WO2014141675A1 - Communication system, and communication terminal - Google Patents

Communication system, and communication terminal Download PDF

Info

Publication number
WO2014141675A1
WO2014141675A1 PCT/JP2014/001332 JP2014001332W WO2014141675A1 WO 2014141675 A1 WO2014141675 A1 WO 2014141675A1 JP 2014001332 W JP2014001332 W JP 2014001332W WO 2014141675 A1 WO2014141675 A1 WO 2014141675A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
signal
period
transmission
state transition
Prior art date
Application number
PCT/JP2014/001332
Other languages
French (fr)
Japanese (ja)
Inventor
一彦 五所野尾
冉 李
基弘 大井
享 伊藤
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014141675A1 publication Critical patent/WO2014141675A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines

Definitions

  • the present invention generally relates to a communication system and a communication terminal, and more particularly to a communication system including a parent device and a child device, and a communication terminal used therefor.
  • a transmission parent device 101 constituting a parent device and a plurality of communication terminals 102 constituting a child device are connected to the same communication line L100 to communicate with the transmission parent device 101 and each communication.
  • a communication system for performing communication with the terminal 102 is provided.
  • a transmission parent device 101 and a plurality of communication terminals 102 are connected by a two-wire communication line L101, and communication between the transmission parent device 101 and each communication terminal 102 is performed by a time division multiplex transmission method.
  • a system that realizes the above is known. Such a communication system is described in Japanese Patent Application Publication No. 2012-49638, for example.
  • a voltage signal having a predetermined amplitude for transmitting data by pulse width modulation is used. Further, when data is transmitted from each communication terminal 102 to the transmission base unit 101, a current signal obtained by changing the magnitude of the current is used.
  • the communication terminal 102 rectifies the transmission signal supplied from the communication line L100 to generate drive power for the communication terminal 102.
  • a drive power source is generated by rectifying and stabilizing the transmission signal transmitted from the transmission master unit through the communication line (stabilized power supply). Method).
  • a terminal with relatively large current consumption such as a monitor terminal having an LCD (Liquid Crystal Display) or an information device having a CPU (Central Processing Unit) operating at a high speed
  • a transmission error occurs.
  • the fluctuation of the current flowing through the communication line L100 increases due to the transition of the operating state of the slave unit (for example, LCD backlight on / off, video processing CPU activation / sleep).
  • the current signal may be distorted and a transmission error may occur.
  • a configuration in which driving power is supplied via a dedicated power supply wiring may be considered, but a dedicated power supply wiring is installed separately from the communication line. It was necessary and it was disadvantageous in terms of workability.
  • the present invention has been made in view of the above reasons, and its purpose is to provide driving power from the master unit to the slave unit, and even if the slave unit communicates using a current signal, the workability is improved.
  • An object of the present invention is to provide a communication system and a communication terminal that can suppress transmission errors without deteriorating.
  • a master unit and a plurality of slave units are connected to a first communication line, the master unit supplies drive power to the plurality of slave units via the first communication line, Each of the plurality of slave units sends a first signal, which is a current signal, to the first communication line, and the plurality of slave units perform transmission processing using the first signal only during a communication period in synchronization with each other.
  • the state transition with the fluctuation of the driving power exceeding a predetermined width is performed only during a load fluctuation period different from the communication period.
  • each of the plurality of slave units includes a communication unit that performs the transmission process in a range in which the fluctuation of the driving power does not exceed the predetermined width, and a functional unit that executes a predetermined operation using the driving power It is preferable that the state transition is performed when the operation state of the functional unit transitions from the first state to the second state.
  • the master unit sends a second signal to the first communication line, and the second signal is divided into a plurality of time zones including the communication period and the load fluctuation period.
  • the plurality of slave units operate using the second signal as the driving power, respectively, and based on the received second signal, the communication period and the load fluctuation period are respectively It is preferable to set.
  • a time length of the control sequence is a time length of the load variation period.
  • the control sequence is divided into a plurality of control sequences, and at least two of the plurality of sequences are executed in different load fluctuation periods of the plurality of load fluctuation periods. It is preferable that each is assigned to one of the plurality of load fluctuation periods and executed sequentially.
  • a gateway device that performs protocol conversion between a third signal transmitted on a second communication line, and the gateway device includes a plurality of first signals when a data amount of the first signal is greater than a predetermined value. So that at least two of the plurality of third signals that are protocol-converted for each of the plurality of first signals are transmitted in different load fluctuation periods of the plurality of load fluctuation periods. It is preferable that each of the plurality of third signals is assigned to one of the plurality of load fluctuation periods and sequentially transmitted to the second communication line.
  • an arbitrary first slave unit among the plurality of slave units requests the parent unit to permit the state transition, and the load designated by the parent unit It is preferable that the state transition is performed during a variation period, and the time length of the load variation period designated by the parent device is set by the parent device according to the contents of the state transition.
  • the base unit holds data of current consumption in the state transition of each of the plurality of slave units in advance, and the load fluctuation is based on the current consumption of each of the plurality of slave units.
  • the period is divided into a plurality of time regions, and each of the plurality of slave devices is assigned to one of the plurality of time regions so that the sum of the consumption currents of the plurality of time regions is equalized. It is preferable that an arbitrary first slave unit among the slave units performs the state transition in a time domain assigned to the first slave unit among the plurality of time domains.
  • the master unit includes a measurement unit that measures current consumption at the time of the state transition of each of the plurality of slave units, and is based on a measurement value of the current consumption of each of the plurality of slave units. Then, the load variation period is divided into a plurality of time regions, and each of the plurality of slave units is set to any one of the plurality of time regions so that the sum of the consumption currents of the plurality of time regions is equalized. Preferably, any one of the plurality of slave units performs the state transition in a time domain assigned to the first slave unit among the plurality of time domains.
  • the master unit communicates with each of the plurality of slave units using addresses assigned to the plurality of slave units, and the load variation period corresponds to each of the addresses.
  • the load variation period corresponds to each of the addresses.
  • any one of the plurality of child devices is configured to perform the state transition in a time region corresponding to the address of the first child device among the plurality of time regions. It is preferable to carry out.
  • the communication terminal of the present invention is a communication terminal that is supplied with driving power via a communication line and sends a current signal to the communication line, and performs transmission processing using the current signal only during a communication period, and
  • the present invention is characterized in that state transition accompanied by fluctuations in the driving power exceeding a predetermined width is performed only during a load fluctuation period different from the period.
  • FIG. 1 is a block diagram illustrating a configuration of a communication system according to a first embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of a transmission parent device according to the first embodiment.
  • 3 is a waveform diagram illustrating a format of a transmission signal of the communication system according to the first embodiment.
  • 2 is a block diagram illustrating a configuration of a communication terminal according to Embodiment 1.
  • FIG. It is a wave form diagram which shows the state transition of the communication terminal of Embodiment 1.
  • It is a wave form diagram which shows the state transition of the monitor terminal of Embodiment 1.
  • FIG. 3 is a block diagram illustrating a configuration of a functional unit of the monitor terminal according to Embodiment 1.
  • FIG. 10 is a block diagram illustrating a configuration of a transmission parent device according to a third embodiment. It is a sequence diagram which shows the state transition of the communication terminal of Embodiment 3.
  • FIG. 10 is a block diagram illustrating a configuration of a transmission parent device according to a fourth embodiment.
  • FIG. 10 is a block diagram illustrating a configuration of a communication system according to a fifth embodiment. It is a wave form diagram which shows the state transition of the communication terminal of Embodiment 5. It is a block diagram which shows the structure of the conventional communication system.
  • the communication system includes a transmission parent device 1 that is a parent device, and communication terminals 2 and 2 that are a plurality of child devices, a monitor terminal 2a, and a gateway device 2b.
  • This is a system connected to a communication line L1 which is one communication line.
  • the master unit (transmission master unit 1) supplies driving power to a plurality of slave units (communication terminals 2 and 2, monitor terminal 2a, gateway device 2b) via the first communication line (communication line L1).
  • the plurality of slave units (communication terminals 2 and 2, monitor terminal 2a, gateway device 2b) each send a first signal, which is a current signal, to the first communication line (communication line L1).
  • a plurality of slave units (communication terminals 2, 2, monitor terminal 2a, gateway device 2b) perform transmission processing using the first signal only during a communication period in synchronization with each other, and load fluctuations different from the communication period The state transition accompanied by the fluctuation of the driving power exceeding the predetermined width is performed only during the period.
  • the communication terminal 2 is a communication terminal that is supplied with driving power via the communication line L1 and transmits a current signal to the communication line L1.
  • the communication terminal 2 is configured to perform a transmission process using the current signal only during a communication period, and to perform a state transition with a variation in the driving power exceeding a predetermined width only during a load variation period different from the communication period. Has been.
  • FIG. 1 shows a configuration of a communication system according to the present embodiment, in which a transmission parent device 1 constituting a parent device, communication terminals 2 and 2, a monitor terminal 2a, and a gateway device 2b constituting a child device are in the same communication. It is connected to the line L1 (first communication line).
  • the communication line L1 is a two-wire type having a pair of signal lines.
  • the monitor terminal 2a and the gateway device 2b are a type of the communication terminal 2, and hereinafter, the communication terminals 2 and 2, the monitor terminal 2a, and the gateway device 2b are collectively referred to as “communication terminal 2”.
  • the transmission base unit 1 includes a communication unit 11 and an address storage unit 12. Information of each address of the communication terminal 2 is stored in the address storage unit 12, and the communication unit 11 performs communication control using each address of the communication terminal 2. And the communication part 11 sends out the transmission signal (2nd signal) which consists of a voltage waveform of the format shown in FIG. 3 with respect to the communication line L1.
  • This transmission signal is a voltage signal, and is a bipolar ( ⁇ 24V) time-division multiplexed signal having a voltage transmission period T1, a current transmission period T2, and a load fluctuation period T3 obtained by dividing one frame into three.
  • the voltage transmission period T1 is a time slot in which the transmission master unit 1 generates a voltage signal for transmitting data to the communication terminal 2, and the transmission master unit 1 performs pulse width modulation on a carrier composed of a pulse train of ⁇ 24V. To transmit data.
  • the predetermined pulse train at the start of the voltage transmission period T1 indicates the start of the frame of the transmission signal and constitutes a known synchronization pulse for the communication terminal 2 to synchronize.
  • the current transmission period T2 is a period in which a voltage of +24 V is generated, and is a time slot in which the transmission master unit 1 receives a superimposed signal described later from the communication terminal 2. That is, the current transmission period T2 is a period during which the communication terminal 2 is permitted to superimpose the superimposed signal on the transmission signal and transmit data to the transmission master unit 1. This current transmission period T2 corresponds to the communication period of the present invention.
  • the load fluctuation period T3 is a period in which a voltage of ⁇ 24 V is generated, and is a time slot in which the transmission of the superimposed signal by the communication terminal 2 is prohibited and the state transition of the communication terminal 2 is permitted.
  • the transmission signal sent from the transmission base unit 1 onto the communication line L1 is a ⁇ 24V bipolar, and is repeatedly sent out on the communication line L1, so that power is always supplied to the communication line L1 by the transmission signal. ing. Therefore, in this system, driving power can be supplied to the communication terminal 2 by using the transmission signal. However, since there is an upper limit to the power supplied by the transmission parent device 1, the power that can be supplied from the transmission parent device 1 to the communication terminal 2 connected to the communication line L1 is limited.
  • the configuration of the communication terminal 2 will be described.
  • one communication terminal 2 that is an arbitrary first communication terminal (first slave unit) among the plurality of communication terminals 2 will be described.
  • the configuration is the same as that of the first communication terminal.
  • the communication terminal 2 includes a communication unit 21, an address storage unit 22, a function unit 23, and a power supply unit 24.
  • the communication unit 21 receives a voltage signal from the transmission parent device 1 and further superimposes a superimposed signal (first signal) on the transmission signal, and transmits data to the transmission parent device 1.
  • the function unit 23 has functions (such as a monitor function and a gateway function) unique to the communication terminal 2. Address information of the first communication terminal is stored in the address storage unit 22, and the function unit 23 matches the destination address included in the voltage signal received by the communication unit 21 with the address of the first communication terminal. For example, a predetermined operation corresponding to the voltage signal is executed.
  • the power supply unit 24 rectifies the transmission signal supplied from the communication line L1 to generate driving power for the first communication terminal.
  • each time length of the voltage transmission period T1, the current transmission period T2, and the load fluctuation period T3 is determined in advance.
  • the communication unit 21 of the communication terminal 2 receives a transmission signal transmitted from the transmission parent device 1 on the communication line L1, and receives a voltage signal transmitted from the transmission parent device 1 in the voltage transmission period T1.
  • the communication unit 21 of the communication terminal 2 transmits data to the transmission parent device 1 by superimposing a superimposed signal on a transmission signal in the current transmission period T2.
  • This superimposed signal is a current signal (first signal) for transmitting data by changing the current flowing on the communication line L1, and is a signal obtained by modulating a carrier wave having a frequency higher than that of the voltage signal.
  • the functional unit 23 of the communication terminal 2 changes the state using the driving power generated by the power supply unit 24 in the load fluctuation period T3.
  • the function unit 23 is configured by an LCD device having a video display function, and the function unit 23 performs state transition such as on / off of the LCD backlight. Is performed in the load fluctuation period T3.
  • the communication terminal 2 includes a communication unit 21 that performs transmission processing within a range in which fluctuations in driving power do not exceed a predetermined range, and a functional unit 23 that executes predetermined operations using the driving power.
  • the communication terminal 2 performs the state transition by the operation state of the function unit 23 changing from the first state (for example, the LCD backlight is off) to the second state (for example, the LCD backlight is on). It is configured.
  • the plurality of communication terminals 2 configured in this way each receive a transmission signal that the transmission base unit 1 sends out on the communication line L1, and synchronize with each other by the above-described synchronization pulse of the voltage transmission period T1, and the voltage transmission period T1, current transmission period T2, and load fluctuation period T3 can be set. That is, the plurality of communication terminals 2 can set the voltage transmission period T1, the current transmission period T2, and the load fluctuation period T3 at the same timing.
  • FIG. 5 shows a waveform of a signal transmitted on the communication line L1.
  • the monitor terminal 2a receives the voltage signal transmitted by the transmission parent device 1 in the voltage transmission period T1. In the current transmission period T2, the communication terminal 2 superimposes the superimposed signal P on the transmission signal and transmits data to the transmission parent device 1.
  • the transmission base unit 1 transmits a backlight on request using a voltage signal in the voltage transmission period T1 (time t1).
  • the monitor terminal 2a changes the state of the LCD backlight from off (first state) to on (second state) in the load variation period T3 within the same frame as the voltage transmission period T1 that has received the backlight on request (time). t2).
  • the communication terminal 2 such as the monitor terminal 2a sets the current transmission period T2 in which the communication terminal 2 transmits the superimposed signal P as a different period from the load fluctuation period T3 in which the state of the functional unit 23 is changed. Therefore, even if the fluctuation (load fluctuation) of the current flowing on the communication line L1 becomes large due to the state transition of the communication terminal 2 (LCD backlight ON / OFF, etc.), the superimposed signal P composed of the current signal is distorted. Transmission errors can be suppressed without occurring.
  • the communication terminal 2 performs state transition by executing a control sequence.
  • the functional unit 23 of the communication terminal 2 divides one control sequence into a plurality of control sequences.
  • the communication terminal 2 executes each of the plurality of control sequences in the plurality of load fluctuation periods T3 so that at least two of the plurality of divided sequences are executed in different load fluctuation periods T3 among the plurality of load fluctuation periods T3. Allocate to either and execute sequentially.
  • FIG. 6 shows a waveform of a signal transmitted on the communication line L1.
  • the function unit 23 of the monitor terminal 2a includes an LCD controller 23a and an LCD backlight 23b.
  • the LCD controller 23a is off and the LCD backlight 23b is off, it is assumed that the transmission master 1 transmits a backlight on request using a voltage signal in the voltage transmission period T1 (time t11).
  • the control sequence for performing the backlight on operation of the monitor terminal 2a can be divided into a first sequence for switching the LCD controller 23a from off to on and a second sequence for switching the LCD backlight 23b from off to on. Therefore, the monitor terminal 2a changes the state of the LCD controller 23a from off to on in the load variation period T3 in the same frame as the voltage transmission period T1 that has received the backlight on request (time t12). Next, the monitor terminal 2a changes the state of the LCD backlight 23b from off to on in the load fluctuation period T3 in the next frame (time t13).
  • the communication terminal 2 can divide and execute one control sequence over a plurality of load fluctuation periods T3, so there is no need to increase the time length of the load fluctuation period T3, and the load fluctuation period T3 is increased. This can suppress a decrease in transmission efficiency.
  • FIG. 9 shows a waveform of a signal transmitted on the communication line L1.
  • control sequence for performing the backlight on operation of the monitor terminal 2a can be divided into four sequences.
  • the transmission CPU 23c is activated from the sleep state
  • the video processing CPU 23d and the audio processing CPU 23e are activated from the sleep state.
  • the third sequence switches the LCD controller 23a from off to on
  • the fourth sequence switches the LCD backlight 23b from off to on.
  • the transmission master unit 1 uses the voltage signal in the voltage transmission period T1. Assume that a backlight on request has been transmitted (time t21).
  • the monitor terminal 2a activates the transmission CPU 23c from the sleep state during the load fluctuation period T3 within the same frame as the voltage transmission period T1 that has received the backlight on request (time t22). Then, the monitor terminal 2a activates the video processing CPU 23d and the audio processing CPU 23e from the sleep state during the load fluctuation period T3 in the next frame (time t23).
  • the monitor terminal 2a changes the state of the LCD controller 23a from off to on in the load fluctuation period T3 in the next frame (time t24).
  • the monitor terminal 2a changes the state of the LCD backlight 23b from off to on in the load fluctuation period T3 in the next frame (time t25).
  • the communication terminal 2 divides and executes one control sequence over a plurality of load fluctuation periods T3, and can suppress a decrease in transmission efficiency due to an increase in the load fluctuation period T3.
  • the functional unit 23 of the gateway device 2b performs signal protocol conversion between the communication line L1 (first communication line) and the communication line L2 (second communication line). Specifically, the functional unit 23 of the gateway device 2b converts the superimposed signal P (first signal) transmitted on the communication line L1 into a signal (third signal) of another communication protocol transmitted on the communication line L2. Converted and sent out on the communication line L2. Further, the functional unit 23 of the gateway device 2b converts a signal of another communication protocol transmitted through the communication line L2 into a superimposed signal P, and sends the signal onto the communication line L1.
