WO2014141836A1 - Distribution reservoir water level setting device, distribution reservoir water level setting method, and distribution reservoir water level setting system - Google Patents

Distribution reservoir water level setting device, distribution reservoir water level setting method, and distribution reservoir water level setting system Download PDF

Info

Publication number
WO2014141836A1
WO2014141836A1 PCT/JP2014/053903 JP2014053903W WO2014141836A1 WO 2014141836 A1 WO2014141836 A1 WO 2014141836A1 JP 2014053903 W JP2014053903 W JP 2014053903W WO 2014141836 A1 WO2014141836 A1 WO 2014141836A1
Authority
WO
WIPO (PCT)
Prior art keywords
reservoir
power
water
water level
amount
Prior art date
Application number
PCT/JP2014/053903
Other languages
French (fr)
Japanese (ja)
Inventor
勝也 横川
理 山中
寿治 杉野
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to CN201480010297.8A priority Critical patent/CN105009161B/en
Publication of WO2014141836A1 publication Critical patent/WO2014141836A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B5/00Use of pumping plants or installations; Layouts thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Definitions

  • the embodiment of the present invention is a distribution system used in a process of supplying water to a distribution reservoir or a receiving reservoir (hereinafter collectively referred to as a distribution reservoir) with a water supply pump in order to distribute purified water that has been subjected to water purification treatment at a water purification plant to consumers.
  • the present invention relates to a water reservoir water level setting device, a water reservoir water level setting method used in this device, and a water reservoir water level setting system.
  • the distribution reservoir has the main role of producing the following two advantages by suppressing fluctuations in the amount of water delivered. That is, it is to carry out water purification treatment stably at a water purification plant, and to secure a certain amount of purified water so as to ensure time for water supply even in an emergency.
  • the water purification plant operator constantly monitors the water level in the reservoir and activates or stops the pump that supplies water to the reservoir.
  • the water treatment plant operator constantly monitors the water level of the reservoir and operates the flow rate of the pump that supplies the water to the reservoir. Thereby, the water reservoir can maintain the water level in a predetermined operational water level upper and lower limit range and can perform the above-mentioned role.
  • pump power for pumping clean water to the reservoir is not considered. Therefore, if the water level of the reservoir is maintained within the upper and lower limits of the water level, excessive pump power may be temporarily generated in the morning and evening hours when the water demand peaks. As a result, the power peak consumed in the water purification plant increases, and high contract power may occur.
  • the purpose is to set the upper and lower limits of the reservoir that can suppress the generation of excessive pump power and prevent the increase in contract power when the operator maintains the water level of the reservoir within the upper and lower limits of the reservoir.
  • the object is to provide a reservoir level setting device, a reservoir level setting method and a reservoir level setting system used in this device.
  • the distribution reservoir water level setting device includes a recording unit, a simulation unit, a power peak evaluation unit, and a power amount charge calculation unit.
  • the recording unit records in advance plant data including information on a plurality of pumps and distribution reservoirs installed in the plant and past water demand data.
  • the simulation unit calculates a water supply amount to the distribution reservoir of the plurality of pumps based on the plant data, calculates a water level of the distribution reservoir based on a relationship between the water supply amount and the water demand data, When the water level is close to the upper and lower limits of the reservoir, the number of pumps for calculating the water supply amount is increased or decreased.
  • the power peak evaluation unit calculates a power amount per predetermined time based on the water supply amount and a peak power that takes a maximum value among the power amount.
  • the power amount charge calculation unit calculates a power amount charge based on the power amount and the peak power, and causes the display device to display a calculation result of the power amount charge.
  • the simulation unit uses a water reservoir upper and lower limit value capable of suppressing the electricity charge as a set value.
  • FIG. 1 is a diagram illustrating a water supply process to which the reservoir water level setting device according to the first embodiment is applied.
  • FIG. 2 is a diagram illustrating a functional configuration of the reservoir water level setting device according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of the upper and lower limits of the reservoir that is input to the simulation unit illustrated in FIG. 2.
  • FIG. 4 is a diagram showing a flowchart when the reservoir water level setting device shown in FIG. 2 sets the reservoir water level operation rule.
  • FIG. 5 is a block diagram showing another configuration of the reservoir water level setting device shown in FIG.
  • FIG. 6 is a block diagram showing another configuration of the reservoir water level setting device shown in FIG. FIG.
  • FIG. 7 is a diagram illustrating an example of a table obtained by the process performed by the simulation unit illustrated in FIG.
  • FIG. 8 is a diagram illustrating an example of the upper and lower limits of the reservoir that are input to the simulation unit illustrated in FIG. 2.
  • FIG. 9 is a diagram showing an example of a table obtained based on the upper and lower limits of the reservoir shown in FIG.
  • FIG. 10 is a block diagram illustrating a functional configuration of a distribution reservoir water level setting device according to the second embodiment.
  • FIG. 11 is a block diagram which shows the function structure of the reservoir water level setting apparatus which concerns on 3rd Embodiment.
  • FIG. 12 is a diagram showing a system diagram when the function of the reservoir level setting device shown in FIG. 2 is included in the cloud server.
  • FIG. 1 is a diagram schematically illustrating a water supply process to which a reservoir water level setting device 10 according to the first embodiment is applied.
  • the purified water is sent from the water purification plant (not shown) to the distributing reservoir 20 by the pump 30.
  • the number of water pumps operated y k [units] and the amount Q of water supply Q are maintained so as to keep the reservoir water level l k [m] within a predetermined range while satisfying the water demand q k [m 3 / h].
  • the operator operates k [m 3 / h].
  • the operator may operate so as to keep the water level of the reservoir high by the morning of 6:00, for example, when the water demand increases rapidly.
  • FIG. 2 is a diagram illustrating a functional configuration of the reservoir water level setting device 10 according to the first embodiment.
  • Reservoir water level setting device 10 shown in FIG. 2 includes, for example, a central processing unit (CPU) and programs and data for CPUs such as Read Only Memory (ROM) and Random Access Memory (RAM) to execute processing. Includes storage area.
  • the reservoir level setting device 10 constructs the simulation unit 11, the power peak evaluation unit 12, and the power rate calculation unit 13 by causing the CPU to execute an application program.
  • the water reservoir level setting device 10 includes a recording unit 14 and an input unit 16.
  • the recording unit 14 records a plant database 141 and a water demand database 142.
  • the plant database 141 records data indicating characteristics of the water supply plant in advance as plant data.
  • the plant data recorded in the plant database 141 includes, for example, the pipe resistance r [ ⁇ ], the altitude H [m] from the water pump 30 to the reservoir 20, the reservoir area S [m 2 ], and the water pump This is data indicating 30 characteristics (coefficients a, b, c) and the like.
  • the water demand database 142 records the past water demand data in advance.
  • the past water demand data recorded in the water demand database 142 includes, for example, water demand data for each of the four seasons, water demand data from Monday to Friday, Water demand data, Sunday water demand data, and holiday water demand data.
  • the simulation unit 11 calculates the reservoir water level l k at time k by the following equation.
  • the simulation unit 11 reads data indicating the reservoir area S from the plant database 141. Also, the simulation unit 11, for example, reads the past year, the water demand data for the past predetermined period from the water demand database 142, acquires data indicating the water demand q k. Simulation unit 11, the water supply amount Q k,
  • the simulation unit 11 reads data indicating the pipe resistance r, the altitude H, and the pump characteristic coefficients a, b, and c from the plant database 141.
  • the number y k is calculated by a simulation calculation by the simulation unit 11. That is, when the reservoir level l k calculated by the equation (1) reaches a predetermined value with respect to the upper limit value l kmmax set by the operator of the reservoir level setting device 10, the simulation unit 11. Reduce the number of operating pumps 30 by one. Further, the simulation unit 11 determines that the reservoir water level l k calculated by the equation (1) reaches a predetermined value with respect to the reservoir lower limit l kmin set by the operator of the reservoir water level setting device 10. Increase the number of operating pumps 30 by one. For example, as shown in FIG. 3, the simulation unit 11 reduces the pump 30 by one when the reservoir water level l k is near the upper limit l kmax at the time “13:00”.
  • the simulation unit 11 increases the number of pumps by one when the reservoir water level l k is near the lower limit l kmin at time “2 o'clock”. Thereafter, the simulation unit 11 at time "6 o'clock", in order to maintain a high distribution reservoir water level l k, further the pump 30 is activated one.
  • D, e, and f are parameters representing pump efficiency characteristics.
  • the power peak evaluation unit 12 reads data indicating the parameters d, e, and f from the plant database 141.
  • the power peak evaluation unit 12 acquires max (P k ) that is the maximum P k among the calculated power amounts P 1 to P 24 .
  • the power peak evaluation unit 12 outputs data indicating the power amount P k and data indicating the peak power max (P k ) to the power rate calculation unit 13.
  • the power rate calculation unit 13 calculates the power rate for a certain period T (days) based on the power amount P k and the peak power max (P k ) obtained from the power peak evaluation unit 12 and the power rate system given from the outside. calculate.
  • the electricity rate is
  • the basic charge depends on the peak power.
  • y is the basic unit price [yen / kwh / month] based on the contract power
  • x is the unit price [yen / kwh] of the electric energy charge.
  • the power charge calculation unit 13 causes the display device 40 to display the calculated power charge.
  • the operator of the water supply process confirms the power rate displayed on the display device 40.
  • Operator is different distribution Ikegami lower limit l kmax, if you want to check the power rate for l kmin, distribution Ikegami lower limit l kmax, and inputs data indicating l kmin to the newly simulation unit 11.
  • the operator was newly input distribution Ikegami lower limit l kmax, relative l kmin, confirms power rate calculated by the distribution reservoir water level setting device 10.
  • the operator may, distribution Ikegami lower limit power rate is suppressed to small amount value l kmax, selects l kmin.
  • Distributing reservoir water level setting device 10 has been selected in the operator distribution Ikegami lower limit l kmax, it sets the l kmin as distribution reservoir water level operating rules.
  • FIG. 4 is a diagram illustrating a flowchart when the distribution reservoir water level setting device 10 sets distribution reservoir water level operation rules.
  • the simulation unit 11 distribution Ikegami lower limit l kmax input from the operator, receiving data indicating a l kmin (step S41).
  • Simulation unit 11 together with the operator activates the pump while monitoring the lower limit range on the distribution reservoir water level, the assumption that the process stops the pump, water distribution Ikegami lower limit l kmax, with reference to the l kmin water amount Q k is calculated.
  • the simulation unit 11 outputs data indicating the pump operation plan to the power peak evaluation unit 12 (step S42).
  • the power peak evaluation unit 12 calculates the power amount P k and the peak power max (P k ) based on the pump operation plan (step S43).
  • the power charge calculation unit 13 calculates a power charge for a certain period T (step S44) and causes the display device 40 to display the power charge.
  • the operator confirms the electricity rate displayed on the display device 40.
  • step S45 the simulation unit 11 determines whether there is input data indicating the l kmin (step S45).
  • the simulation unit 11 performs the process of step S42 again.
  • step S45 When there is no input (No of step S45), the simulation part 11 judges whether the setting instruction
  • the simulation unit 11 calculates the water supply amount Q k by simulation based on the input reservoir upper and lower limit values l kmax and l kmin , and obtains a pump operation plan.
  • the power peak evaluation unit 12 calculates the amount of power and the peak power based on the pump operation plan.
  • the electric power charge calculation part 13 is made to calculate an electric power charge based on electric energy and peak electric power. The operator selects the upper and lower limits of the reservoir that can most curb the electricity rate.
