WO2014142447A1 - Method for manufacturing fine-porous film and separation membrane for secondary battery using same - Google Patents

Method for manufacturing fine-porous film and separation membrane for secondary battery using same Download PDF

Info

Publication number
WO2014142447A1
WO2014142447A1 PCT/KR2014/001495 KR2014001495W WO2014142447A1 WO 2014142447 A1 WO2014142447 A1 WO 2014142447A1 KR 2014001495 W KR2014001495 W KR 2014001495W WO 2014142447 A1 WO2014142447 A1 WO 2014142447A1
Authority
WO
WIPO (PCT)
Prior art keywords
stretching
film
microporous membrane
temperature
high temperature
Prior art date
Application number
PCT/KR2014/001495
Other languages
French (fr)
Korean (ko)
Inventor
이도훈
Original Assignee
삼성토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성토탈 주식회사 filed Critical 삼성토탈 주식회사
Publication of WO2014142447A1 publication Critical patent/WO2014142447A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a microporous membrane and a separator for a secondary battery to which the microporous membrane prepared by the above method is applied.
  • Microporous membranes can be produced by a variety of processes, and the processes by which the membranes are made are known to have a significant impact on the physical properties of the membranes.
  • Commercially used processes can be largely divided into three processes. That is, it may be classified into a dry process, a wet process, and a particle stretching process.
  • the dry process is produced by extruding a nonporous precursor, and then controlling the orientation of the lamellae by heat treatment such as annealing, and stretching between rolls in a uniaxial direction.
  • heat treatment such as annealing
  • a microporous membrane is finally manufactured through a process such as heat setting.
  • Such a dry process is eco-friendly and price competitive because it does not use an extraction solvent compared to a wet process.
  • the pores are formed by uniaxial stretching in terms of mechanical properties, there is a problem that the tensile strength in the longitudinal direction is lowered.
  • the wet process involves mixing polymeric raw materials with processing oils (sometimes called plasticizers) and extruding the mixture into sheets to form pores while removing processing oils from the sheets.
  • processing oils sometimes called plasticizers
  • the oil may be stretched before or after the oil is removed, and oil is generally removed after biaxial stretching (see US Pat. No. 5,641,565, US Pat. No. 7,081,321). Therefore, the microporous membrane produced by the wet process maintains the balance between the longitudinal and transverse physical properties due to the biaxial stretching characteristics of the process, and has excellent tensile strength in the longitudinal direction compared to the microporous membrane of the dry process.
  • the particle stretching process is a method of extruding a sheet by mixing a polymeric raw material and a particulate, and stretching the sheet to form pores around the fine particles as the interface between the polymer and the fine particles is destroyed in the stretching process.
  • the dry process described above may be classified into a dry process, but the above-described dry process is a process of forming pores between lamellae in a lamellar crystal structure, and the stretching process of particles is a process of forming pores at the interface between the fine particles and the polymer. to be.
  • Particle stretching processes may also be used commercially in combination with wet processes. Both uniaxial stretching and biaxial stretching can be used as a stretching method of the particle stretching step.
  • the dry process has advantages and cost competitiveness of not using a solvent in the process, but there is a problem in that the tensile strength in the longitudinal direction is lower than that in the transverse direction.
  • the problem of deterioration of puncture strength and process problems due to breakage in the battery assembly process may be caused.
  • the following technology development has been progressed.
  • Korean Patent Laid-Open Publication No. 2008-0085922 proposes a method of improving the longitudinal tensile strength and the transverse tensile strength of a stretched microporous film by introducing a biaxial stretching method in a drying method, but using a laminated lamellar structure of a precursor film ( Due to the stacked lamellar structure, it is very difficult to secure a stretched product that can be rolled up without breaking the film when longitudinal stretching or simultaneous stretching is applied after transverse stretching.
  • U.S. Patent No. 5,667,911 also discloses a precursor film of cylindrical shape, annealing, low temperature stretching and high temperature stretching to produce a cylindrical microporous membrane, and finally slitting while rotating the cylindrical microporous membrane.
  • the present invention has been made to solve the problem of lowering the longitudinal tensile strength and the puncture strength of the microporous membranes according to the conventional techniques described above, and an object of the present invention is to introduce a gradient stretching method into a high temperature stretching process of a dry process, and By laminating the films produced by the method in such a manner that two or more layers of the stretching axes are alternately arranged (the stretching axes are substantially perpendicular), it is possible to secure the balance between the longitudinal and transverse physical properties of the film, that is, the continuous state in the roll state. It is to provide a method for producing a microporous membrane which can control the variation of the physical properties in the longitudinal direction and the transverse direction of the microporous membrane in the state.
  • Still another object of the present invention is to provide a separator for a secondary battery, which is manufactured by the method of the present invention and employs a microporous membrane having an improved tensile strength in the longitudinal direction compared to a microporous membrane prepared by conventional uniaxial stretching.
  • the polymer compound used in the step (1) is preferably a semicrystalline polymer, for example, polyolefin, polyfluorocarbon, polyamide, polyester, polyacetal, polysulfide, polyvinyl alcohol, these It may be a polymer compound selected from the group consisting of copolymers and combinations thereof.
  • the reinforcing material within a range that does not interfere with battery operation even when applied to the secondary battery.
  • Various additives such as a pigment and the like, can be added.
  • the additive is not particularly limited as long as it is a substance known in the art.
  • a precursor film may be prepared by extrusion molding a resin composition containing a high molecular compound and fine particles as in the particle stretching step.
  • the lamellae of the precursor film is oriented perpendicular to the machine direction (longitudinal direction) during film formation, and the lamellars are laminated along the machine direction.
  • the extrusion method for preparing the precursor film is not particularly limited, but a polymer compound or a resin composition may be melted and formed into a film by using a T die or a cyclic die using an extruder of a single screw or a twin screw, and the discharged resin.
  • the air can be injected through the air knife or air ring for the purpose of controlling the temperature of the film and improving the manufacturing state of the film.
  • step (2) the non-porous precursor film extruded in step (1) is subjected to an annealing process before stretching, and the annealing is a non-limiting example by putting a film roll in an oven where tropical flow occurs or The method may be performed by applying heat to the film through contact with a heating roll, hot air in a tender, or an IR heater.
  • the precursor film preferably has an elastic recovery rate of 70% or more. If the elastic recovery rate is less than 70%, lamellar fracture occurs in a subsequent stretching process, and sufficient pore formation is difficult.
  • the annealing temperature can be treated at a temperature lower than the melting temperature of the semicrystalline polymer compound. Annealing temperature and annealing time may be adjusted according to the elastic recovery rate of the precursor film to be produced.
  • the film annealed in the step (2) is low-temperature stretching
  • the low-temperature stretching process can be stretched in one axis (longitudinal direction) using a stretching roll (non-limiting example).
  • the temperature of the low temperature stretching process may be set to a temperature at which cracks may be formed in the amorphous region according to the kind of semicrystalline polymer compound which is a component of the precursor film.
  • the glass transition temperature (Glass Transition Temperature) of the high-molecular compound used is -70 °C to glass transition temperature (Glass Transition Temperature) + 70 °C is appropriate.
  • the low-temperature stretched film is stretched at high temperature in step (3), but the high-temperature oblique stretching process is performed by stretching the low-temperature stretched precursor film in an oblique direction as illustrated in FIG. 1, for example. do.
  • the temperature of the high temperature stretching process is appropriate between the melting temperature (Melting Temperature)-40 °C, and at the temperature below the melting temperature-40 °C, no pores are formed in the crack of the low temperature stretched film, Pore formation occurs due to the phenomenon of stretching in the longitudinal direction and contraction in the transverse direction, and the formation of pores is difficult due to melting and closing of pores at a temperature above the melting temperature.
  • This stretching method may use a method known as Simultaneous Stretching.
  • simultaneous stretching technology can be implemented using components such as pantograph, spindle, and linear motors.
  • a precursor film that has been low-stretched in the direction of arrow (a) is introduced, and (ii) the film is stretched in a diagonal direction at a high temperature.
  • the film drawn in diagonal direction at high temperature is wound while being conveyed in the direction of arrow (b).
  • the width w1 of the inlet and the width w2 of the outlet may be the same or the width of the outlet may be reduced within 10% of the width w1 of the inlet.
  • the film breakage problem may occur when the outlet width is larger than the width of the inlet.
  • the angle ( ⁇ ) of the inclined stretching in the high temperature gradient stretching step can be adjusted according to the characteristics of the product, the angle of the inclined stretching is preferably 20 to 65 degrees, more preferably to maintain the 30 to 55 degrees It is advantageous for balancing the physical properties of the product. If the angle of inclined stretching is less than 20 °, the difference in the physical properties in the longitudinal direction and the transverse direction of the separator in which two or more layers are laminated alternately occurs, and it is difficult to simultaneously improve the properties in the longitudinal direction and the transverse direction. In the case of more than ⁇ , the possibility of breakage in the oblique stretching process increases.
  • FIG. 2 is a manner in which a preheating section is additionally installed in FIG. 1 to improve stability of high temperature gradient drawing. Specifically, (i) the precursor film low-stretched in the direction of arrow (a) is introduced, (i) the film is preheated while advancing in the direction of arrow (a), and (iii) the arrow (b) in the direction of arrow (a) Direction is stretched in the diagonal direction at high temperature, (iv) the film stretched in the diagonal direction at high temperature is wound while being transported in the direction of the arrow (b).
  • the width w1 of the inlet and the width w2 of the outlet may be the same or the width of the outlet may be reduced within 10% of the width w1 of the inlet in the high temperature drawing process.
  • the hot stretched film may be heat setting after stretching, as is well known.
  • FIG. 3 is a method of laminating two layers of films alternately, in which the alignment axes of the hot diagonally stretched films are arranged to cross each other (almost vertically).
  • the lamination can be performed while the alignment axes of the films intersect with each other, and in particular, a film made of a polymer compound capable of being shut down at a low temperature in a middle layer is laminated to form a fine multilayer structure.
  • Porous membranes may also be prepared.
  • the porosity of the microporous membrane prepared by the method of the present invention as described above is preferably 20 to 80%. If the porosity is less than 20%, the ion conductivity of the separator is low, so it is not efficient to use it as a separator. If the porosity is greater than 80%, the mechanical properties of the separator may be reduced.
  • the separator for a secondary battery, in particular a lithium secondary battery, according to the present invention comprises a microporous membrane prepared by the method of the present invention described above.
  • a high temperature oblique stretching process is introduced to a high temperature stretching process of a dry process, and thus, the stretching axes are alternately arranged in two or more layers of the film produced by high temperature oblique stretching.
  • the microporous membrane having improved tensile strength and puncture strength in comparison with the microporous membrane prepared by conventional uniaxial stretching can be manufactured.
  • the microporous membrane prepared by the method of the present invention can be usefully applied as a water treatment separation membrane, a breathable film, a secondary battery separator.
  • FIG. 2 is a view showing another example of high temperature oblique stretching in the method for producing a microporous membrane of the present invention.
  • FIG 3 is a view showing an example of the lamination method of a high temperature gradient stretched film in the method for producing a microporous membrane of the present invention.
  • Measuring methods of the overall physical properties of the films prepared in the following Examples and Comparative Examples are as follows.
  • the thickness of the membrane is measured according to ASTM D374.
  • the puncture strength was measured at a speed of 10 mm / sec using a tip of 1 mm in diameter at the distal end.
  • the polypropylene composition was extruded by setting the temperature up to (the pore size of 70 ⁇ m) at 215 ° C., and the temperature from 200 ° C. immediately after the second filter to the Ti-die.
  • the polypropylene extrudate was adjusted to an extrusion rate such that a draw down ratio was 90 on a casting roll set at 90 ° C. to prepare a precursor film having a thickness of 15 ⁇ m.
  • the prepared precursor film roll was annealed in an oven at 150 ° C. for 24 hours to prepare a film having an elastic recovery rate of 88%.
  • a microporous membrane having a thickness of 13 ⁇ m was prepared by stretching at 180 ° C. at 150 ° C. using a tenter type gradient drawing machine as shown in FIG. 1.
  • the prepared microporous membrane was laminated as shown in FIG. 3 to prepare a microporous membrane having a laminated structure having a total thickness of 26 ⁇ m.
  • the air permeability of the microporous membrane was 280 sec / 100ml, the longitudinal tensile strength was 1310 kgf / cm 2 , the transverse tensile strength was 1290 kgf / cm 2 , and the stabbing strength was 530gf.
  • a precursor film having a thickness of 15 ⁇ m was prepared, stretched by 50% at low temperature using a uniaxial roll stretching machine, and then stretched by 180% at 150 ° C. using the same uniaxial roll stretching machine.
  • a 13 micron thick microporous membrane was prepared.
  • the prepared microporous membrane was laminated as shown in FIG. 3 to prepare a microporous membrane having a total thickness of 26 ⁇ m.
  • the air permeability of the microporous membrane was 280 sec / 100ml, the longitudinal tensile strength was 1370 kgf / cm 2 , the transverse tensile strength was 150 kgf / cm 2 , and the stinging strength was 350 gf.
  • a precursor film having a thickness of 29 ⁇ m was prepared, stretched by 50% at low temperature using a uniaxial roll stretching machine, and then stretched by 180% at 150 ° C. using the same uniaxial roll stretching machine.
  • a 26 micron thick microporous membrane was prepared.
  • the air permeability of the microporous membrane was 270 sec / 100ml, the longitudinal tensile strength was 1340 kgf / cm 2 , the transverse tensile strength was 130 kgf / cm 2 , and the stabbing strength was 310gf.
  • the structure in which the alignment axes are laminated in the same manner can not improve the transverse tensile strength and the puncture strength.
  • the post lamination is applied, it can be seen that the transverse tensile strength and the puncture strength are improved compared to the microporous membrane prepared by the general dry method.
  • the embodiment of the present invention provides a microporous membrane in which the longitudinal and transverse physical properties are secured in a continuous roll form, that is, the tensile strength and the puncture strength of the longitudinal direction are improved compared to the microporous membrane prepared by conventional uniaxial stretching. It can be confirmed that.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

