WO2014142121A1 - Transparent conductive coating composition, transparent conductive film, and in-plane switching liquid crystal display panel with built-in touch panel function - Google Patents

Transparent conductive coating composition, transparent conductive film, and in-plane switching liquid crystal display panel with built-in touch panel function Download PDF

Info

Publication number
WO2014142121A1
WO2014142121A1 PCT/JP2014/056331 JP2014056331W WO2014142121A1 WO 2014142121 A1 WO2014142121 A1 WO 2014142121A1 JP 2014056331 W JP2014056331 W JP 2014056331W WO 2014142121 A1 WO2014142121 A1 WO 2014142121A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
liquid crystal
coating composition
conductive film
chain
Prior art date
Application number
PCT/JP2014/056331
Other languages
French (fr)
Japanese (ja)
Inventor
西本智久
小林哲
土井秀軽
上天一浩
三本高志
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to CN201490000472.0U priority Critical patent/CN204981727U/en
Publication of WO2014142121A1 publication Critical patent/WO2014142121A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/10Block or graft copolymers containing polysiloxane sequences
    • C09D183/12Block or graft copolymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/46Block-or graft-polymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2231Oxides; Hydroxides of metals of tin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K3/2279Oxides; Hydroxides of metals of antimony
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/22Antistatic materials or arrangements