  • the operator adopts the reservoir level operation rules set in this way, and operates the water pump 30 by monitoring whether the reservoir level does not deviate from the upper and lower limits of the reservoir as in normal operation. As a result, the operator can suppress the power peak without paying special attention.
  • the basic fee is set by a contract with an electric power company based on peak power in time units, as shown by the equation (7). Since the operator can suppress the electric power peak, the contract electric power with the electric power company can be reduced. Furthermore, since the operator can reduce the contract power with the electric power company, the annual power charge can be reduced.
  • the operator maintains the water level of the reservoir in the upper and lower limits of the water level, thereby suppressing the generation of excessive pump power and increasing contract power. It is possible to set the reservoir water level that can prevent Thereby, it becomes possible to suppress the required electric power in a water transmission plant, and it can also contribute to local electric power system stabilization.
  • the unit price of the electric energy charge is described as an example in which the unit price of the electric energy charge is constant without depending on the time k, but is not limited thereto.
  • the unit price of the electric energy charge may be defined from the outside as x k depending on the time k in consideration of the late-night electric energy charge.
  • the reservoir level setting device 10 may be connected to the printing device 50 as shown in FIG.
  • the simulation unit 11 causes the printing device 50 to print the distribution reservoir water level operation rule.
  • the printing apparatus 50 prints “Operation of XX month XX day, water level XXm to XXm”. This makes it possible for all operators to share the value of the reservoir water level that the operator should monitor in the future.
  • the reservoir level setting device 10 may include a correction unit 15 as shown in FIG.
  • the error includes an error due to population transition, an error due to increase / decrease of water distribution areas, an error due to temperature fluctuation, and the like.
  • amendment part 15 receives the error ((circle)) of the water demand assumed from an operator.
  • the correction unit 15 outputs data indicating the calculated water level error to the simulation unit 11.
  • the simulation unit 11 performs a simulation including the error of the water level calculated by the correction unit 15.
  • Operator based on the electricity rate simulated by such processing, the optimal water distribution Ikegami lower limit l kmax, selects l kmin.
  • Operator is thus selected distribution Ikegami lower limit l kmax, distributing reservoir water level in the range of l kmin operates the water supply pump 30 to fit. As a result, the operator can reduce the power peak even when the error in the water demand is the maximum, and the power charge can be reduced.
  • the distributing reservoir water level setting device 10 the simulation unit 11, distribution Ikegami lower limit l kmax input as a fixed value, it has been described as an example the case of performing the simulation based on l kmin. However, it is not limited to this.
  • the simulation unit 11, distribution Ikegami lower limit l kmax is set in hours, it may be executed a simulation based on l kmin.
  • the upper and lower limits of the distributing reservoir are constant values, for example, as shown in FIG.
  • the simulation unit 11 may adopt an operator's own reservoir water level operation rule.
  • the following if-then rule may be adopted as the distribution reservoir water level operation rule. This rule is an operation rule in which the number of operating pumps is increased in advance to prepare for a water demand peak at around 8:00 in the morning as shown in FIG.
  • the simulation unit 11 can output a simulation result indicating that the reservoir level is maintained high at about 6:00 in the morning when the water demand peak is reached.
  • Operator is distribution Ikegami lower limit l kmax, repeatedly enter the l kmin, selects a distribution Ikegami lower limit capable of most suppress power rates.
  • the operator's own judgment is also adopted as the reservoir water level operation rules, so that the operator can monitor the reservoir water level with a sense close to a skilled operator and use the water pump. 30 can be operated.
  • the printing device 50 when the printing device 50 is connected to the distribution reservoir water level setting device 10, in addition to the contents of “Operation of XX month XX day, please set the water level XXm to XXm.” If the water level in the reservoir is less than 4 m, please add one more pump. "
  • the simulation unit 11 has been described by taking as an example a case in which features such as seasons and days of the week in the past water demand data are not considered. However, it is not limited to this.
  • the simulation unit 11 may read water demand data for a specified period such as a season and a day of the week from the water demand database 142 and execute the simulation for each specified period. At this time, the upper and lower limits of the reservoir are input for each designated period. Thereby, the simulation part 11 becomes possible to simulate the fluctuation
  • the simulation part 11 memorize
  • the printing apparatus 50 may be made to print.
  • Patent Document 1 As a condition for restricting the upper and lower limits of the operation of the distribution reservoir, a pump flow rate plan that minimizes the power cost is drawn up based on the power unit of the pump and the power rate system that is an external factor. Technology has been proposed. However, the invention according to Patent Document 1 does not calculate the upper and lower limits of the reservoir. Moreover, the invention which concerns on patent document 1 does not suppress an electric power peak, and does not reduce contract electric power.
  • Patent Document 2 proposes a method for controlling a plurality of pumps that achieve a desired reservoir water level even with respect to factors such as changes in the set water level of the reservoir and fluctuations in water demand.
  • Patent Document 2 is an invention related to pump water level control, and does not calculate the upper and lower limits of the reservoir.
  • FIG. 10 is a block diagram showing a functional configuration of the reservoir level setting device 60 according to the second embodiment.
  • a distribution reservoir water level setting device 60 shown in FIG. 10 includes a simulation unit 61, a power peak evaluation unit 62, a power rate calculation unit 63, and a recording unit 14.
  • the simulation unit 61 uses the internal engine of the distribution reservoir water level setting device 60. Simulation unit 61, distribution Ikegami lower limit l kmax input by the operator, rather than based on l kmin, automatically selected for water distribution Ikegami lower limit l kmax, executes simulation based on l kmin.
  • the internal engine solves the optimization problem with the upper and lower limits of the reservoir level as the decision variable.
  • the optimization problem can be formulated as follows, for example.
  • R represents the allowable change number
  • L represents the allowable water level deviation.
  • the permissible water level deviation L is set so that the water levels in the reservoirs substantially coincide at the end and beginning of the day.
  • Equation (9) There are a plurality of methods for solving the optimization problem represented by Equation (9), and the method is not limited.
  • the solution using the full search algorithm is as follows.
  • the peak power max (P k ) is calculated by the power peak evaluation unit 62 and recorded in the memory of the simulation unit 61.
  • the simulation unit 61 outputs the data indicating the extracted peak power and the data indicating the power amount to the power rate calculation unit 63. In addition, the simulation unit 61 sets the upper and lower limits of the reservoir when the peak power is calculated as the reservoir water level operation rule.
  • the power charge calculation unit 63 calculates a power charge for a certain period based on the amount of power and peak power obtained from the simulation unit 61 and the power charge system given from the outside.
  • the power charge calculation unit 63 causes the display device 40 to display the calculated power charge.
  • distributing reservoir water level setting device 60 automatically distribution Ikegami lower limit l kmax, set the l kmin, the set distribution Ikegami lower limit l kmax, based on l kmin Run the simulation.
  • the simulation unit 61 extracts the minimum peak power from the peak power calculated for each reservoir upper and lower limit value, and sets the reservoir upper and lower limit value for which the extracted peak power is calculated as the reservoir water level operation rule.
  • the operator adopts the reservoir level operation rules set in this way, and operates the water pump 30 by monitoring whether the reservoir level does not deviate from the upper and lower limits of the reservoir as in normal operation. Thereby, the operator can suppress the power peak. By being able to suppress the power peak, the operator can reduce the contract power with the power company and, in addition, can reduce the annual power rate.
  • the operator maintains the water level of the reservoir in the upper and lower limits of the water level, thereby suppressing the generation of excessive pump power and preventing an increase in contract power. It is possible to set a reservoir level that can be used. Moreover, the improvement point regarding the reservoir level operation which the operator has not noticed can be automatically presented.
  • the simulation part 61 when the simulation part 61 receives the execution instruction of simulation during operation of a water transmission plant, you may make it perform the simulation for acquiring the optimal upper and lower limit value of a current reservoir. If the result of reducing the electricity charge is obtained by changing the current upper and lower limit value of the reservoir, the simulation unit 61 causes the display device 40 to display the upper and lower limit value of the reservoir at that time.
  • FIG. 11 is a block diagram showing a functional configuration of a reservoir level setting device 70 according to the third embodiment.
  • a distribution reservoir water level setting device 70 shown in FIG. 11 includes a simulation unit 11, a power peak evaluation unit 12, a power rate calculation unit 13, a recording unit 14, an input unit 16, and an operable time calculation unit 71.
  • the operable time calculation unit 71 receives the power usage measured by the power monitoring device 80.
  • the electric energy monitoring apparatus 80 is installed in the water purification plant.
  • the power monitoring device 80 measures the power used by a water pump or the like provided in the water purification plant.
  • the operable time calculation unit 71 calculates the time until the value of the contract power is exceeded when the current state is continued based on the current value of the contract power. For example, when the water supply amount is insufficient with respect to the water demand and the water pump 30 needs to be operated to the maximum extent, the operable time calculation unit 71 measures the start-up time of the water pump 30, and in the past year The remaining time until exceeding the maximum power amount is calculated in minutes. The drivable time calculation unit 71 causes the display device 40 to display the calculated remaining time. At this time, the display device 40 may emphasize the remaining time and present it to the operator.
  • the operable time calculation unit 71 calculates the remaining time until the maximum power consumption is exceeded based on the current power consumption and presents it to the operator. . As a result, it is possible to alert the operator so that the amount of power used does not exceed the peak power, so that the operable time calculation unit 71 can suppress an increase in contract power.
  • the reservoir level setting device 70 according to the third embodiment an increase in power peak due to unnecessary pump power can be suppressed, and an increase in contract power can be prevented.
  • the operable time calculation unit 71 may acquire whether or not the maximum electric energy for the past one year is exceeded.
  • the drivable time calculation unit 71 causes the display device 40 to display the acquired result.
  • the operation possible time calculation part 71 adds the electric energy which additionally starts a water pump to the present electric power consumption, there exists a possibility that it may exceed a peak electric power, and there exists a possibility that a reservoir water level may fall below a reservoir lower limit. In this case, it may be acquired whether or not the maximum amount of power for the past year is exceeded due to an increase in the amount of power required for additional activation.
  • the drivable time calculation unit 71 causes the display device 40 to display the acquired result.
  • the cloud server may have the function of the distribution reservoir water level setting device.
  • FIG. 12 shows a system diagram when the function of the reservoir level setting device 10 shown in FIG. 2 is included in the cloud server 90.
  • the cloud server 90 shown in FIG. 12 is connected to the plant via a network.
  • the cloud server 90 includes a simulation unit 11, a power peak evaluation unit 12, and a power charge calculation unit 13.
  • the recording unit 14 is provided in the plant.
  • the cloud server 90 outputs the data indicating the power rate calculated by the power rate calculation unit 13 and the data indicating the reservoir water level operation rule set by the simulation unit 11 to the plant via the network.
  • the function of the water reservoir level setting device 10 is included in the cloud server 90, so that the operator maintains the water level of the water reservoir in the upper and lower limit water level, thereby suppressing the generation of excessive pump power.
  • the reservoir water level that can prevent the increase in contract power is set in the cloud server 90.