  • the functional unit 23 of the gateway device 2b performs a protocol-converted signal transmission operation (state transition operation) in the load fluctuation period T3.
  • the signal transmitted through the communication line L2 is generated using a communication protocol such as RS485, RS422, Ethernet (registered trademark).
  • FIG. 10 shows a signal waveform on communication line L1 (“on communication line L1”) and a signal waveform (“on communication line L2”) that has been protocol-converted by gateway device 2b and sent onto communication line L2. ing.
  • the functional unit 23 of the gateway device 2b divides the superimposed signal P into a plurality of pieces. To do.
  • the functional unit 23 of the gateway device 2b converts each of the divided superimposed signals (first signals) P into a third signal of another communication protocol.
  • the gateway device 2b transmits each of the plurality of third signals to the plurality of load fluctuation periods T3 so that at least two of the plurality of third signals are transmitted in different load fluctuation periods T3 of the plurality of load fluctuation periods T3.
  • the superimposed signal (first signal) P is divided into two, and the two signals (third signal) after the protocol conversion are respectively assigned to the load variation periods T3 of two different frames for communication. Sending to line L2.
  • load fluctuation due to the transmission operation (state transition operation) of the gateway device 2b occurs only in the load fluctuation period T3, so that transmission errors can be suppressed without causing distortion in the superimposed signal P made up of current signals. it can. Further, since the gateway device 2b can divide and transmit a signal over a plurality of load fluctuation periods T3, it is not necessary to lengthen the time length of the load fluctuation period T3, and by extending the load fluctuation period T3. A decrease in transmission efficiency can be suppressed.
  • the communication system of the present embodiment has the same configuration as that of the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 11 shows a waveform of a signal transmitted on the communication line L1
  • FIG. 12 shows a communication sequence.
  • the communication unit 21 of the communication terminal 2 transmits the load variation request S1 to the transmission parent device 1 using the superimposed signal P in the current transmission period T2 before the function unit 23 performs state transition (time t31). . That is, the communication terminal 2 requests permission of the state transition from the transmission parent device 1 before performing the state transition of the first communication terminal. In addition, the communication unit 21 of the communication terminal 2 adds information on the length of time required for the state transition of the function unit 23 to the load change request S1.
  • the communication unit 11 of the transmission base unit 1 uses the voltage signal to the communication terminal 2 that is the transmission source of the load variation request S1 in the voltage transmission period T1 of the frame that permits state transition (in this case, the next frame). Is sent (time t32).
  • the transmission base unit 1 adds information on the length of the load fluctuation period T3 to the fluctuation permission notification S2.
  • the time length of the load fluctuation period T3 specified by the fluctuation permission notification S2 is set longer than the time length required for the state transition based on the load fluctuation request S1 received by the transmission parent device 1. Furthermore, the transmission parent device 1 adjusts the time length of the load fluctuation period T3 of the frame that permits state transition to the above-specified time length.
  • the functional unit 23 of the communication terminal 2 that is the transmission source of the load fluctuation request S1 performs the state transition S3 in the load fluctuation period T3 in the same frame as the voltage transmission period T1 that has received the fluctuation permission notification S2 (t33).
  • the transmission parent device 1 can dynamically assign the communication terminal 2 the load variation period T3 used for state transition and the time length of the load variation period T3 according to the contents of the state transition. Become. That is, it is possible to efficiently use the load fluctuation period T3 and improve control responsiveness in the load fluctuation period T3.
  • the transmission parent device 1 includes a current data storage unit 13 as shown in FIG.
  • the current data storage unit 13 stores in advance data of current consumption required for each communication terminal 2 at the time of state transition.
  • the transmission base unit 1 divides the load fluctuation period T3 into a plurality of time regions based on the respective current consumptions of the communication terminals 2, and the sum (maximum value) of the respective current consumptions in the time regions is even.
  • Each communication terminal 2 is assigned to any time region so as to be (grouping).
  • An arbitrary first communication terminal (first slave) among the plurality of communication terminals 2 performs state transition in a time domain assigned to the first communication terminal among the plurality of time domains.
  • the current data storage unit 13 of the transmission parent device 1 stores in advance the current consumption data “communication terminal 2A: 100 mA, communication terminal 2B: 500 mA, communication terminal 2C: 400 mA” of the communication terminal 2 alone shown in Table 1. I remember it.
  • the data of current consumption of the communication terminal 2 alone is data of current consumed inside the communication terminal 2 without considering a loss due to a voltage drop of the communication line L1.
  • the transmission base unit 1 divides the load fluctuation period T3 into two time regions D1 and D2, assigns one communication terminal 2B to the time region D1, and sets two in the time region D2.
  • the communication terminals 2A and 2C are grouped.
  • FIG. 14 shows a waveform of a signal transmitted on the communication line L1.
  • the communication unit 11 of the transmission base unit 1 transmits the above grouping result to each of the communication terminals 2A to 2C using the voltage signal of the voltage transmission period T1 when it starts up, and the communication terminals 2A to 2C Each can recognize the time domain assigned to each. Then, each of the communication terminals 2A to 2C performs state transition in the time domain assigned to each within the load fluctuation period T3. That is, the sum of current consumption in the time domain D1 (maximum value) is 500 mA, the sum of current consumption in the time domain D2 (maximum value) is 500 mA, and the sum of the current consumption in each of the time domains D1 and D2 Value) are equal to each other.
  • the power feeding circuit of the transmission parent device 1 can be configured at low cost.
  • the transmission parent device 1 includes a current measurement unit 14 and a current data storage unit 15 as shown in FIG.
  • the current measuring unit 14 actually measures the current consumption of each communication terminal 2 by measuring the current supplied from the transmission parent device 1 to the communication line L1. Specifically, after the transmission master unit 1 is activated, the current measurement unit 14 sequentially transmits an operation request to each of the communication terminals 2 using the voltage signal in the voltage transmission period T1. The functional unit 23 of the communication terminal 2 that has received the operation request executes state transition such as sleep and activation in the load fluctuation period T3. The current measuring unit 14 measures the current consumption of the communication terminal 2 when the functional unit 23 of the communication terminal 2 executes state transition. The current measuring unit 14 sequentially transmits an operation request to each of the communication terminals 2 to measure each consumption current supplied at the time of the state transition of the subordinate communication terminal 2 and stores the measurement result in the current data storage unit 15. .
  • the current data storage unit 15 of the transmission base unit 1 stores current consumption measurement data “communication terminal 2A: 150 mA, communication terminal 2B: 550 mA, communication terminal 2C: 700 mA” shown in Table 2. Then, as shown in FIG. 14, the transmission master unit 1 divides the load fluctuation period T3 into two time regions D1 and D2, allocates two communication terminals 2A and 2B to the time region D1, and assigns them to the time region D2. Grouping is performed in which one communication terminal 2C is allocated.
  • the transmission base unit 1 divides the load variation period T3 into a plurality of time regions based on the actual current consumption of each of the communication terminals 2, and the sum (maximum value) of the current consumptions in the time regions is calculated.
  • the communication terminals 2 are assigned to any time region so as to be even.
  • An arbitrary first communication terminal (first slave) among the plurality of communication terminals 2 performs state transition in a time domain assigned to the first communication terminal among the plurality of time domains.
  • the communication unit 11 of the transmission base unit 1 transmits the above grouping result to each of the communication terminals 2A to 2C using the voltage signal of the voltage transmission period T1, and each of the communication terminals 2A to 2C
  • the assigned time domain can be recognized.
  • each of the communication terminals 2A to 2C performs state transition in the time domain assigned to each within the load fluctuation period T3. That is, the sum of current consumption in the time domain D1 (maximum value) is 700 mA, the sum of current consumption in the time domain D2 (maximum value) is 700 mA, and the sum of the current consumption in the time domains D1 and D2 is equal to each other. Become.
  • the actual drive power supplied by the transmission master unit 1 is a combination of the power consumption of the communication terminal 2 alone and the power loss in the communication line L1 from the transmission master unit 1 to the communication terminal 2. Therefore, in the present embodiment, the current supplied from the transmission base unit 1 to the communication line L1 at the time of the state transition of the communication terminal 2 is measured, and either communication terminal 2 is selected based on the actual current consumption of each communication terminal 2. Assigned to the time domain. That is, the grouping can be performed in consideration of the influence of the system configuration such as the loss due to the voltage drop of the communication line L1, and the power (maximum value) supplied from the transmission master unit 1 to the communication line L1 in each time domain. Each communication terminal 2 can be assigned to any time region so as to be even.
  • the power supply circuit of the transmission parent device 1 can be configured at low cost.
  • FIG. 16 shows a configuration of a communication system according to the present embodiment, and the communication terminal 2 includes a transmission terminal 2c and a superimposition terminal 2d.
  • symbol is attached
  • the transmission terminal 2c and the superposition terminal 2d are not distinguished, they are referred to as communication terminals 2.
  • the communication protocol is different between the communication signal transmitted through the communication line L1 in the communication between the transmission parent device 1 and the communication terminal 2 and the communication signal transmitted through the transmission line L1 in the communication between the overlapping terminals 2d.
  • the former communication signal is a pulse-width-modulated bipolar signal
  • the latter communication signal uses a current signal obtained by modulating a carrier wave having a frequency higher than that of the former communication signal.
  • the former communication signal is referred to as a “transmission signal”
  • the latter communication signal is referred to as a “superimposition signal”.
  • the communication unit 21 of the transmission terminal 2c has a transmission / reception function for transmission signals
  • the communication unit 21 of the superimposition terminal 2d has transmission / reception functions for transmission signals and superimposition signals.
  • a transmission signal used in communication between the transmission parent device 1 and the communication terminal 2 has a predetermined format, and the transmission parent device 1 repeatedly sends it to the communication line L1.
  • Each communication terminal 2 has an address (identification information). By including the address of the communication terminal 2 in the transmission signal transmitted by the transmission master unit 1, the communication terminal 2 is designated and transmitted from the transmission master unit 1. Instructions to each terminal are given. That is, an instruction can be individually given from the transmission base unit 1 to the communication terminal 2 by time division multiplexing.
  • the transmission signal is provided with a period during which information is notified from the communication terminal 2 to the transmission master unit 1.
  • the transmission terminal 2 c is connected to a monitoring terminal that receives a monitoring input from a switch or a sensor (not shown) and requests the transmission master 1 to control the load, and a load (not shown) is connected to the transmission terminal 1.
  • a monitoring terminal that receives a monitoring input from a switch or a sensor (not shown) and requests the transmission master 1 to control the load
  • a load (not shown) is connected to the transmission terminal 1.
  • the transmission base unit 1 includes a relation table that associates switches or sensors (hereinafter, the switches and sensors are collectively referred to as monitoring means) and loads. By registering the relation between the monitoring means and the load in the relation table in advance, the transmission master unit 1 controls the load associated with the monitoring means in the relation table according to the switch operation or the change in the sensor output. To do.
  • the relation table may include the contents of load control for the monitoring means.
  • the transmission signal (second signal) includes a synchronization pulse period T11, a transmission period T12, a return period T13, an interrupt period T14, a short-circuit detection period T15, and a pause period T16. And a bipolar ( ⁇ 24V) signal.
  • the transmission master unit 1 repeatedly transmits this transmission signal.
  • the synchronization pulse period T11 indicates the start of the frame of the transmission signal, and has two periods with different voltage polarities.
  • the voltage polarity changes from + 24V to ⁇ 24V within the period of the synchronization pulse period T11.
  • the transmission period T12 is a period in which an instruction is transmitted from the transmission parent device 1 to the communication terminal 2, and is a time slot in which the transmission parent device 1 generates a voltage signal for transmitting data to the communication terminal 2.
  • the transmission base unit 1 transmits data by performing pulse width modulation on a carrier composed of a pulse train of ⁇ 24V.
  • This voltage signal includes mode information indicating the type of transmission signal, an address for individually specifying the communication terminal 2, and control information indicating the content of the instruction.
  • the return period T13 is a period in which a voltage of + 24V is generated and information is notified from the communication terminal 2 to the transmission parent device 1, and the transmission parent device 1 waits without transmitting a signal.
  • the interrupt period T14 is a period for generating a voltage of ⁇ 24V and detecting an interrupt signal output from the communication terminal 2
  • the short-circuit detection period T15 is generating a voltage of + 24V and generating a communication line This is a period for detecting a short circuit of L1.
  • the idle period T16 is a period in which a voltage of -24V is generated and data transmission is not performed.
  • Each communication terminal 2 performs an operation based on the control information included in the transmission period T12 when its own address is included in the address included in the transmission period T12 of the transmission signal received via the communication line L1. .
  • the load is controlled according to the control content.
  • the switch operation in the monitoring terminal and the load control result in the control terminal are returned to the transmission master unit 1 by a current mode signal (current signal) in synchronization with the return period T13 (corresponding to the communication period of the present invention).
  • the current mode signal (first signal) is a binary current signal represented by a state where the communication lines L1 are opened and a state where the communication lines L1 are short-circuited via a low impedance element.
  • the communication terminal 2 has a return circuit in which a return transistor and a resistor are connected in series, and turns on and off the return transistor in a state where a DC voltage obtained by rectifying a transmission signal is applied to the return circuit. Thereby, the magnitude of the current flowing from the communication line L1 to the communication terminal 2 changes, and the communication terminal 2 can generate a current signal on the communication line L1 and transmit the current signal to the transmission master unit 1. .
  • the transmission base unit 1 always performs polling for sequentially accessing the communication terminal 2 by cyclically changing the address of the communication terminal 2 included in the transmission signal.
  • the communication terminal 2 whose address included in the transmission signal matches its own address operates if the transmission signal includes control information, and takes control information and returns its operating state. In the period T13, it is returned to the transmission master unit 1.
  • the communication terminal 2 generates an interrupt signal I on the communication line L1 in synchronization with the transmission signal interrupt period T14 when a monitoring input or the like is generated (see FIG. 17).
  • the monitoring terminal receives a monitoring input from the switch, the monitoring terminal generates an interrupt signal I in the interrupt period T14.
  • the transmission base unit 1 detects this interrupt signal I, it searches for the communication terminal 2 that generated the interrupt signal I, and accesses the communication terminal 2 to obtain the address of the communication terminal 2.
  • the transmission base unit 1 When the address of the communication terminal 2 that generated the interrupt signal I is acquired by the transmission base unit 1, the transmission base unit 1 designates the address and causes the communication terminal 2 to return data such as monitoring input. Based on the monitoring input returned from the communication terminal 2, the transmission master unit 1 generates a transmission signal including control information for the communication terminal 2 provided with a load associated with each monitoring input in advance by the relation table. It is sent to the communication line L1. Therefore, the load is controlled in accordance with a request (switch operation or the like) from the communication terminal 2 that has generated the interrupt signal I.
  • the transmission base unit 1 always performs polling at all times and sequentially accesses all the communication terminals 2.
  • the transmission master unit 1 accesses the communication terminal 2 that generated the interrupt signal I and receives a request from the communication terminal 2. In this way, polling is always performed, and when an interrupt signal I is generated, an operation for preferentially processing a request from the communication terminal 2 that has generated the interrupt signal I is referred to as interrupt polling.
  • the superimposing terminal 2d is, for example, a measuring terminal that measures the amount of power consumed by the load, a monitor terminal that displays the measurement result of the measuring device, or the like.
  • the superimposing terminal 2d performs communication using the above-described constant polling and interrupt polling with the transmission master unit 1, and the superimposing terminals 2d communicate with each other using a superimposing signal transmitted on the communication line L1.
  • the monitor terminal collects the measurement results of the measurement terminal.
  • a superimposition signal P that is superimposed on the transmission signal and transmitted through the communication line L1 is used. Specifically, the superimposed signal P is transmitted in a superimposable period (corresponding to the communication period of the present invention) appropriately selected from the synchronization pulse period T11 and the pause period T16 of the transmission signal.
  • the superimposed signal P (first signal) is a current signal for data transmission by changing the current flowing on the communication line L1, and is a signal obtained by modulating a carrier wave having a frequency higher than that of the voltage signal.
  • the transmission signal sent from the transmission master unit 1 onto the communication line L1 is multipolar and is always polled, power is constantly supplied to the communication line L1 by the transmission signal. Therefore, in this system, driving power can be supplied to the communication terminal 2 by using the transmission signal.
  • the power that can be supplied from the transmission parent device 1 to the communication terminal 2 connected to the communication line L1 is limited.
  • the communication terminal 2 is in a state such as activation / sleep of the communication terminal 2 by communication with the transmission master unit 1 using the above-described constant polling and interrupt polling, and communication between the overlapping terminals 2d performed using the superimposed signal P. Transition is indicated.
  • Each functional unit 23 of the communication terminal 2 instructed to change the state changes the state using the driving power generated by the power supply unit 24 in the short circuit detection period T15. That is, the short circuit detection period T15 also serves as the load fluctuation period of the present invention.
  • the functional unit 23 is configured by an LCD device having a video display function, and the functional unit 23 performs a state transition such as on / off of the LCD backlight in a short circuit detection period T15. To do.
  • the transmission master unit 1 divides the short-circuit detection period T15 into the same number of time regions D11, D12,..., D1n as the addresses of the subordinate communication terminals 2, and 1 is assigned to each time region. All communication terminals 2 are assigned. An arbitrary first communication terminal (first slave unit) among the plurality of communication terminals 2 is in a state in the time domain assigned to the first communication terminal among the plurality of time domains D11, D12,. Make a transition.
  • the process of assigning the time domain to the communication terminal 2 is automatically performed when the transmission master unit 1 performs the address setting process of the communication terminal 2. Therefore, since the address setting process and the time domain allocation process can be performed simultaneously, for example, a communication sequence for allocating the time domain becomes unnecessary. That is, the cost increase due to the addition of a circuit such as a current measurement unit can be suppressed without increasing the number of steps for assigning the time domain.
  • the communication unit 11 of the transmission parent device 1 transmits the above time domain assignment result to each of the communication terminals 2 using the voltage signal of the voltage transmission period T1, and the communication terminal 2 Each can recognize the time domain assigned corresponding to each address. And each of the communication terminals 2 performs a state transition in the time area
  • the short circuit detection period T15 it is possible to prevent the state transitions of the communication terminals 2 from concentrating at the same timing, and to control the load fluctuation in the load fluctuation period T3 to be substantially constant, thereby efficiently using the load fluctuation period T3. Can do. Moreover, since the peak value of the driving power supplied from the transmission parent device 1 to the communication line L1 can be suppressed, the power feeding circuit of the transmission parent device 1 can be configured at low cost.