The present invention relates to a method for manufacturing a fine-porous film by a dry process, which includes the steps of: obliquely drawing a fine-porous film with the elongation axis being oblique to the longitudinal direction of the film so as to prepare a film through a high temperature elongation process; and laminating two or more of the high-temperature obliquely drawn films with the elongation axis of one layer crossing that of the adjacent layer (almost perpendicularly) so as to ensure that the longitudinal physical properties of the film are uniform with the transverse physical properties, and applying the fine-porous film as a separation membrane for a secondary battery.

Description

미세다공성 막의 제조 방법 및 상기 방법으로 제조된 막을 이용한 이차전지용 분리막Separation membrane for secondary battery using a method for producing a microporous membrane and the membrane prepared by the above method
본 발명은 미세다공성 막의 제조 방법과 상기 방법으로 제조된 미세다공성 막을 적용한 이차전지용 분리막에 관한 것이다.The present invention relates to a method for producing a microporous membrane and a separator for a secondary battery to which the microporous membrane prepared by the above method is applied.
미세다공성 막은 여러가지 공정으로 제조될 수 있으며, 막이 만들어지는 공정은 상기 막의 물리적 속성에 중요한 영향을 미치는 것으로 알려져 있다. 상업적으로 활용되고 있는 공정은 크게 3가지 공정으로 구분할 수 있다. 즉, 건식 공정(Dry-process), 습식 공정(Wet process) 및 입자 연신 공정으로 구분할 수 있다.Microporous membranes can be produced by a variety of processes, and the processes by which the membranes are made are known to have a significant impact on the physical properties of the membranes. Commercially used processes can be largely divided into three processes. That is, it may be classified into a dry process, a wet process, and a particle stretching process.
건식 공정은, 전구체(nonporous precursor)를 압출하여 제조한 후,어닐링(Annealing) 등의 열처리를 통하여 라멜라(Lamellar)의 배향을 조절하고, 일축 방향 (Machine Direction)으로 롤(Roll) 사이에서 연신하여 기공을 형성하는 공법을 말한다. (미국 특허 3,426,754, 미국 특허 4,620,956, 미국 특허 5,013,439 참조). 일반적으로 상기 특허들에서 언급된 바와 같이 저온 연신과 고온 연신으로 기공을 형성하며, 선택적으로 히트 세팅(Heat Setting) 등의 공정을 거쳐 최종적으로 미세다공성 막을 제조한다. 이러한 건식 공정은 습식 공정 대비 추출 용매를 사용하지 않으므로 친환경적이며, 가격경쟁력을 가진 공정으로 평가되고 있다. 그러나 기계적인 물성 측면에서 일축 연신에 의하여 기공을 형성하기 때문에 종방향의 인장 강도가 저하되는 문제점이 있다.The dry process is produced by extruding a nonporous precursor, and then controlling the orientation of the lamellae by heat treatment such as annealing, and stretching between rolls in a uniaxial direction. Refers to the method of forming pores. (See US Patent 3,426,754, US Patent 4,620,956, US Patent 5,013,439). Generally, as mentioned in the above patents, pores are formed by low temperature stretching and high temperature stretching, and finally, a microporous membrane is finally manufactured through a process such as heat setting. Such a dry process is eco-friendly and price competitive because it does not use an extraction solvent compared to a wet process. However, since the pores are formed by uniaxial stretching in terms of mechanical properties, there is a problem that the tensile strength in the longitudinal direction is lowered.
습식 공정은 고분자 물질(polymeric raw material)을 프로세싱 오일(때때로 가소제로 불림)과 혼합하고, 이 혼합물을 압출하여 시트(Sheet) 형태로 제조하고, 상기 시트에서 프로세싱 오일을 제거하면서 기공을 형성하는 공법을 말한다. 상기 오일 제거 전 또는 후에 연신할 수 있으며, 일반적으로 이축 연신 후에 오일을 제거한다(미국 특허 5,641,565, 미국 특허 7,081,321 참조). 그러므로 습식 공정으로 제조된 미세다공성 막은 공정상의 이축 연신의 특성에 기인하여 종방향과 횡방향의 물성의 균형이 유지되고, 건식 공정의 미세다공성 막 대비 종방향의 인장강도가 우수하다.The wet process involves mixing polymeric raw materials with processing oils (sometimes called plasticizers) and extruding the mixture into sheets to form pores while removing processing oils from the sheets. Say The oil may be stretched before or after the oil is removed, and oil is generally removed after biaxial stretching (see US Pat. No. 5,641,565, US Pat. No. 7,081,321). Therefore, the microporous membrane produced by the wet process maintains the balance between the longitudinal and transverse physical properties due to the biaxial stretching characteristics of the process, and has excellent tensile strength in the longitudinal direction compared to the microporous membrane of the dry process.
입자 연신 공정은 고분자 물질(polymeric raw material)과 미립자(particulate)를 혼합하여 시트를 압출하고, 이 시트를 연신하여 상기 고분자와 미립자간의 계면이 연신 과정에서 파괴되면서 미립자 주변에 기공이 형성되는 공법이다. 크게 구분하면 건식 공정으로 분류할 수도 있으나, 상기 기술한 건식 공정은 라멜라가 적층된 결정 구조에서 라멜라 사이에 기공을 형성하는 공정이고, 입자 연신 공정은 미립자와 고분자 사이의 계면에서 기공을 형성하는 공정이다. 또한 입자 연신 공정은 상업적으로는 습식공정과도 혼합하여 사용되어지기도 한다. 입자 연신 공정의 연신 방법으로 일축 연신과 이축 연신을 모두 사용할 수 있다. The particle stretching process is a method of extruding a sheet by mixing a polymeric raw material and a particulate, and stretching the sheet to form pores around the fine particles as the interface between the polymer and the fine particles is destroyed in the stretching process. . The dry process described above may be classified into a dry process, but the above-described dry process is a process of forming pores between lamellae in a lamellar crystal structure, and the stretching process of particles is a process of forming pores at the interface between the fine particles and the polymer. to be. Particle stretching processes may also be used commercially in combination with wet processes. Both uniaxial stretching and biaxial stretching can be used as a stretching method of the particle stretching step.
상기한 바와 같이 건식 공정은 공정상의 용매를 사용하지 않는 장점과 가격경쟁력을 보유하고 있으나, 종방향의 인장 강도가 횡방향의 인장강도에 비하여 낮은 문제점이 있다. 특히 이러한 특성에 기인하여 찌름 강도가 저하되는 문제와 전지 조립 공정에서 파단에 의한 공정 문제를 야기할 수 있다. 이러한 문제점을 극복하기 위하여 하기와 같은 기술 개발이 진행되어 왔다.As described above, the dry process has advantages and cost competitiveness of not using a solvent in the process, but there is a problem in that the tensile strength in the longitudinal direction is lower than that in the transverse direction. In particular, due to these characteristics, the problem of deterioration of puncture strength and process problems due to breakage in the battery assembly process may be caused. In order to overcome this problem, the following technology development has been progressed.