Landscapes

  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Hydrology & Water Resources (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

This distribution reservoir water level setting device is provided with a recording unit, a simulation unit, a peak power assessment unit, and a power charge calculation unit. The recording unit records plant data and water demand data. The simulation unit calculates the amount of water sent to a distribution reservoir by a plurality of pumps on the basis of the plant data, calculates the water level of the distribution reservoir on the basis of the relationship between the amount of water sent and the water demand data, and increases or decreases the number of pumps when the water level approaches an upper or lower limit value for the distribution reservoir. The peak power assessment unit calculates a quantity of power and peak power on the basis of the amount of water sent. The power charge calculation unit calculates a power charge on the basis of the peak power and the quantity of power. The simulation unit establishes, as setting values, the upper and lower limit values for the distribution reservoir which minimize the power charge.

Description

配水池水位設定装置、配水池水位設定方法及び配水池水位設定システムReservoir water level setting device, distribution reservoir water level setting method and distribution reservoir water level setting system
 本発明の実施形態は、浄水場で浄水処理された浄水を需要家へ配水するために、配水池又は受水池(以下、まとめて配水池と称する)へ送水ポンプで送水するプロセスで用いられる配水池水位設定装置、この装置で用いられる配水池水位設定方法及び配水池水位設定システムに関する。 The embodiment of the present invention is a distribution system used in a process of supplying water to a distribution reservoir or a receiving reservoir (hereinafter collectively referred to as a distribution reservoir) with a water supply pump in order to distribute purified water that has been subjected to water purification treatment at a water purification plant to consumers. The present invention relates to a water reservoir water level setting device, a water reservoir water level setting method used in this device, and a water reservoir water level setting system.
 水需要は、人間のライフパターンに依存して時々刻々と変化する。配水池は、送水量の変動を抑制することで、以下の2つの利点を生じさせることを主な役割としている。すなわち、浄水場での浄水処理を安定的に実施すること、及び、非常時にも給水可能な時間を確保できるように、一定量の浄水を確保することである。浄水場の運転員は、常時配水池の水位を監視して、配水池へ送水するポンプを起動させ、又は、停止させる。また、浄水場の運転員は、常時配水池の水位を監視して、配水池へ送水するポンプの流量を操作する。これにより、配水池は、予め定められた運用上の水位上下限範囲に水位を維持し、上記の役割を果たすことが可能となる。 Demand for water changes from moment to moment depending on human life patterns. The distribution reservoir has the main role of producing the following two advantages by suppressing fluctuations in the amount of water delivered. That is, it is to carry out water purification treatment stably at a water purification plant, and to secure a certain amount of purified water so as to ensure time for water supply even in an emergency. The water purification plant operator constantly monitors the water level in the reservoir and activates or stops the pump that supplies water to the reservoir. In addition, the water treatment plant operator constantly monitors the water level of the reservoir and operates the flow rate of the pump that supplies the water to the reservoir. Thereby, the water reservoir can maintain the water level in a predetermined operational water level upper and lower limit range and can perform the above-mentioned role.
 一方、一般には浄水を配水池へ汲み上げるためのポンプ動力については考慮していない。そのため、配水池の水位を水位上下限範囲に維持しようとすると、水需要がピークになる朝方及び夕方の時間帯には、一時的に過剰なポンプ動力が発生してしまうことがある。その結果、浄水場内で消費する電力ピークが高くなり、高い契約電力が発生してしまうことがある。 On the other hand, in general, pump power for pumping clean water to the reservoir is not considered. Therefore, if the water level of the reservoir is maintained within the upper and lower limits of the water level, excessive pump power may be temporarily generated in the morning and evening hours when the water demand peaks. As a result, the power peak consumed in the water purification plant increases, and high contract power may occur.
 ポンプの送水計画を最適化問題として定式化して解を得る方法も提案されている。しかしながら、この方法では、システム構築及びパラメータ調整に必要な工数が多いという問題がある。 A method has been proposed in which a pump water supply plan is formulated as an optimization problem to obtain a solution. However, this method has a problem that a lot of man-hours are required for system construction and parameter adjustment.
特許第4914111号公報Japanese Patent No. 4914111 特開2012-160170号公報JP 2012-160170 A
 以上のように、運転員が配水池の水位を水位上下限範囲に維持しようとすると、一時的に過剰なポンプ動力が発生してしまうことがある。そのため、浄水場内で消費する電力ピークが高くなり、高い契約電力が発生してしまうおそれがある。 As described above, when the operator tries to maintain the water level in the reservoir within the upper and lower limits of the water level, excessive pump power may be temporarily generated. Therefore, the power peak consumed in the water purification plant becomes high, and there is a risk that high contract power will be generated.
 そこで、目的は、運転員が配水池の水位を配水池上下限値内に維持する場合に、過剰なポンプ動力の発生を抑え、契約電力の増大を防ぐことが可能な配水池上下限値を設定する配水池水位設定装置、この装置で用いられる配水池水位設定方法及び配水池水位設定システムを提供することにある。 Therefore, the purpose is to set the upper and lower limits of the reservoir that can suppress the generation of excessive pump power and prevent the increase in contract power when the operator maintains the water level of the reservoir within the upper and lower limits of the reservoir. The object is to provide a reservoir level setting device, a reservoir level setting method and a reservoir level setting system used in this device.
 実施形態によれば、配水池水位設定装置は、記録部、シミュレーション部、電力ピーク評価部、及び電力量料金算出部を具備する。記録部は、プラントに設置される複数のポンプ及び配水池についての情報を含むプラントデータと、過去の水需要データとを予め記録する。シミュレーション部は、前記プラントデータに基づいて前記複数のポンプの前記配水池への送水量を算出し、この送水量と前記水需要データとの関係に基づいて前記配水池の水位を算出し、この水位が配水池上下限値付近になると前記送水量を算出する際のポンプ数を増減する。電力ピーク評価部は、前記送水量に基づいて所定時間当たりの電力量と、この電力量のうち最大値を取るピーク電力とを算出する。電力量料金算出部は、前記電力量及び前記ピーク電力に基づいて電力量料金を算出し、この電力量料金の算出結果を表示装置に表示させる。前記シミュレーション部は、前記電力量料金を抑制可能な配水池上下限値を設定値とする。 According to the embodiment, the distribution reservoir water level setting device includes a recording unit, a simulation unit, a power peak evaluation unit, and a power amount charge calculation unit. The recording unit records in advance plant data including information on a plurality of pumps and distribution reservoirs installed in the plant and past water demand data. The simulation unit calculates a water supply amount to the distribution reservoir of the plurality of pumps based on the plant data, calculates a water level of the distribution reservoir based on a relationship between the water supply amount and the water demand data, When the water level is close to the upper and lower limits of the reservoir, the number of pumps for calculating the water supply amount is increased or decreased. The power peak evaluation unit calculates a power amount per predetermined time based on the water supply amount and a peak power that takes a maximum value among the power amount. The power amount charge calculation unit calculates a power amount charge based on the power amount and the peak power, and causes the display device to display a calculation result of the power amount charge. The simulation unit uses a water reservoir upper and lower limit value capable of suppressing the electricity charge as a set value.
図1は、第1の実施形態に係る配水池水位設定装置が適用される送水プロセスを示す図である。FIG. 1 is a diagram illustrating a water supply process to which the reservoir water level setting device according to the first embodiment is applied. 図2は、第1の実施形態に係る配水池水位設定装置の機能構成を示す図である。FIG. 2 is a diagram illustrating a functional configuration of the reservoir water level setting device according to the first embodiment. 図3は、図2に示すシミュレーション部に入力される配水池上下限値の例を示す図である。FIG. 3 is a diagram illustrating an example of the upper and lower limits of the reservoir that is input to the simulation unit illustrated in FIG. 2. 図4は、図2に示す配水池水位設定装置が配水池水位運用ルールを設定する際のフローチャートを示す図である。FIG. 4 is a diagram showing a flowchart when the reservoir water level setting device shown in FIG. 2 sets the reservoir water level operation rule. 図5は、図2に示す配水池水位設定装置のその他の構成を示すブロック図である。FIG. 5 is a block diagram showing another configuration of the reservoir water level setting device shown in FIG. 図6は、図2に示す配水池水位設定装置のその他の構成を示すブロック図である。FIG. 6 is a block diagram showing another configuration of the reservoir water level setting device shown in FIG. 図7は、図2に示すシミュレーション部で実施される処理により得られる表の例を示す図である。FIG. 7 is a diagram illustrating an example of a table obtained by the process performed by the simulation unit illustrated in FIG. 図8は、図2に示すシミュレーション部に入力される配水池上下限値の例を示す図である。FIG. 8 is a diagram illustrating an example of the upper and lower limits of the reservoir that are input to the simulation unit illustrated in FIG. 2. 図9は、図8に示す配水池上下限値に基づいて得られる表の例を示す図である。FIG. 9 is a diagram showing an example of a table obtained based on the upper and lower limits of the reservoir shown in FIG. 図10は、第2の実施形態に係る配水池水位設定装置の機能構成を示すブロック図である。FIG. 10 is a block diagram illustrating a functional configuration of a distribution reservoir water level setting device according to the second embodiment. 図11は、第3の実施形態に係る配水池水位設定装置の機能構成を示すブロック図である。FIG. 11: is a block diagram which shows the function structure of the reservoir water level setting apparatus which concerns on 3rd Embodiment. 図12は、図2に示す配水池水位設定装置の機能がクラウドサーバに含まれる場合のシステム図を示す図である。FIG. 12 is a diagram showing a system diagram when the function of the reservoir level setting device shown in FIG. 2 is included in the cloud server.
 以下、実施の形態について、図面を参照して説明する。 Hereinafter, embodiments will be described with reference to the drawings.
 (第1の実施形態) 
 第1の実施形態では、日々監視すべき配水池水位の上下限範囲を運転員が設定する場合について説明する。
(First embodiment)
1st Embodiment demonstrates the case where an operator sets the upper and lower limit range of the reservoir water level which should be monitored every day.
 図1は、第1の実施形態に係る配水池水位設定装置10が適用される送水プロセスを模式的に示す図である。図1に示す送水プロセスでは、浄水場(図示せず)から配水池20へ、浄水は、ポンプ30により送水される。送水プロセスでは、水需要q[m/h]を満たしながら、配水池水位l[m]を所定の範囲内に保つように、送水ポンプの運転台数y[台]及び送水量Q[m/h]を運転員が操作する。また、運転員は、水需要が急激に増える、例えば、6:00の朝方までには、配水池水位を高く維持するように運用することもある。本実施形態では、配水池水位lの変動を許容する配水池上下限値等を配水池水位運用ルールと称する。なお、kは時刻を示し、k=1,2,…,24(時単位)である。 FIG. 1 is a diagram schematically illustrating a water supply process to which a reservoir water level setting device 10 according to the first embodiment is applied. In the water supply process shown in FIG. 1, the purified water is sent from the water purification plant (not shown) to the distributing reservoir 20 by the pump 30. In the water supply process, the number of water pumps operated y k [units] and the amount Q of water supply Q are maintained so as to keep the reservoir water level l k [m] within a predetermined range while satisfying the water demand q k [m 3 / h]. The operator operates k [m 3 / h]. In addition, the operator may operate so as to keep the water level of the reservoir high by the morning of 6:00, for example, when the water demand increases rapidly. In this embodiment, the upper and lower limit values of the reservoir that allow the fluctuation of the reservoir level l k are referred to as a reservoir level operation rule. Note that k indicates time, and k = 1, 2,..., 24 (hour unit).
 図2は、第1の実施形態に係る配水池水位設定装置10の機能構成を示す図である。図2に示す配水池水位設定装置10は、例えば、Central Processing Unit(CPU)、並びに、Read Only Memory(ROM)及びRandom Access Memory(RAM)等のCPUが処理を実行するためのプログラムやデータの格納領域等を含む。配水池水位設定装置10は、CPUにアプリケーション・プログラムを実行させることで、シミュレーション部11、電力ピーク評価部12及び電力料金算出部13を構築する。また、配水池水位設定装置10は、記録部14及び入力部16を備える。記録部14には、プラントデータベース141及び水需要データベース142が記録される。プラントデータベース141は、上水プラントの特性を示すデータをプラントデータとして予め記録する。プラントデータベース141に記録されるプラントデータとは、例えば、管路抵抗r[-]、送水ポンプ30から配水池20までの標高H[m]、配水池面積S[m]、及び、送水ポンプ30の特性(係数a,b,c)等を示すデータである。水需要データベース142は、過去の水需要データを予め記録する水需要データベース142に記録される過去の水需要データとは、例えば、四季それぞれの水需要データ、月曜日から金曜日の水需要データ、土曜日の水需要データ、日曜日の水需要データ及び祭日の水需要データ等である。 FIG. 2 is a diagram illustrating a functional configuration of the reservoir water level setting device 10 according to the first embodiment. Reservoir water level setting device 10 shown in FIG. 2 includes, for example, a central processing unit (CPU) and programs and data for CPUs such as Read Only Memory (ROM) and Random Access Memory (RAM) to execute processing. Includes storage area. The reservoir level setting device 10 constructs the simulation unit 11, the power peak evaluation unit 12, and the power rate calculation unit 13 by causing the CPU to execute an application program. In addition, the water reservoir level setting device 10 includes a recording unit 14 and an input unit 16. The recording unit 14 records a plant database 141 and a water demand database 142. The plant database 141 records data indicating characteristics of the water supply plant in advance as plant data. The plant data recorded in the plant database 141 includes, for example, the pipe resistance r [−], the altitude H [m] from the water pump 30 to the reservoir 20, the reservoir area S [m 2 ], and the water pump This is data indicating 30 characteristics (coefficients a, b, c) and the like. The water demand database 142 records the past water demand data in advance. The past water demand data recorded in the water demand database 142 includes, for example, water demand data for each of the four seasons, water demand data from Monday to Friday, Water demand data, Sunday water demand data, and holiday water demand data.