Abstract

In the present invention, a transmission base unit (base unit) and a plurality of communication terminals (extension units) are connected to a communication line (first communication line), the transmission base unit supplying drive power to the plurality of communication terminals via the communication line. The plurality of communication terminals perform, in synchronism with each other, transmission processing using an electric current signal (first signal) in only a communication period, and perform a state transition accompanying a fluctuation in drive power exceeding a prescribed width in only a load fluctuation period separate from the communication period.

Description

通信システム、および通信端末Communication system and communication terminal
 本発明は、一般に通信システム、および通信端末に関し、より詳細には親機と子機とを備える通信システム、およびそれに用いられる通信端末に関する。 The present invention generally relates to a communication system and a communication terminal, and more particularly to a communication system including a parent device and a child device, and a communication terminal used therefor.
 従来、図18に示すように、親機を構成する伝送親機101と、子機を構成する複数の通信端末102とが、同一の通信線L100に接続して、伝送親機101と各通信端末102との間で通信が行われる通信システムが提供されている。 Conventionally, as shown in FIG. 18, a transmission parent device 101 constituting a parent device and a plurality of communication terminals 102 constituting a child device are connected to the same communication line L100 to communicate with the transmission parent device 101 and each communication. A communication system for performing communication with the terminal 102 is provided.
 この種の通信システムとしては、伝送親機101と複数台の通信端末102とが2線式の通信線L101で接続され、時分割多重伝送方式によって伝送親機101と各通信端末102との通信を実現するシステムが知られている。このような通信システムは、例えば日本国特許出願公開番号2012-49638に記載されている。 As this type of communication system, a transmission parent device 101 and a plurality of communication terminals 102 are connected by a two-wire communication line L101, and communication between the transmission parent device 101 and each communication terminal 102 is performed by a time division multiplex transmission method. A system that realizes the above is known. Such a communication system is described in Japanese Patent Application Publication No. 2012-49638, for example.
 この通信システムでは、伝送親機101から各通信端末102へデータを伝送する際には、パルス幅変調することによってデータを伝送する所定振幅の電圧信号が使用される。また、各通信端末102から伝送親機101へデータを伝送する際には電流の大きさを変化させてなる電流信号が使用される。 In this communication system, when data is transmitted from the transmission master 101 to each communication terminal 102, a voltage signal having a predetermined amplitude for transmitting data by pulse width modulation is used. Further, when data is transmitted from each communication terminal 102 to the transmission base unit 101, a current signal obtained by changing the magnitude of the current is used.
 さらに、通信端末102は、通信線L100から供給される伝送信号を整流して、通信端末102の駆動電力を生成している。 Furthermore, the communication terminal 102 rectifies the transmission signal supplied from the communication line L100 to generate drive power for the communication terminal 102.
 従来の通信システムは、子機への電源供給方式として、伝送親機から通信線を介して伝送される伝送信号を各子機が整流し安定化することによって駆動電源を生成する方式(集中給電方式)を用いている。 In conventional communication systems, as a power supply method to the slave unit, a drive power source is generated by rectifying and stabilizing the transmission signal transmitted from the transmission master unit through the communication line (stabilized power supply). Method).
 しかし、子機として、LCD(Liquid Crystal Display)を有するモニタ端末や、高速で動作するCPU(Central Processing Unit)を有する情報機器等のように消費電流が比較的大きい端末を用いた場合、伝送エラーが発生する虞があった。具体的には、子機の動作状態の遷移(例えば、LCDバックライトのオン・オフ、映像処理用CPUの起動・スリープ)によって、通信線L100上を流れる電流の変動(負荷変動)が大きくなった場合、電流信号に歪が発生し、伝送エラーが発生する虞がある。 However, if a terminal with relatively large current consumption such as a monitor terminal having an LCD (Liquid Crystal Display) or an information device having a CPU (Central Processing Unit) operating at a high speed is used as a slave unit, a transmission error occurs. There was a risk of occurrence. Specifically, the fluctuation of the current flowing through the communication line L100 (load fluctuation) increases due to the transition of the operating state of the slave unit (for example, LCD backlight on / off, video processing CPU activation / sleep). In this case, the current signal may be distorted and a transmission error may occur.
 ここで、消費電流が比較的大きい子機に対しては、電源供給用の専用配線を介して駆動電力を供給する構成も考えられるが、電源供給用の専用配線を通信線とは別に施工する必要があり、施工性の面で不利であった。 Here, for slave units with relatively large current consumption, a configuration in which driving power is supplied via a dedicated power supply wiring may be considered, but a dedicated power supply wiring is installed separately from the communication line. It was necessary and it was disadvantageous in terms of workability.
 本発明は、上記事由に鑑みてなされたものであり、その目的は、親機から子機へ駆動電力を供給し、子機が電流信号を用いて通信する構成であっても、施工性を悪化させることなく伝送エラーを抑制できる通信システム、および通信端末を提供することにある。 The present invention has been made in view of the above reasons, and its purpose is to provide driving power from the master unit to the slave unit, and even if the slave unit communicates using a current signal, the workability is improved. An object of the present invention is to provide a communication system and a communication terminal that can suppress transmission errors without deteriorating.
 本発明の通信システムは、親機と複数の子機とが第1通信線に接続され、前記親機は、前記第1通信線を介して前記複数の子機へ駆動電力を供給し、前記複数の子機は、それぞれ電流信号である第1信号を前記第1通信線に送出し、前記複数の子機は互いに同期して、通信期間にのみ前記第1信号を用いた送信処理を行い、前記通信期間とは別の負荷変動期間にのみ所定幅を超える前記駆動電力の変動を伴う状態遷移を行うように構成されていることを特徴とする。 In the communication system of the present invention, a master unit and a plurality of slave units are connected to a first communication line, the master unit supplies drive power to the plurality of slave units via the first communication line, Each of the plurality of slave units sends a first signal, which is a current signal, to the first communication line, and the plurality of slave units perform transmission processing using the first signal only during a communication period in synchronization with each other. The state transition with the fluctuation of the driving power exceeding a predetermined width is performed only during a load fluctuation period different from the communication period.
 この発明において、前記複数の子機の各々は、前記駆動電力の変動が前記所定幅を超えない範囲で前記送信処理を行う通信部と、前記駆動電力を用いて所定の動作を実行する機能部とを有しており、前記機能部の動作状態が第1状態から第2状態へ遷移することにより前記状態遷移を行うように構成されていることが好ましい。 In the present invention, each of the plurality of slave units includes a communication unit that performs the transmission process in a range in which the fluctuation of the driving power does not exceed the predetermined width, and a functional unit that executes a predetermined operation using the driving power It is preferable that the state transition is performed when the operation state of the functional unit transitions from the first state to the second state.
 この発明において、前記親機は、第2信号を前記第1通信線に送出し、前記第2信号は、前記通信期間と前記負荷変動期間とを含む複数の時間帯に1フレームを分割した時分割方式の電圧信号であり、前記複数の子機は、それぞれ前記第2信号を前記駆動電力として用いて動作し、受信した前記第2信号に基づいて、前記通信期間および前記負荷変動期間をそれぞれ設定することが好ましい。 In the present invention, the master unit sends a second signal to the first communication line, and the second signal is divided into a plurality of time zones including the communication period and the load fluctuation period. The plurality of slave units operate using the second signal as the driving power, respectively, and based on the received second signal, the communication period and the load fluctuation period are respectively It is preferable to set.
 この発明において、前記負荷変動期間は複数存在し、前記複数の子機は、制御シーケンスを実行することによって前記状態遷移を行っており、前記制御シーケンスの時間長さが前記負荷変動期間の時間長さより長い場合、前記制御シーケンスを複数の制御シーケンスに分割し、前記複数のシーケンスのうち少なくとも2つが前記複数の負荷変動期間のうち異なる負荷変動期間に実行されるように、前記複数の制御シーケンスのそれぞれを前記複数の負荷変動期間のいずれかに割り付けて順次実行することが好ましい。 In the present invention, there are a plurality of load variation periods, and the plurality of slave units perform the state transition by executing a control sequence, and a time length of the control sequence is a time length of the load variation period. The control sequence is divided into a plurality of control sequences, and at least two of the plurality of sequences are executed in different load fluctuation periods of the plurality of load fluctuation periods. It is preferable that each is assigned to one of the plurality of load fluctuation periods and executed sequentially.
 この発明において、前記負荷変動期間は複数存在し、前記複数の子機のうち少なくとも1つの子機は、前記第1通信線上を伝送される前記第1信号と、前記第1通信線とは異なる第2通信線上を伝送される第3信号との相互間のプロトコル変換を行うゲートウェイ装置であり、前記ゲートウェイ装置は、前記第1信号のデータ量が所定値より大きい場合、前記第1信号を複数の第1信号に分割し、前記複数の第1信号のそれぞれについてプロトコル変換した複数の第3信号のうち少なくとも2つが前記複数の負荷変動期間のうち異なる負荷変動期間に送出されるように、前記複数の第3信号のそれぞれを前記複数の負荷変動期間のいずれかに割り付けて前記第2通信線へ順次送出することが好ましい。 In the present invention, there are a plurality of load fluctuation periods, and at least one of the plurality of slave units is different from the first communication line and the first signal transmitted on the first communication line. A gateway device that performs protocol conversion between a third signal transmitted on a second communication line, and the gateway device includes a plurality of first signals when a data amount of the first signal is greater than a predetermined value. So that at least two of the plurality of third signals that are protocol-converted for each of the plurality of first signals are transmitted in different load fluctuation periods of the plurality of load fluctuation periods. It is preferable that each of the plurality of third signals is assigned to one of the plurality of load fluctuation periods and sequentially transmitted to the second communication line.
 この発明において、前記複数の子機のうち任意の第1の子機は、前記状態遷移を行う前に、前記状態遷移の許可を前記親機に要求し、前記親機から指定された前記負荷変動期間において前記状態遷移を行い、前記親機から指定された当該負荷変動期間の時間長さは、前記親機が前記状態遷移の内容に応じて設定することが好ましい。 In this invention, before performing the state transition, an arbitrary first slave unit among the plurality of slave units requests the parent unit to permit the state transition, and the load designated by the parent unit It is preferable that the state transition is performed during a variation period, and the time length of the load variation period designated by the parent device is set by the parent device according to the contents of the state transition.
 この発明において、前記親機は、前記複数の子機のそれぞれの前記状態遷移における消費電流のデータを予め保持しており、前記複数の子機のそれぞれの前記消費電流に基づいて、前記負荷変動期間を複数の時間領域に分割し、前記複数の時間領域のそれぞれの前記消費電流の和が均等になるように前記複数の子機のそれぞれを前記複数の時間領域のいずれかに割り付け、前記複数の子機のうち任意の第1の子機は、前記複数の時間領域のうち前記第1の子機に割り付けられた時間領域において、前記状態遷移を行うことが好ましい。 In this invention, the base unit holds data of current consumption in the state transition of each of the plurality of slave units in advance, and the load fluctuation is based on the current consumption of each of the plurality of slave units. The period is divided into a plurality of time regions, and each of the plurality of slave devices is assigned to one of the plurality of time regions so that the sum of the consumption currents of the plurality of time regions is equalized. It is preferable that an arbitrary first slave unit among the slave units performs the state transition in a time domain assigned to the first slave unit among the plurality of time domains.
 この発明において、前記親機は、前記複数の子機のそれぞれの前記状態遷移時の消費電流を測定する測定部を備えており、前記複数の子機のそれぞれの前記消費電流の測定値に基づいて、前記負荷変動期間を複数の時間領域に分割し、前記複数の時間領域のそれぞれの前記消費電流の和が均等になるように前記複数の子機のそれぞれを前記複数の時間領域のいずれかに割り付け、前記複数の子機のうち任意の第1の子機は、前記複数の時間領域のうち前記第1の子機に割り付けられた時間領域において、前記状態遷移を行うことが好ましい。 In the present invention, the master unit includes a measurement unit that measures current consumption at the time of the state transition of each of the plurality of slave units, and is based on a measurement value of the current consumption of each of the plurality of slave units. Then, the load variation period is divided into a plurality of time regions, and each of the plurality of slave units is set to any one of the plurality of time regions so that the sum of the consumption currents of the plurality of time regions is equalized. Preferably, any one of the plurality of slave units performs the state transition in a time domain assigned to the first slave unit among the plurality of time domains.
 この発明において、前記親機は、前記複数の子機のそれぞれに割り付けたアドレスを用いて前記複数の子機の各々との間で通信を行い、前記負荷変動期間を前記アドレスのそれぞれに対応する複数の時間領域に分割し、前記複数の子機のうち任意の第1の子機は、前記複数の時間領域のうち前記第1の子機の前記アドレスに対応する時間領域において、前記状態遷移を行うことが好ましい。 In the present invention, the master unit communicates with each of the plurality of slave units using addresses assigned to the plurality of slave units, and the load variation period corresponds to each of the addresses. Dividing into a plurality of time regions, any one of the plurality of child devices is configured to perform the state transition in a time region corresponding to the address of the first child device among the plurality of time regions. It is preferable to carry out.
 本発明の通信端末は、通信線を介して駆動電力を供給され、電流信号を前記通信線に送出する通信端末であって、通信期間にのみ前記電流信号を用いた送信処理を行い、前記通信期間とは別の負荷変動期間にのみ所定幅を超える前記駆動電力の変動を伴う状態遷移を行うように構成されていることを特徴とする。 The communication terminal of the present invention is a communication terminal that is supplied with driving power via a communication line and sends a current signal to the communication line, and performs transmission processing using the current signal only during a communication period, and The present invention is characterized in that state transition accompanied by fluctuations in the driving power exceeding a predetermined width is performed only during a load fluctuation period different from the period.
実施形態1の通信システムの構成を示すブロック図である。1 is a block diagram illustrating a configuration of a communication system according to a first embodiment. 実施形態1の伝送親機の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of a transmission parent device according to the first embodiment. 実施形態1の通信システムの伝送信号のフォーマットを示す波形図である。3 is a waveform diagram illustrating a format of a transmission signal of the communication system according to the first embodiment. 実施形態1の通信端末の構成を示すブロック図である。2 is a block diagram illustrating a configuration of a communication terminal according to Embodiment 1. FIG. 実施形態1の通信端末の状態遷移を示す波形図である。It is a wave form diagram which shows the state transition of the communication terminal of Embodiment 1. 実施形態1のモニタ端末の状態遷移を示す波形図である。It is a wave form diagram which shows the state transition of the monitor terminal of Embodiment 1. FIG. 実施形態1のモニタ端末の機能部の構成を示すブロック図である。3 is a block diagram illustrating a configuration of a functional unit of the monitor terminal according to Embodiment 1. FIG. 実施形態1のモニタ端末の機能部の別の構成を示すブロック図である。It is a block diagram which shows another structure of the function part of the monitor terminal of Embodiment 1. FIG. 実施形態1のモニタ端末の別の状態遷移を示す波形図である。It is a wave form diagram which shows another state transition of the monitor terminal of Embodiment 1. FIG. 実施形態1のゲートウェイ装置の状態遷移を示す波形図である。It is a wave form diagram which shows the state transition of the gateway apparatus of Embodiment 1. 実施形態2の通信端末の状態遷移を示す波形図である。It is a wave form diagram which shows the state transition of the communication terminal of Embodiment 2. 実施形態2の通信端末の状態遷移を示すシーケンス図である。It is a sequence diagram which shows the state transition of the communication terminal of Embodiment 2. 実施形態3の伝送親機の構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of a transmission parent device according to a third embodiment. 実施形態3の通信端末の状態遷移を示すシーケンス図である。It is a sequence diagram which shows the state transition of the communication terminal of Embodiment 3. 実施形態4の伝送親機の構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of a transmission parent device according to a fourth embodiment. 実施形態5の通信システムの構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of a communication system according to a fifth embodiment. 実施形態5の通信端末の状態遷移を示す波形図である。It is a wave form diagram which shows the state transition of the communication terminal of Embodiment 5. 従来の通信システムの構成を示すブロック図である。It is a block diagram which shows the structure of the conventional communication system.