Definitions

  • the present invention relates to a transparent conductive coating composition, a transparent conductive film using the same, and a horizontal electric field type liquid crystal display panel with a touch panel function provided with the transparent conductive film.
  • Liquid crystal display panels have been used for light-weight, thin, low power consumption, and other small display devices such as various information device terminals and cameras, and in recent years, large display devices such as televisions. ing.
  • a vertical electric field method represented by a TN (twisted nematic) type used to dominate, but recently, a liquid crystal display panel called a horizontal electric field method has become mainstream. Yes.
  • a vertical electric field type liquid crystal display panel among transparent substrates disposed to face each other with a liquid crystal layer interposed therebetween, one transparent substrate is provided with a pixel electrode, and the other transparent substrate is provided with a common electrode.
  • the liquid crystal orientation is controlled by an electric field generated between the pixel electrode and the common electrode, that is, an electric field perpendicular to the transparent substrate.
  • the configuration of the horizontal electric field type liquid crystal display panel includes a display electrode and a reference electrode mainly on the liquid crystal layer side of one transparent substrate among the transparent substrates arranged to face each other through the liquid crystal layer.
  • the liquid crystal layer is controlled by controlling the orientation of the liquid crystal by an electric field (lateral electric field, fringe electric field) generated between the display electrode and the reference electrode, that is, an electric field generated in parallel with the transparent substrate.
  • the transmitted light is modulated.
  • the horizontal electric field type liquid crystal display panel has an advantage that the viewing angle is wider than the vertical electric field type, but as a problem that does not occur in the vertical electric field type liquid crystal display panel, electrostatic discharge from the outside or inside of the liquid crystal display panel There is a problem that the display quality is deteriorated, such as light leakage occurs when black is displayed due to various influences or external electromagnetic interference.
  • a horizontal electric field type liquid crystal display panel has a structure in which a display electrode and a reference electrode are integrated on one transparent substrate, and therefore has a conductive layer having a shielding function against external static electricity. This is because it is not configured.
  • a conductive layer having translucency is formed on the surface opposite to the liquid crystal layer of the transparent substrate on the side far from the backlight unit among the transparent substrates of the liquid crystal display panel.
  • a technique of providing an electrostatic discharge (ESD) function has been proposed, and specifically, a method of forming an antistatic film containing ITO or the like as a conductive layer has been proposed (see Patent Document 1). By this method, an ESD function can be imparted to the horizontal electric field type liquid crystal display panel.
  • liquid crystal display panel with a touch panel function currently in widespread use is an external type in which a touch panel is arranged outside the conventional liquid crystal display panel.
  • the entire panel becomes thick and it is difficult to reduce the thickness of the liquid crystal display device.
  • a liquid crystal display panel with a built-in touch panel function has been proposed as a built-in type in which a touch panel function is built into the liquid crystal display panel.
  • the liquid crystal display panel with a built-in touch panel function is an arrangement in which a touch-sensitive functional layer is disposed between two glass substrates of the liquid crystal display panel, and has an advantage that the entire panel can be thinned. For this reason, a liquid crystal display panel in which the above-mentioned horizontal electric field type liquid crystal display panel and a liquid crystal display panel with a built-in touch panel function are combined has been proposed (see Patent Document 2).
  • Patent Document 2 for example, a capacitance method is introduced as a touch detection method used for the touch detection function layer.
  • Patent Documents 3 to 6 as prior art documents related to the present invention.
  • the present invention solves the above-mentioned problem, and in a lateral electric field type liquid crystal panel with a touch panel function built-in, which has a capacitive touch sensing function layer, it is possible to achieve both an ESD function and a touch panel function as well as light transmittance and hardness.
  • a transparent conductive coating composition capable of forming an excellent transparent conductive film, a transparent conductive film using the same, and a horizontal electric field type liquid crystal display panel with a touch panel function provided with the transparent conductive film. .
  • the transparent conductive coating composition of the present invention is a transparent conductive coating composition containing chain conductive inorganic particles, a binder, a high boiling point solvent, and a low boiling point solvent, wherein the chain conductive inorganic particles
  • the content of is 40 to 90% by mass with respect to the total amount of the chain conductive inorganic particles and the binder.
  • the transparent conductive film of the present invention is formed using the transparent conductive coating composition of the present invention.
  • the horizontal electric field type liquid crystal display panel with a built-in touch panel function includes a liquid crystal layer, a first transparent substrate and a second transparent substrate which are disposed to face each other with the liquid crystal layer interposed therebetween, and the first transparent substrate.
  • a transparent conductive film disposed on a side of the substrate opposite to the liquid crystal layer, a display electrode and a reference electrode disposed on the liquid crystal layer side of the second transparent substrate, the first transparent substrate,
  • a lateral electric field type liquid crystal display panel with a built-in touch panel function including a capacitive touch sensing function layer disposed between the second transparent substrate and the transparent conductive film of the present invention as the transparent conductive film. It is characterized by using a conductive film.
  • a transparent conductive film having a high ESD function and not deteriorating touch sensitivity and excellent in light transmittance and hardness is directly and easily disposed on a horizontal electric field type liquid crystal display panel with a built-in touch panel function. can do.
  • FIG. 1 is a schematic plan view showing a part of a liquid crystal display device using a horizontal electric field type liquid crystal display panel with a built-in touch panel function according to the present invention.
  • FIG. 2 is a schematic sectional view showing a part of a liquid crystal display device using the horizontal electric field type liquid crystal display panel with a built-in touch panel function of the present invention.
  • FIG. 3 is a transmission electron micrograph of the chain antimony-containing tin oxide particles used in Example 1.
  • FIG. 4 is an enlarged transmission electron micrograph of FIG.
  • the transparent conductive coating composition of the present invention contains chain conductive inorganic particles, a binder, a high boiling point solvent, and a low boiling point solvent.
  • the content of the chain conductive inorganic particles is 40 to 90% by mass with respect to the total amount of the chain conductive inorganic particles and the binder.
  • the transparent conductive coating composition By using the transparent conductive coating composition, it is possible to provide a transparent conductive film having a high ESD function and not deteriorating touch sensitivity, and having excellent light transmittance and hardness.
  • the content of the chain conductive inorganic particles is 40 to 90% by mass with respect to the total amount of the chain conductive inorganic particles and the binder. It is possible to provide a transparent conductive film that has a high function and does not reduce touch sensitivity. When the content of the chain conductive inorganic particles is less than 40% by mass, the ESD function of the transparent conductive film is decreased, and when the content of the chain conductive inorganic particles exceeds 90% by mass, the touch sensitivity is decreased. .
  • the conductivity of the transparent conductive film can be increased with a smaller amount compared to the case of using non-chain conductive inorganic particles. This is because, since the inorganic particles have a chain structure, the conductive network between the inorganic particles is increased compared to the case where the inorganic particles are present alone, and the conductivity of the entire transparent conductive film is improved. I think that the. For this reason, since the quantity of the inorganic particle for implement
  • the chain conductive inorganic particles it is preferable to use those in which 2 to 50 primary particles having a particle diameter of 2 to 30 nm are connected, and more preferably 3 to 20 particles are connected.
  • the number of connected primary particles having a particle diameter of more than 50 the haze value of the transparent conductive film tends to increase due to particle scattering.
  • the number of connected primary particles of the particle size is less than 2, the particles become unchained and it becomes difficult to form a conductive network between the inorganic particles, and the conductivity of the transparent conductive film is lowered.
  • the particle diameter and the number of connections are determined by, for example, diluting a transparent conductive coating composition with a low-boiling solvent and applying a thin transparent conductive film having a thickness of 2 to 10 nm on various substrates to a transmission electron microscope (TEM) can be obtained by observing and measuring the particle diameter and the number of connections of the individual particles constituting the chain conductive inorganic particles.
  • TEM transmission electron microscope
  • the chain conductive inorganic particles are not particularly limited as long as they are chain particles having both transparency and conductivity.
  • metal particles, carbon particles, conductive metal oxide particles, conductive nitride particles, etc. Can be used.
  • conductive metal oxide particles having both transparency and conductivity are preferable.
  • the conductive metal oxide particles include tin oxide particles, antimony oxide particles, antimony-containing tin oxide (ATO) particles, tin-containing indium oxide (ITO) particles, phosphorus-containing tin oxide (PTO) particles, aluminum-containing zinc oxide ( Metal oxide particles such as AZO) particles and gallium-containing zinc oxide (GZO) particles.
  • the said conductive metal oxide particle may be used independently and may be used in combination of 2 or more type.
  • the chain conductive inorganic particles preferably include at least one selected from the group consisting of ATO particles, ITO particles, and PTO particles. This is because these conductive inorganic particles are excellent in transparency, conductivity, and chemical properties, and can achieve high light transmittance and conductivity even when a transparent conductive film is formed.
  • the production method of the chain conductive inorganic particles is not particularly limited.
  • JP 2000-196287 A, JP 2005-13926 A, JP 2006-339113 A, and JP 2012-25793 A. Can be employed.
  • the binder is not particularly limited as long as it can form a coating film by dispersing the chain conductive inorganic particles, and any of an inorganic binder and an organic binder can be used.
  • the content of the binder is preferably 20% by mass or more based on the total amount of the chain conductive inorganic particles and the binder. This is because the strength of the transparent conductive thin film tends to decrease when the content is less than 20% by mass.
  • alkoxysilane can be used as the inorganic binder. More specifically, the alkoxysilane is a compound in which 3 to 4 alkoxy groups are bonded to silicon. When dissolved in water, the alkoxysilane is polymerized into a high molecular weight SiO 2 body linked by —OSiO—. Can be used.
  • the alkoxysilane preferably contains at least one polyfunctional alkoxysilane selected from the group consisting of tetraalkoxysilane, trialkoxysilane, dialkoxysilane, and alkoxysilane oligomer.
  • An alkoxysilane oligomer is an alkoxysilane having a high molecular weight formed by condensation of alkoxysilane monomers, and means an oligomer having two or more siloxane bonds (—OSiO—) in one molecule. . The number of bonds is preferably 2 to 20.
  • tetraalkoxysilane examples include silane tetrasubstituted with an alkoxy group having 1 to 4 carbon atoms such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraiso-propoxysilane, tetrat-butoxysilane and the like. It is done.
  • trialkoxysilane examples are tri-substituted with an alkoxy group having 1 to 4 carbon atoms such as trimethoxysilane, triethoxysilane, tripropoxysilane, tributoxysilane, triiso-propoxysilane, tri-L-butoxysilane and the like.
  • silanes partially substituted with alkyl groups such as “KBM-13 (methyltrimethoxysilane)” and “KBE-13 (methyltriethoxysilane)”.
  • dialkoxysilane examples include silanes disubstituted with an alkoxy group having 1 to 4 carbon atoms such as dimethyldimethoxysilane, diphenyldimethoxysilane, dimethyldiethoxysilane, and diphenyldiethoxysilane, “KBM-22 (dimethyldimethoxysilane). Silane) ”,“ KBE-22 (dimethyldiethoxysilane) ”and the like are partially substituted with alkyl groups.
  • alkoxysilane oligomer examples include a relatively low-molecular alkoxysilane oligomer having both an organic group and an alkoxysilyl group. Specific examples include “X-40-2308”, “X-40-9238”, “X-40-9247”, “KR-401N”, “KR-510”, “KR-9218” manufactured by Shin-Etsu Chemical Co., Ltd. "Ethyl silicate 40", “Ethyl silicate 48”, “Methyl silicate 51", “Methyl silicate 53A” manufactured by Colcoat.
  • alkoxysilane in order to form a transparent conductive thin film with higher hardness, a combination of tetraalkoxylane, tetraalkoxysilane and trialkoxysilane, trialkoxysilane partially substituted with an alkyl group Preferred are alkoxysilane oligomers, dialkoxysilanes, and alkoxysilane oligomers whose functional groups are alkoxysilyl groups.
  • the hardness of the transparent conductive film is increased by three-dimensional crosslinking that promotes the siloxane bond between the binder molecules, and the risk of cracks occurring in the transparent conductive thin film due to aging is further reduced, and This is because the adhesion to the substrate can be further increased.
  • the transparent conductive coating composition in a silanol state by proceeding with a hydrolysis reaction of alkoxysilane.
  • the adjustment method for example, a method in which water and an acid catalyst are added to an alkoxysilane diluted with a low boiling point solvent such as alcohol and silanol in advance, or water and an acid catalyst are added to the conductive coating composition to be silanolated. A method is mentioned.
  • the water content can be determined theoretically by determining the hydrolysis rate from the structure of the alkoxysilane, but is adjusted as appropriate according to the pot life and coating suitability of the transparent conductive coating composition and the physical characteristics of the transparent conductive film. .
  • the water content is preferably 50 to 1500% by mass with respect to the total amount of alkoxysilane. This is because when the amount is less than 50% by mass, the strength of the transparent conductive thin film is lowered, and when it exceeds 1500% by mass, the coating suitability such as a low drying rate is affected.
  • organic binder examples include acrylic resin, polyester resin, polyamide resin, polycarbonate resin, polyurethane resin, polystyrene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl alcohol resin, polyvinyl acetate resin, and light.
  • a photopolymerizable resin containing a polymerizable monomer and a polymerization initiator can be used.
  • the photopolymerizable monomer preferably contains 50 to 90% of a tri- or higher functional (meth) acrylic monomer.
  • the content of the photopolymerizable monomer means the mass ratio of the photopolymerizable monomer to the total mass of the photopolymerizable monomer and the polymerization initiator.
  • Trifunctional (meth) acrylic monomers include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate; Examples include pentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, and dipentaerythritol hexaacrylate.
  • the photopolymerizable monomer may be a polyfunctional acrylic oligomer which is generally sold, and is particularly preferably one having high curability and high hardness.
  • the photopolymerizable monomer may contain a monofunctional or bifunctional photopolymerizable monomer, such as 1,4-butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, for example.
  • a monofunctional or bifunctional photopolymerizable monomer such as 1,4-butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, for example.
  • Bifunctional polymerizable monomers such as 1,6-hexanediol di (meth) acrylate, 1,9 nonanediol di (meth) acrylate, ethoxylated bisphenol A di (meth) acrylate, cyclohexanedimethanol di (meth) acrylate; Vinyl monomers such as vinylpyrrolidone and vinylformamide, alkyl (meth) acrylates such as butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, and alicyclic (meth) such as isobornyl (meth) acrylate Acrylate, (Me ) Hydroxy (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, nitrogen-containing (meth) acrylates such as acryloylmorpholine, dimethylaminoeth
  • polymerization initiator examples include ⁇ -diketones such as benzyl and diacetyl, acyloins such as benzoin, acyloin ethers such as benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether, thioxanthone, and 2,4-diethyl.
  • Thioxanthones such as thioxanthone, 2-chlorothioxanthone, thioxanthone-4-sulfonic acid, benzophenones, benzophenones such as 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, Michler's ketones, Acetophenone, 2- (4-toluenesulfonyloxy) -2-phenylacetophenone, p-dimethylaminoacetophenone, ⁇ , ⁇ '-dimethoxyacetoxybenzophenone, 2,2'-dimethoxy 2-phenylacetophenone, p-methoxyacetophenone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpho Acetophenones such as linophenyl) -
  • the photopolymerizable monomer and the polymerization initiator may be used alone or in combination of two or more.
  • the high boiling point solvent is not particularly limited as long as it can dissolve the binder component and can be removed by a drying step after coating.
  • Methyl isobutyl ketone, 1,2-propanediol, N, N-dimethylaniline, cresol, nitrobenzene, ethylene glycol and the like can be used.
  • the content of the high boiling point solvent may be about 0.1 to 30.0% by mass with respect to the total amount of the conductive coating composition.
  • the low boiling point solvent examples include ethyl alcohol, methyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, methyl ethyl ketone, tetrahydrofuran, acetone, dioxane, ethyl acetate, chloroform, acetonitrile, pyridine, acetic acid, Water can be used.
  • the low boiling point solvent the dispersibility of the chain conductive inorganic particles is improved.
  • the content of the low boiling point solvent may be about 50.0 to 99.5% by mass with respect to the total amount of the conductive coating composition.
  • a generally used acid catalyst (hydrochloric acid, sulfuric acid, acetic acid, phosphoric acid, etc.) can be further added to the transparent conductive coating composition of the present invention. This makes it possible to form a high-quality transparent conductive film with more reproducibility with more stable performance.
  • the content of the acid catalyst may be about 1.0 to 30.0% by mass with respect to the total amount of alkoxysilane.
  • a leveling agent can be further added to the transparent conductive coating composition of the present invention. Thereby, the surface smoothness of a transparent conductive film is securable.
  • the leveling agent include polyether-modified polydimethylsiloxane and dipropylene glycol monomethyl ether.
  • the content of the leveling agent catalyst may be about 0.01 to 5.0% by mass with respect to the total amount of the conductive coating composition.
  • the method for preparing the transparent conductive coating composition of the present invention is not particularly limited as long as the above components are mixed and the chain conductive inorganic particles can be dispersed in the binder and the solvent. Can be mixed and dispersed by performing a mechanical treatment with media such as a ball mill, a sand mill, a pico mill, a paint conditioner, or a dispersion treatment using an ultrasonic disperser, a homogenizer, a disper, a jet mill, or the like.
  • the total amount (solid content) of the chain conductive inorganic particles and the binder is 0.5 to 20% by mass with respect to the total amount, and the viscosity Is preferably 0.5 to 100 mPa ⁇ s.
  • the transparent conductive film of the present invention is formed using the transparent conductive coating composition of the present invention.
  • the transparent conductive film has a surface electrical resistance of 10 to 1000 M ⁇ / square and a total light transmittance (based on JIS K7105) of 95.0 to 99.9%.
  • the pencil hardness can be set to 5 to 9H, and it is possible to prevent scratches in the manufacturing process and to prevent a decrease in yield.
  • the surface electrical resistance 10 to 1000 M ⁇ / square
  • the surface of the transparent conductive film of the present invention after being held for 500 hours in an environment at a temperature of 65 ° C. and a relative humidity of 90%
  • the electrical resistance can be 10 to 1000 M ⁇ / square.
  • the transparent conductive film of the present invention may be formed by applying the transparent conductive coating composition of the present invention to a substrate of a liquid crystal display panel to be described later to form a coating film, and then drying the coating film.
  • the method for applying the transparent conductive coating composition is not particularly limited as long as it is a coating method capable of forming a smooth coating film.
  • coating methods such as spin coating, roll coating, die coating, air knife coating, blade coating, reverse coating, gravure coating, micro gravure coating, or printing methods such as gravure printing, screen printing, offset printing, inkjet printing, spray coating,
  • coating methods such as slit coating and dip coating can be used, non-spin coating methods such as spray coating and slit coating that are advantageous in terms of simplification of the manufacturing apparatus and manufacturing cost are preferable.
  • the solvent is removed by drying. If necessary, the coating film is irradiated with UV light or EB light to cure the transparent conductive film. A conductive film may be formed.
  • the thickness of the transparent conductive film of the present invention is not particularly limited, but may be about 10 to 300 nm.
  • the horizontal electric field type liquid crystal display panel with a built-in touch panel function includes a liquid crystal layer, a first transparent substrate and a second transparent substrate that are disposed to face each other with the liquid crystal layer interposed therebetween, and the first transparent substrate.
  • a transparent conductive film disposed on the side of the substrate opposite to the liquid crystal layer; and a display electrode, a reference electrode, and a capacitor line disposed on the liquid crystal layer side of the second transparent substrate.
  • the horizontal electric field type liquid crystal display panel with a built-in touch panel function according to the present invention is characterized by using the above-described transparent conductive film of the present invention as the transparent conductive film.
  • the horizontal electric field type liquid crystal display panel with a built-in touch panel function of the present invention includes the transparent conductive film of the present invention, so that an ESD function can be imparted without deteriorating touch sensitivity.
  • FIG. 1 is a schematic plan view showing a part of a liquid crystal display device using a horizontal electric field type liquid crystal display panel with a built-in touch panel function according to the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a part of a liquid crystal display device using the horizontal electric field type liquid crystal display panel with a built-in touch panel function according to the present invention cut along line AB in FIG.
  • the liquid crystal display device LPN includes an active area composed of a plurality of pixels PX arranged in a matrix, a liquid crystal layer LQ, and a first liquid crystal layer LQ disposed opposite to each other via the liquid crystal layer LQ.
  • positioned on the opposite side to the liquid crystal layer LQ of the 1st transparent substrate 30 are provided.
  • scanning lines and signal lines S are arranged orthogonal to the scanning lines, and these scanning lines and signal lines S are connected to a drive circuit. .
  • a switching element SW connected to the scanning line and the signal line S is disposed at the intersection of the scanning line and the signal line S.
  • the capacitor line C is formed integrally with the reference electrode CE.
  • the capacitor line C is formed across a plurality of pixels PX, forms one group including the plurality of pixels PX, and includes a detection circuit that detects that an external detection target object approaches or contacts the liquid crystal display device LPN. It is connected to the drive circuit that has both. There are a plurality of such groups in the active area, and the detection target on the detection surface of the liquid crystal display device LPN (the surface on the side having the transparent conductive film 13 of the first transparent substrate 30) by these groups. Can be specified.
  • a display electrode PE having a slit PSL is disposed on the reference electrode CE and the capacitance line C via the second insulating film 24.
  • the display electrode PE is connected to the switching element SW through a contact hole provided in the first insulating film 23 and the second insulating film 24.
  • a first alignment film 25 is disposed on the display electrode PE and rubbed in a predetermined direction.
  • a black matrix 31 that partitions each pixel PX and a color filter 32 corresponding to each pixel PX are provided on the black matrix 31 and the color filter 32.
  • an overcoat layer 33 to be flattened and a second alignment film 34 covering the overcoat layer 33 are disposed on the black matrix 31 and the color filter 32.
  • the second alignment film 34 is rubbed in a predetermined direction.
  • This liquid crystal display device LPN forms a horizontal electric field or a fringe electric field between the reference electrode CE and the display electrode PE by applying a common potential to the capacitance line C and the reference electrode CE and a pixel potential to the display electrode PE.
  • the liquid crystal molecules of the liquid crystal layer LQ are switched.
  • the touch panel function built in the liquid crystal display device LPN operates as follows. That is, the display electrode PE is brought into a floating state, and a drive circuit having a detection circuit is controlled to write a detection signal for detecting an external detection target to the capacitor line C instead of the common potential. Further, each signal line S is precharged by controlling the drive circuit. In this state, when the detection target approaches or contacts the outside of the first transparent substrate 30, the detection target is detected because the capacitance between the capacitance line C and the signal line S changes.
  • the transparent conductive film 13 is formed by coating on the main surface of the first transparent substrate 30 opposite to the liquid crystal layer LQ, and a polarizing plate PL2 is further disposed on the transparent conductive film 13. .
  • a polarizing plate PL1 is disposed outside the second transparent substrate 20.
  • a backlight unit 15 (not shown) is disposed outside the polarizing plate PL1. Further, the liquid crystal layer LQ is sealed by a sealing portion.
  • G is a gate line
  • CSL is a slit
  • WG is a gate electrode
  • WD is a drain electrode
  • SC is a semiconductor layer.
  • WS is a source electrode
  • 21 is a gate insulating film
  • 23 is an insulating film.
  • the liquid crystal display device LPN has a built-in touch panel function including a capacitance line C for detecting an external detection object
  • the liquid crystal display device LPN may be affected by electrostatic influences from outside or inside the device.
  • a touch function can also be provided.
  • liquid crystal display device LPN does not include a capacitance line, that is, in a liquid crystal display device that does not have a touch panel function
  • a transparent conductive film is provided between the first transparent substrate 30 and the polarizing plate PL2.
  • part means “part by mass”.
  • Example 1 Linear antimony-containing tin oxide (ATO) particle dispersion>
  • ATO tin oxide
  • ELCOM V-3560 manufactured by JGC Catalysts & Chemicals was prepared.
  • the chain ATO particle dispersion “ELCOM V-3560” is a mixed dispersion of chain ATO particles: 20.8 parts, ethyl alcohol: 70.0 parts, and isopropyl alcohol 9.2 parts.
  • FIGS. 3 and 4 show transmission electron microscope (TEM) photographs of the chain ATO particles used in the chain ATO particle dispersion.
  • TEM transmission electron microscope
  • FIGS. 3 and 4 a transparent conductive film is observed in which a coating liquid described later is diluted with a low-boiling solvent and thinly applied to the observation substrate with a film thickness of 2 to 10 nm.
  • the ATO particles are chain ATO particles (chain conductive inorganic particles) formed by connecting 2 to 50 primary particles having a particle diameter of 2 to 30 nm.
  • a coating solution was prepared as follows. However, the alkoxysilane was diluted with a part of the alcohol and pre-silanolized by adding water and an acid catalyst.
  • ⁇ Coating solution> The chain ATO particle dispersion and the following components were put in a plastic bottle in the following amounts, and stirred to prepare a coating solution.
  • Chain ATO particle dispersion 7.0 parts
  • Alkoxysilane inorganic binder: “X40-2308” manufactured by Shin-Etsu Chemical Co., Ltd.
  • Phosphoric acid acid catalyst
  • 0.1 part (4) Mixture of 15.0 parts of polyether-modified polydimethylsiloxane and 85.0 parts of dipropylene glycol monomethyl ether (leveling agent: “BYK-337” manufactured by BYK Japan KK): 0.1 Parts (5) dimethyl sulfoxide (high boiling point solvent): 5.0 parts (6) ethyl alcohol (low boiling point solvent): 82.2 parts (7) water: 5.0 parts
  • the content of nonvolatile solid components (chain ATO particles and alkoxysilane) in the coating liquid is 2.2% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and alkoxysilane is 70.8. It was mass%. Moreover, it was 1.7 mPa * s when the viscosity of the said coating liquid was measured with the Toki Sangyo company TV25 type
  • Example 2 In a plastic bottle, the chain ATO particle dispersion prepared in Example 1 and the following components were added in the following amounts and stirred to prepare a coating solution.
  • the content of nonvolatile solid components (chain ATO particles and alkoxysilane) in the coating liquid is 2.4% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and alkoxysilane is 60.4. It was mass%. Moreover, it was 1.7 mPa * s when the viscosity of the said coating liquid was measured like Example 1.
  • FIG. 1 The content of nonvolatile solid components (chain ATO particles and alkoxysilane) in the coating liquid is 2.4% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and alkoxysilane is 60.4. It was mass%. Moreover, it was 1.7 mPa * s when the viscosity of the said coating liquid was measured like Example 1.
  • Example 3 In a plastic bottle, the chain ATO particle dispersion prepared in Example 1 and the following components were added in the following amounts and stirred to prepare a coating solution.
  • Chain ATO particle dispersion 6.0 parts
  • Alkoxysilane inorganic binder: “X40-2308” manufactured by Shin-Etsu Chemical Co., Ltd.
  • Phosphoric acid acid catalyst
  • 0.1 part (4) Mixture of 15.0 parts of polyether-modified polydimethylsiloxane and 85.0 parts of dipropylene glycol monomethyl ether (leveling agent: “BYK-337” manufactured by BYK Japan KK): 0.1 Parts (5) dimethyl sulfoxide (high boiling point solvent): 5.0 parts (6) ethyl alcohol (low boiling point solvent): 82.2 parts (7) water: 5.0 parts
  • the content of nonvolatile solid components (chain ATO particles and alkoxysilane) in the coating liquid is 3.0% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and alkoxysilane is 43.8. It was mass%. Further, the viscosity of the coating solution was measured in the same manner as in Example 1, and found to be 1.8 mPa ⁇ s.
  • Example 4 In a plastic bottle, the chain ATO particle dispersion prepared in Example 1 and the following components were added in the following amounts and stirred to prepare a coating solution.
  • Chain ATO particle dispersion 7.4 parts
  • Alkoxysilane inorganic binder: “X40-2308” manufactured by Shin-Etsu Chemical Co., Ltd.
  • Phosphoric acid acid catalyst
  • 0.1 part (4) Mixture of 15.0 parts of polyether-modified polydimethylsiloxane and 85.0 parts of dipropylene glycol monomethyl ether (leveling agent: “BYK-337” manufactured by BYK Japan KK): 0.1 Parts (5) dimethyl sulfoxide (high boiling point solvent): 5.0 parts (6) ethyl alcohol (low boiling point solvent): 82.2 parts (7) water: 5.0 parts
  • the content of nonvolatile solid components (chain ATO particles and alkoxysilane) in the coating liquid is 1.9% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and alkoxysilane is 88.5. It was mass%. Further, the viscosity of the coating solution was measured in the same manner as in Example 1, and found to be 1.8 mPa ⁇ s.
  • Example 5 In a plastic bottle, the chain ATO particle dispersion prepared in Example 1 and the following components were added in the following amounts and stirred to prepare a coating solution.
  • Chain ATO particle dispersion 7.0 parts
  • Alkoxysilane inorganic binder: “Ethyl silicate 28” manufactured by Colcoat): 0.6 parts
  • Phosphoric acid (acid catalyst) 0.0. 1 part
  • Water 5.0 parts
  • the content of nonvolatile solid components (chain ATO particles and alkoxysilane) in the coating liquid is 2.2% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and alkoxysilane is 70.8. It was mass%. Moreover, it was 2.9 mPa * s when the viscosity of the said coating liquid was measured like Example 1.
  • FIG. 1 The content of nonvolatile solid components (chain ATO particles and alkoxysilane) in the coating liquid is 2.2% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and alkoxysilane is 70.8. It was mass%. Moreover, it was 2.9 mPa * s when the viscosity of the said coating liquid was measured like Example 1.
  • Example 6 In a plastic bottle, the chain ATO particle dispersion prepared in Example 1 and the following components were added in the following amounts and stirred to prepare a coating solution.
  • the content of nonvolatile solid components (chain ATO particles and alkoxysilane) in the coating liquid is 2.4% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and alkoxysilane is 60.4. It was mass%. Moreover, it was 2.9 mPa * s when the viscosity of the said coating liquid was measured like Example 1.
  • FIG. 1 The content of nonvolatile solid components (chain ATO particles and alkoxysilane) in the coating liquid is 2.4% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and alkoxysilane is 60.4. It was mass%. Moreover, it was 2.9 mPa * s when the viscosity of the said coating liquid was measured like Example 1.
  • Example 7 In a plastic bottle, the chain ATO particle dispersion prepared in Example 1 and the following components were added in the following amounts and stirred to prepare a coating solution.
  • Chain ATO particle dispersion 7.0 parts
  • Acrylic resin organic binder: “Dainal BR87” manufactured by Mitsubishi Rayon Co., Ltd.
  • Polyether-modified polydimethylsiloxane 15. Liquid mixture of 0 part and 85.0 parts of dipropylene glycol monomethyl ether (leveling agent: “BYK-337” manufactured by BYK Japan) 0.1 part
  • Dimethyl sulfoxide high boiling point solvent
  • methyl isobutyl ketone high boiling point solvent
  • ethyl alcohol low boiling point solvent
  • the content of nonvolatile solid components (chain ATO particles and acrylic resin) in the coating liquid is 2.1% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and acrylic resin is 70.8. It was mass%. Moreover, it was 2.1 mPa * s when the viscosity of the said coating liquid was measured like Example 1.
  • FIG. 1 The content of nonvolatile solid components (chain ATO particles and acrylic resin) in the coating liquid is 2.1% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and acrylic resin is 70.8. It was mass%. Moreover, it was 2.1 mPa * s when the viscosity of the said coating liquid was measured like Example 1.
  • Example 8 In a plastic bottle, the chain ATO particle dispersion prepared in Example 1 and the following components were added in the following amounts and stirred to prepare a coating solution.
  • the content of non-volatile solid components (chain ATO particles and binder) in the coating liquid is 2.1% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and binder is 70.8% by mass. Met. Moreover, it was 2.3 mPa * s when the viscosity of the said coating liquid was measured like Example 1.
  • FIG. 1 The content of non-volatile solid components (chain ATO particles and binder) in the coating liquid is 2.1% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and binder is 70.8% by mass. Met. Moreover, it was 2.3 mPa * s when the viscosity of the said coating liquid was measured like Example 1.
  • Non-chain antimony-containing tin oxide (ATO) particle dispersion The following components are measured in a plastic bottle and dispersed with a paint shaker (manufactured by Toyo Seiki Co., Ltd.) for 2 hours using a zirconia bead having a diameter of 0.3 mm. Then, the zirconia bead is removed, and 14000 G is obtained with a centrifuge. Centrifugation was performed for 30 minutes under the conditions, and a classification treatment such as collecting the supernatant was performed to obtain a non-chain ATO particle dispersion.
  • a paint shaker manufactured by Toyo Seiki Co., Ltd.
  • Non-chain ATO particles (“SN100P” manufactured by Ishihara Sangyo Co., Ltd.): 20.8 parts
  • Dispersant (“BYK180” manufactured by Big Chemie Japan Co., Ltd.): 2.0 parts
  • Isobutyl alcohol 77. 2 parts
  • ⁇ Coating solution> The non-chain ATO particle dispersion and the following components were put in a plastic bottle in the following amounts and stirred to prepare a coating solution.
  • Non-chain ATO particle dispersion 7.0 parts
  • Alkoxysilane inorganic binder: “X40-2308” manufactured by Shin-Etsu Chemical Co., Ltd.
  • Phosphoric acid acid catalyst
  • 0.1 part (4)
  • nonvolatile solid components non-chain ATO particles and alkoxysilane
  • the content of non-chain ATO particles relative to the total amount of non-chain ATO particles and alkoxysilane is It was 70.8 mass%. Moreover, it was 1.5 mPa * s when the viscosity of the said coating liquid was measured like Example 1.
  • Comparative Example 2 The non-chain ATO particle dispersion prepared in Comparative Example 1 and the following components were put in a plastic bottle in the following amounts and stirred to prepare a coating solution.
  • Non-chain ATO particle dispersion 24.0 parts
  • Alkoxysilane inorganic binder: “X40-2308” manufactured by Shin-Etsu Chemical Co., Ltd.
  • Phosphoric acid acid catalyst
  • 0.1 part (4)
  • nonvolatile solid components non-chain ATO particles and alkoxysilane
  • the content of nonvolatile solid components is 5.7% by mass
  • the content of non-chain ATO particles relative to the total amount of non-chain ATO particles and alkoxysilane is It was 89.3 mass%.
  • Chain ATO particle dispersion 1.5 parts
  • Alkoxysilane inorganic binder: “X40-2308” manufactured by Shin-Etsu Chemical Co., Ltd.
  • Phosphoric acid acid catalyst
  • 0.1 part (4) Mixture of 15.0 parts of polyether-modified polydimethylsiloxane and 85.0 parts of dipropylene glycol monomethyl ether (leveling agent: “BYK-337” manufactured by BYK Japan KK): 0.1 Parts (5) dimethyl sulfoxide (high boiling point solvent): 5.0 parts (6) ethyl alcohol (low boiling point solvent): 87.7 parts (7) water: 5.0 parts
  • the content of nonvolatile solid components (chain ATO particles and alkoxysilane) in the coating liquid is 1.0% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and alkoxysilane is 34.2. It was mass%. Moreover, it was 1.4 mPa * s when the viscosity of the said coating liquid was measured like Example 1.
  • FIG. 1 The content of nonvolatile solid components (chain ATO particles and alkoxysilane) in the coating liquid is 1.0% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and alkoxysilane is 34.2. It was mass%. Moreover, it was 1.4 mPa * s when the viscosity of the said coating liquid was measured like Example 1. FIG.
  • Chain ATO particle dispersion 35.0 parts
  • Alkoxysilane inorganic binder: “X40-2308” manufactured by Shin-Etsu Chemical Co., Ltd.
  • Phosphoric acid acid catalyst
  • 0.1 part (4) Mixture of 15.0 parts of polyether-modified polydimethylsiloxane and 85.0 parts of dipropylene glycol monomethyl ether (leveling agent: “BYK-337” manufactured by BYK Japan KK): 0.1 Parts (5) dimethyl sulfoxide (high boiling point solvent): 5.0 parts (6) ethyl alcohol (low boiling point solvent): 54.2 parts (7) water: 5.0 parts
  • the content of nonvolatile solid components (chain ATO particles and alkoxysilane) in the coating liquid is 8.0% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and alkoxysilane is 92.4. It was mass%. Moreover, it was 7.3 mPa * s when the viscosity of the said coating liquid was measured like Example 1.
  • Spray coating was performed on a glass substrate having a length of 10 cm, a width of 10 cm, and a thickness of 0.7 mm using the coating solutions of Examples 1 to 7 and Comparative Examples 1 to 4.
  • the spray gun a pulse spray manufactured by Nordson Co., Ltd. was used, the needle opening degree was 0.15 mm, and the liquid extrusion pressure was adjusted so that the discharge liquid amount was 0.80 g / min.
  • the distance between the gun and the substrate was 100 mm, the coating speed was 600 mm per second, the overlap pitch was 8 mm, and the pressure of atomized air and swirl air was 0.05 MPa.
  • the coating area was 20 cm 2 and coating was performed so that the coating surface was at the center of the substrate.
  • the obtained coating film was dried with a dryer at 120 ° C. for 1 hour to form the transparent conductive films of Examples 1 to 7 and Comparative Examples 1 to 4.
  • Example 8 the coating liquid of Example 8 was applied on a glass substrate with a spray coater in the same manner as described above, dried at 80 ° C. for 5 minutes, and then irradiated with ultraviolet light at 300 mJ / The transparent conductive film of Example 8 was formed by irradiating with a light amount of cm 2 and curing.
  • the film thickness, surface electrical resistance, total light transmittance and pencil hardness of each of the transparent conductive films were measured as follows.
  • ⁇ Film thickness> The transparent conductive film was cut together with the glass substrate, and the film thickness was measured by observing a cross section with a scanning electron microscope (SEM, “S-4500” manufactured by Hitachi, Ltd.).
  • the surface electrical resistance of the transparent conductive film was measured in the same manner as described above after holding the glass substrate with the transparent conductive film in an environment of a temperature of 65 ° C. and a relative humidity of 90% for 500 hours. It was set as the later surface electrical resistance.
  • Total light transmittance the total light transmittance of the glass substrate with a transparent conductive film was measured using a photometer “Haze Meter NDH2000” manufactured by Nippon Denshoku Industries Co., Ltd. A numerical value shows the value only of a coating film.
  • ⁇ Pencil hardness> The pencil hardness of the transparent conductive film was measured using a surface property tester “HEIDON-14DR” manufactured by Shinto Kagaku.
  • a liquid crystal display device having a configuration shown in FIGS. 1 and 2 having a screen size of 4 inches and a total thickness of the liquid crystal display device of 1 mm was manufactured.
  • the transparent conductive film was coated on the main surface opposite to the liquid crystal layer of the upper glass substrate corresponding to the first transparent substrate using a spray coater under the same conditions as described above, and then 120 ° C. It was formed by drying for 1 hour in a dryer.
  • a ground wire was attached to the end of the transparent conductive film with silver paste (“Dotite D-362” manufactured by Fujikura Kasei Co., Ltd.), and then a polarizing plate was attached on the transparent conductive film.
  • a polarizing plate was also attached to the backlight side of the lower glass substrate corresponding to the second transparent substrate provided with the display electrode and the reference electrode and incorporating the touch sensing function layer.
  • the touch sensitivity of the transparent conductive film after holding the glass substrate with the transparent conductive film for 500 hours in an environment of 65 ° C. and 90% relative humidity is measured. Touch sensitivity.
  • the ESD property of the transparent conductive film was measured in the same manner as described above, and after the high temperature and high humidity test ESD characteristics.
  • the transparent conductive film produced using the coating liquid of the present invention has a normal surface electric resistance of 10 to 1000 M ⁇ / square and a total light transmittance of 95.0 to 99.9%.
  • the pencil hardness is 5 to 9H
  • the surface electrical resistance after the high-temperature and high-humidity test is 10 to 1000 M ⁇ / square, and it can be seen that the electrical characteristics, optical characteristics, hardness and durability are high.
  • the touch sensitivity and ESD property are excellent in the liquid crystal display device provided with the transparent conductive film produced using the coating liquid of this invention.
  • the transparent conductive film of Comparative Example 1 prepared using a coating solution containing no chain ATO particles has both high normal surface electrical resistance and surface electrical resistance after a high temperature and high humidity test, and low pencil hardness. I understand. Moreover, it turns out that the liquid crystal display device provided with the transparent conductive film of the comparative example 1 is inferior in ESD property. In addition, the transparent conductive film of Comparative Example 2 produced using a coating solution that does not contain chain ATO particles has high surface electrical resistance after high-temperature and high-humidity tests, low light transmittance, and low pencil hardness. I understand.
  • grains is less than 40 mass% has high normal surface electrical resistance.
  • the liquid crystal display device provided with the transparent conductive film of the comparative example 3 is inferior in ESD property.
  • the transparent conductive film of Comparative Example 4 prepared using a coating liquid having a chain ATO particle content exceeding 90% by mass has a low surface electric resistance after normal surface electric resistance and a high temperature and high humidity test, and pencil hardness. Is also small. Moreover, it turns out that the liquid crystal display device provided with the transparent conductive film of the comparative example 4 is inferior in touch sensitivity.
  • LPN Liquid crystal display device LQ Liquid crystal layer 30 First transparent substrate 20 Second transparent substrate 13 Transparent conductive film PE Display electrode CE Reference electrode C Capacity line