 シミュレーション部11は、時刻kの配水池水位lを以下の式で演算する。
Figure JPOXMLDOC01-appb-M000001
The simulation unit 11 calculates the reservoir water level l k at time k by the following equation.
Figure JPOXMLDOC01-appb-M000001
 シミュレーション部11は、配水池面積Sを示すデータをプラントデータベース141から読み出す。また、シミュレーション部11は、例えば過去1年間の、過去一定期間の水需要データを水需要データベース142から読み出し、水需要qを示すデータを取得する。シミュレーション部11は、送水量Qを、
Figure JPOXMLDOC01-appb-M000002
The simulation unit 11 reads data indicating the reservoir area S from the plant database 141. Also, the simulation unit 11, for example, reads the past year, the water demand data for the past predetermined period from the water demand database 142, acquires data indicating the water demand q k. Simulation unit 11, the water supply amount Q k,
Figure JPOXMLDOC01-appb-M000002
から求める。シミュレーション部11は、管路抵抗r、標高H及びポンプ特性の係数a,b,cを示すデータを、プラントデータベース141から読み出す。 Ask from. The simulation unit 11 reads data indicating the pipe resistance r, the altitude H, and the pump characteristic coefficients a, b, and c from the plant database 141.
 ここで、台数yは、シミュレーション部11による模擬計算により算出される。すなわち、シミュレーション部11は、(1)式により算出される配水池水位lが、配水池水位設定装置10の運転員により設定される配水池上限値lkmaxに対して所定の値に達すると、ポンプ30の運転台数を1台減らす。また、シミュレーション部11は、(1)式により算出される配水池水位lが、配水池水位設定装置10の運転員により設定される配水池下限値lkminに対して所定の値に達すると、ポンプ30の運転台数を1台増やす。例えば、図3に示すように、シミュレーション部11は、時刻「13時」において、配水池水位lが上限値lkmax付近になると、ポンプ30を1台減少させる。その後、シミュレーション部11は、時刻「2時」において、配水池水位lが下限値lkmin付近になると、ポンプを1台増加させる。その後、シミュレーション部11は、時刻「6時」において、配水池水位lを高く維持するために、さらにポンプ30を1台起動させる。 Here, the number y k is calculated by a simulation calculation by the simulation unit 11. That is, when the reservoir level l k calculated by the equation (1) reaches a predetermined value with respect to the upper limit value l kmmax set by the operator of the reservoir level setting device 10, the simulation unit 11. Reduce the number of operating pumps 30 by one. Further, the simulation unit 11 determines that the reservoir water level l k calculated by the equation (1) reaches a predetermined value with respect to the reservoir lower limit l kmin set by the operator of the reservoir water level setting device 10. Increase the number of operating pumps 30 by one. For example, as shown in FIG. 3, the simulation unit 11 reduces the pump 30 by one when the reservoir water level l k is near the upper limit l kmax at the time “13:00”. Thereafter, the simulation unit 11 increases the number of pumps by one when the reservoir water level l k is near the lower limit l kmin at time “2 o'clock”. Thereafter, the simulation unit 11 at time "6 o'clock", in order to maintain a high distribution reservoir water level l k, further the pump 30 is activated one.
 シミュレーション部11は、k=1,…,24の送水量Qを示すデータをポンプ運転計画を示すデータとして電力ピーク評価部12へ出力する。 The simulation unit 11 outputs data indicating the water supply amount Q k of k = 1,..., 24 to the power peak evaluation unit 12 as data indicating a pump operation plan.
 電力ピーク評価部12は、シミュレーション部11から得られるポンプ運転計画に基づき、電力のピークを評価する。すなわち、電力ピーク評価部12は、以下の式でk=1,…,24における電力量Pを計算する。
Figure JPOXMLDOC01-appb-M000003
The power peak evaluation unit 12 evaluates the power peak based on the pump operation plan obtained from the simulation unit 11. That is, the power peak evaluation unit 12 calculates the power amount P k at k = 1,.
Figure JPOXMLDOC01-appb-M000003
 ここで、K=24であり、各関数は以下の通りである。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Here, K = 24, and each function is as follows.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 なお、d,e,fは、ポンプ効率特性を表すパラメータである。電力ピーク評価部12は、パラメータd,e,fを示すデータをプラントデータベース141から読み出す。電力ピーク評価部12は、算出した電力量P~P24の中で最大のPであるmax(P)を取得する。電力ピーク評価部12は、電力量Pを示すデータ及びピーク電力max(P)を示すデータを、電力料金算出部13へ出力する。 D, e, and f are parameters representing pump efficiency characteristics. The power peak evaluation unit 12 reads data indicating the parameters d, e, and f from the plant database 141. The power peak evaluation unit 12 acquires max (P k ) that is the maximum P k among the calculated power amounts P 1 to P 24 . The power peak evaluation unit 12 outputs data indicating the power amount P k and data indicating the peak power max (P k ) to the power rate calculation unit 13.
 電力料金算出部13は、電力ピーク評価部12から得られる電力量P及びピーク電力max(P)と、外部から与えられる電力料金体系とに基づき、一定期間T(日)の電力料金を算出する。ここで、電力料金は、
Figure JPOXMLDOC01-appb-M000006
The power rate calculation unit 13 calculates the power rate for a certain period T (days) based on the power amount P k and the peak power max (P k ) obtained from the power peak evaluation unit 12 and the power rate system given from the outside. calculate. Here, the electricity rate is
Figure JPOXMLDOC01-appb-M000006
である。基本料金及び電力量料金は、
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
It is. Basic charges and electricity charges are
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
である。(7)式で示されるように、基本料金は、ピーク電力に依存する。なお、yは契約電力に基づく基本料金単価[円/kwh/月]であり、xは電力量料金の単価[円/kwh]である。 It is. As shown by the equation (7), the basic charge depends on the peak power. Note that y is the basic unit price [yen / kwh / month] based on the contract power, and x is the unit price [yen / kwh] of the electric energy charge.
 電力料金算出部13は、算出した電力料金を表示装置40に表示させる。 The power charge calculation unit 13 causes the display device 40 to display the calculated power charge.
 送水プロセスの運転員は、表示装置40に表示される電力料金を確認する。運転員は、異なる配水池上下限値lkmax,lkminについての電力料金を確認したい場合は、配水池上下限値lkmax,lkminを示すデータを新たにシミュレーション部11へ入力する。そして、運転員は、新たに入力した配水池上下限値lkmax,lkminに対して、配水池水位設定装置10で算出される電力料金を確認する。そして、運転員は、電力料金が低額に抑えられる配水池上下限値lkmax,lkminを選択する。配水池水位設定装置10は、運転員に選択された配水池上下限値lkmax,lkminを配水池水位運用ルールとして設定する。 The operator of the water supply process confirms the power rate displayed on the display device 40. Operator is different distribution Ikegami lower limit l kmax, if you want to check the power rate for l kmin, distribution Ikegami lower limit l kmax, and inputs data indicating l kmin to the newly simulation unit 11. The operator was newly input distribution Ikegami lower limit l kmax, relative l kmin, confirms power rate calculated by the distribution reservoir water level setting device 10. The operator may, distribution Ikegami lower limit power rate is suppressed to small amount value l kmax, selects l kmin. Distributing reservoir water level setting device 10 has been selected in the operator distribution Ikegami lower limit l kmax, it sets the l kmin as distribution reservoir water level operating rules.
 次に、以上のように構成される配水池水位設定装置10により、配水池水位運用ルールが設定される際の動作を説明する。図4は、配水池水位設定装置10が配水池水位運用ルールを設定する際のフローチャートを示す図である。 Next, the operation when a distribution reservoir water level operation rule is set by the distribution reservoir water level setting device 10 configured as described above will be described. FIG. 4 is a diagram illustrating a flowchart when the distribution reservoir water level setting device 10 sets distribution reservoir water level operation rules.
 まず、シミュレーション部11は、運転員から入力される配水池上下限値lkmax,lkminを示すデータ受け取る(ステップS41)。シミュレーション部11は、運転員が配水池水位の上下限範囲を監視しながらポンプを起動させると共に、ポンプを停止させることを前提として、配水池上下限値lkmax,lkminを参照して送水量Qを算出する。シミュレーション部11は、ポンプ運転計画を示すデータを電力ピーク評価部12へ出力する(ステップS42)。 First, the simulation unit 11, distribution Ikegami lower limit l kmax input from the operator, receiving data indicating a l kmin (step S41). Simulation unit 11, together with the operator activates the pump while monitoring the lower limit range on the distribution reservoir water level, the assumption that the process stops the pump, water distribution Ikegami lower limit l kmax, with reference to the l kmin water amount Q k is calculated. The simulation unit 11 outputs data indicating the pump operation plan to the power peak evaluation unit 12 (step S42).
 電力ピーク評価部12は、ポンプ運転計画に基づき、電力量P及びピーク電力max(P)を算出する(ステップS43)。 The power peak evaluation unit 12 calculates the power amount P k and the peak power max (P k ) based on the pump operation plan (step S43).
 電力料金算出部13は、算出された電力量P及びピーク電力max(P)に基づき、一定期間Tにおける電力料金を算出し(ステップS44)、表示装置40に電力料金を表示させる。 Based on the calculated power amount P k and peak power max (P k ), the power charge calculation unit 13 calculates a power charge for a certain period T (step S44) and causes the display device 40 to display the power charge.
 運転員は、表示装置40に表示される電力料金を確認する。 The operator confirms the electricity rate displayed on the display device 40.
 続いて、シミュレーション部11は、運転員による新たな配水池上下限値lkmax,lkminを示すデータの入力があるか否かを判断する(ステップS45)。入力がある場合(ステップS45のYes)、シミュレーション部11は、ステップS42の処理を再度実施する。 Subsequently, the simulation unit 11, a new distribution Ikegami lower limit l kmax by operator, determines whether there is input data indicating the l kmin (step S45). When there is an input (Yes in step S45), the simulation unit 11 performs the process of step S42 again.
 入力がない場合(ステップS45のNo)、シミュレーション部11は、運転員から設定指示が入力されたか否かを判断する(ステップS46)。入力された場合(ステップS46のYes)、シミュレーション部11は、設定指示のある配水池上下限値lkmax,lkminを配水池水位運用ルールとして設定する(ステップS47)。入力がない場合(ステップS46のNo)、シミュレーション部11は、ステップS45の処理を再度実施する。 When there is no input (No of step S45), the simulation part 11 judges whether the setting instruction | indication was input from the operator (step S46). When entered (Yes in step S46), the simulation unit 11, distribution Ikegami lower limit l kmax with setting instruction, it sets a l kmin as distribution reservoir water level operation rules (step S47). When there is no input (No in step S46), the simulation unit 11 performs the process of step S45 again.
 以上のように、第1の実施形態では、シミュレーション部11は、入力される配水池上下限値lkmax,lkminに基づき、送水量Qをシミュレーションにより算出し、ポンプ運転計画を取得する。電力ピーク評価部12は、ポンプ運転計画に基づき、電力量及びピーク電力を算出する。そして、電力料金算出部13は、電力量及びピーク電力に基づき、電力料金を算出するようにしている。運転員は、電力料金を最も抑制することが可能な配水池上下限値を選択する。 As described above, in the first embodiment, the simulation unit 11 calculates the water supply amount Q k by simulation based on the input reservoir upper and lower limit values l kmax and l kmin , and obtains a pump operation plan. The power peak evaluation unit 12 calculates the amount of power and the peak power based on the pump operation plan. And the electric power charge calculation part 13 is made to calculate an electric power charge based on electric energy and peak electric power. The operator selects the upper and lower limits of the reservoir that can most curb the electricity rate.
 運転員は、このように設定される配水池水位運用ルールを採択し、通常のオペレーション通り、配水池水位が配水池上下限値を逸脱しないかを監視して送水ポンプ30を運転する。これにより、運転員は、特別な注意を払わなくても、電力ピークを抑制することが可能となる。基本料金は、(7)式で示されるように、時間単位でのピーク電力に基づいて電力会社との契約で設定される。運転員は、電力ピークを抑制することが可能であるため、電力会社との契約電力を低減することが可能となる。さらに、運転員は、電力会社との契約電力を低減することが可能であるため、年間電力料金を削減することが可能となる。 The operator adopts the reservoir level operation rules set in this way, and operates the water pump 30 by monitoring whether the reservoir level does not deviate from the upper and lower limits of the reservoir as in normal operation. As a result, the operator can suppress the power peak without paying special attention. The basic fee is set by a contract with an electric power company based on peak power in time units, as shown by the equation (7). Since the operator can suppress the electric power peak, the contract electric power with the electric power company can be reduced. Furthermore, since the operator can reduce the contract power with the electric power company, the annual power charge can be reduced.
