subframe.
  • N sub is usually 14 for CP and 12 for extended CP.
  • the DMRS sequence is divided by a Cyclic Shift (CS) value, and the CS value is a DMRS CS field in a UL grant (eg, DCI format 0/4) corresponding to a PUSCH transmission.
  • the value is indicated by.
  • DCI format 0 includes scheduling information for single antenna port transmission
  • DCI format 4 includes scheduling information for multi-antenna port transmission (eg, spatial multiplexing) transmission.
  • the value of the DMRS CS field in the DCI format is mapped to a CS parameter and 0rthogonal cover code (0CC) as shown in Table 3.
  • DCI format 0 it is fixed to 0CO [l 1].
  • «» R represents the CS parameter used to determine the CS value of the MRS.
  • represents a layer index.
  • the first value of the OCC is multiplied by the DMRS of the first slot, and the second value of the OCC is multiplied by the DMRS of the second slot.
  • a network node eg, a base station transmits uplink allocation information to a terminal through a PDCCH (S502).
  • the control information for uplink allocation is also referred to as a UL grant, and includes resource block allocation information for PUSCH transmission and cyclic shift information for a data demodulation reference signal (DMRS).
  • DMRS data demodulation reference signal
  • the terminal transmits uplink data (eg, PUSCH) to the base station according to the uplink allocation information (S504).
  • the base station After receiving the uplink data from the terminal, transmits a reception response signal (ACK / NACK) for the uplink data to the terminal through the PHICH.
  • ACK / NACK reception response signal
  • a plurality of PHICHs may be mapped to the same resource element element (eg, REG), and they constitute a PHICH group. Within the same PHICH group, each PHICH is divided into orthogonal sequences.
  • the PHICH resource is identified by the index pair " ⁇ '" ⁇ /.
  • PH H represents PHICH group number
  • ⁇ CH represents orthogonal sequence index in PHICI group.
  • P CH ” and “ PHICH ” are identified using the lowest PRB index among the physical resource block (PRB) indexes allocated for PUSCH transmission and the cyclic shift of DMRS transmitted to the UL grant. Equation 1 shows an example of obtaining "PHICH” and "PHICH.”
  • n ⁇ is mapped from the value of the cyclic shift field for DMRS.
  • i ' ⁇ represents the lowest PB index for PUSCH transmission.
  • NH represents the number of PHICH groups.
  • I PHICH has a value of 0 or 1 depending on the frame or subframe type.
  • Table 4 illustrates mapping of cyclic shift values in « ⁇ . And DMRS fields.
  • Equation 2 For the FDD frame, the number of PHICH groups ⁇ 'TM is constant in all subframes, and the number of PHICH groups in one subframe is given by Equation 2.
  • N g e ⁇ 1 / 6,1 / 2,1,2 ⁇ is provided by a higher layer
  • N DL RB represents the number of resource blocks (RBs) of a downlink band.
  • the number of PHICH groups may vary for each downlink subframe, and is given by w and .A h .
  • Table 5 shows «7.
  • PUSCH which is a UL data channel in existing LTE (3GPP Re 1-8 / 9) and LTE-A (3GPP Rel-10 / ll) systems
  • a method of adjusting (eg, decreasing or increasing) DMRS resources according to UE situation may be considered for the purpose of improving spectral efficiency and improving cell coverage (ie, DMRS variable).
  • DMRS variable the operation of the terminal when the DMRS resource is changed will be described mainly, and the operation to be performed may be performed in the base station.
  • reduced DMRSs include slot-based reduced DMRS, comb-based DMRS.
  • Slot-based reduced DMRS represents a structure in which one DMRS symbol is transmitted per RB pair (ie, only one DMRS symbol is transmitted in a specific slot).
  • Com-based DMRS represents a structure for transmitting DMRS using discontinuously allocated subcarriers within one SOFDMA symbol.
  • a RE / subcarrier set to which a DMRS sequence is mapped within one SOFDMA symbol is referred to as a DMRS—comb
  • another RE / subcarrier set that is, a RE / subcarrier set to which no DMRS is mapped
  • Channel Estimation During Interflation-Based Channels It can be effective in terms of performance. Therefore, when applying the reduced DMRS it is proposed to sequentially switch the slot in which the DMRS symbol is transmitted according to the RB index.
  • 10 illustrates a reduced MRS transmission structure according to the present invention.
  • the RB index may indicate the RB index of the first slot or the RB index of the second slot constituting the RB pair.
  • the RB index may be given as a cell-specific RB index based on the entire system BW (Bandwidt.h) or as a UE-specific RB index based on the PUSCH resource allocation region.
  • the entire system BW is composed of N RBs
  • DMRS symbols are transmitted only through the 1st slot to the RB having an even index, and the RB having an odd index.
  • the DMRS symbol can be transmitted only through the 2nd slot.
  • the K RBs are allocated for PUSCH transmission
  • the K RBs are indexed from 0 to ⁇ — 1, and then the DMRS symbols are transmitted only through the 1st slot to the odd RBs in the RB index order.
  • a DMRS symbol can be transmitted only through a 2nd slot.
  • the 1st slot and the 2nd slot may be assigned to even-numbered slots and odd-numbered slots, respectively.
  • the number / location of DMRS symbols transmitted through each slot may be sequentially switched according to the RB index.
  • 11 illustrates an increased DMRS transmission structure according to the present invention. Referring to FIG. 11, when three DMRS symbols are transmitted in one RB pair, two DMRS symbols are transmitted in a 1st slot in odd-numbered RBs in RB index order, and one DMRS symbol is transmitted in a 2nd slot. On the contrary, one DMRS symbol may be transmitted in the 1st slot and two DMRS symbols may be transmitted in the 2nd slot.
  • the comb-based DMRS may be applied while maintaining the number of two DMRS symbols per RB pair (ie, one slot).
  • Combination based DMRS is illustrated in FIG. 12.
  • an RE corresponding to a subcarrier of an even index in a corresponding SC-FDMA symbol (ie, even-bean) or an RE corresponding to a subcarrier of an odd index is maintained while maintaining the number of DMRS symbols.
  • DMRS can be transmitted only in Draft.
  • even-comb corresponds to the set of (2k-1) th subcarriers in one SC— FDMA symbol
  • N represents the number of subcarriers allocated for PUSCH transmission.
  • a / N may be mapped / transmitted to non—DMRS-com (ie, RE set to which DMRS is not mapped). For example, A / N may be mapped / transmitted over the entire RB sequentially from the last subcarrier for both the DMRS symbol and the closest symbol and non DMRS com.
  • CQI / PMI may be mapped / transmitted to non-DM S-com. For example, CQI / PMI may be mapped / transmitted over the entire RB sequentially from the first subcarrier for both the logical DMRS thimble and the non-DMRS-com.
  • a comb in which the DMRS is transmitted may be switched sequentially according to the RB index and / or according to the slot index.
  • Comb-based DMRS is illustrated in FIG. 13.
  • even-combs may be used for DMRS transmission in odd-numbered RBs and odd-numbered combs may be used for DMRS transmission in odd-numbered RBs in RB index order.
  • an even-com may be used for DMRS transmission in the case of 1st slot
  • an odd-comb may be used for DMRS transmission in the case of 2nd slot.
  • the 1st slot and the 2nd slot may be assigned to even-numbered and odd-numbered slots, respectively.
  • non-DMRS—comb is mapped / transmitted to a non-DMRS—comb in a DMRS symbol to increase multiplexing between multiple terminals and to reduce interference between terminals / cells.
  • non-DMRS-com may be defined / configured not to transmit UCI 7 always.
  • UCI is piggybacked, it may be defined / configured to not map / transmit UCI (and / or data) to non-DMRS—com.
  • comb-based DMRS can be applied for similar purposes (i.e., to increase multiplexing between multiple terminals and to reduce interference between terminals and cells).
  • UCI is also mapped to non-DMRS May not transmit.
  • PHICH resource determination when the reduced DMRS is applied, different PHICH resource indexes may be allocated / transmitted according to slots / comes in which a DMRS symbol / signal is transmitted for multiplexing between multiple terminals. For example, when a slot-based reduced DMRS is applied, or when a DMRS symbol is transmitted through an I st slot (in an entire RB set or a specific RB (eg, RB having a minimum index) in a region allocated as a PUSCH resource). For example, the PHICH resource index may be calculated in the same manner as in the previous (see Equation 1).
  • the offset in the PHICH index which is calculated by the conventional method can be determined in addition.
  • the entire RB set black within a region allocated as a PUSCH resource is at a specific RB (e.g., RB with minimum index).
  • the PHICH resource index may be calculated in the same manner as.
  • the PHICH resource index corresponding to the PHICH resource index (designated / set) is added to the PHICH resource index calculated through the existing scheme.
  • the offset may be set through RRC / MAC signaling. The offset may also be indicated using a PDCCHCUL grant).
  • the offset may be an offset for a PHICH sequence index (ie, an orthogonal sequence index), a PHICH group number, or a DMRS cyclic shift value.
  • the offset value may be specified and / or set to 1 or —1 (if only one transport block is scheduled and / or scheduled through DCI format 0).
  • the offset value may be designated / set to 2 or ⁇ 2 (when two transport blocks are scheduled and / or scheduled through DCI format 4).
  • a new field may be added to the UL grant (eg, DCI format 0/4) to indicate the offset, or the offset may be known by borrowing an existing field in the UL grant.
  • the offset may be implicitly inferred through a value or combination thereof that is signaled via an existing specific field (s) (eg, DMRS cyclic shift) in the UL grant (for convenience, the signaling is referred to as a THICH indicator ").
  • the PHICH resource may be determined as follows using an offset.
  • 0 represents an offset
  • the offset in the above description may be replaced with a PHICH resource.
  • the PHICH resource index may be determined using a function of slot / com.
  • the PHICH resource may be determined as follows using an offset.
  • f ⁇ represents a function having a slot / comb index as a parameter
  • ⁇ 2 ( ⁇ ) represents a function having a slot / comb index as a parameter.
  • the slot index (or comb index) may have 0 or 1.
  • DCI format 0 is replaced with when set to the transmission mode that supports a maximum of one transport beulteuk
  • DCI format 4 may be replaced with when set to the transmission mode that supports up to two transport blocks.
  • an offset eg, ⁇ ( ⁇ 2 ())
  • the PHICH indicator may be used to adjust the PHICH resource allocation.
  • At least one of the following enhancements is set semi-static via RRC / MAC signaling or dynamically assigned via UL grant (eg, PDCCH / EPDCClK Enhanced PDCCH). Can be.
  • the above information is informed by adding a new field in the UL grant, or borrowing the above information by borrowing an existing field in the UL grant. I can tell you.
  • the above information may be implicitly inferred through values or combinations thereof that are signaled via existing specific field (s) (eg, MRS cyclic shifts) in the UL grant (for convenience, the signaling is referred to as a "DMRS indicator”. Called).
  • (Ie, DCS) and Orthogonal Cover Code (0CC) information may be determined.
  • 0CC is not applied to the DMRS, but two different OCCs, [1, 1] and [1, — 1], are assigned to the 1-bit DMRS indicator or the 1-bit PHICH indicator. I suggest using it.
  • each layer DMRS can be transmitted.
  • different MRS structures eg, reduced DMRS or legacy DMRS; slot—based reduction
  • Done DMRS or comb-based DMRS may be applied to transmit DMRS (corresponding to each layer).
  • certain layers Different PMCH offset values can be applied depending on whether 0CC (for example, 1-th layer) is [1, 1] or [1, -1], or it is possible to determine whether to apply (preset / set) PHICH offset. have.
  • Table 3 when reduced DMRS is applied, Table 3 may be modified as follows. The same can be defined when comb-based DMRS is applied. For example, when comb-based DMRS is used, slot # 0 / slot # l in the table may be replaced with even-comb / odd comb (or odd-comb / even comb) respectively.
  • the slot-based reduced DMRS if 0CC is [1, 1], 1, 1 is applied to the DMRS symbol transmitted through the 1st slot and the DMRS symbol transmitted through the 2nd slot, respectively. If 0CC is [1, -1], they can be multiplied by 1, ⁇ 1, respectively.
  • comb-based DMRS when comb-based DMRS is applied, if 0CC is [1, 1], the same comb (for example, even-comb) is used in the 1st slot and 2nd slot, and if 0CC is [1, -1], the 1st slot and You can use different combs in the 2nd slot (eg even-beans in the 1st slot, odd-combs in the 2nd slot).
  • 0CC when applying slot / com-based DMRS (and / or legacy legacy DMRS), 0CC can be applied to RB domains, not slot domains. For example, if 0CC is [1, 1] . DMRS transmitted over odd-numbered RB pairs in RB index order and DMRS transmitted over even-numbered RB pair multiplied by 1 and 1, respectively, and transmitted over odd-numbered B pair if 0CC is [1, ⁇ 1]. The DMRSs transmitted through the even-numbered RB pairs may be multiplied by 1 and — 1, respectively.
  • a symbol (for all layers) that transmits a DMRS transmitted to at least one or more layers in consideration of the effect of inter-layer interference is used for data (and / or UCI).
  • a symbol in which a DMRS corresponding to at least one layer is transmitted may be defined / configured not to always map / transmit UCI (for all layers).
  • UCI is piggybacked, it may be defined / configured not to map / transmit UCI (and / or data) for the corresponding SC-FDMA symbol (for all layers).
  • an existing DMRS structure which is not a reduced DMRS is exceptionally reduced.
  • the reduced DMRS may be applied only to a PUSCH without UCI piggyback (that is, a PUSCH in which only UL-SCH data is transmitted).
  • the RB (pair) in which CSI and / or A / N is transmitted in the PUSCH on which the UCI piggyback is performed may maintain / use the existing DMRS structure (FIG.
  • the reduced DMRS structure can be applied only to the RB (pair) in which CSI and / or A / N are not transmitted.
  • the same method may be applied to the PUSCH triggered by the aperiodic CSI request (ie, the PUSCH reported by the aperiodic CSI).
  • Existing DMRS structure (FIG. 8) can be used as it is rather than DMRS. That is, increased DMRS may be applied only to a PUSCH without UCI piggyback (that is, a PUSCH in which only UL-SCH data is transmitted). In addition, only the RB (pair) in which CSI and / or A / N is transmitted in the PUSCH on which the UCI piggyback is performed may maintain / use the existing DMRS structure (FIG.
  • the increased DMRS structure can be applied only to RBs (pairs) in which CSI and / or A / N are not transmitted.
  • Aperiodic CSI In the case of a PUSCH for which a request is triggered (that is, a PUSCH indicated with an aperiodic CSI report), the above method may be equally applied.
  • a form in which three or more DMRS symbols are transmitted in one RB pair (or two or more in at least one slot) may be considered (ie, increased DMRS).
  • increased DMRS a form in which three or more DMRS symbols are transmitted in one RB pair (or two or more in at least one slot)
  • Power limit protection priority depending on DMRS density . have. In this case, power may be preferentially reduced or transmission may be abandoned for PUSCH / PUCCH having a lower protection priority.
  • the power control protection priority and the UCI container selection priority may be given as follows according to the terminal situation.
  • the maximum terminal power (hereinafter, referred to as P max , UE ), the maximum group power (hereinafter referred to as P ma x, cgp), and the maximum cell power (hereinafter referred to as Pmax.c) may be set for one UE. have.
  • the maximum power limitation situation is that the transmit power of the corresponding channel / signal (s) is any one of the terminal maximum power (P max , UE ), the cell group maximum power (P max , cgp ), and the cell maximum power (P max , c ). Even if exceeded may occur.
  • the cell group maximum power (P ⁇ , cgp ) and the cell maximum power are set when supporting carrier aggregat ion, and the cell corresponds to the component carrier.
  • the UL power adjustment process includes: 1) adjusting the sum of channel / signal transmission powers within one cell for each cell to be equal to or less than each cell maximum power (P max , c ); 3) Finally, adjust the total sum of channel / signal transmission power within one cell group for each cell group to be less than or equal to each cell group maximum power (P max, cgp ). And adjusting the sum of the signal transmission powers to be equal to or less than the terminal total maximum power (P max , u E ).
  • Various methods can be used to reduce the transmit power of the channel / signal with lower protection priority.
  • transmission power of a channel / signal having a high protection priority is P A and transmission power of a channel / signal having a low protection priority is P B.
  • P A + P B > P max UE occurs, the UE may reduce P B to ⁇ ⁇ 'or set it to 0.
  • the FV may be in the form of ⁇ * ⁇ ⁇ , ⁇ ⁇ - ⁇ or ⁇ * ⁇ ⁇ ⁇ ⁇ ⁇ .
  • the unit of the power value can be a linear—scale value or log ⁇ scale, where 0 ⁇ ⁇ ⁇ 1, and ⁇ is a positive real number. For example, an ⁇ value satisfying ⁇ ⁇ + ⁇ * ⁇ ⁇ ⁇ ! ⁇ May be determined.
  • a specific DMRS structure for example, a reduced DMRS, a legacy DMRS, or an increased DMRS
  • performance deterioration for channel estimation is reduced.
  • DMRS symbol power to prevent "There can be preferentially reduced than the power of the ball.
  • reduce the power of the non-DMRS slot if reduced DMRS is applied) over the power of the DMRS slot, or use the power of a slot with fewer DMRS symbols (if increased DMRS is applied). This can be prioritized over the power of many slots.
  • the same may be applied when the transmission power of the PUCCH to which a specific DMRS structure (eg, reduced DMRS, legacy DMRS, or increased DMRS) needs to be reduced is applied.
  • the transmission power offset black ratio between the DMRS symbol constituting the PUSCH and / or PUCCH and the non-DMRS symbol for improving channel estimation performance (and / or coverage), etc. (through RRC signaling, etc.).
  • the UE may differently calculate / determine the transmission power of the DMRS symbol and the non-DMRS symbol constituting the PUSCH / PUCCH according to the transmission power offset / transmission power ratio. For example, when the terminal reaches the UL maximum power limit, power control may be performed as follows.
  • [140] 2 reduce the power of the DMRS symbol and the power of the logical DMRS symbol by the same ratio, or
  • the power of the DMRS symbol is preferentially reduced, and the total power can be adjusted so as not to be lower than the power of the non-MRS symbol.
  • the base station or the terminal may be replaced by a relay.
  • a wireless communication system includes a base station (BS) 110 and a terminal (UE) 120.
  • Base station 110 includes a processor 112, a memory 114, and a radio frequency (RF) unit 116.
  • the processor 112 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 114 is connected with the processor 112 and stores various information related to the operation of the processor 112.
  • the RF unit 116 is connected to the processor 112 and transmits and / or receives a radio signal.
  • the terminal 120 includes a processor 122, a memory 124, and an RF unit 126.
  • Processor 122 is in the present invention It can be configured to implement the proposed procedure and / or methods.
  • the memory 124 is connected with the processor 122 and stores various information related to the operation of the processor 122.
  • the RF unit 126 is connected with the processor 122 and transmits and / or receives a radio signal.
  • the base station 110 and / or the terminal 120 may have a single antenna or multiple antennas.
  • a base station may, in some cases, be performed by an upper node thereof. That is, it is apparent that various operations performed for communication with a terminal in a network including a plurality of network nodes including a base station may be performed by a base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • the terminal may be replaced with terms such as UE Jser Equipment (MS), Mobile Station (MS), and Mobile Subscriber Station (MSS).
  • An embodiment according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • one embodiment of the present invention may include one or more ASICs (application integrated integrated circuits), DSPs (digital signal processors). Digital signal processing devices (DSPs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application integrated integrated circuits
  • DSPs digital signal processors
  • DSPs digital signal processors
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of modules, procedures, functions, etc. that perform the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the present invention can be used in a wireless communication device such as a terminal, a relay, a base station, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에 관한 것이다. 구체적으로, 본 발명은 무선 통신 시스템에서 제어 정보를 수신하는 방법 및 이를 위한 장치에 있어서, 상향링크 스케줄링 정보를 포함하는 PDCCH 신호를 수신하는 단계; 상기 상향링크 스케줄링 정보를 이용하여 PUSCH 신호를 전송하는 단계; 및 상기 PUSCH 신호에 대한 수신 응답 정보를 포함하는 PHICH 신호를 수신하는 단계를 포함하고, 상기 PUSCH 신호를 위한 RS는 상기 PUSCH 신호가 전송되는 RB 세트 내에서 RB 쌍 당 한 슬롯에만 존재하고, 상기 PHICH 신호를 수신하기 위한 자원은 상기 RS가 존재하는 슬롯의 인덱스를 이용하여 결정되는 방법 및 이를 위한 장치에 관한 것이다.