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Paints Or Removers (AREA)
  • Position Input By Displaying (AREA)
  • Liquid Crystal (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

This transparent conductive coating composition is characterized by containing chain conductive inorganic particles, a binder, a high-boiling-point solvent and a low-boiling-point solvent, and is also characterized in that the content of the chain conductive inorganic particles is 40-90% by mass relative to the total mass of the chain conductive inorganic particles and the binder. A transparent conductive film of the present invention is characterized by being formed using this transparent conductive coating composition. In addition, an in-plane switching liquid crystal display panel and an in-plane switching liquid crystal display panel with a built-in touch panel function of the present invention are characterized by using the transparent conductive film of the present invention as a transparent conductive film thereof.

Description

透明導電性コーティング組成物、透明導電性膜及びタッチパネル機能内蔵型横電界方式液晶表示パネルTransparent conductive coating composition, transparent conductive film, and horizontal electric field liquid crystal display panel with built-in touch panel function
 本発明は、透明導電性コーティング組成物及びそれを用いた透明導電性膜、並びにその透明導電性膜を備えたタッチパネル機能内蔵型横電界方式液晶表示パネルに関する。 The present invention relates to a transparent conductive coating composition, a transparent conductive film using the same, and a horizontal electric field type liquid crystal display panel with a touch panel function provided with the transparent conductive film.
 液晶表示パネルは軽量・薄型・低消費電力等の特性を生かし、各種情報機器端末やカメラ等の小型表示装置のほか、近年ではテレビ等の大型表示装置に用いられており、その市場を拡大している。液晶表示パネルの種類としては、かつてはTN(ツイスト・ネマチック)形に代表される縦電界方式が大勢を占めていたが、最近では横電界方式と称される液晶表示パネルも主流となってきている。 Liquid crystal display panels have been used for light-weight, thin, low power consumption, and other small display devices such as various information device terminals and cameras, and in recent years, large display devices such as televisions. ing. As a type of liquid crystal display panel, a vertical electric field method represented by a TN (twisted nematic) type used to dominate, but recently, a liquid crystal display panel called a horizontal electric field method has become mainstream. Yes.
 縦電界方式の液晶表示パネルは、液晶層を介して互いに対向して配置される透明基板のうち、片方の透明基板には画素電極が設けられ、もう片方の透明基板には共通電極が設けられ、この画素電極と共通電極との間に発生する電界、即ち透明基板に対して垂直な電界によって液晶の配向を制御することを特徴としている。これに対し、横電界方式の液晶表示パネルの構成は、液晶層を介して互いに対向して配置される透明基板のうち、主に片方の透明基板の液晶層側に表示用電極と基準電極とが備えられ、この表示用電極と基準電極との間に発生する電界(横方向電界、フリンジ電界)、即ち透明基板と平行に発生させる電界によって液晶の配向を制御することによって、上記液晶層を透過する光を変調させるようにしたものである。 In a vertical electric field type liquid crystal display panel, among transparent substrates disposed to face each other with a liquid crystal layer interposed therebetween, one transparent substrate is provided with a pixel electrode, and the other transparent substrate is provided with a common electrode. The liquid crystal orientation is controlled by an electric field generated between the pixel electrode and the common electrode, that is, an electric field perpendicular to the transparent substrate. On the other hand, the configuration of the horizontal electric field type liquid crystal display panel includes a display electrode and a reference electrode mainly on the liquid crystal layer side of one transparent substrate among the transparent substrates arranged to face each other through the liquid crystal layer. The liquid crystal layer is controlled by controlling the orientation of the liquid crystal by an electric field (lateral electric field, fringe electric field) generated between the display electrode and the reference electrode, that is, an electric field generated in parallel with the transparent substrate. The transmitted light is modulated.
 横電界方式の液晶表示パネルは縦電界方式に比べて視野角が広いという利点があるが、縦電界方式の液晶表示パネルには発生しない課題として、液晶表示パネルの外部又は内部からの静電的な影響や外部の電磁的妨害を受けて、黒表示したとき光抜けが生ずるなど、表示品位が低下するという問題があった。これは、横電界方式の液晶表示パネルは、片方の透明基板に表示用電極と基準電極とが集積した構造になっているため、外部からの静電気等に対するシールド機能を備える導電層を全く有していない構成となっているためである。 The horizontal electric field type liquid crystal display panel has an advantage that the viewing angle is wider than the vertical electric field type, but as a problem that does not occur in the vertical electric field type liquid crystal display panel, electrostatic discharge from the outside or inside of the liquid crystal display panel There is a problem that the display quality is deteriorated, such as light leakage occurs when black is displayed due to various influences or external electromagnetic interference. This is because a horizontal electric field type liquid crystal display panel has a structure in which a display electrode and a reference electrode are integrated on one transparent substrate, and therefore has a conductive layer having a shielding function against external static electricity. This is because it is not configured.
 このような問題を解決するため、液晶表示パネルの透明基板のうち、バックライトユニットに対して遠い側の透明基板の液晶層とは反対側の面に透光性を備える導電層を形成し、静電気放電(ESD)機能を持たせるという技術が提案されており、具体的には導電層としてITO等を含む帯電防止膜を形成する方法が提案されている(特許文献1参照。)。この方法により、横電界方式液晶表示パネルにESD機能を付与することができる。 In order to solve such a problem, a conductive layer having translucency is formed on the surface opposite to the liquid crystal layer of the transparent substrate on the side far from the backlight unit among the transparent substrates of the liquid crystal display panel, A technique of providing an electrostatic discharge (ESD) function has been proposed, and specifically, a method of forming an antistatic film containing ITO or the like as a conductive layer has been proposed (see Patent Document 1). By this method, an ESD function can be imparted to the horizontal electric field type liquid crystal display panel.
 一方、最近では、スマートホン等に用いられる液晶表示装置に代表されるように、タッチパネル機能を有する液晶表示パネルを用いた液晶表示装置の需要が増大している。現在普及しているタッチパネル機能付液晶表示パネルは、従来の液晶表示パネルの外側にタッチパネルを配置する外付け型であるが、この外付型ではパネル全体が厚くなり液晶表示装置の薄型化が困難となるとう問題がある。これに対して、液晶表示パネルの内部にタッチパネル機能を内蔵させた内蔵型として、タッチパネル機能内蔵型液晶表示パネルが提案されている。タッチパネル機能内蔵型液晶表示パネルは、液晶表示パネルの2枚のガラス基板の間にタッチ感知機能層を配置したもので、パネル全体を薄くできるという長所がある。このため、前述の横電界方式液晶表示パネルとタッチパネル機能内蔵型液晶表示パネルとを組み合わせた液晶表示パネルが提案されている(特許文献2参照。)。また、特許文献2では、タッチ感知機能層に用いるタッチ感知方式として、例えば、静電容量方式が紹介されている。 On the other hand, recently, as represented by a liquid crystal display device used for a smart phone or the like, a demand for a liquid crystal display device using a liquid crystal display panel having a touch panel function is increasing. The liquid crystal display panel with a touch panel function currently in widespread use is an external type in which a touch panel is arranged outside the conventional liquid crystal display panel. However, with this external type, the entire panel becomes thick and it is difficult to reduce the thickness of the liquid crystal display device. There is a problem. On the other hand, a liquid crystal display panel with a built-in touch panel function has been proposed as a built-in type in which a touch panel function is built into the liquid crystal display panel. The liquid crystal display panel with a built-in touch panel function is an arrangement in which a touch-sensitive functional layer is disposed between two glass substrates of the liquid crystal display panel, and has an advantage that the entire panel can be thinned. For this reason, a liquid crystal display panel in which the above-mentioned horizontal electric field type liquid crystal display panel and a liquid crystal display panel with a built-in touch panel function are combined has been proposed (see Patent Document 2). In Patent Document 2, for example, a capacitance method is introduced as a touch detection method used for the touch detection function layer.
 また、本発明に関連する先行技術文献として特許文献3~6がある。 Further, there are Patent Documents 3 to 6 as prior art documents related to the present invention.
特開2010-102020号公報JP 2010-102020 A 特開2011-137882号公報JP 2011-137882 A 特開2000-196287号公報JP 2000-196287 A 特開2005-139026号公報JP 2005-139026 A 特開2006-339113号公報JP 2006-339113 A 特開2012-25793号公報JP 2012-25793 A
 しかし、横電界方式液晶表示パネルと、静電容量方式のタッチ感知機能層を配置したタッチパネル機能内蔵型液晶表示パネルとを組み合わせた液晶表示パネルでは、横電界方式液晶表示パネルに要求されるESD機能を付与するために、液晶表示パネルに導電層を設けると、タッチ感度が低下する場合があることが判明した。 However, in a liquid crystal display panel that combines a horizontal electric field type liquid crystal display panel and a touch panel function built-in type liquid crystal display panel having a capacitive touch sensing function layer, the ESD function required for the horizontal electric field type liquid crystal display panel It has been found that if a conductive layer is provided on the liquid crystal display panel to provide the touch, the touch sensitivity may decrease.
 本発明は、上記問題を解決したもので、静電容量式タッチ感知機能層を備えたタッチパネル機能内蔵型横電界方式液晶パネルにおいて、ESD機能及びタッチパネル機能を両立できると共に、光透過率と硬度に優れた透明導電性膜を形成できる透明導電性コーティング組成物及びそれを用いた透明導電性膜、並びにその透明導電性膜を備えたタッチパネル機能内蔵型横電界方式液晶表示パネルを提供するものである。 The present invention solves the above-mentioned problem, and in a lateral electric field type liquid crystal panel with a touch panel function built-in, which has a capacitive touch sensing function layer, it is possible to achieve both an ESD function and a touch panel function as well as light transmittance and hardness. Provided are a transparent conductive coating composition capable of forming an excellent transparent conductive film, a transparent conductive film using the same, and a horizontal electric field type liquid crystal display panel with a touch panel function provided with the transparent conductive film. .
 本発明の透明導電性コーティング組成物は、鎖状導電性無機粒子と、バインダと、高沸点溶剤と、低沸点溶剤とを含む透明導電性コーティング組成物であって、前記鎖状導電性無機粒子の含有量は、前記鎖状導電性無機粒子及び前記バインダの合計量に対して、40~90質量%であることを特徴とする。 The transparent conductive coating composition of the present invention is a transparent conductive coating composition containing chain conductive inorganic particles, a binder, a high boiling point solvent, and a low boiling point solvent, wherein the chain conductive inorganic particles The content of is 40 to 90% by mass with respect to the total amount of the chain conductive inorganic particles and the binder.
 本発明の透明導電性膜は、上記本発明の透明導電性コーティング組成物を用いて形成したことを特徴とする。 The transparent conductive film of the present invention is formed using the transparent conductive coating composition of the present invention.
 本発明のタッチパネル機能内蔵型横電界方式液晶表示パネルは、液晶層と、前記液晶層を介して互いに対向して配置された第1の透明基板及び第2の透明基板と、前記第1の透明基板の前記液晶層とは反対側に配置された透明導電性膜と、前記第2の透明基板の前記液晶層の側に配置された表示用電極及び基準電極と、前記第1の透明基板及び前記第2の透明基板との間に配置された静電容量式タッチ感知機能層とを含むタッチパネル機能内蔵型横電界方式液晶表示パネルであって、前記透明導電性膜として上記本発明の透明導電性膜を用いることを特徴とする。 The horizontal electric field type liquid crystal display panel with a built-in touch panel function according to the present invention includes a liquid crystal layer, a first transparent substrate and a second transparent substrate which are disposed to face each other with the liquid crystal layer interposed therebetween, and the first transparent substrate. A transparent conductive film disposed on a side of the substrate opposite to the liquid crystal layer, a display electrode and a reference electrode disposed on the liquid crystal layer side of the second transparent substrate, the first transparent substrate, A lateral electric field type liquid crystal display panel with a built-in touch panel function, including a capacitive touch sensing function layer disposed between the second transparent substrate and the transparent conductive film of the present invention as the transparent conductive film. It is characterized by using a conductive film.
 本発明によれば、ESD機能が高く、且つタッチ感度を低下させないと共に、光透過率と硬度に優れた透明導電性膜を、タッチパネル機能内蔵型横電界方式液晶表示パネルに直接的且つ簡易に配置することができる。 According to the present invention, a transparent conductive film having a high ESD function and not deteriorating touch sensitivity and excellent in light transmittance and hardness is directly and easily disposed on a horizontal electric field type liquid crystal display panel with a built-in touch panel function. can do.
図1は、本発明のタッチパネル機能内蔵型横電界方式液晶表示パネルを用いた液晶表示装置の一部を示す概略平面図である。FIG. 1 is a schematic plan view showing a part of a liquid crystal display device using a horizontal electric field type liquid crystal display panel with a built-in touch panel function according to the present invention. 図2は、本発明のタッチパネル機能内蔵型横電界方式液晶表示パネルを用いた液晶表示装置の一部を示す概略断面図である。FIG. 2 is a schematic sectional view showing a part of a liquid crystal display device using the horizontal electric field type liquid crystal display panel with a built-in touch panel function of the present invention. 図3は、実施例1で用いた鎖状アンチモン含有酸化スズ粒子の透過型電子顕微鏡写真である。FIG. 3 is a transmission electron micrograph of the chain antimony-containing tin oxide particles used in Example 1. 図4は、図3を拡大した透過型電子顕微鏡写真である。FIG. 4 is an enlarged transmission electron micrograph of FIG.
 (透明導電性コーティング組成物)
 先ず、本発明の透明導電性コーティング組成物について説明する。
(Transparent conductive coating composition)
First, the transparent conductive coating composition of the present invention will be described.
 本発明の透明導電性コーティング組成物は、鎖状導電性無機粒子と、バインダと、高沸点溶剤と、低沸点溶剤とを含有している。また、上記鎖状導電性無機粒子の含有量は、上記鎖状導電性無機粒子及び上記バインダの合計量に対して、40~90質量%であることを特徴とする。 The transparent conductive coating composition of the present invention contains chain conductive inorganic particles, a binder, a high boiling point solvent, and a low boiling point solvent. The content of the chain conductive inorganic particles is 40 to 90% by mass with respect to the total amount of the chain conductive inorganic particles and the binder.
 上記透明導電性コーティング組成物を用いることにより、ESD機能が高く、且つタッチ感度を低下させないと共に、光透過率と硬度に優れた透明導電性膜を提供できる。 By using the transparent conductive coating composition, it is possible to provide a transparent conductive film having a high ESD function and not deteriorating touch sensitivity, and having excellent light transmittance and hardness.
 <鎖状導電性無機粒子>
 本発明の透明導電性コーティング組成物は、上記鎖状導電性無機粒子の含有量を、上記鎖状導電性無機粒子及び上記バインダの合計量に対して40~90質量%とすることで、ESD機能が高く、且つタッチ感度を低下させない透明導電性膜を提供できる。上記鎖状導電性無機粒子の含有量が40質量%を下回ると透明導電性膜のESD機能が低下し、上記鎖状導電性無機粒子の含有量が90質量%を超えるとタッチ感度が低下する。
<Chain conductive inorganic particles>
In the transparent conductive coating composition of the present invention, the content of the chain conductive inorganic particles is 40 to 90% by mass with respect to the total amount of the chain conductive inorganic particles and the binder. It is possible to provide a transparent conductive film that has a high function and does not reduce touch sensitivity. When the content of the chain conductive inorganic particles is less than 40% by mass, the ESD function of the transparent conductive film is decreased, and when the content of the chain conductive inorganic particles exceeds 90% by mass, the touch sensitivity is decreased. .
 また、上記鎖状導電性無機粒子を用いることにより、非鎖状導電性無機粒子を用いた場合に比べて、より少ない量で透明導電性膜の導電性を高めることができる。これは、無機粒子が鎖状構造を有することにより、無機粒子が単独で存在するよりも、無機粒子相互間の導電性ネットワークが増加して、透明導電性膜の全体において導電性が向上するためと思われる。このため、透明導電性膜の所定の導電性を実現するための無機粒子の量を低減できるため、透明導電性膜の光透過率も向上できる。 In addition, by using the chain conductive inorganic particles, the conductivity of the transparent conductive film can be increased with a smaller amount compared to the case of using non-chain conductive inorganic particles. This is because, since the inorganic particles have a chain structure, the conductive network between the inorganic particles is increased compared to the case where the inorganic particles are present alone, and the conductivity of the entire transparent conductive film is improved. I think that the. For this reason, since the quantity of the inorganic particle for implement | achieving the predetermined electroconductivity of a transparent conductive film can be reduced, the light transmittance of a transparent conductive film can also be improved.
 上記鎖状導電性無機粒子としては、粒子径が2~30nmの一次粒子が2~50個連接してなるものを用いることが好ましく、3~20個連接してなることがより好ましい。上記粒子径の一次粒子の連接数が50個を超えると、粒子の散乱によって透明導電性膜のヘイズ値が上昇する傾向にある。また、上記粒子径の一次粒子の連接数が2個を下回ると、粒子が非鎖状となり無機粒子相互間の導電性ネットワークの形成が困難となり、透明導電性膜の導電性が低下する。 As the chain conductive inorganic particles, it is preferable to use those in which 2 to 50 primary particles having a particle diameter of 2 to 30 nm are connected, and more preferably 3 to 20 particles are connected. When the number of connected primary particles having a particle diameter of more than 50, the haze value of the transparent conductive film tends to increase due to particle scattering. On the other hand, when the number of connected primary particles of the particle size is less than 2, the particles become unchained and it becomes difficult to form a conductive network between the inorganic particles, and the conductivity of the transparent conductive film is lowered.
 上記粒子径と連結数は、例えば、透明導電性コーティング組成物を低沸点溶剤で希釈し、各種基材上に2~10nmの膜厚で薄く塗布した透明導電性膜を、透過型電子顕微鏡(TEM)により、鎖状導電性無機粒子を構成する個々の粒子の粒子径と連結数を観察・測定して求めることができる。 The particle diameter and the number of connections are determined by, for example, diluting a transparent conductive coating composition with a low-boiling solvent and applying a thin transparent conductive film having a thickness of 2 to 10 nm on various substrates to a transmission electron microscope ( TEM) can be obtained by observing and measuring the particle diameter and the number of connections of the individual particles constituting the chain conductive inorganic particles.
 上記鎖状導電性無機粒子としては、透明性と導電性を兼ね備えた鎖状粒子であれば特に限定されず、例えば、金属粒子、カーボン粒子、導電性金属酸化物粒子、導電性窒化物粒子等を用いることができる。中でも、透明性と導電性とを兼ね備えた導電性金属酸化物粒子が好ましい。上記導電性金属酸化物粒子としては、酸化スズ粒子、酸化アンチモン粒子、アンチモン含有酸化スズ(ATO)粒子、スズ含有酸化インジウム(ITO)粒子、リン含有酸化スズ(PTO)粒子、アルミニウム含有酸化亜鉛(AZO)粒子、ガリウム含有酸化亜鉛(GZO)粒子等の金属酸化物粒子が挙げられる。上記導電性金属酸化物粒子は、単独で用いてもよく、2種以上を組合せて用いてもよい。また、上記鎖状導電性無機粒子は、ATO粒子、ITO粒子及びPTO粒子からなる群から選ばれる少なくとも1種を含むことが好ましい。これらの導電性無機粒子は、透明性、導電性及び化学特性に優れており、透明導電性膜にした場合にも高い光透過率と導電性を実現することができるからである。 The chain conductive inorganic particles are not particularly limited as long as they are chain particles having both transparency and conductivity. For example, metal particles, carbon particles, conductive metal oxide particles, conductive nitride particles, etc. Can be used. Among these, conductive metal oxide particles having both transparency and conductivity are preferable. Examples of the conductive metal oxide particles include tin oxide particles, antimony oxide particles, antimony-containing tin oxide (ATO) particles, tin-containing indium oxide (ITO) particles, phosphorus-containing tin oxide (PTO) particles, aluminum-containing zinc oxide ( Metal oxide particles such as AZO) particles and gallium-containing zinc oxide (GZO) particles. The said conductive metal oxide particle may be used independently and may be used in combination of 2 or more type. The chain conductive inorganic particles preferably include at least one selected from the group consisting of ATO particles, ITO particles, and PTO particles. This is because these conductive inorganic particles are excellent in transparency, conductivity, and chemical properties, and can achieve high light transmittance and conductivity even when a transparent conductive film is formed.
 上記鎖状導電性無機粒子の製造方法は、特に限定されないが、例えば、特開2000-196287号公報、特開2005-139026号公報、特開2006-339113号公報、特開2012-25793号公報に記載の製造方法を採用することができる。 The production method of the chain conductive inorganic particles is not particularly limited. For example, JP 2000-196287 A, JP 2005-13926 A, JP 2006-339113 A, and JP 2012-25793 A. Can be employed.
 <バインダ>
 上記バインダとしては、上記鎖状導電性無機粒子を分散して塗膜を形成できるものであれば特に限定されず、無機系バインダ及び有機系バインダのいずれも使用できる。上記バインダの含有量は、上記鎖状導電性無機粒子及び上記バインダの合計量に対して20質量%以上とすることが好ましい。20質量%を下回ると透明導電性薄膜の強度が低下する傾向があるからである。
<Binder>
The binder is not particularly limited as long as it can form a coating film by dispersing the chain conductive inorganic particles, and any of an inorganic binder and an organic binder can be used. The content of the binder is preferably 20% by mass or more based on the total amount of the chain conductive inorganic particles and the binder. This is because the strength of the transparent conductive thin film tends to decrease when the content is less than 20% by mass.
 上記無機系バインダとしては、例えば、アルコキシシランが使用できる。より具体的には、上記アルコキシシランは、3~4個のアルコキシ基がケイ素に結合した化合物であって、水に溶解させると、重合して-OSiO-で繋がれた高分子量SiO2体になるものを使用できる。 As the inorganic binder, for example, alkoxysilane can be used. More specifically, the alkoxysilane is a compound in which 3 to 4 alkoxy groups are bonded to silicon. When dissolved in water, the alkoxysilane is polymerized into a high molecular weight SiO 2 body linked by —OSiO—. Can be used.
