WO2014141981A1 - Display device, display device manufacturing method, touch panel, and touch panel manufacturing method - Google Patents

Display device, display device manufacturing method, touch panel, and touch panel manufacturing method Download PDF

Info

Publication number
WO2014141981A1
WO2014141981A1 PCT/JP2014/055709 JP2014055709W WO2014141981A1 WO 2014141981 A1 WO2014141981 A1 WO 2014141981A1 JP 2014055709 W JP2014055709 W JP 2014055709W WO 2014141981 A1 WO2014141981 A1 WO 2014141981A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
cover glass
stress
display device
pattern
Prior art date
Application number
PCT/JP2014/055709
Other languages
French (fr)
Japanese (ja)
Inventor
長谷川 聡
都築 達也
直樹 三田村
村本 正
松田 裕
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to CN201480002595.2A priority Critical patent/CN104718520A/en
Publication of WO2014141981A1 publication Critical patent/WO2014141981A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a display device, a method for manufacturing a display device, a touch panel, and a method for manufacturing a touch panel.
  • the present invention relates to an input / output integrated display device that enables handwriting input with a finger, a pen, or the like.
  • the display device is provided with a transparent protective plate on the viewing side in order to maintain local display quality by avoiding local pressure generated during input. And it is preferable that a glass plate is used for this protection board from surface, such as intensity
  • the above-described display device is also required to be thin, and accordingly, the thickness of the protective glass plate is also required to be reduced.
  • the protective glass cover glass itself may be broken due to dropping or the like, which makes it impossible to protect the display device. Therefore, chemical tempered glass is generally used for the cover glass (see, for example, Patent Document 1 and Patent Document 2).
  • a touch panel in which a cover glass and a touch sensor are integrated is shown in order to cope with the thinning of the structure of the touch panel (see, for example, Patent Document 3).
  • Patent Document 1 and Patent Document 2 disclose specific glass compositions, but do not disclose a specific configuration of a display device.
  • Patent Document 3 a method of cutting by chemical etching is disclosed in Patent Document 3
  • Patent Document 4 a method of cutting by a diamond cutter is disclosed in Patent Document 4.
  • Patent Document 3 since cutting is performed from both sides of the cover glass by etching, masking is performed so that the touch sensor portion is not etched, and cleaning and waste liquid treatment after etching must be performed. Leads to longer and more complicated processes.
  • the method of patent document 4 since the surface by the side of a touch sensor is cut with the diamond cutter, the cutting groove trace of a diamond cutter will remain.
  • the cut groove marks are caused by contact between the glass and a mechanical tool such as a diamond cutter, and therefore, the glass is finely scratched and integrated with the front and back. That is, in the state where cut groove marks remain in the glass, high end surface strength (strength of the glass end surface) cannot be obtained.
  • the chemically tempered glass is post-cut, so that the strength of the glass end face is independent of the degree of chemical strengthening, the cutting method or the end face. It depends on the processing method. In order to obtain high end surface strength, it is necessary to finish the end surface into a so-called “clean cut surface”.
  • the clean cut surface is, for example, a non-scribe side cut surface or a laser scribe cut surface among cut surfaces obtained by dividing a scribe by a machine tool.
  • the clean cut surface has no chipping or micro cracks, so it has high strength, but it has sharp edges, so it tends to cause hand or finger incision, and there is a problem with safety. there were. Therefore, chamfering is usually applied to the end face. That is, conventionally, the advantage of high end face strength due to the clean cut surface has not been utilized.
  • the present invention provides a display device provided with a cover glass having a high safety and high end face strength, and a method for manufacturing the display device, in a cover glass on which a touch sensor is formed.
  • the purpose is to do.
  • Another object of the present invention is to provide a touch panel used in the display device and a method for manufacturing the touch panel.
  • the display device of the present invention is a display device comprising a display panel and a touch panel attached to the front surface of the display panel, wherein the touch panel is a first surface facing the front surface of the display panel, and A cover glass having a second surface opposite to the first surface; and a touch sensor formed on the first surface of the cover glass, wherein the cover glass is a chemically strengthened glass.
  • the cover glass has a surface compressive stress of 600 to 900 MPa and a compressive stress layer depth of 5 to 20 ⁇ m.
  • the cover glass has a clean cut surface substantially perpendicular to the first surface, and It has a chamfered surface formed at the edge of the second surface.
  • a touch panel is attached to the front surface of the display panel, and the touch panel is formed on a cover glass and a first surface of the cover glass (a surface facing the front surface of the display panel). Touch sensor. And in the display apparatus of this invention, the cover glass which comprises a touchscreen has the characteristics.
  • the cover glass In the display device of the present invention, chemically strengthened glass is used as the cover glass, and the cover glass has a surface compressive stress of 600 to 900 MPa and a compressive stress layer depth of 5 to 20 ⁇ m.
  • the cover glass Since the surface compressive stress of the cover glass is 600 to 900 MPa, the cover glass is excellent in strength. When the surface compressive stress is less than 600 MPa, the average strength of the glass is lowered, and the glass is broken due to an impact caused by contact with a high-hardness member or an impact caused by dropping. On the other hand, when the surface compressive stress exceeds 900 MPa, the cutting property of the glass deteriorates, so that the internal tensile stress formed with respect to the surface compressive stress also increases particularly in a thin glass, and the glass is broken when a crack is introduced. There is a fear.
  • the cover glass Since the cover glass has a compressive stress layer depth of 5 to 20 ⁇ m, the cover glass is excellent in scratch resistance and cutting workability. When the depth of the compressive stress layer is less than 5 ⁇ m, it is not possible to prevent the glass from being broken due to micro cracks called “Griffith flow” generated before chemical strengthening. Moreover, since the compressive-stress layer depth is less than 5 micrometers, since it is inferior to scratchability, it cannot endure use on a market. On the other hand, when the compressive stress layer depth exceeds 20 ⁇ m, it becomes difficult to divide the glass along the scribe line, that is, to cut the glass.
  • the cover glass has a clean cut surface substantially perpendicular to the first surface and a chamfered surface formed at the edge of the second surface. This point is the characteristic of the display device of the present invention. It is a big feature.
  • the clean cut surface is formed substantially perpendicular to the first surface of the cover glass, high end surface strength can be obtained. Also, when the cover glass surface is pressed by an input operation with a finger or pen, tensile stress is applied to the glass surface on the touch sensor side (first surface side), so the end surface strength on the touch sensor side is high. Is preferred.
  • the second surface of the cover glass corresponds to the outermost side of the display device, and is a surface that is directly touched and operated with a hand or a finger. By chamfering the edge of the second surface, the display device can be used safely without causing a hand or finger cut.
  • the cover glass preferably has a thickness of 0.3 to 3 mm.
  • the cover glass has two types of stress patterns, a stress distribution pattern A on the glass surface side and a stress distribution pattern B on the glass inner side, in the compressive stress layer. and in the case of approximating the the stress pattern B respectively a linear function, when the inclination of the stress pattern a and S a, the slope of the stress pattern B and S B, satisfy the relationship of S a> S B, and
  • the interference fringes of the cover glass are observed using a surface stress meter whose observation principle is the optical waveguide effect, the distance between the first interference fringe and the second interference fringe from the glass surface is r 1 , and 2 from the glass surface.
  • the distance between the third interference fringe and the third interference fringe is r 2
  • the distance between the third interference fringe and the fourth interference fringe from the glass surface is r 3 , r 2 / r 1 and r 3 / Although at least one of r 2, Preferably satisfies the .3 to 0.7.
  • the cover glass has two kinds of stress patterns in the compressive stress layer, that is, a stress distribution pattern A on the glass surface side and a stress distribution pattern B on the glass inner side, and satisfies the relationship of S A > S B described above.
  • the integrated value of the compressive stress in the compressive stress layer can be reduced while having a high surface compressive stress value.
  • the above ratios r 2 / r 1 and r 3 / r 2 are evaluated, and at least one of r 2 / r 1 and r 3 / r 2 is 0.3.
  • ⁇ 0.7 the stress rapidly decreases on the glass surface side, and the rate at which the stress decreases decreases toward the glass inner side. This can approximately represent the change in the slope of the stress pattern described above. Therefore, the relationship of S A > S B can be satisfied, and the integrated value of the compressive stress in the compressive stress layer can be reduced.
  • the ratio of r 2 / r 1 and the ratio of r 3 / r 2 is less than 0.3, the stress tends to decrease too rapidly on the glass surface side, and microcracks that may occur during use of the cover glass Therefore, there is a concern that the strength may decrease.
  • the ratio r 2 / r 1 and the ratio r 3 / r 2 exceed 0.7, the inclination of the stress pattern becomes nearly constant. That is, the degree of decrease in compressive stress from the glass surface toward the inside tends to be more linear. Therefore, it becomes difficult to obtain the effect of reducing the integrated value of the compressive stress in the compressive stress layer.
  • the arithmetic average roughness Ra of the clean cut surface of the cover glass is preferably 0.07 ⁇ m or less, and the maximum height roughness Rz is preferably 0.70 ⁇ m or less.
  • a machining allowance of the cover glass on the chamfered surface is 3 to 35% of the thickness of the cover glass.
  • a display device manufacturing method is a display device manufacturing method including a display panel and a touch panel attached to the front surface of the display panel, and is a chemically strengthened glass plate, which is a surface compression
  • the glass plate so that each of the forming step and the first region and the second region are divided and a clean cut surface substantially perpendicular to the first surface of the glass plate is formed.
  • a step of chamfering the edge of the surface, the first surface of the cover glass characterized in that it comprises a step of disposing so as to face the front surface of the display panel.
  • the display device of the present invention can be efficiently manufactured.
  • the cover glass preferably has a thickness of 0.3 to 3 mm.
  • the cover glass has two types of stress patterns in the compression stress layer, that is, a stress distribution pattern A on the glass surface side and a stress distribution pattern B on the glass inner side, in the case of approximating the stress pattern a and the stress pattern B respectively a linear function, when the inclination of the stress pattern a and S a, the slope of the stress pattern B and S B, the relationship between S a> S B
  • the interference fringes of the cover glass are observed using a surface stress meter that satisfies the optical waveguide effect as the observation principle, and the distance between the first interference fringe and the second interference fringe from the glass surface is r 1 , glass When the distance between the second interference fringe and the third interference fringe from the surface is r 2 , and the distance between the third interference fringe and the fourth interference fringe from the glass surface is r 3 , r 2 / r 1 and When the least of r 3 / r 2 One, but preferably satisfies 0.3 to 0.7.
  • the arithmetic average roughness Ra of the clean cut surface of the cover glass is 0.07 ⁇ m or less, and the maximum height roughness Rz is 0.70 ⁇ m or less. preferable.
  • a machining allowance on the chamfered surface of the cover glass is 3 to 35% of the thickness of the cover glass.
  • the touch panel of the present invention includes a cover glass having a first surface and a second surface opposite to the first surface, and a touch sensor formed on the first surface of the cover glass.
  • the cover glass is a chemically strengthened glass, the cover glass has a surface compressive stress of 600 to 900 MPa, and a compressive stress layer depth of 5 to 20 ⁇ m. It has a clean cut surface substantially perpendicular to the first surface, and a chamfered surface formed at an edge of the second surface.
  • the cover glass preferably has a thickness of 0.3 to 3 mm.
  • the cover glass has two types of stress patterns, a stress distribution pattern A on the glass surface side and a stress distribution pattern B on the glass inner side, in the compressive stress layer.
  • the stress pattern B respectively a linear function
  • the inclination of the stress pattern a and S a the slope of the stress pattern B and S B, satisfy the relationship of S a> S B
  • the interference fringes of the cover glass are observed using a surface stress meter whose observation principle is the optical waveguide effect.
  • the distance between the first interference fringe and the second interference fringe from the glass surface is r 1
  • the second interference fringe is second from the glass surface.
  • interval r 2 between the interference fringes and the third interference fringes when the distance between the third interference fringes and fourth interference fringes from the glass surface was r 3, r 2 / r 1 and r 3 / r at least one of the 2 Preferably satisfies 0.3 to 0.7.
  • the arithmetic average roughness Ra of the clean cut surface of the cover glass is 0.07 ⁇ m or less and the maximum height roughness Rz is 0.70 ⁇ m or less.
  • the machining allowance on the chamfered surface of the cover glass is 3 to 35% of the thickness of the cover glass.
  • the touch panel of this invention has the same structure as the touch panel which comprises the display apparatus of this invention. Therefore, in order to exhibit the same effect as that described in the display device of the present invention, detailed description thereof is omitted.
  • the method for producing a touch panel of the present invention includes a step of preparing a glass plate that is chemically strengthened and has a surface compressive stress of 600 to 900 MPa and a compressive stress layer depth of 5 to 20 ⁇ m, and the glass Forming a touch sensor in at least a first region and a second region on the first surface of the plate, respectively, dividing the first region and the second region, and the glass plate
  • a step of chamfering the edge of the second surface opposite to the first surface of the cover glass is chamfering the edge of the second surface opposite to the first surface of the cover glass.
  • the cover glass preferably has a thickness of 0.3 to 3 mm.
  • the cover glass has two types of stress patterns, a stress distribution pattern A on the glass surface side and a stress distribution pattern B on the glass inner side, in the compressive stress layer.
  • the pattern a and the stress pattern B respectively a linear function
  • the interference fringes of the cover glass are observed using a surface stress meter whose observation principle is the optical waveguide effect, the distance between the first interference fringes and the second interference fringes from the glass surface is r 1 , and the glass surface when the distance between the second interference pattern and third interference fringes r 2, the distance between the third interference fringes and fourth interference fringes from the glass surface was r 3 from, r 2 / r 1 and r of 3 / r 2 small Both one but preferably satisfies 0.3 to 0.7.
  • the arithmetic mean roughness Ra of the clean cut surface of the cover glass is preferably 0.07 ⁇ m or less, and the maximum height roughness Rz is preferably 0.70 ⁇ m or less.
  • a machining allowance of the cover glass on the chamfered surface is 3 to 35% of the thickness of the cover glass.
  • the touch panel is manufactured by the same process as the display device manufacturing method of the present invention. Accordingly, the same effect as that described in the method for manufacturing the display device of the present invention is exhibited, and thus detailed description thereof is omitted.
  • a display device including the cover glass having high end surface strength on the surface on the touch sensor side and high safety on the outermost surface on the viewing side can be provided.
  • FIG. 1 is a cross-sectional view schematically showing an example of a display device according to an embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing an example of a cover glass constituting the display device according to the embodiment of the present invention.
  • FIG. 3A and FIG. 3B are enlarged cross-sectional views schematically showing the shape of the chamfered surface of the cover glass constituting the display device according to the embodiment of the present invention.
  • FIG. 4 is a graph schematically showing the relationship between the inclination of the stress pattern and the integrated value of the compressive stress in the compressive stress layer.
  • FIGS. 5A to 5C are graphs schematically showing the relationship between the interference fringe spacing and the stress pattern inclination.
  • FIG. 6 is a diagram schematically illustrating an example of interference fringes in the field of view of the surface stress meter.
  • FIG. 7A and FIG. 7B are diagrams for explaining an example of the principle of position detection in a capacitive touch panel.
  • 8 (a) to 8 (f) are cross-sectional views schematically showing an example of the method for manufacturing the display device according to the embodiment of the present invention.
  • FIGS. 9A to 9E are diagrams for explaining an example of a processing principle by laser scribing.
  • the touch panel provided with the cover glass which is a component of the display apparatus demonstrated below and the touch sensor formed on the 1st surface of the said cover glass is also embodiment of this invention.
  • FIG. 1 is a cross-sectional view schematically showing an example of a display device according to an embodiment of the present invention.
  • the display device 10 illustrated in FIG. 1 includes a touch panel 100 and a display panel 200, and the touch panel 100 includes a cover glass 110 and a touch sensor 120.
  • the touch panel 100 is attached to the front surface (viewing side surface) of the display panel 200. That is, the back surface (surface on the anti-viewing side) of the touch panel 100 is disposed to face the front surface of the display panel 200.
  • the cover glass 110 has a first surface 111 that is the surface on the anti-viewing side and a second surface 112 that is the surface on the viewing side, and is a clean surface that is substantially perpendicular to the first surface 111.
  • a cut surface 113 and a chamfered surface 114 formed at the edge of the second surface 112 are provided. Further, the first surface 111 of the cover glass 110 is disposed to face the front surface of the display panel 200. The cover glass 110 will be described later in detail.
  • the touch sensor 120 is formed on the first surface 111 of the cover glass 110, and the surface on the non-viewing side of the touch sensor 120 is disposed to face the front surface of the display panel 200.
  • the cover glass 110, the touch sensor 120, and the display panel 200 are arranged in this order from the viewing side.
  • the cover glass 110 is disposed on the outermost side on the viewing side.
  • the cover glass constituting the display device according to the embodiment of the present invention is a single cover glass by using the cover glass as a substrate for touch sensor formation, which is called “One Glass Solution” or “cover glass integrated type”. It is responsible for the cover function and the board function.
  • FIG. 2 is a perspective view schematically showing an example of a cover glass constituting the display device according to the embodiment of the present invention.
  • the cover glass 110 has the first surface 111 and the second surface 112 opposite to the first surface 111.
  • the cover glass 110 has a clean cut surface 113 substantially perpendicular to the first surface 111 and a chamfered surface 114 formed at the edge of the second surface 112.
  • the clean cut surface 113 is a surface free from chipping or microcracks, and is preferably a mirror surface. Such a clean cut surface 113 can be obtained by applying mechanical scribe to the second surface 112 and breaking it, and is also cut by laser scribe from the first surface 111 or the second surface 112 side. Can also be obtained.
  • the clean cut surface 113 is preferably a cut surface by laser scribing, and more preferably a cut surface by laser scribing from the first surface 111 side.
  • the clean cut surface 113 is substantially perpendicular to the first surface 111.
  • substantially vertical includes not only completely vertical but also what can be substantially regarded as vertical in view of the effects of the present invention.
  • etching is performed with an etchant made of hydrofluoric acid or buffered hydrofluoric acid. May be.
  • the arithmetic average roughness Ra of the clean cut surface (end surface) is preferably 0.07 ⁇ m or less, more preferably 0.06 ⁇ m or less, and still more preferably 0.8. It is 05 ⁇ m or less.
  • the maximum height roughness Rz of the clean cut surface (end surface) is preferably 0.70 ⁇ m or less, more preferably 0.60 ⁇ m, and further preferably 0.50 ⁇ m or less.
  • the lower limit of Ra is preferably as small as possible, but is not particularly set, and may be 0.005 ⁇ m.
  • the lower limit of Rz is preferably as small as possible, but is not particularly set, and may be 0.010 ⁇ m.
  • Ra is an arithmetic average roughness defined by JIS B 0601: 2001, and Rz is a maximum height roughness defined by JIS B 0601: 2001.
  • the clean cut surface only needs to be formed continuously with the first surface of the cover glass, and is more preferably formed continuously with the chamfered surface. preferable.
  • the clean cut surface is preferably formed continuously with all the first surfaces of the cover glass.
  • the chamfered surface 114 can be obtained by chamfering the edge of the second surface 112.
  • the chamfering is to make a surface by cutting off the corners, and the processing method is selected from a method combining one or more of C chamfering and R chamfering by machining. Further, it is preferably finished in a mirror state with an abrasive such as cerium oxide.
  • the chamfering may be performed by immersing in an etching solution made of hydrofluoric acid or buffered hydrofluoric acid.
  • chamfering may be performed by combining the above-described machining and immersion in an etching solution.
  • FIG. 3A and FIG. 3B are enlarged cross-sectional views schematically showing the shape of the chamfered surface of the cover glass constituting the display device according to the embodiment of the present invention.
  • FIG. 3A shows chamfering in which the shape of the corner is cut off by one plane, and such chamfering is referred to as C chamfering.
  • FIG. 3B shows chamfering in which the shape of the corner is curved, and such chamfering is referred to as R chamfering.
  • the length indicated by the double arrow x is the same on the surface side and the end surface side, but this length may be different on the surface side and the end surface side.
  • the machining allowance (chamfering range) on the chamfered surface of the cover glass may be appropriately determined.
  • the machining allowance from the top A (the length indicated by the double arrow x in FIGS. 3A and 3B) is the thickness of the cover glass. It is preferably 3 to 35% of the above.
  • the machining allowance from the top A is preferably 3 to 35% of the thickness of the cover glass.
  • the machining allowance is less than 3% with respect to the thickness of the cover glass, the scribe marks cannot be removed. On the other hand, if the allowance is larger than 35% with respect to the thickness of the cover glass, the allowance becomes too large with respect to the thickness of the cover glass, which is not preferable in appearance.
  • the chamfered surface is preferably formed on all edges of the second surface of the cover glass, but the chamfered surface is formed on the edge of the second surface. There may be a portion that is not formed.
  • the cover glass constituting the display device according to the embodiment of the present invention is a chemically strengthened glass (chemically strengthened glass).
  • chemically strengthened glass For example, sodium ions in the glass surface layer are ion-exchanged with potassium ions existing outside the glass, so that a compressive stress layer is formed on the glass surface.
  • the surface compressive stress of the cover glass constituting the display device according to the embodiment of the present invention is 600 to 900 MPa.
  • the lower limit of the surface compressive stress may be 620 MPa, or even 650 MPa.
  • a higher surface compressive stress value is preferred, but considering that the internal tensile stress increases as the surface compressive stress value increases, the upper limit of the surface compressive stress is 850 MPa, further 800 MPa, or even 750 MPa. It may be.
  • the compressive stress layer depth of the cover glass constituting the display device according to the embodiment of the present invention is 5 to 20 ⁇ m, preferably 6 to 15 ⁇ m, considering the scratch resistance and cutting workability at the same time.
  • the thickness is preferably 9 to 15 ⁇ m, more preferably 10 to 13 ⁇ m.
  • the surface compressive stress after ion exchange and the compressive stress layer depth are values measured by a photoelastic method using a surface stress meter utilizing the optical waveguide effect.
  • a refractive index and a photoelastic constant corresponding to the glass composition of the glass before ion exchange must be used.
  • the glass plate be as thin as possible in order to reduce the weight of the final product such as a mobile device and ensure the device capacity of the battery or the like. If it is too large, the stress generated by the glass bending will increase. On the other hand, if the plate thickness is too thick, the apparatus weight increases and the visibility of the display device decreases. Therefore, the upper limit of the thickness of the cover glass is preferably 3 mm, more preferably 2 mm. Further, the lower limit of the thickness of the cover glass is preferably 0.3 mm, more preferably 0.4 mm.
  • the shape of the cover glass which comprises the display apparatus which concerns on embodiment of this invention is not specifically limited, It is preferable that it is a plate-shaped object. Further, when the shape of the cover glass is a plate-like body, it may be a flat plate or a bent plate, and includes various shapes. Moreover, in flat form, it may be a rectangle or a disk shape, and may be processed into the design shape by which partial drilling process or R process etc. were given to the corner part.
  • the cover glass in the display device is provided with anti-fingerprint property, anti-glare property, and function by surface coating by drug application, fine processing, film sticking, or the like. Good.
  • the print according to the color tone of the display panel may be given to the surface of the cover glass, and the partial drilling process etc. may be given.
  • the cover glass may be provided with a film having a low reflection function and an antiglare function, a film having a fingerprint adhesion preventing function, and a polarizer film for improving contrast.
  • the film having these functions may be provided by attaching a plastic film or the like having the above functions to a cover glass, or may be provided by means such as coating or vapor deposition.
  • the shape and size of the cover glass not only a simple rectangle but also various shapes and sizes corresponding to the design shape of the display panel, such as a shape in which a corner portion is processed into a circle or the like, can be considered.
  • the cover glass in the display device is a chemically tempered glass.
  • a chemically tempered glass contains the alkali metal ions A most contained in the glass on the glass surface.
  • And can be prepared by ion exchange replacing alkali metal ions B having an ionic radius larger than that of the alkali metal ions A.
  • the alkali metal ion A is a sodium ion (Na + ion)
  • potassium ion (K + ion), rubidium ion (Rb + ion), and cesium ion (Cs + ion) At least one can be used.
  • the alkali metal ion A is a sodium ion
  • nitrates, sulfates, carbonates, hydroxides and phosphates containing at least alkali metal ions B can be used.
  • alkali metal ion A is a sodium ion
  • the glass before ion exchange contains soda-lime glass, aluminosilicate glass, and borosilicate glass as long as it contains alkali metal ions that can be ion-exchanged.
  • it is preferably a soda lime glass, and substantially by mass, SiO 2 : 65 to 75%, Na 2 O + K 2 O: 5 to 20%, CaO: 2 to 15%, MgO : 0 to 10%, Al 2 O 3 : 0 to 5% is more preferable.
  • Patent Document 1 and Patent Document 2 disclose so-called aluminosilicate glass.
  • aluminosilicate glass When chemically strengthened aluminosilicate glass is cut by laser scribing, which will be described later, even if an initial crack for laser scribing is introduced, it is difficult to form the initial crack because of high Vickers hardness. If it is difficult to form an initial crack, it is difficult to progress the crack with a laser, and thus scribing such glass is not easy.
  • soda lime glass laser scribing can be performed with a lower laser power than aluminosilicate glass or the like.
  • Na 2 O + K 2 O: 5 to 20% means that the total content of Na 2 O and K 2 O in the glass is 5 to 20% by mass.
  • SiO 2 is a main component of glass. If it is less than 65%, the strength is lowered and the chemical durability of the glass is deteriorated. On the other hand, if it exceeds 75%, the high-temperature viscosity of the glass melt becomes high, and glass molding becomes difficult. Accordingly, the range is preferably 65 to 75%, more preferably 68 to 73%.
  • Na 2 O is indispensable for chemical strengthening treatment and is an essential component. If it is less than 5%, ion exchange is insufficient, and the strength after the chemical strengthening treatment is not improved so much. On the other hand, if it exceeds 20%, the chemical durability of the glass is deteriorated and the weather resistance is deteriorated. Therefore, the range is preferably 5 to 20%, more preferably 5 to 18%, and still more preferably 7 to 16%. Meanwhile, K 2 O is not an essential component, and acts as a flux during melting the glass with Na 2 O, although some additives have an effect as an auxiliary component for promoting ion exchange, the excessive addition of Na 2 Due to the mixed alkali effect with O, the migration of sodium ions is suppressed and ion exchange becomes difficult. If it exceeds 5%, it is difficult to improve the strength by ion exchange.
  • the range of Na 2 O + K 2 O is preferably 5 to 20%, more preferably 7 to 18%, and still more preferably 10 to 17%.
  • CaO improves the chemical durability of the glass. Moreover, since it has the effect
  • MgO is not an essential component, it has less effect of suppressing the movement of sodium ions compared to CaO, and it is desirable to replace CaO with MgO.
  • hangs the viscosity of the molten glass at the time of glass melting is also small, and when it exceeds 10%, glass viscosity will become high and mass productivity will deteriorate. Therefore, the range is preferably 0 to 10%, more preferably 0 to 8%, and further preferably 1 to 6%.
  • Al 2 O 3 is not an essential component, but is a component that increases strength and improves ion exchange efficiency. If the mass percentage exceeds 5%, the high-temperature viscosity of the glass melt increases and the tendency to devitrification increases, making glass molding difficult. Moreover, since the ion exchange efficiency becomes excessive and the depth of the compressive stress layer becomes deep, the cutting property after chemical strengthening is deteriorated. Therefore, the range is preferably 0 to 5%, more preferably 1 to 4%, and still more preferably 1 to 3% (3 is not included).
  • the glass before the ion exchange is soda lime glass, and is preferably substantially composed of the above components. However, the total amount of Fe 2 O 3 , TiO 2 , CeO 2 , SO 3 and other trace components is 1% in total. May be contained.
  • the strain point of the glass before ion exchange is preferably 450 to 550 ° C., more preferably 480 to 530 ° C. If the strain point of the glass is less than 450 ° C, the heat resistance during chemical strengthening is insufficient. On the other hand, if it exceeds 550 ° C, the glass melting temperature becomes too high and the production efficiency of the glass plate deteriorates. , Resulting in increased costs.
  • the glass before ion exchange is formed by a general glass forming method such as a float method, a roll-out method, or a down draw method, and among these, it is preferable to be formed by a float method.
  • the surface of the glass before ion exchange may be in a state where it is formed by the above-described forming method, or a state in which functionality such as antiglare property is imparted by roughening the surface using hydrofluoric acid etching or the like. But you can.
  • the Vickers hardness of the glass after chemical strengthening is preferably 5.0 to 6.0 GPa, more preferably 5.2 to 6.0 GPa. More preferably, it is 5.2 to 5.8 GPa. If the Vickers hardness is less than 5.0 GPa, it is inferior in scratchability, so it cannot withstand use in the market, while if it exceeds 6.0 GPa, the cutting property deteriorates.
  • the cover glass constituting the display device has two types of stress patterns in the compression stress layer, that is, the stress distribution pattern A on the glass surface side and the stress distribution pattern B on the glass inner side, in the case of approximating the the stress pattern a and the stress pattern B respectively a linear function, when the inclination of the stress pattern a and S a, the slope of the stress pattern B and S B, the relationship of S a> S B
  • the interference fringes of the cover glass are observed using a surface stress meter whose observation principle is the optical waveguide effect, and the distance between the first interference fringes and the second interference fringes from the glass surface is r 1 , When the distance between the second interference fringe and the third interference fringe from the glass surface is r 2 and the distance between the third interference fringe and the fourth interference fringe from the glass surface is r 3 , r 2 / r 1 and when the least of r 3 / r 2 One, but preferably satisfies 0.3 to 0.7.
  • At least r 2 / r 1 satisfies 0.3 to 0.7, and both r 2 / r 1 and r 3 / r 2 satisfy 0.3 to 0.7. More preferably.
  • FIG. 4 is a graph schematically showing the relationship between the inclination of the stress pattern and the integrated value of the compressive stress in the compressive stress layer.
  • the graph which approximated the stress pattern in the preferable cover glass (chemically tempered glass) with the linear function is shown by the solid line.
  • the stress distribution pattern A on the glass surface side and the stress distribution pattern B on the glass inner side have two types of stress patterns in the compressive stress layer.
  • the slope of the stress pattern A is S A
  • the stress when the inclination of the pattern B was S B satisfy the relationship of S a> S B.
  • a preferable cover glass has a low internal tensile stress while having a high surface compressive stress value.
  • the “slope of the stress pattern” means the absolute value of the slope of the compressive stress with respect to the depth from the glass surface. Therefore, a stress pattern with a large slope is steep and a stress pattern with a small slope is gradual. In addition, since the compressive stress in the compressive stress layer decreases from the glass surface toward the inside of the glass, the positive and negative slopes of the stress pattern A and the stress pattern B coincide.
  • the stress pattern approximated by the linear function from the glass surface side is A
  • the stress pattern approximated by the linear function from the glass inner side is used. What is necessary is just to obtain
  • FIGS. 5A to 5C are graphs schematically showing the relationship between the interference fringe spacing and the stress pattern inclination.
  • FIGS. 5A to 5C it is known that the interval between the interference fringes corresponds to the inclination of the stress pattern. That is, as shown in FIG. 5A, when the interval between the interference fringes is wide, the inclination of the stress pattern is large. On the other hand, when the interval between the interference fringes is narrow as shown in FIG. This means that the inclination of the stress pattern is small.
  • FIG. 5C shows a stress pattern obtained by combining FIGS. 5A and 5B.
  • r 2 / r 1 is close to 1 because the distance r 2 between the second interference fringe and the third interference fringe from the glass surface is the first interference fringe and the second interference fringe from the glass surface. it means the distance r 1 between the same degree, as the r 2 / r 1 is less than 1, the interval r 2 is meant to be smaller than the distance r 1. The same applies to r 3 / r 2 .
  • ion exchange basically follows Fick's diffusion law, and the diffusion law itself is not a linear function, so strictly speaking, the stress pattern is not a straight line. More precisely with respect to the relationship between the interference fringe spacing and the stress pattern, using a sequence of interference fringe widths related by at least one of r 2 / r 1 and r 3 / r 2 than using a straight line. The accuracy of approximation is high, and it is easy for production management.
  • FIG. 6 is a diagram schematically illustrating an example of interference fringes in the field of view of the surface stress meter.
  • the lower side of FIG. 6 represents the glass surface side, and the upper side of FIG. 6 represents the glass inner side.
  • the value of r 2 / r 1 or r 3 / r 2 calculated by the above method is preferably 0.3 to 0.7.
  • the lower limit value of r 2 / r 1 or r 3 / r 2 is preferably 0.35, more preferably 0.4.
  • the upper limit value of r 2 / r 1 or r 3 / r 2 is preferably 0.65, more preferably 0.63.
  • the touch sensor that constitutes the display device according to the embodiment of the present invention has a multilayer wiring structure of transparent electrodes, for example, in the case of a capacitive detection method.
  • the capacitance type detection method is introduced in Japanese Patent Application Laid-Open No. 2008-80743.
  • FIG. 7A and FIG. 7B are diagrams for explaining an example of the principle of position detection in a capacitive touch panel. However, FIGS. 7A and 7B show a case where a one-dimensional position is detected for the sake of simplicity.
  • a touch panel 150 in which a transparent conductive film 170 such as ITO (Indium Tin Oxide: indium oxide to which tin oxide is added) or the like is formed on a glass substrate 160 is used.
  • a transparent conductive film 170 such as ITO (Indium Tin Oxide: indium oxide to which tin oxide is added) or the like is formed on a glass substrate 160 is used.
  • an in-phase AC voltage is applied to both ends of the touch panel 150 from a current source via a current detection resistor r.
  • a contact body such as a pen or a finger is neither in contact nor in proximity
  • no current flows through the touch panel 150.
  • FIG. 7B when the contact body 180 that is a conductor contacts or approaches the touch panel 150, a capacitor is formed between the contact body 180 and the touch panel 150, and a weak current flows through the contact body 180. Flows. Therefore, currents I 1 and I 2 flow from the current source. If the contact position of the contact body 180 is different, the values of the currents I 1 and I 2 are different.
  • the touch panel generally detects a two-dimensional position where a contact body comes into contact or comes close, an AC voltage is applied from four locations on the touch panel.
  • the detection method may be a resistance detection method, an optical method, an ultrasonic method, or the like.
  • the touch panel constituting the display device according to the embodiment of the present invention can be manufactured by subjecting a glass plate larger than the cover glass to chemical strengthening treatment and forming a touch sensor, and then dividing the glass plate. preferable. In this case, a plurality of touch panels can be efficiently manufactured.
  • the touch panel may be manufactured by cutting the glass plate first and processing it into a design shape such as a bent plate shape, and then applying a chemical strengthening treatment to form a touch sensor.
  • a liquid crystal display panel is usually used.
  • other display panels such as an organic EL display and a plasma display panel are used. Good.
  • the display device preferably has a member for integrating the cover glass and the display panel.
  • a masking layer having a width sufficient to conceal the cover glass is formed on the peripheral edge of the cover glass, preferably having an absorbance of 3 or more, more preferably 4 or more.
  • a layer is preferably provided.
  • This masking layer can be formed by applying a preparation containing a thermosetting synthetic resin, a pigment, and a dye, and drying and heating.
  • a thermosetting synthetic resin an epoxy resin, an acrylic silicon resin, an alkyd resin, a polyamide resin, a fluorine resin, or the like can be used.
  • the pigment is one or more selected from the group consisting of iron oxide, copper oxide, chromium oxide, cobalt oxide, manganese oxide, aluminum oxide, zinc oxide, lead chromate, lead sulfate, lead molybdate and the like. A mixture of materials can be used.
  • dioxazine-based, phthalocyanine-based, anthraquinone-based organic substances, and the like can be used.
  • Solvents such as diethylene glycol monobutyl ether acetate and ethylene glycol monobutyl ether can be used as a medium for making this mixture into a paste for coating. Further, a modified aliphatic polyamine resin, N-butanol or the like may be mixed as a curing reaction accelerator.
  • the thickness of the masking layer is preferably 35 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the thickness of the masking layer is larger than 35 ⁇ m, the step at the boundary between the masking layer surface and the glass substrate surface becomes large, and when the film as described above is provided, bubbles easily remain in the step portion.
  • 8 (a) to 8 (f) are cross-sectional views schematically showing an example of the method for manufacturing the display device according to the embodiment of the present invention.
  • a glass plate 310 is prepared.
  • the glass plate to be prepared is a chemically strengthened glass plate having a surface compressive stress of 600 to 900 MPa and a compressive stress layer depth of 5 to 20 ⁇ m.
  • the method is not specifically limited, Alkali metal ion A with respect to the sum total of the molar amount of alkali metal ion A and the molar amount of alkali metal ion B including alkali metal ion A and alkali metal ion B
  • a second step of bringing a glass plate into contact with the salt of 2 hereinafter referred to as a first chemical strengthening method.
  • the glass plate is brought into contact with a first salt containing alkali metal ions A, and the first salt is an alkali with respect to the total molar amount of alkali metal ions.
  • the glass plate is brought into contact with a third salt containing alkali metal ions B, and the third salt is a mole of alkali metal ions B with respect to the total molar amount of alkali metal ions.
  • the glass plate before chemical strengthening (ion exchange) and the glass plate after chemical strengthening (ion exchange) have the same structure as the glass described in the cover glass constituting the display device according to the above-described embodiment of the present invention. Detailed description thereof will be omitted.
  • the glass surface layer is made to have alkali metal ions A and alkali metal ions B (preferably sodium ions and potassium ions) during the first step by adopting the first salt structure as described above. Ions) are included.
  • alkali metal ions A and alkali metal ions B preferably sodium ions and potassium ions
  • Ions are included.
  • contacting a glass plate with salt means contacting or immersing the glass plate in a salt bath.
  • contact is a concept including “immersion”. The same applies to the second chemical strengthening method.
  • the contact form of the salt may be a form in which the paste-like salt is in direct contact, a form in which it is sprayed as an aqueous solution, a form in which the salt is immersed in a molten salt heated to a melting point or higher, etc. Of these, it is desirable to immerse in molten salt.
  • alkali metal ion A and the alkali metal ion B are as described above, but are preferably a sodium ion and a potassium ion, respectively.
  • the 1 type (s) or 2 or more types of mixture can be used among nitrate, sulfate, carbonate, hydroxide salt, and phosphate.
  • the salt containing the alkali metal ion A it is preferable to use a sodium nitrate molten salt
  • the salt containing the alkali metal ion B it is preferable to use a potassium nitrate molten salt. Therefore, as the salt containing the alkali metal ion A and the alkali metal ion B, it is preferable to use a mixed molten salt composed of sodium nitrate and potassium nitrate.
  • the depth of the compressive stress layer formed after the first step is preferably 5 to 23 ⁇ m. Further, it is more preferably 7 to 20 ⁇ m, and further preferably 10 to 18 ⁇ m. In the first step, it is preferable to adjust the temperature of the first salt and the time of contact with the first salt in the first step so as to be the depth of the compressive stress layer.
  • the temperature of the second salt and the second salt are adjusted according to the ratio Q so that the depth of the compressive stress layer formed after the second step is 5 to 20 ⁇ m. It is preferable to adjust the contact time.
  • the ratio P of the first salt is too large, the composition of the surface layer of the glass plate is difficult to be modified, and the surface of the glass plate tends to become cloudy, which hinders the improvement of the reliability of the glass strength. End up.
  • the ratio P of the first salt is too small, the composition of the surface layer of the glass plate tends to be modified in the first step, and most of the alkali metal ions A in the glass are alkaline. It is ion-exchanged with the metal ion B. For this reason, ion exchange does not proceed in the second step, and the desired surface compressive stress and strength at a fracture probability of 1% cannot be obtained.
  • the ratio P is preferably 5 to 50 mol%.
  • the lower limit of the ratio P is more preferably 15 mol%, still more preferably 20 mol%.
  • the upper limit of the ratio P is more preferably 40 mol%, still more preferably 35 mol%.
  • the ratio Q of the second salt is preferably 0 to 10 mol%.
  • the lower limit of the ratio Q is more preferably 2 mol%, still more preferably 1 mol%.
  • the second salt may be substantially free of alkali metal ions A (for example, sodium ions) and may include only alkali metal ions B (for example, potassium ions) as cations.
  • the structure of the 1st salt and the 2nd salt was limited and demonstrated to the alkali metal ion A and the alkali metal ion B, unless the objective of this invention was impaired, the stable metal which does not raise
  • silver ions or copper ions may be contained in the first salt or the second salt.
  • the temperature of the first salt is preferably 400 to 530 ° C.
  • the lower limit of the temperature of the first salt is more preferably 410 ° C, and further preferably 430 ° C.
  • the upper limit of the temperature of the first salt is more preferably 515 ° C., further preferably 500 ° C., and particularly preferably 485 ° C.
  • the temperature of the second salt is preferably equal to or lower than the temperature of the first salt, and more preferably lower than the temperature of the first salt.
  • the temperature of the second salt is preferably 380 to 500 ° C.
  • the lower limit of the temperature of the second salt is more preferably 390 ° C., further preferably 400 ° C., and particularly preferably 410 ° C.
  • the upper limit of the temperature of the second salt is more preferably 490 ° C., further preferably 480 ° C., and particularly preferably 460 ° C.
  • the total time for contacting the glass plate with the first salt in the first step and the time for contacting the glass plate with the second salt in the second step is preferably 1 to 12 hours, More preferably, it is 2 to 6 hours.
  • the time for bringing the glass plate into contact with the first salt in the first step is preferably 0.5 to 8 hours, more preferably 1 to 6 hours, and further preferably 1 to 4 hours.
  • the time for bringing the glass plate into contact with the second salt in the second step is preferably 0.5 to 8 hours, more preferably 0.5 to 6 hours, and further preferably 0.5 to 3 hours. .
  • the processing temperature and contact time of the first step and the processing temperature and contact time of the second step have been described above. These are the ion exchange amounts (chemical strengthening) in the first step and the second step. Defined as an amount obtained by dividing the absolute value of the mass difference between the front and rear glass plates by the surface area of the glass plate). That is, if the respective ion exchange amounts in the first step and the second step are approximately the same, the treatment temperature range and the contact time range described here are not limited and can be freely changed. Also good.
  • the ratio of alkali metal ions A in the surface layer of the glass plate can be increased by the first step, and finally obtained through the subsequent second step and third step.
  • the surface compressive stress of such chemically tempered glass can be increased.
  • the second salt bath is diluted by alkali metal ions A flowing out of the glass plate, but the ratio (ratio Y) of alkali metal ions A in the second salt bath is 0 to 10 mol%. The range.
  • the third step is performed using the third salt bath containing a large amount of alkali metal ions B, so that chemical strengthening finally having a high surface compressive stress is achieved. Glass can be produced. Furthermore, since most of the ion exchange is completed in the second step, the alkali metal ions A hardly flow out of the glass in the third step. Therefore, dilution of the third salt bath used in the third step can be prevented. Therefore, the ratio (ratio Z) of the alkali metal ions B in the third salt bath can be maintained at a high value.
  • chemically strengthened glass having a high surface compressive stress can be continuously produced without frequently replacing the salt bath used for ion exchange. Therefore, by performing all of the first to third steps, chemically strengthened glass having a high surface compressive stress value can be continuously produced.
  • alkali metal ion A and the alkali metal ion B are as described above, but are preferably a sodium ion and a potassium ion, respectively.
  • the 1 type (s) or 2 or more types of mixture can be used among nitrate, sulfate, carbonate, hydroxide salt, and phosphate. Of these, nitrates are preferred.
  • the ratio X (mol%) of the molar amount of alkali metal ions A to the total molar amount of alkali metal ions is 90 to 100 mol%, preferably 95 to 100 mol%, more preferably. 98 to 100 mol%.
  • the ratio X of the first salt is 100 mol%, that is, the first salt contains substantially no other alkali metal ions and contains only alkali metal ions A (for example, sodium ions) as cations. Preferably it is.
  • the ratio X of the first salt is too small, it is difficult to obtain the effect of increasing the ratio of alkali metal ions A in the surface layer of the glass plate, and the desired surface can be obtained even if the second and third steps are performed. Chemically tempered glass with compressive stress cannot be produced.
  • the salt temperature (first salt temperature) in the first step is preferably 375 to 520 ° C.
  • the lower limit of the temperature of the first salt is more preferably 385 ° C, and further preferably 400 ° C.
  • the upper limit of the temperature of the first salt is more preferably 510 ° C, and further preferably 500 ° C. If the temperature of the first salt is too high, the glass surface is likely to become cloudy. On the other hand, if the temperature of the first salt is too low, the glass surface modification effect in the first step cannot be sufficiently obtained.
  • the time for bringing the glass plate into contact with the first salt in the first step is preferably 0.5 to 10 hours, more preferably 1 to 7 hours. If the time for bringing the glass plate into contact with the first salt is too long, the time required for producing the chemically strengthened glass becomes too long. On the other hand, if the time for bringing the glass plate into contact with the first salt is too short, the effect of modifying the glass surface layer in the first step cannot be sufficiently obtained.
  • the compressive stress generated in the second step can be increased as compared with the case of only nitrate.
  • white turbidity is likely to occur on the surface of the glass plate when stored in the atmosphere.
  • the hydroxide salt to be mixed with the nitrate is preferably 0 to 1500 ppm, more preferably 0 to 1000 ppm with respect to 100 mol% of the nitrate.
  • the ratio Y (mol%) of the molar amount of alkali metal ions A to the total molar amount of alkali metal ions is 0 to 10 mol%, preferably 0 to 5 mol%, more preferably 0 to 1 mol%.
  • the ratio Y of the second salt is preferably 0 mol%, and the second salt substantially does not contain the alkali metal ion A and contains only the alkali metal ion B (for example, potassium ion) as the cation. It is more preferable.
  • the ratio Y of the second salt is larger than 10 mol%, a sufficient amount of alkali metal ions B is not introduced into the glass surface layer in the second step, and the desired surface compression is achieved even if the third step is performed later. Chemically strengthened glass having stress cannot be produced.
  • a 2nd salt is an unused salt containing only the alkali metal ion B
  • the used salt diluted with the alkali metal ion A may be sufficient.
  • the ratio of the second salt is such that the depth of the compressive stress layer formed after the second step is 3 to 25 ⁇ m (more preferably 5 to 20 ⁇ m, still more preferably 5 to 18 ⁇ m). It is preferable to adjust the treatment temperature (the temperature of the second salt) according to Y.
  • the temperature of the second salt is preferably 380 to 500 ° C.
  • the lower limit of the temperature of the second salt is more preferably 390 ° C, and further preferably 400 ° C.
  • the upper limit of the temperature of the second salt is more preferably 490 ° C, and further preferably 480 ° C.
  • the time for bringing the glass plate into contact with the second salt in the second step is preferably 1 to 6 hours, more preferably 1 to 4 hours. If the time for bringing the glass plate into contact with the second salt is too long, the compressive stress generated in the second step is easily relaxed. Furthermore, the depth of the compressive stress layer tends to increase. This affects the cutability of the glass. On the other hand, if the time for bringing the glass plate into contact with the second salt is too short, ion exchange in the second step is not promoted, and the desired depth of the compressive stress layer cannot be obtained.
  • the ratio Z (mol%) of the molar amount of alkali metal ions B to the total molar amount of alkali metal ions is 98 to 100 mol%, preferably 99 to 100 mol%, more preferably. 99.3 to 100 mol%.
  • the ratio Z of the third salt is 100 mol%, that is, the third salt is substantially free of other alkali metal ions and contains only alkali metal ions B (for example, potassium ions) as cations. Preferably it is.
  • the ratio Z of the third salt is too small, a sufficient amount of alkali metal ions B are not introduced into the glass surface layer in the third step, and a chemically strengthened glass having a desired surface compressive stress cannot be produced. .
  • the third salt is preferably an unused salt containing only alkali metal ions B, but may be an already used salt diluted with alkali metal ions A or the like.
  • the ratio of the third salt so that the depth of the compressive stress layer formed after the third step is 5 to 25 ⁇ m (more preferably 7 to 20 ⁇ m, still more preferably 8 to 18 ⁇ m). It is preferable to adjust the treatment temperature (the temperature of the third salt) according to Z.
  • the temperature of the third salt is preferably 380 to 500 ° C.
  • the lower limit of the temperature of the third salt is more preferably 390 ° C, and further preferably 400 ° C.
  • the upper limit of the temperature of the third salt is more preferably 480 ° C, and further preferably 470 ° C.
  • the time for bringing the glass plate into contact with the third salt in the third step is preferably 0.5 to 4 hours, more preferably 0.5 to 3 hours.
  • the depth of the compressive stress layer after the third step tends to be deep, which also affects the cutability of the glass.
  • the time for bringing the glass plate into contact with the third salt is too short, the ion exchange between the alkali metal ions A and the alkali metal ions B does not proceed sufficiently, and it becomes difficult to generate a desired compressive stress. End up.
  • the treatment temperature and contact time of the first step, the treatment temperature and contact time of the second step, and the treatment temperature and contact time of the third step have been described above.
  • the absolute value of the difference in mass of the glass plate before and after strengthening is divided by the surface area of the glass plate). That is, as long as the ion exchange amount in each step is approximately the same, the treatment temperature range and the contact time range described here are not limited and may be freely changed.
  • the structure of the 1st salt, the 2nd salt, and the 3rd salt was limited and demonstrated to the alkali metal ion A and the alkali metal ion B, unless the objective of this invention was impaired, reaction was caused with the salt. It does not prevent the presence of no stable metal oxides, impurities or other salts.
  • silver ions or copper ions may be contained in the first salt, the second salt, or the third salt.
  • a plurality of touch sensors 120 are formed on the first surface 311 of the prepared glass plate 310.
  • the first surface of the glass plate is divided into a plurality of regions, and a touch sensor is formed in each region.
  • a plurality of touch panels can be produced by cutting the glass plate for each region.
  • FIG. 8B shows an example in which the touch sensor 120 is formed in two regions, but the number of touch sensors to be formed depends on the size of the glass plate to be prepared first and the size of the touch panel to be prepared. Needless to say, it may be changed as appropriate.
  • a method for forming the touch sensor is not particularly limited, and a known method introduced in JP 2012-88946 A can be used.
  • a structure including predetermined electrode wiring is formed by a photolithography method so as to have a multilayer wiring structure of transparent electrodes. A method is disclosed.
  • the region where the touch sensor 120 is formed is divided, and a clean cut surface that is substantially perpendicular to the first surface 311 of the glass plate 310 is formed. As described above, the glass plate 310 on which the touch sensor 120 is formed is cut.
  • scribe lines 315 are formed by laser scribing on the first surface 311 of the glass plate 310 on which the touch sensor 120 is formed.
  • the scribe lines 315 are formed so as to divide two regions where the touch sensor 120 is formed, but the scribe lines may be formed according to the number of touch panels to be manufactured. Laser scribe will be described in detail later.
  • the glass plate 310 is divided along the scribe line 315 to obtain two glass plates 310 ′ as shown in FIG. As described later, the glass plate may be divided mechanically or may be divided by irradiating a laser beam on a scribe line.
  • the edge of the second surface 112 of the cover glass 110 is chamfered to form the touch sensor 120 on the first surface 111 of the cover glass 110.
  • the touch panel 100 can be manufactured.
  • the cover glass 110 constituting the touch panel 100 has a clean cut surface 113 that is substantially perpendicular to the first surface 111 and a chamfered surface 114 that is formed at the edge of the second surface 112. Since the chamfering method is as described above, the detailed description thereof is omitted.
  • the first surface 111 of the cover glass 110 is disposed so as to face the front surface of the display panel 200. Thereby, the display apparatus 10 provided with the display panel 200 and the touch panel 100 attached to the front surface of the display panel 200 is completed.
  • the surface of the glass plate 310 that forms the touch sensor 120 and the surface of the glass plate 310 that forms the scribe line 315 are both the first surface 311. .
  • the glass plate is cut as long as the first region and the second region are divided and a clean cut surface substantially perpendicular to the first surface of the glass plate is formed.
  • the method is not particularly limited. As a method for cutting the glass plate, as shown in FIGS. 8C and 8D, it is preferable to cut the glass plate by laser scribing from the first surface side of the glass plate. You may cut
  • laser scribe In laser scribing, laser light from a carbon dioxide laser (CO 2 laser) or the like is absorbed by the glass surface layer, and the part that absorbed the laser light generates heat, and compressive stress is locally generated in the part. When the part is cooled with cooling water or the like in a state where the compressive stress is generated, tensile stress is generated on the contrary, and the glass surface layer is cracked. The crack is generated two-dimensionally, preferably linearly. As a result, a scribe line is formed.
  • CO 2 laser CO laser, a YAG laser, or the like can also be used.
  • FIGS. 9A to 9E are diagrams for explaining an example of a processing principle by laser scribing.
  • an initial crack 314 for starting scribing is generated on the end face of the glass plate 310 using a diamond cutter or the like.
  • the surface of the glass plate 310 is heated by irradiating the laser beam 320 from the end face of the glass plate 310 along the planned dividing line.
  • region 330 near the rear end of a laser beam is rapidly cooled with a water jet etc.
  • FIG. As shown in FIG. Then, as shown in FIG.
  • a crack develops in the surface layer of the glass plate 310 from the initial crack 314 provided on the end surface of the glass plate 310.
  • scribe lines 315 are formed on the surface of the glass plate 310.
  • a glass plate 310 ′ having a cut surface as a clean cut surface 313 can be produced as shown in FIG.
  • the method of dividing the glass plate is not particularly limited, and may be a method of dividing mechanically or a method of dividing the glass plate by irradiating a laser beam on a scribe line.
  • Example 1 As a glass plate before chemical strengthening (ion exchange), soda lime glass (mass% SiO 2 : 71.3%, Na 2 O: 13.0%, K 2 O: 0.85%, CaO: 9.0) %, MgO: 3.6%, Al 2 O 3 : 2.0%, Fe 2 O 3 : 0.15%, SO 3 : 0.1%), with a thickness of 0.7 mm and a short side of 400 mm ⁇ A glass plate having a long side of 500 mm was prepared.
  • first salt, ratio P 25 mol% potassium nitrate
  • second salt, ratio Q 0 mol%
  • the number of interference fringes and their spacing were observed using a surface stress meter (manufactured by Toshiba Glass (currently manufactured by Orihara Seisakusho), FSM-60V) to determine the surface compressive stress and the glass plate.
  • the depth of the compressive stress layer formed on the surface of each was measured.
  • 1.52 was used as the refractive index of the glass composition of the soda lime glass, and 26.8 ((nm / cm) / MPa) was used as the photoelastic constant.
  • a sodium lamp was used as the light source.
  • the surface compressive stress was 675 MPa
  • the compressive stress layer depth was 12 ⁇ m.
  • the average fracture stress by a 4-point bending test was measured with the following method. This value can be used as an index of the end face strength on the touch sensor side (first surface side) when used as a cover glass constituting a display device and a touch panel.
  • the glass plate after chemical strengthening was scribed into a size of 120 mm ⁇ 60 mm using a mechanical scribing device (MS500, manufactured by Samsung Diamond Industrial Co., Ltd.), and individual pieces to be a cover glass were obtained by folding.
  • a cover glass when the surface opposite to the scribed surface was the first surface, a clean cut surface substantially perpendicular to the first surface was formed.
  • the clean cut surface of the cut glass plate was measured according to JIS B 0601: 2001 using a non-contact three-dimensional measuring device (manufactured by Mitaka Kogyo Co., Ltd., NH-3N), and the arithmetic average roughness of the end surface Ra and the maximum height roughness Rz of the end face were measured. At this time, Ra was 0.013 ⁇ m and Rz was 0.18 ⁇ m.
  • a four-point bending test was performed by supporting the cover glass so that a tensile stress was generated on the first surface of the cover glass, and an average fracture stress was measured.
  • the fracture starting point exists in the plane, the data is excluded, and only those having the fracture starting point in the edge portion are regarded as valid samples.
  • the number of valid samples at this time is 50, and the average fracture The stress was 563 MPa.
  • Example 2 A glass plate similar to that of Example 1 was prepared except that the thickness of the glass plate was changed to 0.55 mm.
  • the glass plate before chemical strengthening was scribed into a size of 120 mm ⁇ 60 mm using a laser scribing device (manufactured by Remi Co., SC-7392S), and individual pieces to be a cover glass were obtained by folding.
  • the surface compressive stress was 740 MPa
  • the compressive stress layer depth was 12 ⁇ m
  • r 2 / r 1 0.67
  • Example 1 A glass plate similar to that in Example 1 was prepared.
  • the glass plate before chemical strengthening was scribed into a size of 120 mm ⁇ 60 mm using a mechanical scribing device in the same manner as in Example 1, and individual pieces to be a cover glass were obtained by folding.
  • Ra was 0.013 ⁇ m, Rz. was 0.14 ⁇ m.
  • Example 1 when the average breaking stress on the clean cut surface side was measured by a four-point bending test, the number of effective samples was 50, and the average breaking stress was 234 MPa.
  • Example 2 A glass plate similar to Example 1 was prepared except that the thickness of the glass plate was changed to 1.1 mm.
  • the glass plate before chemical strengthening was scribed into a size of 120 mm ⁇ 60 mm using a mechanical scribing device in the same manner as in Example 1, and individual pieces to be a cover glass were obtained by folding.
  • the obtained cover glass was chamfered with an allowance of 0.2 mm (18% of the thickness of the glass plate) from the top A shown in FIG.
  • the arithmetic average roughness Ra of the end face and the maximum height roughness Rz of the end face were measured in the same manner as in Example 1.
  • Ra was 1.661 ⁇ m and Rz was 10.17 ⁇ m. It was.
  • the average breaking stress was measured by a 4-point bending test in the same manner as in Example 1, the number of effective samples was 7, and the average breaking stress was 425 MPa.
  • Example 1 Example 2, Comparative Example 1 and Comparative Example 2 Cover Glass Thickness, Surface Compressive Stress, Compressive Stress Layer Depth, r 2 / r 1 Value, r 3 / r 2 Value, Arithmetic Average Table 1 shows the roughness Ra, the maximum height roughness Rz of the end face, the number of effective samples and the average fracture stress by a four-point bending test.
  • Table 1 shows the roughness Ra, the maximum height roughness Rz of the end face, the number of effective samples and the average fracture stress by a four-point bending test.
  • the cover glass of Examples 1 and 2 had a higher average fracture stress value than the cover glasses of Comparative Examples 1 and 2. Therefore, it was confirmed that the cover glasses of Examples 1 and 2 have sufficient end face strength as compared with the cover glasses of Comparative Examples 1 and 2.