Description

【명세서】
【발명의 명칭】
무선 신호를 전송하는 방법 및 이를 위한 장치
【기술분야】
[1] 본 발명은 무선 통신 시스템에 관한 것으로서, 구체적으로 무선 신호를 전송 /수신하는 방법 및 이를 위한 장치에 관한 것이다.
【배경기술】
[2] 무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스 를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용 한 시스템 자원 (대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속 (multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템,. FDMA( frequency division multiple access) 入 1스템, TDMA(time division multiple access) 시'스템, 0FDMA( orthogonal frequency division multiple access) 시스템, SC-FDMA( single carrier frequency division multiple access) 시스템 등이 있다.
【발명의 상세한 설명】
【기술적 과제】
[3] 본 발명의 목적은 무선 통신 시스템에서 무선 신호를 효율적으로 전송 /수신 하는 방법 및 이를 위한 장치를 제공하는테 있다.
[4] 본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속 하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
' 【기술적 해결방법: I
[5] 본 발명의 일 양상으로, 무선 통신 시스템에서 단말이 제어 정보를 수신하는 방법에 있어서, 상향링크 스케줄링 정보를 포함하는 PDCCH(Physical Downlink Control Channel) 신호를 수신하는 단계; 상기 상향링크 스케줄링 정보를 이용하여 PUSCHCPhysical Uplink Shared Channel) 신호를 전송하는 단계; 및 상기 PUSCH신호 에 대한 수신 웅답 정보를 포함하는 PHiCH(Physical Hybrid ARQ) 신호를 수신하는 단계를 포함하고, 상기 PUSCH 신호를 위한 RS(Reference Signal)는 상기 PUSCH신호 가 전송되는 RB(Resource Block) 세트 내에서 RB 쌍 (pair) 당 한 슬롯에만 존재하고 상기 PHICH 신호를 수신하기 위한 자원은 상기 RS 가 존재하는 슬롯의 인덱스를 이 용하여 결정되는 방법이 제공된다.
[6] 본 발명의 다른 양상으로, 무선 통신 시스템에서 제어 정보를 수신하도록 구 성된 단말에 있어서, 무선 주파수 (Radio Frequency, RF) 유닛; 및 프로세서를 포함 하고, 상기 프로세서는 상향링크 스케줄링 정보를 포함하는 PDCCH(Physical Downlink Control Channel) 신호를 수신하고, 상기 상향링크 스케줄링 정보를 이용 하여 PUSCH(Physical Uplink Shared Channel) 신호를 전송하며, 상기 PUSCH 신호에 대한 수신 응답 정보를 포함하는 PHICH(Physical Hybrid ARQ) 신호를 수신하도록 구 성되고 상기 PUSCH신호를 위한 RS(Reference Signal)는 상기 PUSCH신호가 전송되 는 RB(Resource Block) 세트 내에서 RB 쌍 (pair) 당 한 슬롯에만 존재하고, 상기 PHICH신호를 수신하기 위한자원은 상기 RS가 존재하는 슬롯의 인덱스를 이용하여 결정되는 단말이 제공된다.
[7] 바람직하게, 상기 RS는 RB 인덱스에 따라상기 RB 세트 내에서 서로 다른 슬 롯에 교차로 존재하도록 설정되고, 상기 PHICH 신호를 수신하기 위한 자원은 상기 RB세트 내의 특정 RB 에서 RS가존재하는 슬롯의 인덱스를 이용하여 결정될 수 있 다.
[8] 바람직하게, 상기 특정 RB 는 상기 RB 세트 내에서 가장 작은 인덱스를 갖는 B일 수 있다.
[9] 바람직하게, 상기 RB 인덱스는 시스템 대역 내의 전체 RB를 기준으로 인텍싱 될 수 있다.
[10] 바람직하게, 상기 RB 인덱스는 상기 RB 세트 내의 RB 를 기준으로 인덱싱 될 수 있다. [11] 바람직하게, 상기 RS 가 존재하는 슬롯의 인덱스는 PHICH 그룹 인덱스 및 PHICH 시퀀스 인덱스 중 적어도 하나를 결정하는 과정에서 사용되는 오프셋을 지시 할 수 있다.
【유리한 효과】
[12] 본 발명에 의하면, 무선 통신 시스템에서 무선.신호를 효율적으로 전송 /수신 할 수 있다.
[13] 본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으 며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분 야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【도면의 간단한 설명】
[14] 본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도 면은 본 발명에 대한 실시예를 제공하고; 상세한 설명과 함께 본 발명의 기술적 사 상을 설명한다.
[15] 도 1은 무선 통신 시스템의 일례인 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
[16] 도 2는 무선 프레임 (radio frame)의 구조를 예시한다.
[17] 도 3은 하향링크 슬릇의 자원 그리드를 예시한다.
[18] 도 4는 하향링크 프레임의 구조를 나타낸다. '
[19] 도 5는 상향링크 서브프레임의 구조를 예시한다.
[20] 도 6은 UCKUpl ink Control Information) 전송을 위한 채널 할당을 예시한다.
[21] 도 7은 UL-SCH( Up link Shared Channel) 데이터와 제어 정보의 처리 과정을 예 시한다.
[22] 도 8은 PUSCH(Physical Up 1 ink Shared Channel ) 상에서 제어 정보와 UL-SCH 데 이터의 다중화를 나타낸다.
[23] 도 9는 상향링크 데이터에 대한 ACK/NACK신호를 전송하는 방법을 예시한다.
[24] 도 10~13은 본 발명에 따른 DMRS 전송 구조를 예시한다 .
[25] 도 14는 본 발명에 적용될 수 있는 기지국 및 단말을 예시한다. 【발명을 실시를 위한 형태 I
[26] 이하의 기술은 CDMA(code division mul t iple access) , FDMA( frequency division mul t iple access) , TDMA(time division multiple access), OFDMA (orthogonal frequency division mult iple access) , SC—FDM single carrier frequency division mult iple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA 는 UTRACUni versa 1 Terrestrial Radio Access)나 CDMA2000 과 같은 무선 기술 (radio technology)로 구현될 수 있다. TDMA 는 GSM(Global System for Mobile coramunicat ions)/GPRS(General Packet Radio Ser v i ce ) /EDGE ( Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. 0FDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA( Evolved UTRA) 등과 같은 무선 기술로 구 현될 수 있다. UTRA는 UMTS (Universal Mobile Telecommunications System)의 일부이 다. 3GPP(3rd Generat ion Partnership Project) LTEdong term evolution)는 E—UTRA 를사용하는 E— UMTS (Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향 링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다. 설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. 또한, 이하의 설명에서 사용되는 특정 (特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어 는 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다. 먼저, 본 명세서에서 사용되는 용어에 대해 정리한다.
· DM SCDemodulation Reference Signal) 심볼: PUSCH가 할당된 서브프레임에 서 PUSCH 복조를 위한 DMRS가 전송되는 SC— FDMA 심볼올 나타낸다. DMRS SC-FDMA 심 볼로도 지칭된다. 본 명세서에서 SC— FDMA 심볼은 0FDMA심볼로 대체될 수 있다.
• 논 -DMRS 심볼: PUSCH가 할당된 서브프레임에서 PUSCH 복조를 위한 DMRS가 전송되지 않는 SC-FDMA 심볼을 나타낸다. 논— DMRS SC-FDMA 심볼로도 지칭된다. 논 -DMRS 심볼은 예를 들어 UCKUplink Control Information) 심볼과 SRS(Sounding Reference Signal) 심볼을 포함한다. UCI 심볼은 PUSCH가 할당된 서브프레임에서 UCI (예, ACK/NACK 및 /또는 RI)가 전송되는 SC-FDMA심볼을 나타낸다. SRS심볼은 셀 -특정 SRS 서브프레임에서 SRS 전송을 위해 예약된 SC-FDMA 심볼 (예, 서브프레임의 마지막 SC-FDMA 심볼)을 나타낸다.
• 레가시 (legacy) DMRS: LTE/LTE-A에서 PUSCH 전송을 위한 DMRS가 전송되는 기존 구조를 나타낸다. 편의상, 레가시 DMRS는 서브프레임 당 2개 (즉, 슬롯 당 1개) 의 DMRS가 전송되는 구조를 나타낸다 (도 8 참조).
• DMRS가변 (variance): 레가시 DMRS와 비교하여, PUSCH복조를 위해 더 적은 시간 자원 (예, SC-FDMA 심볼) 또는 주파수 자원 (예, 부반송파)을 사용하거나 (이하, 감소된 (reduced) DMRS) , 더 많은 시간자원 (예, SC-FDMA심블) 또는 주파수 자원 (예, 부반송파)을사용하는 경우 (이하, 증가된 (increased) DMRS)를 나타낸다.
· RB쌍 (pair): 특별히 다르게 언급하는 경우를 제외하고, RB쌍은서브프레 임에서 시간 영역에서 이웃하는 두 개의 RB를 나타낸다. 즉, RB 쌍은 1번째 슬롯의 RB와 2번째 슬롯의 B를 포함하고, 두 개의 RB는 동일한 RB 인텍스를 갖는다. RB쌍 은 RB 인덱스에 의해 지칭될 수 있다.
[27] 무선 통신 시스템에서 단말은 기지국으로부터 하향링크 (Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크 (Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들 이 송수신 하는 정보의 종류 /용도에 따라 다양한물리 채널이 존재한다.
[28] 도 1은 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
[29] 전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단 계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색 (Initial cell search) 작업 을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널 (Primary Synchronization Channel , P-SCH) 및 부동기 채널 (Secondary Synchronization Channel , Sᅳ SCH)을수신하여 기지국과 동기를 맞추고, 셀 ID등의 정보를 획득한다. 그 후ᅳ 단말은 기지국으로부터 물리방송채널 (Physical Broadcast Channel)를 수신하 여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향 링크 참조 신호 (Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태 를 확인할 수 있다.
[30] 초기 셀 탐색을 마친 단말은 단계 S102 에서 불리 하향링크제어채널 (Physical Downlink Control Channel, PDCCH) 및 물리하향링크제어채널 정보에 따른 물리하향 링크공유 채널 (Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적 인 시스템 정보를 획득할 수 있다.
[31] 이후, 단말은 기지국에 접속을 완료하기 위해 이후 단계 S103 내지 단계 S106 과 같은 임의 접속 과정 (Random Access Procedure)을 수행할 수 있다. 이를 위 해 단말은 물리임의접속채널 (Physical Random Access Channel , PRACH)을 통해 프리 ¾블( 6 1316)을 전송하고 (S103), 물리하향링크제어채널 및 이에 대응하는 물리하 향링크공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다 (S104). 경 쟁 기반 임의 접속의 경우 추가적인 물리임의접속채널의 전송 (S105) 및 물리하향링 크제어채널 및 이에 대응하는 물리하향링크공유 채널 수신 (S106)과 같은 충돌해결 절차 (Content ion Resolution Procedure)를 수행할 수 있다.
[32] 상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상 /하향링크 신호 전 송 절차로서 물리하향링크제어채널 /물리하향링크공유채널 수신 (S107) 및 물리상향 링크공유채널 (Physical Uplink Shared Channel, PUSCH)/물리상향링크제어채널 (Physical Uplink Control Channel, PUCCH) 전송 (S108)을 수행할 수 있다. 단말이 기 자국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보 (Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybr id Automatic Repeat and reQuest Acknowledgement/Negat ive-ACK) , SR(Schedul ing Request) , CQ I (Channel Quality Indicator), PMKPrecoding Matrix Indicator) , RKRank Indication) 등을 포 함한다. 본 명세서에서 , HARQ ACK/NACK은 간단히 HARQ— ACK혹은 ACK/NACK(A/N)으로 지칭된다. HARQ-ACK 은 포지티브 ACK (간단히, ACK), 네거티브 ACK(NACK), DTX 및 NAC /DTX중 적어도 하나를 포함한다. UCI는 ,일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH 를 통해 전송될 수 있다. 또한, 네트워크의 요청 /지시에 의해 PUSCH를 통해 UCI 를 비주기적으로 전송 할 수 있다.