 上記アルコキシシランとしては、テトラアルコキシシラン、トリアルコキシシラン、ジアルコキシシラン及びアルコキシシランオリゴマーからなる群から選ばれる少なくとも1種の多官能アルコキシシランを含むものであることが好ましい。アルコキシシランオリゴマーとは、アルコキシシランのモノマー同士が縮合することで形成される高分子量化されたアルコキシシランであり、シロキサン結合(-OSiO-)を1分子内に2個以上有するオリゴマーのことをいう。その結合数は2~20個であることが好ましい。 The alkoxysilane preferably contains at least one polyfunctional alkoxysilane selected from the group consisting of tetraalkoxysilane, trialkoxysilane, dialkoxysilane, and alkoxysilane oligomer. An alkoxysilane oligomer is an alkoxysilane having a high molecular weight formed by condensation of alkoxysilane monomers, and means an oligomer having two or more siloxane bonds (—OSiO—) in one molecule. . The number of bonds is preferably 2 to 20.
 上記テトラアルコキシシランの例としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラiso-プロポキシシラン、テトラt-ブトキシシラン等の炭素数1~4のアルコキシ基でテトラ置換されたシランが挙げられる。 Examples of the tetraalkoxysilane include silane tetrasubstituted with an alkoxy group having 1 to 4 carbon atoms such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraiso-propoxysilane, tetrat-butoxysilane and the like. It is done.
 上記トリアルコキシシランの例としては、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、トリブトキシシラン、トリiso-プロポキシシラン、トリL-ブトキシシラン等の炭素数1~4のアルコキシ基でトリ置換されたシラン、“KBM-13(メチルトリメトキシシラン)”、“KBE-13(メチルトリエトキシシラン)”等の一部がアルキル基で置換されたシランが挙げられる。 Examples of the trialkoxysilane are tri-substituted with an alkoxy group having 1 to 4 carbon atoms such as trimethoxysilane, triethoxysilane, tripropoxysilane, tributoxysilane, triiso-propoxysilane, tri-L-butoxysilane and the like. And silanes partially substituted with alkyl groups such as “KBM-13 (methyltrimethoxysilane)” and “KBE-13 (methyltriethoxysilane)”.
 上記ジアルコキシシランの例としては、ジメチルジメトキシシラン、ジフェニルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジエトキシシラン等の炭素数1~4のアルコキシ基でジ置換されたシラン、“KBM-22(ジメチルジメトキシシラン)”、“KBE-22(ジメチルジエトキシシラン)”等の一部がアルキル基で置換されたシランが挙げられる。 Examples of the dialkoxysilane include silanes disubstituted with an alkoxy group having 1 to 4 carbon atoms such as dimethyldimethoxysilane, diphenyldimethoxysilane, dimethyldiethoxysilane, and diphenyldiethoxysilane, “KBM-22 (dimethyldimethoxysilane). Silane) ”,“ KBE-22 (dimethyldiethoxysilane) ”and the like are partially substituted with alkyl groups.
 上記アルコキシシランオリゴマーの例としては、有機基とアルコキシシリル基を併せ持つ比較的低分子のアルコキシシランオリゴマーが挙げられる。具体例としては、信越化学社製の“X-40-2308”、“X-40-9238”、“X-40-9247”、“KR-401N”、“KR-510”、“KR-9218”、コルコート社製の“エチルシリケート40”、“エチルシリケート48”、“メチルシリケート51”、“メチルシリケート53A”等が挙げられる。 Examples of the alkoxysilane oligomer include a relatively low-molecular alkoxysilane oligomer having both an organic group and an alkoxysilyl group. Specific examples include “X-40-2308”, “X-40-9238”, “X-40-9247”, “KR-401N”, “KR-510”, “KR-9218” manufactured by Shin-Etsu Chemical Co., Ltd. "Ethyl silicate 40", "Ethyl silicate 48", "Methyl silicate 51", "Methyl silicate 53A" manufactured by Colcoat.
 上記アルコキシシランの具体例のうち、より高い硬度の透明導電性薄膜を形成するためには、テトラアルコキシラン、テトラアルコキシシラン及びトリアルコキシシランの併用、一部がアルキル基で置換されたトリアルコキシシランやジアルコキシシラン、官能基がアルコキシシリル基であるアルコキシシランオリゴマーが好ましい。これらを用いることにより、バインダ分子間のシロキサン結合を促進させた3次元架橋により透明導電性膜の硬度が強くなり、経時変化によって透明導電性薄膜に亀裂が発生する危険性をより一層なくし、且つ基板との密着性をより高めることができるからである。 Among the specific examples of the alkoxysilane, in order to form a transparent conductive thin film with higher hardness, a combination of tetraalkoxylane, tetraalkoxysilane and trialkoxysilane, trialkoxysilane partially substituted with an alkyl group Preferred are alkoxysilane oligomers, dialkoxysilanes, and alkoxysilane oligomers whose functional groups are alkoxysilyl groups. By using these, the hardness of the transparent conductive film is increased by three-dimensional crosslinking that promotes the siloxane bond between the binder molecules, and the risk of cracks occurring in the transparent conductive thin film due to aging is further reduced, and This is because the adhesion to the substrate can be further increased.
 更に、より安定した状態で再現性良く、良質の膜を形成するためには、透明導電性コーティング組成物にアルコキシシランの加水分解反応を進め、シラノール化させた状態で使用することが好ましい。その調整方法としては、例えば、アルコール等の低沸点溶剤で希釈したアルコキシシランに水と酸触媒を加えてあらかじめシラノール化させる方法や、導電性コーティング組成物に水と酸触媒を添加しシラノール化させる方法が挙げられる。水の含有量は、アルコキシシランの構造から加水分解率を求めることで理論値が求まるが、透明導電性コーティング組成物のポットライフやコーティング適性、透明導電性膜の物理特性に合わせて適宜調整する。上記水の含有量は、アルコキシシラン全体量に対して50~1500質量%とすることが好ましい。50質量%を下回ると透明導電性薄膜の強度が低下し、1500質量%を超えると乾燥速度が遅くなるといったコーティング適性に影響するからである。 Furthermore, in order to form a high-quality film in a more stable state with good reproducibility, it is preferable to use the transparent conductive coating composition in a silanol state by proceeding with a hydrolysis reaction of alkoxysilane. As the adjustment method, for example, a method in which water and an acid catalyst are added to an alkoxysilane diluted with a low boiling point solvent such as alcohol and silanol in advance, or water and an acid catalyst are added to the conductive coating composition to be silanolated. A method is mentioned. The water content can be determined theoretically by determining the hydrolysis rate from the structure of the alkoxysilane, but is adjusted as appropriate according to the pot life and coating suitability of the transparent conductive coating composition and the physical characteristics of the transparent conductive film. . The water content is preferably 50 to 1500% by mass with respect to the total amount of alkoxysilane. This is because when the amount is less than 50% by mass, the strength of the transparent conductive thin film is lowered, and when it exceeds 1500% by mass, the coating suitability such as a low drying rate is affected.
 また、上記有機系バインダとしては、例えば、アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリ酢酸ビニル樹脂、及び光重合性モノマーと重合開始剤とを含む光重合性樹脂等が使用できる。 Examples of the organic binder include acrylic resin, polyester resin, polyamide resin, polycarbonate resin, polyurethane resin, polystyrene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl alcohol resin, polyvinyl acetate resin, and light. A photopolymerizable resin containing a polymerizable monomer and a polymerization initiator can be used.
 上記光重合性モノマーとしては、3官能以上の(メタ)アクリルモノマーを50~90%含むことが好ましい。ここで、光重合性モノマーの含率は、光重合性モノマー及び重合開始剤の合計質量に対する光重合性モノマーの質量割合を意味する。反応点の多い(メタ)アクリルモノマーを重合・硬化させてマトリックス樹脂とすることで、透明導電性膜の強度を更に高めることができる。3官能以上の光重合性モノマーの質量割合が50%未満になると、塗膜の硬度が弱くなり、耐久性が低下する。また、上記光重合性モノマーと共に重合開始剤を使用する必要があることから、光重合性モノマーの質量割合が90%を超えることは実質的に困難である。 The photopolymerizable monomer preferably contains 50 to 90% of a tri- or higher functional (meth) acrylic monomer. Here, the content of the photopolymerizable monomer means the mass ratio of the photopolymerizable monomer to the total mass of the photopolymerizable monomer and the polymerization initiator. By polymerizing and curing a (meth) acrylic monomer having many reactive sites to form a matrix resin, the strength of the transparent conductive film can be further increased. If the mass ratio of the trifunctional or higher functional photopolymerizable monomer is less than 50%, the hardness of the coating film becomes weak and the durability decreases. Moreover, since it is necessary to use a polymerization initiator with the said photopolymerizable monomer, it is substantially difficult for the mass ratio of a photopolymerizable monomer to exceed 90%.
 3官能(メタ)アクリルモノマーとしては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート;4官能以上の(メタ)アクリルモノマーとしては、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート等が挙げられる。また、光重合性モノマーとしては、一般に販売されている多官能アクリルオリゴマーであってもよく、特に硬化性が高く硬度が高いものが好ましく、例えば、共栄社化学社製の“AH-600”、“UA-306H”や、新中村化学社製の“NKオリゴU-6HA”、“NKオリゴU-15HA”等が挙げられる。 Trifunctional (meth) acrylic monomers include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate; Examples include pentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, and dipentaerythritol hexaacrylate. The photopolymerizable monomer may be a polyfunctional acrylic oligomer which is generally sold, and is particularly preferably one having high curability and high hardness. For example, “AH-600”, “Kyoeisha Chemical Co., Ltd.” UA-306H ”,“ NK Oligo U-6HA ”,“ NK Oligo U-15HA ”manufactured by Shin-Nakamura Chemical Co., Ltd., and the like.
 また、上記光重合性モノマー中には単官能及び2官能の光重合性モノマーを含有していてもよく、例えば、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9ノナンジオールジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート等の2官能重合性モノマー;ビニルピロリドン、ビニルホルムアミド等のビニルモノマー、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等のアルキル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の脂環式(メタ)アクリレート、(メタ)ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート等のヒドロキシ(メタ)アクリレート、アクリロイルモルフォリン、ジメチルアミノエチル(メタ)アクリレート等の窒素含有(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、テトラヒドロフルフリルアクリレート等の芳香族系(メタ)アクリレート等の単官能重合性モノマーが挙げられる。 The photopolymerizable monomer may contain a monofunctional or bifunctional photopolymerizable monomer, such as 1,4-butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, for example. Bifunctional polymerizable monomers such as 1,6-hexanediol di (meth) acrylate, 1,9 nonanediol di (meth) acrylate, ethoxylated bisphenol A di (meth) acrylate, cyclohexanedimethanol di (meth) acrylate; Vinyl monomers such as vinylpyrrolidone and vinylformamide, alkyl (meth) acrylates such as butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, and alicyclic (meth) such as isobornyl (meth) acrylate Acrylate, (Me ) Hydroxy (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, nitrogen-containing (meth) acrylates such as acryloylmorpholine, dimethylaminoethyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl And monofunctional polymerizable monomers such as aromatic (meth) acrylates such as (meth) acrylate and tetrahydrofurfuryl acrylate.
 上記重合開始剤としては、例えば、ベンジル、ジアセチル等のα-ジケトン類、ベンゾイン等のアシロイン類、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等のアシロインエーテル類、チオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、チオキサントン-4-スルホン酸等のチオキサントン類、ベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン等のベンゾフェノン類、ミヒラーケトン類、アセトフェノン、2-(4-トルエンスルホニルオキシ)-2-フェニルアセトフェノン、p-ジメチルアミノアセトフェノン、α,α’-ジメトキシアセトキシベンゾフェノン、2,2’-ジメトキシ-2-フェニルアセトフェノン、p-メトキシアセトフェノン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン等のアセトフェノン類、アントラキノン、1,4-ナフトキノン等のキノン類、フェナシルクロライド、トリハロメチルフェニルスルホン、トリス(トリハロメチル)-s-トリアジン等のハロゲン化合物、アシルホスフィンオキシド類、ジ-t-ブチルパーオキサイド等の過酸化物等が挙げられる。 Examples of the polymerization initiator include α-diketones such as benzyl and diacetyl, acyloins such as benzoin, acyloin ethers such as benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether, thioxanthone, and 2,4-diethyl. Thioxanthones such as thioxanthone, 2-chlorothioxanthone, thioxanthone-4-sulfonic acid, benzophenones, benzophenones such as 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, Michler's ketones, Acetophenone, 2- (4-toluenesulfonyloxy) -2-phenylacetophenone, p-dimethylaminoacetophenone, α, α'-dimethoxyacetoxybenzophenone, 2,2'-dimethoxy 2-phenylacetophenone, p-methoxyacetophenone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpho Acetophenones such as linophenyl) -butan-1-one, quinones such as anthraquinone and 1,4-naphthoquinone, halogen compounds such as phenacyl chloride, trihalomethylphenylsulfone, tris (trihalomethyl) -s-triazine, acyl Examples thereof include phosphine oxides and peroxides such as di-t-butyl peroxide.
 上記光重合性モノマー及び重合開始剤は、それぞれ1種類を単独で使用してよく、それぞれ2種類以上を併用してもよい。 The photopolymerizable monomer and the polymerization initiator may be used alone or in combination of two or more.
 <高沸点溶剤>
 上記高沸点溶剤としては、バインダ成分を溶解し、且つ塗布後の乾燥工程によって除去できるものであればよく、例えば、エチレングリコール、ジメチルスルホキシド、N-メチルピロリドン、N-エチルピロリドン、N-メチルホルムアミド、メチルイソブチルケトン、1,2-プロパンジオール、N,N-ジメチルアニリン、クレゾール、ニトロベンゼン、エチレングリコール等を使用できる。
<High boiling point solvent>
The high boiling point solvent is not particularly limited as long as it can dissolve the binder component and can be removed by a drying step after coating. For example, ethylene glycol, dimethyl sulfoxide, N-methylpyrrolidone, N-ethylpyrrolidone, N-methylformamide. Methyl isobutyl ketone, 1,2-propanediol, N, N-dimethylaniline, cresol, nitrobenzene, ethylene glycol and the like can be used.
 上記高沸点溶剤の含有量は、導電性コーティング組成物全量に対して0.1~30.0質量%程度とすればよい。 The content of the high boiling point solvent may be about 0.1 to 30.0% by mass with respect to the total amount of the conductive coating composition.
 <低沸点溶剤>
 上記低沸点溶剤としては、例えば、エチルアルコール、メチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、メチルエチルケトン、テトラヒドロフラン、アセトン、ジオキサン、酢酸エチル、クロロホルム、アセトニトリル、ピリジン、酢酸、水等を使用できる。上記低沸点溶剤を使用することにより、上記鎖状導電性無機粒子の分散性が向上する。
<Low boiling solvent>
Examples of the low boiling point solvent include ethyl alcohol, methyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, methyl ethyl ketone, tetrahydrofuran, acetone, dioxane, ethyl acetate, chloroform, acetonitrile, pyridine, acetic acid, Water can be used. By using the low boiling point solvent, the dispersibility of the chain conductive inorganic particles is improved.
 上記低沸点溶剤の含有量は、導電性コーティング組成物全体量に対して50.0~99.5質量%程度とすればよい。 The content of the low boiling point solvent may be about 50.0 to 99.5% by mass with respect to the total amount of the conductive coating composition.
 <酸触媒>
 本発明の透明導電性コーティング組成物には、一般に使用される酸触媒(塩酸、硫酸、酢酸、リン酸等)を更に添加することができる。これにより、より安定した性能で高品質の透明導電性膜を再現性よく形成可能となる。上記酸触媒の含有量は、アルコキシシラン全体量に対して1.0~30.0質量%程度とすればよい。
<Acid catalyst>
A generally used acid catalyst (hydrochloric acid, sulfuric acid, acetic acid, phosphoric acid, etc.) can be further added to the transparent conductive coating composition of the present invention. This makes it possible to form a high-quality transparent conductive film with more reproducibility with more stable performance. The content of the acid catalyst may be about 1.0 to 30.0% by mass with respect to the total amount of alkoxysilane.
 <レベリング剤>
 本発明の透明導電性コーティング組成物には、レベリング剤を更に添加することができる。これにより、透明導電性膜の表面平滑性が確保できる。上記レベリング剤としては、例えば、ポリエーテル変性ポリジメチルシロキサン、ジプロピレングリコールモノメチルエーテル等を使用できる。上記レベリング剤触媒の含有量は、導電性コーティング組成物全体量に対して0.01~5.0質量%程度とすればよい。
<Leveling agent>
A leveling agent can be further added to the transparent conductive coating composition of the present invention. Thereby, the surface smoothness of a transparent conductive film is securable. Examples of the leveling agent include polyether-modified polydimethylsiloxane and dipropylene glycol monomethyl ether. The content of the leveling agent catalyst may be about 0.01 to 5.0% by mass with respect to the total amount of the conductive coating composition.
 <調製法>
 本発明の透明導電性コーティング組成物の調製法は、上記各成分を混合して、上記鎖状導電性無機粒子を上記バインダと上記溶剤の中に分散できれば特に限定されず、例えば、上記各成分をボールミル、サンドミル、ピコミル、ペイントコンディショナー等のメディアを介在させた機械的処理、又は超音波分散機、ホモジナイザー、ディスパー及びジェットミル等を使用して分散処理を施して混合・分散することができる。
<Preparation method>
The method for preparing the transparent conductive coating composition of the present invention is not particularly limited as long as the above components are mixed and the chain conductive inorganic particles can be dispersed in the binder and the solvent. Can be mixed and dispersed by performing a mechanical treatment with media such as a ball mill, a sand mill, a pico mill, a paint conditioner, or a dispersion treatment using an ultrasonic disperser, a homogenizer, a disper, a jet mill, or the like.
 上記調製後の本発明の透明導電性コーティング組成物は、上記鎖状導電性無機粒子及び上記バインダの合計量(固形分量)が、全体量に対して0.5~20質量%であり、粘度が、0.5~100mPa・sであることが好ましい。これにより、後述する透明導電性膜の作製時の塗布工程が容易となる。 In the transparent conductive coating composition of the present invention after the preparation, the total amount (solid content) of the chain conductive inorganic particles and the binder is 0.5 to 20% by mass with respect to the total amount, and the viscosity Is preferably 0.5 to 100 mPa · s. Thereby, the application | coating process at the time of preparation of the transparent conductive film mentioned later becomes easy.
 (透明導電性膜)
 次に、本発明の透明導電性膜について説明する。
(Transparent conductive film)
Next, the transparent conductive film of the present invention will be described.
 本発明の透明導電性膜は、上記本発明の透明導電性コーティング組成物を用いて形成したことを特徴とする。上記透明導電性コーティング組成物を用いて形成することにより、上記透明導電性膜において、表面電気抵抗を10~1000MΩ/スクエア、全光線透過率(JIS K7105準拠)を95.0~99.9%、鉛筆硬度を5~9Hとすることができ、製造工程での傷付を防止し、歩止まり低下を防止することができる。 The transparent conductive film of the present invention is formed using the transparent conductive coating composition of the present invention. By forming using the transparent conductive coating composition, the transparent conductive film has a surface electrical resistance of 10 to 1000 MΩ / square and a total light transmittance (based on JIS K7105) of 95.0 to 99.9%. Further, the pencil hardness can be set to 5 to 9H, and it is possible to prevent scratches in the manufacturing process and to prevent a decrease in yield.
 特に、上記表面電気抵抗を10~1000MΩ/スクエアとすることにより、帯電防止機能が高く、且つタッチ感度を低下させない透明導電性膜を提供できる。即ち、上記表面電気抵抗が10MΩ/スクエアを下回るとタッチ感度が低下し、上記表面電気抵抗が1000MΩ/スクエアを超えると帯電防止機能が低下する。 In particular, by setting the surface electrical resistance to 10 to 1000 MΩ / square, it is possible to provide a transparent conductive film having a high antistatic function and not deteriorating touch sensitivity. That is, when the surface electric resistance is less than 10 MΩ / square, the touch sensitivity is lowered, and when the surface electric resistance exceeds 1000 MΩ / square, the antistatic function is lowered.
 また、上記透明導電性コーティング組成物を用いて透明導電性膜を形成することにより、本発明の透明導電性膜において、温度65℃、相対湿度90%の環境下で500時間保持した後の表面電気抵抗を10~1000MΩ/スクエアとすることができる。 In addition, by forming a transparent conductive film using the transparent conductive coating composition, the surface of the transparent conductive film of the present invention after being held for 500 hours in an environment at a temperature of 65 ° C. and a relative humidity of 90% The electrical resistance can be 10 to 1000 MΩ / square.
 本発明の透明導電性膜は、本発明の透明導電性コーティング組成物を後述する液晶表示パネルの基板に塗布して塗膜を形成した後に、上記塗膜を乾燥して形成すればよい。 The transparent conductive film of the present invention may be formed by applying the transparent conductive coating composition of the present invention to a substrate of a liquid crystal display panel to be described later to form a coating film, and then drying the coating film.
 上記透明導電性コーティング組成物の塗布方法としては、平滑な塗膜を形成しうる塗布方法であれば特に限定されない。例えば、スピンコート、ロールコート、ダイコート、エアナイフコート、ブレードコート、リバースコート、グラビアコート、マイクログラビアコート等の塗工法、又はグラビア印刷、スクリーン印刷、オフセット印刷、インクジェット印刷等の印刷法、スプレーコート、スリットコート、ディップコート等の塗布法を用いることができるが、製造装置の簡略化や製造コストにおいて有利なスプレーコート、スリットコート等のノンスピンコート方式が好ましい。 The method for applying the transparent conductive coating composition is not particularly limited as long as it is a coating method capable of forming a smooth coating film. For example, coating methods such as spin coating, roll coating, die coating, air knife coating, blade coating, reverse coating, gravure coating, micro gravure coating, or printing methods such as gravure printing, screen printing, offset printing, inkjet printing, spray coating, Although coating methods such as slit coating and dip coating can be used, non-spin coating methods such as spray coating and slit coating that are advantageous in terms of simplification of the manufacturing apparatus and manufacturing cost are preferable.
 また、上記透明導電性コーティング組成物を塗布した後、乾燥によって溶剤を除去するが、必要に応じて、塗膜にUV光やEB光を照射して塗膜を硬化させたりして、透明導電性膜を形成してもよい。 In addition, after applying the transparent conductive coating composition, the solvent is removed by drying. If necessary, the coating film is irradiated with UV light or EB light to cure the transparent conductive film. A conductive film may be formed.
 本発明の透明導電性膜の厚さは、特に限定されないが、10~300nm程度とすればよい。 The thickness of the transparent conductive film of the present invention is not particularly limited, but may be about 10 to 300 nm.
 (タッチパネル機能内蔵型横電界方式液晶表示パネル)
 次に、本発明のタッチパネル機能内蔵型横電界方式液晶表示パネルについて説明する。
(Horizontal electric field type LCD panel with built-in touch panel function)
Next, a horizontal electric field type liquid crystal display panel with a built-in touch panel function according to the present invention will be described.
 本発明のタッチパネル機能内蔵型横電界方式液晶表示パネルは、液晶層と、上記液晶層を介して互いに対向して配置された第1の透明基板及び第2の透明基板と、上記第1の透明基板の上記液晶層とは反対側に配置された透明導電性膜と、上記第2の透明基板の上記液晶層の側に配置された表示用電極、基準電極及び容量線とを備えている。また、本発明のタッチパネル機能内蔵型横電界方式液晶表示パネルは、上記透明導電性膜として前述の本発明の透明導電性膜を用いることを特徴とする。 The horizontal electric field type liquid crystal display panel with a built-in touch panel function according to the present invention includes a liquid crystal layer, a first transparent substrate and a second transparent substrate that are disposed to face each other with the liquid crystal layer interposed therebetween, and the first transparent substrate. A transparent conductive film disposed on the side of the substrate opposite to the liquid crystal layer; and a display electrode, a reference electrode, and a capacitor line disposed on the liquid crystal layer side of the second transparent substrate. In addition, the horizontal electric field type liquid crystal display panel with a built-in touch panel function according to the present invention is characterized by using the above-described transparent conductive film of the present invention as the transparent conductive film.
 本発明のタッチパネル機能内蔵型横電界方式液晶表示パネルが、本発明の透明導電性膜を備えることにより、タッチ感度を低下させずに、ESD機能を付与できる。 The horizontal electric field type liquid crystal display panel with a built-in touch panel function of the present invention includes the transparent conductive film of the present invention, so that an ESD function can be imparted without deteriorating touch sensitivity.