대한민국 공개 특허 2008-0085922는 건신 공법에 이축 연신 방법을 도입하여 연신된 미세다공성 필름의 종방향 인장 강도와 횡방향 인장 강도를 향상시키는 방법을 제안하고 있으나, 전구체 필름의 적층된 형태의 라멜라 구조(Stacked Lamellar Structure)에 기인하여 횡방향 연신 후 종방향 연신이나 동시연신을 적용하는 경우 필름의 파단없이 롤 형태의 권취가 가능한 연신 제품을 확보하는 것이 매우 어렵다. 또한 미국 특허 5,667,911은 원통형(Tubular) 형태의 전구체 필름을 압출하여, 어닐링(Annealing)하고, 저온 연신과 고온 연신하여 원통형의 미세다공성 막을 제조하고, 최종적으로 원통형 미세다공성 막을 회전시키면서 슬릿팅(Slitting)하여 롤 형태로 필름의 종방향과 연신 배향축을 경사지게 권취하는 방법을 제안하고 있다. 그러나 이러한 권취 방식은 별도의 권취 설비를 필요로 하고, 또한 필름의 이동 방향과 권취 방향이 사선으로 존재하게 되기 때문에 권취 과정에서 권취롤의 위치에 따른 장력이 분균일하여 권취 과정의 주름이 필연적으로 발생하여 롤 형태로 미세다공성 막을 귄취하는 것이 매우 어렵다.Korean Patent Laid-Open Publication No. 2008-0085922 proposes a method of improving the longitudinal tensile strength and the transverse tensile strength of a stretched microporous film by introducing a biaxial stretching method in a drying method, but using a laminated lamellar structure of a precursor film ( Due to the stacked lamellar structure, it is very difficult to secure a stretched product that can be rolled up without breaking the film when longitudinal stretching or simultaneous stretching is applied after transverse stretching. U.S. Patent No. 5,667,911 also discloses a precursor film of cylindrical shape, annealing, low temperature stretching and high temperature stretching to produce a cylindrical microporous membrane, and finally slitting while rotating the cylindrical microporous membrane. And the method of winding inclinedly the longitudinal direction and extending | stretching orientation axis | shaft of a film in roll form is proposed. However, this winding method requires a separate winding equipment, and since the moving direction and the winding direction of the film exist diagonally, the tension according to the position of the winding roll during the winding process is uniform, so that wrinkles of the winding process are necessarily inevitable. It is very difficult to generate and deodorize the microporous membrane in roll form.
본 발명은 상기한 종래 기술들에 의한 미세다공성 막의 종방향 인장 강도와 찌름 강도의 저하 문제를 개선하기 위하여 안출된 것으로, 본 발명의 목적은 건식 공정의 고온 연신 공정에 경사 연신 방법 도입하고, 이러한 방법으로 제조된 필름을 2층 이상 연신 축이 교대로 배치되도록(연신 축이 거의 수직하도록) 적층하므로써, 필름의 종방향 물성과 횡방향 물성의 균형을 확보할 수 있는, 즉, 롤 상태의 연속적인 상태로 미세다공성 막의 종방향과 횡방향의 물성 편차를 제어할 수 있는 미세다공성 막의 제조방법을 제공하는 것이다.The present invention has been made to solve the problem of lowering the longitudinal tensile strength and the puncture strength of the microporous membranes according to the conventional techniques described above, and an object of the present invention is to introduce a gradient stretching method into a high temperature stretching process of a dry process, and By laminating the films produced by the method in such a manner that two or more layers of the stretching axes are alternately arranged (the stretching axes are substantially perpendicular), it is possible to secure the balance between the longitudinal and transverse physical properties of the film, that is, the continuous state in the roll state. It is to provide a method for producing a microporous membrane which can control the variation of the physical properties in the longitudinal direction and the transverse direction of the microporous membrane in the state.
본 발명의 또 다른 목적은 본 발명의 방법으로 제조되어 종래의 일축 연신에 의하여 제조되는 미세다공성 막 대비 종방향의 인장강도가 향상된 미세다공성 막을 적용한 이차전지용 분리막을 제공하는 것이다.Still another object of the present invention is to provide a separator for a secondary battery, which is manufactured by the method of the present invention and employs a microporous membrane having an improved tensile strength in the longitudinal direction compared to a microporous membrane prepared by conventional uniaxial stretching.
본 발명에 따른 미세다공성 막의 제조 방법은 다음의 단계들을 포함하는 것을 특징으로 한다: The method for producing a microporous membrane according to the invention is characterized in that it comprises the following steps:
(1) 고분자 화합물 또는 이를 포함하는 조성물을 압출 성형하여 전구체 필름을 형성하는 단계,(1) extrusion molding a polymer compound or a composition comprising the same to form a precursor film,
(2) 상기 전구체 필름을 어닐링하는 단계,(2) annealing the precursor film,
(3) 상기 어닐링된 필름을 저온 연신하는 단계, (3) cold drawing the annealed film,
(4) 상기 저온 연신한 필름을 고온 경사 연신하는 단계, 및(4) high temperature diagonal stretching of the low temperature stretched film, and
(5) 상기 고온 연신된 필름을 2층 이상 교대로 라미네이션하는 단계.(5) laminating the hot drawn film alternately in two or more layers.
상기 (1)단계에서 사용하는 고분자 화합물은 반결정성 고분자(Semicrystalline Polymer)인 것이 바람직하고, 예로서 폴리올레핀, 폴리플루오로카본, 폴리아미드, 폴리에스테르, 폴리아세탈, 폴리설파이드, 폴리비닐알콜, 이들의 공중합체 및 이들의 조합으로 구성되는 군으로부터 선택되는 고분자 화합물일 수 있다.The polymer compound used in the step (1) is preferably a semicrystalline polymer, for example, polyolefin, polyfluorocarbon, polyamide, polyester, polyacetal, polysulfide, polyvinyl alcohol, these It may be a polymer compound selected from the group consisting of copolymers and combinations thereof.
상기 (1)단계에서 고분자 화합물의 압출 성형시, 이차전지에 적용해도 전지 구동에 지장을 주지 않는 범위 내에서 보강재, 충전재, 산화방지제, 중화제, 내열안정제, 내후안정제, 대전방지제, 활제, 슬립제, 안료 등과 같은 각종 첨가제를 첨가할 수 있다. 상기의 첨가제는 당 업계에서 공지된 물질이면 특별히 한정되지 않는다. 이러한 첨가제 중에 장기간의 내열성 및 산화안정성 확보를 위하여 산화방지제를 첨가하는 것이 바람직하다. In the step (1), during the extrusion molding of the polymer compound, the reinforcing material, the filler, the antioxidant, the neutralizer, the heat stabilizer, the weather stabilizer, the antistatic agent, the lubricant, and the slip agent within a range that does not interfere with battery operation even when applied to the secondary battery. Various additives, such as a pigment and the like, can be added. The additive is not particularly limited as long as it is a substance known in the art. Among these additives, it is preferable to add an antioxidant to ensure long-term heat resistance and oxidation stability.
또한 상기 (1)단계에서는, 입자 연신 공정과 같이 고분자 화합물과 미립자를 함유하는 수지 조성물을 압출 성형하여 전구체 필름을 제조할 수도 있다.In the step (1), a precursor film may be prepared by extrusion molding a resin composition containing a high molecular compound and fine particles as in the particle stretching step.
상기 (1)단계에서는, 전구체 필름의 라멜라(lamellae)가 제막시 기계방향(종방향)에 대해 수직으로 배향되고, 기계 방향을 따라 라멜라의 적층이 이루어지도록 제조하는 것이 바람직하다. In the step (1), it is preferable that the lamellae of the precursor film is oriented perpendicular to the machine direction (longitudinal direction) during film formation, and the lamellars are laminated along the machine direction.
전구체 필름의 제조를 위한 압출 성형방법은 특별히 한정되지는 않으나, 싱글 스크류 또는 트윈 스크류의 압출기를 사용하여 T 다이 또는 환형 다이를 이용하여 고분자화합물 또는 수지조성물을 용융하여 제막할 수 있으며, 토출된 수지의 온도 조절 및 필름의 제조상태를 양호하게 하는 목적으로 에어나이프 또는 에어링을 통하여 공기를 분사할 수 있다. The extrusion method for preparing the precursor film is not particularly limited, but a polymer compound or a resin composition may be melted and formed into a film by using a T die or a cyclic die using an extruder of a single screw or a twin screw, and the discharged resin. The air can be injected through the air knife or air ring for the purpose of controlling the temperature of the film and improving the manufacturing state of the film.