Abstract

The purpose of the present invention is to provide a display device having a cover glass in which a touch sensor is formed and also having a high degree of safety and high end face strength, and to provide a manufacturing method for the display device. This display device has a display panel, and a touch panel attached to the front surface of the display panel. The display device is characterized in that: the touch panel comprises a cover glass, which has a first surface facing the front surface of the display panel and a second surface on the side opposite the first surface, and a touch sensor formed on the first surface of the cover glass; the cover glass is chemically strengthened; the surface compressive stress of the cover glass is 600-900MPa, and the compressive stress layer depth is 5-20μm; and the cover glass has a clean-cut surface that is substantially perpendicular to the first surface, and a chamfered surface that is formed on the edge of the second surface.

Description

表示装置、表示装置の製造方法、タッチパネル、及び、タッチパネルの製造方法Display device, display device manufacturing method, touch panel, and touch panel manufacturing method
本発明は、表示装置、表示装置の製造方法、タッチパネル、及び、タッチパネルの製造方法に関し、例えば、指やペン等で手書き入力を可能とした入出力一体型表示装置に関する。 The present invention relates to a display device, a method for manufacturing a display device, a touch panel, and a method for manufacturing a touch panel. For example, the present invention relates to an input / output integrated display device that enables handwriting input with a finger, a pen, or the like.
液晶パネルや有機ELパネル等の平面表示パネル等の表示パネルにタッチパネルを設けることで、文字、パターン等を手書き入力できるようにするとともに、その入力内容を表示パネルに表示できるようにした表示装置は、携帯電話機等のモバイル機器やカーナビゲーションシステムなど、様々な電子機器に多用されている。 A display device in which a touch panel is provided on a display panel such as a flat panel display panel such as a liquid crystal panel or an organic EL panel so that characters, patterns, etc. can be input by handwriting and the input content can be displayed on the display panel. It is widely used in various electronic devices such as mobile devices such as mobile phones and car navigation systems.
該表示装置は、入力時に生ずる局所的な圧力を回避して表示品位を保つために、視認側に透明な保護板が設けられる。そして、該保護板には、強度や耐久性等の面からガラス板が使用されることが好まれている。近年、モバイル機器等の軽量化や薄型化の要求により、前述の表示装置も薄型化が要求されており、それに応じて保護ガラス板も厚みの減少化が求められている。しかし、ガラスが薄くなるにつれ強度は低下し、落下等により保護ガラス(カバーガラス)自身が割れてしまうことがあり、表示装置を保護するという役割を果たすことができなくなってしまう。そのため、カバーガラスには化学強化ガラスが使用されることが一般的である(例えば、特許文献1及び特許文献2参照)。 The display device is provided with a transparent protective plate on the viewing side in order to maintain local display quality by avoiding local pressure generated during input. And it is preferable that a glass plate is used for this protection board from surface, such as intensity | strength and durability. In recent years, due to demands for weight reduction and thinning of mobile devices and the like, the above-described display device is also required to be thin, and accordingly, the thickness of the protective glass plate is also required to be reduced. However, as the glass becomes thinner, the strength decreases, and the protective glass (cover glass) itself may be broken due to dropping or the like, which makes it impossible to protect the display device. Therefore, chemical tempered glass is generally used for the cover glass (see, for example, Patent Document 1 and Patent Document 2).
また、タッチパネルの構造も薄型化に対応するために、カバーガラスとタッチセンサーを一体化させたタッチパネルが示されている(例えば、特許文献3参照)。 Also, a touch panel in which a cover glass and a touch sensor are integrated is shown in order to cope with the thinning of the structure of the touch panel (see, for example, Patent Document 3).
さらに、タッチパネルの製造方式として、大型の透明ガラス基板上にタッチセンサーを多面付け形成して、後工程で個々に裁断することにより複数のタッチパネルを効率良く製造する手法が提案されている(例えば、特許文献4参照)。 Furthermore, as a touch panel manufacturing method, a technique has been proposed in which a plurality of touch panels are efficiently manufactured by forming multiple touch sensors on a large transparent glass substrate and individually cutting in a subsequent process (for example, (See Patent Document 4).
特表2010-527892号公報Special table 2010-527892 特開2010-275126号公報JP 2010-275126 A 特開2012-88946号公報JP 2012-88946 A 特開2008-33777号公報JP 2008-33777 A
カバーガラスとして使用されうる化学強化ガラスに関して、特許文献1及び特許文献2には、特定のガラス組成が開示されているが、表示装置の具体的な構成は開示されていない。 Regarding chemically strengthened glass that can be used as a cover glass, Patent Document 1 and Patent Document 2 disclose specific glass compositions, but do not disclose a specific configuration of a display device.
タッチセンサーが多面付け形成された大型ガラス基板から個々に裁断する方法については、ケミカルエッチングで裁断する方法が特許文献3に、ダイヤモンドカッターで裁断する方法が特許文献4に開示されている。しかし、特許文献3の方法では、カバーガラス両面からエッチングによって切断するため、タッチセンサーの部分がエッチングされないようにマスキングを施し、エッチング後の洗浄や廃液処理も施さなければならず、その結果、工程の長期化・複雑化につながる。また、特許文献4の方法では、タッチセンサー側の面をダイヤモンドカッターで裁断しているため、ダイヤモンドカッターの切断溝痕が残ってしまう。切断溝痕は、ダイヤモンドカッターのような機械工具とガラスとの接触によって生じるため、ガラスに微細な傷を付けていることと表裏一体である。つまり、ガラスに切断溝痕が残っている状態では、高い端面強度(ガラス端面の強度)は得られない。 Regarding a method of individually cutting from a large glass substrate on which a touch sensor is formed with multiple faces, a method of cutting by chemical etching is disclosed in Patent Document 3, and a method of cutting by a diamond cutter is disclosed in Patent Document 4. However, in the method of Patent Document 3, since cutting is performed from both sides of the cover glass by etching, masking is performed so that the touch sensor portion is not etched, and cleaning and waste liquid treatment after etching must be performed. Leads to longer and more complicated processes. Moreover, in the method of patent document 4, since the surface by the side of a touch sensor is cut with the diamond cutter, the cutting groove trace of a diamond cutter will remain. The cut groove marks are caused by contact between the glass and a mechanical tool such as a diamond cutter, and therefore, the glass is finely scratched and integrated with the front and back. That is, in the state where cut groove marks remain in the glass, high end surface strength (strength of the glass end surface) cannot be obtained.
このように、1枚の大型ガラス基板から複数のタッチパネルを効率良く製造する方法では、化学強化ガラスを後切断するため、ガラス端面の強度は、化学強化の度合いとは関係なく、切断方法又は端面処理方法によって決まってしまう。高い端面強度を得るためには、端面をいわゆる「クリーンカット面」に仕上げる必要がある。クリーンカット面とは、例えば、機械工具によるスクライブを分割することで得られる切断面のうち非スクライブ側の切断面、あるいは、レーザースクライブによる切断面等をいう。 Thus, in the method of efficiently producing a plurality of touch panels from one large glass substrate, the chemically tempered glass is post-cut, so that the strength of the glass end face is independent of the degree of chemical strengthening, the cutting method or the end face. It depends on the processing method. In order to obtain high end surface strength, it is necessary to finish the end surface into a so-called “clean cut surface”. The clean cut surface is, for example, a non-scribe side cut surface or a laser scribe cut surface among cut surfaces obtained by dividing a scribe by a machine tool.
ただ、クリーンカット面は、チッピング(欠け)やマイクロクラック(傷)がないため、高強度である反面、鋭利なエッジを有するため、手又は指の切創等が起こりやすく、安全性に問題があった。そのため、端面に対して面取り加工が施されるのが通例であった。すなわち、従来、クリーンカット面による高い端面強度という利点が活かされることはなかった。 However, the clean cut surface has no chipping or micro cracks, so it has high strength, but it has sharp edges, so it tends to cause hand or finger incision, and there is a problem with safety. there were. Therefore, chamfering is usually applied to the end face. That is, conventionally, the advantage of high end face strength due to the clean cut surface has not been utilized.
本発明は、上記の問題点を鑑み、タッチセンサーが形成されたカバーガラスにおいて、安全性が高く、かつ、高い端面強度を有するカバーガラスを備える表示装置、及び、該表示装置の製造方法を提供することを目的とする。また、本発明は、該表示装置に用いられるタッチパネル、及び、該タッチパネルの製造方法を提供することも目的とする。 In view of the above problems, the present invention provides a display device provided with a cover glass having a high safety and high end face strength, and a method for manufacturing the display device, in a cover glass on which a touch sensor is formed. The purpose is to do. Another object of the present invention is to provide a touch panel used in the display device and a method for manufacturing the touch panel.
本発明の表示装置は、表示パネルと、上記表示パネルの前面に取り付けられたタッチパネルとを備える表示装置であって、上記タッチパネルは、上記表示パネルの前面と対向する第1の表面、及び、上記第1の表面と反対側の第2の表面を有するカバーガラスと、上記カバーガラスの上記第1の表面上に形成されたタッチセンサーとを備え、上記カバーガラスは、化学的に強化されたガラスであり、上記カバーガラスの表面圧縮応力が600~900MPa、圧縮応力層深さが5~20μmであり、上記カバーガラスは、上記第1の表面に対して略垂直なクリーンカット面、及び、上記第2の表面の端縁に形成された面取り面を有することを特徴とする。 The display device of the present invention is a display device comprising a display panel and a touch panel attached to the front surface of the display panel, wherein the touch panel is a first surface facing the front surface of the display panel, and A cover glass having a second surface opposite to the first surface; and a touch sensor formed on the first surface of the cover glass, wherein the cover glass is a chemically strengthened glass. The cover glass has a surface compressive stress of 600 to 900 MPa and a compressive stress layer depth of 5 to 20 μm. The cover glass has a clean cut surface substantially perpendicular to the first surface, and It has a chamfered surface formed at the edge of the second surface.
本発明の表示装置は、表示パネルの前面にタッチパネルが取り付けられたものであり、上記タッチパネルは、カバーガラスと、上記カバーガラスの第1の表面(表示パネルの前面と対向する面)に形成されたタッチセンサーとを備えている。そして、本発明の表示装置においては、タッチパネルを構成するカバーガラスに特徴がある。 In the display device of the present invention, a touch panel is attached to the front surface of the display panel, and the touch panel is formed on a cover glass and a first surface of the cover glass (a surface facing the front surface of the display panel). Touch sensor. And in the display apparatus of this invention, the cover glass which comprises a touchscreen has the characteristics.
本発明の表示装置では、化学的に強化されたガラスがカバーガラスとして使用されており、カバーガラスの表面圧縮応力が600~900MPa、圧縮応力層深さが5~20μmである。 In the display device of the present invention, chemically strengthened glass is used as the cover glass, and the cover glass has a surface compressive stress of 600 to 900 MPa and a compressive stress layer depth of 5 to 20 μm.
上記カバーガラスの表面圧縮応力が600~900MPaであるため、カバーガラスは強度的に優れている。表面圧縮応力が600MPa未満であると、ガラスの平均強度が低下してしまい、高硬度部材との接触による衝撃や落下による衝撃などにより割れてしまうため、市場での使用に耐えられない。一方、表面圧縮応力が900MPaを超えると、ガラスの切断性が悪化するため、特に薄いガラスでは表面圧縮応力に対して形成される内部引張応力も増加してしまい、クラック導入時にガラスが破壊される恐れがある。 Since the surface compressive stress of the cover glass is 600 to 900 MPa, the cover glass is excellent in strength. When the surface compressive stress is less than 600 MPa, the average strength of the glass is lowered, and the glass is broken due to an impact caused by contact with a high-hardness member or an impact caused by dropping. On the other hand, when the surface compressive stress exceeds 900 MPa, the cutting property of the glass deteriorates, so that the internal tensile stress formed with respect to the surface compressive stress also increases particularly in a thin glass, and the glass is broken when a crack is introduced. There is a fear.
上記カバーガラスの圧縮応力層深さが5~20μmであるため、カバーガラスは耐加傷性及び切断加工性に優れている。圧縮応力層深さが5μm未満であると、化学強化前において発生した「グリフィスフロー」と呼ばれる微小クラックに起因するガラスの破壊を防止することができない。また、圧縮応力層深さが5μm未満であると、加傷性にも劣るため、市場での使用に耐えられない。一方、圧縮応力層深さが20μmを超えると、ガラスをスクライブ線に沿って分割すること、つまりガラスを切断することが容易でなくなる。 Since the cover glass has a compressive stress layer depth of 5 to 20 μm, the cover glass is excellent in scratch resistance and cutting workability. When the depth of the compressive stress layer is less than 5 μm, it is not possible to prevent the glass from being broken due to micro cracks called “Griffith flow” generated before chemical strengthening. Moreover, since the compressive-stress layer depth is less than 5 micrometers, since it is inferior to scratchability, it cannot endure use on a market. On the other hand, when the compressive stress layer depth exceeds 20 μm, it becomes difficult to divide the glass along the scribe line, that is, to cut the glass.
上記カバーガラスは、第1の表面に対して略垂直なクリーンカット面、及び、第2の表面の端縁に形成された面取り面を有しており、この点が、本発明の表示装置の大きな特徴である。 The cover glass has a clean cut surface substantially perpendicular to the first surface and a chamfered surface formed at the edge of the second surface. This point is the characteristic of the display device of the present invention. It is a big feature.
まず、カバーガラスの第1の表面に対して略垂直にクリーンカット面が形成されているため、高い端面強度が得られる。また、指やペン等の入力操作によりカバーガラス面を押すとタッチセンサー側(第1の表面側)のガラス面に引張応力が印加されることになるため、タッチセンサー側の端面強度が高いことは好ましい。 First, since the clean cut surface is formed substantially perpendicular to the first surface of the cover glass, high end surface strength can be obtained. Also, when the cover glass surface is pressed by an input operation with a finger or pen, tensile stress is applied to the glass surface on the touch sensor side (first surface side), so the end surface strength on the touch sensor side is high. Is preferred.
また、カバーガラスの第2の表面は、表示装置の最外側にあたり、手又は指等で直接触れて操作する面である。その第2の表面の端縁に面取り加工を施すことにより、手又は指の切創等を起こすことなく、安全に表示装置を使用することができる。 The second surface of the cover glass corresponds to the outermost side of the display device, and is a surface that is directly touched and operated with a hand or a finger. By chamfering the edge of the second surface, the display device can be used safely without causing a hand or finger cut.
上記カバーガラスにおいて、モバイル機器などの最終製品の軽量化やバッテリーなどの装置容量の確保のために、ガラスの板厚はできるだけ薄い方が望ましいが、薄すぎるとガラスがたわむことにより発生する応力が大きくなってしまう。また、板厚は厚すぎると装置重量の増加や表示装置の視認性の低下をまねいてしまう。そのため、本発明の表示装置においては、上記カバーガラスの厚みが0.3~3mmであることが好ましい。 In the above cover glass, it is desirable to make the glass plate as thin as possible in order to reduce the weight of final products such as mobile devices and to secure the capacity of devices such as batteries, but if it is too thin, the stress generated by the glass bending will be generated. It gets bigger. On the other hand, if the plate thickness is too thick, the apparatus weight increases and the visibility of the display device decreases. Therefore, in the display device of the present invention, the cover glass preferably has a thickness of 0.3 to 3 mm.
本発明の表示装置において、上記カバーガラスは、ガラス表面側の応力分布パターンAとガラス内部側の応力分布パターンBとの2種類の応力パターンを圧縮応力層の中に有し、該応力パターンA及び該応力パターンBをそれぞれ1次関数で近似する場合において、該応力パターンAの傾きをS、該応力パターンBの傾きをSとしたとき、S>Sの関係を満たし、かつ、光導波路効果を観測原理とする表面応力計を用いて上記カバーガラスの干渉縞を観察し、ガラス表面から1番目の干渉縞と2番目の干渉縞との間隔をr、ガラス表面から2番目の干渉縞と3番目の干渉縞との間隔をr、ガラス表面から3番目の干渉縞と4番目の干渉縞との間隔をrとしたとき、r/r及びr/rの少なくとも1つが、0.3~0.7を満たすことが好ましい。 In the display device of the present invention, the cover glass has two types of stress patterns, a stress distribution pattern A on the glass surface side and a stress distribution pattern B on the glass inner side, in the compressive stress layer. and in the case of approximating the the stress pattern B respectively a linear function, when the inclination of the stress pattern a and S a, the slope of the stress pattern B and S B, satisfy the relationship of S a> S B, and The interference fringes of the cover glass are observed using a surface stress meter whose observation principle is the optical waveguide effect, the distance between the first interference fringe and the second interference fringe from the glass surface is r 1 , and 2 from the glass surface. When the distance between the third interference fringe and the third interference fringe is r 2 , and the distance between the third interference fringe and the fourth interference fringe from the glass surface is r 3 , r 2 / r 1 and r 3 / Although at least one of r 2, Preferably satisfies the .3 to 0.7.
一般に、表面圧縮応力の値が高くなればなるほど、圧縮応力層における圧縮応力の積算値との均衡を保つために必要な内部引張応力の値は高くなってしまうと考えられている。
上記カバーガラスが、ガラス表面側の応力分布パターンAとガラス内部側の応力分布パターンBとの2種類の応力パターンを圧縮応力層の中に有し、上述のS>Sの関係を満たしていると、高い表面圧縮応力の値を有しながらも、圧縮応力層における圧縮応力の積算値を低減させることができる。
In general, it is considered that the higher the value of the surface compressive stress, the higher the value of the internal tensile stress necessary to maintain a balance with the integrated value of the compressive stress in the compressive stress layer.
The cover glass has two kinds of stress patterns in the compressive stress layer, that is, a stress distribution pattern A on the glass surface side and a stress distribution pattern B on the glass inner side, and satisfies the relationship of S A > S B described above. In this case, the integrated value of the compressive stress in the compressive stress layer can be reduced while having a high surface compressive stress value.
また、応力パターンの傾きを評価するための指標として、上述の比r/r及びr/rを評価し、r/r及びr/rの少なくとも1つが0.3~0.7を満たす場合、ガラス表面側においては、応力が急激に減少し、ガラス内部側に向かうほど、応力が減少する割合が小さくなる。これは、上述した応力パターンの傾きの変化を近似的に表現できている。従って、S>Sの関係を満たすことが可能となり、圧縮応力層における圧縮応力の積算値を低減させることができる。r/rの比及びr/rの比が0.3未満であると、ガラス表面側において、応力が急激に減少しすぎる傾向にあり、カバーガラスを使用中に生じうるマイクロクラックによって強度が低下してしまう懸念が生じる。一方、r/rの比及びr/rの比が0.7を超えると、応力パターンの傾きが一定に近くなる。つまり、ガラス表面から内部に向かっての圧縮応力の減少の程度がより直線的な傾向となる。そのため、圧縮応力層における圧縮応力の積算値を低減させる効果が得られにくくなる。 Further, as an index for evaluating the inclination of the stress pattern, the above ratios r 2 / r 1 and r 3 / r 2 are evaluated, and at least one of r 2 / r 1 and r 3 / r 2 is 0.3. When ˜0.7 is satisfied, the stress rapidly decreases on the glass surface side, and the rate at which the stress decreases decreases toward the glass inner side. This can approximately represent the change in the slope of the stress pattern described above. Therefore, the relationship of S A > S B can be satisfied, and the integrated value of the compressive stress in the compressive stress layer can be reduced. When the ratio of r 2 / r 1 and the ratio of r 3 / r 2 is less than 0.3, the stress tends to decrease too rapidly on the glass surface side, and microcracks that may occur during use of the cover glass Therefore, there is a concern that the strength may decrease. On the other hand, when the ratio r 2 / r 1 and the ratio r 3 / r 2 exceed 0.7, the inclination of the stress pattern becomes nearly constant. That is, the degree of decrease in compressive stress from the glass surface toward the inside tends to be more linear. Therefore, it becomes difficult to obtain the effect of reducing the integrated value of the compressive stress in the compressive stress layer.
本発明の表示装置においては、上記カバーガラスの上記クリーンカット面の算術平均粗さRaが0.07μm以下であり、かつ、最大高さ粗さRzが0.70μm以下であることが好ましい。 In the display device of the present invention, the arithmetic average roughness Ra of the clean cut surface of the cover glass is preferably 0.07 μm or less, and the maximum height roughness Rz is preferably 0.70 μm or less.
本発明の表示装置においては、上記カバーガラスの上記面取り面における取り代が、上記カバーガラスの厚みの3~35%であることが好ましい。 In the display device of the present invention, it is preferable that a machining allowance of the cover glass on the chamfered surface is 3 to 35% of the thickness of the cover glass.
本発明の表示装置の製造方法は、表示パネルと、上記表示パネルの前面に取り付けられたタッチパネルとを備える表示装置の製造方法であって、化学的に強化されたガラス板であって、表面圧縮応力が600~900MPa、圧縮応力層深さが5~20μmであるガラス板を準備する工程と、上記ガラス板の第1の表面上の少なくとも第1の領域及び第2の領域に、タッチセンサーをそれぞれ形成する工程と、上記第1の領域及び上記第2の領域が分割され、かつ、上記ガラス板の上記第1の表面に対して略垂直なクリーンカット面が形成されるように上記ガラス板を切断することにより、第1の表面上に上記タッチセンサーが形成されたカバーガラスを少なくとも2枚作製する工程と、上記カバーガラスの上記第1の表面と反対側の第2の表面の端縁に面取り加工を施す工程と、上記カバーガラスの上記第1の表面を、上記表示パネルの前面に対向するように配置する工程とを含むことを特徴とする。 A display device manufacturing method according to the present invention is a display device manufacturing method including a display panel and a touch panel attached to the front surface of the display panel, and is a chemically strengthened glass plate, which is a surface compression A step of preparing a glass plate having a stress of 600 to 900 MPa and a compressive stress layer depth of 5 to 20 μm; and a touch sensor on at least the first region and the second region on the first surface of the glass plate. The glass plate so that each of the forming step and the first region and the second region are divided and a clean cut surface substantially perpendicular to the first surface of the glass plate is formed. Cutting at least two cover glasses having the touch sensor formed on the first surface, and a second side of the cover glass opposite to the first surface. A step of chamfering the edge of the surface, the first surface of the cover glass, characterized in that it comprises a step of disposing so as to face the front surface of the display panel.
上記の方法では、1枚の大型のガラス板に複数のタッチセンサーを形成した後に当該ガラス板を分割するため、複数のタッチパネルを効率良く作製することができる。また、タッチセンサー側の面(第1の表面)に対して略垂直にクリーンカット面を形成するため、タッチセンサー側の端面強度を高くすることができる。このように、本発明の表示装置を効率良く製造することができる。 In the above method, since a plurality of touch sensors are formed on one large glass plate and then the glass plate is divided, a plurality of touch panels can be efficiently manufactured. Moreover, since the clean cut surface is formed substantially perpendicular to the surface (first surface) on the touch sensor side, the end surface strength on the touch sensor side can be increased. Thus, the display device of the present invention can be efficiently manufactured.
本発明の表示装置の製造方法においては、上記カバーガラスの厚みが0.3~3mmであることが好ましい。 In the method for manufacturing a display device of the present invention, the cover glass preferably has a thickness of 0.3 to 3 mm.
本発明の表示装置の製造方法において、上記カバーガラスは、ガラス表面側の応力分布パターンAとガラス内部側の応力分布パターンBとの2種類の応力パターンを圧縮応力層の中に有し、該応力パターンA及び該応力パターンBをそれぞれ1次関数で近似する場合において、該応力パターンAの傾きをS、該応力パターンBの傾きをSとしたとき、S>Sの関係を満たし、かつ、光導波路効果を観測原理とする表面応力計を用いて上記カバーガラスの干渉縞を観察し、ガラス表面から1番目の干渉縞と2番目の干渉縞との間隔をr、ガラス表面から2番目の干渉縞と3番目の干渉縞との間隔をr、ガラス表面から3番目の干渉縞と4番目の干渉縞との間隔をrとしたとき、r/r及びr/rの少なくとも1つが、0.3~0.7を満たすことが好ましい。 In the method for manufacturing a display device of the present invention, the cover glass has two types of stress patterns in the compression stress layer, that is, a stress distribution pattern A on the glass surface side and a stress distribution pattern B on the glass inner side, in the case of approximating the stress pattern a and the stress pattern B respectively a linear function, when the inclination of the stress pattern a and S a, the slope of the stress pattern B and S B, the relationship between S a> S B The interference fringes of the cover glass are observed using a surface stress meter that satisfies the optical waveguide effect as the observation principle, and the distance between the first interference fringe and the second interference fringe from the glass surface is r 1 , glass When the distance between the second interference fringe and the third interference fringe from the surface is r 2 , and the distance between the third interference fringe and the fourth interference fringe from the glass surface is r 3 , r 2 / r 1 and When the least of r 3 / r 2 One, but preferably satisfies 0.3 to 0.7.
本発明の表示装置の製造方法においては、上記カバーガラスの上記クリーンカット面の算術平均粗さRaが0.07μm以下であり、かつ、最大高さ粗さRzが0.70μm以下であることが好ましい。 In the manufacturing method of the display device of the present invention, the arithmetic average roughness Ra of the clean cut surface of the cover glass is 0.07 μm or less, and the maximum height roughness Rz is 0.70 μm or less. preferable.
本発明の表示装置の製造方法においては、上記カバーガラスの上記面取り面における取り代が、上記カバーガラスの厚みの3~35%であることが好ましい。 In the method for manufacturing a display device of the present invention, it is preferable that a machining allowance on the chamfered surface of the cover glass is 3 to 35% of the thickness of the cover glass.
本発明のタッチパネルは、第1の表面、及び、上記第1の表面と反対側の第2の表面を有するカバーガラスと、上記カバーガラスの上記第1の表面上に形成されたタッチセンサーとを備えるタッチパネルであって、上記カバーガラスは、化学的に強化されたガラスであり、上記カバーガラスの表面圧縮応力が600~900MPa、圧縮応力層深さが5~20μmであり、上記カバーガラスは、上記第1の表面に対して略垂直なクリーンカット面、及び、上記第2の表面の端縁に形成された面取り面を有することを特徴とする。 The touch panel of the present invention includes a cover glass having a first surface and a second surface opposite to the first surface, and a touch sensor formed on the first surface of the cover glass. The cover glass is a chemically strengthened glass, the cover glass has a surface compressive stress of 600 to 900 MPa, and a compressive stress layer depth of 5 to 20 μm. It has a clean cut surface substantially perpendicular to the first surface, and a chamfered surface formed at an edge of the second surface.
本発明のタッチパネルにおいては、上記カバーガラスの厚みが0.3~3mmであることが好ましい。 In the touch panel of the present invention, the cover glass preferably has a thickness of 0.3 to 3 mm.
本発明のタッチパネルにおいて、上記カバーガラスは、ガラス表面側の応力分布パターンAとガラス内部側の応力分布パターンBとの2種類の応力パターンを圧縮応力層の中に有し、該応力パターンA及び該応力パターンBをそれぞれ1次関数で近似する場合において、該応力パターンAの傾きをS、該応力パターンBの傾きをSとしたとき、S>Sの関係を満たし、かつ、光導波路効果を観測原理とする表面応力計を用いて上記カバーガラスの干渉縞を観察し、ガラス表面から1番目の干渉縞と2番目の干渉縞との間隔をr、ガラス表面から2番目の干渉縞と3番目の干渉縞との間隔をr、ガラス表面から3番目の干渉縞と4番目の干渉縞との間隔をrとしたとき、r/r及びr/rの少なくとも1つが、0.3~0.7を満たすことが好ましい。 In the touch panel of the present invention, the cover glass has two types of stress patterns, a stress distribution pattern A on the glass surface side and a stress distribution pattern B on the glass inner side, in the compressive stress layer. in the case of approximating the the stress pattern B respectively a linear function, when the inclination of the stress pattern a and S a, the slope of the stress pattern B and S B, satisfy the relationship of S a> S B, and, The interference fringes of the cover glass are observed using a surface stress meter whose observation principle is the optical waveguide effect. The distance between the first interference fringe and the second interference fringe from the glass surface is r 1 , and the second interference fringe is second from the glass surface. interval r 2 between the interference fringes and the third interference fringes, when the distance between the third interference fringes and fourth interference fringes from the glass surface was r 3, r 2 / r 1 and r 3 / r at least one of the 2 Preferably satisfies 0.3 to 0.7.
本発明のタッチパネルにおいては、上記カバーガラスの上記クリーンカット面の算術平均粗さRaが0.07μm以下であり、かつ、最大高さ粗さRzが0.70μm以下であることが好ましい。 In the touch panel of the present invention, it is preferable that the arithmetic average roughness Ra of the clean cut surface of the cover glass is 0.07 μm or less and the maximum height roughness Rz is 0.70 μm or less.