 以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 以下の実施形態に係る通信システムは、図1に示すように、親機である伝送親機1と、複数の子機である通信端末2,2、モニタ端末2a、ゲートウェイ装置2bとが、第1通信線である通信線L1に接続されたシステムである。 As shown in FIG. 1, the communication system according to the following embodiment includes a transmission parent device 1 that is a parent device, and communication terminals 2 and 2 that are a plurality of child devices, a monitor terminal 2a, and a gateway device 2b. This is a system connected to a communication line L1 which is one communication line.
 親機(伝送親機1)は、第1通信線(通信線L1)を介して複数の子機(通信端末2,2、モニタ端末2a、ゲートウェイ装置2b)へ駆動電力を供給する。複数の子機(通信端末2,2、モニタ端末2a、ゲートウェイ装置2b)は、それぞれ電流信号である第1信号を第1通信線(通信線L1)に送出する。 The master unit (transmission master unit 1) supplies driving power to a plurality of slave units ( communication terminals 2 and 2, monitor terminal 2a, gateway device 2b) via the first communication line (communication line L1). The plurality of slave units ( communication terminals 2 and 2, monitor terminal 2a, gateway device 2b) each send a first signal, which is a current signal, to the first communication line (communication line L1).
 複数の子機(通信端末2,2、モニタ端末2a、ゲートウェイ装置2b)は互いに同期して、通信期間にのみ前記第1信号を用いた送信処理を行い、前記通信期間とは別の負荷変動期間にのみ所定幅を超える前記駆動電力の変動を伴う状態遷移を行う。 A plurality of slave units ( communication terminals 2, 2, monitor terminal 2a, gateway device 2b) perform transmission processing using the first signal only during a communication period in synchronization with each other, and load fluctuations different from the communication period The state transition accompanied by the fluctuation of the driving power exceeding the predetermined width is performed only during the period.
 以下の実施形態に係る通信端末2は、通信線L1を介して駆動電力を供給され、電流信号を通信線L1に送出する通信端末である。通信端末2は、通信期間にのみ前記電流信号を用いた送信処理を行い、前記通信期間とは別の負荷変動期間にのみ所定幅を超える前記駆動電力の変動を伴う状態遷移を行うように構成されている。 The communication terminal 2 according to the following embodiment is a communication terminal that is supplied with driving power via the communication line L1 and transmits a current signal to the communication line L1. The communication terminal 2 is configured to perform a transmission process using the current signal only during a communication period, and to perform a state transition with a variation in the driving power exceeding a predetermined width only during a load variation period different from the communication period. Has been.
  (実施形態1)
 図1は、本実施形態の通信システムの構成を示し、親機を構成する伝送親機1と、子機を構成する通信端末2,2、モニタ端末2a、ゲートウェイ装置2bとが、同一の通信線L1(第1通信線)に接続している。通信線L1は、一対の信号線を有する2線式である。なお、モニタ端末2a、ゲートウェイ装置2bは通信端末2の一種であり、以下、通信端末2,2、モニタ端末2a、ゲートウェイ装置2bをまとめて「通信端末2」ともいう。
(Embodiment 1)
FIG. 1 shows a configuration of a communication system according to the present embodiment, in which a transmission parent device 1 constituting a parent device, communication terminals 2 and 2, a monitor terminal 2a, and a gateway device 2b constituting a child device are in the same communication. It is connected to the line L1 (first communication line). The communication line L1 is a two-wire type having a pair of signal lines. The monitor terminal 2a and the gateway device 2b are a type of the communication terminal 2, and hereinafter, the communication terminals 2 and 2, the monitor terminal 2a, and the gateway device 2b are collectively referred to as “communication terminal 2”.
 伝送親機1は、図2に示すように、通信部11と、アドレス記憶部12とで構成される。アドレス記憶部12には、通信端末2の各アドレスの情報が格納されており、通信部11は、通信端末2の各アドレスを用いて通信制御を行う。そして、通信部11は、通信線L1に対して図3に示すフォーマットの電圧波形からなる伝送信号(第2信号)を送出する。この伝送信号は、電圧信号であり、1フレームを3つに分割した電圧伝送期間T1、電流伝送期間T2、負荷変動期間T3を有する複極(±24V)の時分割多重信号である。 As shown in FIG. 2, the transmission base unit 1 includes a communication unit 11 and an address storage unit 12. Information of each address of the communication terminal 2 is stored in the address storage unit 12, and the communication unit 11 performs communication control using each address of the communication terminal 2. And the communication part 11 sends out the transmission signal (2nd signal) which consists of a voltage waveform of the format shown in FIG. 3 with respect to the communication line L1. This transmission signal is a voltage signal, and is a bipolar (± 24V) time-division multiplexed signal having a voltage transmission period T1, a current transmission period T2, and a load fluctuation period T3 obtained by dividing one frame into three.
 電圧伝送期間T1は、伝送親機1が通信端末2に対してデータを伝送する電圧信号を発生するタイムスロットであり、伝送親機1は、±24Vのパルス列からなるキャリアをパルス幅変調することによってデータを伝送する。また、電圧伝送期間T1の開始時の所定パルス列は、伝送信号のフレームの開始を示し、通信端末2が同期するための既知の同期パルスを構成している。 The voltage transmission period T1 is a time slot in which the transmission master unit 1 generates a voltage signal for transmitting data to the communication terminal 2, and the transmission master unit 1 performs pulse width modulation on a carrier composed of a pulse train of ± 24V. To transmit data. The predetermined pulse train at the start of the voltage transmission period T1 indicates the start of the frame of the transmission signal and constitutes a known synchronization pulse for the communication terminal 2 to synchronize.
 電流伝送期間T2は、+24Vの電圧を発生する期間であり、伝送親機1が通信端末2から後述の重畳信号を受信するタイムスロットである。すなわち、電流伝送期間T2は、通信端末2が重畳信号を伝送信号に重畳させて、伝送親機1へデータを送信することを許可された期間である。この電流伝送期間T2は、本発明の通信期間に相当する。 The current transmission period T2 is a period in which a voltage of +24 V is generated, and is a time slot in which the transmission master unit 1 receives a superimposed signal described later from the communication terminal 2. That is, the current transmission period T2 is a period during which the communication terminal 2 is permitted to superimpose the superimposed signal on the transmission signal and transmit data to the transmission master unit 1. This current transmission period T2 corresponds to the communication period of the present invention.
 負荷変動期間T3は、-24Vの電圧を発生する期間であり、通信端末2による重畳信号の送信を禁止し、通信端末2の状態遷移を許可するタイムスロットである。 The load fluctuation period T3 is a period in which a voltage of −24 V is generated, and is a time slot in which the transmission of the superimposed signal by the communication terminal 2 is prohibited and the state transition of the communication terminal 2 is permitted.
 伝送親機1が通信線L1上に送出する伝送信号は、±24Vの複極であって、通信線L1上に繰り返し送出されているから、通信線L1には伝送信号により電力が常時供給されている。したがって、本システムでは、伝送信号を用いることにより、通信端末2に駆動電力を供給することができる。ただし、伝送親機1が供給する電力には上限があるから、通信線L1に接続された通信端末2に対して伝送親機1から供給可能な電力は制限される。 The transmission signal sent from the transmission base unit 1 onto the communication line L1 is a ± 24V bipolar, and is repeatedly sent out on the communication line L1, so that power is always supplied to the communication line L1 by the transmission signal. ing. Therefore, in this system, driving power can be supplied to the communication terminal 2 by using the transmission signal. However, since there is an upper limit to the power supplied by the transmission parent device 1, the power that can be supplied from the transmission parent device 1 to the communication terminal 2 connected to the communication line L1 is limited.
 次に、通信端末2の構成について説明する。以下では、複数の通信端末2のうち任意の第1の通信端末(第1の子機)である1台の通信端末2について説明するが、第1の通信端末以外の通信端末2についても第1の通信端末と同様の構成である。 Next, the configuration of the communication terminal 2 will be described. Hereinafter, one communication terminal 2 that is an arbitrary first communication terminal (first slave unit) among the plurality of communication terminals 2 will be described. The configuration is the same as that of the first communication terminal.
 通信端末2は、図4に示すように、通信部21と、アドレス記憶部22と、機能部23と、電源部24とで構成される。通信部21は、伝送親機1から電圧信号を受信し、さらには重畳信号(第1信号)を伝送信号に重畳させて、伝送親機1へデータを送信する。機能部23は、通信端末2に固有の機能(モニタ機能、ゲートウェイ機能等)を有する。アドレス記憶部22には、第1の通信端末のアドレス情報が格納されており、機能部23は、通信部21が受信した電圧信号に含まれる宛先アドレスが第1の通信端末のアドレスと一致すれば、この電圧信号に応じた所定の動作を実行する。電源部24は、通信線L1から供給される伝送信号を整流して、第1の通信端末の駆動電力を生成している。 As shown in FIG. 4, the communication terminal 2 includes a communication unit 21, an address storage unit 22, a function unit 23, and a power supply unit 24. The communication unit 21 receives a voltage signal from the transmission parent device 1 and further superimposes a superimposed signal (first signal) on the transmission signal, and transmits data to the transmission parent device 1. The function unit 23 has functions (such as a monitor function and a gateway function) unique to the communication terminal 2. Address information of the first communication terminal is stored in the address storage unit 22, and the function unit 23 matches the destination address included in the voltage signal received by the communication unit 21 with the address of the first communication terminal. For example, a predetermined operation corresponding to the voltage signal is executed. The power supply unit 24 rectifies the transmission signal supplied from the communication line L1 to generate driving power for the first communication terminal.
 そして、本実施形態において、電圧伝送期間T1、電流伝送期間T2、負荷変動期間T3の各時間長さは、予め決まっている。 And in this embodiment, each time length of the voltage transmission period T1, the current transmission period T2, and the load fluctuation period T3 is determined in advance.
 通信端末2の通信部21は、伝送親機1が通信線L1上に送出する伝送信号を受けており、電圧伝送期間T1において、伝送親機1が送信する電圧信号を受信する。 The communication unit 21 of the communication terminal 2 receives a transmission signal transmitted from the transmission parent device 1 on the communication line L1, and receives a voltage signal transmitted from the transmission parent device 1 in the voltage transmission period T1.
 また、通信端末2の通信部21は、電流伝送期間T2において、伝送信号に重畳信号を重畳させることで、伝送親機1へデータを送信する。この重畳信号は、通信線L1上を流れる電流を変化させることによってデータ送信する電流信号(第1信号)であり、電圧信号よりも高い周波数の搬送波を変調した信号である。 In addition, the communication unit 21 of the communication terminal 2 transmits data to the transmission parent device 1 by superimposing a superimposed signal on a transmission signal in the current transmission period T2. This superimposed signal is a current signal (first signal) for transmitting data by changing the current flowing on the communication line L1, and is a signal obtained by modulating a carrier wave having a frequency higher than that of the voltage signal.
 また、通信端末2の機能部23は、負荷変動期間T3において、電源部24が生成した駆動電力を用いて状態を遷移させる。例えば、通信端末2がモニタ端末2aである場合(図1参照)、機能部23は、映像表示機能を有するLCD装置で構成され、機能部23は、LCDバックライトのオン・オフ等の状態遷移を、負荷変動期間T3において行う。 Further, the functional unit 23 of the communication terminal 2 changes the state using the driving power generated by the power supply unit 24 in the load fluctuation period T3. For example, when the communication terminal 2 is the monitor terminal 2a (see FIG. 1), the function unit 23 is configured by an LCD device having a video display function, and the function unit 23 performs state transition such as on / off of the LCD backlight. Is performed in the load fluctuation period T3.
 つまり、通信端末2は、駆動電力の変動が所定幅を超えない範囲で送信処理を行う通信部21と、駆動電力を用いて所定の動作を実行する機能部23とを有している。通信端末2は、機能部23の動作状態が第1状態(例えばLCDバックライトがオフの状態)から第2状態(例えばLCDバックライトがオンの状態)へ遷移することにより状態遷移を行うように構成されている。 That is, the communication terminal 2 includes a communication unit 21 that performs transmission processing within a range in which fluctuations in driving power do not exceed a predetermined range, and a functional unit 23 that executes predetermined operations using the driving power. The communication terminal 2 performs the state transition by the operation state of the function unit 23 changing from the first state (for example, the LCD backlight is off) to the second state (for example, the LCD backlight is on). It is configured.
 このように構成される複数の通信端末2は、伝送親機1が通信線L1上に送出する伝送信号をそれぞれ受信し、電圧伝送期間T1の上述の同期パルスによって互いに同期して、電圧伝送期間T1と電流伝送期間T2と負荷変動期間T3とを設定できる。すなわち、複数の通信端末2は、互いに同一のタイミングで、電圧伝送期間T1、電流伝送期間T2、負荷変動期間T3を設定できる。 The plurality of communication terminals 2 configured in this way each receive a transmission signal that the transmission base unit 1 sends out on the communication line L1, and synchronize with each other by the above-described synchronization pulse of the voltage transmission period T1, and the voltage transmission period T1, current transmission period T2, and load fluctuation period T3 can be set. That is, the plurality of communication terminals 2 can set the voltage transmission period T1, the current transmission period T2, and the load fluctuation period T3 at the same timing.
 次に、通信端末2の状態遷移の動作例として、モニタ端末2aの動作を図5を用いて説明する。図5は、通信線L1上を伝送する信号の波形を示す。 Next, as an operation example of the state transition of the communication terminal 2, the operation of the monitor terminal 2a will be described with reference to FIG. FIG. 5 shows a waveform of a signal transmitted on the communication line L1.
 モニタ端末2aは、電圧伝送期間T1において、伝送親機1が送信する電圧信号を受信する。通信端末2は、電流伝送期間T2において、重畳信号Pを伝送信号に重畳させて、伝送親機1へデータを送信する。 The monitor terminal 2a receives the voltage signal transmitted by the transmission parent device 1 in the voltage transmission period T1. In the current transmission period T2, the communication terminal 2 superimposes the superimposed signal P on the transmission signal and transmits data to the transmission parent device 1.
 そして、モニタ端末2aのLCDバックライトがオフであるとき、伝送親機1が、電圧伝送期間T1において、電圧信号を用いてバックライトオン要求を送信したとする(時間t1)。モニタ端末2aは、バックライトオン要求を受信した電圧伝送期間T1と同一フレーム内の負荷変動期間T3において、LCDバックライトをオフ(第1状態)からオン(第2状態)に状態遷移させる(時間t2)。 Then, when the LCD backlight of the monitor terminal 2a is off, it is assumed that the transmission base unit 1 transmits a backlight on request using a voltage signal in the voltage transmission period T1 (time t1). The monitor terminal 2a changes the state of the LCD backlight from off (first state) to on (second state) in the load variation period T3 within the same frame as the voltage transmission period T1 that has received the backlight on request (time). t2).
