WO2014142442A1 - 레이저 간섭을 이용한 공통 경로 거리 측정 장치 - Google Patents

레이저 간섭을 이용한 공통 경로 거리 측정 장치 Download PDF

Info

Publication number
WO2014142442A1
WO2014142442A1 PCT/KR2014/001041 KR2014001041W WO2014142442A1 WO 2014142442 A1 WO2014142442 A1 WO 2014142442A1 KR 2014001041 W KR2014001041 W KR 2014001041W WO 2014142442 A1 WO2014142442 A1 WO 2014142442A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
coupling
measuring
interference
regression
Prior art date
Application number
PCT/KR2014/001041
Other languages
English (en)
French (fr)
Inventor
이석순
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Publication of WO2014142442A1 publication Critical patent/WO2014142442A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details

Definitions

  • the present invention relates to an apparatus for measuring a common path distance using laser interference, and more particularly, to share a path of a measuring laser that irradiates an object with a fiber and an optical communication element and a regression laser that is reflected from the object (common-path).
  • the moving distance from the measurement object relates to a moving distance measuring device using a laser interference effect due to a path difference between a reference laser and a regression laser.
  • a distance measuring device using a laser refers to a device for measuring an accurate distance by detecting a laser that is reflected back after firing a laser toward a target.
  • the apparatus for generating a laser and a laser that is reflected back from a target It consists of a photodetector to detect and a counter for time calculation.
  • the distance measurement is generally performed by matching the sight line of the measuring instrument with the laser optical axis, firing a laser having excellent directivity, and calculating the distance by measuring the time when the laser is reflected back from the target.
  • prism mode is used to measure long distance objects.
  • laser beams having relatively large beam spreads can make measurements with high accuracy using a collimator.
  • Prism mode is a method of measuring relatively long distance using the principle that the transmitted laser returns to the transmitted direction by the retroreflective prism without loss of energy when using the retroreflective prism. Distance measurement is possible even without using a laser.
  • the distance measuring optical device disclosed in US Pat. No. 7,196,776 uses a romvoid prism to switch optical paths so that the prism mode and the non-prism mode can be configured according to the measurement distance.
  • such a distance measuring optical device has a problem in that the structure is complicated and a separate light path switching means is required. That is, as shown in FIG. 1 of US Pat. No. 7,196,776, the optical path switching means makes it possible to select the first optical path and the second optical path aligned with the projection optical axis.
  • the optical path switching means for example, the romvoid prism, is rotatable so that when the first optical path is selected, it is reflected twice from the laser light source by the rhombus prism and coincides with the projection optical axis in parallel with the optical axis.
  • the light emitted from the laser light source passes through the second collimated lens, the optical fiber, and the third collimated lens, exits the rhombus prism, passes through the mask, and is emitted to the optical axis.
  • the conventional distance measuring optical device has to produce a device using the prism at a high cost, there is a disadvantage that can not know the ultra-short distance measurement.
  • An object of the present invention is to improve the conventional characteristics as described above, and to share the path of the measuring laser and the return laser reflected from the object (common-path) to the object using the optical fiber and optical communication elements
  • An object of the present invention is to provide a moving distance measuring apparatus using a laser interference effect due to a path difference between a reference laser and a regression laser.
  • the present invention has the following configuration to achieve the above object.
  • the distance measuring apparatus using the laser of the present invention comprises: a measuring unit for dividing a laser to measure a moving distance by using laser interference of a reference laser and a regressive laser; A laser irradiation unit which irradiates the laser oscillated from the measuring unit to the measurement object and reflects the irradiated laser back; And a driving unit for changing a laser irradiation position of the laser irradiation unit.
  • the measurement unit receives an oscillation means for oscillating a single wavelength laser, a first coupling for dividing the laser oscillated from the oscillation means into a reference laser and a measurement laser, and a laser receiving the measurement laser split from the first coupling.
  • the circulator for irradiating and reflecting the measurement object through the irradiation unit and transmitting the regression laser returned to the laser irradiation unit to the second coupling, and the reference laser split by the first coupling and the regression laser transmitted from the circulator.
  • a second coupling causing an interference effect between the two lasers, a photo detector for converting the laser signal passing through the second coupling into an electrical signal, and an oscilloscope for outputting the electrical signal converted by the photo detector. Is made of.
  • the drive unit may include a base, a first horizontal moving means positioned above the base and operating horizontally with respect to the base, and a direction orthogonal to the first horizontal moving means positioned above the first horizontal moving means.
  • the second horizontal moving means horizontally operated, the vertical moving means provided on one side of the second horizontal moving means, the vertical moving means operating in the vertical direction, the bracket having a laser irradiation unit provided on one side of the vertical moving means, and the vertical moving means It is located in the upper portion made of an angle measuring means for measuring the amount of rotation of the operating lever of the vertical movement means.
  • the first coupling may transfer the laser oscillated from the power generating means in a ratio of 1:99
  • the second coupling may reflect the laser beam split from the first coupling and the circulator.
  • the laser can also be passed through the photodetector at a ratio of 3: 7.
  • the laser oscillated from the oscillation means may use a short wavelength of 1550nm.
  • the driving unit may use a 250 ⁇ m movement interval per rotation of the operating lever configured in each moving means.
  • the distance measuring device using a laser is interconnected by an optical fiber.
  • the present invention it is possible to reduce the manufacturing cost by enabling the measurement of the moving distance using the laser interference effect using the optical fiber and optical communication devices.
  • the irradiation unit for irradiating the laser to the object and the regression unit reflected back from the object can be configured in the same path, there is an effect that can fundamentally improve the error due to the difference between the position of the irradiation unit and the regression unit. .
  • FIG. 1 is a schematic view showing a moving distance measuring apparatus using a laser of the present invention.
  • FIG. 2 is a block diagram illustrating a measurement unit illustrated in FIG. 1.
  • Figure 3 is a block diagram showing a moving distance measuring apparatus using a laser of the present invention.
  • Figure 4 is a graph showing the measured value measured by the moving distance measuring apparatus using a laser of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are only used to distinguish one component from another.
  • the moving distance measuring apparatus 100 using the laser of the present invention is configured to include a measuring unit 110, a driving unit 120 and a laser irradiation unit 130.
  • the measuring unit 110 includes an oscillation means 111 for oscillating a single wavelength laser, a first coupling 112 for dividing the laser oscillated from the oscillation means 111, and the first coupling 112.
  • the circulator 113 receives the measurement laser 1 split from the circulator 1 to the laser irradiator 130 and delivers the regression laser 3 returned from the laser irradiator 130 to the second coupling 114.
  • a second coupling 114 for causing laser interference by passing the regression laser 3 transmitted from the circulator 113 and the reference laser 2 divided by the first coupling 112 together.
  • a photo detector 115 for converting the laser-interfered laser signal passing through the second coupling 114 into an electrical signal, and an oscilloscope 116 for outputting the electrical signal converted by the photo detector 115. consist of.
  • the measuring unit 110 is to generate a laser of a single wavelength and then divided into a reference laser (2) and a measurement laser (1) using a first coupling and the reference laser (2) is transferred to the second coupling