本発明のタッチパネルにおいては、上記カバーガラスの上記面取り面における取り代が、上記カバーガラスの厚みの3~35%であることが好ましい。 In the touch panel of the present invention, it is preferable that the machining allowance on the chamfered surface of the cover glass is 3 to 35% of the thickness of the cover glass.
本発明のタッチパネルは、本発明の表示装置を構成するタッチパネルと同じ構成を有している。したがって、本発明の表示装置で説明した効果と同様の効果を発揮するため、その詳細な説明を省略する。 The touch panel of this invention has the same structure as the touch panel which comprises the display apparatus of this invention. Therefore, in order to exhibit the same effect as that described in the display device of the present invention, detailed description thereof is omitted.
本発明のタッチパネルの製造方法は、化学的に強化されたガラス板であって、表面圧縮応力が600~900MPa、圧縮応力層深さが5~20μmであるガラス板を準備する工程と、上記ガラス板の第1の表面上の少なくとも第1の領域及び第2の領域に、タッチセンサーをそれぞれ形成する工程と、上記第1の領域及び上記第2の領域が分割され、かつ、上記ガラス板の上記第1の表面に対して略垂直なクリーンカット面が形成されるように上記ガラス板を切断することにより、第1の表面上に上記タッチセンサーが形成されたカバーガラスを少なくとも2枚作製する工程と、上記カバーガラスの上記第1の表面と反対側の第2の表面の端縁に面取り加工を施す工程とを含むことを特徴とする。 The method for producing a touch panel of the present invention includes a step of preparing a glass plate that is chemically strengthened and has a surface compressive stress of 600 to 900 MPa and a compressive stress layer depth of 5 to 20 μm, and the glass Forming a touch sensor in at least a first region and a second region on the first surface of the plate, respectively, dividing the first region and the second region, and the glass plate By cutting the glass plate so that a clean cut surface substantially perpendicular to the first surface is formed, at least two cover glasses having the touch sensor formed on the first surface are produced. And a step of chamfering the edge of the second surface opposite to the first surface of the cover glass.
本発明のタッチパネルの製造方法においては、上記カバーガラスの厚みが0.3~3mmであることが好ましい。 In the touch panel manufacturing method of the present invention, the cover glass preferably has a thickness of 0.3 to 3 mm.
本発明のタッチパネルの製造方法において、上記カバーガラスは、ガラス表面側の応力分布パターンAとガラス内部側の応力分布パターンBとの2種類の応力パターンを圧縮応力層の中に有し、該応力パターンA及び該応力パターンBをそれぞれ1次関数で近似する場合において、該応力パターンAの傾きをS、該応力パターンBの傾きをSとしたとき、S>Sの関係を満たし、かつ、光導波路効果を観測原理とする表面応力計を用いて上記カバーガラスの干渉縞を観察し、ガラス表面から1番目の干渉縞と2番目の干渉縞との間隔をr、ガラス表面から2番目の干渉縞と3番目の干渉縞との間隔をr、ガラス表面から3番目の干渉縞と4番目の干渉縞との間隔をrとしたとき、r/r及びr/rの少なくとも1つが、0.3~0.7を満たすことが好ましい。 In the touch panel manufacturing method of the present invention, the cover glass has two types of stress patterns, a stress distribution pattern A on the glass surface side and a stress distribution pattern B on the glass inner side, in the compressive stress layer. in the case of approximating the pattern a and the stress pattern B respectively a linear function, when the inclination of the stress pattern a and S a, the slope of the stress pattern B and S B, satisfy the relationship of S a> S B In addition, the interference fringes of the cover glass are observed using a surface stress meter whose observation principle is the optical waveguide effect, the distance between the first interference fringes and the second interference fringes from the glass surface is r 1 , and the glass surface when the distance between the second interference pattern and third interference fringes r 2, the distance between the third interference fringes and fourth interference fringes from the glass surface was r 3 from, r 2 / r 1 and r of 3 / r 2 small Both one but preferably satisfies 0.3 to 0.7.
本発明のタッチパネルの製造方法においては、上記カバーガラスの上記クリーンカット面の算術平均粗さRaが0.07μm以下であり、かつ、最大高さ粗さRzが0.70μm以下であることが好ましい。 In the touch panel manufacturing method of the present invention, the arithmetic mean roughness Ra of the clean cut surface of the cover glass is preferably 0.07 μm or less, and the maximum height roughness Rz is preferably 0.70 μm or less. .
本発明のタッチパネルの製造方法においては、上記カバーガラスの上記面取り面における取り代が、上記カバーガラスの厚みの3~35%であることが好ましい。 In the touch panel manufacturing method of the present invention, it is preferable that a machining allowance of the cover glass on the chamfered surface is 3 to 35% of the thickness of the cover glass.
本発明のタッチパネルの製造方法においては、本発明の表示装置の製造方法と同じ工程によりタッチパネルを製造する。したがって、本発明の表示装置の製造方法で説明した効果と同様の効果を発揮するため、その詳細な説明を省略する。 In the touch panel manufacturing method of the present invention, the touch panel is manufactured by the same process as the display device manufacturing method of the present invention. Accordingly, the same effect as that described in the method for manufacturing the display device of the present invention is exhibited, and thus detailed description thereof is omitted.
本発明によれば、タッチセンサーが形成されたカバーガラスにおいて、タッチセンサー側の面における端面強度が高く、かつ、視認側の最外面における安全性が高いカバーガラスを備える表示装置とすることができる。 According to the present invention, in the cover glass on which the touch sensor is formed, a display device including the cover glass having high end surface strength on the surface on the touch sensor side and high safety on the outermost surface on the viewing side can be provided. .
図1は、本発明の実施形態に係る表示装置の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of a display device according to an embodiment of the present invention. 図2は、本発明の実施形態に係る表示装置を構成するカバーガラスの一例を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing an example of a cover glass constituting the display device according to the embodiment of the present invention. 図3(a)及び図3(b)は、本発明の実施形態に係る表示装置を構成するカバーガラスの面取り面の形状を模式的に示す拡大断面図である。FIG. 3A and FIG. 3B are enlarged cross-sectional views schematically showing the shape of the chamfered surface of the cover glass constituting the display device according to the embodiment of the present invention. 図4は、応力パターンの傾きと圧縮応力層における圧縮応力の積算値との関係を模式的に示すグラフである。FIG. 4 is a graph schematically showing the relationship between the inclination of the stress pattern and the integrated value of the compressive stress in the compressive stress layer. 図5(a)~図5(c)は、干渉縞の間隔と応力パターンの傾きとの関係を模式的に示すグラフである。FIGS. 5A to 5C are graphs schematically showing the relationship between the interference fringe spacing and the stress pattern inclination. 図6は、表面応力計の視野内の干渉縞の一例を模式的に示す図である。FIG. 6 is a diagram schematically illustrating an example of interference fringes in the field of view of the surface stress meter. 図7(a)及び図7(b)は、静電容量方式によるタッチパネルにおける位置検出の原理の一例を説明するための図である。FIG. 7A and FIG. 7B are diagrams for explaining an example of the principle of position detection in a capacitive touch panel. 図8(a)~図8(f)は、本発明の実施形態に係る表示装置の製造方法の一例を模式的に示す断面図である。8 (a) to 8 (f) are cross-sectional views schematically showing an example of the method for manufacturing the display device according to the embodiment of the present invention. 図9(a)~図9(e)は、レーザースクライブによる加工原理の一例を説明するための図である。FIGS. 9A to 9E are diagrams for explaining an example of a processing principle by laser scribing.
以下、本発明の実施形態について具体的に説明する。しかしながら、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。 Hereinafter, embodiments of the present invention will be specifically described. However, the present invention is not limited to the following embodiments, and can be applied with appropriate modifications without departing from the scope of the present invention.
まず、本発明の実施形態に係る表示装置について説明する。なお、以下に説明する表示装置の構成要素である、カバーガラスと、上記カバーガラスの第1の表面上に形成されたタッチセンサーとを備えるタッチパネルも、本発明の実施形態である。 First, a display device according to an embodiment of the present invention will be described. In addition, the touch panel provided with the cover glass which is a component of the display apparatus demonstrated below and the touch sensor formed on the 1st surface of the said cover glass is also embodiment of this invention.
図1は、本発明の実施形態に係る表示装置の一例を模式的に示す断面図である。
図1に示す表示装置10は、タッチパネル100と表示パネル200とを備えており、タッチパネル100は、カバーガラス110とタッチセンサー120とを備えている。
FIG. 1 is a cross-sectional view schematically showing an example of a display device according to an embodiment of the present invention.
The display device 10 illustrated in FIG. 1 includes a touch panel 100 and a display panel 200, and the touch panel 100 includes a cover glass 110 and a touch sensor 120.
タッチパネル100は、表示パネル200の前面(視認側の面)に取り付けられている。つまり、タッチパネル100の背面(反視認側の面)は、表示パネル200の前面に対向して配置されている。 The touch panel 100 is attached to the front surface (viewing side surface) of the display panel 200. That is, the back surface (surface on the anti-viewing side) of the touch panel 100 is disposed to face the front surface of the display panel 200.
カバーガラス110は、反視認側の面である第1の表面111と視認側の面である第2の表面112とを有しており、また、第1の表面111に対して略垂直なクリーンカット面113、及び、第2の表面112の端縁に形成された面取り面114を有している。さらに、カバーガラス110の第1の表面111は、表示パネル200の前面に対向して配置されている。カバーガラス110については、後で詳細に説明する。 The cover glass 110 has a first surface 111 that is the surface on the anti-viewing side and a second surface 112 that is the surface on the viewing side, and is a clean surface that is substantially perpendicular to the first surface 111. A cut surface 113 and a chamfered surface 114 formed at the edge of the second surface 112 are provided. Further, the first surface 111 of the cover glass 110 is disposed to face the front surface of the display panel 200. The cover glass 110 will be described later in detail.
タッチセンサー120は、カバーガラス110の第1の表面111上に形成されており、タッチセンサー120の反視認側の面は、表示パネル200の前面に対向して配置されている。 The touch sensor 120 is formed on the first surface 111 of the cover glass 110, and the surface on the non-viewing side of the touch sensor 120 is disposed to face the front surface of the display panel 200.
したがって、図1に示す表示装置10においては、視認側から、カバーガラス110、タッチセンサー120、表示パネル200がこの順で配置されている。カバーガラス110は、視認側の最外側に配置されている。 Therefore, in the display device 10 shown in FIG. 1, the cover glass 110, the touch sensor 120, and the display panel 200 are arranged in this order from the viewing side. The cover glass 110 is disposed on the outermost side on the viewing side.
本発明の実施形態に係る表示装置を構成するカバーガラスは、「One Glass Solution」あるいは「カバーガラス一体型」と呼ばれるような、カバーガラスをタッチセンサー形成の基板として用いることにより、カバーガラス1枚でカバー機能と基板機能を担うものである。 The cover glass constituting the display device according to the embodiment of the present invention is a single cover glass by using the cover glass as a substrate for touch sensor formation, which is called “One Glass Solution” or “cover glass integrated type”. It is responsible for the cover function and the board function.
図2は、本発明の実施形態に係る表示装置を構成するカバーガラスの一例を模式的に示す斜視図である。
上述のように、カバーガラス110は、第1の表面111と、第1の表面111と反対側の第2の表面112とを有している。また、カバーガラス110は、第1の表面111に対して略垂直なクリーンカット面113、及び、第2の表面112の端縁に形成された面取り面114を有している。
FIG. 2 is a perspective view schematically showing an example of a cover glass constituting the display device according to the embodiment of the present invention.
As described above, the cover glass 110 has the first surface 111 and the second surface 112 opposite to the first surface 111. The cover glass 110 has a clean cut surface 113 substantially perpendicular to the first surface 111 and a chamfered surface 114 formed at the edge of the second surface 112.
クリーンカット面113は、チッピングやマイクロクラックのない面であり、好ましくは鏡面である。このようなクリーンカット面113は、第2の表面112にメカニカルスクライブを施して折割ることで得ることができ、また、第1の表面111又は第2の表面112側からレーザースクライブによって切断することで得ることもできる。クリーンカット面113は、レーザースクライブによる切断面であることが好ましく、第1の表面111側からのレーザースクライブによる切断面であることがより好ましい。 The clean cut surface 113 is a surface free from chipping or microcracks, and is preferably a mirror surface. Such a clean cut surface 113 can be obtained by applying mechanical scribe to the second surface 112 and breaking it, and is also cut by laser scribe from the first surface 111 or the second surface 112 side. Can also be obtained. The clean cut surface 113 is preferably a cut surface by laser scribing, and more preferably a cut surface by laser scribing from the first surface 111 side.
クリーンカット面113は、第1の表面111に対して略垂直である。
なお、本明細書において「略垂直」とは、完全に垂直であるもののみならず、本発明の効果に鑑みて実質的に垂直と同視できるものを含むものである。
The clean cut surface 113 is substantially perpendicular to the first surface 111.
In the present specification, “substantially vertical” includes not only completely vertical but also what can be substantially regarded as vertical in view of the effects of the present invention.
本発明の実施形態に係る表示装置を構成するカバーガラスにおいては、クリーンカット面が第1の面に対して略垂直である限り、弗酸やバッファード弗酸などからなるエッチング液によってエッチングが施されていてもよい。 In the cover glass constituting the display device according to the embodiment of the present invention, as long as the clean cut surface is substantially perpendicular to the first surface, etching is performed with an etchant made of hydrofluoric acid or buffered hydrofluoric acid. May be.
本発明の実施形態に係る表示装置を構成するカバーガラスにおいて、クリーンカット面(端面)の算術平均粗さRaは、好ましくは0.07μm以下、より好ましくは0.06μm以下、さらに好ましくは0.05μm以下である。また、クリーンカット面(端面)の最大高さ粗さRzは、好ましくは0.70μm以下、より好ましくは0.60μm、さらに好ましくは0.50μm以下である。Raの下限は、小さければ小さい程よいが、特に設定されるものではなく、0.005μmとしてもよい。Rzの下限は、小さければ小さい程よいが、特に設定されるものではなく、0.010μmとしてもよい。なお、Raは、JIS B 0601:2001で定義される算術平均粗さであり、Rzは、JIS B 0601:2001で定義される最大高さ粗さである。 In the cover glass constituting the display device according to the embodiment of the present invention, the arithmetic average roughness Ra of the clean cut surface (end surface) is preferably 0.07 μm or less, more preferably 0.06 μm or less, and still more preferably 0.8. It is 05 μm or less. Further, the maximum height roughness Rz of the clean cut surface (end surface) is preferably 0.70 μm or less, more preferably 0.60 μm, and further preferably 0.50 μm or less. The lower limit of Ra is preferably as small as possible, but is not particularly set, and may be 0.005 μm. The lower limit of Rz is preferably as small as possible, but is not particularly set, and may be 0.010 μm. Ra is an arithmetic average roughness defined by JIS B 0601: 2001, and Rz is a maximum height roughness defined by JIS B 0601: 2001.
なお、本発明の実施形態に係る表示装置において、クリーンカット面は、カバーガラスの第1の表面と連続して形成されていればよく、また、面取り面と連続して形成されている方が好ましい。また、クリーンカット面は、カバーガラスのすべての第1の表面と連続して形成されていることが好ましい。 In the display device according to the embodiment of the present invention, the clean cut surface only needs to be formed continuously with the first surface of the cover glass, and is more preferably formed continuously with the chamfered surface. preferable. The clean cut surface is preferably formed continuously with all the first surfaces of the cover glass.
面取り面114は、第2の表面112の端縁に面取り加工を施すことで得ることができる。面取りとは、角部を削って面を作ることであり、その加工方法としては、機械加工によるC面取り及びR面取りの中から1種又は複数を組み合わせた方法から選ばれる。さらに、酸化セリウムのような研磨材等で鏡面状態に仕上げられていることが好ましい。あるいは、弗酸やバッファード弗酸などからなるエッチング液に浸漬させることで面取り加工を施してもよい。またさらに、上記のような機械加工とエッチング液への浸漬などを組み合わせることで面取り加工を施してもよい。 The chamfered surface 114 can be obtained by chamfering the edge of the second surface 112. The chamfering is to make a surface by cutting off the corners, and the processing method is selected from a method combining one or more of C chamfering and R chamfering by machining. Further, it is preferably finished in a mirror state with an abrasive such as cerium oxide. Alternatively, the chamfering may be performed by immersing in an etching solution made of hydrofluoric acid or buffered hydrofluoric acid. Furthermore, chamfering may be performed by combining the above-described machining and immersion in an etching solution.
図3(a)及び図3(b)は、本発明の実施形態に係る表示装置を構成するカバーガラスの面取り面の形状を模式的に示す拡大断面図である。
図3(a)は、角部の形状を1つの平面で切り落とした形状にする面取りを示しており、このような面取りをC面取りということとする。図3(b)は、角部の形状を曲面状にする面取りを示しており、このような面取りをR面取りということとする。なお、図3(a)及び図3(b)では、両矢印xで示す長さが表面側及び端面側で同じであるが、この長さは表面側及び端面側で異なっていてもよい。
FIG. 3A and FIG. 3B are enlarged cross-sectional views schematically showing the shape of the chamfered surface of the cover glass constituting the display device according to the embodiment of the present invention.
FIG. 3A shows chamfering in which the shape of the corner is cut off by one plane, and such chamfering is referred to as C chamfering. FIG. 3B shows chamfering in which the shape of the corner is curved, and such chamfering is referred to as R chamfering. In FIGS. 3A and 3B, the length indicated by the double arrow x is the same on the surface side and the end surface side, but this length may be different on the surface side and the end surface side.
本発明の実施形態に係る表示装置においては、手又は指の切創等を起こさず安全性が確保できれば、カバーガラスの面取り面における取り代(面取り範囲)は適宜決めればよい。例えば、面取り面の形状がC面取り又はR面取りである場合、頂部Aからの取り代(図3(a)及び図3(b)中、両矢印xで示す長さ)は、カバーガラスの厚みの3~35%であることが好ましい。なお、面取り面の形状がC面取り又はR面取り以外の場合においても、頂部Aからの取り代は、カバーガラスの厚みの3~35%であることが好ましい。カバーガラスの厚みに対して取り代が3%より小さいと、スクライブ痕を除去することができない。一方、カバーガラスの厚みに対して取り代が35%より大きいと、カバーガラスの厚みに対して取り代が大きくなりすぎてしまい、外観的に好ましくない。 In the display device according to the embodiment of the present invention, as long as safety can be ensured without causing a hand or finger cut or the like, the machining allowance (chamfering range) on the chamfered surface of the cover glass may be appropriately determined. For example, when the shape of the chamfered surface is C chamfering or R chamfering, the machining allowance from the top A (the length indicated by the double arrow x in FIGS. 3A and 3B) is the thickness of the cover glass. It is preferably 3 to 35% of the above. Even when the shape of the chamfered surface is other than C chamfering or R chamfering, the machining allowance from the top A is preferably 3 to 35% of the thickness of the cover glass. If the machining allowance is less than 3% with respect to the thickness of the cover glass, the scribe marks cannot be removed. On the other hand, if the allowance is larger than 35% with respect to the thickness of the cover glass, the allowance becomes too large with respect to the thickness of the cover glass, which is not preferable in appearance.
なお、本発明の実施形態に係る表示装置において、面取り面は、カバーガラスの第2の表面のすべての端縁に形成されていることが好ましいが、第2の表面の端縁に面取り面が形成されていない部分があってもよい。 In the display device according to the embodiment of the present invention, the chamfered surface is preferably formed on all edges of the second surface of the cover glass, but the chamfered surface is formed on the edge of the second surface. There may be a portion that is not formed.
本発明の実施形態に係る表示装置を構成するカバーガラスは、化学的に強化されたガラス(化学強化ガラス)である。例えば、ガラス表面層中のナトリウムイオンが、ガラス外部に存在するカリウムイオンとイオン交換されることにより、ガラス表面に圧縮応力層が形成されている。 The cover glass constituting the display device according to the embodiment of the present invention is a chemically strengthened glass (chemically strengthened glass). For example, sodium ions in the glass surface layer are ion-exchanged with potassium ions existing outside the glass, so that a compressive stress layer is formed on the glass surface.
本発明の実施形態に係る表示装置を構成するカバーガラスの表面圧縮応力は、600~900MPaである。ガラスへの衝撃又はキズ等への抵抗性を考慮すると、表面圧縮応力の下限は、620MPa、さらには650MPaであってもよい。表面圧縮応力の値は高い方が好ましいが、表面圧縮応力の値が高くなることにより内部引張応力が増加することを考慮すると、表面圧縮応力の上限は、850MPa、さらには800MPa、またさらには750MPaであってもよい。 The surface compressive stress of the cover glass constituting the display device according to the embodiment of the present invention is 600 to 900 MPa. Considering the resistance to glass impact or scratches, the lower limit of the surface compressive stress may be 620 MPa, or even 650 MPa. A higher surface compressive stress value is preferred, but considering that the internal tensile stress increases as the surface compressive stress value increases, the upper limit of the surface compressive stress is 850 MPa, further 800 MPa, or even 750 MPa. It may be.
本発明の実施形態に係る表示装置を構成するカバーガラスの圧縮応力層深さは、耐加傷性と切断加工性を同時に考慮すると、5~20μmであり、好ましくは6~15μmであり、より好ましくは9~15μmであり、さらに好ましくは10~13μmである。 The compressive stress layer depth of the cover glass constituting the display device according to the embodiment of the present invention is 5 to 20 μm, preferably 6 to 15 μm, considering the scratch resistance and cutting workability at the same time. The thickness is preferably 9 to 15 μm, more preferably 10 to 13 μm.
本明細書において、イオン交換後の表面圧縮応力、及び、圧縮応力層深さとは、それぞれ、光導波路効果を活用する表面応力計を用いて光弾性法により測定した値をいう。なお、表面応力計を用いた測定においては、イオン交換前のガラスのガラス組成に対応した屈折率及び光弾性定数を用いなければならない。 In the present specification, the surface compressive stress after ion exchange and the compressive stress layer depth are values measured by a photoelastic method using a surface stress meter utilizing the optical waveguide effect. In the measurement using a surface stress meter, a refractive index and a photoelastic constant corresponding to the glass composition of the glass before ion exchange must be used.
本発明の実施形態に係る表示装置を構成するカバーガラスにおいて、モバイル機器などの最終製品の軽量化やバッテリーなどの装置容量の確保のために、ガラスの板厚はできるだけ薄い方が望ましいが、薄すぎるとガラスがたわむことにより発生する応力が大きくなってしまう。また、板厚は厚すぎると装置重量の増加や表示装置の視認性の低下をまねいてしまう。よって、カバーガラスの厚みの上限は、好ましくは3mm、より好ましくは2mmである。また、カバーガラスの厚みの下限は、好ましくは0.3mm、より好ましくは0.4mmである。 In the cover glass constituting the display device according to the embodiment of the present invention, it is desirable that the glass plate be as thin as possible in order to reduce the weight of the final product such as a mobile device and ensure the device capacity of the battery or the like. If it is too large, the stress generated by the glass bending will increase. On the other hand, if the plate thickness is too thick, the apparatus weight increases and the visibility of the display device decreases. Therefore, the upper limit of the thickness of the cover glass is preferably 3 mm, more preferably 2 mm. Further, the lower limit of the thickness of the cover glass is preferably 0.3 mm, more preferably 0.4 mm.
本発明の実施形態に係る表示装置を構成するカバーガラスの形状は特に限定されないが、板状体であることが好ましい。また、カバーガラスの形状が板状体である場合、平板でも曲げ板でもでもよく、種々の形状を包含する。また、平板状において、矩形や円盤状であってよく、また、部分的な穴あけ加工やコーナー部にR加工等が施された意匠的形状に加工されていてもよい。 Although the shape of the cover glass which comprises the display apparatus which concerns on embodiment of this invention is not specifically limited, It is preferable that it is a plate-shaped object. Further, when the shape of the cover glass is a plate-like body, it may be a flat plate or a bent plate, and includes various shapes. Moreover, in flat form, it may be a rectangle or a disk shape, and may be processed into the design shape by which partial drilling process or R process etc. were given to the corner part.
本発明の実施形態に係る表示装置におけるカバーガラスの表面は、薬剤塗布による表面コーティング、微細加工、又は、フィルム貼付等によって、防指紋性、防眩性、機能が付与された状態であってもよい。また、カバーガラスの表面に、表示パネルの色調に合わせたプリントが施されていてもよいし、部分的な穴あけ加工等が施されていてもよい。
例えば、カバーガラスには、低反射機能やアンチグレア機能を有する膜、指紋付着防止機能を有する膜、コントラストを向上させるための偏光子膜が設けられていてもよい。これらの機能を有する膜は、上記した機能を有するプラスチックフィルム等をカバーガラスに貼り付けして設けてもよいし、塗布や蒸着等の手段により設けてもよい。
カバーガラスの形状やサイズについても、単純な矩形だけでなく、コーナー部が円形等に加工された形状等、表示パネルの意匠的形状に対応した様々な形状やサイズが考えられる。
Even if the surface of the cover glass in the display device according to the embodiment of the present invention is provided with anti-fingerprint property, anti-glare property, and function by surface coating by drug application, fine processing, film sticking, or the like. Good. Moreover, the print according to the color tone of the display panel may be given to the surface of the cover glass, and the partial drilling process etc. may be given.
For example, the cover glass may be provided with a film having a low reflection function and an antiglare function, a film having a fingerprint adhesion preventing function, and a polarizer film for improving contrast. The film having these functions may be provided by attaching a plastic film or the like having the above functions to a cover glass, or may be provided by means such as coating or vapor deposition.
Regarding the shape and size of the cover glass, not only a simple rectangle but also various shapes and sizes corresponding to the design shape of the display panel, such as a shape in which a corner portion is processed into a circle or the like, can be considered.
上述のように、本発明の実施形態に係る表示装置におけるカバーガラスは、化学強化ガラスであるが、このような化学強化ガラスは、ガラス表面で、ガラス中に最も多く含まれるアルカリ金属イオンAを、上記アルカリ金属イオンAよりイオン半径の大きいアルカリ金属イオンBに置換するイオン交換により作製することができる。 As described above, the cover glass in the display device according to the embodiment of the present invention is a chemically tempered glass. Such a chemically tempered glass contains the alkali metal ions A most contained in the glass on the glass surface. , And can be prepared by ion exchange replacing alkali metal ions B having an ionic radius larger than that of the alkali metal ions A.
例えば、アルカリ金属イオンAがナトリウムイオン(Naイオン)である場合には、アルカリ金属イオンBとして、カリウムイオン(Kイオン)、ルビジウムイオン(Rbイオン)及びセシウムイオン(Csイオン)の少なくとも1つを用いることができる。アルカリ金属イオンAがナトリウムイオンである場合、アルカリ金属イオンBとして、カリウムイオンを用いることが好ましい。 For example, when the alkali metal ion A is a sodium ion (Na + ion), as the alkali metal ion B, potassium ion (K + ion), rubidium ion (Rb + ion), and cesium ion (Cs + ion) At least one can be used. When the alkali metal ion A is a sodium ion, it is preferable to use a potassium ion as the alkali metal ion B.
また、イオン交換には、少なくともアルカリ金属イオンBを含む硝酸塩、硫酸塩、炭酸塩、水酸化物塩及びリン酸塩のうちの1種又は2種以上を用いることができる。そして、アルカリ金属イオンAがナトリウムイオンである場合、少なくともカリウムイオンを含む硝酸塩を用いることが好ましい。 For ion exchange, one or more of nitrates, sulfates, carbonates, hydroxides and phosphates containing at least alkali metal ions B can be used. And when the alkali metal ion A is a sodium ion, it is preferable to use a nitrate containing at least a potassium ion.
本発明の実施形態に係る表示装置を構成するカバーガラスにおいて、イオン交換前のガラスは、イオン交換可能であるアルカリ金属イオンを含有していれば、ソーダライムガラス、アルミノシリケートガラス、ホウケイ酸塩ガラスなど、特に限定されないが、ソーダライムガラスであることが好ましく、実質的に質量%で、SiO:65~75%、NaO+KO:5~20%、CaO:2~15%、MgO:0~10%、Al:0~5%からなることがより好ましい。 In the cover glass constituting the display device according to the embodiment of the present invention, the glass before ion exchange contains soda-lime glass, aluminosilicate glass, and borosilicate glass as long as it contains alkali metal ions that can be ion-exchanged. Although not particularly limited, it is preferably a soda lime glass, and substantially by mass, SiO 2 : 65 to 75%, Na 2 O + K 2 O: 5 to 20%, CaO: 2 to 15%, MgO : 0 to 10%, Al 2 O 3 : 0 to 5% is more preferable.