 以下、本発明のタッチパネル機能内蔵型横電界方式液晶表示パネルを図面に基づき説明する。図1は、本発明のタッチパネル機能内蔵型横電界方式液晶表示パネルを用いた液晶表示装置の一部を示す概略平面図である。また、図2は、図1のA-B線で切断した本発明のタッチパネル機能内蔵型横電界方式液晶表示パネルを用いた液晶表示装置の一部を示す概略断面図である。 Hereinafter, a liquid crystal display panel with a built-in touch panel function according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic plan view showing a part of a liquid crystal display device using a horizontal electric field type liquid crystal display panel with a built-in touch panel function according to the present invention. FIG. 2 is a schematic cross-sectional view showing a part of a liquid crystal display device using the horizontal electric field type liquid crystal display panel with a built-in touch panel function according to the present invention cut along line AB in FIG.
 図1、図2において、液晶表示装置LPNは、マトリクス状に配置された複数の画素PXからなるアクティブエリアと、液晶層LQと、液晶層LQを介して互いに対向して配置された第1の透明基板30及び第2の透明基板20と、第1の透明基板30の液晶層LQとは反対側に配置された透明導電性膜13とを備えている。また、第2の透明基板20の液晶層LQの側には、走査線と、走査線に直交して信号線Sが配置され、これらの走査線、信号線Sは駆動回路に接続されている。また、走査線と信号線Sの交差部において走査線と信号線Sに接続されるスイッチング素子SWが配置されている。 1 and 2, the liquid crystal display device LPN includes an active area composed of a plurality of pixels PX arranged in a matrix, a liquid crystal layer LQ, and a first liquid crystal layer LQ disposed opposite to each other via the liquid crystal layer LQ. The transparent substrate 30 and the 2nd transparent substrate 20, and the transparent conductive film 13 arrange | positioned on the opposite side to the liquid crystal layer LQ of the 1st transparent substrate 30 are provided. Further, on the liquid crystal layer LQ side of the second transparent substrate 20, scanning lines and signal lines S are arranged orthogonal to the scanning lines, and these scanning lines and signal lines S are connected to a drive circuit. . A switching element SW connected to the scanning line and the signal line S is disposed at the intersection of the scanning line and the signal line S.
 これら走査線、信号線S、スイッチング素子SWは第1の絶縁膜23によって覆われ、この第1の絶縁膜23上に基準電極CEと容量線Cが配置されている。この容量線Cは、基準電極CEと一体的に形成されている。容量線Cは、複数の画素PXに跨って形成され、複数の画素PXを含む1つのグループを形成し、外部の検出対象物が液晶表示装置LPNに接近又は接触したことを検知する検出回路を兼ね備えた駆動回路に接続される。このようなグループは、アクティブエリア内に複数存在し、これらのグループによって液晶表示装置LPNの検出面(第1の透明基板30の透明導電性膜13を備えている側の面)で検出対象物の位置を特定することができる。 These scanning lines, signal lines S, and switching elements SW are covered with a first insulating film 23, and a reference electrode CE and a capacitor line C are disposed on the first insulating film 23. The capacitor line C is formed integrally with the reference electrode CE. The capacitor line C is formed across a plurality of pixels PX, forms one group including the plurality of pixels PX, and includes a detection circuit that detects that an external detection target object approaches or contacts the liquid crystal display device LPN. It is connected to the drive circuit that has both. There are a plurality of such groups in the active area, and the detection target on the detection surface of the liquid crystal display device LPN (the surface on the side having the transparent conductive film 13 of the first transparent substrate 30) by these groups. Can be specified.
 この基準電極CEと容量線Cの上に第2の絶縁膜24を介してスリットPSLを有する表示用電極PEが配置される。この表示用電極PEは第1の絶縁膜23と第2の絶縁膜24に設けられたコンタクトホールを介してスイッチング素子SWに接続される。また、表示用電極PEの上には、第1の配向膜25が配置され所定の方向にラビングされている。 A display electrode PE having a slit PSL is disposed on the reference electrode CE and the capacitance line C via the second insulating film 24. The display electrode PE is connected to the switching element SW through a contact hole provided in the first insulating film 23 and the second insulating film 24. A first alignment film 25 is disposed on the display electrode PE and rubbed in a predetermined direction.
 また、第1の透明基板30の液晶層LQの側には、各画素PXを区画するブラックマトリクス31と各画素PXに対応するカラーフィルタ32を備えている。これらブラックマトリクス31及びカラーフィルタ32の上には、平坦化するオーバーコート層33と、このオーバーコート層33を覆う第2の配向膜34が配置されている。この第2の配向膜34は、所定の方向にラビングされている。 Further, on the liquid crystal layer LQ side of the first transparent substrate 30, a black matrix 31 that partitions each pixel PX and a color filter 32 corresponding to each pixel PX are provided. On the black matrix 31 and the color filter 32, an overcoat layer 33 to be flattened and a second alignment film 34 covering the overcoat layer 33 are disposed. The second alignment film 34 is rubbed in a predetermined direction.
 この液晶表示装置LPNは、容量線C及び基準電極CEにコモン電位、表示用電極PEに画素電位を与えることにより基準電極CEと表示用電極PEとの間に横方向電界あるいはフリンジ電界を形成し液晶層LQの液晶分子をスイッチングしている。 This liquid crystal display device LPN forms a horizontal electric field or a fringe electric field between the reference electrode CE and the display electrode PE by applying a common potential to the capacitance line C and the reference electrode CE and a pixel potential to the display electrode PE. The liquid crystal molecules of the liquid crystal layer LQ are switched.
 一方、この液晶表示装置LPNに内蔵されているタッチパネル機能は以下のように動作する。即ち、表示用電極PEをフローティングの状態にし、検出回路を兼ね備えた駆動回路を制御して容量線Cにコモン電位の代わりに外部の検出対象物を検出するための検出信号を書き込む。また、駆動回路を制御して各信号線Sをプリチャージする。この状態で、第1の透明基板30の外部に検出対象物が接近又は接触すると、容量線Cと信号線Sとの間の静電容量が変化するため検出対象物が検出される。 On the other hand, the touch panel function built in the liquid crystal display device LPN operates as follows. That is, the display electrode PE is brought into a floating state, and a drive circuit having a detection circuit is controlled to write a detection signal for detecting an external detection target to the capacitor line C instead of the common potential. Further, each signal line S is precharged by controlling the drive circuit. In this state, when the detection target approaches or contacts the outside of the first transparent substrate 30, the detection target is detected because the capacitance between the capacitance line C and the signal line S changes.
 透明導電性膜13は、第1の透明基板30の液晶層LQとは反対側の主面上に塗布により形成されて、更に透明導電膜13の上には、偏光板PL2が配置されている。また、第2の透明基板20の外側には偏光板PL1が配置されている。また、偏光板PL1の外側には、バックライトユニット15(図示せず。)が配置されている。また、液晶層LQは、封止部により密閉されている。 The transparent conductive film 13 is formed by coating on the main surface of the first transparent substrate 30 opposite to the liquid crystal layer LQ, and a polarizing plate PL2 is further disposed on the transparent conductive film 13. . In addition, a polarizing plate PL1 is disposed outside the second transparent substrate 20. A backlight unit 15 (not shown) is disposed outside the polarizing plate PL1. Further, the liquid crystal layer LQ is sealed by a sealing portion.
 なお、図1において、Gはゲート線、CSLはスリット、WGはゲート電極、WDはドレイン電極、SCは半導体層である。また、図2において、WSはソース電極、21はゲート絶縁膜、23は絶縁膜である。 In FIG. 1, G is a gate line, CSL is a slit, WG is a gate electrode, WD is a drain electrode, and SC is a semiconductor layer. In FIG. 2, WS is a source electrode, 21 is a gate insulating film, and 23 is an insulating film.
 上記液晶表示装置LPNは、外部の検出対象物を検出するための容量線Cを備えたタッチパネル機能内蔵型のため、液晶表示装置LPNに、装置の外部又は内部からの静電的な影響や外部の電磁的妨害に対するシールド機能を付与できると共に、タッチ機能も付与できる。 Since the liquid crystal display device LPN has a built-in touch panel function including a capacitance line C for detecting an external detection object, the liquid crystal display device LPN may be affected by electrostatic influences from outside or inside the device. In addition to providing a shielding function against electromagnetic interference, a touch function can also be provided.
 また、上記液晶表示装置LPNにおいて、容量線を備えていない場合、即ち、タッチパネル機能を内蔵していない液晶表示装置においても、第1の透明基板30と偏光板PL2との間に透明導電性膜13を配置することにより、装置の外部からの静電気等の電磁的妨害に対するシールド機能を付与できる。 Further, in the case where the liquid crystal display device LPN does not include a capacitance line, that is, in a liquid crystal display device that does not have a touch panel function, a transparent conductive film is provided between the first transparent substrate 30 and the polarizing plate PL2. By arranging 13, it is possible to provide a shielding function against electromagnetic interference such as static electricity from the outside of the apparatus.
 以下、実施例に基づいて本発明を詳細に説明する。但し、本発明は以下の実施例に限定されるものではない。また、以下で「部」とは、「質量部」を意味する。 Hereinafter, the present invention will be described in detail based on examples. However, the present invention is not limited to the following examples. In the following, “part” means “part by mass”.
 (実施例1)
 <鎖状アンチモン含有酸化スズ(ATO)粒子分散液>
 鎖状ATO粒子分散液として、日揮触媒化成社製“ELCOM V-3560”を準備した。鎖状ATO粒子分散液“ELCOM V-3560”は、鎖状ATO粒子:20.8部と、エチルアルコール:70.0部、イソプロピルアルコール9.2部との混合分散液である。
(Example 1)
<Linear antimony-containing tin oxide (ATO) particle dispersion>
As a chain ATO particle dispersion, “ELCOM V-3560” manufactured by JGC Catalysts & Chemicals was prepared. The chain ATO particle dispersion “ELCOM V-3560” is a mixed dispersion of chain ATO particles: 20.8 parts, ethyl alcohol: 70.0 parts, and isopropyl alcohol 9.2 parts.
 上記鎖状ATO粒子分散液に用いた鎖状ATO粒子の透過型電子顕微鏡(TEM)写真を図3及び図4に示す。図3及び図4では、後述するコーティング液を低沸点溶剤で希釈し、観察用基材上に2~10nmの膜厚で薄く塗布した透明導電性膜を観察したものである。図3及び図4から、上記ATO粒子は、粒子径が2~30nmの一次粒子が2~50個連接して形成された鎖状ATO粒子(鎖状導電性無機粒子)であることが分かる。 3 and 4 show transmission electron microscope (TEM) photographs of the chain ATO particles used in the chain ATO particle dispersion. In FIGS. 3 and 4, a transparent conductive film is observed in which a coating liquid described later is diluted with a low-boiling solvent and thinly applied to the observation substrate with a film thickness of 2 to 10 nm. 3 and 4, the ATO particles are chain ATO particles (chain conductive inorganic particles) formed by connecting 2 to 50 primary particles having a particle diameter of 2 to 30 nm.
 次に、以下のようにしてコーティング液を調製した。但し、アルコキシシランは、アルコールの一部を用いて希釈し、水と酸触媒を加えてあらかじめシラノール化させて使用した。 Next, a coating solution was prepared as follows. However, the alkoxysilane was diluted with a part of the alcohol and pre-silanolized by adding water and an acid catalyst.
 <コーティング液>
 プラスチック製ビンに、上記鎖状ATO粒子分散液及び下記成分を下記分量で入れ、攪拌してコーティング液を調製した。
<Coating solution>
The chain ATO particle dispersion and the following components were put in a plastic bottle in the following amounts, and stirred to prepare a coating solution.
(1)鎖状ATO粒子分散液:7.0部
(2)アルコキシシラン(無機系バインダ:信越化学工業社製“X40-2308”):0.6部
(3)リン酸(酸触媒):0.1部
(4)ポリエーテル変性ポリジメチルシロキサン15.0部とジプロピレングリコールモノメチルエーテル85.0部との混合液(レベリング剤:ビックケミージャパン社製“BYK-337”):0.1部
(5)ジメチルスルホキシド(高沸点溶剤):5.0部
(6)エチルアルコール(低沸点溶剤):82.2部
(7)水:5.0部
(1) Chain ATO particle dispersion: 7.0 parts (2) Alkoxysilane (inorganic binder: “X40-2308” manufactured by Shin-Etsu Chemical Co., Ltd.): 0.6 parts (3) Phosphoric acid (acid catalyst): 0.1 part (4) Mixture of 15.0 parts of polyether-modified polydimethylsiloxane and 85.0 parts of dipropylene glycol monomethyl ether (leveling agent: “BYK-337” manufactured by BYK Japan KK): 0.1 Parts (5) dimethyl sulfoxide (high boiling point solvent): 5.0 parts (6) ethyl alcohol (low boiling point solvent): 82.2 parts (7) water: 5.0 parts
 上記コーティング液の不揮発固形成分(鎖状ATO粒子及びアルコキシシラン)の含有量は2.2質量%であり、鎖状ATO粒子及びアルコキシシランの合計量に対する鎖状ATO粒子の含有量は70.8質量%であった。また、上記コーティング液の粘度を東機産業社製のTV25型粘度計で測定したところ、1.7mPa・sであった。 The content of nonvolatile solid components (chain ATO particles and alkoxysilane) in the coating liquid is 2.2% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and alkoxysilane is 70.8. It was mass%. Moreover, it was 1.7 mPa * s when the viscosity of the said coating liquid was measured with the Toki Sangyo company TV25 type | mold viscosity meter.
 (実施例2)
 プラスチック製ビンに、実施例1で準備した鎖状ATO粒子分散液及び下記成分を下記分量で入れ、攪拌してコーティング液を調製した。
(Example 2)
In a plastic bottle, the chain ATO particle dispersion prepared in Example 1 and the following components were added in the following amounts and stirred to prepare a coating solution.
(1)鎖状ATO粒子分散液:6.6部
(2)アルコキシシラン(無機系バインダ:信越化学工業社製“X40-2308”):0.5部
(3)アルコキシシラン(無機系バインダ:コルコート社製“エチルシリケート28”):0.4部
(4)リン酸(酸触媒):0.1部
(5)ポリエーテル変性ポリジメチルシロキサン15.0部とジプロピレングリコールモノメチルエーテル85.0部との混合液(レベリング剤:ビックケミージャパン社製“BYK-337”):0.1部
(6)ジメチルスルホキシド(高沸点溶剤):5.0部
(7)エチルアルコール(低沸点溶剤):82.3部
(8)水:5.0部
(1) Chain ATO particle dispersion: 6.6 parts (2) Alkoxysilane (inorganic binder: “X40-2308” manufactured by Shin-Etsu Chemical Co., Ltd.): 0.5 part (3) Alkoxysilane (inorganic binder: "Ethyl silicate 28" manufactured by Colcoat Co.): 0.4 part (4) Phosphoric acid (acid catalyst): 0.1 part (5) 15.0 parts of polyether-modified polydimethylsiloxane and 85.0 dipropylene glycol monomethyl ether Mixed solution (leveling agent: BYK-337 manufactured by BYK Japan): 0.1 part (6) dimethyl sulfoxide (high boiling solvent): 5.0 parts (7) ethyl alcohol (low boiling solvent) : 82.3 parts (8) Water: 5.0 parts
 上記コーティング液の不揮発固形成分(鎖状ATO粒子及びアルコキシシラン)の含有量は2.4質量%であり、鎖状ATO粒子及びアルコキシシランの合計量に対する鎖状ATO粒子の含有量は60.4質量%であった。また、上記コーティング液の粘度を実施例1と同様にして測定したところ、1.7mPa・sであった。 The content of nonvolatile solid components (chain ATO particles and alkoxysilane) in the coating liquid is 2.4% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and alkoxysilane is 60.4. It was mass%. Moreover, it was 1.7 mPa * s when the viscosity of the said coating liquid was measured like Example 1. FIG.
 (実施例3)
 プラスチック製ビンに、実施例1で準備した鎖状ATO粒子分散液及び下記成分を下記分量で入れ、攪拌してコーティング液を調製した。
(Example 3)
In a plastic bottle, the chain ATO particle dispersion prepared in Example 1 and the following components were added in the following amounts and stirred to prepare a coating solution.
(1)鎖状ATO粒子分散液:6.0部
(2)アルコキシシラン(無機系バインダ:信越化学工業社製“X40-2308”):1.6部
(3)リン酸(酸触媒):0.1部
(4)ポリエーテル変性ポリジメチルシロキサン15.0部とジプロピレングリコールモノメチルエーテル85.0部との混合液(レベリング剤:ビックケミージャパン社製“BYK-337”):0.1部
(5)ジメチルスルホキシド(高沸点溶剤):5.0部
(6)エチルアルコール(低沸点溶剤):82.2部
(7)水:5.0部
(1) Chain ATO particle dispersion: 6.0 parts (2) Alkoxysilane (inorganic binder: “X40-2308” manufactured by Shin-Etsu Chemical Co., Ltd.): 1.6 parts (3) Phosphoric acid (acid catalyst): 0.1 part (4) Mixture of 15.0 parts of polyether-modified polydimethylsiloxane and 85.0 parts of dipropylene glycol monomethyl ether (leveling agent: “BYK-337” manufactured by BYK Japan KK): 0.1 Parts (5) dimethyl sulfoxide (high boiling point solvent): 5.0 parts (6) ethyl alcohol (low boiling point solvent): 82.2 parts (7) water: 5.0 parts
 上記コーティング液の不揮発固形成分(鎖状ATO粒子及びアルコキシシラン)の含有量は3.0質量%であり、鎖状ATO粒子及びアルコキシシランの合計量に対する鎖状ATO粒子の含有量は43.8質量%であった。また、上記コーティング液の粘度を実施例1と同様にして測定したところ、1.8mPa・sであった。 The content of nonvolatile solid components (chain ATO particles and alkoxysilane) in the coating liquid is 3.0% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and alkoxysilane is 43.8. It was mass%. Further, the viscosity of the coating solution was measured in the same manner as in Example 1, and found to be 1.8 mPa · s.
 (実施例4)
 プラスチック製ビンに、実施例1で準備した鎖状ATO粒子分散液及び下記成分を下記分量で入れ、攪拌してコーティング液を調製した。
Example 4
In a plastic bottle, the chain ATO particle dispersion prepared in Example 1 and the following components were added in the following amounts and stirred to prepare a coating solution.
(1)鎖状ATO粒子分散液:7.4部
(2)アルコキシシラン(無機系バインダ:信越化学工業社製“X40-2308”):0.2部
(3)リン酸(酸触媒):0.1部
(4)ポリエーテル変性ポリジメチルシロキサン15.0部とジプロピレングリコールモノメチルエーテル85.0部との混合液(レベリング剤:ビックケミージャパン社製“BYK-337”):0.1部
(5)ジメチルスルホキシド(高沸点溶剤):5.0部
(6)エチルアルコール(低沸点溶剤):82.2部
(7)水:5.0部
(1) Chain ATO particle dispersion: 7.4 parts (2) Alkoxysilane (inorganic binder: “X40-2308” manufactured by Shin-Etsu Chemical Co., Ltd.): 0.2 part (3) Phosphoric acid (acid catalyst): 0.1 part (4) Mixture of 15.0 parts of polyether-modified polydimethylsiloxane and 85.0 parts of dipropylene glycol monomethyl ether (leveling agent: “BYK-337” manufactured by BYK Japan KK): 0.1 Parts (5) dimethyl sulfoxide (high boiling point solvent): 5.0 parts (6) ethyl alcohol (low boiling point solvent): 82.2 parts (7) water: 5.0 parts
 上記コーティング液の不揮発固形成分(鎖状ATO粒子及びアルコキシシラン)の含有量は1.9質量%であり、鎖状ATO粒子及びアルコキシシランの合計量に対する鎖状ATO粒子の含有量は88.5質量%であった。また、上記コーティング液の粘度を実施例1と同様にして測定したところ、1.8mPa・sであった。 The content of nonvolatile solid components (chain ATO particles and alkoxysilane) in the coating liquid is 1.9% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and alkoxysilane is 88.5. It was mass%. Further, the viscosity of the coating solution was measured in the same manner as in Example 1, and found to be 1.8 mPa · s.
 (実施例5)
 プラスチック製ビンに、実施例1で準備した鎖状ATO粒子分散液及び下記成分を下記分量で入れ、攪拌してコーティング液を調製した。
(Example 5)
In a plastic bottle, the chain ATO particle dispersion prepared in Example 1 and the following components were added in the following amounts and stirred to prepare a coating solution.
(1)鎖状ATO粒子分散液:7.0部
(2)アルコキシシラン(無機系バインダ:コルコート社製“エチルシリケート28”):0.6部
(3)リン酸(酸触媒):0.1部
(4)ポリエーテル変性ポリジメチルシロキサン15.0部とジプロピレングリコールモノメチルエーテル85.0部との混合液(レベリング剤:ビックケミージャパン社製“BYK-337”):0.1部
(5)エチレングリコール(高沸点溶剤):5.0部
(6)イソプロピルアルコール(低沸点溶剤):82.2部
(7)水:5.0部
(1) Chain ATO particle dispersion: 7.0 parts (2) Alkoxysilane (inorganic binder: “Ethyl silicate 28” manufactured by Colcoat): 0.6 parts (3) Phosphoric acid (acid catalyst): 0.0. 1 part (4) Mixture of 15.0 parts of polyether-modified polydimethylsiloxane and 85.0 parts of dipropylene glycol monomethyl ether (leveling agent: “BYK-337” manufactured by BYK Japan KK): 0.1 part ( 5) Ethylene glycol (high boiling point solvent): 5.0 parts (6) Isopropyl alcohol (low boiling point solvent): 82.2 parts (7) Water: 5.0 parts
 上記コーティング液の不揮発固形成分(鎖状ATO粒子及びアルコキシシラン)の含有量は2.2質量%であり、鎖状ATO粒子及びアルコキシシランの合計量に対する鎖状ATO粒子の含有量は70.8質量%であった。また、上記コーティング液の粘度を実施例1と同様にして測定したところ、2.9mPa・sであった。 The content of nonvolatile solid components (chain ATO particles and alkoxysilane) in the coating liquid is 2.2% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and alkoxysilane is 70.8. It was mass%. Moreover, it was 2.9 mPa * s when the viscosity of the said coating liquid was measured like Example 1. FIG.
 (実施例6)
 プラスチック製ビンに、実施例1で準備した鎖状ATO粒子分散液及び下記成分を下記分量で入れ、攪拌してコーティング液を調製した。
(Example 6)
In a plastic bottle, the chain ATO particle dispersion prepared in Example 1 and the following components were added in the following amounts and stirred to prepare a coating solution.
(1)鎖状ATO粒子分散液:6.6部
(2)アルコキシシラン(無機系バインダ:コルコート社製“エチルシリケート28”):0.9部
(3)リン酸(酸触媒):0.1部
(4)ポリエーテル変性ポリジメチルシロキサン15.0部とジプロピレングリコールモノメチルエーテル85.0部との混合液(レベリング剤:ビックケミージャパン社製“BYK-337”):0.1部
(5)エチレングリコール(高沸点溶剤):5.0部
(6)イソプロピルアルコール(低沸点溶剤):82.3部
(7)水:5.0部
(1) Chain ATO particle dispersion: 6.6 parts (2) Alkoxysilane (inorganic binder: “Ethyl silicate 28” manufactured by Colcoat): 0.9 parts (3) Phosphoric acid (acid catalyst): 0.0. 1 part (4) Mixture of 15.0 parts of polyether-modified polydimethylsiloxane and 85.0 parts of dipropylene glycol monomethyl ether (leveling agent: “BYK-337” manufactured by BYK Japan KK): 0.1 part ( 5) Ethylene glycol (high boiling point solvent): 5.0 parts (6) Isopropyl alcohol (low boiling point solvent): 82.3 parts (7) Water: 5.0 parts
 上記コーティング液の不揮発固形成分(鎖状ATO粒子及びアルコキシシラン)の含有量は2.4質量%であり、鎖状ATO粒子及びアルコキシシランの合計量に対する鎖状ATO粒子の含有量は60.4質量%であった。また、上記コーティング液の粘度を実施例1と同様にして測定したところ、2.9mPa・sであった。 The content of nonvolatile solid components (chain ATO particles and alkoxysilane) in the coating liquid is 2.4% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and alkoxysilane is 60.4. It was mass%. Moreover, it was 2.9 mPa * s when the viscosity of the said coating liquid was measured like Example 1. FIG.
 (実施例7)
 プラスチック製ビンに、実施例1で準備した鎖状ATO粒子分散液及び下記成分を下記分量で入れ、攪拌してコーティング液を調製した。
(Example 7)
In a plastic bottle, the chain ATO particle dispersion prepared in Example 1 and the following components were added in the following amounts and stirred to prepare a coating solution.
(1)鎖状ATO粒子分散液:7.0部
(2)アクリル樹脂(有機系バインダ:三菱レイヨン社製“ダイヤナールBR87”):0.6部
(3)ポリエーテル変性ポリジメチルシロキサン15.0部とジプロピレングリコールモノメチルエーテル85.0部との混合液(レベリング剤:ビックケミージャパン社製“BYK-337”):0.1部
(4)ジメチルスルホキシド(高沸点溶剤):10.0部
(5)メチルイソブチルケトン(高沸点溶剤):30.0部
(6)エチルアルコール(低沸点溶剤):52.3部
(1) Chain ATO particle dispersion: 7.0 parts (2) Acrylic resin (organic binder: “Dainal BR87” manufactured by Mitsubishi Rayon Co., Ltd.): 0.6 parts (3) Polyether-modified polydimethylsiloxane 15. Liquid mixture of 0 part and 85.0 parts of dipropylene glycol monomethyl ether (leveling agent: “BYK-337” manufactured by BYK Japan) 0.1 part (4) Dimethyl sulfoxide (high boiling point solvent): 10.0 Parts (5) methyl isobutyl ketone (high boiling point solvent): 30.0 parts (6) ethyl alcohol (low boiling point solvent): 52.3 parts
 上記コーティング液の不揮発固形成分(鎖状ATO粒子及びアクリル樹脂)の含有量は2.1質量%であり、鎖状ATO粒子及びアクリル樹脂の合計量に対する鎖状ATO粒子の含有量は70.8質量%であった。また、上記コーティング液の粘度を実施例1と同様にして測定したところ、2.1mPa・sであった。 The content of nonvolatile solid components (chain ATO particles and acrylic resin) in the coating liquid is 2.1% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and acrylic resin is 70.8. It was mass%. Moreover, it was 2.1 mPa * s when the viscosity of the said coating liquid was measured like Example 1. FIG.
 (実施例8)
 プラスチック製ビンに、実施例1で準備した鎖状ATO粒子分散液及び下記成分を下記分量で入れ、攪拌してコーティング液を調製した。
(Example 8)