  • the measuring laser 1 is transmitted to the laser irradiation part via the circulator, and is then transmitted to the second coupling side by using the circulator to the regression laser 3 which is a laser reflected from the object through the irradiation part, and is transmitted from the first coupling.
  • the signal causing the laser interference with the reference laser 2 is converted into an electrical signal and the signal is measured so that the moving distance with the measurement object T can be measured.
  • the drive unit 120 is a first horizontal movement means for horizontally operating with respect to the base 121 by using a base 121 fixed to the ground or the floor and the base 121, the operating lever 122a
  • a second horizontal movement means (122) positioned above the first horizontal movement means (122) and horizontally operated in a direction orthogonal to the first horizontal movement means (122) by using the operation lever (123a);
  • 123 and a vertical movement means 124 provided at one side of the second horizontal movement means 123 to operate in a vertical direction with respect to the second horizontal movement means 123 using the operation lever 124a, and the vertical movement means.
  • Bracket 125 to the laser irradiation unit 130 is provided on one side of the means 124, and is positioned above the vertical movement means 124 to measure the amount of rotation of the operation lever 124a of the vertical movement means 124 It consists of an angle measuring means 126.
  • the driving unit 120 is used to adjust the horizontal direction (X, Y) position of the laser irradiation unit using the first horizontal moving means 122 and the second horizontal moving means 123 to accurately arrange the position of the measurement object.
  • the vertical movement means 124 moves the bracket in the vertical direction (Z) by using the operation lever 124a so that the rotational amount of the operation lever in accordance with the vertical movement direction of the bracket is always measured by the angle measuring means 126. Measured by) and displays the distance between the laser irradiation part and the measurement object according to the rotation amount so that the moving distance can be confirmed.
  • the laser irradiator 130 irradiates the measurement laser 1 oscillated from the measurement unit 110 to the measurement object T, and when the irradiated measurement laser 1 is reflected from the measurement object, the reflected regression laser 3 is reflected.
  • a collimator is usually used as a means for recovering and transferring the result to the circulator 113 side of the measuring unit 110. That is, the laser irradiation unit 130 can eliminate the error due to the irradiation position and the regression position because the laser irradiation and regression occurs through the same path can reduce the measurement error.
  • the first coupling 112 used in the present invention divides the laser a generated from the power generating means 111 into the reference laser 2 and the measurement laser 1 at a ratio of 1:99
  • the second coupling 114 passes the reference laser 2 divided from the first coupling 112 and the regression laser 3 passing through the circulator 113 at a ratio of 3: 7.
  • the laser is transmitted to the detector 115, and the laser oscillated from the oscillation means 111 has a short wavelength of 1550 nm, and the driving part 120 is one time of the operation levers 122a, 123a, and 124a configured in each moving means. Hall shift interval is 250 ⁇ m
  • the angle measuring means 126 provided in the vertical moving means 124 is configured to measure the divided angle by dividing the rotation angle of the operation lever 124a by 1/16 It is.
  • the operation lever 124a of the vertical movement means 124 when the operation lever 124a of the vertical movement means 124 is rotated 1/16, it is rotated by 15.625 and can be displayed by the angle measuring means, and the vertical movement means is measured by raising or lowering by the amount of rotation.
  • the distance to or from the object is made far or near, and the distance can be measured by measuring the wavelength signal caused by laser interference between the return laser (3) and the reference laser (2), which are reflected from the object and return to the irradiation part. will be.
  • the lines used for the movement, transmission, etc. of the laser is preferably to be interconnected by the optical fiber. This is to minimize the loss between the movement of the laser using the optical fiber.
  • each of the above components be constructed using equipment used for communication. Through this, it is possible to reduce the price of the equipment manufactured by the conventional prism method.
  • the above-described configurations of the present invention describe the wavelength of the laser, the laser splitting by the first coupling and the second coupling, and the splitting ratio by the driving unit as an example, and various single wavelength lasers vary according to the surface reflectance of the measurement object.
  • the division of the first coupling and the second coupling and the division boiling of the driving unit may be variously changed.
  • the distance measuring device 100 is fixed so as not to flow on the ground having a uniform bottom, and then the measurement object T is installed in the same manner. In this case, it is preferable to attach a reflector that will not disturb the wavelength of the laser on the surface of the measurement object.
  • the oscillating means 111 of the measuring unit 110 is operated to cause the laser to oscillate, and the oscillated laser a passes through the first coupling 112 and has a ratio of 1:99 at the ratio of the reference laser ( 2) and the measuring laser (1).
  • the measuring laser 1 is 99% of the oscillation laser (a) because the intensity of the laser light is significantly lowered while the laser is irradiated and returned to the object, but this should be different depending on the reflectance of the object.
  • the divided reference laser 2 is transferred to the second coupling 114 side, and the measurement laser 1 passes through the circulator 113 to the laser irradiator 130.
  • the laser irradiator 130 irradiates the transmitted laser to the surface of the measurement object T, and the irradiated laser is reflected on the surface of the measurement object to return to the laser irradiation unit 130.
  • the laser irradiation unit 130 preferably uses a collimator (collimeter) so that the laser irradiation and the regression can be performed in parallel. This can eliminate the error caused by the deviated path by the same path of laser irradiation and regression at one location, thereby reducing the measurement error.
  • collimator collisionmeter
  • the regression laser 3 returned through the laser irradiator 130 is transferred to the circulator 113 and is transferred to the second coupling 114 by the circulator 113.
  • the circulator 113 is a configuration for passing a signal that is normally input and transferring the recovered signal in a different direction of the input signal.
  • the regression laser 3 transmitted to the second coupling 114 passes through the reference laser 2 divided by the first coupling 112 and the second coupling, and returns to the reference laser 2.
  • Laser interference caused by the optical path difference between the lasers 3 is generated and the laser generated interference is transmitted to the photo detector 115.
  • the laser transmitted to the port detector 115 converts an electrical signal into a laser signal in the photo detector, and transmits the converted electrical signal to the oscilloscope 116 for display.
  • the change value of this signal can be confirmed as shown in the graph shown in FIG. 4, where the lowest point of the graph in the box indicates that the paths of the two laser lights are different by half wavelength. Likewise, the maximum point indicates that the path difference between the two laser lights is equal to the laser wavelength. Therefore, the product of the number of the lowest (or maximum) points and 1/2 of the wavelength of the laser becomes the moving distance of the measurement object. Analyzing these wavelengths allows accurate measurement of travel.
  • the bracket 125 provided in the vertical movement means 124 is raised or lowered by using the operation lever 124a of the vertical movement means 124 to adjust the distance from the measurement object T.
  • the displayed distance is displayed on the angle measuring means 126.
  • the distance between the measurement object and the laser irradiator through the operation lever 124a of the vertical movement means 124 manipulates the rotation angle of the operation lever 124a to the angle measuring means 126 provided on the operation lever 124a side. Can be adjusted.
  • the distance that the bracket is moved by the operating lever of the vertical moving means is shown in Figure 4 as a laser interference effect due to the path difference between the reference laser (2) and the return laser (3).
  • the moving distance can be measured with a precision of nanometer.
  • the laser can be used as long as the laser is short wavelength.
  • the split ratio through the 1, 2 coupling can be implemented by various changes.
  • the oscilloscope can also be implemented with a variety of data acquisition devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