カバーガラスとして使用され得る化学強化ガラスとして、例えば、特許文献1及び特許文献2には、いわゆるアルミノシリケートガラスが開示されている。化学強化されたアルミノシリケートガラスを後述するレーザースクライブにより切断する場合、レーザースクライブするための初期亀裂を導入しようとしても、ビッカース硬度が高いために初期亀裂を形成することが難しい。初期亀裂を形成することが難しければ、レーザーによって亀裂を進展させることも困難となるため、このようなガラスのスクライブは容易ではない。一方、ソーダライムガラスでは、アルミノシリケートガラス等に比べて低いレーザーパワーでレーザースクライブを行うことができる。 As chemically strengthened glass that can be used as a cover glass, for example, Patent Document 1 and Patent Document 2 disclose so-called aluminosilicate glass. When chemically strengthened aluminosilicate glass is cut by laser scribing, which will be described later, even if an initial crack for laser scribing is introduced, it is difficult to form the initial crack because of high Vickers hardness. If it is difficult to form an initial crack, it is difficult to progress the crack with a laser, and thus scribing such glass is not easy. On the other hand, with soda lime glass, laser scribing can be performed with a lower laser power than aluminosilicate glass or the like.
本明細書において、「NaO+KO:5~20%」とは、ガラス中のNaO及びKOの総和の含有量が5~20質量%であることをいう。 In this specification, “Na 2 O + K 2 O: 5 to 20%” means that the total content of Na 2 O and K 2 O in the glass is 5 to 20% by mass.
SiOはガラスの主成分であり、65%未満では強度が低くなる上に、ガラスの化学耐久性を悪化させる。他方、75%を超えるとガラス融液の高温粘度が高くなり、ガラス成形が困難となる。従って、その範囲は、好ましくは65~75%、より好ましくは68~73%である。 SiO 2 is a main component of glass. If it is less than 65%, the strength is lowered and the chemical durability of the glass is deteriorated. On the other hand, if it exceeds 75%, the high-temperature viscosity of the glass melt becomes high, and glass molding becomes difficult. Accordingly, the range is preferably 65 to 75%, more preferably 68 to 73%.
NaOは、化学強化処理する上で不可欠であり、必須成分である。5%未満だとイオン交換が不充分で、化学強化処理後の強度があまり向上せず、他方20%を超えるとガラスの化学耐久性を悪化させ、耐候性が悪くなる。従って、その範囲は、好ましくは5~20%、より好ましくは5~18%、さらに好ましくは7~16%である。一方、KOは、必須成分ではなく、NaOとともにガラス溶解時の融剤として作用し、若干の添加はイオン交換を促進させる補助成分としての作用を有するが、過大に添加するとNaOとの混合アルカリ効果によりナトリウムイオンの移動を抑制してイオン交換がし難くなる。5%を超えるとイオン交換による強度向上がし難くなるため、5%以下の範囲で導入するのが望ましい。NaO+KOの範囲としては、好ましくは5~20%、より好ましくは7~18%、さらに好ましくは10~17%である。 Na 2 O is indispensable for chemical strengthening treatment and is an essential component. If it is less than 5%, ion exchange is insufficient, and the strength after the chemical strengthening treatment is not improved so much. On the other hand, if it exceeds 20%, the chemical durability of the glass is deteriorated and the weather resistance is deteriorated. Therefore, the range is preferably 5 to 20%, more preferably 5 to 18%, and still more preferably 7 to 16%. Meanwhile, K 2 O is not an essential component, and acts as a flux during melting the glass with Na 2 O, although some additives have an effect as an auxiliary component for promoting ion exchange, the excessive addition of Na 2 Due to the mixed alkali effect with O, the migration of sodium ions is suppressed and ion exchange becomes difficult. If it exceeds 5%, it is difficult to improve the strength by ion exchange. The range of Na 2 O + K 2 O is preferably 5 to 20%, more preferably 7 to 18%, and still more preferably 10 to 17%.
CaOは、ガラスの化学的耐久性を改善する。また、ガラス溶解時の溶融ガラスの粘度を下げる作用を有し、量産性を向上させるため、2%以上含有するのが望ましい。一方、15%を超えるとナトリウムイオンの移動を抑制してしまう。従って、その範囲は、好ましくは2~15%、より好ましくは4~13%、さらに好ましくは5~11%である。 CaO improves the chemical durability of the glass. Moreover, since it has the effect | action which lowers | hangs the viscosity of the molten glass at the time of glass melting and improves mass productivity, it is desirable to contain 2% or more. On the other hand, if it exceeds 15%, the movement of sodium ions is suppressed. Accordingly, the range is preferably 2 to 15%, more preferably 4 to 13%, and still more preferably 5 to 11%.
MgOは、必須成分ではないが、CaOと比較してナトリウムイオンの移動を抑制してしまう効果が少なく、CaOをMgOで置換していくのが望ましい。一方で、CaOと比較して、ガラス溶融時の溶融ガラスの粘度を下げる作用も小さく、10%を超えるとガラス粘性が高くなってしまい、量産性を悪化させる。従って、その範囲は、好ましくは0~10%、より好ましくは0~8%、さらに好ましくは1~6%である。 Although MgO is not an essential component, it has less effect of suppressing the movement of sodium ions compared to CaO, and it is desirable to replace CaO with MgO. On the other hand, compared with CaO, the effect | action which lowers | hangs the viscosity of the molten glass at the time of glass melting is also small, and when it exceeds 10%, glass viscosity will become high and mass productivity will deteriorate. Therefore, the range is preferably 0 to 10%, more preferably 0 to 8%, and further preferably 1 to 6%.
Alは、必須成分ではないが、強度を高くし、かつイオン交換効率を向上させる成分である。質量%において5%を超えるとガラス融液の高温粘度が高くなる上に、失透傾向が増大するためガラス成形が困難になる。また、イオン交換効率が過大となってしまい、圧縮応力層深さが深くなるため、化学強化後の切断性が悪化してしまう。従って、その範囲は、好ましくは0~5%、より好ましくは1~4%、さらに好ましくは1~3%(3は含まないこととする)である。 Al 2 O 3 is not an essential component, but is a component that increases strength and improves ion exchange efficiency. If the mass percentage exceeds 5%, the high-temperature viscosity of the glass melt increases and the tendency to devitrification increases, making glass molding difficult. Moreover, since the ion exchange efficiency becomes excessive and the depth of the compressive stress layer becomes deep, the cutting property after chemical strengthening is deteriorated. Therefore, the range is preferably 0 to 5%, more preferably 1 to 4%, and still more preferably 1 to 3% (3 is not included).
イオン交換前のガラスは、ソーダライムガラスであり、実質的に上記成分からなることが好ましいが、これにFe、TiO、CeO、SOその他の微量成分を合量で1%まで含有してもよい。 The glass before the ion exchange is soda lime glass, and is preferably substantially composed of the above components. However, the total amount of Fe 2 O 3 , TiO 2 , CeO 2 , SO 3 and other trace components is 1% in total. May be contained.
イオン交換前のガラスの歪点は、好ましくは450~550℃であり、より好ましくは480~530℃である。ガラスの歪点が450℃未満であると、化学強化時の耐熱性が不充分であり、一方、550℃を超えると、ガラス溶融温度が高くなりすぎてしまい、ガラス板の生産効率が悪化し、コスト増加をもたらしてしまう。 The strain point of the glass before ion exchange is preferably 450 to 550 ° C., more preferably 480 to 530 ° C. If the strain point of the glass is less than 450 ° C, the heat resistance during chemical strengthening is insufficient. On the other hand, if it exceeds 550 ° C, the glass melting temperature becomes too high and the production efficiency of the glass plate deteriorates. , Resulting in increased costs.
イオン交換前のガラスは、フロート法、ロールアウト法及びダウンドロー法等、一般的なガラス成形方法により成形されるが、これらの中では、フロート法により成形されることが好ましい。
また、イオン交換前のガラスの表面は、上記の成形方法により成形されたままの状態でもよいし、弗酸エッチング等を用いて表面を荒らすことにより、防眩性等の機能性を付与した状態でもよい。
The glass before ion exchange is formed by a general glass forming method such as a float method, a roll-out method, or a down draw method, and among these, it is preferable to be formed by a float method.
In addition, the surface of the glass before ion exchange may be in a state where it is formed by the above-described forming method, or a state in which functionality such as antiglare property is imparted by roughening the surface using hydrofluoric acid etching or the like. But you can.
本発明の実施形態に係る表示装置を構成するカバーガラスにおいて、化学強化後のガラスのビッカース硬度は、好ましくは5.0~6.0GPaであり、より好ましくは5.2~6.0GPaであり、さらに好ましくは5.2~5.8GPaである。ビッカース硬度が5.0GPa未満であると、加傷性に劣るため、市場での使用に耐えられず、一方、6.0GPaを超えると、切断性が悪化する。 In the cover glass constituting the display device according to the embodiment of the present invention, the Vickers hardness of the glass after chemical strengthening is preferably 5.0 to 6.0 GPa, more preferably 5.2 to 6.0 GPa. More preferably, it is 5.2 to 5.8 GPa. If the Vickers hardness is less than 5.0 GPa, it is inferior in scratchability, so it cannot withstand use in the market, while if it exceeds 6.0 GPa, the cutting property deteriorates.
本発明の実施形態に係る表示装置を構成するカバーガラスは、ガラス表面側の応力分布パターンAとガラス内部側の応力分布パターンBとの2種類の応力パターンを圧縮応力層の中に有し、該応力パターンA及び該応力パターンBをそれぞれ1次関数で近似する場合において、該応力パターンAの傾きをS、該応力パターンBの傾きをSとしたとき、S>Sの関係を満たし、かつ、光導波路効果を観測原理とする表面応力計を用いて上記カバーガラスの干渉縞を観察し、ガラス表面から1番目の干渉縞と2番目の干渉縞との間隔をr、ガラス表面から2番目の干渉縞と3番目の干渉縞との間隔をr、ガラス表面から3番目の干渉縞と4番目の干渉縞との間隔をrとしたとき、r/r及びr/rの少なくとも1つが、0.3~0.7を満たすことが好ましい。 The cover glass constituting the display device according to the embodiment of the present invention has two types of stress patterns in the compression stress layer, that is, the stress distribution pattern A on the glass surface side and the stress distribution pattern B on the glass inner side, in the case of approximating the the stress pattern a and the stress pattern B respectively a linear function, when the inclination of the stress pattern a and S a, the slope of the stress pattern B and S B, the relationship of S a> S B And the interference fringes of the cover glass are observed using a surface stress meter whose observation principle is the optical waveguide effect, and the distance between the first interference fringes and the second interference fringes from the glass surface is r 1 , When the distance between the second interference fringe and the third interference fringe from the glass surface is r 2 and the distance between the third interference fringe and the fourth interference fringe from the glass surface is r 3 , r 2 / r 1 and when the least of r 3 / r 2 One, but preferably satisfies 0.3 to 0.7.
上記の場合、少なくともr/rが0.3~0.7を満たすことがより好ましく、また、r/r及びr/rの両方が0.3~0.7を満たすことがさらに好ましい。 In the above case, it is more preferable that at least r 2 / r 1 satisfies 0.3 to 0.7, and both r 2 / r 1 and r 3 / r 2 satisfy 0.3 to 0.7. More preferably.
なお、r/rが0.3~0.7を満たし、r/rは0.3~0.7を満たさない場合も想定されうるが、その場合、最表面における圧縮応力が生産時の徐冷等の影響により若干の緩和傾向にあるためであり、上記のような場合においても、r/rが0.3~0.7を満たしているならば、内部引張応力は低減される傾向にある。 It can be assumed that r 3 / r 2 satisfies 0.3 to 0.7 and r 2 / r 1 does not satisfy 0.3 to 0.7. This is because there is a slight relaxation tendency due to the effect of slow cooling during production. Even in the above case, if r 3 / r 2 satisfies 0.3 to 0.7, the internal tensile stress Tend to be reduced.
図4は、応力パターンの傾きと圧縮応力層における圧縮応力の積算値との関係を模式的に示すグラフである。
図4では、好ましいカバーガラス(化学強化ガラス)における応力パターンを1次関数で近似したグラフを実線で示している。
図4では、ガラス表面側の応力分布パターンAとガラス内部側の応力分布パターンBとの2種類の応力パターンを圧縮応力層の中に有しており、応力パターンAの傾きをS、応力パターンBの傾きをSとしたとき、S>Sの関係を満たしている。
一方、図4では、応力パターンの傾きが一定であるグラフ、すなわち、1種類のみの応力パターンを有するグラフを破線で示している。
図4から明らかなように、表面圧縮応力の値σ及び圧縮応力層の深さdが同じである場合であっても、実線で示す化学強化ガラスにおいては、圧縮応力層における圧縮応力の積算値を低減させることができる。
FIG. 4 is a graph schematically showing the relationship between the inclination of the stress pattern and the integrated value of the compressive stress in the compressive stress layer.
In FIG. 4, the graph which approximated the stress pattern in the preferable cover glass (chemically tempered glass) with the linear function is shown by the solid line.
In FIG. 4, the stress distribution pattern A on the glass surface side and the stress distribution pattern B on the glass inner side have two types of stress patterns in the compressive stress layer. The slope of the stress pattern A is S A , the stress when the inclination of the pattern B was S B, satisfy the relationship of S a> S B.
On the other hand, in FIG. 4, a graph in which the inclination of the stress pattern is constant, that is, a graph having only one type of stress pattern is indicated by a broken line.
As is clear from FIG. 4, even when the surface compressive stress value σ and the compressive stress layer depth d are the same, in the chemically strengthened glass indicated by the solid line, the integrated value of the compressive stress in the compressive stress layer. Can be reduced.
化学強化ガラスでは、圧縮応力層における圧縮応力の積算値と、引張応力層における内部引っ張り応力の積算値とは、互いに均衡が保たれている。
従って、好ましいカバーガラスにおいては、高い表面圧縮応力の値を有しながらも、低い内部引張応力を有していると推測される。
In chemically strengthened glass, the integrated value of the compressive stress in the compressive stress layer and the integrated value of the internal tensile stress in the tensile stress layer are balanced with each other.
Accordingly, it is presumed that a preferable cover glass has a low internal tensile stress while having a high surface compressive stress value.
なお、本明細書において「応力パターンの傾き」とは、ガラス表面からの深さに対する圧縮応力の傾きの絶対値を意味する。
したがって、大きな傾きを有する応力パターンは急であり、小さな傾きを有する応力パターンは緩やかである。
なお、圧縮応力層における圧縮応力はガラス表面からガラス内部に向かって減少していくため、応力パターンA及び応力パターンBにおいて、傾きの正負は一致する。
In the present specification, the “slope of the stress pattern” means the absolute value of the slope of the compressive stress with respect to the depth from the glass surface.
Therefore, a stress pattern with a large slope is steep and a stress pattern with a small slope is gradual.
In addition, since the compressive stress in the compressive stress layer decreases from the glass surface toward the inside of the glass, the positive and negative slopes of the stress pattern A and the stress pattern B coincide.
また、応力パターンの傾きを求める際には、発生した応力パターンの形状に関わらず、ガラス表面側から1次関数で近似した応力パターンをA、ガラス内部側から1次関数で近似した応力パターンをBとして、それぞれの傾きを求めればよい。 In addition, when determining the inclination of the stress pattern, regardless of the shape of the generated stress pattern, the stress pattern approximated by the linear function from the glass surface side is A, and the stress pattern approximated by the linear function from the glass inner side is used. What is necessary is just to obtain | require each inclination as B.
以下、干渉縞の間隔と応力パターンの傾きとの関係について説明する。
図5(a)~図5(c)は、干渉縞の間隔と応力パターンの傾きとの関係を模式的に示すグラフである。
図5(a)~図5(c)に示すように、干渉縞の間隔は、応力パターンの傾きに対応していることが知られている。
すなわち、図5(a)に示すように、干渉縞の間隔が広い場合には、応力パターンの傾きが大きく、一方、図5(b)に示すように、干渉縞の間隔が狭い場合には、応力パターンの傾きが小さいことを意味する。また、図5(c)は、図5(a)及び図5(b)が組み合わさった応力パターンである。応力パターンを、異なる傾きを有する2つの1次関数で近似した場合において、干渉縞の間隔変化の様子と応力パターンの傾きの変化の様子との対応が確認できる。このように、干渉縞の間隔を観察することによって、応力パターンの傾きに関する情報が得られる。
Hereinafter, the relationship between the interference fringe spacing and the stress pattern inclination will be described.
FIGS. 5A to 5C are graphs schematically showing the relationship between the interference fringe spacing and the stress pattern inclination.
As shown in FIGS. 5A to 5C, it is known that the interval between the interference fringes corresponds to the inclination of the stress pattern.
That is, as shown in FIG. 5A, when the interval between the interference fringes is wide, the inclination of the stress pattern is large. On the other hand, when the interval between the interference fringes is narrow as shown in FIG. This means that the inclination of the stress pattern is small. FIG. 5C shows a stress pattern obtained by combining FIGS. 5A and 5B. When the stress pattern is approximated by two linear functions having different inclinations, it is possible to confirm the correspondence between the change in the interference fringe spacing and the change in the stress pattern inclination. Thus, by observing the interval between the interference fringes, information on the inclination of the stress pattern can be obtained.
ここで、r/rが1に近いことは、ガラス表面から2番目の干渉縞と3番目の干渉縞との間隔rがガラス表面から1番目の干渉縞と2番目の干渉縞との間隔rと同程度であることを意味し、r/rが1より小さくなるほど、間隔rが間隔rよりも小さくなることを意味している。r/rについても同様である。 Here, r 2 / r 1 is close to 1 because the distance r 2 between the second interference fringe and the third interference fringe from the glass surface is the first interference fringe and the second interference fringe from the glass surface. it means the distance r 1 between the same degree, as the r 2 / r 1 is less than 1, the interval r 2 is meant to be smaller than the distance r 1. The same applies to r 3 / r 2 .
なお、イオン交換は基本的にはFickの拡散法則に従い、拡散法則そのものは一次関数では無いので、厳密には応力パターンは直線ではない。干渉縞の間隔と応力パターンの関係に関して、より厳密には、r/r及びr/rの少なくとも1つによって関係付けられる干渉縞幅の数列を用いると、直線を用いる場合よりも近似の精度としては高くなり、また生産管理としても簡便である。 It should be noted that ion exchange basically follows Fick's diffusion law, and the diffusion law itself is not a linear function, so strictly speaking, the stress pattern is not a straight line. More precisely with respect to the relationship between the interference fringe spacing and the stress pattern, using a sequence of interference fringe widths related by at least one of r 2 / r 1 and r 3 / r 2 than using a straight line. The accuracy of approximation is high, and it is easy for production management.
以上より、r/r及びr/rの少なくとも1つが、0.3~0.7を満たす場合、ガラス表面側においては、応力が急激に減少し、ガラス内部側に向かうほど、応力が減少する割合が小さくなる。これは、図4に示したような応力パターンの傾きの変化を近似的に表現できている。従って、S>Sの関係を満たすことが可能となる。 From the above, when at least one of r 2 / r 1 and r 3 / r 2 satisfies 0.3 to 0.7, the stress decreases sharply on the glass surface side, and the more toward the glass inner side, The rate at which the stress decreases is reduced. This can approximately represent the change in the inclination of the stress pattern as shown in FIG. Therefore, the relationship of S A > S B can be satisfied.
以下、表面応力計を用いて化学強化ガラス板の干渉縞を観察する方法について説明する。
図6は、表面応力計の視野内の干渉縞の一例を模式的に示す図である。
図6の下側はガラス表面側を表しており、図6の上側はガラス内部側を表している。
Hereinafter, a method for observing the interference fringes of the chemically strengthened glass plate using a surface stress meter will be described.
FIG. 6 is a diagram schematically illustrating an example of interference fringes in the field of view of the surface stress meter.
The lower side of FIG. 6 represents the glass surface side, and the upper side of FIG. 6 represents the glass inner side.
図6に示すように、ガラス表面から1番目の干渉縞Lと2番目の干渉縞Lとの間隔r、ガラス表面から2番目の干渉縞Lと3番目の干渉縞Lとの間隔r、及び、ガラス表面から3番目の干渉縞Lと4番目の干渉縞Lとの間隔rを計測する。計測した間隔r、間隔r及び間隔rから、r/rの値及びr/rの値を算出する。 As shown in FIG. 6, the distance r 1 between the first interference fringe L 1 and the second interference fringe L 2 from the glass surface, the second interference fringe L 2 and the third interference fringe L 3 from the glass surface, interval r 2, and measures the distance r 3 from the glass surface the third interference fringe L 3 and the fourth interference fringe L 4. From the measured interval r 1 , interval r 2, and interval r 3 , the value of r 2 / r 1 and the value of r 3 / r 2 are calculated.
上記の方法により算出したr/r又はr/rの値が0.3~0.7であることが好ましい。r/r又はr/rの下限値は、好ましくは0.35であり、より好ましくは0.4である。r/r又はr/rの上限値は、好ましくは0.65であり、より好ましくは0.63である。 The value of r 2 / r 1 or r 3 / r 2 calculated by the above method is preferably 0.3 to 0.7. The lower limit value of r 2 / r 1 or r 3 / r 2 is preferably 0.35, more preferably 0.4. The upper limit value of r 2 / r 1 or r 3 / r 2 is preferably 0.65, more preferably 0.63.
本発明の実施形態に係る表示装置を構成するタッチセンサーは、例えば静電容量方式の検出方式の場合には、透明電極の多層配線構造を有している。静電容量方式の検出方式については、特開2008-80743号公報等で紹介されている。 The touch sensor that constitutes the display device according to the embodiment of the present invention has a multilayer wiring structure of transparent electrodes, for example, in the case of a capacitive detection method. The capacitance type detection method is introduced in Japanese Patent Application Laid-Open No. 2008-80743.
図7(a)及び図7(b)は、静電容量方式によるタッチパネルにおける位置検出の原理の一例を説明するための図である。ただし、図7(a)及び図7(b)には、説明を簡単にするために、一次元での位置を検出する場合が示されている。静電容量方式を用いる場合には、ガラス基板160上にITO(Indium Tin Oxide:スズ又は酸化スズが添加された酸化インジウム)等の透明導電膜170が成膜されたタッチパネル150が用いられる。 FIG. 7A and FIG. 7B are diagrams for explaining an example of the principle of position detection in a capacitive touch panel. However, FIGS. 7A and 7B show a case where a one-dimensional position is detected for the sake of simplicity. When the capacitance method is used, a touch panel 150 in which a transparent conductive film 170 such as ITO (Indium Tin Oxide: indium oxide to which tin oxide is added) or the like is formed on a glass substrate 160 is used.
図7(a)に示すように、タッチパネル150の両端には、電流検出用抵抗rを介して電流源から同位相の交流電圧が印加される。ペンや指等の接触体が接触も近接もしていない場合には、タッチパネル150に電流は流れない。図7(b)に示すように、導体である接触体180がタッチパネル150に接触したり近接したりすると、接触体180とタッチパネル150との間にキャパシタが形成され、接触体180に微弱な電流が流れる。よって、電流源から電流I、Iが流れる。接触体180の接触位置が異なると電流I、Iの値が異なるので、電流I、Iの値を検出することによって、接触体180が接触したり近接したりした位置を検出することができる。実際には、タッチパネルは、接触体が接触したり近接したりした二次元的な位置を検出することが一般的であるから、タッチパネルにおける4箇所から交流電圧が印加される。 As shown in FIG. 7A, an in-phase AC voltage is applied to both ends of the touch panel 150 from a current source via a current detection resistor r. When a contact body such as a pen or a finger is neither in contact nor in proximity, no current flows through the touch panel 150. As shown in FIG. 7B, when the contact body 180 that is a conductor contacts or approaches the touch panel 150, a capacitor is formed between the contact body 180 and the touch panel 150, and a weak current flows through the contact body 180. Flows. Therefore, currents I 1 and I 2 flow from the current source. If the contact position of the contact body 180 is different, the values of the currents I 1 and I 2 are different. Therefore, by detecting the values of the currents I 1 and I 2 , the position where the contact body 180 is in contact with or close to the contact body 180 is detected. be able to. Actually, since the touch panel generally detects a two-dimensional position where a contact body comes into contact or comes close, an AC voltage is applied from four locations on the touch panel.
なお、検出方式としては、静電容量方式以外に、抵抗検出方式、光学方式、超音波方式等であってもよい。 In addition to the capacitance method, the detection method may be a resistance detection method, an optical method, an ultrasonic method, or the like.
本発明の実施形態に係る表示装置を構成するタッチパネルは、カバーガラスよりも大きいガラス板に対して化学強化処理を施し、タッチセンサーを形成した後、当該ガラス板を分割することにより作製することが好ましい。この場合、複数のタッチパネルを効率良く作製することができる。ただし、ガラス板を先に切断し、曲げ板状等の意匠的形状に加工した後、化学強化処理を施し、タッチセンサーを形成することによりタッチパネルを作製してもよい。 The touch panel constituting the display device according to the embodiment of the present invention can be manufactured by subjecting a glass plate larger than the cover glass to chemical strengthening treatment and forming a touch sensor, and then dividing the glass plate. preferable. In this case, a plurality of touch panels can be efficiently manufactured. However, the touch panel may be manufactured by cutting the glass plate first and processing it into a design shape such as a bent plate shape, and then applying a chemical strengthening treatment to form a touch sensor.
本発明の実施形態に係る表示装置を構成する表示パネルとしては、通常は液晶表示パネルが使用されるが、場合によっては、有機ELディスプレイ、プラズマディスプレイパネル等の他の表示パネルが使用されてもよい。 As a display panel constituting the display device according to the embodiment of the present invention, a liquid crystal display panel is usually used. However, in some cases, other display panels such as an organic EL display and a plasma display panel are used. Good.
本発明の実施形態に係る表示装置は、カバーガラスと表示パネル等を一体化させるための部材を有していることが好ましい。この部材や表示装置の周縁側に設けられた配線を覆い隠すために、カバーガラスの周縁には、覆い隠すに足る幅を有するマスキング層、好ましくは吸光度が3以上、より好ましくは4以上のマスキング層が設けられることが好ましい。 The display device according to the embodiment of the present invention preferably has a member for integrating the cover glass and the display panel. In order to conceal the wiring provided on the peripheral side of the member and the display device, a masking layer having a width sufficient to conceal the cover glass is formed on the peripheral edge of the cover glass, preferably having an absorbance of 3 or more, more preferably 4 or more. A layer is preferably provided.
このマスキング層は、熱硬化性合成樹脂と、顔料、染料とを含む調合物を塗布し、乾燥、加熱等することで形成することができる。上記熱硬化合成樹脂としては、エポキシ樹脂、アクリルシリコン樹脂、アルキッド樹脂、ポリアミド樹脂、フッ素樹脂等を用いることができる。 This masking layer can be formed by applying a preparation containing a thermosetting synthetic resin, a pigment, and a dye, and drying and heating. As the thermosetting synthetic resin, an epoxy resin, an acrylic silicon resin, an alkyd resin, a polyamide resin, a fluorine resin, or the like can be used.
上記顔料としては、酸化鉄、酸化銅、酸化クロム、酸化コバルト、酸化マンガン、酸化アルミニウム、酸化亜鉛、クロム酸鉛、硫酸鉛、モリブデン酸鉛等からなる群より選ばれる1種または2種以上の材料を混合したものを使用することができる。 The pigment is one or more selected from the group consisting of iron oxide, copper oxide, chromium oxide, cobalt oxide, manganese oxide, aluminum oxide, zinc oxide, lead chromate, lead sulfate, lead molybdate and the like. A mixture of materials can be used.
上記染料としてはジオキサジン系、フタロシアニン系、アントラキノン系の有機物等を用いることができる。 As the dye, dioxazine-based, phthalocyanine-based, anthraquinone-based organic substances, and the like can be used.
塗布のためにこの混合物をペースト状にするための媒体としては、ジエチレングリコールモノブチルエーテルアセテート、エチレングリコールモノブチルエーテル等の溶剤を用いることができる。また、硬化反応促進剤として、変性脂肪族ポリアミン樹脂、N-ブタノール等を混合してもよい。 Solvents such as diethylene glycol monobutyl ether acetate and ethylene glycol monobutyl ether can be used as a medium for making this mixture into a paste for coating. Further, a modified aliphatic polyamine resin, N-butanol or the like may be mixed as a curing reaction accelerator.
上記マスキング層の厚さは、35μm以下であることが好ましく、30μm以下であることがより好ましい。マスキング層の厚さが35μmよりも大きいと、マスキング層表面とガラス基板表面との境界部の段差が大きくなり、前記したようなフィルムを設けた場合、この段差部分に気泡が残留しやすくなる。 The thickness of the masking layer is preferably 35 μm or less, and more preferably 30 μm or less. When the thickness of the masking layer is larger than 35 μm, the step at the boundary between the masking layer surface and the glass substrate surface becomes large, and when the film as described above is provided, bubbles easily remain in the step portion.
以下、本発明の実施形態に係る表示装置の製造方法について説明する。なお、以下に説明する表示装置の製造方法の一部である、タッチパネルの製造方法も、本発明の実施形態である。 Hereinafter, a method for manufacturing a display device according to an embodiment of the present invention will be described. In addition, the manufacturing method of the touch panel which is a part of the manufacturing method of the display apparatus demonstrated below is also embodiment of this invention.
図8(a)~図8(f)は、本発明の実施形態に係る表示装置の製造方法の一例を模式的に示す断面図である。 8 (a) to 8 (f) are cross-sectional views schematically showing an example of the method for manufacturing the display device according to the embodiment of the present invention.
図8(a)に示す工程では、ガラス板310を準備する。
準備するガラス板は、化学的に強化されたガラス板であり、その表面圧縮応力は600~900MPa、圧縮応力層深さは5~20μmである。
In the step shown in FIG. 8A, a glass plate 310 is prepared.
The glass plate to be prepared is a chemically strengthened glass plate having a surface compressive stress of 600 to 900 MPa and a compressive stress layer depth of 5 to 20 μm.
上記ガラス板を作製する場合、その方法は特に限定されないが、アルカリ金属イオンA及びアルカリ金属イオンBを含み、アルカリ金属イオンAのモル量及びアルカリ金属イオンBのモル量の合計に対するアルカリ金属イオンAのモル量の比率P(mol%)を有する第1の塩にガラス板を接触させる第1の工程と、上記第1の工程の後、上記比率Pより小さい比率Q(mol%)を有する第2の塩にガラス板を接触させる第2の工程とを含む方法(以下、第1の化学強化方法という)が好ましい。