 すなわち、モニタ端末2a等の通信端末2は、通信端末2が重畳信号Pを送信する電流伝送期間T2を、機能部23の状態を遷移させる負荷変動期間T3とは別期間にしている。したがって、通信端末2の状態遷移(LCDバックライトのオン・オフ等)によって、通信線L1上を流れる電流の変動(負荷変動)が大きくなったとしても、電流信号からなる重畳信号Pに歪が発生することなく、伝送エラーを抑制することができる。 That is, the communication terminal 2 such as the monitor terminal 2a sets the current transmission period T2 in which the communication terminal 2 transmits the superimposed signal P as a different period from the load fluctuation period T3 in which the state of the functional unit 23 is changed. Therefore, even if the fluctuation (load fluctuation) of the current flowing on the communication line L1 becomes large due to the state transition of the communication terminal 2 (LCD backlight ON / OFF, etc.), the superimposed signal P composed of the current signal is distorted. Transmission errors can be suppressed without occurring.
 このように、本実施形態では、伝送親機1から通信端末2へ通信線L1を介して駆動電力を供給し、通信端末2が電流信号を用いて通信する構成であっても、施工性を悪化させることなく伝送エラーを抑制できる。 Thus, in this embodiment, even if it is the structure which supplies drive power from the transmission main | base station 1 to the communication terminal 2 via the communication line L1, and the communication terminal 2 communicates using an electric current signal, workability | operativity is improved. Transmission errors can be suppressed without deteriorating.
 また、通信端末2は、制御シーケンスを実行することによって状態遷移を行っている。そして、1つの制御シーケンスの時間長さが負荷変動期間T3の時間長さより長い場合、通信端末2の機能部23は、1つの制御シーケンスを複数の制御シーケンスに分割する。通信端末2は、この分割した複数のシーケンスのうち少なくとも2つが複数の負荷変動期間T3のうち異なる負荷変動期間T3に実行されるように、複数の制御シーケンスのそれぞれを複数の負荷変動期間T3のいずれかに割り付けて順次実行する。 In addition, the communication terminal 2 performs state transition by executing a control sequence. When the time length of one control sequence is longer than the time length of the load fluctuation period T3, the functional unit 23 of the communication terminal 2 divides one control sequence into a plurality of control sequences. The communication terminal 2 executes each of the plurality of control sequences in the plurality of load fluctuation periods T3 so that at least two of the plurality of divided sequences are executed in different load fluctuation periods T3 among the plurality of load fluctuation periods T3. Allocate to either and execute sequentially.
 以下、図6を用いて、モニタ端末2aの状態遷移を説明する。図6は、通信線L1上を伝送する信号の波形を示す。 Hereinafter, the state transition of the monitor terminal 2a will be described with reference to FIG. FIG. 6 shows a waveform of a signal transmitted on the communication line L1.
 まず、モニタ端末2aの機能部23は、図7に示すように、LCDコントローラ23a、LCDバックライト23bを備えている。そして、LCDコントローラ23a:オフ、LCDバックライト23b:オフであるとき、伝送親機1が、電圧伝送期間T1において電圧信号を用いたバックライトオン要求を送信したとする(時間t11)。モニタ端末2aのバックライトオン動作を行う制御シーケンスは、LCDコントローラ23aをオフからオンに切り替える第1のシーケンス、LCDバックライト23bをオフからオンに切り替える第2のシーケンスに分割できる。そこで、モニタ端末2aは、バックライトオン要求を受信した電圧伝送期間T1と同一フレーム内の負荷変動期間T3において、LCDコントローラ23aをオフからオンに状態遷移させる(時間t12)。次に、モニタ端末2aは、次フレーム内の負荷変動期間T3において、LCDバックライト23bをオフからオンに状態遷移させる(時間t13)。 First, as shown in FIG. 7, the function unit 23 of the monitor terminal 2a includes an LCD controller 23a and an LCD backlight 23b. When the LCD controller 23a is off and the LCD backlight 23b is off, it is assumed that the transmission master 1 transmits a backlight on request using a voltage signal in the voltage transmission period T1 (time t11). The control sequence for performing the backlight on operation of the monitor terminal 2a can be divided into a first sequence for switching the LCD controller 23a from off to on and a second sequence for switching the LCD backlight 23b from off to on. Therefore, the monitor terminal 2a changes the state of the LCD controller 23a from off to on in the load variation period T3 in the same frame as the voltage transmission period T1 that has received the backlight on request (time t12). Next, the monitor terminal 2a changes the state of the LCD backlight 23b from off to on in the load fluctuation period T3 in the next frame (time t13).
 したがって、通信端末2は、複数の負荷変動期間T3に亘って、1つの制御シーケンスを分割して実行できるので、負荷変動期間T3の時間長さを長くする必要がなく、負荷変動期間T3を長くすることによる伝送効率の低下を抑制できる。 Therefore, the communication terminal 2 can divide and execute one control sequence over a plurality of load fluctuation periods T3, so there is no need to increase the time length of the load fluctuation period T3, and the load fluctuation period T3 is increased. This can suppress a decrease in transmission efficiency.
 次に、モニタ端末2aの機能部23が、図8に示すように、LCDコントローラ23a、LCDバックライト23b、伝送CPU23c、映像処理CPU23d、音声処理CPU23eを備えている場合、モニタ端末2aは、図9の状態遷移を行う。図9は、通信線L1上を伝送する信号の波形を示す。 Next, when the functional unit 23 of the monitor terminal 2a includes an LCD controller 23a, an LCD backlight 23b, a transmission CPU 23c, a video processing CPU 23d, and an audio processing CPU 23e as shown in FIG. 8, the monitor terminal 2a 9 state transition is performed. FIG. 9 shows a waveform of a signal transmitted on the communication line L1.
 この場合、モニタ端末2aのバックライトオン動作を行う制御シーケンスは、4つのシーケンスに分割できる。第1のシーケンスは、伝送CPU23cをスリープ状態から起動させ、第2のシーケンスは、映像処理CPU23dおよび音声処理CPU23eをスリープ状態から起動させる。第3のシーケンスは、LCDコントローラ23aをオフからオンに切り替え、第4のシーケンスは、LCDバックライト23bをオフからオンに切り替える。 In this case, the control sequence for performing the backlight on operation of the monitor terminal 2a can be divided into four sequences. In the first sequence, the transmission CPU 23c is activated from the sleep state, and in the second sequence, the video processing CPU 23d and the audio processing CPU 23e are activated from the sleep state. The third sequence switches the LCD controller 23a from off to on, and the fourth sequence switches the LCD backlight 23b from off to on.
 まず、LCDコントローラ23a:オフ、LCDバックライト23b:オフ、伝送CPU23c:オフ、映像処理CPU23d:オフ、音声処理CPU23e:オフであるとき、伝送親機1が、電圧伝送期間T1において電圧信号を用いたバックライトオン要求を送信したとする(時間t21)。モニタ端末2aは、バックライトオン要求を受信した電圧伝送期間T1と同一フレーム内の負荷変動期間T3において、伝送CPU23cをスリープ状態から起動させる(時間t22)。そして、モニタ端末2aは、次フレーム内の負荷変動期間T3において、映像処理CPU23dおよび音声処理CPU23eをスリープ状態から起動させる(時間t23)。次に、モニタ端末2aは、次フレーム内の負荷変動期間T3において、LCDコントローラ23aをオフからオンに状態遷移させる(時間t24)。次に、モニタ端末2aは、次フレーム内の負荷変動期間T3において、LCDバックライト23bをオフからオンに状態遷移させる(時間t25)。 First, when the LCD controller 23a is off, the LCD backlight 23b is off, the transmission CPU 23c is off, the video processing CPU 23d is off, and the audio processing CPU 23e is off, the transmission master unit 1 uses the voltage signal in the voltage transmission period T1. Assume that a backlight on request has been transmitted (time t21). The monitor terminal 2a activates the transmission CPU 23c from the sleep state during the load fluctuation period T3 within the same frame as the voltage transmission period T1 that has received the backlight on request (time t22). Then, the monitor terminal 2a activates the video processing CPU 23d and the audio processing CPU 23e from the sleep state during the load fluctuation period T3 in the next frame (time t23). Next, the monitor terminal 2a changes the state of the LCD controller 23a from off to on in the load fluctuation period T3 in the next frame (time t24). Next, the monitor terminal 2a changes the state of the LCD backlight 23b from off to on in the load fluctuation period T3 in the next frame (time t25).
 この場合も、通信端末2は、複数の負荷変動期間T3に亘って、1つの制御シーケンスを分割して実行しており、負荷変動期間T3を長くすることによる伝送効率の低下を抑制できる。 In this case as well, the communication terminal 2 divides and executes one control sequence over a plurality of load fluctuation periods T3, and can suppress a decrease in transmission efficiency due to an increase in the load fluctuation period T3.
 次に、通信端末2の状態遷移の動作例として、ゲートウェイ装置2b(図1参照)の動作を、図10を用いて説明する。ゲートウェイ装置2bの機能部23は、通信線L1(第1通信線)-通信線L2(第2通信線)間で信号のプロトコル変換を行う。具体的に、ゲートウェイ装置2bの機能部23は、通信線L1上を伝送している重畳信号P(第1信号)を、通信線L2を伝送する他の通信プロトコルの信号(第3信号)に変換し、通信線L2上に送出する。また、ゲートウェイ装置2bの機能部23は、通信線L2を伝送している他の通信プロトコルの信号を重畳信号Pに変換し、通信線L1上に送出する。そして、ゲートウェイ装置2bの機能部23は、プロトコル変換した信号の送信動作(状態遷移動作)を、負荷変動期間T3において行う。なお、通信線L2を伝送している信号は、RS485、RS422、Ethernet(登録商標)等の通信プロトコルを用いて生成されている。 Next, as an operation example of the state transition of the communication terminal 2, the operation of the gateway device 2b (see FIG. 1) will be described with reference to FIG. The functional unit 23 of the gateway device 2b performs signal protocol conversion between the communication line L1 (first communication line) and the communication line L2 (second communication line). Specifically, the functional unit 23 of the gateway device 2b converts the superimposed signal P (first signal) transmitted on the communication line L1 into a signal (third signal) of another communication protocol transmitted on the communication line L2. Converted and sent out on the communication line L2. Further, the functional unit 23 of the gateway device 2b converts a signal of another communication protocol transmitted through the communication line L2 into a superimposed signal P, and sends the signal onto the communication line L1. Then, the functional unit 23 of the gateway device 2b performs a protocol-converted signal transmission operation (state transition operation) in the load fluctuation period T3. The signal transmitted through the communication line L2 is generated using a communication protocol such as RS485, RS422, Ethernet (registered trademark).
 図10は、通信線L1上の信号波形(「通信線L1上」)と、ゲートウェイ装置2bによってプロトコル変換されて通信線L2上に送出された信号波形(「通信線L2上」)とを示している。そして、ゲートウェイ装置2bの機能部23は、プロトコル変換する重畳信号Pのデータ量が、1回の負荷変動期間T3で送信できる予め決められた所定値より大きい場合、この重畳信号Pを複数に分割する。ゲートウェイ装置2bの機能部23は、この分割した重畳信号(第1信号)Pのそれぞれを他の通信プロトコルの第3信号にプロトコル変換する。ゲートウェイ装置2bは、複数の第3信号のうち少なくとも2つが複数の負荷変動期間T3のうち異なる負荷変動期間T3に送出されるように、複数の第3信号のそれぞれを、複数の負荷変動期間T3のいずれかに割り付けて通信線L2へ順次送出する。図10の例では、重畳信号(第1信号)Pを2分割し、プロトコル変換後の2つの信号(第3信号)のそれぞれを、異なる2つのフレームの負荷変動期間T3のそれぞれに割り付けて通信線L2へ送出している。 FIG. 10 shows a signal waveform on communication line L1 (“on communication line L1”) and a signal waveform (“on communication line L2”) that has been protocol-converted by gateway device 2b and sent onto communication line L2. ing. When the data amount of the superimposed signal P to be protocol-converted is larger than a predetermined value that can be transmitted in one load fluctuation period T3, the functional unit 23 of the gateway device 2b divides the superimposed signal P into a plurality of pieces. To do. The functional unit 23 of the gateway device 2b converts each of the divided superimposed signals (first signals) P into a third signal of another communication protocol. The gateway device 2b transmits each of the plurality of third signals to the plurality of load fluctuation periods T3 so that at least two of the plurality of third signals are transmitted in different load fluctuation periods T3 of the plurality of load fluctuation periods T3. Are sequentially transmitted to the communication line L2. In the example of FIG. 10, the superimposed signal (first signal) P is divided into two, and the two signals (third signal) after the protocol conversion are respectively assigned to the load variation periods T3 of two different frames for communication. Sending to line L2.
 したがって、負荷変動期間T3においてのみ、ゲートウェイ装置2bの送信動作(状態遷移動作)による負荷変動が発生するので、電流信号からなる重畳信号Pに歪が発生することなく、伝送エラーを抑制することができる。また、ゲートウェイ装置2bは、複数の負荷変動期間T3に亘って、信号を分割して送信できるので、負荷変動期間T3の時間長さを長くする必要がなく、負荷変動期間T3を長くすることによる伝送効率の低下を抑制できる。 Therefore, load fluctuation due to the transmission operation (state transition operation) of the gateway device 2b occurs only in the load fluctuation period T3, so that transmission errors can be suppressed without causing distortion in the superimposed signal P made up of current signals. it can. Further, since the gateway device 2b can divide and transmit a signal over a plurality of load fluctuation periods T3, it is not necessary to lengthen the time length of the load fluctuation period T3, and by extending the load fluctuation period T3. A decrease in transmission efficiency can be suppressed.
  (実施形態2)
 本実施形態の通信システムは、実施形態1と同様の構成を備えており、同様の構成には同一の符号を付して説明は省略する。
(Embodiment 2)
The communication system of the present embodiment has the same configuration as that of the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
 図11、図12を用いて、複数の通信端末2のうち任意の第1の通信端末(第1の子機)の状態遷移について説明する。図11は、通信線L1上を伝送する信号の波形を示し、図12は、通信シーケンスを示す。 11 and 12, the state transition of an arbitrary first communication terminal (first slave unit) among the plurality of communication terminals 2 will be described. FIG. 11 shows a waveform of a signal transmitted on the communication line L1, and FIG. 12 shows a communication sequence.
 まず、通信端末2の通信部21は、機能部23が状態遷移を行う前に、電流伝送期間T2の重畳信号Pを用いて、負荷変動要求S1を伝送親機1へ送信する(時間t31)。すなわち、通信端末2は、第1の通信端末の状態遷移を行う前に、状態遷移の許可を伝送親機1に要求する。また、通信端末2の通信部21は、機能部23の状態遷移に要する時間長さの情報を、負荷変動要求S1に付加している。 First, the communication unit 21 of the communication terminal 2 transmits the load variation request S1 to the transmission parent device 1 using the superimposed signal P in the current transmission period T2 before the function unit 23 performs state transition (time t31). . That is, the communication terminal 2 requests permission of the state transition from the transmission parent device 1 before performing the state transition of the first communication terminal. In addition, the communication unit 21 of the communication terminal 2 adds information on the length of time required for the state transition of the function unit 23 to the load change request S1.
 伝送親機1の通信部11は、状態遷移を許可するフレーム(この場合、次フレーム)の電圧伝送期間T1において、負荷変動要求S1の送信元である通信端末2に対して、電圧信号を用いた変動許可通知S2を送信する(時間t32)。伝送親機1は、負荷変動期間T3の時間長さの情報を変動許可通知S2に付加している。この変動許可通知S2によって指定する負荷変動期間T3の時間長さは、伝送親機1が受信した負荷変動要求S1に基づいて、状態遷移に要する時間長さより長く設定されている。さらに、伝送親機1は、状態遷移を許可するフレームの負荷変動期間T3の時間長さを、上述の指定した時間長さに調節する。 The communication unit 11 of the transmission base unit 1 uses the voltage signal to the communication terminal 2 that is the transmission source of the load variation request S1 in the voltage transmission period T1 of the frame that permits state transition (in this case, the next frame). Is sent (time t32). The transmission base unit 1 adds information on the length of the load fluctuation period T3 to the fluctuation permission notification S2. The time length of the load fluctuation period T3 specified by the fluctuation permission notification S2 is set longer than the time length required for the state transition based on the load fluctuation request S1 received by the transmission parent device 1. Furthermore, the transmission parent device 1 adjusts the time length of the load fluctuation period T3 of the frame that permits state transition to the above-specified time length.
 負荷変動要求S1の送信元である通信端末2の機能部23は、変動許可通知S2を受信した電圧伝送期間T1と同一フレーム内の負荷変動期間T3において、状態遷移S3を行う(t33)。 The functional unit 23 of the communication terminal 2 that is the transmission source of the load fluctuation request S1 performs the state transition S3 in the load fluctuation period T3 in the same frame as the voltage transmission period T1 that has received the fluctuation permission notification S2 (t33).
 したがって、伝送親機1は、通信端末2に対して、状態遷移に用いる負荷変動期間T3、および負荷変動期間T3の時間長さを、状態遷移の内容に応じて動的に割り当てることが可能となる。すなわち、負荷変動期間T3の効率のよい活用や、負荷変動期間T3における制御応答性の向上が可能になる。 Accordingly, the transmission parent device 1 can dynamically assign the communication terminal 2 the load variation period T3 used for state transition and the time length of the load variation period T3 according to the contents of the state transition. Become. That is, it is possible to efficiently use the load fluctuation period T3 and improve control responsiveness in the load fluctuation period T3.
  (実施形態3)