본 발명은 레이저 간섭을 이용한 공통 경로 거리 측정 장치에 관한 것으로 그 구성은 레이저를 분할하여 기준레이저와 회귀레이저의 레이저 간섭을 이용해 이동 거리를 측정하게 하는 측정부; 상기 측정부로부터 발진된 레이저를 측정대상물에 조사하고 조사된 레이저를 반사 회귀시키는 레이저 조사부; 및 상기 레이저 조사부의 레이저 조사 위치를 변화시키는 구동부;를 포함하여 구성된다.

Description

레이저 간섭을 이용한 공통 경로 거리 측정 장치
본 발명은 레이저 간섭을 이용한 공통 경로 거리 측정 장치에 관한 것으로, 더욱 상세하게는 광섬유 및 광통신용 소자들을 이용해 물체에 조사하는 측정레이저와 물체에서 반사되는 회귀레이저의 경로를 공유하고(common-path), 측정대상물과의 이동거리는 기준레이저와 회귀레이저의 경로차이로 인한 레이저 간섭효과를 이용한 이동거리 측정 장치에 관한 것이다.
통상적으로 레이저를 이용한 거리측정장치는 표적을 향해 레이저를 발사한 뒤 반사되어 되돌아오는 레이저를 검출하여 정확한 거리를 측정하는 장비를 말하며, 레이저를 발생하는 장치(Transmitter)와 표적에서 반사되어 되돌아온 레이저를 감지하는 광검출기(detector), 그리고 시간계산을 위한 계수기(counter) 등으로 구성되었다. 거리측정은 측정기의 조준선과 레이저 광축을 일치시키고 지향성이 우수한 레이저를 발사한 뒤, 이 레이저가 표적으로부터 반사되어 돌아온 시간을 측정하여 거리를 계산하는 방식으로 진행되는 것이 일반적이다.
이러한 이유로, 장거리 물체를 측정하는데 프리즘 모드가 사용된다. 또한, 상대적으로 큰 빔 확산을 갖는 레이저 빔은 콜리메이터를 이용하여 높은 정확도를 갖는 측정을 할 수 있게 된다.
프리즘 모드는 재귀반사 프리즘(corner cube prism)을 사용하는 경우, 송신된 레이저가 재귀반사 프리즘에 의해 에너지의 손실없이 송신된 방향으로 되돌아오는 원리를 이용하여 비교적 원거리를 측정하도록 하는 방식으로서 비교적 강한 파워를 가진 레이저를 사용하지 않더라도 거리측정이 가능하다.
그러나, 프리즘 거리 측정 장치와 비프리즘 거리 측정 장치를 별도로 구비한 장거리용 거리 측정 장치를 사용하는 것은 매우 비경제적이다. 이러한 관점에서 하나의 거리 측정 장치에 프리즘과 비프리즘을 사용하여 거리를 측정하는 거리 측정 장치가 개발되었다.
예를 들어, 미국특허 제7,196,776호에서 제시하고 있는 거리 측정 광학 장치는 롬보이드 프리즘을 사용하여 광경로를 전환하여 측정 거리에 따라 프리즘 모드와 비프리즘 모드로 선택가능하게 구성되어 있도록 하였다.
그러나, 이러한 거리 측정 광학 장치는 구조가 복잡하고 별도의 광경로 전환 수단이 필요한 문제점을 가지고 있다. 즉, 미국특허 제7,196,776호의 제1도에 도시된 바와 같이, 광 경로 전환 수단은 투영 광축에 정렬되어 있는 제1광로, 제2광로을 선택가능하게 한다.
광 경로 전환 수단, 예를 들면 롬보이드 프리즘은 회전 가능하게 되어 있어, 제1광로가 선택되는 경우, 레이저 광원으로부터 마름모 프리즘에서 2회 반사되고, 광축과 평행한 상태로 상기 투영 광축에 일치시킨다.
제2광로를 선택할 경우, 레이저 광원으로부터 방출된 빛은 마름모 프리즘을 벗어나서 제2콜리메이트렌즈, 광파이버, 제3콜리메이트렌즈를 통과하여 마스크를 통과하여 광축으로 빛이 출사된다.
한편, 종래의 거리 측정 광학 장치는 프리즘 방식을 이용할 장비를 고가로 제작하여야 하며 초단거리 측정을 알 수 없는 단점이 있다.
본 발명의 목적은 상기한 바와 같은 종래의 특성을 개선하기 위하여 제안된 것으로서, 광섬유 및 광통신용 소자들을 이용해 물체에 조사하는 측정레이저와 물체에서 반사되는 회귀레이저의 경로를 공유하고(common-path) 측정대상물과의 이동거리를 기준레이저와 회귀레이저의 경로차이에 의한 레이저 간섭효과를 이용한 이동거리 측정 장치를 제공함에 있다.
본 발명은 앞서 본 목적을 달성하기 위하여 다음과 같은 구성을 가진다.
본 발명의 레이저를 이용한 거리측정장치는, 레이저를 분할하여 기준레이저와 회귀레이저의 레이저 간섭을 이용해 이동 거리를 측정하게 하는 측정부; 상기 측정부로부터 발진된 레이저를 측정대상물에 조사하고 조사된 레이저를 반사 회귀시키는 레이저 조사부; 및 상기 레이저 조사부의 레이저 조사 위치를 변화시키는 구동부;를 포함하여 구성된다.