また、上記ガラス板を作製する方法としては、アルカリ金属イオンAを含む第1の塩にガラス板を接触させる工程であって、上記第1の塩は、アルカリ金属イオンのモル量の合計に対するアルカリ金属イオンAのモル量の比率X(mol%)=90~100mol%を有する第1の工程と、上記第1の工程の後、アルカリ金属イオンBを含む第2の塩にガラス板を接触させる工程であって、上記第2の塩は、アルカリ金属イオンのモル量の合計に対するアルカリ金属イオンAのモル量の比率Y(mol%)=0~10mol%を有する第2の工程と、上記第2の工程の後、アルカリ金属イオンBを含む第3の塩にガラス板を接触させる工程であって、上記第3の塩は、アルカリ金属イオンのモル量の合計に対するアルカリ金属イオンBのモル量の比率Z(mol%)=98~100mol%を有する第3の工程とを含む方法(以下、第2の化学強化方法という)も好ましい。
When producing the said glass plate, the method is not specifically limited, Alkali metal ion A with respect to the sum total of the molar amount of alkali metal ion A and the molar amount of alkali metal ion B including alkali metal ion A and alkali metal ion B A first step of contacting the glass plate with a first salt having a molar amount ratio P (mol%), and a first ratio Q (mol%) smaller than the ratio P after the first step. And a second step of bringing a glass plate into contact with the salt of 2 (hereinafter referred to as a first chemical strengthening method).
Moreover, as a method for producing the glass plate, the glass plate is brought into contact with a first salt containing alkali metal ions A, and the first salt is an alkali with respect to the total molar amount of alkali metal ions. A glass plate is brought into contact with the second salt containing alkali metal ions B after the first step having a molar amount ratio X (mol%) of metal ions A = 90 to 100 mol% and the first step. The second salt is a step wherein the ratio Y (mol%) of the molar amount of alkali metal ions A to the total molar amount of alkali metal ions Y (mol%) = 0 to 10 mol%; After the step 2, the glass plate is brought into contact with a third salt containing alkali metal ions B, and the third salt is a mole of alkali metal ions B with respect to the total molar amount of alkali metal ions. Method comprising a third step of having the ratio Z (mol%) = 98 ~ 100mol% (hereinafter, referred to as the second chemical strengthening process) it is also preferable.
化学強化(イオン交換)前のガラス板、及び、化学強化(イオン交換)後のガラス板については、上述した本発明の実施形態に係る表示装置を構成するカバーガラスで説明したガラスと共通の構造及び特性を有するため、その詳細な説明を省略する。 The glass plate before chemical strengthening (ion exchange) and the glass plate after chemical strengthening (ion exchange) have the same structure as the glass described in the cover glass constituting the display device according to the above-described embodiment of the present invention. Detailed description thereof will be omitted.
まず、第1の化学強化方法について説明する。
第1の化学強化方法では、上記のような第1の塩の構成とすることで、第1の工程中にガラス表面層は、アルカリ金属イオンA及びアルカリ金属イオンB(好ましくはナトリウムイオン及びカリウムイオン)がともに含まれる状態に改質される。その結果、第2の工程において発生する圧縮応力の緩和現象を妨げる効果がもたらされる。すなわち、この第2の工程におけるイオン交換により発生する表面圧縮応力は、第1の工程を行っているため、わずかに緩和されるだけで残留する。したがって、大きな表面圧縮応力を得ることができる。
First, the first chemical strengthening method will be described.
In the first chemical strengthening method, the glass surface layer is made to have alkali metal ions A and alkali metal ions B (preferably sodium ions and potassium ions) during the first step by adopting the first salt structure as described above. Ions) are included. As a result, the effect of preventing the relaxation phenomenon of the compressive stress generated in the second step is brought about. That is, the surface compressive stress generated by the ion exchange in the second step remains even if slightly relaxed because the first step is performed. Therefore, a large surface compressive stress can be obtained.
第1の工程及び第2の工程において、「塩にガラス板を接触させる」とは、ガラス板を塩浴に接触又は浸漬させることをいう。このように、本明細書において「接触」とは、「浸漬」も含む概念とする。第2の化学強化方法でも同様である。 In the first step and the second step, “contacting a glass plate with salt” means contacting or immersing the glass plate in a salt bath. Thus, in this specification, “contact” is a concept including “immersion”. The same applies to the second chemical strengthening method.
また、塩の接触形態としては、ペースト状の塩を直接接触させるような形態、水溶液として噴射するような形態、融点以上に加熱した溶融塩に浸漬させるような形態などが可能であるが、これらの中では、溶融塩に浸漬させるのが望ましい。 Further, the contact form of the salt may be a form in which the paste-like salt is in direct contact, a form in which it is sprayed as an aqueous solution, a form in which the salt is immersed in a molten salt heated to a melting point or higher, etc. Of these, it is desirable to immerse in molten salt.
アルカリ金属イオンA及びアルカリ金属イオンBの具体例は、先に述べたとおりであるが、それぞれナトリウムイオン及びカリウムイオンであることが好ましい。 Specific examples of the alkali metal ion A and the alkali metal ion B are as described above, but are preferably a sodium ion and a potassium ion, respectively.
また、塩の種類としては、硝酸塩、硫酸塩、炭酸塩、水酸化物塩及びリン酸塩のうちの1種又は2種以上の混合物を用いることができる。
アルカリ金属イオンAを含む塩としては、硝酸ナトリウム溶融塩を用いることが好ましく、アルカリ金属イオンBを含む塩としては、硝酸カリウム溶融塩を用いることが好ましい。したがって、アルカリ金属イオンA及びアルカリ金属イオンBを含む塩としては、硝酸ナトリウム及び硝酸カリウムからなる混合溶融塩を用いることが好ましい。
Moreover, as a kind of salt, the 1 type (s) or 2 or more types of mixture can be used among nitrate, sulfate, carbonate, hydroxide salt, and phosphate.
As the salt containing the alkali metal ion A, it is preferable to use a sodium nitrate molten salt, and as the salt containing the alkali metal ion B, it is preferable to use a potassium nitrate molten salt. Therefore, as the salt containing the alkali metal ion A and the alkali metal ion B, it is preferable to use a mixed molten salt composed of sodium nitrate and potassium nitrate.
第1の工程後に形成される圧縮応力層深さは、5~23μmとすることが好ましい。また、7~20μmであることがより好ましく、10~18μmであることがさらに好ましい。上記の圧縮応力層の深さとなるように、第1の工程では、比率Pに応じて、第1の塩の温度及び第1の塩に接触させる時間を調整することが好ましい。 The depth of the compressive stress layer formed after the first step is preferably 5 to 23 μm. Further, it is more preferably 7 to 20 μm, and further preferably 10 to 18 μm. In the first step, it is preferable to adjust the temperature of the first salt and the time of contact with the first salt in the first step so as to be the depth of the compressive stress layer.
また、第2の工程においては、第2の工程後に形成される圧縮応力層の深さが5~20μmとなるように、比率Qに応じて、第2の塩の温度及び第2の塩に接触させる時間を調整することが好ましい。 In the second step, the temperature of the second salt and the second salt are adjusted according to the ratio Q so that the depth of the compressive stress layer formed after the second step is 5 to 20 μm. It is preferable to adjust the contact time.
ここで、第1の塩の比率Pが大きすぎると、ガラス板の表面層の組成が改質されにくく、ガラス板の表面に白濁が生じやすくなる傾向もあり、ガラス強度の信頼性向上を妨げてしまう。一方、第1の塩の比率Pが小さすぎると、第1の工程において、ガラス板の表面層の組成の改質がなされすぎてしまう傾向にあり、ガラス中のアルカリ金属イオンAのほとんどがアルカリ金属イオンBとイオン交換されてしまう。そのため、第2の工程においてイオン交換が進まず、所望の表面圧縮応力及び破壊確率1%となる強度を得ることができない。また、比率Pが小さすぎると、第1の工程後に圧縮応力層が深くなってしまう傾向にあり、ガラスの切断性に影響を与える。よって、比率Pは、好ましくは5~50mol%である。比率Pの下限は、より好ましくは15mol%であり、さらに好ましくは20mol%である。比率Pの上限は、より好ましくは40mol%であり、さらに好ましくは35mol%である。 Here, if the ratio P of the first salt is too large, the composition of the surface layer of the glass plate is difficult to be modified, and the surface of the glass plate tends to become cloudy, which hinders the improvement of the reliability of the glass strength. End up. On the other hand, if the ratio P of the first salt is too small, the composition of the surface layer of the glass plate tends to be modified in the first step, and most of the alkali metal ions A in the glass are alkaline. It is ion-exchanged with the metal ion B. For this reason, ion exchange does not proceed in the second step, and the desired surface compressive stress and strength at a fracture probability of 1% cannot be obtained. On the other hand, if the ratio P is too small, the compressive stress layer tends to be deeper after the first step, which affects the cutability of the glass. Therefore, the ratio P is preferably 5 to 50 mol%. The lower limit of the ratio P is more preferably 15 mol%, still more preferably 20 mol%. The upper limit of the ratio P is more preferably 40 mol%, still more preferably 35 mol%.
また、第2の塩の比率Qが大きすぎると、第2の工程において、充分な量のアルカリ金属イオンBがガラス板の表面層に導入されず、また、アルカリ金属イオンBの再拡散の駆動力も弱くなってしまう傾向にあり、所望の表面圧縮応力を得ることが難しくなる。そのため、比率Qは、好ましくは0~10mol%である。比率Qの下限は、より好ましくは2mol%であり、さらに好ましくは1mol%である。このように、第2の塩は、アルカリ金属イオンA(例えばナトリウムイオン)を実質的に含まず、陽イオンとしてアルカリ金属イオンB(例えばカリウムイオン)のみを含んでもよい。 If the ratio Q of the second salt is too large, a sufficient amount of alkali metal ions B is not introduced into the surface layer of the glass plate in the second step, and re-diffusion driving of the alkali metal ions B is performed. The force also tends to be weakened, making it difficult to obtain a desired surface compressive stress. Therefore, the ratio Q is preferably 0 to 10 mol%. The lower limit of the ratio Q is more preferably 2 mol%, still more preferably 1 mol%. Thus, the second salt may be substantially free of alkali metal ions A (for example, sodium ions) and may include only alkali metal ions B (for example, potassium ions) as cations.
なお、第1の塩及び第2の塩の構成をアルカリ金属イオンA及びアルカリ金属イオンBに限定して説明したが、本発明の目的を損なわない限り、塩と反応を起こさない安定的な金属酸化物、不純物又は他の塩類が存在することを妨げるものではない。例えば、第1の塩又は第2の塩に、銀イオンや銅イオンが含まれていてもよい。 In addition, although the structure of the 1st salt and the 2nd salt was limited and demonstrated to the alkali metal ion A and the alkali metal ion B, unless the objective of this invention was impaired, the stable metal which does not raise | generate reaction with a salt It does not prevent the presence of oxides, impurities or other salts. For example, silver ions or copper ions may be contained in the first salt or the second salt.
また、第1の工程における処理温度(第1の塩の温度)が高すぎると、ガラス板の表面が白濁する可能性が高くなり、ガラス強度の信頼性を向上させることができないだけでなく、圧縮応力層も深くなってしまうことから、ガラス切断性に影響を与えてしまう。また、第1の工程中に発生する圧縮応力の緩和も進行してしまう傾向にある。一方、第1の塩の温度が低すぎると、第1の工程におけるイオン交換が促進されず、所望の圧縮応力層深さを得ることができない。そのため、第1の塩の温度は、好ましくは400~530℃である。第1の塩の温度の下限は、より好ましくは410℃であり、さらに好ましくは430℃である。第1の塩の温度の上限は、より好ましくは515℃であり、さらに好ましくは500℃であり、特に好ましくは485℃である。 In addition, if the treatment temperature in the first step (the temperature of the first salt) is too high, the surface of the glass plate is likely to become clouded and not only cannot improve the reliability of the glass strength, Since the compressive stress layer also becomes deep, the glass cutting property is affected. In addition, the relaxation of the compressive stress generated during the first step tends to progress. On the other hand, if the temperature of the first salt is too low, ion exchange in the first step is not promoted, and a desired compressive stress layer depth cannot be obtained. Therefore, the temperature of the first salt is preferably 400 to 530 ° C. The lower limit of the temperature of the first salt is more preferably 410 ° C, and further preferably 430 ° C. The upper limit of the temperature of the first salt is more preferably 515 ° C., further preferably 500 ° C., and particularly preferably 485 ° C.
また、第2の工程における処理温度(第2の塩の温度)が高すぎると、第2の工程中において、第1の工程で発生した圧縮応力の緩和を招いてしまうだけでなく、圧縮応力層も深くなってしまうことから、ガラス切断性に影響を与えてしまう。一方、第2の塩の温度が低すぎると、第2の工程におけるイオン交換が促進されず、第2の工程中に高い表面圧縮応力を発生させることができないだけでなく、アルカリ金属イオンBの再拡散も起こりにくくなることから、所望の圧縮応力層深さを得ることができない。そのため、第2の塩の温度は、第1の塩の温度以下であることが好ましく、第1の塩の温度よりも低温であることがより好ましい。また、第2の塩の温度は、好ましくは380~500℃である。第2の塩の温度の下限は、より好ましくは390℃であり、さらに好ましくは400℃であり、特に好ましくは410℃である。第2の塩の温度の上限は、より好ましくは490℃であり、さらに好ましくは480℃であり、特に好ましくは460℃である。 Further, if the treatment temperature in the second step (the temperature of the second salt) is too high, not only will the relaxation of the compressive stress generated in the first step occur during the second step, but also the compressive stress. Since the layer also becomes deep, the glass cutting property is affected. On the other hand, if the temperature of the second salt is too low, ion exchange in the second step is not promoted, and not only high surface compressive stress cannot be generated during the second step, but also alkali metal ions B Since re-diffusion does not easily occur, a desired compressive stress layer depth cannot be obtained. Therefore, the temperature of the second salt is preferably equal to or lower than the temperature of the first salt, and more preferably lower than the temperature of the first salt. The temperature of the second salt is preferably 380 to 500 ° C. The lower limit of the temperature of the second salt is more preferably 390 ° C., further preferably 400 ° C., and particularly preferably 410 ° C. The upper limit of the temperature of the second salt is more preferably 490 ° C., further preferably 480 ° C., and particularly preferably 460 ° C.
また、第1の工程において第1の塩にガラス板を接触させる時間、及び、第2の工程において第2の塩にガラス板を接触させる時間の合計は、好ましくは1~12時間であり、より好ましくは2~6時間である。 The total time for contacting the glass plate with the first salt in the first step and the time for contacting the glass plate with the second salt in the second step is preferably 1 to 12 hours, More preferably, it is 2 to 6 hours.
具体的には、第1の塩にガラス板を接触させる時間が長すぎると、第1の工程において発生した圧縮応力が緩和されやすくなる。さらに、圧縮応力層の深さが深くなる傾向がある。これは、ガラスの切断性に影響する。一方、第1の塩にガラス板を接触させる時間が短すぎると、第1の工程においてガラス表面層の改質効果が充分に得られず、第2の工程において応力緩和が起こりやすくなる傾向となってしまう。
よって、第1の工程において第1の塩にガラス板を接触させる時間は、好ましくは0.5~8時間、より好ましくは1~6時間、さらに好ましくは1~4時間である。
Specifically, if the time for bringing the glass plate into contact with the first salt is too long, the compressive stress generated in the first step is easily relaxed. Furthermore, the depth of the compressive stress layer tends to increase. This affects the cutability of the glass. On the other hand, if the time for bringing the glass plate into contact with the first salt is too short, the effect of modifying the glass surface layer cannot be sufficiently obtained in the first step, and stress relaxation tends to occur in the second step. turn into.
Therefore, the time for bringing the glass plate into contact with the first salt in the first step is preferably 0.5 to 8 hours, more preferably 1 to 6 hours, and further preferably 1 to 4 hours.
第2の工程においては、イオン交換処理によって発生する応力の緩和をできる限り妨げるのが望ましいが、応力緩和は塩にガラス板を接触させる時間が長ければ長いほど進行してしまう。また、第2の工程後の圧縮応力層の深さが深くなる傾向があり、これもまたガラスの切断性に影響する。一方、第2の塩にガラス板を接触させる時間が短すぎても、アルカリ金属イオンAとアルカリ金属イオンBとのイオン交換が充分に進まず、所望の圧縮応力を発生させることが難しくなってしまう。
よって、第2の工程において第2の塩にガラス板を接触させる時間は、好ましくは0.5~8時間、より好ましくは0.5~6時間、さらに好ましくは0.5~3時間である。
In the second step, it is desirable to prevent the relaxation of the stress generated by the ion exchange treatment as much as possible. However, the longer the time for which the glass plate is brought into contact with the salt, the longer the stress relaxation. Also, the depth of the compressive stress layer after the second step tends to be deep, which also affects the cutability of the glass. On the other hand, even if the time for bringing the glass plate into contact with the second salt is too short, ion exchange between the alkali metal ions A and the alkali metal ions B does not proceed sufficiently, and it becomes difficult to generate a desired compressive stress. End up.
Therefore, the time for bringing the glass plate into contact with the second salt in the second step is preferably 0.5 to 8 hours, more preferably 0.5 to 6 hours, and further preferably 0.5 to 3 hours. .
なお、第1の工程の処理温度及び接触時間、並びに、第2の工程の処理温度及び接触時間について上に述べたが、これらは第1の工程及び第2の工程におけるイオン交換量(化学強化前後のガラス板の質量差の絶対値をガラス板の表面積で除した量として定義される)と関係がある。すなわち、第1の工程及び第2の工程における、それぞれのイオン交換量が同程度であるならば、ここに記載した処理温度範囲、接触時間範囲には限定されることなく、自由に変更してもよい。 The processing temperature and contact time of the first step and the processing temperature and contact time of the second step have been described above. These are the ion exchange amounts (chemical strengthening) in the first step and the second step. Defined as an amount obtained by dividing the absolute value of the mass difference between the front and rear glass plates by the surface area of the glass plate). That is, if the respective ion exchange amounts in the first step and the second step are approximately the same, the treatment temperature range and the contact time range described here are not limited and can be freely changed. Also good.
次に、第2の化学強化方法について説明する。
第2の化学強化方法では、第1の工程によって、ガラス板の表面層におけるアルカリ金属イオンAの割合を増加させることができ、後の第2の工程及び第3の工程を経て得られる最終的な化学強化ガラスの表面圧縮応力を高くすることができる。第2の工程において、ガラス板から流出するアルカリ金属イオンAによって第2の塩浴は希釈されていくが、第2の塩浴のアルカリ金属イオンAの割合(比率Y)を0~10mol%の範囲としている。確かに、第2の塩浴のアルカリ金属イオンAの割合が高くなる、つまり、アルカリ金属イオンBの割合が低くなると、第2の工程後における表面圧縮応力の値は低くなる。しかし、比率Yが0~10mol%の範囲であれば、アルカリ金属イオンBを多く含む第3の塩浴を用いて第3の工程を行うことにより、最終的に高い表面圧縮応力を有する化学強化ガラスを製造することができる。さらに、第2の工程においてイオン交換の大半が完了しているため、第3の工程においてはガラスからアルカリ金属イオンAが流出しにくい。そのため、第3の工程で用いる第3の塩浴の希釈を防止することができる。従って、第3の塩浴のアルカリ金属イオンBの割合(比率Z)を高い値で維持することができる。
Next, the second chemical strengthening method will be described.
In the second chemical strengthening method, the ratio of alkali metal ions A in the surface layer of the glass plate can be increased by the first step, and finally obtained through the subsequent second step and third step. The surface compressive stress of such chemically tempered glass can be increased. In the second step, the second salt bath is diluted by alkali metal ions A flowing out of the glass plate, but the ratio (ratio Y) of alkali metal ions A in the second salt bath is 0 to 10 mol%. The range. Certainly, when the ratio of the alkali metal ions A in the second salt bath is increased, that is, the ratio of the alkali metal ions B is decreased, the value of the surface compressive stress after the second step is decreased. However, if the ratio Y is in the range of 0 to 10 mol%, the third step is performed using the third salt bath containing a large amount of alkali metal ions B, so that chemical strengthening finally having a high surface compressive stress is achieved. Glass can be produced. Furthermore, since most of the ion exchange is completed in the second step, the alkali metal ions A hardly flow out of the glass in the third step. Therefore, dilution of the third salt bath used in the third step can be prevented. Therefore, the ratio (ratio Z) of the alkali metal ions B in the third salt bath can be maintained at a high value.
このように、第2の化学強化方法では、イオン交換に用いる塩浴を頻繁に交換しなくても、高い表面圧縮応力を有する化学強化ガラスを継続的に製造することができる。したがって、第1の工程~第3の工程をすべて行うことにより、高い表面圧縮応力の値を有する化学強化ガラスを継続的に製造することができる。 Thus, in the second chemical strengthening method, chemically strengthened glass having a high surface compressive stress can be continuously produced without frequently replacing the salt bath used for ion exchange. Therefore, by performing all of the first to third steps, chemically strengthened glass having a high surface compressive stress value can be continuously produced.
アルカリ金属イオンA及びアルカリ金属イオンBの具体例は、先に述べたとおりであるが、それぞれナトリウムイオン及びカリウムイオンであることが好ましい。
また、塩の種類としては、硝酸塩、硫酸塩、炭酸塩、水酸化物塩及びリン酸塩のうちの1種又は2種以上の混合物を用いることができる。これらの中では、硝酸塩が好ましい。
Specific examples of the alkali metal ion A and the alkali metal ion B are as described above, but are preferably a sodium ion and a potassium ion, respectively.
Moreover, as a kind of salt, the 1 type (s) or 2 or more types of mixture can be used among nitrate, sulfate, carbonate, hydroxide salt, and phosphate. Of these, nitrates are preferred.
第1の塩において、アルカリ金属イオンのモル量の合計に対するアルカリ金属イオンAのモル量の比率X(mol%)は、90~100mol%であり、好ましくは95~100mol%であり、より好ましくは98~100mol%である。第1の塩の比率Xが100mol%であること、つまり、第1の塩が他のアルカリ金属イオンを実質的に含まず、陽イオンとしてアルカリ金属イオンA(例えば、ナトリウムイオン)のみを含んでいることが好ましい。 In the first salt, the ratio X (mol%) of the molar amount of alkali metal ions A to the total molar amount of alkali metal ions is 90 to 100 mol%, preferably 95 to 100 mol%, more preferably. 98 to 100 mol%. The ratio X of the first salt is 100 mol%, that is, the first salt contains substantially no other alkali metal ions and contains only alkali metal ions A (for example, sodium ions) as cations. Preferably it is.
第1の塩の比率Xが小さすぎると、ガラス板の表面層におけるアルカリ金属イオンAの割合を増加させる効果が得られにくくなり、第2の工程及び第3の工程を行っても所望の表面圧縮応力を有する化学強化ガラスを製造することができない。 If the ratio X of the first salt is too small, it is difficult to obtain the effect of increasing the ratio of alkali metal ions A in the surface layer of the glass plate, and the desired surface can be obtained even if the second and third steps are performed. Chemically tempered glass with compressive stress cannot be produced.
第1の工程における塩の温度(第1の塩の温度)は、375~520℃であることが好ましい。第1の塩の温度の下限は、より好ましくは385℃であり、さらに好ましくは400℃である。第1の塩の温度の上限は、より好ましくは510℃であり、さらに好ましくは500℃である。
第1の塩の温度が高すぎると、ガラス表面が白濁する可能性が高くなってしまう。一方、第1の塩の温度が低すぎると、第1の工程におけるガラス表面改質の効果が充分に得られない。
The salt temperature (first salt temperature) in the first step is preferably 375 to 520 ° C. The lower limit of the temperature of the first salt is more preferably 385 ° C, and further preferably 400 ° C. The upper limit of the temperature of the first salt is more preferably 510 ° C, and further preferably 500 ° C.
If the temperature of the first salt is too high, the glass surface is likely to become cloudy. On the other hand, if the temperature of the first salt is too low, the glass surface modification effect in the first step cannot be sufficiently obtained.
第1の工程において第1の塩にガラス板を接触させる時間は、好ましくは0.5~10時間であり、より好ましくは1~7時間である。第1の塩にガラス板を接触させる時間が長すぎると、化学強化ガラスを製造するために必要な時間が長くなりすぎてしまう。一方、第1の塩にガラス板を接触させる時間が短すぎると、第1の工程におけるガラス表面層の改質効果が充分に得られない。 The time for bringing the glass plate into contact with the first salt in the first step is preferably 0.5 to 10 hours, more preferably 1 to 7 hours. If the time for bringing the glass plate into contact with the first salt is too long, the time required for producing the chemically strengthened glass becomes too long. On the other hand, if the time for bringing the glass plate into contact with the first salt is too short, the effect of modifying the glass surface layer in the first step cannot be sufficiently obtained.
第2の工程において、硝酸塩と水酸化物塩の混合物を用いる場合、硝酸塩のみの場合より、第2の工程により発生する圧縮応力を高めることができる。ただし、第2工程のみでは、大気中に保管した場合、ガラス板の表面に白濁が生じやすくなる。しかしながら、第2の工程後に、後述する第3の工程を行うことにより、白濁の発生を防ぎ、かつ、高い表面応力を得ることができる。硝酸塩に混合する水酸化物塩は、硝酸塩100mol%に対して、好ましくは0~1500ppmであり、より好ましくは0~1000ppmである。 In the second step, when a mixture of nitrate and hydroxide salt is used, the compressive stress generated in the second step can be increased as compared with the case of only nitrate. However, only in the second step, white turbidity is likely to occur on the surface of the glass plate when stored in the atmosphere. However, by performing a third step described later after the second step, generation of white turbidity can be prevented and a high surface stress can be obtained. The hydroxide salt to be mixed with the nitrate is preferably 0 to 1500 ppm, more preferably 0 to 1000 ppm with respect to 100 mol% of the nitrate.
第2の塩において、アルカリ金属イオンのモル量の合計に対するアルカリ金属イオンAのモル量の比率Y(mol%)は、0~10mol%であり、好ましくは0~5mol%であり、より好ましくは0~1mol%である。第2の塩の比率Yは0mol%であることが好ましく、第2の塩がアルカリ金属イオンAを実質的に含まず、陽イオンとしてアルカリ金属イオンB(例えば、カリウムイオン)のみを含んでいることがより好ましい。 In the second salt, the ratio Y (mol%) of the molar amount of alkali metal ions A to the total molar amount of alkali metal ions is 0 to 10 mol%, preferably 0 to 5 mol%, more preferably 0 to 1 mol%. The ratio Y of the second salt is preferably 0 mol%, and the second salt substantially does not contain the alkali metal ion A and contains only the alkali metal ion B (for example, potassium ion) as the cation. It is more preferable.
第2の塩の比率Yが10mol%より大きいと、第2の工程において充分な量のアルカリ金属イオンBがガラス表面層に導入されず、後の第3の工程を行っても所望の表面圧縮応力を有する化学強化ガラスを製造することができない。 When the ratio Y of the second salt is larger than 10 mol%, a sufficient amount of alkali metal ions B is not introduced into the glass surface layer in the second step, and the desired surface compression is achieved even if the third step is performed later. Chemically strengthened glass having stress cannot be produced.
なお、第2の塩は、アルカリ金属イオンBのみを含む未使用の塩であることが好ましいが、アルカリ金属イオンAによって希釈された既使用の塩であってもよい。 In addition, although it is preferable that a 2nd salt is an unused salt containing only the alkali metal ion B, the used salt diluted with the alkali metal ion A may be sufficient.
第2の工程では、第2の工程後に形成される圧縮応力層の深さが3~25μm(より好ましくは5~20μm、さらに好ましくは5~18μm)になるように、第2の塩の比率Yに応じて処理温度(第2の塩の温度)を調整することが好ましい。 In the second step, the ratio of the second salt is such that the depth of the compressive stress layer formed after the second step is 3 to 25 μm (more preferably 5 to 20 μm, still more preferably 5 to 18 μm). It is preferable to adjust the treatment temperature (the temperature of the second salt) according to Y.
第2の工程における処理温度(第2の塩の温度)が高すぎると、ガラス表面が白濁する可能性が高くなり、さらにまた、圧縮応力層も深くなってしまうことから、ガラス切断性に影響を与えてしまう。一方、第2の塩の温度が低すぎると、第2の工程におけるイオン交換が促進されず、所望の圧縮応力層の深さを得ることができない。
そのため、第2の塩の温度は、380~500℃であることが好ましい。第2の塩の温度の下限は、より好ましくは390℃であり、さらに好ましくは400℃である。第2の塩の温度の上限は、より好ましくは490℃であり、さらに好ましくは480℃である。
If the treatment temperature in the second step (the temperature of the second salt) is too high, the glass surface is more likely to become cloudy and the compressive stress layer also becomes deep, which affects the glass cutting property. Will be given. On the other hand, if the temperature of the second salt is too low, ion exchange in the second step is not promoted, and the desired depth of the compressive stress layer cannot be obtained.
Therefore, the temperature of the second salt is preferably 380 to 500 ° C. The lower limit of the temperature of the second salt is more preferably 390 ° C, and further preferably 400 ° C. The upper limit of the temperature of the second salt is more preferably 490 ° C, and further preferably 480 ° C.
第2の工程において第2の塩にガラス板を接触させる時間は、好ましくは1~6時間であり、より好ましくは1~4時間である。第2の塩にガラス板を接触させる時間が長すぎると、第2の工程において発生した圧縮応力が緩和されやすくなる。さらに、圧縮応力層の深さが深くなる傾向がある。これは、ガラスの切断性に影響する。一方、第2の塩にガラス板を接触させる時間が短すぎると、第2の工程におけるイオン交換が促進されず、所望の圧縮応力層の深さを得ることができない。 The time for bringing the glass plate into contact with the second salt in the second step is preferably 1 to 6 hours, more preferably 1 to 4 hours. If the time for bringing the glass plate into contact with the second salt is too long, the compressive stress generated in the second step is easily relaxed. Furthermore, the depth of the compressive stress layer tends to increase. This affects the cutability of the glass. On the other hand, if the time for bringing the glass plate into contact with the second salt is too short, ion exchange in the second step is not promoted, and the desired depth of the compressive stress layer cannot be obtained.