[33] 도 2 는 무선 프레임의 구조를 예시한다. 셀를라 OFDM무선 패¾ 통신 시스템 에서, 상향링크 /하향링크 데이터 패킷 전송은 서브프레임 (subframe) 단위로 이루어 지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPPLTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프 레임 (radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
[34] 도 2(a)는 타입 1 무선 프레임의! 구조를 예시한다. 하향링크 무선 프레임 (radio frame)은 10 개의 서브프레임으로 구성되고, 하나의 서브프레임은 시간 영역 (time domain)에서 2 개의 슬롯 (slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTKtransmission time interval)라 한다. 예를 들어 하나의 서브 프레임의 길이는 1ms 이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록 (Resource Block, RB)을 포함한다.3GPP LTE 시스템에서는 하향링크에서 0FDMA를 사 용하므로, OFDM심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA심 볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 할당 단위로서의 자원 블록 (RB) 은 하나의 슬롯에서 복수개의 연속적인 부반송파 (subcarrier)를 포함할 수 있다.
[35] 하나의 슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성 (configuration)에 따라 달라질 수 있다. CP 에는 확장 CP(extended CP)와 보통 CP(normal CP)가 있다. 예를 들어, 0FDM심볼이 보통 CP에 의해 구성된 경우, 하나 의 슬롯에 포함되는 OFDM심볼의 수는 7개일 수 있다. OFDM심볼이 확장 CP에 의해 구성된 경우, 한 0FDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 0FOM 심볼의 수는 보통 CP인 경우보다 적다. 확장 CP의 경우에, 예를 들어, 하나의 슬롯에 포함 되는 0ΠΜ 심볼의 수는 6 개일 수 있다. 단말이 빠른 속도로 이동하는 둥의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장 CP 가 사용 될 수 있다. [36] 보통 CP 가사용되는 경우 하나의 슬롯은 7 개의 0FM심볼을 포함하므로, 하 나의 서브프레임은 14 개의 OFDM 심불을 포함한다. 이때, 각 서브프레임의 처음 최 대 3 개의 OFDM 심볼은 PDCOKphysical downlink control channel)에 할당되고, 나 머지 OFDM심블은 PDSCHC physical downlink shared channel)에 할당될 수 있다.
[37] 도 2(b)는 타입 2 무선 프레임의 구조를 예시한다. 타입 2 무선 프레임은 2 개의 하프 프레임 (half frame)으로 구성되며, 각 하프 프레임은 5개의 서브프레임과 DwPTSCDownlink Pilot Time Slot), 보호구간 (Guard Period, GP), UpPTSCUplink Pilot TimeSlot)로 구성되며, 이 증 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS 는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에 서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에 서 생기는 간섭을 제거하기 위한 구간이다.
[38] 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임 의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양 하게 변경될 수 있다.
[39] 도 3은 하향링크 슬롯의 자원 그리드를 예시한다.
[40] 도 3 을 참조하면, 하향링크 슬롯은 시간 도메인에서 복수의 OFDM 심볼을 포 함한다. 하나의 하향링크 슬롯은 NDL symb (예, 7(6))개의 OFDM 심블을 포함하고 자원 블록은 주파수 도메인에서 12 개의 부반송파를 포함할 수 있다. 자원 그리드 상의 각 요소 (element)는 자원 요소 (Resource Element, RE)로 지칭된다. 하나의 RB 는 12X7(6)개의 RE를 포함한다. 하향링크 슬롯에 포함되는 RB의 개수 NDL RB는 하향링: 크 전송 대역에 의존한다. k는 부반송파 인덱스를 나타내고 (k=0,l, ...), 1 은 OFDM 심볼 인텍스를 나타낸다^-^^...,^1^^—^. 상향링크 슬롯의 구조는 하향링크 슬 롯의 구조와동일하되, OFDM심볼은 SC-FDMA 심볼로 대체되고, NDL symb는 ^ ^로 대 체되며, NDLRB는 NUL RB로 대체된다.
[41] 도 4는 하향링크 서브프레임의 구조를 예시한다. [42] 도 4를 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3(4) 개의 OFDM 심볼은 제어 4널이 할당되는 제어 영역에 대응한다. 남은 OFDM 심볼은 PDSCH(Physical Downlink Shared CHancel)가 할당되는 데이터 영역에 해당한다. LTE 에서 사용되는 하향링크 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel ) , PDCCH(Physical Downlink Control Channel ) , PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH 는 상향링크 .전송에 대한 웅답으로 HARQ ACK/NAC (Hybr id Automatic Repeat request acknowledgment /negativeᅳ acknowledgment) 신호를 나른다.
[43] PDCCH를 통해 전송되는 제어 정보를 DCHDownlink Control Informat ion)라고 한다. DCI 포맷은 상향링크용으로 포맷 0, 3, 3A, 4, 하향링크용으로 포맷 1, 1A, 1B, 1C, ID, 2, 2k, 2B, 2C등의 포맷이 정의되어 있다ᅳ DCI 포맷은 용도에 따라 호핑 플 래그 (hopping flag), RB 할당, MCS(Modulat ion Coding Scheme) , RV(Redundancy Version), NDKNew Data Indicator), TPC( Transmit Power Control), 사이클릭 쉬프 트 DMRS(Demodulat ion Reference Signal ), CQI (Channel Quality Informat ion) 요청, HARQ 프로세스 번호, TPMI (Transmit ted Precoding Matrix Indicator), PMI (Precoding Matrix Indicator) 등의 정보를 선택적으로 포함한다.
[44] PDCCH는 하향링크 공유 채널 (Downlink Shared Channel, DLᅳ SCH)의 전송 포맷 및 자원 할당 정보, 상향링크 공유 채널 (Uplink Shared Channel, ULᅳ SCH)의 전송 포 맷 및 자원 할당 정보, 페이징 채널 (Paging Channel, PCH) 상의 페이징 정보, DL一 SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위—계층 제어 메시지의 자원 할당 정보, 단말 그룹 내의 개별 단말들에 대한 Tx 파워 제어 명령 세트, Tx 파워 제어 명령, VolKVo ice over IP)의 활성화 지시 정보 등을 나른다. 복 수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH 는 하나 또는 복수의 연속된 제어 채널 요소 (Control Channel Element, CCE)들의 집합 (aggregat ion) 상에서 전송된다. CCE 는 PDCCH 에 무선 채널 상태에 기초한코딩 레이트를 제공하는데 사용되는 논리적 할당 유닛이다. CCE는 복 수의 자원 요소 그룹 (Resource Element Group; REG)에 대응한다. PDCCH 의 포맷 및 PDCCH 비트의 개수는 CCE 의 개수에 따라 결정된다. 기지국은 단말에게 전송될 DCI 에 따라 PDCCH포맷을 결정하고, 제어 정보에 CRC( Cyclic Redundancy Check)를 부가 한다. CRC 는 PDCCH 의 소유자 또는 사용 목적에 따라 식별자 (예, Radio Network Temporary Identifier, RNTI)로 마스킹 된다. 예를 들어, PDCCH가 특정 단말을 위한 것일 경우, 해당 단말의 식별자 (예, Cell-RNTI, C— RNTI)가 CRC에 마스킹 될 수 있다. PDCCH가 페이징 메시지를 위한 것일 경우, 페이징 식별자 Pag i ng-RNTI, P-RNTI ) 가 CRC에 마스킹 될 수 있다. PDCCH가 시스템 정보 (구체적으로, System Information Block, SIB)를 위한 것일 경우, SI— RNTI (System Information RNTI)가 CRC 에 마스킹 될 수 있다. PDCCH가 랜덤 접속 응답을 위한 것일 경우, RA-RNTI (Random Access-RNTI) 가 CRC에 마스킹 될 수 있다.
[45] LTE/LTE-A의 경우, 각 단말을 위해 'PDCCH가 위치할 수 있는 CCE 세트를 정의 하였다. 단말이 자신의 PDCCH 를 발견할 수 있는 CCE 세트를 PDCCH 검색 공간 (Search Space, SS), 간단히 검색 공간이라고 지칭한다. 검색 공간 내에서 PDCCH가 전송될 수 있는 개별 자원을 PDCCH 후보라고 지칭한다. 하나의 PDCCH 후보는 CCE 집합 레벨에 따라 1, 2, 4또는 8개의 CCE에 대웅한다. 기지국은 검색 공간 내의 임 의의 PDCCH 후보를 통해 실제 PDCCH (DCI)를 전송하고, 단말은 PDCCH (DCI)를 찾기 위해 검색 공간올 모니터링 한다. 구체적으로, 단말은 검색 공간 내의 PDCCH 후보 들에 대해 블라인드 디코딩 (Blind Decoding, BD)을 시도한다. 단말 -특정 검색 공간 (UE-specific Search Space, USS)과 공통 검색 공간 (Co on Search Space, CSS)이 정 의되어 있다. USS는 각각의 단말을 위해 개별적으로 구성되며, CSS는 셀 내의 모든 단말을 위해 공통으로 구성된다..
[46] 도 5는 LTE/LTEᅳ A에서 사용되는 상향링크 서브프레임의 구조를 예시한다 .
[47] 도 5를 참조하면, 상향링크서브프레임은 복수 (예, 2개)의 슬롯을 포함한다. 슬롯은 CP 길이에 따라 서로 다른 수의 SC— FDMA 심볼을 포함할 수 있다. 상향링크 서브프레임은 주파수 영역에서 데이테 영역과 제어 영역으로 구분된다. 데이터 영 역은 PUSCH 를 포함하고 음성 등의 데이터 신호를 전송하는데 사용된다. 제어 영역 은 PUCCH를 포함하고 상향링크 제어 정보 (Uplink Control Information, UCI)를 전송 하는데 사용된다. PUCCH는 주파수 축에서 데이터 영역의 양끝 부분에 위치한 RB쌍 (RB pair)올 포함하며 슬롯을 경계로 호핑한다.
[48] UCI는 다음의 제어 정보를 포함한다.
[49] - SR( Scheduling Request): 상향링크 UL-SCH 자원을 요청하는데 사용되는 정 보이다. 00 (0n-0ff Keying) 방식을 이용하여 전송된다.
[50] - HARQ AC 정보: PDSCH상의 하향링크 데이터 패킷에 대한 웅답 신호이다. 하 향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크 코드워드 (Codeword, CW)에 대한웅답으로 ACK/NACK 1비트가 전송되고, 두 개의 하향 링크 코드워드에 대한 웅답으로 ACK/NACK 2비트가 전송된다.
[51] - CSK Channel State Information): 하향링크 채널에 대한 피드백 정보이다. CQI (Channel Quality Indicator) , RKRank Indicator) , PMKPrecoding Matrix Indicator), PTI (Precoding Type Indicator) 등을 포함한다. 서브프레임 당 20 비트 가사용된다.
[52] 도 6은 UCI 전송을 위한 채널 할당 과정을 예시한다.
[53] 도 6을 참조하면, 단말은 서브프레임 #n에서의 전송을 위한 UCI를 생성한다 (S602). 여기서, UCI는 CQI/PMI, HARQ-ACK 및 RI 중 적어도 하나를 포함한다. 이후, 단말은 서브프레임 #n 에 PUSCH 할당이 있는지 확인한다 (S604). PUSCH 할당은 SPS(Semi-Persi stent Scheduling)에 의해 할당되거나, UL 그랜트 DCI에 의해 할당될 수 있다. 서브프레임 #n 에 PUSCH할당이 없는 경우 UCI 는 PUCCH를 통해 전송되고 (S606a), 서브프레임 #n 에 PUSCH 할당이 있는 경우 UCI 는 PUSCH를 통해 전송된다 (S606b). 편의상, UCI를 PUSCH를 통해 전송하는 것을 PUSCH 피기백 (piggyback)이라 고 지칭한다. PUSCH는 UL-SCH 데이터를 포함하거나, PUSCH가 CQI 전송만을 위해 할 당된 경우 UL-SCH 데이터를 포함하지 않을 수 있다. PUSCH가 랜덤 접속 과정의 일부 로서 할당된 경우, UCI는 서브프레임 #n에서 전송되지 않는다. [54] 도 7은 UL-SCH 데이터와 제어 정보의 처리 과정을 예시한다. 보다 자세한 과 정은 36.212 V8.8.0 (2009.12) 5.2.2. ~ 5.2.2.8을 참조할 수 있다.
[55] 도 7 을 참조하면, 에러 검출은 CRC(Cyclic Redundancy Check) 부착을 통해 UL-SCH 전송블록 (Transport Block, TB)에 제공된다 (SIOO).
[56] 전체 전송블록이 CRC 패리티 비트를 계산하기 위해 사용된다. 전송블록의 비 트는 ^' '612'"3,…,^ ^―)이다. 패리티 비트는 Po'Pi'P' P3;…' Pi―、 이다. 전송블특의 크기는 A이고, 패리티 비트의 수는 L 이다.
[57] 전송블록 CRC 부착 이후, 코드 블록 분할과 코드 블록 CRC 부착이 실행된다 (S110). 코드 블록 분할에 대한 비트 입력은 feo' , ' ' , — I이다. B는 전송블록 (CRC포함)의 비트 수이다. 코드 블록 분할 이후의 비트는 ^소 ᅳ…, n)이 된다. r은 코드 블록 번호를 나타내고 (r=0,l, ,Cᅳ 1), Kr은 코드 블록 r의 비트 수 를 나타낸다. C는 코드 블록의 총 개수를 나타낸다.
[58] 채널 코딩은 코드 블록 분할과 코드 블록 CRC 이후에 실행된다 (S120). 채널 코딩 이후의 비트는 ^^,^ ,^ 긔이 된다. ,' = 0,1,2이고, r은 코드블록 r을 위한 i번째 부호화된 스트림의 비트 수를 나타낸다 (즉, Dr =Kr +4 ). r은 코드 블록 번호를 나타내고(!"=0,1,ᅳ,01), Kr 은 코드 블톡 r 의 비트 수를 나타낸다. C 는 코드 블록의 총 개수를 나타낸다. 채널 코딩을 위해 터보 코딩이 사용될 수 있 다.
[59] 레이트 매칭은 채널 코딩 이후에 수행된다 (S130). 레이트 매칭 이후의 비트 는 0,^^2,^,...,£^ ^1 된다. ^은 r—번째 코드 블록의 레이트 매칭된 비트의 수이다. Γ=0,1,··',Ο 1이고, C는 코드 불록의 총 개수를 나타낸다.