 したがって、第1の実施形態に係る配水池水位設定装置10によれば、運転員が配水池の水位を水位上下限範囲に維持することで、過剰なポンプ動力の発生を抑え、契約電力の増大を防ぐことが可能な配水池水位を設定することができる。これにより、送水プラントにおける必要電力を抑えることが可能となり、地域の電力系統安定化に貢献することもできる。 Therefore, according to the reservoir water level setting device 10 according to the first embodiment, the operator maintains the water level of the reservoir in the upper and lower limits of the water level, thereby suppressing the generation of excessive pump power and increasing contract power. It is possible to set the reservoir water level that can prevent Thereby, it becomes possible to suppress the required electric power in a water transmission plant, and it can also contribute to local electric power system stabilization.
 なお、本実施形態において、(8)式では、電力量料金の単価は、時刻kに依存せず、一定である場合を例に説明しているが、これに限定されない。例えば、電力量料金の単価は、深夜電力量料金を考慮して時刻kに依存するxとして外部から定義されるようにしても良い。 In the present embodiment, in the equation (8), the unit price of the electric energy charge is described as an example in which the unit price of the electric energy charge is constant without depending on the time k, but is not limited thereto. For example, the unit price of the electric energy charge may be defined from the outside as x k depending on the time k in consideration of the late-night electric energy charge.
 また、本実施形態に係る配水池水位設定装置10は、図5に示すように、印刷装置50と接続されていても構わない。運転員が配水池水位運用ルールを設定した場合、シミュレーション部11は、配水池水位運用ルールを印刷装置50に印刷させる。例えば、図5では、印刷装置50により、「○○月○○日の運用、水位○○m~○○mにして下さい。」と印刷される。これにより、運転員が今後監視すべき配水池水位の値を、運転員全員で共有して運用することが可能となる。 Moreover, the reservoir level setting device 10 according to the present embodiment may be connected to the printing device 50 as shown in FIG. When the operator sets the distribution reservoir water level operation rule, the simulation unit 11 causes the printing device 50 to print the distribution reservoir water level operation rule. For example, in FIG. 5, the printing apparatus 50 prints “Operation of XX month XX day, water level XXm to XXm”. This makes it possible for all operators to share the value of the reservoir water level that the operator should monitor in the future.
 また、本実施形態に係る配水池水位設定装置10は、図6に示すように、補正部15を備えるようにしても構わない。水需要データベース142に記録される水需要と、想定する期間の水需要との間には、誤差が含まれる場合がある。ここで誤差には、人口の推移による誤差、配水区域の増減による誤差及び気温変動による誤差等が含まれる。 Further, the reservoir level setting device 10 according to the present embodiment may include a correction unit 15 as shown in FIG. There may be an error between the water demand recorded in the water demand database 142 and the water demand in the assumed period. Here, the error includes an error due to population transition, an error due to increase / decrease of water distribution areas, an error due to temperature fluctuation, and the like.
 補正部15は、運転員から想定する水需要の誤差(○%)を受け取る。補正部15は、水需要の誤差(○%)を受け取ると、プラントデータベース141に記録されるプラントデータを読み出し、水位の誤差を算出する。補正部15は、算出した水位の誤差を示すデータをシミュレーション部11へ出力する。 * The correction | amendment part 15 receives the error ((circle)) of the water demand assumed from an operator. The correction | amendment part 15, if the error ((circle)%) of water demand is received, reads the plant data recorded on the plant database 141, and calculates the error of a water level. The correction unit 15 outputs data indicating the calculated water level error to the simulation unit 11.
 シミュレーション部11は、補正部15で算出された水位の誤差を含めてシミュレーションを実施する。運転員は、このような処理によりシミュレートされた電力料金に基づき、最適な配水池上下限値lkmax,lkminを選択する。運転員は、このように選択した配水池上下限値lkmax,lkminの範囲に配水池水位が収まるように送水ポンプ30を操作する。これにより、運転員は、水需要の誤差が最大である場合であっても、電力ピークを低減することが可能となり、電力料金を削減することが可能となる。 The simulation unit 11 performs a simulation including the error of the water level calculated by the correction unit 15. Operator, based on the electricity rate simulated by such processing, the optimal water distribution Ikegami lower limit l kmax, selects l kmin. Operator is thus selected distribution Ikegami lower limit l kmax, distributing reservoir water level in the range of l kmin operates the water supply pump 30 to fit. As a result, the operator can reduce the power peak even when the error in the water demand is the maximum, and the power charge can be reduced.
 また、本実施形態に係る配水池水位設定装置10では、シミュレーション部11は、一定値として入力される配水池上下限値lkmax,lkminに基づいてシミュレーションを実行する場合を例に説明した。しかしながら、これに限定されない。例えば、シミュレーション部11は、時間単位で設定される配水池上下限値lkmax,lkminに基づいてシミュレーションを実行するようにしても構わない。水需要と貯水量との関係によっては、例えば、朝方の水需要ピークに備えて配水池水位を高く維持する必要がある。配水池上下限値が一定値である場合、例えば、図7で示すように、どうしても送水ポンプ30を3台起動する時間帯が発生するおそれがある。送水ポンプ30を3台起動している状態が維持されると、電力ピークが高くなり、電力料金の増加を引き起こすこととなる。そこで、運転員は、例えば、図8で示すように、水需要の少ない夜間における配水池下限値を高く入力する。シミュレーション部11は、このように入力された配水池上下限値lkmax,lkminに基づいてシミュレーションを実行する。図9は、図8に示す配水池上下限値lkmax,lkminに基づくシミュレーション結果を示す。図9によれば、夜間に動的に配水池下限値を変更することにより、夜間における配水池水位を極力高めに維持しながら朝方の水需要ピークに備える運用が可能になる。運転員は、配水池上下限値lkmax,lkminを時間単位で繰り返し入力し、電力料金を最も抑制することが可能な配水池上下限値を選択する。このように選択された配水池上限値から設定される配水池水位運用ルールを採択することで、運転員は、駆動される送水ポンプ30の数を2台とすることが可能となる。駆動される送水ポンプ30の台数を減らすことが可能となるため、送水プロセスにおける電力ピークが抑えられ、電力料金の向上を避けることが可能となる。 Further, the distributing reservoir water level setting device 10 according to the present embodiment, the simulation unit 11, distribution Ikegami lower limit l kmax input as a fixed value, it has been described as an example the case of performing the simulation based on l kmin. However, it is not limited to this. For example, the simulation unit 11, distribution Ikegami lower limit l kmax is set in hours, it may be executed a simulation based on l kmin. Depending on the relationship between the water demand and the amount of stored water, for example, it is necessary to maintain the reservoir level high in preparation for the morning water demand peak. When the upper and lower limits of the distributing reservoir are constant values, for example, as shown in FIG. 7, there is a possibility that a time zone in which three water pumps 30 are activated is inevitably generated. If the state in which three water pumps 30 are activated is maintained, the power peak becomes high, which causes an increase in power charges. Therefore, for example, as shown in FIG. 8, the operator inputs a high value for the lower limit of the reservoir at night when water demand is low. Simulation unit 11 is thus entered distribution Ikegami lower limit l kmax, executes simulation based on l kmin. Figure 9 is a distribution Ikegami lower limit l kmax shown in FIG. 8 shows a simulation result based on l kmin. According to FIG. 9, by dynamically changing the reservoir lower limit value at night, it becomes possible to prepare for the morning water demand peak while maintaining the reservoir level at night as high as possible. Operator is distribution Ikegami lower limit l kmax, repeatedly enter the l kmin by the hour, selecting a distribution Ikegami lower limit capable of most suppress power rates. By adopting the reservoir water level operation rule set from the selected upper limit value of the reservoir, the operator can set the number of driven water pumps 30 to two. Since the number of water pumps 30 to be driven can be reduced, the power peak in the water supply process can be suppressed, and it is possible to avoid an increase in power charges.
 また、本実施形態に係る配水池水位設定装置10では、シミュレーション部11は、入力される配水池上下限値lkmax,lkminに基づいてシミュレーションを実行する場合を例に説明した。しかしながら、これに限定されない。例えば、シミュレーション部11は、運転員独自の配水池水位運用ルールも採用するようにしても良い。例えば、以下に示すようなif-thenルールを配水池水位運用ルールとして採用しても良い。なお、このルールは、図9に示すような朝8:00頃に迎える水需要ピークに備えるために、予めポンプ運転台数を増やしておく運用ルールである。 Further, the distributing reservoir water level setting device 10 according to the present embodiment, the simulation unit 11, distribution Ikegami lower limit l kmax input, it has been described as an example a case of executing a simulation based on l kmin. However, it is not limited to this. For example, the simulation unit 11 may adopt an operator's own reservoir water level operation rule. For example, the following if-then rule may be adopted as the distribution reservoir water level operation rule. This rule is an operation rule in which the number of operating pumps is increased in advance to prepare for a water demand peak at around 8:00 in the morning as shown in FIG.
  If 時間t = 4:00 && 配水池水位 < 4.0m
  Then ポンプ運転台数 = ポンプ運転台数+1
 このような配水池水位運用ルールを採用することで、シミュレーション部11は、水需要ピークを迎える朝6:00頃に配水池水位を高めに維持する旨のシミュレーション結果を出力することが可能となる。運転員は、配水池上下限値lkmax,lkminを繰り返し入力し、電力料金を最も抑制することが可能な配水池上下限値を選択する。
If Time t = 4:00 && Reservoir level <4.0m
Then Pump operation number = Pump operation number +1
By adopting such a reservoir level operation rule, the simulation unit 11 can output a simulation result indicating that the reservoir level is maintained high at about 6:00 in the morning when the water demand peak is reached. . Operator is distribution Ikegami lower limit l kmax, repeatedly enter the l kmin, selects a distribution Ikegami lower limit capable of most suppress power rates.
 このように、配水池上下限値に加え、運転員独自の判断も配水池水位運用ルールとして採用することで、運転員は、熟練した運転員に近い感覚で、配水池水位を監視し、送水ポンプ30を運転することが可能になる。 In this way, in addition to the upper and lower limits of the reservoir, the operator's own judgment is also adopted as the reservoir water level operation rules, so that the operator can monitor the reservoir water level with a sense close to a skilled operator and use the water pump. 30 can be operated.
 なお、配水池水位設定装置10に印刷装置50が接続されている場合、「○○月○○日の運用、水位○○m~○○mにして下さい。」の内容に加え、「4時に配水池水位が4m未満である場合、ポンプ運転台数を1台追加して下さい。」の内容を印刷するようにしても良い。 In addition, when the printing device 50 is connected to the distribution reservoir water level setting device 10, in addition to the contents of “Operation of XX month XX day, please set the water level XXm to XXm.” If the water level in the reservoir is less than 4 m, please add one more pump. "
 また、第1の実施形態では、シミュレーション部11は、過去の水需要データにおける季節及び曜日等の特徴を考慮しない場合を例に説明した。しかしながら、これに限定されない。シミュレーション部11は、水需要データベース142から、例えば、季節及び曜日等の指定される期間についての水需要データを読み出し、指定される期間毎にシミュレーションを実行するようにしても構わない。このとき、配水池上下限値は、指定される期間毎に入力される。これにより、シミュレーション部11は、例えば、平日から休日へ切り替わる際等の送水量の変動を正確に模擬することが可能となる。なお、シミュレーション部11は、所定の期間毎に設定される配水池水位運用ルールを示すデータを記憶し、実際にその期間となった際には、対応する配水池水位運用ルールを示すデータを読み出し、印刷装置50に印刷させるようにしても良い。 In the first embodiment, the simulation unit 11 has been described by taking as an example a case in which features such as seasons and days of the week in the past water demand data are not considered. However, it is not limited to this. The simulation unit 11 may read water demand data for a specified period such as a season and a day of the week from the water demand database 142 and execute the simulation for each specified period. At this time, the upper and lower limits of the reservoir are input for each designated period. Thereby, the simulation part 11 becomes possible to simulate the fluctuation | variation of the water supply amount correctly at the time of switching from a weekday to a holiday, for example. In addition, the simulation part 11 memorize | stores the data which show the reservoir water level operation rule set for every predetermined | prescribed period, and reads the data which show a corresponding reservoir water level operation rule when it actually becomes that period. Alternatively, the printing apparatus 50 may be made to print.
 なお、特許文献1では、配水池の運用上下限範囲を制約する条件として、ポンプの電力原単位及び外部要因である電力料金体系等に基づいて、電力コストが最小となるポンプ流量計画を立案する技術が提案されている。しかしながら、特許文献1に係る発明は、配水池上下限を演算するものではない。また、特許文献1に係る発明は、電力ピークを抑制して契約電力を低減するものではない。 In Patent Document 1, as a condition for restricting the upper and lower limits of the operation of the distribution reservoir, a pump flow rate plan that minimizes the power cost is drawn up based on the power unit of the pump and the power rate system that is an external factor. Technology has been proposed. However, the invention according to Patent Document 1 does not calculate the upper and lower limits of the reservoir. Moreover, the invention which concerns on patent document 1 does not suppress an electric power peak, and does not reduce contract electric power.
 また、特許文献2では、配水池の設定水位の変更及び水需要量の変動等の要因に対しても、所望の配水池水位となる複数台ポンプの制御方法を提案している。しかしながら、特許文献2は、ポンプの水位制御に関する発明であり、配水池上下限値を演算するものではない。 Further, Patent Document 2 proposes a method for controlling a plurality of pumps that achieve a desired reservoir water level even with respect to factors such as changes in the set water level of the reservoir and fluctuations in water demand. However, Patent Document 2 is an invention related to pump water level control, and does not calculate the upper and lower limits of the reservoir.
 (第2の実施形態) 
 第2の実施形態では、配水池水位設定装置60が配水池上下限値を自動的に決定する場合を説明する。
(Second Embodiment)
In the second embodiment, a case will be described in which the reservoir level setting device 60 automatically determines the upper and lower limits of the reservoir.