第3の塩において、アルカリ金属イオンのモル量の合計に対するアルカリ金属イオンBのモル量の比率Z(mol%)は、98~100mol%であり、好ましくは99~100mol%であり、より好ましくは99.3~100mol%である。第3の塩の比率Zが100mol%であること、つまり、第3の塩が他のアルカリ金属イオンを実質的に含まず、陽イオンとしてアルカリ金属イオンB(例えば、カリウムイオン)のみを含んでいることが好ましい。 In the third salt, the ratio Z (mol%) of the molar amount of alkali metal ions B to the total molar amount of alkali metal ions is 98 to 100 mol%, preferably 99 to 100 mol%, more preferably. 99.3 to 100 mol%. The ratio Z of the third salt is 100 mol%, that is, the third salt is substantially free of other alkali metal ions and contains only alkali metal ions B (for example, potassium ions) as cations. Preferably it is.
第3の塩の比率Zが小さすぎると、第3の工程において充分な量のアルカリ金属イオンBがガラス表面層に導入されず、所望の表面圧縮応力を有する化学強化ガラスを製造することができない。 If the ratio Z of the third salt is too small, a sufficient amount of alkali metal ions B are not introduced into the glass surface layer in the third step, and a chemically strengthened glass having a desired surface compressive stress cannot be produced. .
なお、第3の塩は、アルカリ金属イオンBのみを含む未使用の塩であることが好ましいが、アルカリ金属イオンA等によって希釈された既使用の塩であってもよい。 The third salt is preferably an unused salt containing only alkali metal ions B, but may be an already used salt diluted with alkali metal ions A or the like.
第3の工程では、第3の工程後に形成される圧縮応力層の深さが5~25μm(より好ましくは7~20μm、さらに好ましくは8~18μm)になるように、第3の塩の比率Zに応じて処理温度(第3の塩の温度)を調整することが好ましい。 In the third step, the ratio of the third salt so that the depth of the compressive stress layer formed after the third step is 5 to 25 μm (more preferably 7 to 20 μm, still more preferably 8 to 18 μm). It is preferable to adjust the treatment temperature (the temperature of the third salt) according to Z.
第3の工程における処理温度(第3の塩の温度)が高すぎると、第3の工程において、第2の工程で発生した圧縮応力の緩和を招いてしまうだけでなく、圧縮応力層も深くなってしまうことから、ガラス切断性に影響を与えてしまう。一方、第3の塩の温度が低すぎると、第3の工程におけるイオン交換が促進されず、第3の工程中に高い表面圧縮応力を発生させることができないだけでなく、所望の圧縮応力層の深さを得ることができない。
そのため、第3の塩の温度は、380~500℃であることが好ましい。第3の塩の温度の下限は、より好ましくは390℃であり、さらに好ましくは400℃である。第3の塩の温度の上限は、より好ましくは480℃であり、さらに好ましくは470℃である。
If the treatment temperature in the third step (the temperature of the third salt) is too high, not only will the compression stress generated in the second step be relaxed in the third step, but also the compression stress layer will be deep. Since it will become, it will affect the glass cutting property. On the other hand, if the temperature of the third salt is too low, ion exchange in the third step is not promoted, and not only a high surface compressive stress cannot be generated during the third step, but also a desired compressive stress layer. Can not get the depth of.
Therefore, the temperature of the third salt is preferably 380 to 500 ° C. The lower limit of the temperature of the third salt is more preferably 390 ° C, and further preferably 400 ° C. The upper limit of the temperature of the third salt is more preferably 480 ° C, and further preferably 470 ° C.
第3の工程において第3の塩にガラス板を接触させる時間は、好ましくは0.5~4時間であり、より好ましくは0.5~3時間である。第3の工程においては、イオン交換処理によって発生する応力の緩和をできる限り妨げるのが望ましいが、応力緩和は塩にガラス板を接触させる時間が長ければ長いほど進行してしまう。また、第3の工程後の圧縮応力層の深さが深くなる傾向があり、これもまたガラスの切断性に影響する。一方、第3の塩にガラス板を接触させる時間が短すぎても、アルカリ金属イオンAとアルカリ金属イオンBとのイオン交換が充分に進まず、所望の圧縮応力を発生させることが難しくなってしまう。 The time for bringing the glass plate into contact with the third salt in the third step is preferably 0.5 to 4 hours, more preferably 0.5 to 3 hours. In the third step, it is desirable to prevent the relaxation of the stress generated by the ion exchange treatment as much as possible, but the stress relaxation proceeds as the time for bringing the glass plate into contact with the salt is longer. Also, the depth of the compressive stress layer after the third step tends to be deep, which also affects the cutability of the glass. On the other hand, even if the time for bringing the glass plate into contact with the third salt is too short, the ion exchange between the alkali metal ions A and the alkali metal ions B does not proceed sufficiently, and it becomes difficult to generate a desired compressive stress. End up.
なお、第1の工程の処理温度及び接触時間、第2の工程の処理温度及び接触時間、並びに、第3の工程の処理温度及び接触時間について上に述べたが、これらはイオン交換量(化学強化前後のガラス板の質量差の絶対値をガラス板の表面積で除した量として定義される)と関係がある。すなわち、各工程におけるそれぞれのイオン交換量が同程度であるならば、ここに記載した処理温度範囲、接触時間範囲には限定されることなく、自由に変更してもよい。 Note that the treatment temperature and contact time of the first step, the treatment temperature and contact time of the second step, and the treatment temperature and contact time of the third step have been described above. The absolute value of the difference in mass of the glass plate before and after strengthening is divided by the surface area of the glass plate). That is, as long as the ion exchange amount in each step is approximately the same, the treatment temperature range and the contact time range described here are not limited and may be freely changed.
また、第1の塩、第2の塩及び第3の塩の構成をアルカリ金属イオンA及びアルカリ金属イオンBに限定して説明したが、本発明の目的を損なわない限り、塩と反応を起こさない安定的な金属酸化物、不純物又は他の塩類が存在することを妨げるものではない。例えば、第1の塩、第2の塩又は第3の塩に、銀イオンや銅イオンが含まれていてもよい。 Moreover, although the structure of the 1st salt, the 2nd salt, and the 3rd salt was limited and demonstrated to the alkali metal ion A and the alkali metal ion B, unless the objective of this invention was impaired, reaction was caused with the salt. It does not prevent the presence of no stable metal oxides, impurities or other salts. For example, silver ions or copper ions may be contained in the first salt, the second salt, or the third salt.
図8(b)に示す工程では、準備したガラス板310の第1の表面311上に、複数のタッチセンサー120を形成する。
本発明の実施形態においては、ガラス板の第1の表面を複数の領域に分割し、それぞれの領域にタッチセンサーを形成する。そして、後述するように、それぞれの領域ごとにガラス板を切断することにより、複数のタッチパネル(タッチセンサーが形成されたカバーガラス)を作製することができる。図8(b)では、2つの領域にタッチセンサー120を形成する例を示しているが、最初に準備するガラス板の大きさや作製するタッチパネルの大きさに応じて、タッチセンサーを形成する数量を適宜変更してよいことは言うまでもない。
In the step shown in FIG. 8B, a plurality of touch sensors 120 are formed on the first surface 311 of the prepared glass plate 310.
In the embodiment of the present invention, the first surface of the glass plate is divided into a plurality of regions, and a touch sensor is formed in each region. As will be described later, a plurality of touch panels (cover glass on which touch sensors are formed) can be produced by cutting the glass plate for each region. FIG. 8B shows an example in which the touch sensor 120 is formed in two regions, but the number of touch sensors to be formed depends on the size of the glass plate to be prepared first and the size of the touch panel to be prepared. Needless to say, it may be changed as appropriate.
タッチセンサーを形成する方法としては特に限定されず、特開2012-88946号公報等で紹介されている公知の方法を用いることができる。例えば、特開2012-88946号公報には、静電容量方式の検出方式の場合には、透明電極の多層配線構造を有するように、所定の電極配線からなる構造を、フォトリソグラフィー法により形成する方法が開示されている。 A method for forming the touch sensor is not particularly limited, and a known method introduced in JP 2012-88946 A can be used. For example, in Japanese Unexamined Patent Application Publication No. 2012-88946, in the case of a capacitive detection method, a structure including predetermined electrode wiring is formed by a photolithography method so as to have a multilayer wiring structure of transparent electrodes. A method is disclosed.
図8(c)及び図8(d)に示す工程では、タッチセンサー120を形成した領域がそれぞれ分割され、かつ、ガラス板310の第1の表面311に対して略垂直なクリーンカット面が形成されるように、タッチセンサー120が形成されたガラス板310を切断する。 In the steps shown in FIGS. 8C and 8D, the region where the touch sensor 120 is formed is divided, and a clean cut surface that is substantially perpendicular to the first surface 311 of the glass plate 310 is formed. As described above, the glass plate 310 on which the touch sensor 120 is formed is cut.
具体的には、図8(c)に示すように、タッチセンサー120が形成されたガラス板310の第1の表面311上に、レーザースクライブによりスクライブ線315を形成する。図8(c)では、タッチセンサー120が形成されている2つの領域を分けるようにスクライブ線315を形成しているが、作製するタッチパネルの数量に応じてスクライブ線を形成すればよい。なお、レーザースクライブについては、後で詳細に説明する。
次いで、スクライブ線315に沿ってガラス板310を分割することにより、図8(d)に示すように、2枚のガラス板310’とする。ガラス板を分割する方法としては、後述するように、機械的に分割する方法でもよいし、スクライブ線に重ねてレーザー光を照射することにより分割する方法でもよい。
Specifically, as shown in FIG. 8C, scribe lines 315 are formed by laser scribing on the first surface 311 of the glass plate 310 on which the touch sensor 120 is formed. In FIG. 8C, the scribe lines 315 are formed so as to divide two regions where the touch sensor 120 is formed, but the scribe lines may be formed according to the number of touch panels to be manufactured. Laser scribe will be described in detail later.
Next, the glass plate 310 is divided along the scribe line 315 to obtain two glass plates 310 ′ as shown in FIG. As described later, the glass plate may be divided mechanically or may be divided by irradiating a laser beam on a scribe line.
その後、図8(e)に示すように、カバーガラス110の第2の表面112の端縁に面取り加工を施すことにより、カバーガラス110の第1の表面111上にタッチセンサー120が形成されたタッチパネル100を作製することができる。
タッチパネル100を構成するカバーガラス110は、第1の表面111に対して略垂直なクリーンカット面113と、第2の表面112の端縁に形成された面取り面114とを有している。
面取り加工の方法は、先に説明したとおりであるので、その詳細な説明を省略する。
Thereafter, as shown in FIG. 8E, the edge of the second surface 112 of the cover glass 110 is chamfered to form the touch sensor 120 on the first surface 111 of the cover glass 110. The touch panel 100 can be manufactured.
The cover glass 110 constituting the touch panel 100 has a clean cut surface 113 that is substantially perpendicular to the first surface 111 and a chamfered surface 114 that is formed at the edge of the second surface 112.
Since the chamfering method is as described above, the detailed description thereof is omitted.
図8(f)に示す工程では、カバーガラス110の第1の表面111を、表示パネル200の前面に対向するように配置する。これにより、表示パネル200と、表示パネル200の前面に取り付けられたタッチパネル100とを備える表示装置10が完成する。 In the step shown in FIG. 8F, the first surface 111 of the cover glass 110 is disposed so as to face the front surface of the display panel 200. Thereby, the display apparatus 10 provided with the display panel 200 and the touch panel 100 attached to the front surface of the display panel 200 is completed.
図8(a)~図8(f)に示す方法では、タッチセンサー120を形成するガラス板310の面と、スクライブ線315を形成するガラス板310の面は、ともに第1の表面311である。これにより、ロール等の搬送手段を用いてガラス板310を搬送する際、ロール等との接触によってタッチセンサー120が損傷することを防止することができる。 In the method shown in FIGS. 8A to 8F, the surface of the glass plate 310 that forms the touch sensor 120 and the surface of the glass plate 310 that forms the scribe line 315 are both the first surface 311. . Thereby, when conveying the glass plate 310 using conveyance means, such as a roll, it can prevent that the touch sensor 120 is damaged by contact with a roll.
本発明の実施形態においては、第1の領域及び第2の領域が分割され、かつ、ガラス板の第1の表面に対して略垂直なクリーンカット面が形成される限り、ガラス板を切断する方法は特に限定されない。ガラス板を切断する方法としては、図8(c)及び図8(d)で示したように、ガラス板の第1の表面側からレーザースクライブにより切断することが好ましいが、ガラス板の第2の表面側からレーザースクライブにより切断してもよいし、ガラス板の第2の表面側からメカニカルスクライブにより切断してもよい。 In the embodiment of the present invention, the glass plate is cut as long as the first region and the second region are divided and a clean cut surface substantially perpendicular to the first surface of the glass plate is formed. The method is not particularly limited. As a method for cutting the glass plate, as shown in FIGS. 8C and 8D, it is preferable to cut the glass plate by laser scribing from the first surface side of the glass plate. You may cut | disconnect by a laser scribe from the surface side of this, and you may cut | disconnect by a mechanical scribe from the 2nd surface side of a glass plate.
以下、レーザースクライブについて説明する。
レーザースクライブでは、炭酸ガスレーザー(COレーザー)等からのレーザー光がガラス表面層にて吸収され、レーザー光を吸収した部位が発熱し、当該部位に局所的に圧縮応力が生じる。この圧縮応力が生じた状態で、冷却水等を用いて当該部位を冷却すると、反対に引張応力が発生し、ガラス表面層に亀裂が生じる、当該亀裂を2次元的、好ましくは直線的に発生されることによりスクライブ線が形成される。
なお、COレーザーの他、COレーザー、YAGレーザー等も使用可能である。
Hereinafter, laser scribe will be described.
In laser scribing, laser light from a carbon dioxide laser (CO 2 laser) or the like is absorbed by the glass surface layer, and the part that absorbed the laser light generates heat, and compressive stress is locally generated in the part. When the part is cooled with cooling water or the like in a state where the compressive stress is generated, tensile stress is generated on the contrary, and the glass surface layer is cracked. The crack is generated two-dimensionally, preferably linearly. As a result, a scribe line is formed.
In addition to the CO 2 laser, a CO laser, a YAG laser, or the like can also be used.
図9(a)~図9(e)は、レーザースクライブによる加工原理の一例を説明するための図である。
まず、図9(a)に示すように、ダイヤモンドカッター等を用いて、ガラス板310の端面にスクライブを開始するための初期亀裂314を生成する。
次に、図9(b)に示すように、ガラス板310の端面から分断予定線に沿ってレーザー光320を照射し、ガラス板310の表面を加熱する。
そして、図9(c)に示すように、加熱直後に、レーザー光の後端付近の領域330をウォータージェット等で急冷する。
すると、図9(d)に示すように、ガラス板310の端面に設けた初期亀裂314からガラス板310の表面層において亀裂が進展する。その結果、ガラス板310の表面にスクライブ線315が形成される。
その後、スクライブ線315に沿ってガラス板を分割することにより、図9(e)に示すように、切断面がクリーンカット面313となるガラス板310’を作製することができる。
ガラス板を分割する方法としては特に限定されず、機械的に分割する方法でもよいし、スクライブ線に重ねてレーザー光を照射することにより分割する方法でもよい。
FIGS. 9A to 9E are diagrams for explaining an example of a processing principle by laser scribing.
First, as shown in FIG. 9A, an initial crack 314 for starting scribing is generated on the end face of the glass plate 310 using a diamond cutter or the like.
Next, as shown in FIG. 9B, the surface of the glass plate 310 is heated by irradiating the laser beam 320 from the end face of the glass plate 310 along the planned dividing line.
And as shown in FIG.9 (c), immediately after a heating, the area | region 330 near the rear end of a laser beam is rapidly cooled with a water jet etc. As shown in FIG.
Then, as shown in FIG. 9D, a crack develops in the surface layer of the glass plate 310 from the initial crack 314 provided on the end surface of the glass plate 310. As a result, scribe lines 315 are formed on the surface of the glass plate 310.
Thereafter, by dividing the glass plate along the scribe line 315, a glass plate 310 ′ having a cut surface as a clean cut surface 313 can be produced as shown in FIG.
The method of dividing the glass plate is not particularly limited, and may be a method of dividing mechanically or a method of dividing the glass plate by irradiating a laser beam on a scribe line.
以下、本発明の実施形態をより具体的に開示した実施例を示す。なお、本発明はこれらの実施例のみに限定されるものではない。 Examples that specifically disclose the embodiments of the present invention will be described below. In addition, this invention is not limited only to these Examples.
以下の実施例では、表示装置及びタッチパネルを構成するカバーガラスを作製し、その特性を評価した。 In the following examples, a cover glass constituting a display device and a touch panel was produced and its characteristics were evaluated.
(実施例1)
化学強化(イオン交換)前のガラス板として、ソーダライムガラス(質量%でSiO:71.3%、NaO:13.0%、KO:0.85%、CaO:9.0%、MgO:3.6%、Al:2.0%、Fe:0.15%、SO:0.1%)からなり、厚みが0.7mm、短辺400mm×長辺500mmであるガラス板を準備した。
Example 1
As a glass plate before chemical strengthening (ion exchange), soda lime glass (mass% SiO 2 : 71.3%, Na 2 O: 13.0%, K 2 O: 0.85%, CaO: 9.0) %, MgO: 3.6%, Al 2 O 3 : 2.0%, Fe 2 O 3 : 0.15%, SO 3 : 0.1%), with a thickness of 0.7 mm and a short side of 400 mm × A glass plate having a long side of 500 mm was prepared.
準備したガラス板に対して、475℃に保持された硝酸カリウム75mol%及び硝酸ナトリウム25mol%からなる混合溶融塩(第1の塩、比率P:25mol%)浴中に2時間浸漬する第1の工程を行った後、435℃に保持された実質的に硝酸カリウム100mol%からなる溶融塩(第2の塩、比率Q:0mol%)浴中に1時間浸漬する第2の工程を行うことにより、化学強化処理を施した。 A first step of immersing the prepared glass plate in a mixed molten salt (first salt, ratio P: 25 mol%) bath composed of 75 mol% potassium nitrate and 25 mol% sodium nitrate held at 475 ° C. for 2 hours. , By performing a second step of immersing in a molten salt (second salt, ratio Q: 0 mol%) bath substantially consisting of 100 mol% of potassium nitrate maintained at 435 ° C. for 1 hour. Reinforced treatment was applied.
化学強化後のガラス板について、表面応力計(東芝硝子製(現、折原製作所製)、FSM-60V)を用いて、干渉縞の本数とその間隔を観察し、表面圧縮応力、及び、ガラス板の表面に形成された圧縮応力層深さをそれぞれ測定した。なお、表面応力計による測定において、上記ソーダライムガラスのガラス組成の屈折率として1.52、同光弾性定数として26.8((nm/cm)/MPa)を用いた。なお、光源としては、ナトリウムランプを用いた。
その結果、表面圧縮応力は675MPa、圧縮応力層深さは12μmであった。
For the glass plate after chemical strengthening, the number of interference fringes and their spacing were observed using a surface stress meter (manufactured by Toshiba Glass (currently manufactured by Orihara Seisakusho), FSM-60V) to determine the surface compressive stress and the glass plate. The depth of the compressive stress layer formed on the surface of each was measured. In the measurement with a surface stress meter, 1.52 was used as the refractive index of the glass composition of the soda lime glass, and 26.8 ((nm / cm) / MPa) was used as the photoelastic constant. A sodium lamp was used as the light source.
As a result, the surface compressive stress was 675 MPa, and the compressive stress layer depth was 12 μm.
同時に、ガラス表面から1番目の干渉縞Lと2番目の干渉縞Lとの間隔r、ガラス表面から2番目の干渉縞Lと3番目の干渉縞Lとの間隔r、及び、ガラス表面から3番目の干渉縞Lと4番目の干渉縞Lとの間隔rを計測した。
そして、計測した間隔r、間隔r及び間隔rから、r/rの値及びr/rの値を算出したところ、r/r=0.61、r/r=0.65であった。
At the same time, the interval r 2 between the distance r 1, the interference of the second from the glass surface stripes L 2 and the third interference fringe L 3 from the glass surface first interference pattern L 1 and the second interference pattern L 2, and it was measured distance r 3 from the glass surface the third interference fringe L 3 and the fourth interference fringe L 4.
Then, when the value of r 2 / r 1 and the value of r 3 / r 2 were calculated from the measured interval r 1 , interval r 2 and interval r 3 , r 2 / r 1 = 0.61, r 3 / r 2 = 0.65.
また、化学強化後のガラス板について、4点曲げ試験による平均破壊応力を以下の方法で測定した。この値は、表示装置及びタッチパネルを構成するカバーガラスとして用いた場合におけるタッチセンサー側(第1の表面側)の端面強度の指標として用いることができる。 Moreover, about the glass plate after chemical strengthening, the average fracture stress by a 4-point bending test was measured with the following method. This value can be used as an index of the end face strength on the touch sensor side (first surface side) when used as a cover glass constituting a display device and a touch panel.
化学強化後のガラス板を、メカニカルスクライブ装置(三星ダイヤモンド工業社製、MS500)を用いて120mm×60mmの大きさにスクライブし、折割によってカバーガラスとなる個片を得た。得られたカバーガラスにおいて、スクライブを入れた面と反対側の面を第1の面とした場合、第1の面に対して略垂直なクリーンカット面が形成されていた。 The glass plate after chemical strengthening was scribed into a size of 120 mm × 60 mm using a mechanical scribing device (MS500, manufactured by Samsung Diamond Industrial Co., Ltd.), and individual pieces to be a cover glass were obtained by folding. In the obtained cover glass, when the surface opposite to the scribed surface was the first surface, a clean cut surface substantially perpendicular to the first surface was formed.
切断した上記ガラス板のクリーンカット面を、非接触三次元測定装置(三鷹光器社製、NH-3N)を用いて、JIS B 0601:2001に準拠して測定し、端面の算術平均粗さRa及び端面の最大高さ粗さRzを測定した。このときのRaは0.013μm、Rzは0.18μmであった。 The clean cut surface of the cut glass plate was measured according to JIS B 0601: 2001 using a non-contact three-dimensional measuring device (manufactured by Mitaka Kogyo Co., Ltd., NH-3N), and the arithmetic average roughness of the end surface Ra and the maximum height roughness Rz of the end face were measured. At this time, Ra was 0.013 μm and Rz was 0.18 μm.
カバーガラスの第1の面に引張応力が発生するようにカバーガラスを支持して4点曲げ試験を行い、平均破壊応力を測定した。
なお、破壊始発点が面内に存在した場合はデータを除外し、エッジ部分に破壊始発点が存在しているもののみを有効サンプルとした、このときの有効サンプル数は50であり、平均破壊応力は563MPaであった。
A four-point bending test was performed by supporting the cover glass so that a tensile stress was generated on the first surface of the cover glass, and an average fracture stress was measured.
In addition, when the fracture starting point exists in the plane, the data is excluded, and only those having the fracture starting point in the edge portion are regarded as valid samples. The number of valid samples at this time is 50, and the average fracture The stress was 563 MPa.
(実施例2)
ガラス板の厚みを0.55mmに変更した以外は、実施例1と同様のガラス板を準備した。化学強化前のガラス板を、レーザースクライブ装置(レミ社製、SC-7392S)を用いて120mm×60mmの大きさにスクライブし、折割によってカバーガラスとなる個片を得た。得られたカバーガラスに対して、実施例1と同様に化学強化処理を施したところ、表面圧縮応力が740MPa、圧縮応力層深さが12μm、r/r=0.67、r/r=0.57のカバーガラスを得た。得られたカバーガラスに対して、実施例1と同様に、端面の算術平均粗さRa及び端面の最大高さ粗さRzを測定したところ、Raは0.031μm、Rzは0.42μmであった。また、実施例1と同様に、4点曲げ試験によってレーザースクライブ側の平均破壊応力を測定したところ、有効サンプル数は8であり、平均破壊応力は757MPaであった。
(Example 2)
A glass plate similar to that of Example 1 was prepared except that the thickness of the glass plate was changed to 0.55 mm. The glass plate before chemical strengthening was scribed into a size of 120 mm × 60 mm using a laser scribing device (manufactured by Remi Co., SC-7392S), and individual pieces to be a cover glass were obtained by folding. When the obtained cover glass was chemically strengthened in the same manner as in Example 1, the surface compressive stress was 740 MPa, the compressive stress layer depth was 12 μm, r 2 / r 1 = 0.67, r 3 / A cover glass with r 2 = 0.57 was obtained. When the arithmetic average roughness Ra of the end face and the maximum height roughness Rz of the end face were measured for the obtained cover glass in the same manner as in Example 1, Ra was 0.031 μm and Rz was 0.42 μm. It was. Similarly to Example 1, when the average breaking stress on the laser scribe side was measured by a four-point bending test, the number of effective samples was 8, and the average breaking stress was 757 MPa.
(比較例1)
実施例1と同様のガラス板を準備した。化学強化前のガラス板を、実施例1と同様にメカニカルスクライブ装置を用いて120mm×60mmの大きさにスクライブし、折割によってカバーガラスとなる個片を得た。得られたカバーガラスに化学強化処理を施さない状態で、実施例1と同様に、端面の算術平均粗さRa及び端面の最大高さ粗さRzを測定したところ、Raは0.013μm、Rzは0.14μmであった。また、実施例1と同様に、4点曲げ試験によってクリーンカット面側の平均破壊応力を測定したところ、有効サンプル数は50であり、平均破壊応力は234MPaであった。
(Comparative Example 1)
A glass plate similar to that in Example 1 was prepared. The glass plate before chemical strengthening was scribed into a size of 120 mm × 60 mm using a mechanical scribing device in the same manner as in Example 1, and individual pieces to be a cover glass were obtained by folding. When the arithmetic average roughness Ra of the end face and the maximum height roughness Rz of the end face were measured in the same manner as in Example 1 without subjecting the obtained cover glass to chemical strengthening treatment, Ra was 0.013 μm, Rz. Was 0.14 μm. Similarly to Example 1, when the average breaking stress on the clean cut surface side was measured by a four-point bending test, the number of effective samples was 50, and the average breaking stress was 234 MPa.
(比較例2)
ガラス板の厚みを1.1mmに変更した以外は、実施例1と同様のガラス板を準備した。化学強化前のガラス板を、実施例1と同様にメカニカルスクライブ装置を用いて120mm×60mmの大きさにスクライブし、折割によってカバーガラスとなる個片を得た。得られたカバーガラスに対して、図3(a)に示した頂部Aより0.2mmの取り代(ガラス板の厚みの18%)でC面取りを施した後、実施例1と同様に化学強化処理を施したところ、表面圧縮応力が750MPa、圧縮応力層深さが13μm、r/r=0.68、r/r=0.63のカバーガラスを得た。得られたカバーガラスに対して、実施例1と同様に、端面の算術平均粗さRa及び端面の最大高さ粗さRzを測定したところ、Raは1.662μm、Rzは10.17μmであった。また、実施例1と同様に、4点曲げ試験によって平均破壊応力を測定したところ、有効サンプル数は7であり、平均破壊応力は425MPaであった。
(Comparative Example 2)
A glass plate similar to Example 1 was prepared except that the thickness of the glass plate was changed to 1.1 mm. The glass plate before chemical strengthening was scribed into a size of 120 mm × 60 mm using a mechanical scribing device in the same manner as in Example 1, and individual pieces to be a cover glass were obtained by folding. The obtained cover glass was chamfered with an allowance of 0.2 mm (18% of the thickness of the glass plate) from the top A shown in FIG. When the tempering treatment was performed, a cover glass having a surface compressive stress of 750 MPa, a compressive stress layer depth of 13 μm, r 2 / r 1 = 0.68, and r 3 / r 2 = 0.63 was obtained. For the obtained cover glass, the arithmetic average roughness Ra of the end face and the maximum height roughness Rz of the end face were measured in the same manner as in Example 1. As a result, Ra was 1.661 μm and Rz was 10.17 μm. It was. Moreover, when the average breaking stress was measured by a 4-point bending test in the same manner as in Example 1, the number of effective samples was 7, and the average breaking stress was 425 MPa.
実施例1、実施例2、比較例1及び比較例2のカバーガラスの板厚、表面圧縮応力、圧縮応力層深さ、r/r値、r/r値、端面の算術平均粗さRa、端面の最大高さ粗さRz、4点曲げ試験による有効サンプル数及び平均破壊応力を表1に示す。表1からも明らかであるように、実施例1及び2のカバーガラスは、比較例1及び2のカバーガラスに比べて平均破壊応力の値が高かった。そのため、実施例1及び2のカバーガラスは、比較例1及び2のカバーガラスに比べて充分な端面強度を有することが確認された。 Example 1, Example 2, Comparative Example 1 and Comparative Example 2 Cover Glass Thickness, Surface Compressive Stress, Compressive Stress Layer Depth, r 2 / r 1 Value, r 3 / r 2 Value, Arithmetic Average Table 1 shows the roughness Ra, the maximum height roughness Rz of the end face, the number of effective samples and the average fracture stress by a four-point bending test. As is clear from Table 1, the cover glass of Examples 1 and 2 had a higher average fracture stress value than the cover glasses of Comparative Examples 1 and 2. Therefore, it was confirmed that the cover glasses of Examples 1 and 2 have sufficient end face strength as compared with the cover glasses of Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
なお、2012年9月27日に出願された国際出願PCT/JP2012/074925、2012年9月27日に出願された国際出願PCT/JP2012/074926、2012年9月27日に出願された国際出願PCT/JP2012/074929、及び、2013年1月10日に出願された日本国特許出願2013-002747号の内容は、その全体が本願中に参照として組み込まれている。 International application PCT / JP2012 / 074925 filed on September 27, 2012, international application PCT / JP2012 / 074926 filed on September 27, 2012, international application filed on September 27, 2012 The contents of PCT / JP2012 / 074929 and Japanese Patent Application No. 2013-002747 filed on January 10, 2013 are incorporated herein by reference in their entirety.
10 表示装置
100 タッチパネル
110 カバーガラス
111 カバーガラスの第1の表面
112 カバーガラスの第2の表面
113 クリーンカット面
114 面取り面
120 タッチセンサー
200 表示パネル
310 ガラス板
DESCRIPTION OF SYMBOLS 10 Display apparatus 100 Touch panel 110 Cover glass 111 Cover glass 1st surface 112 Cover glass 2nd surface 113 Clean cut surface 114 Chamfering surface 120 Touch sensor 200 Display panel 310 Glass plate