[60] 코드 블록 연결은 레이트 매칭 이후에 실행된다 (S140). 코드 블록 연결 이후 비트는 니시지\ 가 된다. G는 전송을 위한부호화된 비트의 총 개수를 나타 낸다. 제어 정보가 UL-SCH 전송과 다중화 되는 경우, 제어 정보 전송에 사용되는 비트는 G에 포함되지 않는다. m ^' '^—i는 UL-SCH코드워드에 해당한다. [61] UCI 의 경우, 채널 품질 정보 (CQI 및 /또는 PMI)( o0,ot ,...o0_} ),
r
RI( "]또는 및 HARQ-ACK( [0][0。 °« ) 또는 L°0 °' 0。'"ᅬ)의 채널 코딩이 각각 독립적으로 수행된다 (S150~S170). UCI의 채널 코딩은 각각의 제어 정보를 위한 부호화된 심볼의 개수에 기초하여 수행된다. 예를 들어, 부호화된 심 볼의 개수는 부호화된 제어 정보의 레이트 매칭에 사용될 수 있다. 부호화된 심볼 의 개수는 이후의 과정에서 변조 심볼의 개수, RE의 개수 등에 대응된다.
[62] HARQ-ACK의 채널 코딩은 단계 S170의 입력 비트 시¾스 [0。 ᅵ, [οο °ι ] nACK nACK ...nACK 1 r
또는 LO0 Oi 0 0쬐를 이용하여 수행된다ᅳ 0 ]와 [。0 °1 ]는 각각 1-비트
T
HARQ-ACK와 2ᅳ비트 HARQ-ACK을 의미한다. L 0 1 은 두 비트 이상의 정 보로 구성된 HARQ-ACK을 의미한다 (즉, 0ACK > 2 ) . ACK은 1로 부호화되고, NACK은 0 으로 부호화된다ᅳ 1ᅳ비트 HARQ-ACK의 경우, 반복 (repetition) 코딩이 사용된다.2- 비트 HARQ-ACK의 경우, (3,2) 심플렉스 코드가사용되고 인코딩된 데이터는 순환 반 복될 수 있다. 3ᅳ비트 이상의 HARQ-ACK의 경우, (32,0) 블록 코드가사용된다.
[63] 데이터 /제어 다중화 블록의 입력은 부호화된 UL-SCH 비트를 의미하는 ,f\,fi, ,-.-,fG—\ 와 부호화된 CQI/PMI 비트를 의미하는 Ά' ' '·'·'^½'— 1 이다 (S180). 데이터 /제어 다중화 블록의 출력은 ^' ^'Uf^r-)이다. 는 길이 Qm 의 컬럼 백터이다 ( 'ᅳ = 0,...,//'ᅳ1 ) = 이고, ^ + )이다. H는 UL-SCH 데이 터와 CQI/PMI를 위해 할당된 부호화된 비트의 총 개수이다.
[64] 이후, 데이터 /제어 다중화 블록의 출력, ,^ , 부호화된 탱크 지시 자 ^",£「,^"," -, ^^및 부호화된 HARQ-ACK
Figure imgf000015_0001
중 적어도 하나가 채 널 인터리버에 의해 다중화 된다 (S190). 는 CQI/PMI 를 위한 길이 &의 컬럼 백 터이고 / = 0,..., //' - 1이다 ( ' = ^ / , )ᅳ q a는 ACK/NACK을 위한 길이 ,의 컬럼 백터 이고 ^Le^ - d^^c e,,,)- 는 Ri 를 위한 길이 β,,의 컬럼 백터이 고 / = 0,..., , 1이다(2 =¾,/2,,,). 채널 인터리버는 PUSCH 를 위한 자원 매¾과 연 계하여 변조 심볼의 시간 -우선 (time-first) 매핑을 구현하는데 사용된다.
[65] 이로 제한되는 것은 아니지만, 채널 인터리버의 출력 비트 시¾스는 표 1 의 과정에 의해 얻어질 수 있다.
[66] 【표 1】
(1) Assign Cma = N5ymb to be the number of columns of a matrix. The columns of the matrix are numbered 0, 1, 2 , ... , Cmux― 1 from left to right .
N^" is the number of SC— FDMA symbol s per subf rame for PUSCH transmission and given by
N^h C = (2 - -l)~ VSRS)T where NSRS is equal to 1 UE is configured to send PUSCH and SRS in the same subf rame or if the PUSCH resource allocation is even partially overlaps with eel 1-speci f ic SRS subf rame/bandwi dth . Otherwise N SRS is equal to 0. is 7 for a normal CP and 6 for an extended CP.
(2) The number of rows of the matrix is R = ( -Qm)/ Cmtx and we define Rm'ux = R I Qm .
The rows of the rectangular matrix are numbered 0, 1, 2, ... , R —1 from top to bo tom. H"=H' + QR! .
(3) If rank information is transmitted in this subf rame, the vector sequence is written onto the columns indicated by Table 2, and by sets of Qm
Figure imgf000016_0001
rows starting from the last row and moving upwards according to he following pseudocode. Set i, j to 0.
Set r to Rm f iLX -\
whi ie i <
c^j = Column Set(y)
Ri
丽+ —i
= + l j = (' + 3) mod 4
end whi ie
Where ColumnSet is given in Table 2 and indexed lef to right from 0 to 3.
(4) Write the input vector sequence, for k = 0, 1,·.., H'— \ , into the (Rmux x C mix ) matrix by sets of Qm rows starting with the vector y ^ in column 0 and rows 0 to {Qm― l)and skipping the matrix entries that are already occupied:
yn y, Λ
y y y
The pseudocode is as follows:
Set i, k to 0.
While k < ',
y
if — ' is not assigned to RI symbols k = k + 1
end i f
= i+1
end Wh i 1 e if HARQ-ACK informat ion is transmitted in this subframe, the vector sequence qACK ,qACK .qACK ,...,qACK is written onto the columns indicated by Table 3, and by sets of Qm rows starting from the last row and moving upwards according to the following pseudocode. Note that this operation overwrites some of the channel interleaver entries obtained in step (4) .
Set i ' j to 0.
Set r to U
while i <
cACK - CoturnnSet( )
j = ( + 3)mod4
end while
Where ColumnSet is gi en in Table 3 and indexed left to right from 0 to 3.
(6) The output of the block interleaver is the bit sequence read out column by column from the {Rmiix x CmlLX ) matrix. The bits after channel interleaving are denoted by hQ,h\ ,h2,.,.,hH+Q!i!― .
[67] 표 2은 HARQᅳ ACK 정보 및 RI의 삽입을 위한 열 (column) 세트를 나타낸다. [68] 【표 2】
Figure imgf000018_0001
[69]
[70] 채널 인터리빙이 수행된 이후, 채널 인터리버 행렬로부터 행-바이-행으로 독 출된 비트 시뭔스 ,/22,. 가 출력된다. 독출된 비트 시뭔스는 스크램블링, 변조, DFT(Discrete Fourier Transform) 변환 (transform) 프리코딩, 전력 조절 등을 거쳐 자원 그리드 상에 매핑된다. ^ ' + ew개의 변조 심볼이 서브프레임을 통해 전송된다. DFT 변환 프리코딩 이후의 복조 심볼 시뭔스를 0),...^( symb-1)라고 정의하면, 0),...^( symb-l)는 전송 전력 제어를 위해 전력 제어 인자 PTOCH와 곱해진 뒤, (0)부터 시작해서 PUSCH 전송을 위해 할당된 PRB(Physical Resource Block)에 순차적으로 매핑된다. z(i)는 PUSCH 전송을 위한 PRB에 대응하는 RE (k, 1) 에 매핑되며, 서브프레임의 첫 번째 슬롯부터 시작해서 , k가증가한 뒤 1이 증가하 는 순서로 매핑된다. k는 부반송파 인덱스를 나타내고, I은 SOFDMA 심볼 인덱스를 나타낸다. DMRS를 위한 RE 및 SRS를 위해 예약된 RE는 매핑에서 제외된다. DMRS를 위한자원은 보통 CP인 경우 각 슬롯에서 1=3인 RE (k, 1)이고, 확장 CP인 경우 각 슬롯에서 1=2인 RE (k, 1)이다. SRS를 위해 예약된 자원은 보통 CP인 경우 두 번째 슬롯의 1=6인 RE (k, 1)이고, 확장 CP인 경우 두 번째 슬롯의 1=5인 RE(k, 0이다.
[71] 도 8 은 PUSCH 상에서 제어 정보와 UL-SCH 데이터의 다중화를 나타낸다. UL-SCH 없이 PUSCH 가 전송되는 경우도 가능하다. 제어 정보는 CQI 및 /또는 PMKCQI/PMI), HARQ ACK/NACK 및 RI 증에서 적어도 하나를 포함한다. 제어 정보는 서브프레임의 두 슬롯에 모두 존재하도록 매핑된다.
[72] 도 8을 참조하면, CQI/PMI 자원은 UL— SCH 데이터 자원의 시작부분에 위치하 고 하나의 부반송파 상에서 모든 SC-FDMA 심불에 순차적으로 매핑된 이후에 다음 부반송파에서 매핑이 이뤄진다. CQI/PMI 는 부반송파 내에서 왼쪽에서 오른쪽, 즉
SC— FDMA 심볼 인텍스가 증가하는 방향으로 매핑된다. PUSCH 데이터 (UL-SCH 데이터) 는 CQI/PMI 자원의 양 (즉, 부호화된 심볼의 개수)을 고려해서 레이트 -매칭된다. UL-SCH 데이터와 동일한 변조 차수 (modulation order)가 CQI/PMI 에 사용된다. ACK/NACK은 UL— SCH 데이터가 매핑된 SOFDMA의 자원의 일부에 펑처링을 통해 삽입 된다. ACK/NACK은 RS 옆에 위치하며 해당 SC— FDMA심볼 내에서 아래쪽부터 시작해서 위쪽, 즉 부반송파 인텍스가 증가하는 방향으로 채워진다. 서브프레임에서 ACK/NACK 전송 여부와 관계 없이, RI는 ACK/NACK을 위한 SOFDMA심볼의 옆에 위치 한다. 구체적으로, 보통 CP 의 경우, DMRS 는 SC-FDMA 심볼 #3/#10 에 매¾되고, ACK/NACK은 SC-FDMA심볼 #2/4/9/11에 매핑되며, RI는 SOFDMA심볼 #1/5/8/12에 매핑될 수 있다. 확장 CP의 경우, DMRS는 SC-FDMA심볼 #2/#8에 매핑되고, ACK/NACK 은 SC-FDMA심볼 #1/3/7/9에 매핑되며, RI는 SC-FDMA심볼 #0/4/6/10에 매핑될 수 있다. SOFDMA심볼 인덱스는 0,l,...,Nsub-l로 주어지고, Nsub는서브프레임에 있는 SC-FDMA심볼의 개수이다. Nsub는 보통 CP인 경우 14이고 확장 CP인 경우 12이다.
[73] DMRS시퀀스는사이클릭 쉬프트 (Cyclic Shift, CS) 값에 의해 구분되며, CS 값 은 PUSCH 전송에 대응하는 UL그랜트 (예, DCI 포맷 0/4) 내의 DMRS CS(Cycl ic Shi f t ) 필드에 의해 값이 지시된다. DCI 포맷 0는 단일 안테나포트 전송을 위한스케줄링 정보를 포함하고, DCI 포맷 4는 다중 안테나 포트 전송 (예, 공간 다증화) 전송올 위 한 스케줄링 정보를 포함한다. DCI 포맷 4가사용되는 경우, DCI 포맷 내의 DMRS CS 필드의 값은 표 3 과 같이 CS 파라미터와 0CC(0rthogonal Cover Code)에 매핑된다. DCI 포맷 0이 사용되는 경우, 0CO[l 1]로 고정된다.
[74] 【표 3】
CS Field in „(2)
u l inlc-related
DCI format λ = ο 12 = 11 λ = 21 λ = 3 Λ = 0 λ=\ 1 λ=2 λ = 3
Figure imgf000020_0001
[75] 여기서, ««R 는 MRS 의 CS 값을 결정하는데 사용되는 CS 파라미터를 나타 낸다. λ는 레이어 인덱스를 나타낸다. OCC의 첫 번째 값은 첫 번째 슬롯의 DMRS에 곱해지고, OCC의 두 번째 값은 두 번째 슬롯의 DMRS에 곱해진다.
[76] 도 5는 LTE 시스템에서 상향링크 데이터에 대한 ACK/NACK 신호를 전송하는 방법을 예시한다. 도 5를 참조하면, 네트워크 노드 (예, 기지국)는 단말에게 상향링크 할당 정보를 PDCCH를 통해 전송한다 (S502). 상향링크 할당을 위한 제어 정보는 UL 그랜트로 지칭되기도 하며, PUSCH 전송을 위한 자원블록 할당 정보, DMRS (data demodulation reference signal)를 위한 사이클릭 쉬프트 정보 등을 포함한다. 이후, 단말은 상향링크 할당 정보에 따라 상향링크 데이터 (예, PUSCH)를 기지국으로 전송한다 (S504). 기지국은 단말로부터 상향링크 데이터를 수신한 뒤, 상향링크 데이터에 대한 수신 응답 신호 (ACK/NACK)를 PHICH를 통해 단말에게 전송한다.
[77] 복수의 PHICH는 동일한 자원 요소 요소 (예, REG)에 맵핑될 수 있고, 이들은 PHICH 그룹을 구성한다. 동일한 PHICH 그룹 내에서 각 PHICH는 직교 시퀀스로 구분된다. PHICH 자원은 인덱스 쌍 "ΡΗΚΗ'"ΡΗΚΗ/에 의해 식별된다. "PH H은 PHICH 그룹 번호를 나타내고, "^CH 는 PHICI 그룹 내에서의 직교 시¾스 인텍스를 나타낸다. "P CH와 "PHICH는 PUSCH 전송을 위해 할당된 PRB(Physical Resource Block) 인텍스 중에서 가장 낮은 PRB 인텍스와 UL 그랜트로 전송되는 DMRS의 사이클릭 쉬프트를 이용하여 확인된다. 수학식 1은 "PHICH와 " PHICH을 구하는 예를 나타낸다 .
[78] 【수학식 1】 = jlo \ , j
yT^i ― / ΐ ω/-",Λ'τ / \Jgr°"p L n \mnri
一 ? N H!CH
[79] 여기에서, n画 는 DMRS를 위한 사이클릭 쉬프트 필드의 값으로부터 ¾핑된다. N^/c//는 PHICH 변조에 사용되는 확산 인자 사이즈 (spreading factor size)를 나타낸다 (N^/c//= 2 또는 4이). i' ^는 PUSCH 전송을 위한 가장 낮은 P B 인덱스를 나타낸다. NH은 PHICH 그룹의 개수를 나타낸다. IPHICH는 프레임 또는 서브프레임 타입에 따라 0또는 1의 값을 갖는다.
[80] 표 4는 «^ .와 DMRS 필드에 있는사이클릭 쉬프트 값의 맵핑올 예시한다.
[81] 【표 4】
Figure imgf000021_0002
[82] FDD 프레임의 경우, PHICH 그룹의 개수 νρΗ'™ 은 모든 서:브프레임에서 일정하며 하나의 서브프레임에서 PHICH 그룹의 개수는 수학식 2로 주어진다.
[83] 【수학식 2】
for normal cyclic prefix
Figure imgf000021_0001
for extended cyclic prefix