 図10は、第2の実施形態に係る配水池水位設定装置60の機能構成を示すブロック図である。図10に示す配水池水位設定装置60は、シミュレーション部61、電力ピーク評価部62、電力料金算出部63及び記録部14を備える。 FIG. 10 is a block diagram showing a functional configuration of the reservoir level setting device 60 according to the second embodiment. A distribution reservoir water level setting device 60 shown in FIG. 10 includes a simulation unit 61, a power peak evaluation unit 62, a power rate calculation unit 63, and a recording unit 14.
 シミュレーション部61は、配水池水位設定装置60の内部エンジンを利用する。シミュレーション部61は、運転員により入力される配水池上下限値lkmax,lkminに基づいてではなく、自動的に選定する配水池上下限値lkmax,lkminに基づいてシミュレーションを実行する。内部エンジンは、配水池水位の上下限範囲を決定変数とした最適化問題を解く。最適化問題は、例えば、以下のように定式化できる。
Figure JPOXMLDOC01-appb-M000009
The simulation unit 61 uses the internal engine of the distribution reservoir water level setting device 60. Simulation unit 61, distribution Ikegami lower limit l kmax input by the operator, rather than based on l kmin, automatically selected for water distribution Ikegami lower limit l kmax, executes simulation based on l kmin. The internal engine solves the optimization problem with the upper and lower limits of the reservoir level as the decision variable. The optimization problem can be formulated as follows, for example.
Figure JPOXMLDOC01-appb-M000009
ここで、Rは許容変更台数を表し、Lは許容水位偏差を表す。許容水位偏差Lは、一日の終わりと始めで配水池水位がほぼ一致するように設定される。 Here, R represents the allowable change number, and L represents the allowable water level deviation. The permissible water level deviation L is set so that the water levels in the reservoirs substantially coincide at the end and beginning of the day.
 式(9)で示される最適化問題を解く方法は複数あり、限定するものではない。例えば、全探索アルゴリズムによる解法は以下に示す通りである。
Figure JPOXMLDOC01-appb-M000010
There are a plurality of methods for solving the optimization problem represented by Equation (9), and the method is not limited. For example, the solution using the full search algorithm is as follows.
Figure JPOXMLDOC01-appb-M000010
ここで、ピーク電力max(P)は、電力ピーク評価部62により算出され、シミュレーション部61のメモリに記録される。 Here, the peak power max (P k ) is calculated by the power peak evaluation unit 62 and recorded in the memory of the simulation unit 61.
 シミュレーション部61は、抽出したピーク電力を示すデータ及び電力量を示すデータを電力料金算出部63へ出力する。また、シミュレーション部61は、このピーク電力が算出される際の配水池上下限値を、配水池水位運用ルールとして設定する。 The simulation unit 61 outputs the data indicating the extracted peak power and the data indicating the power amount to the power rate calculation unit 63. In addition, the simulation unit 61 sets the upper and lower limits of the reservoir when the peak power is calculated as the reservoir water level operation rule.
 電力料金算出部63は、シミュレーション部61から得られる電力量及びピーク電力と、外部から与えられる電力料金体系とに基づき、一定期間の電力料金を算出する。電力料金算出部63は、算出された電力料金を、表示装置40に表示させる。 The power charge calculation unit 63 calculates a power charge for a certain period based on the amount of power and peak power obtained from the simulation unit 61 and the power charge system given from the outside. The power charge calculation unit 63 causes the display device 40 to display the calculated power charge.
 以上のように、第2の実施形態に係る配水池水位設定装置60は、自動的に配水池上下限値lkmax,lkminを設定し、設定した配水池上下限値lkmax,lkminに基づいてシミュレーションを実行する。シミュレーション部61は、各配水池上下限値について算出されるピーク電力の中から最小のピーク電力を抽出し、抽出したピーク電力が算出される配水池上下限値を、配水池水位運用ルールとして設定する。 As described above, distributing reservoir water level setting device 60 according to the second embodiment, automatically distribution Ikegami lower limit l kmax, set the l kmin, the set distribution Ikegami lower limit l kmax, based on l kmin Run the simulation. The simulation unit 61 extracts the minimum peak power from the peak power calculated for each reservoir upper and lower limit value, and sets the reservoir upper and lower limit value for which the extracted peak power is calculated as the reservoir water level operation rule.
 運転員は、このように設定される配水池水位運用ルールを採択し、通常のオペレーション通り、配水池水位が配水池上下限値を逸脱しないかを監視して送水ポンプ30を運転する。これにより、運転員は、電力ピークを抑制することが可能となる。運転員は、電力ピークを抑制可能であることにより、電力会社との契約電力を低減することが可能となり、加えて、年間電力料金を削減することが可能となる。 The operator adopts the reservoir level operation rules set in this way, and operates the water pump 30 by monitoring whether the reservoir level does not deviate from the upper and lower limits of the reservoir as in normal operation. Thereby, the operator can suppress the power peak. By being able to suppress the power peak, the operator can reduce the contract power with the power company and, in addition, can reduce the annual power rate.
 したがって、本実施形態に係る配水池水位設定装置60によれば、運転員が配水池の水位を水位上下限範囲に維持することで、過剰なポンプ動力の発生を抑え、契約電力の増大を防ぐことが可能な配水池水位を設定することができる。また、運転員が気付いていない配水池水位運転に関する改善点を自動的に提示することができる。 Therefore, according to the reservoir level setting device 60 according to the present embodiment, the operator maintains the water level of the reservoir in the upper and lower limits of the water level, thereby suppressing the generation of excessive pump power and preventing an increase in contract power. It is possible to set a reservoir level that can be used. Moreover, the improvement point regarding the reservoir level operation which the operator has not noticed can be automatically presented.
 なお、シミュレーション部61は、送水プラントの運用中に、シミュレーションの実行指示を受ける場合、現状における最適な配水池上下限値を取得するためのシミュレーションを実行するようにしても構わない。現在の配水池上下限値を変更した方が電力料金を削減できる結果が得られる場合、シミュレーション部61は、そのときの配水池上下限値を表示装置40に表示させる。 In addition, when the simulation part 61 receives the execution instruction of simulation during operation of a water transmission plant, you may make it perform the simulation for acquiring the optimal upper and lower limit value of a current reservoir. If the result of reducing the electricity charge is obtained by changing the current upper and lower limit value of the reservoir, the simulation unit 61 causes the display device 40 to display the upper and lower limit value of the reservoir at that time.
 (第3の実施形態) 
 第3の実施形態では、配水池水位設定装置70が現在の契約電力を超える運転を極力回避する場合を説明する。
(Third embodiment)
In the third embodiment, a case will be described where the reservoir level setting device 70 avoids operation exceeding the current contract power as much as possible.
 図11は、第3の実施形態に係る配水池水位設定装置70の機能構成を示すブロック図である。図11に示す配水池水位設定装置70は、シミュレーション部11、電力ピーク評価部12、電力料金算出部13、記録部14、入力部16及び運転可能時間算出部71を備える。 FIG. 11 is a block diagram showing a functional configuration of a reservoir level setting device 70 according to the third embodiment. A distribution reservoir water level setting device 70 shown in FIG. 11 includes a simulation unit 11, a power peak evaluation unit 12, a power rate calculation unit 13, a recording unit 14, an input unit 16, and an operable time calculation unit 71.
 運転可能時間算出部71は、電力量監視装置80により測定される電力使用量を受け取る。ここで、電力量監視装置80は、浄水場内に設置される。電力監視装置80は、浄水場内に設けられる送水ポンプ等で使用される電力を測定する。 The operable time calculation unit 71 receives the power usage measured by the power monitoring device 80. Here, the electric energy monitoring apparatus 80 is installed in the water purification plant. The power monitoring device 80 measures the power used by a water pump or the like provided in the water purification plant.
 運転可能時間算出部71は、現在の契約電力の値に基づき、現在の状態を継続した場合に契約電力の値を超えるまでの時間を算出する。例えば、水需要に対して送水量が不足等し、最大限に送水ポンプ30を稼働する必要がある場合、運転可能時間算出部71は、送水ポンプ30の起動時間を計測し、過去1年間での最大電力量を超えるまでの残り時間を分単位で算出する。運転可能時間算出部71は、算出した残り時間を表示装置40に表示させる。このとき、表示装置40は、残り時間を強調して運転員へ提示するようにしても構わない。 The operable time calculation unit 71 calculates the time until the value of the contract power is exceeded when the current state is continued based on the current value of the contract power. For example, when the water supply amount is insufficient with respect to the water demand and the water pump 30 needs to be operated to the maximum extent, the operable time calculation unit 71 measures the start-up time of the water pump 30, and in the past year The remaining time until exceeding the maximum power amount is calculated in minutes. The drivable time calculation unit 71 causes the display device 40 to display the calculated remaining time. At this time, the display device 40 may emphasize the remaining time and present it to the operator.
 以上のように、第3の実施形態では、運転可能時間算出部71は、現状の電力使用量に基づき、最大電力量を超えるまでの残り時間を算出し、運転員に提示するようにしている。これにより、運転員に電力使用量がピーク電力を超えないように注意喚起することが可能となるため、運転可能時間算出部71は、契約電力の増加を抑制することが可能となる。 As described above, in the third embodiment, the operable time calculation unit 71 calculates the remaining time until the maximum power consumption is exceeded based on the current power consumption and presents it to the operator. . As a result, it is possible to alert the operator so that the amount of power used does not exceed the peak power, so that the operable time calculation unit 71 can suppress an increase in contract power.
 したがって、第3の実施形態に係る配水池水位設定装置70によれば、不必要なポンプ動力による電力ピークの増加を抑制でき、契約電力の増加を予防できる。 Therefore, according to the reservoir level setting device 70 according to the third embodiment, an increase in power peak due to unnecessary pump power can be suppressed, and an increase in contract power can be prevented.
 なお、第3の実施形態では、残り時間を算出する場合を例に説明したが、これに限定されない。運転可能時間算出部71は、現在のポンプ運転状態を所定期間継続した場合、過去1年間の最大電力量を超えるか否かを取得するようにしても良い。運転可能時間算出部71は、取得した結果を、表示装置40に表示させる。 In the third embodiment, the case where the remaining time is calculated has been described as an example, but the present invention is not limited to this. When the current pump operation state is continued for a predetermined period, the operable time calculation unit 71 may acquire whether or not the maximum electric energy for the past one year is exceeded. The drivable time calculation unit 71 causes the display device 40 to display the acquired result.
 また、運転可能時間算出部71は、現状の電力使用量に送水ポンプを追加起動する電力量を加えるとピーク電力を超えるおそれがあり、かつ、配水池水位が配水池下限値を下回るおそれがある場合、追加起動に必要な電力量の増加により、過去1年分の最大電力量を超えるか否かを取得するようにしても良い。運転可能時間算出部71は、取得した結果を、表示装置40に表示させる。 Moreover, if the operation possible time calculation part 71 adds the electric energy which additionally starts a water pump to the present electric power consumption, there exists a possibility that it may exceed a peak electric power, and there exists a possibility that a reservoir water level may fall below a reservoir lower limit. In this case, it may be acquired whether or not the maximum amount of power for the past year is exceeded due to an increase in the amount of power required for additional activation. The drivable time calculation unit 71 causes the display device 40 to display the acquired result.
 (その他の実施形態) 
 上記各実施形態では、配水池数位設定装置は、プラントに設けられる場合を例に説明したが、これに限定される訳ではない。例えば、クラウドサーバが上記配水池水位設定装置の機能を有するようにしても構わない。例として、図2に示す配水池水位設定装置10の機能が、クラウドサーバ90に含まれる場合のシステム図を図12に示す。
(Other embodiments)
In each said embodiment, although the case where the distribution reservoir number setting apparatus was provided in the plant was demonstrated to the example, it is not necessarily limited to this. For example, the cloud server may have the function of the distribution reservoir water level setting device. As an example, FIG. 12 shows a system diagram when the function of the reservoir level setting device 10 shown in FIG. 2 is included in the cloud server 90.
 図12に示すクラウドサーバ90は、プラントとネットワークを介して接続する。クラウドサーバ90は、シミュレーション部11、電力ピーク評価部12及び電力料金算出部13を有する。なお、記録部14は、プラントに設けられる。 The cloud server 90 shown in FIG. 12 is connected to the plant via a network. The cloud server 90 includes a simulation unit 11, a power peak evaluation unit 12, and a power charge calculation unit 13. The recording unit 14 is provided in the plant.
 クラウドサーバ90は、電力料金算出部13で算出される電力料金を示すデータと、シミュレーション部11で設定される配水池水位運用ルールを示すデータとを、ネットワークを介してプラントへ出力する。 The cloud server 90 outputs the data indicating the power rate calculated by the power rate calculation unit 13 and the data indicating the reservoir water level operation rule set by the simulation unit 11 to the plant via the network.
 以上のように、配水池水位設定装置10の機能がクラウドサーバ90に含まれることにより、運転員が配水池の水位を水位上下限範囲に維持することで、過剰なポンプ動力の発生を抑え、契約電力の増大を防ぐことが可能な配水池水位が、クラウドサーバ90で設定されることとなる。これにより、送水プラント内に配水池水位設定装置を設ける必要がなくなるため、送水プラントにおける必要電力を抑えることが可能となる。 As described above, the function of the water reservoir level setting device 10 is included in the cloud server 90, so that the operator maintains the water level of the water reservoir in the upper and lower limit water level, thereby suppressing the generation of excessive pump power. The reservoir water level that can prevent the increase in contract power is set in the cloud server 90. Thereby, since it is not necessary to provide a reservoir level setting device in the water transmission plant, it is possible to suppress the necessary power in the water transmission plant.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