상기 (2)단계에서는, (1)단계에서 압출성형된 비다공성 전구체 필름을 연신 이전에 어닐링(Annealing) 공정으로 처리하며, 어닐링은 비제한적인 예로 열대류가 일어나는 오븐에 필름 롤을 넣어서 처리하거나 가열롤(heating roll)과의 접촉, 텐더(tenter)에서의 열풍 또는 IR 히터 등을 통해 필름에 열을 가하는 방법으로 수행할 수 있다. 어닐링 후 전구체 필름은 탄성복원률이 70% 이상인 것이 바람직하다. 만약 탄성복원률이 70% 미만이면 이후의 연신 공정에서 라멜라가 깨지는(fragmentation) 현상이 일어나 충분한 기공 형성이 어렵다. 어닐링 온도는 반결정성 고분자 화합물의 용융 온도보다 낮은 온도에서 처리할 수 있다. 어닐링 온도와 어닐링 시간은 제조되는 전구체 필름의 탄성복원률에 따라 조절할 수 있다.In step (2), the non-porous precursor film extruded in step (1) is subjected to an annealing process before stretching, and the annealing is a non-limiting example by putting a film roll in an oven where tropical flow occurs or The method may be performed by applying heat to the film through contact with a heating roll, hot air in a tender, or an IR heater. After annealing, the precursor film preferably has an elastic recovery rate of 70% or more. If the elastic recovery rate is less than 70%, lamellar fracture occurs in a subsequent stretching process, and sufficient pore formation is difficult. The annealing temperature can be treated at a temperature lower than the melting temperature of the semicrystalline polymer compound. Annealing temperature and annealing time may be adjusted according to the elastic recovery rate of the precursor film to be produced.
상기 (3)단계에서는, (2)단계에서 어닐링 처리된 필름을 저온 연신하는데, 저온 연신 공정은 비제한적인 예로 연신 롤(roll)을 이용하여 1축(종방향)으로 연신할 수 있다. 저온 연신 공정의 온도는 전구체 필름의 성분인 반결정성 고분자 화합물의 종류에 따라 무정형 영역에 크랙(Crack)을 형성할 수 있는 온도로 설정할 수 있다. 예를 들면, 사용되는 고분자 화합물의 유리전이온도(Glass Transition Temperature) - 70℃에서 유리전이온도(Glass Transition Temperature) + 70℃ 사이가 적절하다. 유리전이온도 - 70℃ 미만의 온도에서는 전구체 필름에 크랙 형성이 어렵고, 유리전이온도 + 70℃ 초과의 온도에서는 형성된 크랙이 다시 고분자의 열운동에 의하여 회복되는 현상이 발생한다. 저온 연신 공정에서 바람직한 연신율은 10~70%이다. 10% 이하로 저온 연신하는 경우 무정형 영역에 크랙이 충분히 형성되지 않아 고온 연신 후 통기도가 저하되는 문제점이 발생하고, 70% 이상으로 저온 연신하는 경우 고온 연신 후 통기도가 다시 저하되는 문제점이 발생한다.In the step (3), the film annealed in the step (2) is low-temperature stretching, the low-temperature stretching process can be stretched in one axis (longitudinal direction) using a stretching roll (non-limiting example). The temperature of the low temperature stretching process may be set to a temperature at which cracks may be formed in the amorphous region according to the kind of semicrystalline polymer compound which is a component of the precursor film. For example, the glass transition temperature (Glass Transition Temperature) of the high-molecular compound used is -70 ℃ to glass transition temperature (Glass Transition Temperature) + 70 ℃ is appropriate. Glass transition temperature-less than 70 ℃ to form a crack in the precursor film is difficult, at the temperature of more than glass transition temperature + 70 ℃ occurs a phenomenon that the crack formed again by the thermal motion of the polymer. In the low temperature stretching process, the preferred elongation is 10 to 70%. In the case of low temperature stretching below 10%, there is a problem that the air permeability is lowered after the high temperature stretching because the crack is not sufficiently formed in the amorphous region, and in the case of low temperature stretching above 70%, the air permeability decreases again after the high temperature stretching.
상기 (4)단계에서는, (3)단계에서 저온 연신된 필름을 고온 경사 연신하는데, 고온 경사 연신 공정은, 예를 들어 도 1에 예시한 바와 같이 저온 연신된 전구체 필름을 사선방향으로 연신하여 수행된다. 고온 연신 공정의 온도는 용융온도(Melting Temperature) - 40℃에서 용융온도 사이가 적절하고, 용융온도 - 40℃ 미만의 온도에서는 저온 연신된 필름의 크랙에 기공이 형성되지 않으며, 저온 연신된 필름의 종방향으로 연신되고 횡방향으로 수축되는 현상이 발생하여 기공 형성이 어렵고, 용융온도 초과의 온도에서는 기공이 녹아서 닫히는 현상이 발생하여 기공 형성이 어렵다. 도 1에 예시된 사선 연신 공정은 클립(Clip)으로 저온 연신된 전구체 필름을 잡고 연신하는 방법으로, 저온 연신된 전구체 필름이 주행을 하면서 클립의 속도가 증가하면서 연신이 되는 방식이다. 이러한 연신 방식은 동시 연신 기술(Simultaneous Stretching)로 알려진 방법을 사용할 수 있다. 이러한 동시 연신 기술은 팬토그래프(Pantograph), 스핀들(Spindle) 및 선형 모터(Linear Motors) 등의 부품을 이용하여 구현할 수 있다. In the step (4), the low-temperature stretched film is stretched at high temperature in step (3), but the high-temperature oblique stretching process is performed by stretching the low-temperature stretched precursor film in an oblique direction as illustrated in FIG. 1, for example. do. The temperature of the high temperature stretching process is appropriate between the melting temperature (Melting Temperature)-40 ℃, and at the temperature below the melting temperature-40 ℃, no pores are formed in the crack of the low temperature stretched film, Pore formation occurs due to the phenomenon of stretching in the longitudinal direction and contraction in the transverse direction, and the formation of pores is difficult due to melting and closing of pores at a temperature above the melting temperature. The diagonal stretching process illustrated in FIG. 1 is a method of holding and stretching a low temperature stretched precursor film with a clip, in which the low temperature stretched precursor film is stretched while the speed of the clip increases while traveling. This stretching method may use a method known as Simultaneous Stretching. Such simultaneous stretching technology can be implemented using components such as pantograph, spindle, and linear motors.
고온 경사 연신 단계를 보다 상세하게 설명하면, 도 1에 도시한 바와 같이, (i)화살표(a) 방향으로 저온 연신된 전구체 필름을 투입하고, (ii)상기 필름이 고온에서 사선 방향으로 연신되고, (iii)고온에서 사선 방향으로 연신된 필름이 화살표(b) 방향으로 이송되면서 권취된다. 도 1에 도시한 바와 같이 고온 연신과정에서 입구의 폭(w1)과 출구의 폭(w2)은 같거나 출구의 폭이 입구의 폭(w1)에 비해 10% 이내에서 축소될 수 있다. 건식 이축 연신 방식의 문제점에서 지적하였듯이, 출구의 폭이 입구의 폭보다 커지도록 연신할 경우에는 필름의 파단 문제가 발생할 수 있다. 고온 경사 연신단계에서 경사 연신의 각도(θ)는 제품의 특성에 맞게 조절할 수 있고, 경사 연신의 각도는 20~65˚가 바람직하며, 더욱 바람직하게는 30~55˚를 유지하는 것이 라미네이션된 최종 제품의 물성 발란스에 유리하다. 