그리고 상기 측정부는 단일파장 레이저를 발진시키는 발진수단과, 상기 발진수단으로부터 발진된 레이저를 기준레이저와 측정레이저로 분할하는 제1커플링과, 상기 제1커플링으로부터 분할된 측정레이저를 전달받아 레이저 조사부를 통해 측정대상물에 조사하고 반사하여 상기 레이저 조사부로 회귀된 회귀레이저를 제2커플링으로 전달하는 서큘레이터와, 상기 서큘레이터로부터 전달된 회귀레이저와 상기 제1커플링에 의해 분할된 기준레이저를 같이 통과시켜서 두 레이저 간에 간섭효과를 일으키는 제2커플링과, 상기 제2커플링을 통과한 레이저 신호를 전기적 신호로 변환하는 포토 디텍터와, 상기 포토 디텍터에 의해 변환된 전기적 신호를 출력하는 오실로스코프로 이루어진다.
또한 상기 구동부는 베이스와, 상기 베이스 상부에 위치되어 상기 베이스에 대해 수평 방향 동작하는 제1수평이동수단과, 상기 제1수평이동수단의 상부에 위치되어 상기 제1수평이동수단에 대해 직교한 방향으로 수평 동작하는 제2수평이동수단과, 상기 제2수평이동수단 일측에 구비되어 수직 방향 동작하는 수직이동수단과, 상기 수직이동수단 일측에 레이저 조사부가 구비되도록 하는 브라켓과, 상기 수직이동수단의 상부에 위치되어 수직이동수단의 조작레버의 회전량을 측정하는 각도측정수단으로 이루어진다.
그리고 상기 제1커플링은 상기 발전수단으로부터 발진된 레이저를 1:99의 비율로 분할하여 전달할 수도 있으며, 상기 제2커플링은 상기 제1커플링으로부터 분할된 레이저와 상기 서큘레이터를 통과한 반사 레이저를 3:7의 비율로 통과시켜 포토 디텍터로 전달할 수도 있다.
또한 상기 발진수단으로부터 발진되는 레이저는 1550㎚의 단파장을 이용할 수 있다.
그리고 상기 구동부는 각각의 이동수단에 구성된 조작레버의 1회전당 이동 간격은 250㎛를 이용할 수도 있다.
한편 레이저를 이용한 거리측정장치는, 광섬유에 의해 상호 연결된다.
본 발명에 따르면, 광섬유 및 광통신용 소자들을 이용해 레이저 간섭효과를 이용해서 이동거리를 측정할 수 있게 함으로써 제작 단가를 절감할 수 있게 하는 효과가 있다.
또한 본 발명에 따르면, 레이저를 물체에 조사하는 조사부와 물체에서 반사되어 다시 돌아오는 회귀부를 같은 경로로 구성할 수 있어서 조사부와 회귀부의 위치가 다름으로 인한 오차를 근본적으로 개선할 수 있는 효과가 있다.
도 1은 본 발명의 레이저를 이용한 이동거리측정장치를 나타내는 개략도.
도 2는 도 1에 도시된 측정부를 나타내는 블록도.
도 3은 본 발명의 레이저를 이용한 이동거리측정장치를 나타내는 블록도.
도 4는 본 발명의 레이저를 이용한 이동거리측정장치에 의해 측정된 측정값을 나타내는 그래프.
이하, 본 발명의 바람직한 실시 예들을 첨부된 도면을 참고하여 더욱 상세히 설명한다. 본 발명의 실시 예들은 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명하는 실시 예들에 한정되는 것으로 해석되어서는 안 된다. 본 실시 예들은 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 상세하게 설명하기 위해서 제공되는 것이다. 따라서 도면에 나타난 각 요소의 형상은 보다 분명한 설명을 강조하기 위하여 과장될 수 있다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되어서는 안 된다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
도 1 내지 도 3에 도시된 바와 같이, 본 발명의 레이저를 이용한 이동거리측정장치(100)는, 측정부(110), 구동부(120) 및 레이저 조사부(130)를 포함하여 구성되어 있다.
상기 측정부(110)는 단일파장 레이저를 발진시키는 발진수단(111)과, 상기 발진수단(111)으로부터 발진된 레이저를 분할하는 제1커플링(112)과, 상기 제1커플링(112)으로부터 분할된 측정레이저(1)를 전달받아 상기 레이저 조사부(130)로 전달하고 상기 레이저 조사부(130)에서 회귀된 회귀레이저(3)를 제2커플링(114)으로 전달하는 서큘레이터(113)와, 상기 서큘레이터(113)로부터 전달된 회귀레이저(3)와 상기 제1커플링(112)에 의해 분할된 기준레이저(2)를 같이 통과시켜 레이저 간섭을 일으키는 제2커플링(114)과, 상기 제2커플링(114)을 통과한 레이저 간섭된 레이저 신호를 전기적 신호로 변환하는 포토 디텍터(115)와, 상기 포토 디텍터(115)에 의해 변환된 전기적 신호를 출력하는 오실로스코프(116)로 이루어져 있다.
즉, 상기 측정부(110)는 단일파장의 레이저를 발진시킨 후 제1커플링을 이용해 기준레이저(2)와 측정레이저(1)로 분할하고 기준레이저(2)는 제2커플링으로 전달하고 측정레이저(1)는 서큘레이터를 경유하여 레이저 조사부로 전달하고, 다시 조사부를 통해서 물체에서 반사된 레이저인 회귀레이저(3)를 서큘레이터를 이용해 제2커플링 측으로 전달하여 제1커플링에서 전달된 기준레이저(2)와 레이저 간섭을 일으킨 신호를 포토 디텍터로 하여금 전기적 신호로 변화시키고 이 신호를 측정함으로 측정대상물(T)과의 이동거리를 측정할 수 있게 하는 것이다.