 本実施形態の通信システムにおいて、伝送親機1は、図13に示すように、電流データ記憶部13を備える。電流データ記憶部13は、通信端末2のそれぞれが状態遷移時に要する消費電流のデータを予め記憶している。
(Embodiment 3)
In the communication system of the present embodiment, the transmission parent device 1 includes a current data storage unit 13 as shown in FIG. The current data storage unit 13 stores in advance data of current consumption required for each communication terminal 2 at the time of state transition.
 そして、伝送親機1は、通信端末2のそれぞれの消費電流に基づいて、負荷変動期間T3を複数の時間領域に分割し、時間領域のそれぞれの消費電流の和(の最大値)が均等になるように各通信端末2をいずれかの時間領域に割り付ける(グループ分け)。複数の通信端末2のうち任意の第1の通信端末(第1の子機)は、複数の時間領域のうち第1の通信端末に割り付けられた時間領域において、状態遷移を行う。 Then, the transmission base unit 1 divides the load fluctuation period T3 into a plurality of time regions based on the respective current consumptions of the communication terminals 2, and the sum (maximum value) of the respective current consumptions in the time regions is even. Each communication terminal 2 is assigned to any time region so as to be (grouping). An arbitrary first communication terminal (first slave) among the plurality of communication terminals 2 performs state transition in a time domain assigned to the first communication terminal among the plurality of time domains.
 具体的に、伝送親機1の電流データ記憶部13は、表1に示す通信端末2単体の消費電流のデータ「通信端末2A:100mA、通信端末2B:500mA、通信端末2C:400mA」を予め記憶している。この通信端末2単体の消費電流のデータは、通信線L1の電圧降下による損失等は考慮されておらず、通信端末2の内部で消費される電流のデータである。 Specifically, the current data storage unit 13 of the transmission parent device 1 stores in advance the current consumption data “communication terminal 2A: 100 mA, communication terminal 2B: 500 mA, communication terminal 2C: 400 mA” of the communication terminal 2 alone shown in Table 1. I remember it. The data of current consumption of the communication terminal 2 alone is data of current consumed inside the communication terminal 2 without considering a loss due to a voltage drop of the communication line L1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 そして、伝送親機1は、図14に示すように、負荷変動期間T3を2つの時間領域D1,D2に分割し、時間領域D1に1台の通信端末2Bを割り付け、時間領域D2に2台の通信端末2A,2Cを割り付けるグループ分けを行う。なお、図14は、通信線L1上を伝送する信号の波形を示す。 Then, as shown in FIG. 14, the transmission base unit 1 divides the load fluctuation period T3 into two time regions D1 and D2, assigns one communication terminal 2B to the time region D1, and sets two in the time region D2. The communication terminals 2A and 2C are grouped. FIG. 14 shows a waveform of a signal transmitted on the communication line L1.
 伝送親機1の通信部11は、自己の起動時に、上述のグループ分けの結果を、電圧伝送期間T1の電圧信号を用いて通信端末2A~2Cのそれぞれに送信し、通信端末2A~2Cのそれぞれは、各々に割り付けられた時間領域を認識できる。そして、通信端末2A~2Cのそれぞれは、負荷変動期間T3内の各々に割り付けられた時間領域において、状態遷移を行う。すなわち、時間領域D1における消費電流の和(の最大値)は500mA、時間領域D2における消費電流の和(の最大値)は500mAとなり、時間領域D1,D2のそれぞれの消費電流の和(の最大値)が互いに等しくなる。 The communication unit 11 of the transmission base unit 1 transmits the above grouping result to each of the communication terminals 2A to 2C using the voltage signal of the voltage transmission period T1 when it starts up, and the communication terminals 2A to 2C Each can recognize the time domain assigned to each. Then, each of the communication terminals 2A to 2C performs state transition in the time domain assigned to each within the load fluctuation period T3. That is, the sum of current consumption in the time domain D1 (maximum value) is 500 mA, the sum of current consumption in the time domain D2 (maximum value) is 500 mA, and the sum of the current consumption in each of the time domains D1 and D2 Value) are equal to each other.
 したがって、状態遷移に必要な通信端末2の駆動電力を負荷変動期間T3内で均等に割り振ることが可能となり、負荷変動期間T3において、伝送親機1の供給電力を効率よく用いることができる。また、伝送親機1が通信線L1に供給する駆動電力のピーク値を抑制できるので、伝送親機1の給電回路を安価に構成することができる。 Therefore, it is possible to evenly allocate the driving power of the communication terminal 2 necessary for the state transition within the load fluctuation period T3, and the power supplied from the transmission parent device 1 can be efficiently used in the load fluctuation period T3. Moreover, since the peak value of the driving power supplied from the transmission parent device 1 to the communication line L1 can be suppressed, the power feeding circuit of the transmission parent device 1 can be configured at low cost.
  (実施形態4)
 本実施形態の通信システムにおいて、伝送親機1は、図15に示すように、電流測定部14、電流データ記憶部15を備える。
(Embodiment 4)
In the communication system of the present embodiment, the transmission parent device 1 includes a current measurement unit 14 and a current data storage unit 15 as shown in FIG.
 電流測定部14は、伝送親機1が通信線L1に供給する電流を測定することによって、通信端末2それぞれの消費電流を実際に測定する。具体的に、伝送親機1が起動した後、電流測定部14は、電圧伝送期間T1の電圧信号を用いて、通信端末2のそれぞれに対して動作要求を順次送信する。動作要求を受信した通信端末2の機能部23は、負荷変動期間T3において、スリープ・起動等の状態遷移を実行する。電流測定部14は、通信端末2の機能部23が状態遷移を実行したときに、その通信端末2の消費電流を測定する。電流測定部14は、通信端末2のそれぞれに動作要求を順次送信することによって、配下の通信端末2の状態遷移時に供給する各消費電流を測定し、電流データ記憶部15に測定結果を格納する。 The current measuring unit 14 actually measures the current consumption of each communication terminal 2 by measuring the current supplied from the transmission parent device 1 to the communication line L1. Specifically, after the transmission master unit 1 is activated, the current measurement unit 14 sequentially transmits an operation request to each of the communication terminals 2 using the voltage signal in the voltage transmission period T1. The functional unit 23 of the communication terminal 2 that has received the operation request executes state transition such as sleep and activation in the load fluctuation period T3. The current measuring unit 14 measures the current consumption of the communication terminal 2 when the functional unit 23 of the communication terminal 2 executes state transition. The current measuring unit 14 sequentially transmits an operation request to each of the communication terminals 2 to measure each consumption current supplied at the time of the state transition of the subordinate communication terminal 2 and stores the measurement result in the current data storage unit 15. .
 具体的に、伝送親機1の電流データ記憶部15は、表2に示す消費電流の測定データ「通信端末2A:150mA、通信端末2B:550mA、通信端末2C:700mA」を記憶している。そして、伝送親機1は、図14に示すように、負荷変動期間T3を2つの時間領域D1,D2に分割し、時間領域D1に2台の通信端末2A,2Bを割り付け、時間領域D2に1台の通信端末2Cを割り付けるグループ分けを行う。 Specifically, the current data storage unit 15 of the transmission base unit 1 stores current consumption measurement data “communication terminal 2A: 150 mA, communication terminal 2B: 550 mA, communication terminal 2C: 700 mA” shown in Table 2. Then, as shown in FIG. 14, the transmission master unit 1 divides the load fluctuation period T3 into two time regions D1 and D2, allocates two communication terminals 2A and 2B to the time region D1, and assigns them to the time region D2. Grouping is performed in which one communication terminal 2C is allocated.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 すなわち、伝送親機1は、通信端末2のそれぞれの実際の消費電流に基づいて、負荷変動期間T3を複数の時間領域に分割し、時間領域のそれぞれの消費電流の和(の最大値)が均等になるように通信端末2をいずれかの時間領域に割り付ける。複数の通信端末2のうち任意の第1の通信端末(第1の子機)は、複数の時間領域のうち第1の通信端末に割り付けられた時間領域において、状態遷移を行う。 That is, the transmission base unit 1 divides the load variation period T3 into a plurality of time regions based on the actual current consumption of each of the communication terminals 2, and the sum (maximum value) of the current consumptions in the time regions is calculated. The communication terminals 2 are assigned to any time region so as to be even. An arbitrary first communication terminal (first slave) among the plurality of communication terminals 2 performs state transition in a time domain assigned to the first communication terminal among the plurality of time domains.
 伝送親機1の通信部11は、上述のグループ分けの結果を、電圧伝送期間T1の電圧信号を用いて通信端末2A~2Cのそれぞれに送信し、通信端末2A~2Cのそれぞれは、各々に割り付けられた時間領域を認識できる。そして、通信端末2A~2Cのそれぞれは、負荷変動期間T3内の各々に割り付けられた時間領域において、状態遷移を行う。すなわち、時間領域D1における消費電流の和(の最大値)は700mA、時間領域D2における消費電流の和(の最大値)は700mAとなり、時間領域D1,D2のそれぞれの消費電流の和が互いに等しくなる。 The communication unit 11 of the transmission base unit 1 transmits the above grouping result to each of the communication terminals 2A to 2C using the voltage signal of the voltage transmission period T1, and each of the communication terminals 2A to 2C The assigned time domain can be recognized. Then, each of the communication terminals 2A to 2C performs state transition in the time domain assigned to each within the load fluctuation period T3. That is, the sum of current consumption in the time domain D1 (maximum value) is 700 mA, the sum of current consumption in the time domain D2 (maximum value) is 700 mA, and the sum of the current consumption in the time domains D1 and D2 is equal to each other. Become.
 伝送親機1が供給する実際の駆動電力は、通信端末2単体の消費電力と、伝送親機1から通信端末2に至る通信線L1における電力損失分とを併せたものである。そこで、本実施形態では、通信端末2の状態遷移時に伝送親機1が通信線L1へ供給する電流を測定し、各通信端末2の実際の消費電流に基づいて、各通信端末2をいずれかの時間領域に割り付けている。すなわち、通信線L1の電圧降下による損失等のようなシステム構成の影響を考慮したグループ分けが可能になり、伝送親機1が通信線L1に供給する電力(の最大値)が各時間領域において均等になるように、各通信端末2をいずれかの時間領域に割り付けることができる。 The actual drive power supplied by the transmission master unit 1 is a combination of the power consumption of the communication terminal 2 alone and the power loss in the communication line L1 from the transmission master unit 1 to the communication terminal 2. Therefore, in the present embodiment, the current supplied from the transmission base unit 1 to the communication line L1 at the time of the state transition of the communication terminal 2 is measured, and either communication terminal 2 is selected based on the actual current consumption of each communication terminal 2. Assigned to the time domain. That is, the grouping can be performed in consideration of the influence of the system configuration such as the loss due to the voltage drop of the communication line L1, and the power (maximum value) supplied from the transmission master unit 1 to the communication line L1 in each time domain. Each communication terminal 2 can be assigned to any time region so as to be even.
 したがって、実際の消費電流に基づいて、状態遷移に必要な通信端末2の駆動電力を負荷変動期間T3内で均等に割り振ることが可能となり、負荷変動期間T3において、伝送親機1の供給電力をより効率よく用いることができる。また、伝送親機1が通信線L1に供給する駆動電力のピーク値をより確実に抑制できるので、伝送親機1の給電回路を安価に構成することができる。 Therefore, it is possible to evenly allocate the driving power of the communication terminal 2 necessary for the state transition within the load fluctuation period T3 based on the actual current consumption. In the load fluctuation period T3, the power supplied to the transmission master unit 1 is reduced. It can be used more efficiently. In addition, since the peak value of the driving power supplied from the transmission parent device 1 to the communication line L1 can be more reliably suppressed, the power supply circuit of the transmission parent device 1 can be configured at low cost.
  (実施形態5)
 図16は、本実施形態の通信システムの構成を示し、通信端末2は、伝送端末2cと、重畳端末2dとで構成される。なお、実施形態1と同様の構成には同一の符号を付して説明は省略する。以下、伝送端末2c、重畳端末2dを区別しない場合、通信端末2と称す。
(Embodiment 5)
FIG. 16 shows a configuration of a communication system according to the present embodiment, and the communication terminal 2 includes a transmission terminal 2c and a superimposition terminal 2d. In addition, the same code | symbol is attached | subjected to the structure similar to Embodiment 1, and description is abbreviate | omitted. Hereinafter, when the transmission terminal 2c and the superposition terminal 2d are not distinguished, they are referred to as communication terminals 2.
 伝送親機1と通信端末2との間の通信において通信線L1を伝送される通信信号と、重畳端末2d相互間の通信において伝送路L1を伝送される通信信号とは、通信プロトコルが異なっている。前者の通信信号はパルス幅変調された複極の電圧信号であり、後者の通信信号は前者の通信信号よりも高い周波数の搬送波を変調した電流信号を用いる。以下では、前者の通信信号を「伝送信号」と称し、後者の通信信号を「重畳信号」と称す。 The communication protocol is different between the communication signal transmitted through the communication line L1 in the communication between the transmission parent device 1 and the communication terminal 2 and the communication signal transmitted through the transmission line L1 in the communication between the overlapping terminals 2d. Yes. The former communication signal is a pulse-width-modulated bipolar signal, and the latter communication signal uses a current signal obtained by modulating a carrier wave having a frequency higher than that of the former communication signal. Hereinafter, the former communication signal is referred to as a “transmission signal”, and the latter communication signal is referred to as a “superimposition signal”.
 そして、伝送端末2cの通信部21は、伝送信号の送受信機能を有し、重畳端末2dの通信部21は、伝送信号および重畳信号の各送受信機能を有する。 The communication unit 21 of the transmission terminal 2c has a transmission / reception function for transmission signals, and the communication unit 21 of the superimposition terminal 2d has transmission / reception functions for transmission signals and superimposition signals.
 伝送親機1と通信端末2との間の通信において用いる伝送信号は、所定のフォーマットを有しており、伝送親機1が通信線L1に繰り返し送出する。通信端末2は個々にアドレス(識別情報)を有しており、伝送親機1が送出する伝送信号に、通信端末2のアドレスを含めることにより、通信端末2を指定して伝送親機1から各端末への指示が与えられる。すなわち、時分割多重化によって伝送親機1から通信端末2に個別に指示を与えることができる。また、伝送信号には、通信端末2から伝送親機1に情報を通知する期間が設けられている。 A transmission signal used in communication between the transmission parent device 1 and the communication terminal 2 has a predetermined format, and the transmission parent device 1 repeatedly sends it to the communication line L1. Each communication terminal 2 has an address (identification information). By including the address of the communication terminal 2 in the transmission signal transmitted by the transmission master unit 1, the communication terminal 2 is designated and transmitted from the transmission master unit 1. Instructions to each terminal are given. That is, an instruction can be individually given from the transmission base unit 1 to the communication terminal 2 by time division multiplexing. The transmission signal is provided with a period during which information is notified from the communication terminal 2 to the transmission master unit 1.
 伝送端末2cには、スイッチやセンサ(図示せず)からの監視入力を受けて伝送親機1に負荷の制御を要求する監視端末器と、負荷(図示せず)が接続され伝送親機1からの指示に従って負荷を制御する制御端末器との2種類を設けている。 The transmission terminal 2 c is connected to a monitoring terminal that receives a monitoring input from a switch or a sensor (not shown) and requests the transmission master 1 to control the load, and a load (not shown) is connected to the transmission terminal 1. There are two types of control terminals that control the load in accordance with instructions from.
 伝送親機1は、スイッチあるいはセンサ(以下、スイッチおよびセンサをまとめて、監視手段と称す)と負荷とを対応付ける関係テーブルを備える。監視手段と負荷との関係をあらかじめ関係テーブルに登録しておくことにより、伝送親機1は、スイッチの操作あるいはセンサの出力の変化に応じて、関係テーブルで監視手段に対応付けた負荷を制御する。関係テーブルには、監視手段に対する負荷の制御の内容を含む場合もある。 The transmission base unit 1 includes a relation table that associates switches or sensors (hereinafter, the switches and sensors are collectively referred to as monitoring means) and loads. By registering the relation between the monitoring means and the load in the relation table in advance, the transmission master unit 1 controls the load associated with the monitoring means in the relation table according to the switch operation or the change in the sensor output. To do. The relation table may include the contents of load control for the monitoring means.