[84] 여기서 , Ng e {1/6,1/2,1,2}는 상위 계층에 의해 제공되고, NDL RB는 하향링크 대역의 RB(Resource Block) 개수를 나타낸다.
[85] TDD프레임의 경우, PHICH그룹의 개수는 하향링크 서브프레임마다 달라질 수 있고, w,.A h으로 주어진다. 표 5는 «7,를 나타낸다.
[86] 【표 5】
Figure imgf000022_0001
[87]
[88] 실시예: 腿 S가변에 따른동작
[89] 도 8에 도시한 바와 같이, 기존 LTE (3GPP Re 1-8/9) 및 LTE-A (3GPP Rel-10/ll) 시스템에서 UL 데이타 채널인 PUSCH 의 경우, 하나의 RB 쌍 내에서 각 슬롯당 하나 의 DMRS심볼, 즉 RB당 2개의 DMRS심볼이 전송되는구조를 갖는다. 한편, 향후 시 스템에서는 주파수 효율 (spectral efficiency) 향상 및 셀 커버리지 개선 등올 목적 으로 단말 상황에 따라 DMRS 자원을 조절 (예, 감소 혹은 증가)하는 방법을 고려할 수 있다 (즉, DMRS 가변). 이하, DMRS 자원이 가변되는 경우의 단말 동작을 위주로 설명하며, 대웅되는 동작이 기지국에서 수행될 수 있다.
[90] 우선, DMRS 자원이 감소된 경우 (즉, 감소된 DMRS)를 위주로 설명한다. 본 발 명에서, 감소된 DMRS 는 슬롯 -기반 감소된 DMRS, 콤 (comb)-기반 DMRS 를 포함한다. 슬롯—기반 감소된 DMRS 는 RB쌍 당 하나의 DMRS 심볼이 전송되는 구조 (즉, 특정 한 슬롯에서만 하나의 DMRS심볼이 전송)를 나타낸다. 콤—기반 DMRS는 하나의 SOFDMA 심볼 내에서 불연속적으로 할당된 부반송파를 이용하여 DMRS를 전송하는 구조를 나 타낸다. 하나의 SOFDMA 심볼 내에서 DMRS 시¾스가 매핑되는 RE/부반송파 세트를 DMRS—콤이라고 지칭하고, 그외의 RE/부반송파 세트 (즉, DMRS가 매핑되지 않는 RE/ 부반송파 세트)를 논 -DMRS-콤이라고 지칭할수 있다.
[91] 자원 매핑
[92] 슬롯—기반 감소된 DMRS가 적용되는 경우, PUSCH 전송을 위해 주파수 영역에서 복수의 연속적인 RB 쌍이 할당되는 경우를 감안하면, 인접하는 RB 쌍간에 DMRS 심 볼이 전송되는 슬롯을 스위칭 하는 것이 인터플레이션 기반의 채널 시에 채널 추정 성능 측면에서 효과적일 수 있다. 따라서, 감소된 DMRS를 적용할 때에 DMRS심볼이 전송되는 슬롯을 RB 인덱스에 따라 순차적으로 스위칭 시키는 것을 제안한다. 도 10에 본 발명에 따른 감소된 MRS 전송 구조를 예시하였다. 여기서, RB 인덱스는 RB 쌍을 구성하는 첫 번째 슬롯의 RB 인텍스 또는 두 번째 슬롯의 RB 인덱스를 나타낼 수 있다. 여기서, RB 인덱스는 전체 시스템 BW(Bandwidt.h)를 기준으로 하는 셀 -특정 RB 인덱스로 주어지거나, PUSCH자원 할당 영역올 기준으로 하는 UE-특정 RB 인텍스 로 주어질 수 있다. 전자의 경우, 전체 시스템 BW가 N개 RB로 구성된다고 가정하면 전체 RB를 0~N— 1로 인덱싱 한 뒤, 짝수 인덱스를 갖는 RB에는 1st 슬롯을 통해서만 DMRS심볼이 전송되고, 홀수 인덱스를 갖는 RB에는 2nd슬롯을 통해서만 DMRS심볼 이 전송될 수 있다. 후자의 경우, PUSCH 전송을 위해 K개의 RB가 할당된 상황을 가 정하면, K개 RB를 0〜! ί— 1로 인덱싱 한 뒤, RB 인덱스 순으로 홀수 번째 RB에는 1st 슬롯을 통해서만 DMRS 심블이 전송되고, 짝수 번째 RB 에는 2nd 슬롯을 통해서만 DMRS 심볼이 전송될 수 있다. 여기서, 1st 슬롯과 2nd 슬롯은 각각 짝수ᅳ슬롯과 홀 수-슬롯에 대웅될 수 있다.
[93] 유사하게, 슬롯—기반 증가된 DMRS 가 적용되는 경우, 각 슬롯을 통해 전송되 는 DMRS 심블 개수 /위치를 RB 인덱스에 따라 순차적으로 스위칭 할 수 있다. 도 11 에 본 발명에 따론 증가된 DMRS 전송 구조를 예시하였다. 도 11 을 참조하면, 하나 의 RB쌍에 3개의 DMRS 심볼이 전송되는 경우, RB 인텍스 순으로 홀수 번째 RB에는 1st 슬롯에 2개의 DMRS 심볼이 전송되고, 2nd 슬롯에 1개의 DMRS 심볼이 전송되며, 짝수 번째 RB에는 반대로 1st 슬롯에 1개의 DMRS 심볼이 전송되고, 2nd슬롯에 2개 의 DMRS심볼이 전송될.수 있다.
[94] 한편, 기존과 같이 RB쌍당 2 개 (즉, 슬롯당 1 개)의 DMRS 심볼 수를 그대로 유지한상태에서 콤 -기반 DMRS를 적용할 수 있다. 도 12에 콤ᅳ기반 DMRS를 예시하 였다. 도 12를 참조하면, DMRS 심블 수를 그대로 유지한 상태에서 해당 SC-FDMA심 볼 내 짝수 인덱스의 부반송파에 해당하는 RE (즉, 짝수—콩) 혹은 홀수 인덱스의 부 반송파에 해당하는 RE (즉, 흘수 -콤)에서만 DMRS 를 전송할 수 있다. 여기서, 짝수ᅳ 콤은 하나의 SC— FDMA 심볼 내에서 (2k-l)번째 부반송파들의 집합에 대응되고, 홀수 -콤은 하나의 SC-F MA 심볼 내에서 2k번째 부반송파들의 집합에 대옹될 수 있다 (k = 1, 2, …, N). 여기서, N은 PUSCH 전송을 위해 할당된 부반송파의 개수를 나타낸다.
[95] 콤ᅳ기반 DMRS가 적용되고 PUSCH에 UCI가 피기백 되는 경우, non—DMRS-콤 (즉, DMRS가 매핑되지 않은 RE 세트)에 A/N을 매핑 /전송할 수 있다. 일 예로, DMRS심볼 과 가장 인접한 심볼 및 non— DMRS—콤 모두를 대상으로 마지막 부반송파부터 순차적 으로 전체 RB에 걸쳐 A/N을 매핑 /전송할 수 있다. 또한, 콤-기반의 DMRS가 적용되 고 PUSCH에 UCI가 피기백 되는 경우, non-DM S-콤에 CQI/PMI를 매핑 /전송할 수 있 다. 일 예로, 논ᅳ DMRS 심블 및 non-DMRS-콤 모두를 대상으로 첫 번째 부반송파부터 순차적으로 전체 RB에 걸쳐 CQI/PMI를 매핑 /전송할 수 있다.
[96] 또한, 콤—기반 DMRS의 경우, DMRS가 전송되는 콤을 RB 인덱스에 따라 순차적 으로 및 /또는 슬롯 인덱스에 따라 스위칭 할 수 있다. 도 13 에 콤 -기반 DMRS를 예 시하였다. 도 13 을 참조하면, RB 인텍스 순으로 홀수 번째 RB 에서는 짝수—콤을 DMRS 전송에 사용하고, 짝수 번째 RB 에서는 홀수ᅳ콤을 DMRS 전송에 사용할 수 있다. 다른 예로, 1st 슬롯의 경우에는 짝수 -콤을 DMRS 전송에 사용하고, 2nd 슬롯의 경우 에는 홀수 -콤을 DMRS 전송에 사용할 수 있다. 여기서, 1st 슬롯과 2nd 슬롯은 각각 짝수-슬롯과 홀수-슬롯에 대웅될 수 있다.
[97] 한편, 콤 -기반 DMRS를 적용하는 경우, 복수 단말간 다중화 증대 및 단말간 / 셀간 간섭 완화 등을 위하여 DMRS 심블 내에서 non-DMRS—콤에는 데이타 (및 /또는 UCI)를 매핑 /전송하지 않거나, 데이타 (및 /또는 UCI)를 매핑 /전송하도록 정의 /설정 될 수 있다. 또한, 데이타 매핑 허용 여부와 무관하게, non-DMRS-콤에는 항상 UCI를 매핑 7전송하지 않도록 정의 /설정될 수 있다. 또한, 데이타 매¾ 허용 여부와 무관 하게, UCI 가 피기백 되는 경우에는 non-DMRS—콤에는 UCI (및 /또는 데이타)를 매핑 / 전송하지 않도록 정의 /설정될 수 있다. 한편, PUCCH의 경우에도 유사한 목적 (즉, 복 수 단말간 다중화 증대 및 단말간 /셀간 간섭 완화 등)을 위해 콤 -기반 DMRS를 적용 할 수 있으며, 이 경우에도 non-DMRSᅳ콤에는 UCI를 매핑 /전송하지 않을 수 있다.
[98] PHICH자원 결정 [99] 한편, 감소된 DMRS 를 적용하는 경우, 복수 단말간 다중화를 위하여 DMRS 심 블 /신호가 전송되는 슬롯 /콤에 따라 서로 다른 PHICH 자원 인덱스를 할당 /전송할 수 있다. 일 예로, 슬릇—기반 감소된 DMRS가 적용되는 경우, (PUSCH자원으로 할당 된 영역 내 전체 RB 세트 혹은 특정 RB (예, 최소 인덱스를 갖는 RB)에서) Ist 슬롯을 통해 DMRS 심볼이 전송되는 경우에는 기존과 동일한 방식 (수학식 1 참조)으로 PHICH자원 인덱스를 산출할 수 있다. 반면, 2nd 슬롯을 통해 DMRS 심볼이 전송되는 '경우에는 기존 방식을 통해 산출되는 PHICH 인덱스에 (지정 /설정된) 오프셋이 더해 지는 형태로 대웅되는 PHICH 자원 인덱스가 결정될 수 있다. 다른 예로, 콤—기반 DMRS가 적용되는 경우, (PUSCH자원으로 할당된 영역 내 전체 RB세트흑은 특정 RB (예, 최소 인텍스를 갖는 RB)에서) 짝수 -콤을 통해 DMRS가 전송되는 경우에는 기존 과 동일한 방식으로 PHICH 자원 인덱스를 산출할 수 있다. 반면, 홀수ᅳ콤을 통해 DMRS가 전송되는 경우에는 기존 방식을 통해 산출되는 PHICH자원 인덱스에 (지정 / 설정된) 오프셋이 더해지는 형태로 대응되는 PHICH 자원 인덱스가 결정될 수 있다. 여기서, 오프셋은 RRC/MAC 시그널링 등올 통해 설정될 수 있다. 또한, 오프셋은 PDCCHCUL 그랜트)를 이용하여 지시될 수 있다.
[100] 여기서, 오프셋은 PHICH시¾스 인덱스 (즉, 직교 시퀀스 인덱스), PHICH 그룹 번호, 혹은 DMRS사이클릭 쉬프트 값에 대한 오프셋일 수 있다. 오프셋 값은 1 또 는 —1 (하나의 전송블록만스케줄링 되거나 및 /또는 DCI 포맷 0을 통해 스케줄링 되 는 경우)로 지정, /설정될 수 있다. 또한, 오프셋 값은 2 또는 -2 (두 개의 전송블록 이 스케줄링 되거나 및 /또는 DCI 포맷 4 를 통해 스케줄링 되는 경우)로 지정 /설정 될 수 있다. 또한, (오프셋 적용 대상 슬롯 /인덱스를 별도로 정의하지 않고) 오프셋 을 미리 지정 /설정한 상태에서 오프셋 적용 여부를 UL 그랜트를 통해 동적으로 시 그널링 해 줄 수 있다. 다른 방법으로, 상위 계층 (예, RRC) 시그널링을 통해 복수의 오프셋 값을 미리 지정 /설정한 상태에서, 복수의 오프셋 값 중 어느 값을 적용할지 를 UL 그랜트를 통해 동적으로 시그널링 할 수 있다. UL 그랜트를 통해 PHICH 오프 셋을 알려주는 경우, UL 그랜트 (예, DCI 포맷 0/4) 내에 새로운 필드를 추가하여 오 프셋을 알려주거나, UL 그랜트 내의 기존 필드를 차용하여 오프셋을 알려즐 수 있다. 또한, 오프셋은 UL 그랜트 내의 기존 특정 필드 (들) (예, DMRS 사이클릭 쉬프트)를 통해 시그널링 되는 값 혹은 이의 조합을 통해 묵시적으로 유추될 수 있다 (편의상, 상기 시그널링을 THICH 지시자 "라 칭함).
[101]일 예로, PHICH자원은 오프셋을 이용하여 다음과 같이 결정될 수 있다.
[102] 【수학식 31 CH = ilZ' S NDEX I NfH H \+ nDMRS + O) mod IN^"
여기서, 0는 오프셋을 나타낸다.
[103] 또한, RRC/MAC/PDCCH 시그널링을 통해 PHICH 자원 자체를 알려주는 것도 가능 하다. 이 경우, 앞의 설명에서 오프셋은 PHICH자원으로 대체될 수 있다.
[104] 또한, PHICH 자원 인텍스를 슬롯 /콤의 함수를 이용하여 결정할 수 있다. 일 예로, PHICH자원은 오프셋을 이용하여 다음과 같이 결정될 수 있다.
[105] 【수학식 4】
CH = ίΐ' ^ I N^ J+ nDms + f2 (·)) mod 2N™
여기서, f^ 은 슬롯 /콤 인덱스를 파라미터로 갖는 함수를 나타내고, ί2(·)는 슬롯 /콤 인덱스를 파라미터로 갖는 함수를 나타낸다. 예를 들어, ^(,) 2( =슬롯 인텍스 (또는 콤 인덱스)로 주어질 수 있고, 슬롯 인덱스 (또는 콤 인덱스)는 0 또 는 1을 가질 수 있다. 또한,
Figure imgf000026_0001
다음과 같이 주어질 수 있다.
[106] 【표 6】
Figure imgf000026_0002
,기서, DCI 포맷 0은 최대 1개의 전송 블특을 지원하는 전송 모드로 설정된 경우로 대체되고, DCI 포맷 4는 최대 2 개의 전송 블록을 지원하는 전송 모드로 설 정된 경우로 대체될 수 있다. [107] 또한, DCI 포맷 0의 경우 (또는 최대 1 개의 전송 블록을 지원하는 전송 모드 로 설정된 경우), 오프셋 (예, ^( 먀2())을 0으로 설정할 수 있다. 즉, DCI 포맷 4 인 경우 (또는, 최대 2 개의 전송 블록을 지원하는 전송 모드로 설정된 경우)에만 PHICH지시자를 이용하여 PHICH자원 할당을 조절할 수 있다.
[108] 시그널링
[109] 감소된 DMRS 가 지원되는 경우, 다음 증 적어도 하나가 RRC/MAC 시그널링을 통해 반—정적 (semi -static)으로 설정되거나, UL 그랜트 (예, PDCCH/EPDCClK Enhanced PDCCH)를 통해 동적으로 지정될 수 있다.
[110] ᅳ 감소된 DMRS와 기존 레가시 DMRS증 어떤 방식이 적용되는지 여부
[111] -슬롯 -기반 감소된 DMRS와콤ᅳ기반 DMRS 중 어떤 방식이 적용되는지 여부,
[112] ᅳ 짝수 /홀수 슬롯 중 어떤 슬롯을 통해 DMRS가 전송되는지 여부,
[113] -짝수 /홀수 콤 중 어떤 콤을 통해 DMRS가 전송되는지 여부.
[114] UL 그랜트 (예, DCI 포맷 0/4)를 통해 DMRS 구조를 알려주는 경우, UL 그랜트 내에 새로운 필드를 추가하여 위의 정보를 알려주거나, UL 그랜트 내의 기존 필드를 차용하여 위의 정보를 알려줄 수 있다. 또한, 위의 정보는 UL 그랜트 내의 기존 특 정 필드 (들) (예, MRS사이클릭 쉬프트)를 통해 시그널링 되는 값 혹은 이의 조합을 통해 묵시적으로 유추될 수 있다 (편의상, 상기 시그널링을 "DMRS 지시자 "라 칭함).
[115] 한편, 표 3에서와 같이, PUSCH의 경우에는 UL 그랜트 DCI 포맷 (예, 포맷 0/4) 을 통해 시그널링 되는 DMRS사이클릭 쉬프트 필드 값에 따라 각 레이어 별로 적용 될 실제 DMRS 사이클릭 쉬프트 값 (즉, DCS) 및 직교 커버 코드 (Orthogonal Cover Code, 0CC) 정보가 결정될 수 있다. 본 발명에서는 감소된 DMRS가설정된 경우 DMRS 에 0CC를 적용하지 않는 대신, 2 가지 서로 다른 OCC, 즉 [1, 1]과 [1, — 1]을 1ᅳ비 트 DMRS지시자 혹은 1—비트 PHICH지시자로사용하는 것을 제안한다. 일 예로, 0CC 가 [1, 1]인지 [1, -1]인지에 따라 서로 다른 슬롯 /콤 (예, 짝수—슬롯 또는 홀수一슬 롯; 짝수ᅳ콤 또는 홀수 -콤)을 통해 (각 레이어에 대웅되는) DMRS를 전송할 수 있다. 또한, 특정 레이어 (예ᅳ ]-번째 레이어)에 대한 0CC가 [1, 1]인지 [1, — 1]인지에 따 라 서로 다른 MRS 구조 (예, 감소된 DMRS 또는 레가시 DMRS; 슬롯—기반 감소된 DMRS 또는 콤 -기반 DMRS)를 적용하여 (해당 각 레이어에 대응되는) DMRS 를 전송할 수 있다. 또한, 특정 레이어 |(예, 1-번째 레이어)에 대한 0CC 가 [1, 1]인지 [1, -1] 인지에 따라 서로 다른 PMCH 오프셋 값을 적용하거나, (미리 지정 /설정된) PHICH 오프셋의 적용 여부를 결정할 수 있다.
[116] 일 예로, 감소된 DMRS가적용되는 경우 표 3은 다음과 같이 변형될 수 있다. 콤 -기반 DMRS 가 적용되는 경우에도 동일하게 정의될 수 있다. 예를 들어, 콤 -기반 DMRS가사용되는 경우, 표에서 slot#0/slot#l은 각각짝수-콤 /홀수ᅳ콤 (또는, 홀수 -콤 /짝수ᅳ콤)으로 대체될 수 있다.
[117] 【표 3】
Figure imgf000028_0001