상기 구동부(120)는 지면 또는 바닥에 고정되는 베이스(121)와, 상기 베이스(121) 상부에 위치되어 조작레버(122a)를 이용해 상기 베이스(121)에 대해 수평 방향 동작하는 제1수평이동수단(122)과, 상기 제1수평이동수단(122)의 상부에 위치되어 조작레버(123a)를 이용해 상기 제1수평이동수단(122)에 대해 직교한 방향으로 수평 동작하는 제2수평이동수단(123)과, 상기 제2수평이동수단(123) 일측에 구비되어 조작레버(124a)를 이용해 상기 제2수평이동수단(123)에 대해 수직 방향 동작하는 수직이동수단(124)과, 상기 수직이동수단(124) 일측에 레이저 조사부(130)가 구비되도록 하는 브라켓(125)과, 상기 수직이동수단(124)의 상부에 위치되어 수직이동수단(124)의 조작레버(124a)의 회전량을 측정하는 각도측정수단(126)으로 이루어져 있다.
즉, 상기 구동부(120)는 제1수평이동수단(122)과 제2수평이동수단(123)을 이용해 레이저 조사부의 수평 방향(X,Y) 위치를 조절하여 측정대상물의 위치를 정확히 어레인할 수 있게 하고 있고, 상기 수직이동수단(124)는 조작레버(124a)를 이용해 수직 방향(Z)으로 브라켓을 이동시켜 상기 브라켓의 수직 이동 방향에 따른 조작레버의 회전량을 상시 각도측정수단(126)을 이용해 측정하고 회전량에 따른 레이저 조사부와 측정대상물 간의 사이 거리를 표시하게 하여 이동 거리를 확인할 수 있도록 하기 위한 구성이다.
상기 레이저 조사부(130)는 상기 측정부(110)로부터 발진된 측정레이저(1)를 측정대상물(T)에 조사하고 조사된 측정레이저(1)가 측정대상물로부터 반사되면 반사된 회귀레이저(3)를 회수하여 상기 측정부(110)의 서큘레이터(113) 측으로 전달하는 수단으로 통상 콜리미터(collimetor) 이용한다. 즉, 상기 레이저 조사부(130)는 동일한 경로를 통해 레이저 조사와 회귀가 일어나기 때문에 조사 위치와 회귀 위치에 따른 오차를 없앨 수 있어 측정 오차를 줄일 수 있다.
한편 본 발명에서 이용되는 상기 제1커플링(112)은 상기 발전수단(111)으로부터 발진된 레이저(a)를 1:99의 비율로 기준레이저(2)와 측정레이저(1)로 분할하며, 상기 제2커플링(114)은 상기 제1커플링(112)으로부터 분할된 기준레이저(2)와 상기 서큘레이터(113)를 통과한 회귀레이저(3)를 3:7의 비율로 통과시켜 포터 디텍터(115)로 전달하며, 상기 발진수단(111)으로부터 발진되는 레이저는 1550㎚의 단파장이며, 상기 구동부(120)는 각각의 이동수단에 구성된 조작레버들(122a, 123a, 124a)의 1회전당 이동 간격은 250㎛이고, 상기 수직이동수단(124)에 구비된 각도측정수단(126)은 상기 조작레버(124a)의 회전 각도를 1/16로 분할하여 분할된 각도를 측정할 수 있도록 구성되어 있다.
즉, 상기 수직이동수단(124)의 조작레버(124a)를 1/16 회전시키면 15.625 만큼 회전하게 되고 이를 각도측정수단을 통해 표시할 수 있게 하며, 회전량만큼 수직이동수단이 상승 또는 하강하여 측정대상물과의 이동거리를 멀게 하거나 가깝게 하고 이를 통해 물체에서 반사되어 다시 조사부로 들어오는 회귀레이저(3)와 기준레이저(2) 사이의 레이저 간섭에 의한 파장신호를 측정함으로 이동거리를 측정할 수 있게 하는 것이다.
이때 레이저의 이동, 전달 등에 이용되는 라인은 광섬유에 의해 상호 연결되게 하는 것이 바람직하다. 이는 광섬유를 이용해 레이저의 이동간 손실을 최소화할 수 있게 하기 위함이다.
또한 상기 각각의 구성들은 통신용으로 이용되는 장비를 이용하여 구축하는 것이 바람직하다. 이를 통해 종래의 프리즘 방식에 의해 제작되는 장비의 가격을 절감할 수 있게 된다.
여기서 상술한 본 발명의 구성들은 레이저의 파장, 제1커플링, 제2커플링에 의한 레이저 분할 및 구동부에 의한 분할비는 하나의 예로서 설명한 것이며, 측정대상물의 표면 반사율에 따라 다양한 단일 파장 레이저와 이에 따른 제1커플링 및 제2커플링의 분할, 구동부의 분할 비등은 다양하게 변경될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 동작상태를 설명한다.
우선 거리측정장치(100)를 균일한 바닥을 갖는 지면에 유동되지 않도록 고정시킨 후 같은 방식으로 측정대상물(T)을 설치한다. 이때 상기 측정대상물의 표면에는 레이저의 파장을 교란시키지 않을 반사물을 부착하는 것이 바람직하다.