Claims (20)

  1. 表示パネルと、前記表示パネルの前面に取り付けられたタッチパネルとを備える表示装置であって、
    前記タッチパネルは、
    前記表示パネルの前面と対向する第1の表面、及び、前記第1の表面と反対側の第2の表面を有するカバーガラスと、
    前記カバーガラスの前記第1の表面上に形成されたタッチセンサーとを備え、
    前記カバーガラスは、化学的に強化されたガラスであり、
    前記カバーガラスの表面圧縮応力が600~900MPa、圧縮応力層深さが5~20μmであり、
    前記カバーガラスは、前記第1の表面に対して略垂直なクリーンカット面、及び、前記第2の表面の端縁に形成された面取り面を有することを特徴とする表示装置。
    A display device comprising a display panel and a touch panel attached to the front surface of the display panel,
    The touch panel
    A cover glass having a first surface facing the front surface of the display panel, and a second surface opposite to the first surface;
    A touch sensor formed on the first surface of the cover glass,
    The cover glass is a chemically strengthened glass,
    The cover glass has a surface compressive stress of 600 to 900 MPa and a compressive stress layer depth of 5 to 20 μm.
    The display device according to claim 1, wherein the cover glass has a clean cut surface substantially perpendicular to the first surface and a chamfered surface formed at an edge of the second surface.
  2. 前記カバーガラスの厚みが0.3~3mmである請求項1に記載の表示装置。 The display device according to claim 1, wherein the cover glass has a thickness of 0.3 to 3 mm.
  3. 前記カバーガラスは、ガラス表面側の応力分布パターンAとガラス内部側の応力分布パターンBとの2種類の応力パターンを圧縮応力層の中に有し、該応力パターンA及び該応力パターンBをそれぞれ1次関数で近似する場合において、該応力パターンAの傾きをS、該応力パターンBの傾きをSとしたとき、S>Sの関係を満たし、かつ、光導波路効果を観測原理とする表面応力計を用いて前記カバーガラスの干渉縞を観察し、ガラス表面から1番目の干渉縞と2番目の干渉縞との間隔をr、ガラス表面から2番目の干渉縞と3番目の干渉縞との間隔をr、ガラス表面から3番目の干渉縞と4番目の干渉縞との間隔をrとしたとき、r/r及びr/rの少なくとも1つが、0.3~0.7を満たす請求項1又は2に記載の表示装置。 The cover glass has two types of stress patterns, a stress distribution pattern A on the glass surface side and a stress distribution pattern B on the glass inner side, in the compressive stress layer, and the stress pattern A and the stress pattern B are respectively provided. in the case of approximated by a linear function, when the inclination of the stress pattern a and S a, the slope of the stress pattern B and S B, satisfy the relationship of S a> S B, and observation principle the waveguide effect The interference fringes of the cover glass are observed using a surface stress meter, and the distance between the first interference fringe and the second interference fringe from the glass surface is r 1 , the second interference fringe and the third interference fringe from the glass surface Where r 2 is the distance between the interference fringes and r 3 is the distance between the third and fourth interference fringes from the glass surface, at least one of r 2 / r 1 and r 3 / r 2 is Claims satisfying 0.3-0.7 The display device according to 1 or 2.
  4. 前記カバーガラスの前記クリーンカット面の算術平均粗さRaが0.07μm以下であり、かつ、最大高さ粗さRzが0.70μm以下である請求項1~3のいずれかに記載の表示装置。 The display device according to any one of claims 1 to 3, wherein an arithmetic average roughness Ra of the clean cut surface of the cover glass is 0.07 µm or less, and a maximum height roughness Rz is 0.70 µm or less. .
  5. 前記カバーガラスの前記面取り面における取り代が、前記カバーガラスの厚みの3~35%である請求項1~4のいずれかに記載の表示装置。 The display device according to any one of claims 1 to 4, wherein an allowance for the chamfered surface of the cover glass is 3 to 35% of a thickness of the cover glass.
  6. 表示パネルと、前記表示パネルの前面に取り付けられたタッチパネルとを備える表示装置の製造方法であって、
    化学的に強化されたガラス板であって、表面圧縮応力が600~900MPa、圧縮応力層深さが5~20μmであるガラス板を準備する工程と、
    前記ガラス板の第1の表面上の少なくとも第1の領域及び第2の領域に、タッチセンサーをそれぞれ形成する工程と、
    前記第1の領域及び前記第2の領域が分割され、かつ、前記ガラス板の前記第1の表面に対して略垂直なクリーンカット面が形成されるように前記ガラス板を切断することにより、第1の表面上に前記タッチセンサーが形成されたカバーガラスを少なくとも2枚作製する工程と、
    前記カバーガラスの前記第1の表面と反対側の第2の表面の端縁に面取り加工を施す工程と、
    前記カバーガラスの前記第1の表面を、前記表示パネルの前面に対向するように配置する工程とを含むことを特徴とする表示装置の製造方法。
    A manufacturing method of a display device comprising a display panel and a touch panel attached to the front surface of the display panel,
    Providing a chemically strengthened glass plate having a surface compressive stress of 600 to 900 MPa and a compressive stress layer depth of 5 to 20 μm;
    Forming a touch sensor in at least a first region and a second region on the first surface of the glass plate, respectively.
    By cutting the glass plate so that the first region and the second region are divided and a clean cut surface substantially perpendicular to the first surface of the glass plate is formed, Producing at least two cover glasses in which the touch sensor is formed on the first surface;
    Chamfering the edge of the second surface opposite to the first surface of the cover glass;
    And disposing the first surface of the cover glass so as to face the front surface of the display panel.
  7. 前記カバーガラスの厚みが0.3~3mmである請求項6に記載の表示装置の製造方法。 The method for manufacturing a display device according to claim 6, wherein the cover glass has a thickness of 0.3 to 3 mm.
  8. 前記カバーガラスは、ガラス表面側の応力分布パターンAとガラス内部側の応力分布パターンBとの2種類の応力パターンを圧縮応力層の中に有し、該応力パターンA及び該応力パターンBをそれぞれ1次関数で近似する場合において、該応力パターンAの傾きをS、該応力パターンBの傾きをSとしたとき、S>Sの関係を満たし、かつ、光導波路効果を観測原理とする表面応力計を用いて前記カバーガラスの干渉縞を観察し、ガラス表面から1番目の干渉縞と2番目の干渉縞との間隔をr、ガラス表面から2番目の干渉縞と3番目の干渉縞との間隔をr、ガラス表面から3番目の干渉縞と4番目の干渉縞との間隔をrとしたとき、r/r及びr/rの少なくとも1つが、0.3~0.7を満たす請求項6又は7に記載の表示装置の製造方法。 The cover glass has two types of stress patterns, a stress distribution pattern A on the glass surface side and a stress distribution pattern B on the glass inner side, in the compressive stress layer, and the stress pattern A and the stress pattern B are respectively provided. in the case of approximated by a linear function, when the inclination of the stress pattern a and S a, the slope of the stress pattern B and S B, satisfy the relationship of S a> S B, and observation principle the waveguide effect The interference fringes of the cover glass are observed using a surface stress meter, and the distance between the first interference fringe and the second interference fringe from the glass surface is r 1 , the second interference fringe and the third interference fringe from the glass surface Where r 2 is the distance between the interference fringes and r 3 is the distance between the third and fourth interference fringes from the glass surface, at least one of r 2 / r 1 and r 3 / r 2 is Claims satisfying 0.3-0.7 Method of manufacturing a display device according to 6 or 7.
  9. 前記カバーガラスの前記クリーンカット面の算術平均粗さRaが0.07μm以下であり、かつ、最大高さ粗さRzが0.70μm以下である請求項6~8のいずれかに記載の表示装置の製造方法。 9. The display device according to claim 6, wherein an arithmetic average roughness Ra of the clean cut surface of the cover glass is 0.07 μm or less and a maximum height roughness Rz is 0.70 μm or less. Manufacturing method.
  10. 前記カバーガラスの前記面取り面における取り代が、前記カバーガラスの厚みの3~35%である請求項6~9のいずれかに記載の表示装置の製造方法。 The method for manufacturing a display device according to any one of claims 6 to 9, wherein an allowance for the chamfered surface of the cover glass is 3 to 35% of a thickness of the cover glass.
  11. 第1の表面、及び、前記第1の表面と反対側の第2の表面を有するカバーガラスと、
    前記カバーガラスの前記第1の表面上に形成されたタッチセンサーとを備えるタッチパネルであって、
    前記カバーガラスは、化学的に強化されたガラスであり、
    前記カバーガラスの表面圧縮応力が600~900MPa、圧縮応力層深さが5~20μmであり、
    前記カバーガラスは、前記第1の表面に対して略垂直なクリーンカット面、及び、前記第2の表面の端縁に形成された面取り面を有することを特徴とするタッチパネル。
    A cover glass having a first surface and a second surface opposite to the first surface;
    A touch panel comprising a touch sensor formed on the first surface of the cover glass,
    The cover glass is a chemically strengthened glass,
    The cover glass has a surface compressive stress of 600 to 900 MPa and a compressive stress layer depth of 5 to 20 μm.
    The cover glass has a clean cut surface substantially perpendicular to the first surface and a chamfered surface formed at an edge of the second surface.
  12. 前記カバーガラスの厚みが0.3~3mmである請求項11に記載のタッチパネル。 The touch panel according to claim 11, wherein the cover glass has a thickness of 0.3 to 3 mm.
  13. 前記カバーガラスは、ガラス表面側の応力分布パターンAとガラス内部側の応力分布パターンBとの2種類の応力パターンを圧縮応力層の中に有し、該応力パターンA及び該応力パターンBをそれぞれ1次関数で近似する場合において、該応力パターンAの傾きをS、該応力パターンBの傾きをSとしたとき、S>Sの関係を満たし、かつ、光導波路効果を観測原理とする表面応力計を用いて前記カバーガラスの干渉縞を観察し、ガラス表面から1番目の干渉縞と2番目の干渉縞との間隔をr、ガラス表面から2番目の干渉縞と3番目の干渉縞との間隔をr、ガラス表面から3番目の干渉縞と4番目の干渉縞との間隔をrとしたとき、r/r及びr/rの少なくとも1つが、0.3~0.7を満たす請求項11又は12に記載のタッチパネル。 The cover glass has two types of stress patterns, a stress distribution pattern A on the glass surface side and a stress distribution pattern B on the glass inner side, in the compressive stress layer, and the stress pattern A and the stress pattern B are respectively provided. in the case of approximated by a linear function, when the inclination of the stress pattern a and S a, the slope of the stress pattern B and S B, satisfy the relationship of S a> S B, and observation principle the waveguide effect The interference fringes of the cover glass are observed using a surface stress meter, and the distance between the first interference fringe and the second interference fringe from the glass surface is r 1 , the second interference fringe and the third interference fringe from the glass surface Where r 2 is the distance between the interference fringes and r 3 is the distance between the third and fourth interference fringes from the glass surface, at least one of r 2 / r 1 and r 3 / r 2 is Claims satisfying 0.3-0.7 The touch panel according to 11 or 12.
  14. 前記カバーガラスの前記クリーンカット面の算術平均粗さRaが0.07μm以下であり、かつ、最大高さ粗さRzが0.70μm以下である請求項11~13のいずれかに記載のタッチパネル。 The touch panel according to any one of claims 11 to 13, wherein an arithmetic average roughness Ra of the clean cut surface of the cover glass is 0.07 µm or less, and a maximum height roughness Rz is 0.70 µm or less.
  15. 前記カバーガラスの前記面取り面における取り代が、前記カバーガラスの厚みの3~35%である請求項11~14のいずれかに記載のタッチパネル。 The touch panel according to any one of claims 11 to 14, wherein an allowance for the chamfered surface of the cover glass is 3 to 35% of a thickness of the cover glass.
  16. 化学的に強化されたガラス板であって、表面圧縮応力が600~900MPa、圧縮応力層深さが5~20μmであるガラス板を準備する工程と、
    前記ガラス板の第1の表面上の少なくとも第1の領域及び第2の領域に、タッチセンサーをそれぞれ形成する工程と、
    前記第1の領域及び前記第2の領域が分割され、かつ、前記ガラス板の前記第1の表面に対して略垂直なクリーンカット面が形成されるように前記ガラス板を切断することにより、第1の表面上に前記タッチセンサーが形成されたカバーガラスを少なくとも2枚作製する工程と、
    前記カバーガラスの前記第1の表面と反対側の第2の表面の端縁に面取り加工を施す工程とを含むことを特徴とするタッチパネルの製造方法。
    Providing a chemically strengthened glass plate having a surface compressive stress of 600 to 900 MPa and a compressive stress layer depth of 5 to 20 μm;
    Forming a touch sensor in at least a first region and a second region on the first surface of the glass plate, respectively.
    By cutting the glass plate so that the first region and the second region are divided and a clean cut surface substantially perpendicular to the first surface of the glass plate is formed, Producing at least two cover glasses in which the touch sensor is formed on the first surface;
    And a step of chamfering the edge of the second surface opposite to the first surface of the cover glass.
  17. 前記カバーガラスの厚みが0.3~3mmである請求項16に記載のタッチパネルの製造方法。 The method for manufacturing a touch panel according to claim 16, wherein the cover glass has a thickness of 0.3 to 3 mm.
  18. 前記カバーガラスは、ガラス表面側の応力分布パターンAとガラス内部側の応力分布パターンBとの2種類の応力パターンを圧縮応力層の中に有し、該応力パターンA及び該応力パターンBをそれぞれ1次関数で近似する場合において、該応力パターンAの傾きをS、該応力パターンBの傾きをSとしたとき、S>Sの関係を満たし、かつ、光導波路効果を観測原理とする表面応力計を用いて前記カバーガラスの干渉縞を観察し、ガラス表面から1番目の干渉縞と2番目の干渉縞との間隔をr、ガラス表面から2番目の干渉縞と3番目の干渉縞との間隔をr、ガラス表面から3番目の干渉縞と4番目の干渉縞との間隔をrとしたとき、r/r及びr/rの少なくとも1つが、0.3~0.7を満たす請求項16又は17に記載のタッチパネルの製造方法。 The cover glass has two types of stress patterns, a stress distribution pattern A on the glass surface side and a stress distribution pattern B on the glass inner side, in the compressive stress layer, and the stress pattern A and the stress pattern B are respectively provided. in the case of approximated by a linear function, when the inclination of the stress pattern a and S a, the slope of the stress pattern B and S B, satisfy the relationship of S a> S B, and observation principle the waveguide effect The interference fringes of the cover glass are observed using a surface stress meter, and the distance between the first interference fringe and the second interference fringe from the glass surface is r 1 , the second interference fringe and the third interference fringe from the glass surface Where r 2 is the distance between the interference fringes and r 3 is the distance between the third and fourth interference fringes from the glass surface, at least one of r 2 / r 1 and r 3 / r 2 is Claims satisfying 0.3-0.7 The method as set forth in 16 or 17.
  19. 前記カバーガラスの前記クリーンカット面の算術平均粗さRaが0.07μm以下であり、かつ、最大高さ粗さRzが0.70μm以下である請求項16~18のいずれかに記載のタッチパネルの製造方法。 The touch panel according to any one of claims 16 to 18, wherein an arithmetic average roughness Ra of the clean cut surface of the cover glass is 0.07 µm or less and a maximum height roughness Rz is 0.70 µm or less. Production method.
  20. 前記カバーガラスの前記面取り面における取り代が、前記カバーガラスの厚みの3~35%である請求項16~19のいずれかに記載のタッチパネルの製造方法。 The method for manufacturing a touch panel according to any of claims 16 to 19, wherein an allowance for the chamfered surface of the cover glass is 3 to 35% of a thickness of the cover glass.
PCT/JP2014/055709 2013-03-15 2014-03-06 Display device, display device manufacturing method, touch panel, and touch panel manufacturing method WO2014141981A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480002595.2A CN104718520A (en) 2013-03-15 2014-03-06 Display device, display device manufacturing method, touch panel, and touch panel manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013054206A JP6197317B2 (en) 2013-03-15 2013-03-15 Display device, display device manufacturing method, touch panel, and touch panel manufacturing method
JP2013-054206 2013-03-15