[118] 다른 방법으로, 슬롯ᅳ기반 감소된 DMRS를 적용하는 경우, 0CC 가 [1, 1]이면 1st 슬롯을 통해 전송되는 DMRS 심볼과 2nd 슬롯을 통해 전송되는 DMRS 심블에 각 각 1, 1을 곱하고, 0CC가 [1, -1]이면 각각 1, ᅳ 1을 곱할 수 있다. 또한ᅳ 콤—기반 DMRS를 적용하는 경우 , 0CC가 [1, 1]이면 1st 슬롯과 2nd 슬롯에서 동일한 콤 (예, 짝수—콤)을사용하고, 0CC가 [1, -1]이면 1st 슬롯과 2nd슬롯에서 서로 다른 콤 (예, 1st 슬롯에서 짝수—콩, 2nd 슬롯에서 홀수 -콤)을사용할 수 있다.
[119] 또 다른 방법으로, 슬롯 /콤—기반 DMRS (및 /또는 기존 레가시 DMRS)를 적용하 는 경우에 0CC를 슬롯 도메인이 아닌 RB도메인에 적용할 수 있다. 예를 들어, 0CC 가 [1, 1]인 경우에는. RB 인텍스 순으로 홀수 번째 RB쌍을 통해 전송되는 DMRS 와 짝수 번째 RB쌍을 통해 전송되는 DMRS에 각각 1, 1을 곱하고, 0CC가 [1, ᅳ1]인 경 우에는 홀수 번째 B 쌍을 통해 전송되는 DMRS 와 짝수 번째 RB 쌍을 통해 전송되는 DMRS에 각각 1, — 1을 각각 곱할 수 있다. [120] 한편 감소된 DMRS 기반 멀티—레이어 전송인 경우, 레이어간 간섭 영향을 고 려하여 적어도 하나 이상의 레이어에 대웅되는 DMRS 가 전송되는 심블에서는 (모든 레이어에 대해) 데이타 (및 /또는 UCI)를 매핑 /전송하지 않거나, (DMRS 가 전송되지 않는 모든 혹은 특정 레이어에 대해) 데이타 (및 /또는 UCI)를 메핑 V전송하도록 정 의 /설정할 수 있다. 또한, 데이타 매핑' 허용 여부와 무관하게, 적어도 하나 이상의 레이어에 대응되는 DMRS 가 전송되는 심볼에서는 (모든 레이어에 대해) 항상 UCI 를 매핑 /전송하지 않도록 정의 /설정될 수 있다. 또한, 데이타 매큉 허용 여부와 무관 하게, UCI 가 피기백 되는 경우에는 해당 SC-FDMA심볼에 대하여 (모든 레이어에 대 해) UCI (및 /또는 데이타)를 매핑 /전송하지 않도록 정의 /설정될 수 있다.
[121] 다른 방법으로, 감소된 DMRS 가 설정된 경우라도 UCI 전송 성능의 열화를 방 지하기 위하여, CSI 및 /또는 A/N이 피기백 되는 PUSCH의 경우에는 예외적으로 감소 된 DMRS가 아닌 기존 DMRS구조 (도 8)를 그대로 유지 /사용할수 있다. 즉, UCI 피기 백이 없는 PUSCH (즉, UL-SCH 데이터만 전송되는 PUSCH)에 대해서만 감소된 DMRS 를 적용할 수 있다. 또는, UCI 피기백이 수행되는 PUSCH에서 CSI 및 /또는 A/N 이 전송 되는 RB (쌍)에 대해서만 예외적으로 감소된 DMRS 가 아닌 기존 DMRS 구조 (도 8)를 그대로 유지 /사용할 수 있다. 즉, CSI 및 /또는 A/N이 전송되지 않는 RB (쌍)에 대해 서만 감소된 DMRS 구조를 적용할 수 있다. 비주기적 CSI 요청이 트리거된 PUSCH (즉 비주기적 CSI 보고가지시된 PUSCH)에도 상기 방법이 동일하게 적용될 수 있다.
[122] 또한, 증가된 DMRS가 설정된 경우라도 UCI 및 DMRS가 점유하는 심볼 /자원 증 가로 인한 UL 데이타 손실을 줄이기 위해, CSI 및 /또는 A/N이 피기백 되는 PUSCH의 경우에는 예외적으로 증가된 DMRS 가 아닌 기존 DMRS 구조 (도 8)를 그대로 유지 /사 용할 수 있다. 즉, UCI 피기백이 없는 PUSCH (즉, UL-SCH 데이터만 전송되는 PUSCH) 에 대해서만 증가된 DMRS를 적용할 수 있다. 또한, UCI 피기백이 수행되는 PUSCH에 서 CSI 및 /또는 A/N 이 전송되는 RB (쌍)에 대해서만 예외적으로 증가된 DMRS가 아 닌 기존 DMRS 구조 (도 8)를 그대로 유지 /사용할 수 있다. 즉, CSI 및 /또는 A/N이 전 송되지 않는 RB (쌍)에 대해서만 증가된 DMRS구조를 적용할 수 있다. 비주기적 CSI 요청이 트리거된 PUSCH (즉, 비주기적 CSI 보고가 지시된 PUSCH)의 경우 상기 방법 이 동일하게 적용될 수 있다.
[123] 한편, 감소된 DMRS (및 /또는 증가된 DMRS)가 설정된 경우라도 RRC 재설정 및 역지원 (backward compatibility), 제어 오버해드, 성능 손실 등을 감안해, 다음 중 적어도 하나의 경우에 대해 예외적으로 레거시 DMRS구조를 유지 /사용할 수 있다.
[124] 1) CSS( Common Search Space)로부터 전송된 PDCCHOIL 그랜트)에 의해 스케줄 링된 PUSCH
[125] 2) SPS기반의 스케줄링이 설정된 PUSCH
[126] 3) RAR을 통해 스케줄링된 PUSCH
[127] 4) 재전송이 수행되는 PUSCH
[128] 5) SRS 전송 /보호등을 위해 레이트ᅳ매칭이 적용된 PUSCH
[129] * 레이트-매칭된 PUSCH의 경우, 2nd슬롯 기반의 감소된 DMRS를 적용하도록 설정된 경우라도, (채널 추정 성능 및 /또는 UCI 피기백 측면을 고려하여) 예외적으 로 1st 슬롯 기반의 감소된 DMRS 가 적용될 수 있다. 그 외의 경우에는 설정된 대로 2nd슬롯 기반의 감소된 DMRS가 적용될 수 있다.
[130] 전력 제어
[131] 감소된 DMRS와 대조적으로 하나의 RB쌍에 3개 이상 (혹은, 적어도 하나의 슬 롯에 2 개 이상)의 DMRS심블이 전송되는 형태 (즉, 증가된 DMRS)도 고려할 수 있다. 감소된 /레가시 /증가된 DMRS 기반의 PUSCH (및 /또는 PUCCH)가 동시 전송되는 상황에 서 UL 최대 전력 제한 (maximum power limitation)에 도달한 경우 (즉, 단말의 전송 전력이 해당 단말의 최대 전력 허용치를 초과한 경우), DMRS 밀도에 따라 전력 제어 보호 우선 순위를 둘 수. 있다. 이 경우, 보호 우선 순위가 더 낮은 PUSCH/PUCCH 에 대하여 우선적으로 전력을 줄이거나 전송을 포기할 수 있다. 또한, 감소된 /레가시 / 증가된 DMRS기반의 PUSCH가 동시 전송되는 상황에서 UCI가 피기백 될 PUSCH를 결 정할 경우, DMRS 밀도에 따라 UCI 컨테이너 (container ) 선택 우선 순위를 둘 수 있 다. 이 경우, 선택 우선 순위가 더 높은 PUSCH 를 통해 UCI 피기백이 수행될 수 있 다. 예를 들어, 단말 상황에 따라 다음과 같이 전력 제어 보호 우선 순위 및 UCI 컨테이너 선택 우선 순위를 둘 수 있다.
[132] ― 감소된 DMRS > 레가시 DMRS >증가된 DMRS,
[133] ― 증가된 DMRS > 레가시 DMRS > 감소된 DMRS,
[134] - 감소된 /증가된 DMRS > 레가시 DMRS, 혹은
[135] - 레가시 DMRS > 감소된 /증가된 DMRS.
[136] 하나의 단말에 대해 단말 총 최대 전력 (이하, Pmax,UE), 샐 그룹 최대 전력 (이 하, Pmax,cgp), 셀 최대 전력 (이하, Pmax.c)이 설정될 수 있다. 최대 전력 제한 상황은 해당 채널 /신호 (들)의 전송 전력이 단말 총 최대 전력 (Pmax,UE), 셀 그룹 최대 전력 (Pmax,cgp) 및 셀 최대 전력 (Pmax,c) 중 어느 하나라도 초과한 경우에 발생할 수 있다. 셀 그룹 최대 전력 (P隱, cgp) 및 셀 최대 전력은 캐리어 병합 (carrier aggregat ion)을 지원하는 경우에 설정되며, 셀은 콤포년트 반송파에 대응한다. 이로 제한되는 것은 아니지만, UL 전력 조정 과정은, 1) 샐 별로 하나의 셀 내에서의 채널 /신호 전송 전 력의 합이 각 샐 최대 전력 (Pmax,c) 이하가 되도록 조정한 다음, 2) 셀 그룹별로 하나 의 셀 그룹 내에서의 채널 /신호 전송 전력의 총합이 각 셀 그룹 최대 전력 (Pmax,cgp) 이하가 되도록 조정한 후, 3) 마지막으로 전체 셀 (그룹) 내에서의 채널 /신호 전송 전력의 총합이 단말 총 최대 전력 (Pmax,uE) 이하가 되도록 조정하는 단계로 구성될 수 있다. 보호 우선순위가 더 낮은 채널 /신호의 전송 전력을 줄이기 위해 다양한 방법이 사용될 수 있다. 예를 들어, 보호 우선 순위가 높은 채널 /신호의 전송 전력 을 PA라고 하고, 보호 우선 순위가 낮은 채널 /신호의 전송 전력을 PB라고 가정한다. 이 경우, PA + PB > Pmax,UE인 상황이 발생하면, 단말은 PB를 ΡΒ'로 줄이거나 0으로 할 수 있다 . FV는 α*ΡΒ, ΡΒ-β 또는 α*ΡΒ±β 형태일 수 있다. 여기서, 전력 값의 단위 는 선형—스케일 값 또는 로그ᅳ스케일일 수 있고, 0≤ α<1이며 , β는 양의 실수이다. 예를 들어, ΡΑ + α*ΡΒ ≤ !^ 를 만족하는 α 값이 결정될 수 있다.
[137] 한편, 단말이 UL 최대 전력 제한에 도달한 상황에서 특정 DMRS 구조 (예, 감 소된 DMRS, 레가시 DMRS 또는 증가된 DMRS)가 적용된 PUSCH 의 전송 전력을 줄여야 할 경우, 채널 추정에 대한 성능 열화를 막기 위해 논ᅳ DMRS 심볼의 전력을 DMRS 심 볼의' 전력보다 우선적으로 줄일 수 있다. 또는, (감소된 DMRS 가 적용된 경우) 논 -DMRS 슬롯의 전력을 DMRS 슬롯의 전력보다 우선적으로 전력을 줄이거나, (증가된 DMRS 가 적용된 경우) DMRS심볼 수가 더 적은 슬롯의 전력을 DMRS 심블 수가 더 많 은 슬롯의 전력보다 우선적으로 줄일 수 있다. 특정 DMRS 구조 (예, 감소된 DMRS, 레가시 DMRS또는 증가된 DMRS)가 적용된 PUCCH의 전송 전력을 줄여야 할 경우에도 동일하게 적용될 수 있다.
[138] 다른 방안으로, 채널 추정 성능 (및 /또는 커버리지) 개선 등을 위하여 PUSCH 및 /또는 PUCCH 를 구성하는 DMRS 심볼과 논— DMRS 심볼간의 전송 전력 오프셋 흑은 비율 등을 (RRC 시그널링 등을 통해) 설정해 줄 수 있다. 이에 따라, 단말은 PUSCH/PUCCH 를 구성하는 DMRS 심볼과 논— DMRS 심볼의 전송 전력을 해당 전송 전력 오프셋 /해당 전송 전력 비율에 맞추어 상이하게 산출 /결정할 수 있다. 예를 들어, 단말이 UL 최대 전력 제한에 도달한 경우 다음과 같이 전력 제어를 할수 있다.
[139] 1) 전송 전력 오프셋 혹은 비율을 유지하면서 DMRS 심볼의 전력과 논— DMRS 심불의 전력을 동시에 줄이거나,
[140] 2) DMRS 심볼의 전력과 논ᅳ DMRS 심볼의 전력을 동일한 비율로 줄이거나,
[141] 3) 논ᅳ DMRS심볼의 전력을 우선적으로 줄이거나,
[142] 4) DMRS 심볼의 전력을 우선적으로 줄이되, 논 -MRS 심볼의 전력보다는 낮아 지지 않게 전체 전력을 조절할 수 있다.
[143] 도 14는 본 발명에 실시예에 적용될 수 있는 기지국 및 단말을 예시한다. 릴 레이를 포함하는 시스템의 경우, 기지국 또는 단말은 릴레이로 대체될 수 있다.
[144] 도 14를 참조하면, 무선 통신 시스템은 기지국 (BS, 110) 및 단말 (UE, 120)을 포함한다. 기지국 (110)은 프로세서 (112), 메모리 (114) 및 무선 주파수 (Radio Frequency, RF) 유닛 (116)을 포함한다. 프로세서 (112)는 본 발명에서 제안한 절차 및 /또는 방법들을 구현하도록 구성될 수 있다. 메모리 (114)는 프로세서 (112)와 연 결되고 프로세서 (112)의 동작과 관련한 다양한 정보를 저장한다. RF유닛 (116)은 프 로세서 (112)와 연결되고 무선 신호를 송신 및 /또는 수신한다. 단말 (120)은 프로세 서 (122), 메모리 (124) 및 RF 유닛 (126)을 포함한다. 프로세서 (122)는 본 발명에서 제안한 절차 및 /또는 방법들을 구현하도록 구성될 수 있다. 메모리 (124)는 프로세 서 (122)와 연결되고 프로세서 (122)의 동작과 관련한 다양한 정보를 저장한다. RF 유 닛 (126)은 프로세서 (122)와 연결되고 무선 신호를 송신 및 /또는 수신한다. 기지국 (110) 및 /또는 단말 (120)은 단일 안테나또는 다중 안테나를 가질 수 있다.
[145] 이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적 인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결 합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및 /또는 특징들을 결 합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명 되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음 은 자명하다.
[146] 본 문서에서 본 발명의 실시예들은 주로 단말과 기지국 간의 데이터 송수신 관계를 중심으로 설명되었다. 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드 (upper node)에 의해 수행될 수 있다. 즉, 기 지국을 포함하는 복수의 네트워크 노드들 (network nodes)로 이루어지는 네트워크에 서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다 른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국 (fixed station), Node B, eNode B(eNB), 억세스 포인트 (access point) 등의 용어에 의해 대 체될 수 있다. 또한, 단말은 UE Jser Equipment), MS(Mobile Station), MSS( Mobile Subscriber Station) 등의 용어로 대체될 수 있다.
[147] 본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어 (firmware), 소프트웨어 또는 그것들의 결합 둥에 의해 구현될 수 있다. 하드웨어 에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(appl icat ion specific integrated circui ts) , DSPs(digi tal signal processors) DSPDs(digi al signal processing devices) , PLDs( programmable logic devices), FPGAs( field programmable gate arrays), 프로세서, 콘트를러, 마이크로 콘트를러, 마이크로 프로세서 등에 의해 구현될 수 있다.
[148] 펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모들, 절차, 함수 등의 형태로 구현될 수 있 다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양 한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
[149] 본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구 체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에 서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명 의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가 적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
【산업상 이용가능성】 '
[150] 본 발명은 단말, 릴레이, 기지국 등과 같은 무선 통신 장치에 사용될 수 있다.