경사 연신의 각도가 20˚ 미만에서는 2층 이상을 교대로 라미네이션한 분리막의 종방향과 횡방향의 물성 차이가 발생하여 종방향과 횡방향의 물성을 동시에 향상하는 것이 어렵고, 경사 연신의 각도가 65˚ 초과인 경우는 경사 연신 고정 과정에서 파단이 발생할 가능성이 증가된다.Referring to the high temperature gradient drawing step in more detail, as shown in FIG. 1, (i) a precursor film that has been low-stretched in the direction of arrow (a) is introduced, and (ii) the film is stretched in a diagonal direction at a high temperature. (iii) The film drawn in diagonal direction at high temperature is wound while being conveyed in the direction of arrow (b). As shown in FIG. 1, the width w1 of the inlet and the width w2 of the outlet may be the same or the width of the outlet may be reduced within 10% of the width w1 of the inlet. As pointed out in the problem of the dry biaxial stretching method, the film breakage problem may occur when the outlet width is larger than the width of the inlet. The angle (θ) of the inclined stretching in the high temperature gradient stretching step can be adjusted according to the characteristics of the product, the angle of the inclined stretching is preferably 20 to 65 degrees, more preferably to maintain the 30 to 55 degrees It is advantageous for balancing the physical properties of the product. If the angle of inclined stretching is less than 20 °, the difference in the physical properties in the longitudinal direction and the transverse direction of the separator in which two or more layers are laminated alternately occurs, and it is difficult to simultaneously improve the properties in the longitudinal direction and the transverse direction. In the case of more than ˚, the possibility of breakage in the oblique stretching process increases.
도 2는 도 1에 추가적으로 예열 구간을 설치하는 방식으로, 고온 경사 연신의 안정성을 향상시킬 수 있는 방식이다. 구체적으로는, (i)화살표(a) 방향으로 저온 연신된 전구체 필름을 투입하고, (i)화살표(a) 방향으로 필름이 진행하면서 예열되고, (iii)화살표(a) 방향에서 화살표(b) 방향으로 상기 필름이 고온에서 사선 방향으로 연신되고, (iv)고온에서 사선 방향으로 연신된 필름이 화살표(b) 방향으로 이송되면서 권취된다. 도 2에 도시한 바와 같이 고온 연신과정에서 입구의 폭(w1)과 출구의 폭(w2)은 같거나 출구의 폭이 입구의 폭(w1)에 비해 10% 이내에서 축소될 수 있다.FIG. 2 is a manner in which a preheating section is additionally installed in FIG. 1 to improve stability of high temperature gradient drawing. Specifically, (i) the precursor film low-stretched in the direction of arrow (a) is introduced, (i) the film is preheated while advancing in the direction of arrow (a), and (iii) the arrow (b) in the direction of arrow (a) Direction is stretched in the diagonal direction at high temperature, (iv) the film stretched in the diagonal direction at high temperature is wound while being transported in the direction of the arrow (b). As shown in FIG. 2, the width w1 of the inlet and the width w2 of the outlet may be the same or the width of the outlet may be reduced within 10% of the width w1 of the inlet in the high temperature drawing process.
선택적으로 고온 연신된 필름은 연신 후에, 잘 알려진 바와 같이 히트 세팅(Heat Setting)할 수도 있다.Optionally the hot stretched film may be heat setting after stretching, as is well known.
상기 (5)단계에서는, (4)단계에서 고온 경사 연신된 필름을 2층 이상 교대로 라미네이션하는 단계로서, 도 3에 그 일예를 예시하였다. 도 3은 2층의 필름을 교대로 라미네이션하는 방법으로, 고온 경사 연신된 필름의 배향축을 서로 교차하게 배치하여(거의 수직으로) 라미네이션하는 방법이다. 2층 이상을 라미네이션하는 경우에는, 차례로 필름의 배향축이 서로 교차하도록 하면서 라이네이션할 수 있으며, 특히 중간층에 낮은 온도에서 셧다운(shutdown)이 가능한 고분자 화합물로 제조된 필름을 적층하여 다층 구조의 미세다공성 막을 제조할 수도 있다.In the step (5), as a step of laminating two or more layers of the high temperature gradient stretched film in step (4), an example thereof is illustrated in FIG. FIG. 3 is a method of laminating two layers of films alternately, in which the alignment axes of the hot diagonally stretched films are arranged to cross each other (almost vertically). In the case of lamination of two or more layers, the lamination can be performed while the alignment axes of the films intersect with each other, and in particular, a film made of a polymer compound capable of being shut down at a low temperature in a middle layer is laminated to form a fine multilayer structure. Porous membranes may also be prepared.
상기와 같은 본 발명의 제조방법으로 제조된 미세다공성 막의 기공도는 20~80%인 것이 바람직하다. 기공도가 20% 미만에서는 분리막의 이온전도도가 낮아 분리막으로 사용하는 것이 효율적이지 않으며, 기공도가 80% 초과인 경우는 분리막의 기계적 물성이 저하되는 현상이 발생한다.The porosity of the microporous membrane prepared by the method of the present invention as described above is preferably 20 to 80%. If the porosity is less than 20%, the ion conductivity of the separator is low, so it is not efficient to use it as a separator. If the porosity is greater than 80%, the mechanical properties of the separator may be reduced.
본 발명에 따른 이차전지용, 특히 리튬이차전지용 분리막은 상기한 본 발명의 방법으로 제조된 미세다공성 막을 포함하여 이루어진다.The separator for a secondary battery, in particular a lithium secondary battery, according to the present invention comprises a microporous membrane prepared by the method of the present invention described above.
본 발명의 미세다공성 막 제조방법에 의하면, 건식 공정의 고온 연신 공정에 고온 경사 연신공정을 도입하고, 이와 같이 고온 경사 연신으로 제조된 필름을 2층 이상 연신 축이 교대로 배치되도록(연신 축이 거의 수직하도록) 적층하여 필름의 종방향 물성과 횡방향 물성의 균형을 확보하므로써, 기존의 일축 연신에 의하여 제조되는 미세다공성 막 대비 종방향의 인장강도와 찌름강도가 향상된 미세다공성 막을 제조할 수 있다. 본 발명의 방법으로 제조된 미세다공성 막은 수처리 분리막, 통기성 필름, 이차전지용 분리막 등으로 유용하게 적용할 수 있다.According to the method for producing a microporous membrane of the present invention, a high temperature oblique stretching process is introduced to a high temperature stretching process of a dry process, and thus, the stretching axes are alternately arranged in two or more layers of the film produced by high temperature oblique stretching. By laminating to obtain a balance between the longitudinal and transverse physical properties of the film, the microporous membrane having improved tensile strength and puncture strength in comparison with the microporous membrane prepared by conventional uniaxial stretching can be manufactured. . The microporous membrane prepared by the method of the present invention can be usefully applied as a water treatment separation membrane, a breathable film, a secondary battery separator.
도 1은 본 발명의 미세다공성 막의 제조 방법에서 고온 경사 연신의 일예를 나타낸 도면이다.BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows an example of high temperature diagonal stretch in the manufacturing method of the microporous membrane of this invention.
도 2는 본 발명의 미세다공성 막의 제조 방법에서 고온 경사 연신의 다른 예를 나타낸 도면이다.2 is a view showing another example of high temperature oblique stretching in the method for producing a microporous membrane of the present invention.
도 3은 본 발명의 미세다공성 막의 제조방법에서 고온 경사 연신된 필름의 라미네이션 방식의 일예를 나타낸 도면이다.3 is a view showing an example of the lamination method of a high temperature gradient stretched film in the method for producing a microporous membrane of the present invention.
이하, 하기의 실시예를 통하여 본 발명을 더욱 상세하게 설명하지만, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited to the following examples.
하기 실시예 및 비교예에서 제조된 막의 제반 물성의 측정법은 다음과 같다.Measuring methods of the overall physical properties of the films prepared in the following Examples and Comparative Examples are as follows.
(1) 두께(1) thickness
ASTM D374에 의거하여 막의 두께를 측정한다.The thickness of the membrane is measured according to ASTM D374.