 そして、伝送信号(第2信号)には、図17に示すように、同期パルス期間T11と、送信期間T12と、返送期間T13と、割込期間T14と、短絡検出期間T15と、休止期間T16とを有する複極(±24V)の信号を用いる。伝送親機1は、この伝送信号を繰り返し送出している。 As shown in FIG. 17, the transmission signal (second signal) includes a synchronization pulse period T11, a transmission period T12, a return period T13, an interrupt period T14, a short-circuit detection period T15, and a pause period T16. And a bipolar (± 24V) signal. The transmission master unit 1 repeatedly transmits this transmission signal.
 同期パルス期間T11は伝送信号のフレームの開始を示し、電圧極性が異なる2つの期間を有している。電圧極性は、同期パルス期間T11の期間内において+24Vから-24Vに変化する。 The synchronization pulse period T11 indicates the start of the frame of the transmission signal, and has two periods with different voltage polarities. The voltage polarity changes from + 24V to −24V within the period of the synchronization pulse period T11.
 送信期間T12は、伝送親機1から通信端末2への指示を送信する期間であり、伝送親機1が通信端末2に対してデータを伝送する電圧信号を発生するタイムスロットである。伝送親機1は、±24Vのパルス列からなるキャリアをパルス幅変調することによってデータを伝送する。この電圧信号には、伝送信号の種類を示すモード情報、通信端末2を個別に指定するアドレス、指示内容を示す制御情報を含む。 The transmission period T12 is a period in which an instruction is transmitted from the transmission parent device 1 to the communication terminal 2, and is a time slot in which the transmission parent device 1 generates a voltage signal for transmitting data to the communication terminal 2. The transmission base unit 1 transmits data by performing pulse width modulation on a carrier composed of a pulse train of ± 24V. This voltage signal includes mode information indicating the type of transmission signal, an address for individually specifying the communication terminal 2, and control information indicating the content of the instruction.
 返送期間T13は、+24Vの電圧を発生して、通信端末2から伝送親機1に情報を通知する期間であって、伝送親機1が信号を伝送せずに待機する期間になっている。 The return period T13 is a period in which a voltage of + 24V is generated and information is notified from the communication terminal 2 to the transmission parent device 1, and the transmission parent device 1 waits without transmitting a signal.
 割込期間T14は、-24Vの電圧を発生して、通信端末2から出力される割込信号を検出するための期間であり、短絡検出期間T15は、+24Vの電圧を発生して、通信線L1の短絡を検出するための期間である。休止期間T16は、-24Vの電圧を発生して、データ伝送を行わない期間である。 The interrupt period T14 is a period for generating a voltage of −24V and detecting an interrupt signal output from the communication terminal 2, and the short-circuit detection period T15 is generating a voltage of + 24V and generating a communication line This is a period for detecting a short circuit of L1. The idle period T16 is a period in which a voltage of -24V is generated and data transmission is not performed.
 各通信端末2は、通信線L1を介して受信した伝送信号の送信期間T12に含まれるアドレスに自己のアドレスが含まれていると、送信期間T12に含まれている制御情報に基づく動作を行う。例えば、制御端末器であれば、負荷に対する制御内容が伝送信号の制御情報に含まれているから、制御内容に従って負荷を制御する。監視端末器におけるスイッチの操作や制御端末器における負荷の制御結果は、返送期間T13(本発明の通信期間に相当する)に同期させて電流モード信号(電流信号)で伝送親機1に返送される。 Each communication terminal 2 performs an operation based on the control information included in the transmission period T12 when its own address is included in the address included in the transmission period T12 of the transmission signal received via the communication line L1. . For example, in the case of a control terminal, since the control content for the load is included in the control information of the transmission signal, the load is controlled according to the control content. The switch operation in the monitoring terminal and the load control result in the control terminal are returned to the transmission master unit 1 by a current mode signal (current signal) in synchronization with the return period T13 (corresponding to the communication period of the present invention). The
 電流モード信号(第1信号)は、通信線L1の線間を開放した状態と、通信線L1の線間を低インピーダンス要素を介して短絡した状態とで表される2値の電流信号である。例えば、通信端末2は、返信トランジスタと抵抗とを直列に接続した返信回路を有しており、伝送信号を整流した直流電圧を返信回路に印加した状態で、返信トランジスタをオン・オフさせる。これにより、通信線L1から通信端末2に流れ込む電流の大きさが変化し、通信端末2は、電流信号を通信線L1上に生じさせて、電流信号を伝送親機1に送信することができる。 The current mode signal (first signal) is a binary current signal represented by a state where the communication lines L1 are opened and a state where the communication lines L1 are short-circuited via a low impedance element. . For example, the communication terminal 2 has a return circuit in which a return transistor and a resistor are connected in series, and turns on and off the return transistor in a state where a DC voltage obtained by rectifying a transmission signal is applied to the return circuit. Thereby, the magnitude of the current flowing from the communication line L1 to the communication terminal 2 changes, and the communication terminal 2 can generate a current signal on the communication line L1 and transmit the current signal to the transmission master unit 1. .
 伝送親機1は、常時は伝送信号に含まれる通信端末2のアドレスをサイクリックに変化させて通信端末2に順次アクセスする常時ポーリングを行う。常時ポーリングの際には、伝送信号に含まれるアドレスが自己のアドレスに一致した通信端末2では、伝送信号に制御情報が含まれていれば制御情報を取り込んで動作し、自己の動作状態を返送期間T13において伝送親機1に返送する。 The transmission base unit 1 always performs polling for sequentially accessing the communication terminal 2 by cyclically changing the address of the communication terminal 2 included in the transmission signal. In the case of constant polling, the communication terminal 2 whose address included in the transmission signal matches its own address operates if the transmission signal includes control information, and takes control information and returns its operating state. In the period T13, it is returned to the transmission master unit 1.
 ところで、通信端末2は、監視入力等の発生時に、伝送信号の割込期間T14に同期させて通信線L1に割込信号Iを発生させる(図17参照)。例えば、監視端末器は、スイッチからの監視入力を受けると、割込期間T14に割込信号Iを発生させる。伝送親機1は、この割込信号Iを検出すると、割込信号Iを発生した通信端末2を検索し、その通信端末2にアクセスして通信端末2のアドレスを取得する。 Incidentally, the communication terminal 2 generates an interrupt signal I on the communication line L1 in synchronization with the transmission signal interrupt period T14 when a monitoring input or the like is generated (see FIG. 17). For example, when the monitoring terminal receives a monitoring input from the switch, the monitoring terminal generates an interrupt signal I in the interrupt period T14. When the transmission base unit 1 detects this interrupt signal I, it searches for the communication terminal 2 that generated the interrupt signal I, and accesses the communication terminal 2 to obtain the address of the communication terminal 2.
 割込信号Iを発生した通信端末2のアドレスが伝送親機1に取得されると、伝送親機1はアドレスを指定して通信端末2に監視入力等のデータを返送させる。伝送親機1は、通信端末2から返送された監視入力に基づいて、あらかじめ関係テーブルによって監視入力毎に対応付けられている負荷を設けた通信端末2に対する制御情報を含む伝送信号を生成して通信線L1に送出する。したがって、割込信号Iを発生させた通信端末2からの要求(スイッチの操作など)に従って負荷が制御される。 When the address of the communication terminal 2 that generated the interrupt signal I is acquired by the transmission base unit 1, the transmission base unit 1 designates the address and causes the communication terminal 2 to return data such as monitoring input. Based on the monitoring input returned from the communication terminal 2, the transmission master unit 1 generates a transmission signal including control information for the communication terminal 2 provided with a load associated with each monitoring input in advance by the relation table. It is sent to the communication line L1. Therefore, the load is controlled in accordance with a request (switch operation or the like) from the communication terminal 2 that has generated the interrupt signal I.
 上述のように、伝送親機1は、常時は常時ポーリングを行ってすべての通信端末2に順にアクセスする。また、伝送親機1は、いずれかの通信端末2からの割込信号を受信すると、割込信号Iを発生した通信端末2にアクセスして通信端末2からの要求を受け取る。このように、常時はポーリングを行い、割込信号Iが発生すると割込信号Iを発生した通信端末2からの要求を優先的に処理する動作を、割込ポーリングと呼ぶ。 As described above, the transmission base unit 1 always performs polling at all times and sequentially accesses all the communication terminals 2. When receiving the interrupt signal from any one of the communication terminals 2, the transmission master unit 1 accesses the communication terminal 2 that generated the interrupt signal I and receives a request from the communication terminal 2. In this way, polling is always performed, and when an interrupt signal I is generated, an operation for preferentially processing a request from the communication terminal 2 that has generated the interrupt signal I is referred to as interrupt polling.
 一方、重畳端末2dは、例えば、負荷が消費する電力量を計測する計測端末、計測装置の計測結果を表示するモニタ端末等である。重畳端末2dは、伝送親機1との間で、上述の常時ポーリング、割込ポーリングを用いた通信を行い、さらに、重畳端末2d同士は、通信線L1上を伝送する重畳信号を用いて互いに通信を行うことができ、例えば、モニタ端末は、計測端末の計測結果を収集する。 On the other hand, the superimposing terminal 2d is, for example, a measuring terminal that measures the amount of power consumed by the load, a monitor terminal that displays the measurement result of the measuring device, or the like. The superimposing terminal 2d performs communication using the above-described constant polling and interrupt polling with the transmission master unit 1, and the superimposing terminals 2d communicate with each other using a superimposing signal transmitted on the communication line L1. For example, the monitor terminal collects the measurement results of the measurement terminal.
 重畳端末2d間の通信には、伝送信号に重畳して通信線L1を伝送される重畳信号Pが用いられる。具体的には、伝送信号の同期パルス期間T11、休止期間T16から適宜に選択した重畳可能期間(本発明の通信期間に相当する)において重畳信号Pが伝送される。この重畳信号P(第1信号)は、通信線L1上を流れる電流を変化させることによってデータ送信する電流信号であり、電圧信号よりも高い周波数の搬送波を変調した信号である。 For the communication between the superimposition terminals 2d, a superimposition signal P that is superimposed on the transmission signal and transmitted through the communication line L1 is used. Specifically, the superimposed signal P is transmitted in a superimposable period (corresponding to the communication period of the present invention) appropriately selected from the synchronization pulse period T11 and the pause period T16 of the transmission signal. The superimposed signal P (first signal) is a current signal for data transmission by changing the current flowing on the communication line L1, and is a signal obtained by modulating a carrier wave having a frequency higher than that of the voltage signal.
 さらに、伝送親機1が通信線L1上に送出する伝送信号は複極であって、常時ポーリングを行っているから、通信線L1には伝送信号により電力が常時供給されている。したがって、本システムでは、伝送信号を用いることにより、通信端末2に駆動電力を供給することができる。ただし、伝送親機1が供給する電力には上限があるから、通信線L1に接続された通信端末2に対して伝送親機1から供給可能な電力は制限される。 Furthermore, since the transmission signal sent from the transmission master unit 1 onto the communication line L1 is multipolar and is always polled, power is constantly supplied to the communication line L1 by the transmission signal. Therefore, in this system, driving power can be supplied to the communication terminal 2 by using the transmission signal. However, since there is an upper limit to the power supplied by the transmission parent device 1, the power that can be supplied from the transmission parent device 1 to the communication terminal 2 connected to the communication line L1 is limited.
 そして、通信端末2は、上述の常時ポーリング、割込ポーリングを用いる伝送親機1との通信、重畳信号Pを用いて行う重畳端末2d同士の通信によって、通信端末2の起動・スリープ等の状態遷移が指示される。状態遷移を指示された通信端末2の各機能部23は、短絡検出期間T15において、電源部24が生成した駆動電力を用いて状態を遷移させる。すなわち、短絡検出期間T15が、本発明の負荷変動期間を兼用している。 The communication terminal 2 is in a state such as activation / sleep of the communication terminal 2 by communication with the transmission master unit 1 using the above-described constant polling and interrupt polling, and communication between the overlapping terminals 2d performed using the superimposed signal P. Transition is indicated. Each functional unit 23 of the communication terminal 2 instructed to change the state changes the state using the driving power generated by the power supply unit 24 in the short circuit detection period T15. That is, the short circuit detection period T15 also serves as the load fluctuation period of the present invention.
 例えば、重畳端末2dがモニタ端末である場合、機能部23は、映像表示機能を有するLCD装置で構成され、機能部23は、LCDバックライトのオン・オフ等の状態遷移を、短絡検出期間T15において行う。 For example, when the superimposing terminal 2d is a monitor terminal, the functional unit 23 is configured by an LCD device having a video display function, and the functional unit 23 performs a state transition such as on / off of the LCD backlight in a short circuit detection period T15. To do.
 また、伝送親機1は、図17に示すように、短絡検出期間T15を、配下の通信端末2のアドレスと同じ数の時間領域D11,D12,…,D1nに分割し、各時間領域に1台の通信端末2を割り付ける。複数の通信端末2のうち任意の第1の通信端末(第1の子機)は、複数の時間領域D11,D12,…,D1nのうち第1の通信端末に割り付けられた時間領域において、状態遷移を行う。 In addition, as shown in FIG. 17, the transmission master unit 1 divides the short-circuit detection period T15 into the same number of time regions D11, D12,..., D1n as the addresses of the subordinate communication terminals 2, and 1 is assigned to each time region. All communication terminals 2 are assigned. An arbitrary first communication terminal (first slave unit) among the plurality of communication terminals 2 is in a state in the time domain assigned to the first communication terminal among the plurality of time domains D11, D12,. Make a transition.
 通信端末2に対して時間領域を割り当てる処理は、伝送親機1が、通信端末2のアドレス設定処理を行うときに自動で行う。したがって、アドレス設定処理と時間領域の割当処理とを同時に行うことができるので、例えば、時間領域を割り当てるための通信シーケンスが不要となる。すなわち、時間領域を割り当てるための工程を増加させることなく、さらには電流測定部等の回路追加によるコストアップを抑制できる。 The process of assigning the time domain to the communication terminal 2 is automatically performed when the transmission master unit 1 performs the address setting process of the communication terminal 2. Therefore, since the address setting process and the time domain allocation process can be performed simultaneously, for example, a communication sequence for allocating the time domain becomes unnecessary. That is, the cost increase due to the addition of a circuit such as a current measurement unit can be suppressed without increasing the number of steps for assigning the time domain.
 伝送親機1の通信部11は、通信端末2のアドレス設定時に、上述の時間領域の割付結果を、電圧伝送期間T1の電圧信号を用いて通信端末2のそれぞれに送信し、通信端末2のそれぞれは、各々のアドレスに対応して割り付けられた時間領域を認識できる。そして、通信端末2のそれぞれは、短絡検出期間T15の各々に割り付けられた時間領域において、状態遷移を行う。 When the address of the communication terminal 2 is set, the communication unit 11 of the transmission parent device 1 transmits the above time domain assignment result to each of the communication terminals 2 using the voltage signal of the voltage transmission period T1, and the communication terminal 2 Each can recognize the time domain assigned corresponding to each address. And each of the communication terminals 2 performs a state transition in the time area | region allocated to each of the short circuit detection period T15.
 したがって、短絡検出期間T15において、通信端末2のそれぞれの状態遷移が同一タイミングに集中することを防ぎ、負荷変動期間T3における負荷変動を略一定に制御して、負荷変動期間T3を効率よく用いることができる。また、伝送親機1が通信線L1に供給する駆動電力のピーク値を抑制できるので、伝送親機1の給電回路を安価に構成することができる。 Therefore, in the short circuit detection period T15, it is possible to prevent the state transitions of the communication terminals 2 from concentrating at the same timing, and to control the load fluctuation in the load fluctuation period T3 to be substantially constant, thereby efficiently using the load fluctuation period T3. Can do. Moreover, since the peak value of the driving power supplied from the transmission parent device 1 to the communication line L1 can be suppressed, the power feeding circuit of the transmission parent device 1 can be configured at low cost.