Claims

【청구의 범위】 -
【청구항 1】
무선 통신 시스템에서 단말이 제어 정보를 수신하는 방법에 있어서, 상향링크 스케줄링 정보를 포함하는 PDCCH(Physical Downlink Control Channel) 신호를 수신하는 단계;
상기 상향링크 스케줄링 정보를 이용하여 PUSCH(Physical Uplink Shared Channel) 신호를 전송하는 단계; 및
상기 PUSCH 신호에 대한 수신 응답 정보를 포함하는 PHICH(Physical Hybrid ARQ) 신호를 수신하는 단계를 포함하고,
상기 PUSCH신호를 위한 RS(Reference Signal)는 상기 PUSCH신호가 전송되는
RBCResource Block) 세트 내에서 RB쌍 (pair) 당 한 슬롯에만존재하고,
상기 PHICH 신호를 수신하기 위한 자원은 상기 RS가 존재하는 슬롯의 인덱스 를 이용하여 결정되는 방법 .
【청구항 2】
제 1항에 있어서,
상기 RS는 RB 인덱스에 따라 상기 RB 세트 내에서 서로 다른 슬롯에 교차로 존재하도록 설정되고,
상기 PHICH 신호를 수신하기 위한 자원은 상기 RB 세트 내의 특정 RB에서 RS 가존재하는 슬롯의 인덱스를 이용하여 결정되는 방법.
【청구항 3】
제 2항에 있어서,
상기 특정 RB는 상기 RB세트 내에서 가장 작은 인덱스를 갖는 RB인 방법 .
【청구항 4】
제 2항에 있어서,
상기 RB 인텍스는 시스템 대역 내의 전체 RB를 기준으로 인덱싱 되는 방법.
【청구항 5】
제 2항에 있어서, 상기 RB 인덱스는 상기 RB세트 내의 RB를 기준으로 인덱싱 되는 방법 .
【청구항 6】
제 1항에 있어서,
상기 RS가 존재하는 슬롯의 인텍스는 PHICH 그룹 인덱스 및 PHICH 시원스 인 덱스 중 적어도 하나를 결정하는 과정에서 사용되는 오프셋을 지시하는 방법.
【청구항 7】
무선 통신 시스템에서 제어 정보를 수신하도록 구성된 단말에 있어서, 무선 주파수 (Radio Frequency, RF) 유닛; 및
프로세서를 포함하고,
상기 프로세서는 상향링크 스케줄링 정보를 포함하는 PDCCHCPhysical
Downlink Control Channel) 신호를 수신하고, 상기 상향링크 스케줄링 정보를 이용 하여 PUSCHCPhysical Uplink Shared Channel) 신호를 전송하며, 상기 PUSCH 신호에 대한수신 웅답 정보를 포함하는 PHICH(Physical Hybrid ARQ) 신호를 수신하도록 구 성되고,
상기 PUSCH신호를 위한 RS(Reference Signal)는 상기 PUSCH신호가 전송되는 B(Resource Block) 세트 내에서 RB쌍 (pair) 당 한 슬롯에만존재하고,
상기 PHICH 신호를 수신하기 위한 자원은 상기 RS가 존재하는 슬롯의 인덱스 를 이용하여 결정되는 단말.
【청구항 81
제 7항에 있어서,
상기 RS는 RB 인텍스에 따라 상기 RB 세트 내에서 서로 다른 슬롯에 교차로 존재하도록 설정되고,
상기 PHICH 신호를 수신하기 위한 자원은 상기 RB 세트 내의 특정 B에서 RS 가존재하는 슬롯의 인덱스를 이용하여 결정되는 단말.
【청구항 9】
제 8항에 있어서,
상기 특정 RB는 상기 RB 세트 내에서 가장 작은 인덱스를 갖는 RB인 단말. 【청구항 10】
제 8항에 있어서,
상기 RB 인덱스는 시스템 대역 내의 전체 RB를 기준으로 인덱싱 되는 단말. 【청구항 11】
제 8항에 있어서,
상기 RB 인텍스는 상기 RB 세트 내의 RB를 기준으로 인덱싱 되는 단말. 【청구항 12]
제 7항에 있어서,
상기 RS가 존재하는 슬롯의 인덱스는 PHICH 그룹 인덱스 및 PHICH 시퀀스 ^ 덱스 증 적어도 하나를 결정하는 과정에서 사용되는 오프셋을 지시하는 단말.
PCT/KR2014/002121 2013-03-13 2014-03-13 무선 신호를 전송하는 방법 및 이를 위한 장치 WO2014142578A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480015133.4A CN105191175B (zh) 2013-03-13 2014-03-13 发送无线信号的方法及其装置
EP14764367.0A EP2975783B1 (en) 2013-03-13 2014-03-13 Method for acknowledging uplink transmissions and device thereof
US14/771,159 US10477524B2 (en) 2013-03-13 2014-03-13 Method for transmitting wireless signal and device therefor
US16/660,767 US11032805B2 (en) 2013-03-13 2019-10-22 Method for transmitting wireless signal and device therefor

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201361780856P 2013-03-13 2013-03-13
US61/780,856 2013-03-13
US201361808615P 2013-04-04 2013-04-04
US61/808,615 2013-04-04
US201361811128P 2013-04-12 2013-04-12
US61/811,128 2013-04-12
US201361817350P 2013-04-30 2013-04-30
US61/817,350 2013-04-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/771,159 A-371-Of-International US10477524B2 (en) 2013-03-13 2014-03-13 Method for transmitting wireless signal and device therefor
US16/660,767 Continuation US11032805B2 (en) 2013-03-13 2019-10-22 Method for transmitting wireless signal and device therefor

Publications (1)

Publication Number Publication Date
WO2014142578A1 true WO2014142578A1 (ko) 2014-09-18

Family

ID=51537120

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2014/002121 WO2014142578A1 (ko) 2013-03-13 2014-03-13 무선 신호를 전송하는 방법 및 이를 위한 장치
PCT/KR2014/002119 WO2014142577A2 (ko) 2013-03-13 2014-03-13 제어 정보를 전송하는 방법 및 이를 위한 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002119 WO2014142577A2 (ko) 2013-03-13 2014-03-13 제어 정보를 전송하는 방법 및 이를 위한 장치

Country Status (4)

Country Link
US (3) US9609634B2 (ko)
EP (2) EP2975791B1 (ko)
CN (2) CN105191175B (ko)
WO (2) WO2014142578A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107431935A (zh) * 2015-04-10 2017-12-01 松下电器(美国)知识产权公司 基站、终端、接收方法以及发送方法
EP3242435A4 (en) * 2014-12-31 2018-08-22 LG Electronics Inc. Method and apparatus for allocating resources in wireless communication system
US10623157B2 (en) 2017-04-30 2020-04-14 Lg Electronics Inc. Method for transmitting and receiving DM-RS in wireless communication system and apparatus therefor