(2) 인장강도(2) tensile strength
ASTM D3763에 의거하여 인스트론社 만능시험기(UTM)로 측정한다.It is measured by an Instron Universal Testing Machine (UTM) according to ASTM D3763.
(3) 통기도(Gurley)(3) Gurley
일본 산업 표준(JIS)의 걸리 측정법에 따라, 상온에서 100mL의 공기가 4.8 inch H2O의 일정한 압력 하에 1 평방인치(inch2)의 미세다공성 필름을 통과하는데 걸리는 시간(초)을 측정한다.According to the Gurley method of Japanese Industrial Standard (JIS), the time (in seconds) for 100 mL of air to pass through 1 square inch (inch 2 ) of microporous film at a constant pressure of 4.8 inch H 2 O at room temperature is measured.
(4) 찌름강도(4) sting strength
일본 카토 테크(Kato Tech)의 KES-G5 기기를 이용하여, 말단부 지름 1mm의 팁(tip)을 이용하여 10mm/sec의 속도로 찌름강도를 측정한다.Using the KES-G5 instrument of Kato Tech, Japan, the puncture strength was measured at a speed of 10 mm / sec using a tip of 1 mm in diameter at the distal end.
실시예Example
폴리프로필렌(삼성토탈, MFI=3g/10분, Tm=165℃) 100중량부에 대해서 산화방지제 IRGANOX-1010 0.05중량부, 산화방지제 IRFOS-168 0.05중량부, 중화제로서 칼슘스테아레이트 0.05중량부를 혼합하여 250℃에서 컴파운딩하여 폴리프로필렌 조성물을 제조하였다. 상기의 컴파운딩한 펠렛(PELLET)을 티다이가 부착된 압출기의 호퍼에 투입하고, 압출기 온도를 230℃로 설정하고, 230℃로 설정된 첫번째 필터(구멍 크기 20um)를 지나, 기어 펌퍼에서 두번째 필터(구멍 크기 70um)까지의 온도를 215℃로 설정하고, 두번째 필터 직후부터 티다이까지 온도를 200℃로 설정하여, 상기 폴리프로필렌 조성물을 압출하였다. 폴리프로필렌 압출물을 90℃로 설정된 캐스팅롤에 연신비율(Draw Down Ratio)가 90이 될 수 있도록 압출량을 조절하여 15μm두께의 전구체 필름을 제조하였다. 0.05 parts by weight of antioxidant IRGANOX-1010, 0.05 parts by weight of antioxidant IRFOS-168, and 0.05 parts by weight of calcium stearate as neutralizing agent based on 100 parts by weight of polypropylene (Samsung Total, MFI = 3g / 10min, Tm = 165 ° C) Compounding at 250 ℃ to prepare a polypropylene composition. The compounded pellet is put into a hopper of an extruder with a Ti-die, the extruder temperature is set to 230 ° C., the first filter (hole size 20 μm) set to 230 ° C., and the second filter in the gear pump. The polypropylene composition was extruded by setting the temperature up to (the pore size of 70 μm) at 215 ° C., and the temperature from 200 ° C. immediately after the second filter to the Ti-die. The polypropylene extrudate was adjusted to an extrusion rate such that a draw down ratio was 90 on a casting roll set at 90 ° C. to prepare a precursor film having a thickness of 15 μm.
제조된 전구체 필름 롤을 150℃ 오븐에서 24시간 어닐링하여 탄성회복률이 88%인 필름을 제조하였다.The prepared precursor film roll was annealed in an oven at 150 ° C. for 24 hours to prepare a film having an elastic recovery rate of 88%.
일축 롤 연신기를 이용하여 상온에서 50% 저온 연신한 후, 도 1과 같이 텐터형의 경사 연신기를 이용하여 150℃에서 180% 연신하여 13μm 두께의 미세다공성 막을 제조하였다. 상기 제조된 미세다공성 막을 도 3과 같이 라미네이션하여 총 두께가 26μm인 적층 구조의 미세다공성 막을 제조하였다.After stretching at 50% low temperature at room temperature using a uniaxial roll stretching machine, a microporous membrane having a thickness of 13 μm was prepared by stretching at 180 ° C. at 150 ° C. using a tenter type gradient drawing machine as shown in FIG. 1. The prepared microporous membrane was laminated as shown in FIG. 3 to prepare a microporous membrane having a laminated structure having a total thickness of 26 μm.
상기 미세다공성 막의 통기도는 280 sec/100ml, 종방향 인장 강도는 1310 kgf/cm2, 횡방향 인장 강도는 1290 kgf/cm2, 찌름 강도는 530gf를 나타내었다.The air permeability of the microporous membrane was 280 sec / 100ml, the longitudinal tensile strength was 1310 kgf / cm 2 , the transverse tensile strength was 1290 kgf / cm 2 , and the stabbing strength was 530gf.
비교예 1Comparative Example 1
실시예와 동일한 폴리프로필렌 조성물과 조건을 이용하여 15μm 두께의 전구체 필름을 제조하고, 일축 롤 연신기를 사용하여 상온에서 50% 저온 연신한 후, 동일한 일축 롤 연신기를 이용하여 150℃에서 180% 연신하여 13μm 두께의 미세다공성 막을 제조하였다. 제조된 미세다공성 막을 도 3과 같이 라미네이션하여 총 두께 26μm의 미세다공성 막을 제조하였다. 상기 미세다공성 막의 통기도는 280 sec/100ml, 종방향 인장 강도는 1370 kgf/cm2, 횡방향 인장 강도는 150 kgf/cm2, 찌름 강도는 350gf를 나타내었다.Using the same polypropylene composition and conditions as in Example, a precursor film having a thickness of 15 μm was prepared, stretched by 50% at low temperature using a uniaxial roll stretching machine, and then stretched by 180% at 150 ° C. using the same uniaxial roll stretching machine. A 13 micron thick microporous membrane was prepared. The prepared microporous membrane was laminated as shown in FIG. 3 to prepare a microporous membrane having a total thickness of 26 μm. The air permeability of the microporous membrane was 280 sec / 100ml, the longitudinal tensile strength was 1370 kgf / cm 2 , the transverse tensile strength was 150 kgf / cm 2 , and the stinging strength was 350 gf.
비교예 2Comparative Example 2
실시예와 동일한 폴리프로필렌 조성물과 조건을 이용하여 29μm 두께의 전구체 필름을 제조하고, 일축 롤 연신기를 사용하여 상온에서 50% 저온 연신한 후, 동일한 일축 롤 연신기를 이용하여 150℃에서 180% 연신하여 26μm 두께의 미세다공성 막을 제조하였다. 상기 미세다공성 막의 통기도는 270 sec/100ml, 종방향 인장 강도는 1340 kgf/cm2, 횡방향 인장 강도는 130 kgf/cm2, 찌름 강도는 310gf를 나타내었다.Using the same polypropylene composition and conditions as in Example, a precursor film having a thickness of 29 μm was prepared, stretched by 50% at low temperature using a uniaxial roll stretching machine, and then stretched by 180% at 150 ° C. using the same uniaxial roll stretching machine. A 26 micron thick microporous membrane was prepared. The air permeability of the microporous membrane was 270 sec / 100ml, the longitudinal tensile strength was 1340 kgf / cm 2 , the transverse tensile strength was 130 kgf / cm 2 , and the stabbing strength was 310gf.
상기 실시예와 비교예 1을 비교하면, 배향 축을 동일하게 적층하는 구조로는 횡방향 인장 강도와 찌름 강도를 향상할 수 없음을 확인할 수 있으며, 실시예와 비교예 2를 비교하면, 고온 경사 연신 후 라미네이션을 적용할 경우, 일반적인 건식 공법으로 제조된 미세다공성 막 대비 횡방향 인장 강도와 찌름 강도가 향상되는 것을 확인할 수 있다. 추가적으로 실시예는 연속적인 롤 형태로 종방향 물성과 횡방향 물성의 균형을 확보한, 즉 기존의 일축 연신에 의하여 제조되는 미세다공성 막 대비 종방향의 인장강도와 찌름강도가 향상된 미세다공성 막을 제조할 수 있음을 확인할 수 있다.Comparing the above Example and Comparative Example 1, it can be confirmed that the structure in which the alignment axes are laminated in the same manner can not improve the transverse tensile strength and the puncture strength. When the post lamination is applied, it can be seen that the transverse tensile strength and the puncture strength are improved compared to the microporous membrane prepared by the general dry method. In addition, the embodiment of the present invention provides a microporous membrane in which the longitudinal and transverse physical properties are secured in a continuous roll form, that is, the tensile strength and the puncture strength of the longitudinal direction are improved compared to the microporous membrane prepared by conventional uniaxial stretching. It can be confirmed that.