In a plastic bottle, the chain ATO particle dispersion prepared in Example 1 and the following components were added in the following amounts and stirred to prepare a coating solution.
(1)鎖状ATO粒子分散液:7.0部
(2)ペンタエリスリトールトリアクリレート(有機系バインダ:サートマージャパン社製“SR444”):0.5部
(3)2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン(重合開始剤:BASFジャパン社製“イルガキュア907”):0.1部
(4)ポリエーテル変性ポリジメチルシロキサン15.0部とジプロピレングリコールモノメチルエーテル85.0部との混合液(レベリング剤:ビックケミージャパン社製“BYK-337”):0.1部
(5)ジメチルスルホキシド(高沸点溶剤):10.0部
(6)メチルイソブチルケトン(高沸点溶剤):30.0部
(7)エチルアルコール(低沸点溶剤):52.3部
(1) Chain ATO particle dispersion: 7.0 parts (2) Pentaerythritol triacrylate (organic binder: “SR444” manufactured by Sartomer Japan): 0.5 part (3) 2-methyl-1- [ 4- (methylthio) phenyl] -2-morpholinopropan-1-one (polymerization initiator: “Irgacure 907” manufactured by BASF Japan Ltd.): 0.1 part (4) 15.0 parts of polyether-modified polydimethylsiloxane Liquid mixture with 85.0 parts of dipropylene glycol monomethyl ether (leveling agent: “BYK-337” manufactured by Big Chemie Japan): 0.1 part (5) Dimethyl sulfoxide (high boiling point solvent): 10.0 parts (6 ) Methyl isobutyl ketone (high boiling point solvent): 30.0 parts (7) Ethyl alcohol (low boiling point solvent): 52.3 parts
 上記コーティング液の不揮発固形成分(鎖状ATO粒子及びバインダ)の含有量は2.1質量%であり、鎖状ATO粒子及びバインダの合計量に対する鎖状ATO粒子の含有量は70.8質量%であった。また、上記コーティング液の粘度を実施例1と同様にして測定したところ、2.3mPa・sであった。 The content of non-volatile solid components (chain ATO particles and binder) in the coating liquid is 2.1% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and binder is 70.8% by mass. Met. Moreover, it was 2.3 mPa * s when the viscosity of the said coating liquid was measured like Example 1. FIG.
 (比較例1)
 <非鎖状アンチモン含有酸化スズ(ATO)粒子分散液>
 プラスチック製ビンに、下記の成分を計り取り、直径0.3mmのジルコニアビーズを用いて、ペイントシェーカー(東洋精機社製)で2時間分散した後、ジルコニアビーズを取り除いて、遠心分離機により14000Gの条件にて30分間遠心処理し、その上澄みを採取するといった分級処理を行い、非鎖状ATO粒子分散液を得た。
(Comparative Example 1)
<Non-chain antimony-containing tin oxide (ATO) particle dispersion>
The following components are measured in a plastic bottle and dispersed with a paint shaker (manufactured by Toyo Seiki Co., Ltd.) for 2 hours using a zirconia bead having a diameter of 0.3 mm. Then, the zirconia bead is removed, and 14000 G is obtained with a centrifuge. Centrifugation was performed for 30 minutes under the conditions, and a classification treatment such as collecting the supernatant was performed to obtain a non-chain ATO particle dispersion.
(1)非鎖状ATO粒子(石原産業社製“SN100P”):20.8部
(2)分散剤(ビックケミージャパン社製“BYK180”):2.0部
(3)イソブチルアルコール:77.2部
(1) Non-chain ATO particles (“SN100P” manufactured by Ishihara Sangyo Co., Ltd.): 20.8 parts (2) Dispersant (“BYK180” manufactured by Big Chemie Japan Co., Ltd.): 2.0 parts (3) Isobutyl alcohol: 77. 2 parts
 次に、以下のようにしてコーティング液を調製した。 Next, a coating solution was prepared as follows.
 <コーティング液>
 プラスチック製ビンに、上記非鎖状ATO粒子分散液及び下記成分を下記分量で入れ、攪拌してコーティング液を調製した。
<Coating solution>
The non-chain ATO particle dispersion and the following components were put in a plastic bottle in the following amounts and stirred to prepare a coating solution.
(1)非鎖状ATO粒子分散液:7.0部
(2)アルコキシシラン(無機系バインダ:信越化学工業社製“X40-2308”):0.6部
(3)リン酸(酸触媒):0.1部
(4)ポリエーテル変性ポリジメチルシロキサン15.0部とジプロピレングリコールモノメチルエーテル85.0部との混合液(レベリング剤:ビックケミージャパン社製“BYK-337”):0.1部
(5)ジメチルスルホキシド(高沸点溶剤):5.0部
(6)エチルアルコール(低沸点溶剤):82.2部
(7)水:5.0部
(1) Non-chain ATO particle dispersion: 7.0 parts (2) Alkoxysilane (inorganic binder: “X40-2308” manufactured by Shin-Etsu Chemical Co., Ltd.): 0.6 parts (3) Phosphoric acid (acid catalyst) : 0.1 part (4) Mixture of polyether-modified polydimethylsiloxane 15.0 parts and dipropylene glycol monomethyl ether 85.0 parts (leveling agent: “BYK-337” manufactured by BYK Japan KK): 0. 1 part (5) dimethyl sulfoxide (high boiling point solvent): 5.0 parts (6) ethyl alcohol (low boiling point solvent): 82.2 parts (7) water: 5.0 parts
 上記コーティング液の不揮発固形成分(非鎖状ATO粒子及びアルコキシシラン)の含有量は2.2質量%であり、非鎖状ATO粒子及びアルコキシシランの合計量に対する非鎖状ATO粒子の含有量は70.8質量%であった。また、上記コーティング液の粘度を実施例1と同様にして測定したところ、1.5mPa・sであった。 The content of nonvolatile solid components (non-chain ATO particles and alkoxysilane) in the coating liquid is 2.2% by mass, and the content of non-chain ATO particles relative to the total amount of non-chain ATO particles and alkoxysilane is It was 70.8 mass%. Moreover, it was 1.5 mPa * s when the viscosity of the said coating liquid was measured like Example 1. FIG.
 (比較例2)
 プラスチック製ビンに、比較例1で準備した非鎖状ATO粒子分散液及び下記成分を下記分量で入れ、攪拌してコーティング液を調製した。
(Comparative Example 2)
The non-chain ATO particle dispersion prepared in Comparative Example 1 and the following components were put in a plastic bottle in the following amounts and stirred to prepare a coating solution.
(1)非鎖状ATO粒子分散液:24.0部
(2)アルコキシシラン(無機系バインダ:信越化学工業社製“X40-2308”):0.6部
(3)リン酸(酸触媒):0.1部
(4)ポリエーテル変性ポリジメチルシロキサン15.0部とジプロピレングリコールモノメチルエーテル85.0部との混合液(レベリング剤:ビックケミージャパン社製“BYK-337”):0.1部
(5)ジメチルスルホキシド(高沸点溶剤):5.0部
(6)エチルアルコール(低沸点溶剤):65.2部
(7)水:5.0部
(1) Non-chain ATO particle dispersion: 24.0 parts (2) Alkoxysilane (inorganic binder: “X40-2308” manufactured by Shin-Etsu Chemical Co., Ltd.): 0.6 parts (3) Phosphoric acid (acid catalyst) : 0.1 part (4) Mixture of polyether-modified polydimethylsiloxane 15.0 parts and dipropylene glycol monomethyl ether 85.0 parts (leveling agent: “BYK-337” manufactured by BYK Japan KK): 0. 1 part (5) dimethyl sulfoxide (high boiling point solvent): 5.0 parts (6) ethyl alcohol (low boiling point solvent): 65.2 parts (7) water: 5.0 parts
 上記コーティング液の不揮発固形成分(非鎖状ATO粒子及びアルコキシシラン)の含有量は5.7質量%であり、非鎖状ATO粒子及びアルコキシシランの合計量に対する非鎖状ATO粒子の含有量は89.3質量%であった。また、上記コーティング液の粘度を実施例1と同様にして測定したところ、1.6mPa・sであった。 The content of nonvolatile solid components (non-chain ATO particles and alkoxysilane) in the coating liquid is 5.7% by mass, and the content of non-chain ATO particles relative to the total amount of non-chain ATO particles and alkoxysilane is It was 89.3 mass%. Moreover, it was 1.6 mPa * s when the viscosity of the said coating liquid was measured like Example 1. FIG.
 (比較例3)
 プラスチック製ビンに、実施例1で準備した鎖状ATO粒子分散液及び下記成分を下記分量で入れ、攪拌してコーティング液を調製した。
(Comparative Example 3)
In a plastic bottle, the chain ATO particle dispersion prepared in Example 1 and the following components were added in the following amounts and stirred to prepare a coating solution.
(1)鎖状ATO粒子分散液:1.5部
(2)アルコキシシラン(無機系バインダ:信越化学工業社製“X40-2308”):0.6部
(3)リン酸(酸触媒):0.1部
(4)ポリエーテル変性ポリジメチルシロキサン15.0部とジプロピレングリコールモノメチルエーテル85.0部との混合液(レベリング剤:ビックケミージャパン社製“BYK-337”):0.1部
(5)ジメチルスルホキシド(高沸点溶剤):5.0部
(6)エチルアルコール(低沸点溶剤):87.7部
(7)水:5.0部
(1) Chain ATO particle dispersion: 1.5 parts (2) Alkoxysilane (inorganic binder: “X40-2308” manufactured by Shin-Etsu Chemical Co., Ltd.): 0.6 parts (3) Phosphoric acid (acid catalyst): 0.1 part (4) Mixture of 15.0 parts of polyether-modified polydimethylsiloxane and 85.0 parts of dipropylene glycol monomethyl ether (leveling agent: “BYK-337” manufactured by BYK Japan KK): 0.1 Parts (5) dimethyl sulfoxide (high boiling point solvent): 5.0 parts (6) ethyl alcohol (low boiling point solvent): 87.7 parts (7) water: 5.0 parts
 上記コーティング液の不揮発固形成分(鎖状ATO粒子及びアルコキシシラン)の含有量は1.0質量%であり、鎖状ATO粒子及びアルコキシシランの合計量に対する鎖状ATO粒子の含有量は34.2質量%であった。また、上記コーティング液の粘度を実施例1と同様にして測定したところ、1.4mPa・sであった。 The content of nonvolatile solid components (chain ATO particles and alkoxysilane) in the coating liquid is 1.0% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and alkoxysilane is 34.2. It was mass%. Moreover, it was 1.4 mPa * s when the viscosity of the said coating liquid was measured like Example 1. FIG.
 (比較例4)
 プラスチック製ビンに、実施例1で準備した鎖状ATO粒子分散液及び下記成分を下記分量で入れ、攪拌してコーティング液を調製した。
(Comparative Example 4)
In a plastic bottle, the chain ATO particle dispersion prepared in Example 1 and the following components were added in the following amounts and stirred to prepare a coating solution.
(1)鎖状ATO粒子分散液:35.0部
(2)アルコキシシラン(無機系バインダ:信越化学工業社製“X40-2308”):0.6部
(3)リン酸(酸触媒):0.1部
(4)ポリエーテル変性ポリジメチルシロキサン15.0部とジプロピレングリコールモノメチルエーテル85.0部との混合液(レベリング剤:ビックケミージャパン社製“BYK-337”):0.1部
(5)ジメチルスルホキシド(高沸点溶剤):5.0部
(6)エチルアルコール(低沸点溶剤):54.2部
(7)水:5.0部
(1) Chain ATO particle dispersion: 35.0 parts (2) Alkoxysilane (inorganic binder: “X40-2308” manufactured by Shin-Etsu Chemical Co., Ltd.): 0.6 parts (3) Phosphoric acid (acid catalyst): 0.1 part (4) Mixture of 15.0 parts of polyether-modified polydimethylsiloxane and 85.0 parts of dipropylene glycol monomethyl ether (leveling agent: “BYK-337” manufactured by BYK Japan KK): 0.1 Parts (5) dimethyl sulfoxide (high boiling point solvent): 5.0 parts (6) ethyl alcohol (low boiling point solvent): 54.2 parts (7) water: 5.0 parts
 上記コーティング液の不揮発固形成分(鎖状ATO粒子及びアルコキシシラン)の含有量は8.0質量%であり、鎖状ATO粒子及びアルコキシシランの合計量に対する鎖状ATO粒子の含有量は92.4質量%であった。また、上記コーティング液の粘度を実施例1と同様にして測定したところ、7.3 mPa・sであった。 The content of nonvolatile solid components (chain ATO particles and alkoxysilane) in the coating liquid is 8.0% by mass, and the content of chain ATO particles with respect to the total amount of chain ATO particles and alkoxysilane is 92.4. It was mass%. Moreover, it was 7.3 mPa * s when the viscosity of the said coating liquid was measured like Example 1. FIG.
 (透明導電性膜の評価)
 実施例1~7及び比較例1~4のコーティング液を用いて、縦10cm、横10cm、厚さ0.7mmのガラス基板上にスプレーコーティングを行った。スプレーガンはノードソン社製パルススプレイを用い、ニードル開度を0.15mmとして、吐出液量0.80g/分になるように液の押し出し圧力を調整した。ガンと基板の距離を100mm、塗布速度を毎秒600mm、重ねピッチ8mm、アトマイズエアー及びスワールエアーの圧力は0.05MPaとした。また、塗布面積は20cm2とし、塗布面が基板の中央になるように塗布を行った。得られた塗膜を120℃の乾燥機で1時間乾燥させて、実施例1~7及び比較例1~4の透明導電性膜を形成した。
(Evaluation of transparent conductive film)
Spray coating was performed on a glass substrate having a length of 10 cm, a width of 10 cm, and a thickness of 0.7 mm using the coating solutions of Examples 1 to 7 and Comparative Examples 1 to 4. As the spray gun, a pulse spray manufactured by Nordson Co., Ltd. was used, the needle opening degree was 0.15 mm, and the liquid extrusion pressure was adjusted so that the discharge liquid amount was 0.80 g / min. The distance between the gun and the substrate was 100 mm, the coating speed was 600 mm per second, the overlap pitch was 8 mm, and the pressure of atomized air and swirl air was 0.05 MPa. The coating area was 20 cm 2 and coating was performed so that the coating surface was at the center of the substrate. The obtained coating film was dried with a dryer at 120 ° C. for 1 hour to form the transparent conductive films of Examples 1 to 7 and Comparative Examples 1 to 4.
 また、実施例8の場合は、上記と同様にして実施例8のコーティング液をガラス基板の上にスプレーコーターにて塗布した後、80℃で5分乾燥後、高圧水銀灯にて紫外線を300mJ/cm2の光量で照射し硬化させて、実施例8の透明導電性膜を形成した。 In the case of Example 8, the coating liquid of Example 8 was applied on a glass substrate with a spray coater in the same manner as described above, dried at 80 ° C. for 5 minutes, and then irradiated with ultraviolet light at 300 mJ / The transparent conductive film of Example 8 was formed by irradiating with a light amount of cm 2 and curing.
 次に、上記各透明導電性膜の膜厚、表面電気抵抗、全光線透過率及び鉛筆硬度を下記のとおり測定した。 Next, the film thickness, surface electrical resistance, total light transmittance and pencil hardness of each of the transparent conductive films were measured as follows.
 <膜厚>
 透明導電性膜をガラス基板ごと切断し、走査型電子顕微鏡(SEM、日立製作所社製“S-4500”)にて断面観察して、膜厚を測定した。
<Film thickness>
The transparent conductive film was cut together with the glass substrate, and the film thickness was measured by observing a cross section with a scanning electron microscope (SEM, “S-4500” manufactured by Hitachi, Ltd.).
 <表面電気抵抗>
 表面抵抗計(三菱化学社製“ハイレスタMCP-HT450”、印加電圧:10V)を用いて、透明導電性膜の表面電気抵抗を測定し、通常の表面電気抵抗とした。
<Surface electrical resistance>
Using a surface resistance meter (“HIRESTA MCP-HT450” manufactured by Mitsubishi Chemical Corporation, applied voltage: 10 V), the surface electrical resistance of the transparent conductive film was measured to obtain a normal surface electrical resistance.
 また、透明導電性膜付ガラス基板を温度65℃、相対湿度90%の環境下で500時間保持した後の透明導電性膜の表面電気抵抗を上記と同様にして測定して、高温高湿試験後の表面電気抵抗とした。 In addition, the surface electrical resistance of the transparent conductive film was measured in the same manner as described above after holding the glass substrate with the transparent conductive film in an environment of a temperature of 65 ° C. and a relative humidity of 90% for 500 hours. It was set as the later surface electrical resistance.
 <全光線透過率>
 先ず、日本電色工業社製の光度計“ヘイズメーターNDH2000”を用い、透明導電性膜付ガラス基板の全光線透過率を測定した。数値は塗膜のみの値を示す。
<Total light transmittance>
First, the total light transmittance of the glass substrate with a transparent conductive film was measured using a photometer “Haze Meter NDH2000” manufactured by Nippon Denshoku Industries Co., Ltd. A numerical value shows the value only of a coating film.
 <鉛筆硬度>
 透明導電性膜の鉛筆硬度を新東科学社製の表面性試験機“HEIDON-14DR”を用いて測定した。
<Pencil hardness>
The pencil hardness of the transparent conductive film was measured using a surface property tester “HEIDON-14DR” manufactured by Shinto Kagaku.
 以上の測定の結果を透明導電性膜中のATO粒子の含有量と共に表1に示す。 The results of the above measurements are shown in Table 1 together with the content of ATO particles in the transparent conductive film.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (液晶表示装置の評価)
 画面サイズが4インチ、液晶表示装置のトータルの厚みが1mmの図1、図2に示す構成の液晶表示装置を作製した。
(Evaluation of liquid crystal display devices)
A liquid crystal display device having a configuration shown in FIGS. 1 and 2 having a screen size of 4 inches and a total thickness of the liquid crystal display device of 1 mm was manufactured.
 透明導電性膜は、第1の透明基板に相当する上部ガラス基板の液晶層とは反対側の主面上に上記コーティング液を前述と同様の条件でスプレーコーターを用いて塗布した後、120℃の乾燥機で1時間乾燥させて形成した。次に、この透明導電性膜の端部に銀ペースト(藤倉化成社製“ドータイトD-362”)にてアース線を取り付けた後、透明導電性膜の上に偏光板を貼り付けた。また、表示用電極及び基準電極を設け、タッチ感知機能層を内蔵した第2の透明基板に相当する下部ガラス基板のバックライト側にも偏光板を貼り付けた。 The transparent conductive film was coated on the main surface opposite to the liquid crystal layer of the upper glass substrate corresponding to the first transparent substrate using a spray coater under the same conditions as described above, and then 120 ° C. It was formed by drying for 1 hour in a dryer. Next, a ground wire was attached to the end of the transparent conductive film with silver paste (“Dotite D-362” manufactured by Fujikura Kasei Co., Ltd.), and then a polarizing plate was attached on the transparent conductive film. In addition, a polarizing plate was also attached to the backlight side of the lower glass substrate corresponding to the second transparent substrate provided with the display electrode and the reference electrode and incorporating the touch sensing function layer.
 次に、上記各液晶表示装置のタッチ感度及び静電気放電(ESD)性を下記のとおり確認した。 Next, the touch sensitivity and electrostatic discharge (ESD) property of each liquid crystal display device were confirmed as follows.
 <タッチ感度>
 上記液晶表示装置を指でタッチし、タッチ感度を確認した。その結果、指のタッチに反応した場合をA、指のタッチに反応しなかった場合をBと評価した。
<Touch sensitivity>
The liquid crystal display device was touched with a finger to confirm touch sensitivity. As a result, the case of reacting to a finger touch was evaluated as A, and the case of not responding to a finger touch was evaluated as B.
 また、透明導電性膜付ガラス基板を温度65℃、相対湿度90%の環境下で500時間保持した後の透明導電性膜のタッチ感度を上記と同様にして測定して、高温高湿試験後のタッチ感度とした。 In addition, after the high temperature and high humidity test, the touch sensitivity of the transparent conductive film after holding the glass substrate with the transparent conductive film for 500 hours in an environment of 65 ° C. and 90% relative humidity is measured. Touch sensitivity.
 <ESD性>
 下部ガラス基板側からバックライトにより光を照射し、上記液晶表示装置が無通電状態で黒表示であることを確認した後、上部ガラス基板に静電印加装置にて電圧±12kVにて静電を印加した。その後、透明導電性膜のアース線を接地してから、無通電状態の表示を目視により確認した。その結果、上記液晶表示装置が黒表示を維持していた場合をA、光抜けによる白浮きが認められた場合をBと評価した。
<ESD properties>
After irradiating light from the lower glass substrate side with a backlight and confirming that the liquid crystal display device is in a black state in a non-energized state, the upper glass substrate is electrostatically charged with a voltage of ± 12 kV by an electrostatic application device. Applied. Then, after grounding the ground wire of the transparent conductive film, the display of the non-energized state was visually confirmed. As a result, the case where the liquid crystal display device maintained black display was evaluated as A, and the case where white floating due to light omission was recognized was evaluated as B.
 また、透明導電性膜付ガラス基板を温度65℃、相対湿度90%の環境下で500時間保持した後の透明導電性膜のESD性を上記と同様にして測定して、高温高湿試験後のESD性とした。 In addition, after the glass substrate with a transparent conductive film was held in an environment of a temperature of 65 ° C. and a relative humidity of 90% for 500 hours, the ESD property of the transparent conductive film was measured in the same manner as described above, and after the high temperature and high humidity test ESD characteristics.
 以上の結果を表2に示した。 The above results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、本発明のコーティング液を用いて作製した透明導電性膜は、通常の表面電気抵抗が10~1000MΩ/スクエアであり、全光線透過率が95.0~99.9%であり、鉛筆硬度が5~9Hであり、高温高湿試験後の表面電気抵抗が10~1000MΩ/スクエアであり、電気特性、光学特性、硬度及び耐久性が高いことが分かる。また、本発明のコーティング液を用いて作製した透明導電性膜を備えた液晶表示装置は、タッチ感度及びESD性が共に優れていることが分かる。 From the results in Table 2, the transparent conductive film produced using the coating liquid of the present invention has a normal surface electric resistance of 10 to 1000 MΩ / square and a total light transmittance of 95.0 to 99.9%. Yes, the pencil hardness is 5 to 9H, the surface electrical resistance after the high-temperature and high-humidity test is 10 to 1000 MΩ / square, and it can be seen that the electrical characteristics, optical characteristics, hardness and durability are high. Moreover, it turns out that the touch sensitivity and ESD property are excellent in the liquid crystal display device provided with the transparent conductive film produced using the coating liquid of this invention.
 一方、鎖状ATO粒子を含まないコーティング液を用いて作製した比較例1の透明導電性膜は、通常の表面電気抵抗及び高温高湿試験後の表面電気抵抗が共に高く、鉛筆硬度も小さいことが分かる。また、比較例1の透明導電性膜を備えた液晶表示装置は、ESD性が劣ることも分かる。
また、鎖状ATO粒子を含まないコーティング液を用いて作製した比較例2の透明導電性膜は、高温高湿試験後の表面電気抵抗が高く、光透過率が低く、鉛筆硬度も小さいことが分かる。
On the other hand, the transparent conductive film of Comparative Example 1 prepared using a coating solution containing no chain ATO particles has both high normal surface electrical resistance and surface electrical resistance after a high temperature and high humidity test, and low pencil hardness. I understand. Moreover, it turns out that the liquid crystal display device provided with the transparent conductive film of the comparative example 1 is inferior in ESD property.
In addition, the transparent conductive film of Comparative Example 2 produced using a coating solution that does not contain chain ATO particles has high surface electrical resistance after high-temperature and high-humidity tests, low light transmittance, and low pencil hardness. I understand.
 鎖状ATO粒子の含有量が40質量%を下回るコーティング液を用いて作製した比較例3の透明導電性膜は、通常の表面電気抵抗が高いことが分かる。また、比較例3の透明導電性膜を備えた液晶表示装置は、ESD性が劣ることも分かる。 It turns out that the transparent conductive film of the comparative example 3 produced using the coating liquid in which content of chain | strand-shaped ATO particle | grains is less than 40 mass% has high normal surface electrical resistance. Moreover, it turns out that the liquid crystal display device provided with the transparent conductive film of the comparative example 3 is inferior in ESD property.
 鎖状ATO粒子の含有量が90質量%を超えるコーティング液を用いて作製した比較例4の透明導電性膜は、通常の表面電気抵抗及び高温高湿試験後の表面電気抵抗が低く、鉛筆硬度も小さいことが分かる。また、比較例4の透明導電性膜を備えた液晶表示装置は、タッチ感度が劣ることも分かる。 The transparent conductive film of Comparative Example 4 prepared using a coating liquid having a chain ATO particle content exceeding 90% by mass has a low surface electric resistance after normal surface electric resistance and a high temperature and high humidity test, and pencil hardness. Is also small. Moreover, it turns out that the liquid crystal display device provided with the transparent conductive film of the comparative example 4 is inferior in touch sensitivity.
 本発明は、その趣旨を逸脱しない範囲で、上記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、これらに限定はされない。本発明の範囲は、上述の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれるものである。 The present invention can be implemented in forms other than those described above without departing from the spirit of the present invention. The embodiments disclosed in the present application are merely examples, and the present invention is not limited thereto. The scope of the present invention is construed in preference to the description of the appended claims rather than the description of the above specification, and all modifications within the scope equivalent to the claims are construed in the scope of the claims. It is included.
LPN 液晶表示装置
LQ 液晶層
30 第1の透明基板
20 第2の透明基板
13 透明導電性膜
PE 表示用電極
CE 基準電極
C 容量線
LPN Liquid crystal display device LQ Liquid crystal layer 30 First transparent substrate 20 Second transparent substrate 13 Transparent conductive film PE Display electrode CE Reference electrode C Capacity line