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142578A1 (ko) 2013-03-13 2014-09-18 엘지전자 주식회사 무선 신호를 전송하는 방법 및 이를 위한 장치
JP5947240B2 (ja) * 2013-03-28 2016-07-06 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 送信装置及び送信方法
US9794921B2 (en) 2015-07-14 2017-10-17 Motorola Mobility Llc Method and apparatus for reducing latency of LTE uplink transmissions
US9775141B2 (en) 2015-07-14 2017-09-26 Motorola Mobility Llc Method and apparatus for reducing latency of LTE uplink transmissions
US9717079B2 (en) 2015-07-14 2017-07-25 Motorola Mobility Llc Method and apparatus for selecting a resource assignment
DE112015006876T5 (de) * 2015-09-04 2018-05-30 Intel Corporation Pusch-Uplink ohne Autorisierung
US10447445B2 (en) * 2016-01-11 2019-10-15 Electronics And Telecommunications Research Institute Device and method for transmitting reference signal
CN106992847B (zh) * 2016-01-20 2021-01-26 中兴通讯股份有限公司 上行数据发送、接收方法、装置、终端及基站
WO2017142582A1 (en) * 2016-02-19 2017-08-24 Intel IP Corporation Channel coding and interleaving for control and user data in the physical uplink shared channel
US10333674B2 (en) * 2016-02-26 2019-06-25 Lg Electronics Inc. Method and apparatus for transmitting uplink control information in a wireless communication system
US11432310B2 (en) 2016-03-27 2022-08-30 Lg Electronics Inc. Method for transmitting and receiving uplink demodulation reference signal in wireless communication system, and apparatus therefor
CN107294691B (zh) * 2016-03-31 2022-06-14 北京三星通信技术研究有限公司 上行的解调参考符号的传输方法和装置
CN114884640A (zh) * 2016-03-31 2022-08-09 北京三星通信技术研究有限公司 通信系统中的终端、基站及其方法
US10116483B2 (en) 2016-04-18 2018-10-30 Qualcomm Incorporated Dynamically convey information of demodulation reference signal and phase noise compensation reference signal
CN107347004A (zh) * 2016-05-05 2017-11-14 北京信威通信技术股份有限公司 探测参考信号的传输方法及装置
CN107371225B (zh) 2016-05-13 2020-01-07 电信科学技术研究院 一种上行共享信道的导频传输方法及相关设备
US10675913B2 (en) 2016-06-24 2020-06-09 Specialized Bicycle Components, Inc. Bicycle wheel hub with power meter
EP3484084B1 (en) * 2016-07-07 2024-03-13 LG Electronics Inc. Method and device for transmitting/receiving wireless signal in wireless communication system
CN107733548B (zh) 2016-08-10 2023-04-18 华为技术有限公司 信息的传输方法及相关装置
MX2019001622A (es) 2016-08-11 2019-06-13 Fraunhofer Ges Forschung Aparatos de comunicacion de datos, sistema de comunicacion de datos y metodos que utilizan simbolos de referencia.
JP6701439B2 (ja) 2016-08-12 2020-05-27 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 短縮された送信時間間隔(tti)を用いたpuschにおけるアップリンク制御シグナリング
US10356764B2 (en) * 2016-09-30 2019-07-16 Qualcomm Incorporated Channelization for uplink transmissions
WO2018058555A1 (en) * 2016-09-30 2018-04-05 Qualcomm Incorporated Comb adaptation for interlaced fdm dmrs
CN108023700B (zh) * 2016-11-04 2022-08-26 中兴通讯股份有限公司 一种导频参数的反馈、配置方法及装置、用户终端、基站
CN108024342B (zh) * 2016-11-04 2023-04-18 中兴通讯股份有限公司 一种配置解调参考信号的方法及装置
EP3547576B1 (en) * 2016-11-23 2021-07-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data processing method, and terminal device and network device
EP3560108A4 (en) * 2016-12-23 2020-06-03 CommScope Technologies LLC DISTRIBUTED MIMO AND / OR TRANSMISSION DIVERSITY IN A CLOUD RADIO ACCESS NETWORK SYSTEM
CN114884637B (zh) * 2017-01-09 2023-10-13 摩托罗拉移动有限责任公司 用于资源块中的物理上行链路控制信道的方法和装置
CN110235396B (zh) * 2017-02-05 2024-01-23 Lg 电子株式会社 无线通信系统中终端发送上行链路控制信息的方法和支持该方法的设备
FI3605885T3 (fi) * 2017-03-24 2023-01-13 Menetelmä, laite ja järjestelmä langattoman viestintäjärjestelmän ohjauskanavan lähettämiseksi ja vastaanottamiseksi
CN108811060B (zh) * 2017-05-05 2023-09-29 华为技术有限公司 一种功率控制方法和装置
CN117376990A (zh) 2017-06-16 2024-01-09 韩国电子通信研究院 通信系统中用于支持宽带载波的带宽设定方法
CN109120373B (zh) * 2017-06-23 2021-02-12 华为技术有限公司 一种信道编码方法、数据接收方法及相关设备
CN110771115B (zh) * 2017-06-26 2023-11-07 摩托罗拉移动有限责任公司 解调参考信号配置
WO2019031854A1 (ko) * 2017-08-08 2019-02-14 엘지전자 주식회사 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
CN110999165B (zh) * 2017-08-10 2022-06-28 松下电器(美国)知识产权公司 用户设备、基站和无线通信方法
US11375511B2 (en) * 2017-08-14 2022-06-28 Electronics And Telecommunications Research Institute Method for transmitting and receiving slot setting information in communication system
CN110637490A (zh) 2017-09-30 2019-12-31 Oppo广东移动通信有限公司 一种信道资源集的指示方法、终端设备及网络设备
EP3738366A4 (en) * 2018-01-11 2021-10-27 Sharp Kabushiki Kaisha USER EQUIPMENT, BASE STATIONS, AND METHODS
KR102547263B1 (ko) * 2018-01-12 2023-06-22 삼성전자주식회사 무선 통신 시스템에서 데이터채널 및 제어채널을 송수신하는 방법 및 장치
US11418374B2 (en) 2018-02-01 2022-08-16 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for selecting subcarriers for sub-PRB transmissions
CN110351809B (zh) * 2018-04-04 2024-04-26 华为技术有限公司 系统消息冗余版本确定方法及装置
US11917697B2 (en) * 2018-08-21 2024-02-27 Qualcomm Incorporated Interlace PRACH design in NR-U
CN112740605B (zh) * 2018-09-21 2023-11-03 Lg电子株式会社 在无线通信系统中发送或接收无线信号的方法和设备
CN110958087B (zh) * 2018-09-27 2022-06-17 中国电信股份有限公司 物理混合自动重传指示信道配置方法、装置以及基站
CN111132221B (zh) * 2018-11-01 2021-08-27 华为技术有限公司 传输参考信号的方法与设备
CN112997557A (zh) * 2018-11-02 2021-06-18 瑞典爱立信有限公司 解调参考信号序列生成方法及装置
US11411589B2 (en) 2018-11-16 2022-08-09 Commscope Technologies Llc Interference suppression for multi-user multiple-input-multiple-output (MU-MIMO) pre-coders using coordination among one or more radio points
CN111525981A (zh) * 2019-02-02 2020-08-11 索尼公司 接收设备、发送设备、通信方法以及介质
US11356979B2 (en) * 2019-04-24 2022-06-07 Samsung Electronics Co., Ltd. Method and apparatus for NR V2X sidelink HARQ procedure
KR20210039874A (ko) * 2019-10-02 2021-04-12 삼성전자주식회사 무선 통신 시스템에서 주파수 자원 할당 방법 및 장치
CN113163502B (zh) * 2020-01-22 2023-04-25 维沃移动通信有限公司 一种通信处理方法及相关设备
CN113473599A (zh) * 2020-03-30 2021-10-01 中国电信股份有限公司 信道资源映射方法和基站、终端及通信网络设备
CN113825180A (zh) * 2020-06-19 2021-12-21 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118334A2 (ko) * 2011-03-01 2012-09-07 엘지전자 주식회사 무선 통신 시스템에서 상향링크 harq 수행 방법 및 장치

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101531416B1 (ko) 2007-09-13 2015-06-24 옵티스 셀룰러 테크놀로지, 엘엘씨 상향링크 신호 전송 방법
WO2009107985A1 (en) 2008-02-28 2009-09-03 Lg Electronics Inc. Method for multiplexing data and control information
CN101960736B (zh) * 2008-02-28 2013-07-31 Lg电子株式会社 复用数据及控制信息的方法
US8503425B2 (en) * 2008-07-22 2013-08-06 Lg Electronics Inc. Method for allocating phich and generating reference signal in system using single-user MIMO based on multiple codewords when transmitting uplink
KR101638900B1 (ko) 2008-08-05 2016-07-12 엘지전자 주식회사 무선 통신 시스템에서 하향링크 멀티 캐리어에 대한 제어정보를 전송하는 방법
US20100041350A1 (en) * 2008-08-13 2010-02-18 Samsung Electronics, Co., Ltd. Uplink transmissions with two antenna ports
CA2742801C (en) * 2008-11-04 2016-07-26 Nortel Networks Limited Providing a downlink control structure in a first carrier to indicate control information in a second, different carrier
EP2400692A4 (en) 2009-02-27 2012-07-04 Huawei Tech Co Ltd METHOD, TERMINAL DEVICE AND CHANNEL SWITCHING SERVER FOR PROCESSING CHANNEL SWITCHING ABNORMALITIES
KR101789325B1 (ko) 2009-05-14 2017-10-24 엘지전자 주식회사 다중 반송파 시스템에서 제어채널을 모니터링하는 장치 및 방법
KR20110009025A (ko) * 2009-07-20 2011-01-27 엘지전자 주식회사 상향링크 제어정보 전송 방법 및 장치
CN107104780B (zh) * 2009-10-01 2020-10-16 交互数字专利控股公司 上行链路控制数据传输
KR101407073B1 (ko) * 2009-10-01 2014-06-12 한국전자통신연구원 다중입력 다중출력 시스템에서 상향링크 데이터용 물리 채널 영역으로 제어 정보를 전송하는 방법
CN101702631A (zh) * 2009-11-04 2010-05-05 中兴通讯股份有限公司 上行控制信令传输方法和装置
KR101787097B1 (ko) 2009-11-18 2017-10-19 엘지전자 주식회사 무선 통신 시스템에서 harq 수행 방법 및 장치
WO2011068358A2 (ko) 2009-12-01 2011-06-09 엘지전자 주식회사 경쟁기반 물리 상향링크 데이터 채널을 통한 데이터의 송수신 방법 및 이를 위한 장치
AU2011224995B2 (en) * 2010-03-10 2014-05-08 Lg Electronics Inc. Method and apparatus for transmitting uplink control information in a wireless communication system
US8958382B2 (en) * 2010-05-11 2015-02-17 Lg Electronics Inc. Method and device for receiving downlink signals
WO2011155763A2 (ko) 2010-06-08 2011-12-15 엘지전자 주식회사 협력 멀티 포인트 통신 시스템에서 채널상태정보 송수신 방법 및 장치
CA2809663A1 (en) 2010-06-18 2011-12-22 Research In Motion Limited System and method for uplink control information transmission in carrier aggregation
WO2012011775A2 (ko) * 2010-07-22 2012-01-26 엘지전자 주식회사 다중 반송파 시스템에서 상향링크 제어 정보 전송 방법 및 장치
KR101285398B1 (ko) * 2010-09-08 2013-07-10 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
US9204431B2 (en) * 2010-10-13 2015-12-01 Lg Electronics Inc. Method of transmitting control information and device for same
WO2012070672A1 (en) * 2010-11-22 2012-05-31 Sharp Kabushiki Kaisha Multiple channel state information (csi) reporting on the physical uplink shared channel (pusch) with carrier aggregation
PL2659719T3 (pl) 2010-12-31 2017-02-28 Telefonaktiebolaget Lm Ericsson (Publ) Alokacja kanałów potwierdzeń do grup kanałów o zmiennych energiach transmisji
CN106877991B (zh) * 2011-02-11 2020-06-26 交互数字专利控股公司 用于增强型控制信道的系统和方法
CN102858016B (zh) * 2011-06-29 2017-03-15 中兴通讯股份有限公司 数据处理方法及装置
US9258086B2 (en) * 2011-08-03 2016-02-09 Qualcomm Incorporated Allocating physical hybrid ARQ indicator channel (PHICH) resources
CN103858368B (zh) * 2011-08-16 2017-04-12 Lg电子株式会社 在无线通信系统中发射上行基准信号的方法和设备
EP2777233B1 (en) * 2011-11-07 2018-05-30 Telefonaktiebolaget LM Ericsson (publ) A method and apparatus for signaling demodulation reference signals
KR101530833B1 (ko) * 2011-11-17 2015-06-29 엘지전자 주식회사 무선 통신 시스템에서 데이터를 교환하는 방법 및 장치
US8681727B2 (en) * 2012-01-20 2014-03-25 Nokia Corporation Flexible radio channel sounding
US9337979B2 (en) * 2012-09-04 2016-05-10 Telefonaktiebolaget L M Ericsson (Publ) Feedback capability enhancement using reference symbol radio resource selection
PL2946519T3 (pl) * 2013-01-16 2022-11-28 Interdigital Patent Holdings, Inc. Ulepszona wydajność widmowa łącza uplink
WO2014142578A1 (ko) 2013-03-13 2014-09-18 엘지전자 주식회사 무선 신호를 전송하는 방법 및 이를 위한 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118334A2 (ko) * 2011-03-01 2012-09-07 엘지전자 주식회사 무선 통신 시스템에서 상향링크 harq 수행 방법 및 장치

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CATT: "Overhead reduction for spectrum efficiency improvement", RL-130057, 3GPP TSG RAN WG1 MEETING #72, 28 January 2013 (2013-01-28), ST JULIAN'S, MALTA, XP050663303, Retrieved from the Internet <URL:http://www.3gpp.org/ftpftsg_ran/WG1_RL1/TSGR1_72/Docs/R1-130057.zip> *
NOKIA ET AL.: "Evaluation Assumptions on Schemes to Enhance Small Cell Spectral Efficiency", R1-130491, 3GPP TSG RAN WG1 MEETING #72, 28 January 2013 (2013-01-28), ST JULIAN'S, MALTA, XP050663471, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_72/Docs/R1-130491.zip> *
See also references of EP2975783A4 *
TEXAS INSTRUMENTS: "UL considerations for Small Cell Enhancements", R1-130663, 3GPP TSG RAN WG1 MEETING #72, 28 January 2013 (2013-01-28), ST JULIAN'S, MALTA, XP050663913, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_72/Docs/R1-130663.zip> *
ZTE: "Downlink DMRS redunction for small cell", R1-130138, 3GPP TSG RAN WG1 MEETING #72, 28 January 2013 (2013-01-28), ST JULIAN'S, MALTA, XP050663565, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_72/Docs/R1-130138.zip> *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3242435A4 (en) * 2014-12-31 2018-08-22 LG Electronics Inc. Method and apparatus for allocating resources in wireless communication system
US10568072B2 (en) 2014-12-31 2020-02-18 Lg Electronics Inc. Method for allocating resource in wireless communication system and apparatus therefor
US10772083B2 (en) 2014-12-31 2020-09-08 Lg Electronics Inc. Method and apparatus for allocating resource in wireless communication system
US11310781B2 (en) 2014-12-31 2022-04-19 Lg Electronics Inc. Method and apparatus for allocating resource in wireless communication system
CN107431935A (zh) * 2015-04-10 2017-12-01 松下电器(美国)知识产权公司 基站、终端、接收方法以及发送方法
EP3281437A4 (en) * 2015-04-10 2018-05-02 Panasonic Intellectual Property Corporation of America Base station, terminal, receiving method, and transmission method
US10505664B2 (en) 2015-04-10 2019-12-10 Panasonic Intellectual Property Corporation Of America Base station, terminal, receiving method, and transmission method
EP3683992A1 (en) * 2015-04-10 2020-07-22 Panasonic Intellectual Property Corporation of America Base station, terminal, receiving method, and transmission method
US11251899B2 (en) 2015-04-10 2022-02-15 Panasonic Intellectual Property Corporation Of America Base station, terminal, receiving method, and transmission method
US10623157B2 (en) 2017-04-30 2020-04-14 Lg Electronics Inc. Method for transmitting and receiving DM-RS in wireless communication system and apparatus therefor
US11012213B2 (en) 2017-04-30 2021-05-18 Lg Electronics Inc. Method for transmitting and receiving DM-RS in wireless communication system and apparatus therefor

Also Published As

Publication number Publication date
EP2975783A1 (en) 2016-01-20
CN105308886A (zh) 2016-02-03
EP2975783A4 (en) 2016-10-12
US9609634B2 (en) 2017-03-28
WO2014142577A2 (ko) 2014-09-18
US20160029371A1 (en) 2016-01-28
EP2975791A4 (en) 2017-01-25
US20200053726A1 (en) 2020-02-13
CN105191175B (zh) 2019-02-05
US11032805B2 (en) 2021-06-08
EP2975783B1 (en) 2017-10-11
CN105191175A (zh) 2015-12-23
EP2975791A2 (en) 2016-01-20
WO2014142577A3 (ko) 2015-11-26
US20160006548A1 (en) 2016-01-07
EP2975791B1 (en) 2018-07-25
CN105308886B (zh) 2018-06-26
US10477524B2 (en) 2019-11-12

Similar Documents

Publication Publication Date Title
US11032805B2 (en) Method for transmitting wireless signal and device therefor
JP6312883B2 (ja) 制御情報を送信する方法及びそのための装置
CN107070584B (zh) 用于发送控制信息的方法及其设备
KR102058718B1 (ko) 상향링크 제어 채널 전송 방법 및 이를 수행하는 사용자 장치
US9253766B2 (en) Method for setting subframe in wireless communication system
CN106549747B (zh) 在无线通信系统中发送上行控制信息的方法及用户设备
EP2536050B1 (en) Data transmission method and device in wireless communication system
EP2445279B1 (en) Method and apparatus for transmitting control information in a wireless communication system
US8848649B2 (en) Method for transmitting an uplink signal, and apparatus for same
WO2015147544A1 (ko) 무선 통신 시스템에서 제어 정보 전송 방법 및 장치
WO2013119090A1 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2014119944A1 (ko) 무선 통신 시스템에서 수신확인응답 전송 방법 및 장치
US9661621B2 (en) Method and device for obtaining control information in a wireless communication system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480015133.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14764367

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14771159

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014764367

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014764367

Country of ref document: EP