Claims (6)

  1. 다음의 단계들을 포함하는, 미세다공성 막의 제조 방법: A method of making a microporous membrane, comprising the following steps:
    (1) 고분자 화합물 또는 이를 포함하는 조성물을 압출 성형하여 전구체 필름을 형성하는 단계,(1) extrusion molding a polymer compound or a composition comprising the same to form a precursor film,
    (2) 상기 전구체 필름을 어닐링하는 단계,(2) annealing the precursor film,
    (3) 상기 어닐링된 필름을 저온 연신하는 단계,(3) cold drawing the annealed film,
    (4) 상기 저온 연신한 필름을 고온 경사 연신하는 단계, 및(4) high temperature diagonal stretching of the low temperature stretched film, and
    (5) 상기 고온 경사 연신된 필름을 2층 이상 교대로 라미네이션하는 단계.(5) alternately laminating the hot diagonal stretched film in two or more layers.
  2. 제1항에 있어서, 상기 고분자 화합물은 반결정성 고분자 화합물인 것을 특징으로 하는 미세다공성 막의 제조 방법.The method of claim 1, wherein the polymer compound is a semicrystalline polymer compound.
  3. 제2항에 있어서, 상기 고분자 화합물은 폴리올레핀, 폴리플루오로카본, 폴리아미드, 폴리에스테르, 폴리아세탈, 폴리설파이드, 폴리비닐알콜, 이들의 공중합체 및 이들의 조합으로 구성되는 군으로부터 선택되는 것을 특징으로 하는 미세다공성 막의 제조 방법.The method of claim 2, wherein the polymer compound is selected from the group consisting of polyolefins, polyfluorocarbons, polyamides, polyesters, polyacetals, polysulfides, polyvinyl alcohols, copolymers thereof, and combinations thereof. A method of producing a microporous membrane.
  4. 제1항에 있어서, 상기 (4)단계의 고온 경사 연신시 경사 연신 각도는 20~65°인 것을 특징으로 하는 미세다공성 막의 제조 방법.The method of manufacturing a microporous membrane according to claim 1, wherein the inclined stretching angle at the time of high temperature gradient stretching in the step (4) is 20 to 65 °.
  5. 제1항에 있어서, 상기 미세다공성 막의 기공도는 20~80%인 것을 특징으로 하는 미세다공성 막의 제조 방법.The method of claim 1, wherein the porosity of the microporous membrane is 20 to 80%.
  6. 제1항 내지 제5항 중 어느 한 항의 방법으로 제조된 미세다공성 막을 적용한 이차전지용 분리막.Separation membrane for a secondary battery to which the microporous membrane prepared by the method of any one of claims 1 to 5.
PCT/KR2014/001495 2013-03-13 2014-02-25 Method for manufacturing fine-porous film and separation membrane for secondary battery using same WO2014142447A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130026486A KR101464430B1 (en) 2013-03-13 2013-03-13 Process for producing microporous membrane and battery separator comprising the membrane by the same
KR10-2013-0026486 2013-03-13