Claims (11)

  1.  プラントに設置される複数のポンプ及び配水池についての情報を含むプラントデータと、過去の水需要データとを予め記録する記録部と、
     前記プラントデータに基づいて前記複数のポンプの前記配水池への送水量を算出し、この送水量と前記水需要データとの関係に基づいて前記配水池の水位を算出し、この水位が配水池上下限値付近になると前記送水量を算出する際のポンプ数を増減するシミュレーション部と、
     前記送水量に基づいて所定時間当たりの電力量と、この電力量のうち最大値を取るピーク電力とを算出する電力ピーク評価部と、
     前記電力量及び前記ピーク電力に基づいて電力量料金を算出し、この電力量料金の算出結果を表示装置に表示させる電力量料金算出部と
    を具備し、
     前記シミュレーション部は、前記電力量料金を抑制可能な配水池上下限値を設定値とする配水池水位設定装置。
    A recording unit for pre-recording plant data including information about a plurality of pumps and distribution reservoirs installed in the plant, and past water demand data;
    Based on the plant data, the amount of water delivered to the reservoir by the plurality of pumps is calculated, and the water level of the reservoir is calculated based on the relationship between the amount of water delivered and the water demand data. A simulation unit that increases or decreases the number of pumps when calculating the water supply amount when it is near the lower limit value,
    A power peak evaluation unit for calculating a power amount per predetermined time based on the water supply amount and a peak power taking a maximum value among the power amount;
    A power amount charge is calculated based on the power amount and the peak power, and a power amount charge calculation unit that displays a calculation result of the power amount charge on a display device;
    The simulation unit is a reservoir water level setting device that uses a reservoir upper and lower limit value capable of suppressing the electricity charge as a set value.
  2.  前記シミュレーション部は、前記設定値を印刷装置に印刷させる請求項1記載の配水池水位設定装置。 The distribution reservoir water level setting device according to claim 1, wherein the simulation unit causes the printing device to print the set value.
  3.  水需要の誤差が入力されると、前記プラントデータを前記記録部から読み出し、前記水需要の誤差と、前記プラントデータとに基づいて水位誤差を算出する補正部を具備し、
     前記シミュレーション部は、前記水位誤差を含めて前記配水池への送水量を算出する請求項1記載の配水池水位設定装置。
    When an error in water demand is input, the plant data is read from the recording unit, and includes a correction unit that calculates a water level error based on the error in water demand and the plant data,
    The distribution reservoir water level setting device according to claim 1, wherein the simulation unit calculates a water supply amount to the distribution reservoir including the water level error.
  4.  前記シミュレーション部は、前記配水池上下限値を時間単位で変動させて、前記配水池への送水量を算出する請求項1記載の配水池水位設定装置。 The reservoir level setting apparatus according to claim 1, wherein the simulation unit calculates the amount of water supplied to the reservoir by changing the upper and lower limits of the reservoir in time units.
  5.  前記シミュレーション部は、前記配水池上下限値に加え、運転員から入力される運用ルールに基づいて前記送水量を算出する際のポンプ数を増減させる請求項1記載の配水池水位設定装置。 The distribution reservoir water level setting device according to claim 1, wherein the simulation unit increases or decreases the number of pumps when calculating the water supply amount based on an operation rule input from an operator in addition to the upper and lower limits of the distribution reservoir.
  6.  前記記録部は、季節及び曜日を含む所定期間毎の水需要データを記録しており、
     前記シミュレーション部は、前記期間毎に設定される配水池上下限値に基づいて、前記期間毎に前記配水池への送水量を算出する請求項1記載の配水池水位設定装置。
    The recording unit records water demand data for each predetermined period including the season and day of the week,
    The distribution reservoir water level setting device according to claim 1, wherein the simulation unit calculates a water supply amount to the distribution reservoir for each period based on upper and lower limits of the distribution reservoir set for each period.
  7.  運転員が前記配水池上下限値を前記シミュレーション部へ入力する入力部をさらに具備する請求項1記載の配水池水位設定装置。 The reservoir level setting device according to claim 1, further comprising an input unit for an operator to input the upper and lower limits of the reservoir to the simulation unit.
  8.  前記シミュレーション部は、前記配水池上下限値を自動的に選定して前記配水池への送水量を算出する請求項1記載の配水池水位設定装置。 The distribution reservoir water level setting device according to claim 1, wherein the simulation unit automatically selects the upper and lower limit values of the distribution reservoir and calculates a water supply amount to the distribution reservoir.
  9.  前記プラントに設けられる電力量監視装置で計測される電力使用量に基づき、前記ピーク電力を超えるまでの残り時間を算出する運転可能時間算出部をさらに具備する請求項1記載の配水池水位設定装置。 The distribution reservoir water level setting device according to claim 1, further comprising an operable time calculation unit that calculates a remaining time until the peak power is exceeded based on a power consumption measured by a power monitoring device provided in the plant. .
  10.  プラントに設置される複数のポンプ及び配水池についての情報を含むプラントデータを用い、前記複数のポンプの前記配水池への送水量を算出し、
     前記送水量と、過去の水需要データとの関係に基づいて前記配水池の水位を算出し、
     前記算出する水位が配水池上下限値付近になると前記送水量を算出する際のポンプ数を増減し、
     前記算出する送水量に基づいて所定時間当たりの電力量と、この電力量のうち最大値を取るピーク電力とを算出し、
     前記電力量及び前記ピーク電力に基づいて電力量料金を算出し、
     前記電力量料金の算出結果を表示装置に表示させ、
     前記電力量料金を抑制可能な配水池上下限値を設定値とする配水池水位設定方法。
    Using plant data including information about a plurality of pumps and reservoirs installed in the plant, calculating the amount of water delivered to the reservoirs of the plurality of pumps,
    Calculate the water level of the reservoir based on the relationship between the amount of water delivered and past water demand data,
    When the water level to be calculated is near the upper and lower limits of the distribution reservoir, increase or decrease the number of pumps when calculating the water supply amount,
    Based on the amount of water to be calculated, calculate the amount of power per predetermined time and the peak power taking the maximum value of this amount of power,
    Calculate a power charge based on the power and the peak power,
    Display a calculation result of the electric energy charge on a display device;
    A reservoir water level setting method in which the upper and lower limits of the reservoir capable of suppressing the electricity charge are set as set values.
  11.  複数のポンプと、配水池と、前記ポンプ及び前記配水池についての情報を含むプラントデータ、並びに、過去の水需要データを予め記録する記録部とを有するプラントと、
     前記プラントを監視するクラウドサーバと
    を具備し、
     前記クラウドサーバは、
      前記プラントデータに基づいて前記複数のポンプの前記配水池への送水量を算出し、この送水量と前記水需要データとの関係に基づいて前記配水池の水位を算出し、この水位が配水池上下限値付近になると前記送水量を算出する際のポンプ数を増減するシミュレーション部と、
      前記送水量に基づいて所定時間当たりの電力量と、この電力量のうち最大値を取るピーク電力とを算出する電力ピーク評価部と、
      前記電力量及び前記ピーク電力に基づいて電力量料金を算出し、この電力量料金の算出結果を表示装置に表示させる電力量料金算出部と
    を備え、
     前記シミュレーション部は、前記電力量料金を抑制可能な配水池上下限値を設定値として前記プラントへ出力する配水池水位設定システム。
    A plant having a plurality of pumps, a distribution reservoir, plant data including information about the pump and the distribution reservoir, and a recording unit that records past water demand data;
    A cloud server for monitoring the plant,
    The cloud server
    Based on the plant data, the amount of water delivered to the reservoir by the plurality of pumps is calculated, and the water level of the reservoir is calculated based on the relationship between the amount of water delivered and the water demand data. A simulation unit that increases or decreases the number of pumps when calculating the water supply amount when it is near the lower limit value,
    A power peak evaluation unit for calculating a power amount per predetermined time based on the water supply amount and a peak power taking a maximum value among the power amount;
    A power amount charge is calculated based on the power amount and the peak power, and a power amount charge calculation unit for displaying a calculation result of the power amount charge on a display device;
    The simulation unit is a distribution reservoir water level setting system that outputs a distribution reservoir upper and lower limit value capable of suppressing the electricity charge as a set value to the plant.
PCT/JP2014/053903 2013-03-14 2014-02-19 Distribution reservoir water level setting device, distribution reservoir water level setting method, and distribution reservoir water level setting system WO2014141836A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480010297.8A CN105009161B (en) 2013-03-14 2014-02-19 Distribution reservoir level setting device, distribution reservoir water level settings method and distribution reservoir water level settings system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013051580A JP5701919B2 (en) 2013-03-14 2013-03-14 Reservoir water level setting device, distribution reservoir water level setting method and distribution reservoir water level setting system
JP2013-051580 2013-03-14