Publications (1)

Publication Number Publication Date
WO2014141981A1 true WO2014141981A1 (en) 2014-09-18

Family

ID=51536645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055709 WO2014141981A1 (en) 2013-03-15 2014-03-06 Display device, display device manufacturing method, touch panel, and touch panel manufacturing method

Country Status (4)

Country Link
JP (1) JP6197317B2 (en)
CN (1) CN104718520A (en)
TW (1) TW201442969A (en)
WO (1) WO2014141981A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107275364A (en) * 2016-03-31 2017-10-20 三星显示有限公司 Display device
US20210323863A1 (en) * 2016-06-14 2021-10-21 Corning Incorporated Glasses having improved drop performance
US20220163837A1 (en) * 2020-11-23 2022-05-26 Innolux Corporation Electronic device and method for manufacturing the same
CN115716714A (en) * 2018-07-03 2023-02-28 Agc株式会社 Chemically strengthened glass and method for producing same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101574923B1 (en) * 2015-01-20 2015-12-04 김영수 Apparatus of display having detachable window and method of detachable the window
JP6419595B2 (en) * 2015-01-30 2018-11-07 有限会社折原製作所 Surface stress measurement method, surface stress measurement device
CN111984158B (en) * 2015-03-26 2024-04-02 天马微电子股份有限公司 Touch prompting device
KR102380158B1 (en) * 2015-04-24 2022-03-29 삼성디스플레이 주식회사 Display device and manufacturing method thereof
CN107615367B (en) * 2015-06-05 2019-10-01 Agc株式会社 Display device for mounting on vehicle
JP6583623B2 (en) * 2015-07-24 2019-10-02 日本電気硝子株式会社 Glass plate for light guide plate
CN105653086A (en) * 2015-12-28 2016-06-08 信利光电股份有限公司 Touch display screen and manufacture method thereof
JP6879302B2 (en) * 2016-05-31 2021-06-02 Agc株式会社 Cover glass and display
KR102509025B1 (en) * 2016-07-29 2023-03-09 엘지디스플레이 주식회사 Back cover integrated with light giude plate and method of manufacturing the same, and back light unit and liquid crystal display device using the same
CN107293217A (en) * 2017-07-05 2017-10-24 深圳传音控股有限公司 A kind of screen of intelligent terminal and the intelligent terminal with the screen
JP6907778B2 (en) * 2017-07-20 2021-07-21 日本電気硝子株式会社 Cover members and information equipment
CN108648623B (en) * 2018-04-24 2021-06-29 广州国显科技有限公司 Display screen, manufacturing method thereof and display terminal
KR102138924B1 (en) * 2018-07-13 2020-07-29 (주)유티아이 Manufacturing Method of Display with Ultrasonic Type Fingerprint Sensor and Display with Ultrasonic Type Fingerprint Sensor Thereby
JP6597858B1 (en) * 2018-09-04 2019-10-30 Agc株式会社 Glass for display

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080266273A1 (en) * 2007-04-24 2008-10-30 White Electronic Designs Corp. Interactive display system
WO2011097314A2 (en) * 2010-02-02 2011-08-11 Apple Inc. Enhanced chemical strengthening glass of covers for portable electronic devices
JP2012180262A (en) * 2011-02-10 2012-09-20 Nippon Electric Glass Co Ltd Reinforced glass plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145661A1 (en) * 2010-05-19 2011-11-24 旭硝子株式会社 Glass for chemical strengthening and glass plate for display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080266273A1 (en) * 2007-04-24 2008-10-30 White Electronic Designs Corp. Interactive display system
WO2011097314A2 (en) * 2010-02-02 2011-08-11 Apple Inc. Enhanced chemical strengthening glass of covers for portable electronic devices
JP2012180262A (en) * 2011-02-10 2012-09-20 Nippon Electric Glass Co Ltd Reinforced glass plate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107275364A (en) * 2016-03-31 2017-10-20 三星显示有限公司 Display device
CN107275364B (en) * 2016-03-31 2023-08-11 三星显示有限公司 Display device
US20210323863A1 (en) * 2016-06-14 2021-10-21 Corning Incorporated Glasses having improved drop performance
CN115716714A (en) * 2018-07-03 2023-02-28 Agc株式会社 Chemically strengthened glass and method for producing same
CN115716714B (en) * 2018-07-03 2024-02-13 Agc株式会社 Chemically strengthened glass and method for producing same
US20220163837A1 (en) * 2020-11-23 2022-05-26 Innolux Corporation Electronic device and method for manufacturing the same

Also Published As

Publication number Publication date
TW201442969A (en) 2014-11-16
JP6197317B2 (en) 2017-09-20
JP2014178640A (en) 2014-09-25
CN104718520A (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP6197317B2 (en) Display device, display device manufacturing method, touch panel, and touch panel manufacturing method
JP6079632B2 (en) Chemically strengthened glass plate and manufacturing method thereof
JP7145131B2 (en) Contoured surface for display applications
US20210078899A1 (en) Ultrathin glass with special chamfer shape and high strength
KR101739605B1 (en) Glass and display having anti-glare properties
US8778496B2 (en) Anti-glare glass sheet having compressive stress equipoise and methods thereof
EP3144283A1 (en) Glass article and production method for glass article
TW201743081A (en) Enclosures having an improved tactile surface
JP2014133683A (en) Method for manufacturing a chemically strengthened glass plate
TW201418185A (en) Reinforced plate glass and manufacturing method thereof
JP2017019723A (en) Glass substrate, cover glass for electronic apparatus, and method for producing glass substrate
WO2020227924A1 (en) Thin glass substrate with high bending strength and method for producing same
US20220106218A1 (en) Methods of forming a foldable apparatus
US20200399175A1 (en) Glass articles comprising light extraction features and methods for making the same
EP3901112B1 (en) Glass article and display device including the same
JP2014201516A (en) Chemically tempered glass plate and chemically tempered glass article
JP2018145015A (en) Manufacturing method for glass plate and glass plate
CN117242041A (en) Ion exchange method and ion exchange glass product prepared by using same
JP2018048064A (en) Production method of bent glass article, and bent glass article
JP2018145016A (en) Glass plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14762997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14762997

Country of ref document: EP

Kind code of ref document: A1