Publications (1)

Publication Number Publication Date
WO2014142447A1 true WO2014142447A1 (en) 2014-09-18

Family

ID=51537044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001495 WO2014142447A1 (en) 2013-03-13 2014-02-25 Method for manufacturing fine-porous film and separation membrane for secondary battery using same

Country Status (2)

Country Link
KR (1) KR101464430B1 (en)
WO (1) WO2014142447A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108475750A (en) * 2015-11-11 2018-08-31 赛尔格有限责任公司 Microlayer film, improved battery separator and method of manufacture and use thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101868797B1 (en) 2016-03-16 2018-06-19 상명대학교산학협력단 Manufacturing method of porous polymer membrane using water pressure
KR101976659B1 (en) 2016-12-12 2019-05-09 삼성에스디아이 주식회사 Photosensitive resin composition, photosensitive resin layer using same and color filter
KR102587283B1 (en) * 2023-04-04 2023-10-12 안성희 Method for manufacturing porous film, the porous film, and secondary battery or separator comprising the porous film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4439260A (en) * 1982-05-17 1984-03-27 Mobil Oil Corporation Method and apparatus for forming cross-laminated thermoplastic film
JPH1154104A (en) * 1997-08-07 1999-02-26 Nitto Denko Corp Battery separator and manufacture thereof
JP2000299094A (en) * 1999-04-14 2000-10-24 Ube Ind Ltd Porous film layered product and battery separator using it
KR100362331B1 (en) * 1994-12-22 2003-03-06 셀가드 인코포레이티드 How to make an alternating layer of microporous membrane battery separator, and thereby the battery separator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4439260A (en) * 1982-05-17 1984-03-27 Mobil Oil Corporation Method and apparatus for forming cross-laminated thermoplastic film
KR100362331B1 (en) * 1994-12-22 2003-03-06 셀가드 인코포레이티드 How to make an alternating layer of microporous membrane battery separator, and thereby the battery separator
JPH1154104A (en) * 1997-08-07 1999-02-26 Nitto Denko Corp Battery separator and manufacture thereof
JP2000299094A (en) * 1999-04-14 2000-10-24 Ube Ind Ltd Porous film layered product and battery separator using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108475750A (en) * 2015-11-11 2018-08-31 赛尔格有限责任公司 Microlayer film, improved battery separator and method of manufacture and use thereof

Also Published As

Publication number Publication date
KR20140112162A (en) 2014-09-23
KR101464430B1 (en) 2014-11-21

Similar Documents

Publication Publication Date Title
EP2974847B1 (en) Biaxially oriented microporous membrane
KR101336593B1 (en) Method with good productivity for preparing microporous polyolefin film with various properties
JP6688922B2 (en) Separation membrane and manufacturing method thereof
CN1198347C (en) Cell separator with reduced break tendency
TWI500206B (en) Co-extruded, multi-layered battery separator
CN107431166B (en) Laminated polyolefin microporous membrane, battery separator and method for producing same
CN108370014B (en) Polyolefin microporous membrane, battery separator, and methods for producing these
JP3381538B2 (en) Manufacturing method of laminated porous polyolefin film
WO2014142447A1 (en) Method for manufacturing fine-porous film and separation membrane for secondary battery using same
WO2010120056A2 (en) Method of producing microporous polymer membrane and microporous polymer membrane produced by the method
TWI770004B (en) Polyolefin microporous membrane and method for producing the same, separator for battery and method for producing the same
US10790492B2 (en) Microporous polyolefin membrane, separator for battery, and production processes therefor
KR101692413B1 (en) Separator for electrochemical device with improved curling/crack condition and a method of making the same
KR20170084013A (en) Microporous polyolefin film, separator for battery, and production processes therefor
KR20170093789A (en) Microporous polyolefin film, separator for battery, and production processes therefor
KR20160014557A (en) Polypropylene microporous film and its manufacturing method
KR102121252B1 (en) Battery separator and method of manufacturing same
KR20190118640A (en) Method for producing polyolefin microporous membrane and polyolefin microporous membrane
KR101915345B1 (en) A method of manufacturing separator for electrochemical device and separator for electrochemical device manufactured thereby
KR20150116287A (en) Separator for electrochemical device with improved curling condition and a method of making the same
CN107785525B (en) Preparation method of self-flame-retardant co-extruded unidirectional stretching microporous membrane and microporous membrane
KR20150030102A (en) A method of manufacturing separator for electrochemical device and separator for electrochemical device manufactured thereby
CN104752662A (en) Multilayer separator with superior permeability
KR102148075B1 (en) Fabrication method for microporous multilayer film having shutdown characteristics at high temperature and high physical strength in transverse direction
JP2013108045A (en) Method for producing polyolefin microporous membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14764680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14764680

Country of ref document: EP

Kind code of ref document: A1