Claims (17)

  1.  鎖状導電性無機粒子と、バインダと、高沸点溶剤と、低沸点溶剤とを含む透明導電性コーティング組成物であって、
     前記鎖状導電性無機粒子の含有量は、前記鎖状導電性無機粒子及び前記バインダの合計量に対して、40~90質量%であることを特徴とする透明導電性コーティング組成物。
    A transparent conductive coating composition comprising chain-like conductive inorganic particles, a binder, a high boiling point solvent, and a low boiling point solvent,
    The transparent conductive coating composition, wherein the content of the chain conductive inorganic particles is 40 to 90% by mass with respect to the total amount of the chain conductive inorganic particles and the binder.
  2.  前記鎖状導電性無機粒子は、粒子径が2~30nmの一次粒子が2~50個連接してなる請求項1に記載の透明導電性コーティング組成物。 2. The transparent conductive coating composition according to claim 1, wherein the chain conductive inorganic particles are formed by connecting 2 to 50 primary particles having a particle diameter of 2 to 30 nm.
  3.  前記鎖状導電性無機粒子は、アンチモン含有酸化スズ粒子、スズ含有酸化インジウム粒子及びリン含有酸化スズ粒子からなる群から選ばれる少なくとも1種の粒子を含む請求項1又は2に記載の透明導電性コーティング組成物。 The transparent conductive material according to claim 1 or 2, wherein the chain conductive inorganic particles include at least one particle selected from the group consisting of antimony-containing tin oxide particles, tin-containing indium oxide particles, and phosphorus-containing tin oxide particles. Coating composition.
  4.  前記バインダは、無機系バインダ又は有機系バインダである請求項1~3のいずれか1項に記載の透明導電性コーティング組成物。 The transparent conductive coating composition according to any one of claims 1 to 3, wherein the binder is an inorganic binder or an organic binder.
  5.  前記無機系バインダは、アルコキシシランである請求項4に記載の透明導電性コーティング組成物。 The transparent conductive coating composition according to claim 4, wherein the inorganic binder is alkoxysilane.
  6.  前記高沸点溶剤は、エチレングリコール、ジメチルスルホキシド、N-メチルピロリドン及びN-メチルホルムアミドからなる群から選ばれる少なくとも1種である請求項1~5のいずれか1項に記載の透明導電性コーティング組成物。 6. The transparent conductive coating composition according to claim 1, wherein the high boiling point solvent is at least one selected from the group consisting of ethylene glycol, dimethyl sulfoxide, N-methylpyrrolidone and N-methylformamide. object.
  7.  前記低沸点溶剤は、エチルアルコール又はイソプロピルアルコールである請求項1~6のいずれか1項に記載の透明導電性コーティング組成物。 The transparent conductive coating composition according to any one of claims 1 to 6, wherein the low boiling point solvent is ethyl alcohol or isopropyl alcohol.
  8.  酸触媒を更に含む請求項1~7のいずれか1項に記載の透明導電性コーティング組成物。 The transparent conductive coating composition according to any one of claims 1 to 7, further comprising an acid catalyst.
  9.  レベリング剤を更に含む請求項1~8のいずれか1項に記載の透明導電性コーティング組成物。 The transparent conductive coating composition according to any one of claims 1 to 8, further comprising a leveling agent.
  10.  前記鎖状導電性無機粒子及び前記バインダの合計量が、全体量に対して0.5~20質量%である請求項1~9のいずれか1項に記載の透明導電性コーティング組成物。 The transparent conductive coating composition according to any one of claims 1 to 9, wherein the total amount of the chain conductive inorganic particles and the binder is 0.5 to 20% by mass with respect to the total amount.
  11.  粘度が、0.5~100mPa・sである請求項1~10のいずれか1項に記載の透明導電性コーティング組成物。 The transparent conductive coating composition according to any one of claims 1 to 10, wherein the viscosity is 0.5 to 100 mPa · s.
  12.  請求項1~11のいずれか1項に記載の透明導電性コーティング組成物を用いて形成したことを特徴とする透明導電性膜。 A transparent conductive film formed using the transparent conductive coating composition according to any one of claims 1 to 11.
  13.  表面電気抵抗が、10~1000MΩ/スクエアであり、全光線透過率が、95.0~99.9%であり、鉛筆硬度が、5~9Hである請求項12に記載の透明導電性膜。 The transparent conductive film according to claim 12, wherein the surface electrical resistance is 10 to 1000 MΩ / square, the total light transmittance is 95.0 to 99.9%, and the pencil hardness is 5 to 9H.
  14.  前記透明導電性コーティング組成物をノンスピンコート方式により塗布して形成した請求項12または13のいずれか1項に記載の透明導電性膜。 The transparent conductive film according to any one of claims 12 and 13, wherein the transparent conductive coating composition is formed by a non-spin coating method.
  15.  膜厚が、10~300nmである請求項12~14のいずれか1項に記載の透明導電性膜。 The transparent conductive film according to any one of claims 12 to 14, wherein the film thickness is 10 to 300 nm.
  16.  液晶層と、前記液晶層を介して互いに対向して配置された第1の透明基板及び第2の透明基板と、前記第1の透明基板の前記液晶層とは反対側に配置された透明導電性膜と、前記第2の透明基板の前記液晶層の側に配置された基準電極と、前記基準電極と絶縁膜を介して対向配置された表示用電極とを備えた横電界方式液晶表示パネルであって、
     前記透明導電性膜として請求項12~15のいずれか1項に記載の透明導電性膜を用いることを特徴とする横電界方式液晶表示パネル。
    A liquid crystal layer, a first transparent substrate and a second transparent substrate disposed to face each other with the liquid crystal layer interposed therebetween, and a transparent conductive layer disposed on the opposite side of the first transparent substrate from the liquid crystal layer Horizontal electric field type liquid crystal display panel comprising a conductive film, a reference electrode disposed on the liquid crystal layer side of the second transparent substrate, and a display electrode disposed opposite to the reference electrode through an insulating film Because
    16. A horizontal electric field type liquid crystal display panel using the transparent conductive film according to claim 12 as the transparent conductive film.
  17.  液晶層と、前記液晶層を介して互いに対向して配置された第1の透明基板及び第2の透明基板と、前記第1の透明基板の前記液晶層とは反対側に配置された透明導電性膜と、前記第2の透明基板の前記液晶層の側に配置された基準電極及び容量線と、前記基準電極と絶縁膜を介して対向配置された表示用電極とを備えたタッチパネル機能内蔵型横電界方式液晶表示パネルであって、
     前記透明導電性膜として請求項12~15のいずれか1項に記載の透明導電性膜を用いることを特徴とするタッチパネル機能内蔵型横電界方式液晶表示パネル。
    A liquid crystal layer, a first transparent substrate and a second transparent substrate disposed to face each other with the liquid crystal layer interposed therebetween, and a transparent conductive layer disposed on the opposite side of the first transparent substrate from the liquid crystal layer Built-in touch panel function comprising: a conductive film; a reference electrode and a capacitor line disposed on the liquid crystal layer side of the second transparent substrate; and a display electrode disposed opposite to the reference electrode through an insulating film Type horizontal electric field type liquid crystal display panel,
    A horizontal electric field type liquid crystal display panel with a built-in touch panel function, wherein the transparent conductive film according to any one of claims 12 to 15 is used as the transparent conductive film.
PCT/JP2014/056331 2013-03-14 2014-03-11 Transparent conductive coating composition, transparent conductive film, and in-plane switching liquid crystal display panel with built-in touch panel function WO2014142121A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201490000472.0U CN204981727U (en) 2013-03-14 2014-03-11 Built -in type transverse electric field mode liquid crystal display panel of touch panel function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-052264 2013-03-14
JP2013052264A JP2014177552A (en) 2013-03-14 2013-03-14 Transparent electroconductive coating composition, transparent electroconductive film, and touch panel function-internalized horizontal electric field-style liquid crystal display panel