이 상태에서 상기 측정부(110)의 발진수단(111)을 동작시켜 레이저가 발진하도록 한 후 발진된 레이저(a)는 제1커플링(112)을 통과하며 1:99의 비율로 기준레이저(2)와 측정레이저(1)로 분할한다. 이때 측정레이저(1)은 레이저가 물체에 조사되고 회귀되는 동안에 레이저 빛의 강도가 현저하게 낮아지기 때문 발진 레이저(a)의 99%가 되도록 하였으나 이는 물체의 반사율에 따라 달리해야 한다.
이 후 분할된 기준레이저(2)는 제2커플링(114)측으로 전달되고, 측정레이저(1)는 서큘레이터(113)를 통과하여 상기 레이저 조사부(130) 측으로 전달된다. 상기 레이저 조사부(130)는 상기 전달된 레이저를 상기 측정대상물(T) 표면에 조사하게 되고, 조사된 레이저는 측정대상물의 표면에 반사되어 레이저 조사부(130) 측으로 회귀하게 된다.
이때 상기 레이저 조사부(130)는 레이저 조사와 회귀를 병행할 수 있도록 콜리메이터(collimeter)를 이용하는 것이 바람직하다. 이는 하나의 위치에서 레이저 조사와 회귀를 동일 경로함으로 편차진 경로에 의한 오차를 없앨 수 있어서 측정 오차를 줄일 수 있다.
다음으로 상기 레이저 조사부(130)를 통해 회귀된 회귀레이저(3)는 서큘레이터(113) 측으로 전달되어 상기 서큘레이터(113)에 의해 제2커플링(114) 측으로 전달시킨다. 여기서 상기 서큘레이터(113)는 통상 입력되는 신호를 통과시키고 회수되는 신호를 입력 신호의 다른 방향으로 전달하기 위한 구성이다.
다음으로 상기 제2커플링(114)으로 전달된 회귀레이저(3)는 상기 제1커플링(112)에서 분할된 기준레이저(2)와 제2커플링을 통과하면서 기준레이저(2)와 회귀레이저(3) 사이에 광 경로 차이에 의한 레이저 간섭현상이 발생하고 간섭현상이 발생된 레이저는 포토 디텍터(115)로 전달된다.
상기 포터 디텍터(115)로 전달된 레이저는 포토 디텍터 내에서 레이저 신호를 전기적 신호를 변환되고, 변환된 전기적 신호를 오실로스코프(116)로 전달하여 표시하게 된다.
즉, 상기 제2커플링(114)을 통해 최초 발진된 기준레이저(2)와 반사되어 회귀된 회귀레이저(3) 사이에 레이저 간섭된 레이저를 전기적 신호를 변환함으로써 이동거리에 의한 광 경로 차이의 간섭을 확인하게 된다. 이때 앞서 설명한 바와 같이 레이저 조사부의 출사광과 입사광이 같은 경로를 이용하기 때문에 출사광과 입사광의 차이에 의한 오차를 제거할 수 있게 된다.
이러한 신호의 변화 값은 도 4에 도시된 그래프에서와 같이 확인할 수 있으며, 그래프에서 박스 내의 그래프의 최저점은 두 레이저 빛의 경로가 반 파장만큼 다름을 나타낸다. 마찬가지로 최대점은 두 레이저 빛의 경로차이가 레이저 파장과 같음을 나타낸다. 따라서 이 최저점(혹은 최대점)의 개수와 레이저의 파장의 1/2의 곱이 측정 대상물의 이동거리가 된다. 이 파장을 분석하면 정확한 이동거리를 측정할 수 있게 된다.
이 상태에서 상기 수직이동수단(124)의 조작레버(124a)를 이용해 상기 수직이동수단(124)에 구비된 브라켓(125)을 상승 또는 하강시켜 상기 측정대상물(T)과의 거리를 조절하여 조절된 거리를 각도측정수단(126)에 표시되게 한다.
상기 수직이동수단(124)의 조작레버(124a)를 통해 측정대상물과 레이저 조사부의 간격은 상기 조작레버(124a) 측에 구비된 각도측정수단(126)에 조작레버(124a)의 회전 각도를 조작하여 조절할 수 있게 된다.
특히 상기 브라켓이 수직이동수단의 조작레버에 의해 이동하는 거리는 기준레이저(2)와 회귀레이저(3)의 경로 차이로 인한 레이저 간섭효과로 도 4와 같이 나타난다. 도 4를 분석하면 나노미터의 정밀도로 이동거리를 측정할 수 있다.
앞에서도 설명하였지만 상기 동작 상태에서 설명된 레이저의 파장과 제1커플링과 제2커플링에서의 레이저 분할에 대해 한정하여 설명하였지만 상기 레이저는 단파장 때의 레이저라면 어떠한 것도 사용 가능하며, 이에 따라 제1,2커플링을 통한 분할 비율은 다양하게 변경하여 실시할 수 있다. 또한 오실로스코프는 다양한 자료획득장치로 변경하여 실시할 수 있다.
이상, 본 발명을 바람직한 실시예를 통해 설명하였으나, 이는 본 발명의 기술적 내용에 대한 이해를 돕고자 하는 것일 뿐 발명의 기술적 범위를 이에 한정하고자 함이 아니다.
즉, 본 발명의 기술적 요지를 벗어나지 않고도 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 다양한 변형이나 개조가 가능함은 물론이고, 그와 같은 변경이나 개조는 청구범위의 해석상 본 발명의 기술적 범위 내에 있음은 말할 나위가 없다.