Publications (1)

Publication Number Publication Date
WO2014141836A1 true WO2014141836A1 (en) 2014-09-18

Family

ID=51536512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053903 WO2014141836A1 (en) 2013-03-14 2014-02-19 Distribution reservoir water level setting device, distribution reservoir water level setting method, and distribution reservoir water level setting system

Country Status (3)

Country Link
JP (1) JP5701919B2 (en)
CN (1) CN105009161B (en)
WO (1) WO2014141836A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104281780A (en) * 2014-10-11 2015-01-14 水利部交通运输部国家能源局南京水利科学研究院 Linear reservoir retention confluence and nested watershed (multiple sub watersheds) confluence method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6283606B2 (en) * 2014-12-19 2018-02-21 株式会社日立製作所 Pump operation planning system and pump operation planning method
JP2019109861A (en) * 2017-12-20 2019-07-04 株式会社東芝 Driving plan support device, driving plan support method and computer program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09160900A (en) * 1995-12-12 1997-06-20 Mitsubishi Electric Corp Simulator of monitoring device and simulation method for monitoring device
JP2004250961A (en) * 2003-02-19 2004-09-09 Toshiba Corp Optimum operational control system for wide area plant
JP2006048212A (en) * 2004-08-02 2006-02-16 Toshiba Corp Device and method for preparing operation plan of wide area water operation system
JP2011170808A (en) * 2010-02-22 2011-09-01 Chugoku Electric Power Co Inc:The System and method for support of operation in water storage facility, and program
JP2011180899A (en) * 2010-03-02 2011-09-15 Chugoku Electric Power Co Inc:The Reservoir management plan creation method and device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351337A (en) * 1992-09-25 1994-09-27 Deutsch Joseph J Self-contained pressurized water delivery system
JPH1137052A (en) * 1997-07-14 1999-02-09 Ebara Corp Control method for optimum operation of pump of water feed device
JPH1161893A (en) * 1997-08-20 1999-03-05 Toshiba Corp Controller for water-supply plant
JP2004244942A (en) * 2003-02-14 2004-09-02 Yaskawa Electric Corp Waterworks operation support device
JP5455724B2 (en) * 2010-03-15 2014-03-26 株式会社東芝 Operational status monitoring system for water and sewage plants
CN102454186A (en) * 2010-10-20 2012-05-16 鸿富锦精密工业(深圳)有限公司 Feedwater control system and method
JP5416729B2 (en) * 2011-03-22 2014-02-12 株式会社日立製作所 Water central monitoring and control device, water monitoring control system and water monitoring control program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09160900A (en) * 1995-12-12 1997-06-20 Mitsubishi Electric Corp Simulator of monitoring device and simulation method for monitoring device
JP2004250961A (en) * 2003-02-19 2004-09-09 Toshiba Corp Optimum operational control system for wide area plant
JP2006048212A (en) * 2004-08-02 2006-02-16 Toshiba Corp Device and method for preparing operation plan of wide area water operation system
JP2011170808A (en) * 2010-02-22 2011-09-01 Chugoku Electric Power Co Inc:The System and method for support of operation in water storage facility, and program
JP2011180899A (en) * 2010-03-02 2011-09-15 Chugoku Electric Power Co Inc:The Reservoir management plan creation method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104281780A (en) * 2014-10-11 2015-01-14 水利部交通运输部国家能源局南京水利科学研究院 Linear reservoir retention confluence and nested watershed (multiple sub watersheds) confluence method

Also Published As

Publication number Publication date
JP2014178816A (en) 2014-09-25
CN105009161A (en) 2015-10-28
JP5701919B2 (en) 2015-04-15
CN105009161B (en) 2018-04-20

Similar Documents

Publication Publication Date Title
US11714441B2 (en) Method and apparatus for delivering power using external data
JP7443469B2 (en) Storage battery management device, storage battery management method, and storage battery management program
Khodaei et al. SCUC with hourly demand response considering intertemporal load characteristics
US10483760B2 (en) Energy storage peak shaving of electrical power for facilities
EP2408082B1 (en) Integrated demand response for energy utilization
US20180025423A1 (en) Power transaction management system and power transaction management method
US20070130093A1 (en) Utility management system and method
JP4203602B2 (en) Operation support method and apparatus for power supply equipment
WO2014020951A1 (en) Grid integrated control device, grid control system, grid control device, program, and control method
US20140344189A1 (en) Electricity rate managing system
JP6283606B2 (en) Pump operation planning system and pump operation planning method
WO2014141836A1 (en) Distribution reservoir water level setting device, distribution reservoir water level setting method, and distribution reservoir water level setting system
JP2021065097A (en) Demand monitoring device, demand monitoring system, demand monitoring method, and demand monitoring program
JP6446318B2 (en) Electric energy control operation planning device and water supply system including the same
WO2016084313A1 (en) Power demand adjustment system, demand adjustment device, group generation device, and group generation method
JP6823581B2 (en) Demand response system
JP2012198889A (en) Systems and methods for generating bill
JP7108524B2 (en) Charge/discharge control device and charge/discharge control method
JP6567302B2 (en) Energy management apparatus, energy management method and program
JP2019159628A (en) Control device, control method, and computer program
JP7463885B2 (en) ENERGY MANAGEMENT SYSTEM, ENERGY MANAGEMENT METHOD, AND PROGRAM
JP2005135266A (en) Electric power transaction support system
JP7017928B2 (en) Power supply system
KR101650513B1 (en) Emergency Generator Operation Method for Demand Response Resource System
Veselka et al. Revised financial analysis of experimental releases conducted at Glen Canyon Dam during water years 1997 through 2005.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14762254

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201505345

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14762254

Country of ref document: EP

Kind code of ref document: A1