Publications (1)

Publication Number Publication Date
WO2014142121A1 true WO2014142121A1 (en) 2014-09-18

Family

ID=51536775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056331 WO2014142121A1 (en) 2013-03-14 2014-03-11 Transparent conductive coating composition, transparent conductive film, and in-plane switching liquid crystal display panel with built-in touch panel function

Country Status (4)

Country Link
JP (1) JP2014177552A (en)
CN (1) CN204981727U (en)
TW (3) TWI575039B (en)
WO (1) WO2014142121A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018518787A (en) * 2015-10-21 2018-07-12 ダブリュージーテック(ジアンシー) カンパニー リミテッド Touch-controlled display device having a high resistivity layer
JP6470860B1 (en) * 2018-03-15 2019-02-13 マクセルホールディングス株式会社 Coating composition, conductive film and liquid crystal display panel

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017037760A (en) * 2015-08-07 2017-02-16 日立マクセル株式会社 Transparent conductive substrate, method of manufacturing the same, and touch panel using the same
JP6690968B2 (en) * 2016-03-14 2020-04-28 マクセルホールディングス株式会社 Method for manufacturing transparent conductive substrate and lateral electric field type liquid crystal display panel with built-in touch panel function
JPWO2018008619A1 (en) * 2016-07-06 2019-05-23 シャープ株式会社 Display with touch panel
US20190348008A1 (en) * 2016-08-22 2019-11-14 Sharp Kabushiki Kaisha Touch-panel-equipped display device
JP7096656B2 (en) * 2017-09-29 2022-07-06 マクセル株式会社 Coating composition, conductive film, touch panel and manufacturing method
JP7102118B2 (en) * 2017-09-29 2022-07-19 マクセル株式会社 A transparent conductive film, a coating composition for forming a transparent conductive film, and a method for producing a transparent conductive film.
JP7148237B2 (en) * 2017-11-02 2022-10-05 株式会社放電精密加工研究所 A surface-coated substrate that can be used as an alternative material to an alumite material, and a coating composition for forming a topcoat layer on the surface of the substrate
JP7063617B2 (en) * 2017-12-28 2022-05-09 日揮触媒化成株式会社 Method for manufacturing composite metal oxide particle conjugate
TWI658474B (en) * 2018-01-17 2019-05-01 友達光電股份有限公司 Manufacturing method of transparent conductive layer and display panel
JP2020144200A (en) * 2019-03-05 2020-09-10 日東電工株式会社 Liquid crystal display device with built-in touch sensing function and method for manufacturing the same
JP7157729B2 (en) * 2019-06-28 2022-10-20 日東電工株式会社 Polarizing film with adhesive layer and liquid crystal panel
CN113462219B (en) * 2020-03-31 2024-03-12 日挥触媒化成株式会社 Coating liquid for forming conductive film
JP7216135B2 (en) * 2021-03-30 2023-01-31 日揮触媒化成株式会社 Dispersion liquid of conductive particles, method for producing the same, coating liquid for forming conductive film, and base material with conductive film

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08302246A (en) * 1995-05-09 1996-11-19 Sumitomo Osaka Cement Co Ltd Coating for forming transparent membrane having high electroconductivity and high membrane strength, formation of transparent membrane having high electroconductivity and membrane, strength, and cathode ray tube
JPH0931238A (en) * 1995-07-20 1997-02-04 Mitsubishi Materials Corp Electroconductive dispersion, electroconductive coating material and their production
JP2000196287A (en) * 1998-12-28 2000-07-14 Catalysts & Chem Ind Co Ltd Coating liquid for forming transparent conductive film, base with the transparent conductive film, and indicator
JP2002003746A (en) * 2000-06-16 2002-01-09 Sumitomo Osaka Cement Co Ltd Coating for forming transparent electroconductive film, transparent electroconductive film and display device
JP2004006263A (en) * 2002-03-25 2004-01-08 Sumitomo Metal Mining Co Ltd Transparent conductive film, coating liquid for forming this transparent conductive film and transparent conductive laminated structural body and display device
JP2005056774A (en) * 2003-08-07 2005-03-03 Sumitomo Metal Mining Co Ltd Coating liquid for transparent conductive film formation, transparent conductive film, and display device
JP2005119909A (en) * 2003-10-17 2005-05-12 Catalysts & Chem Ind Co Ltd Antimony oxide coated silica particulate, manufacturing method thereof and substrate having coating film containing the particulate
JP2005139026A (en) * 2003-11-06 2005-06-02 Catalysts & Chem Ind Co Ltd Chain-like antimony oxide fine particles, method for producing dispersion including the fine particles, and application of the dispersion
JP2006339113A (en) * 2005-06-06 2006-12-14 Catalysts & Chem Ind Co Ltd Manufacturing method of chain-shaped conductive fine particle, chain-shaped conductive fine particle, paint for transparent conductive coating formation, and base material with transparent conductive coating
JP2008185934A (en) * 2007-01-31 2008-08-14 Seiko Instruments Inc Liquid crystal display device
JP2010102020A (en) * 2008-10-22 2010-05-06 Sumitomo Osaka Cement Co Ltd Liquid crystal panel, method of manufacturing the same, coating for forming antistatic film of the same, and image display device
JP2011063478A (en) * 2009-09-17 2011-03-31 Jgc Catalysts & Chemicals Ltd Phosphorus-containing antimony pentoxide microparticle, coating liquid for forming transparent conductive film containing the microparticle, and base material with transparent conductive film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100009473A (en) * 2008-07-18 2010-01-27 주식회사 엘지화학 Polarizer and liquid crystal display
TW201135312A (en) * 2010-04-13 2011-10-16 Morgan Touch Technology Co Ltd Liquid crystal panel and liquid crystal display

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08302246A (en) * 1995-05-09 1996-11-19 Sumitomo Osaka Cement Co Ltd Coating for forming transparent membrane having high electroconductivity and high membrane strength, formation of transparent membrane having high electroconductivity and membrane, strength, and cathode ray tube
JPH0931238A (en) * 1995-07-20 1997-02-04 Mitsubishi Materials Corp Electroconductive dispersion, electroconductive coating material and their production
JP2000196287A (en) * 1998-12-28 2000-07-14 Catalysts & Chem Ind Co Ltd Coating liquid for forming transparent conductive film, base with the transparent conductive film, and indicator
JP2002003746A (en) * 2000-06-16 2002-01-09 Sumitomo Osaka Cement Co Ltd Coating for forming transparent electroconductive film, transparent electroconductive film and display device
JP2004006263A (en) * 2002-03-25 2004-01-08 Sumitomo Metal Mining Co Ltd Transparent conductive film, coating liquid for forming this transparent conductive film and transparent conductive laminated structural body and display device
JP2005056774A (en) * 2003-08-07 2005-03-03 Sumitomo Metal Mining Co Ltd Coating liquid for transparent conductive film formation, transparent conductive film, and display device
JP2005119909A (en) * 2003-10-17 2005-05-12 Catalysts & Chem Ind Co Ltd Antimony oxide coated silica particulate, manufacturing method thereof and substrate having coating film containing the particulate
JP2005139026A (en) * 2003-11-06 2005-06-02 Catalysts & Chem Ind Co Ltd Chain-like antimony oxide fine particles, method for producing dispersion including the fine particles, and application of the dispersion
JP2006339113A (en) * 2005-06-06 2006-12-14 Catalysts & Chem Ind Co Ltd Manufacturing method of chain-shaped conductive fine particle, chain-shaped conductive fine particle, paint for transparent conductive coating formation, and base material with transparent conductive coating
JP2008185934A (en) * 2007-01-31 2008-08-14 Seiko Instruments Inc Liquid crystal display device
JP2010102020A (en) * 2008-10-22 2010-05-06 Sumitomo Osaka Cement Co Ltd Liquid crystal panel, method of manufacturing the same, coating for forming antistatic film of the same, and image display device
JP2011063478A (en) * 2009-09-17 2011-03-31 Jgc Catalysts & Chemicals Ltd Phosphorus-containing antimony pentoxide microparticle, coating liquid for forming transparent conductive film containing the microparticle, and base material with transparent conductive film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018518787A (en) * 2015-10-21 2018-07-12 ダブリュージーテック(ジアンシー) カンパニー リミテッド Touch-controlled display device having a high resistivity layer
US10365508B2 (en) 2015-10-21 2019-07-30 Wgtech (Jiangxi) Co., Ltd. Touch control display device having high resistance layer
JP6470860B1 (en) * 2018-03-15 2019-02-13 マクセルホールディングス株式会社 Coating composition, conductive film and liquid crystal display panel
JP2019157026A (en) * 2018-03-15 2019-09-19 マクセルホールディングス株式会社 Coating composition, conductive film, and liquid crystal display panel
WO2019176140A1 (en) 2018-03-15 2019-09-19 マクセルホールディングス株式会社 Coating composition, electroconductive film, and liquid crystal display panel
EP3766943A4 (en) * 2018-03-15 2021-12-29 Maxell Holdings, Ltd. Coating composition, electroconductive film, and liquid crystal display panel
US11231611B2 (en) 2018-03-15 2022-01-25 Maxell Holdings, Ltd. Coating composition, conductive film and liquid crystal display panel
TWI772599B (en) * 2018-03-15 2022-08-01 日商麥克賽爾股份有限公司 Coating composition, conductive film, and liquid crystal display panel

Also Published As

Publication number Publication date
TW201443177A (en) 2014-11-16
TWI632211B (en) 2018-08-11
JP2014177552A (en) 2014-09-25
TW201713733A (en) 2017-04-16
TWI632210B (en) 2018-08-11
TWI575039B (en) 2017-03-21
TW201713732A (en) 2017-04-16
CN204981727U (en) 2016-01-20

Similar Documents

Publication Publication Date Title
WO2014142121A1 (en) Transparent conductive coating composition, transparent conductive film, and in-plane switching liquid crystal display panel with built-in touch panel function
US7824043B2 (en) Reflection preventing layered product and optical member
JP4187454B2 (en) Antireflection film
KR102018356B1 (en) Window film, method for preparing the same and display apparatus comprising the same
TWI609935B (en) Inorganic particle dispersion, inorganic particle containing composition, coating film, plastic substrate with coating film, display
TWI556269B (en) Transparent conductor, method for preparing the same and optical display including the same
KR20060132629A (en) Polarizing plate protective film, polarizing plate with reflection preventing function and optical product
WO2016129419A1 (en) Wavelength conversion member, backlight unit, image display device, and method for producing wavelength conversion member
KR102213829B1 (en) Coating composition, conductive film, touch panel and manufacturing method
JP6561837B2 (en) Photosensitive conductive film and method of forming conductive pattern using the same
US11231611B2 (en) Coating composition, conductive film and liquid crystal display panel
JP6690968B2 (en) Method for manufacturing transparent conductive substrate and lateral electric field type liquid crystal display panel with built-in touch panel function
KR101900538B1 (en) Transparent conductor, method for preparing the same and optical display apparatus comprising the same
WO2012008230A1 (en) Color filter member for electronic paper, electronic paper, method for producing color filter member for electronic paper, and method for manufacturing electronic paper
JP2005338165A (en) Antireflection laminate, polarizing plate with antireflection function, and optical product
JP2015067682A (en) Hard coat film, plastic substrate, composition for forming hard coat film, and touch panel
KR20200025851A (en) Flexible window film and display apparatus comprising the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201490000472.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14762564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14762564

Country of ref document: EP

Kind code of ref document: A1