Claims (8)

  1. 레이저를 분할하여 기준레이저와 회귀레이저의 레이저 간섭을 이용해 이동 거리를 측정하게 하는 측정부;
    상기 측정부로부터 발진된 레이저를 측정대상물에 조사하고 조사된 레이저를 반사 회귀시키는 레이저 조사부; 및
    상기 레이저 조사부의 레이저 조사 위치를 변화시키는 구동부;를 포함하여 구성된 것을 특징으로 하는 레이저 간섭을 이용한 공통 경로 거리 측정 장치.
  2. 제1항에 있어서,
    상기 측정부는 단일파장 레이저를 발진시키는 발진수단과, 상기 발진수단으로부터 발진된 레이저를 기준레이저와 측정레이저로 분할하는 제1커플링과, 상기 제1커플링으로부터 분할된 측정레이저를 전달받아 레이저 조사부를 통해 측정대상물에 조사하고 반사하여 상기 레이저 조사부로 회귀된 회귀레이저를 제2커플링으로 전달하는 서큘레이터와, 상기 서큘레이터로부터 전달된 회귀레이저와 상기 제1커플링에 의해 분할된 기준레이저를 같이 통과시켜서 두 레이저 간에 간섭효과를 일으키는 제2커플링과, 상기 제2커플링을 통과한 레이저 신호를 전기적 신호로 변환하는 포토 디텍터와, 상기 포토 디텍터에 의해 변환된 전기적 신호를 출력하는 오실로스코프로 이루어진 것을 특징으로 하는 레이저 간섭을 이용한 공통 경로 거리 측정 장치.
  3. 제1항에 있어서,
    상기 구동부는 베이스와, 상기 베이스 상부에 위치되어 상기 베이스에 대해 수평 방향 동작하는 제1수평이동수단과, 상기 제1수평이동수단의 상부에 위치되어 상기 제1수평이동수단에 대해 직교한 방향으로 수평 동작하는 제2수평이동수단과, 상기 제2수평이동수단 일측에 구비되어 수직 방향 동작하는 수직이동수단과, 상기 수직이동수단 일측에 레이저 조사부가 구비되도록 하는 브라켓과, 상기 수직이동수단의 상부에 위치되어 수직이동수단의 조작레버의 회전량을 측정하는 각도측정수단으로 이루어진 것을 특징으로 하는 레이저 간섭을 이용한 공통 경로 거리 측정 장치.
  4. 제2항에 있어서,
    상기 제1커플링은 상기 발전수단으로부터 발진된 레이저를 1:99의 비율로 분할하는 것을 특징으로 하는 레이저 간섭을 이용한 공통 경로 거리 측정 장치.
  5. 제2항에 있어서,
    상기 제2커플링은 상기 제1커플링으로부터 분할된 레이저와 상기 서큘레이터를 통과한 회귀 레이저를 3:7의 비율로 통과시켜 포토 디텍터로 전달하는 것을 특징으로 하는 레이저 간섭을 이용한 공통 경로 거리 측정 장치.
  6. 제2항에 있어서,
    상기 발진수단으로부터 발진되는 레이저는 1550㎚의 단파장인 것을 특징으로 하는 레이저 간섭을 이용한 공통 경로 거리 측정 장치.
  7. 제3항에 있어서,
    상기 구동부는 각각의 이동수단에 구성된 조작레버의 1회전당 이동 간격은 250㎛인 것을 특징으로 하는 레이저 간섭을 이용한 공통 경로 거리 측정 장치.
  8. 제1항 내지 제7항 중 어느 한 항의 레이저를 이용한 거리측정장치는, 광섬유에 의해 상호 연결된 것을 특징으로 하는 레이저 간섭을 이용한 공통 경로 거리 측정 장치.
PCT/KR2014/001041 2013-03-13 2014-02-07 레이저 간섭을 이용한 공통 경로 거리 측정 장치 WO2014142442A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130026565A KR101441109B1 (ko) 2013-03-13 2013-03-13 레이저 간섭을 이용한 공통 경로 거리 측정 장치
KR10-2013-0026565 2013-03-13

Publications (1)

Publication Number Publication Date
WO2014142442A1 true WO2014142442A1 (ko) 2014-09-18

Family

ID=51537043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001041 WO2014142442A1 (ko) 2013-03-13 2014-02-07 레이저 간섭을 이용한 공통 경로 거리 측정 장치

Country Status (2)

Country Link
KR (1) KR101441109B1 (ko)
WO (1) WO2014142442A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010018282A (ko) * 1999-08-18 2001-03-05 홍상복 광센서와 반사경을 이용한 휴대용 폭 또는 두께 측정 장치
KR20090046564A (ko) * 2007-11-06 2009-05-11 한국표준과학연구원 레이저 간섭계식 메코메타 및 이를 이용한 거리 측정 방법
JP2009162659A (ja) * 2008-01-08 2009-07-23 Hexagon Metrology Kk 3次元形状測定器
JP4489804B2 (ja) * 2005-03-02 2010-06-23 独立行政法人科学技術振興機構 ホモダインレーザ干渉計プローブ及びそれを用いた変位計測システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010018282A (ko) * 1999-08-18 2001-03-05 홍상복 광센서와 반사경을 이용한 휴대용 폭 또는 두께 측정 장치
JP4489804B2 (ja) * 2005-03-02 2010-06-23 独立行政法人科学技術振興機構 ホモダインレーザ干渉計プローブ及びそれを用いた変位計測システム
KR20090046564A (ko) * 2007-11-06 2009-05-11 한국표준과학연구원 레이저 간섭계식 메코메타 및 이를 이용한 거리 측정 방법
JP2009162659A (ja) * 2008-01-08 2009-07-23 Hexagon Metrology Kk 3次元形状測定器

Also Published As

Publication number Publication date
KR101441109B1 (ko) 2014-10-30

Similar Documents

Publication Publication Date Title
CN102803987B (zh) 坐标测量设备
US20160363669A1 (en) Lidar imaging system
JP2013528794A5 (ko)
CN101319898B (zh) 测量系统
CN103703389A (zh) 具有增强的处理特征的激光跟踪仪
CN101231343B (zh) 基于液晶调制的激光测距机瞄准与接收轴平行性测量装置
KR20110088368A (ko) 광 간섭 계측 방법 및 광 간섭 계측 장치
JP2013528794A (ja) 光学モニタリングシステムを有する表面粗さ測定装置
JPS6091203A (ja) 多軸測定器
JP2000234930A (ja) 反射プリズム装置
US20200363187A1 (en) Light sensor and coordinate measuring machine
CN102822692A (zh) 具有自动目标检测的坐标测量设备
GB2155271A (en) Object location
IT9022278A1 (it) Apparecchiatura laser per la misura della velocita' di un fluido.
CN104515468A (zh) 光学位置测量装置
CN105333815A (zh) 一种基于光谱色散线扫描的超横向分辨率表面三维在线干涉测量系统
CN105333816B (zh) 一种基于光谱色散全场的超横向分辨率表面三维在线干涉测量系统
CN110530257A (zh) 飞秒激光器分布式干涉仪系统
CN104487799B (zh) 干涉距离测量装置和对应方法
US11402196B2 (en) Device and method for distributed detection of straightness of working face of scraper conveyor based on optical fiber sensing
WO2015099211A1 (ko) 3차원 카메라모듈
KR20130135438A (ko) 간섭계를 이용한 측정장치
WO2014142442A1 (ko) 레이저 간섭을 이용한 공통 경로 거리 측정 장치
CN108061527A (zh) 一种抗空气扰动的二维激光自准直仪
WO2016068504A1 (ko) 다기능 분광장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14763441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14763441

Country of ref document: EP

Kind code of ref document: A1