Claims (10)

  1.  親機と複数の子機とが第1通信線に接続され、前記親機は、前記第1通信線を介して前記複数の子機へ駆動電力を供給し、前記複数の子機は、それぞれ電流信号である第1信号を前記第1通信線に送出し、
     前記複数の子機は互いに同期して、通信期間にのみ前記第1信号を用いた送信処理を行い、前記通信期間とは別の負荷変動期間にのみ所定幅を超える前記駆動電力の変動を伴う状態遷移を行うように構成されている
     ことを特徴とする通信システム。
    A master unit and a plurality of slave units are connected to a first communication line, the master unit supplies driving power to the plurality of slave units via the first communication line, and the plurality of slave units are respectively Sending a first signal which is a current signal to the first communication line;
    The plurality of slave units perform transmission processing using the first signal only during a communication period in synchronization with each other, and the fluctuation of the driving power exceeds a predetermined width only during a load fluctuation period different from the communication period. A communication system characterized by being configured to perform state transition.
  2.  前記複数の子機の各々は、前記駆動電力の変動が前記所定幅を超えない範囲で前記送信処理を行う通信部と、前記駆動電力を用いて所定の動作を実行する機能部とを有しており、前記機能部の動作状態が第1状態から第2状態へ遷移することにより前記状態遷移を行うように構成されている
     ことを特徴とする請求項1に記載の通信システム。
    Each of the plurality of slave units includes a communication unit that performs the transmission processing within a range in which the fluctuation of the driving power does not exceed the predetermined width, and a functional unit that executes a predetermined operation using the driving power. The communication system according to claim 1, wherein the state transition is performed when the operation state of the functional unit transitions from a first state to a second state.
  3.  前記親機は、第2信号を前記第1通信線に送出し、前記第2信号は、前記通信期間と前記負荷変動期間とを含む複数の時間帯に1フレームを分割した時分割方式の電圧信号であり、
     前記複数の子機は、それぞれ前記第2信号を前記駆動電力として用いて動作し、受信した前記第2信号に基づいて、前記通信期間および前記負荷変動期間をそれぞれ設定する
     ことを特徴とする請求項1または2記載の通信システム。
    The base unit sends a second signal to the first communication line, and the second signal is a time-division voltage obtained by dividing one frame into a plurality of time zones including the communication period and the load fluctuation period. Signal,
    The plurality of slave units each operate using the second signal as the driving power, and set the communication period and the load variation period based on the received second signal, respectively. Item 3. The communication system according to item 1 or 2.
  4.  前記負荷変動期間は複数存在し、
     前記複数の子機は、制御シーケンスを実行することによって前記状態遷移を行っており、前記制御シーケンスの時間長さが前記負荷変動期間の時間長さより長い場合、前記制御シーケンスを複数の制御シーケンスに分割し、前記複数のシーケンスのうち少なくとも2つが前記複数の負荷変動期間のうち異なる負荷変動期間に実行されるように、前記複数の制御シーケンスのそれぞれを前記複数の負荷変動期間のいずれかに割り付けて順次実行することを特徴とする請求項1乃至の3いずれか記載の通信システム。
    There are a plurality of load fluctuation periods,
    The plurality of slave units perform the state transition by executing a control sequence, and when the time length of the control sequence is longer than the time length of the load fluctuation period, the control sequence is changed to a plurality of control sequences. Dividing, and assigning each of the plurality of control sequences to one of the plurality of load fluctuation periods so that at least two of the plurality of sequences are executed in different load fluctuation periods of the plurality of load fluctuation periods. 4. The communication system according to claim 1, wherein the communication system is sequentially executed.
  5.  前記負荷変動期間は複数存在し、
     前記複数の子機のうち少なくとも1つの子機は、前記第1通信線上を伝送される前記第1信号と、前記第1通信線とは異なる第2通信線上を伝送される第3信号との相互間のプロトコル変換を行うゲートウェイ装置であり、
     前記ゲートウェイ装置は、前記第1信号のデータ量が所定値より大きい場合、前記第1信号を複数の第1信号に分割し、前記複数の第1信号のそれぞれについてプロトコル変換した複数の第3信号のうち少なくとも2つが前記複数の負荷変動期間のうち異なる負荷変動期間に送出されるように、前記複数の第3信号のそれぞれを前記複数の負荷変動期間のいずれかに割り付けて前記第2通信線へ順次送出する
     ことを特徴とする請求項1乃至4のいずれか記載の通信システム。
    There are a plurality of load fluctuation periods,
    At least one slave unit among the plurality of slave units includes a first signal transmitted on the first communication line and a third signal transmitted on a second communication line different from the first communication line. It is a gateway device that performs protocol conversion between each other,
    When the data amount of the first signal is greater than a predetermined value, the gateway device divides the first signal into a plurality of first signals, and a plurality of third signals obtained by performing protocol conversion for each of the plurality of first signals. Each of the plurality of third signals is assigned to one of the plurality of load fluctuation periods so that at least two of the plurality of load fluctuation periods are transmitted in different load fluctuation periods. The communication system according to claim 1, wherein the communication system is sequentially transmitted.
  6.  前記複数の子機のうち任意の第1の子機は、前記状態遷移を行う前に、前記状態遷移の許可を前記親機に要求し、前記親機から指定された前記負荷変動期間において前記状態遷移を行い、前記親機から指定された当該負荷変動期間の時間長さは、前記親機が前記状態遷移の内容に応じて設定することを特徴とする請求項1乃至5のいずれか記載の通信システム。 An arbitrary first child machine out of the plurality of child machines requests permission of the state transition from the parent machine before performing the state transition, and the load change period specified by the parent machine The state transition is performed, and the time length of the load variation period designated by the parent device is set by the parent device according to the contents of the state transition. Communication system.
  7.  前記親機は、前記複数の子機のそれぞれの前記状態遷移における消費電流のデータを予め保持しており、前記複数の子機のそれぞれの前記消費電流に基づいて、前記負荷変動期間を複数の時間領域に分割し、前記複数の時間領域のそれぞれの前記消費電流の和が均等になるように前記複数の子機のそれぞれを前記複数の時間領域のいずれかに割り付け、
     前記複数の子機のうち任意の第1の子機は、前記複数の時間領域のうち前記第1の子機に割り付けられた時間領域において、前記状態遷移を行う
     ことを特徴とする請求項1乃至5のいずれか記載の通信システム。
    The master unit holds data of current consumption in the state transition of each of the plurality of slave units in advance, and sets the load fluctuation period to a plurality of times based on the current consumption of each of the plurality of slave units. Dividing each of the plurality of slave units into one of the plurality of time regions so that the sum of the current consumption of each of the plurality of time regions is equalized.
    The arbitrary first slave unit among the plurality of slave units performs the state transition in a time domain assigned to the first slave unit among the plurality of time domains. The communication system according to any one of 1 to 5.
  8.  前記親機は、前記複数の子機のそれぞれの前記状態遷移時の消費電流を測定する測定部を備えており、前記複数の子機のそれぞれの前記消費電流の測定値に基づいて、前記負荷変動期間を複数の時間領域に分割し、前記複数の時間領域のそれぞれの前記消費電流の和が均等になるように前記複数の子機のそれぞれを前記複数の時間領域のいずれかに割り付け、
     前記複数の子機のうち任意の第1の子機は、前記複数の時間領域のうち前記第1の子機に割り付けられた時間領域において、前記状態遷移を行う
     ことを特徴とする請求項1乃至5のいずれか記載の通信システム。
    The master unit includes a measurement unit that measures current consumption at the time of the state transition of each of the plurality of slave units, and the load based on the measurement value of the current consumption of each of the plurality of slave units Dividing the variable period into a plurality of time regions, and assigning each of the plurality of slave units to any of the plurality of time regions so that the sum of the consumption current of each of the plurality of time regions becomes equal,
    The arbitrary first slave unit among the plurality of slave units performs the state transition in a time domain assigned to the first slave unit among the plurality of time domains. The communication system according to any one of 1 to 5.
  9.  前記親機は、前記複数の子機のそれぞれに割り付けたアドレスを用いて前記複数の子機の各々との間で通信を行い、前記負荷変動期間を前記アドレスのそれぞれに対応する複数の時間領域に分割し、
     前記複数の子機のうち任意の第1の子機は、前記複数の時間領域のうち前記第1の子機の前記アドレスに対応する時間領域において、前記状態遷移を行う
     ことを特徴とする請求項1乃至5のいずれか記載の通信システム。
    The master unit communicates with each of the plurality of slave units using addresses assigned to the plurality of slave units, and the load variation period is a plurality of time regions corresponding to the respective addresses. Divided into
    An arbitrary first slave unit among the plurality of slave units performs the state transition in a time domain corresponding to the address of the first slave unit among the plurality of time domains. Item 6. The communication system according to any one of Items 1 to 5.
  10.  通信線を介して駆動電力を供給され、電流信号を前記通信線に送出する通信端末であって、
     通信期間にのみ前記電流信号を用いた送信処理を行い、前記通信期間とは別の負荷変動期間にのみ所定幅を超える前記駆動電力の変動を伴う状態遷移を行うように構成されている
     ことを特徴とする通信端末。
    A communication terminal that is supplied with drive power via a communication line and sends a current signal to the communication line,
    It is configured to perform transmission processing using the current signal only during a communication period, and to perform state transition accompanied by fluctuations in the driving power exceeding a predetermined width only during a load fluctuation period different from the communication period. A characteristic communication terminal.
PCT/JP2014/001332 2013-03-13 2014-03-10 Communication system, and communication terminal WO2014141675A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013050008A JP6089274B2 (en) 2013-03-13 2013-03-13 Communication system and communication terminal
JP2013-050008 2013-03-13

Publications (1)

Publication Number Publication Date
WO2014141675A1 true WO2014141675A1 (en) 2014-09-18

Family

ID=51536354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001332 WO2014141675A1 (en) 2013-03-13 2014-03-10 Communication system, and communication terminal

Country Status (3)

Country Link
JP (1) JP6089274B2 (en)
TW (1) TWI501573B (en)
WO (1) WO2014141675A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10361838B2 (en) * 2017-07-27 2019-07-23 Texas Instruments Incorporated Two-wire communication interface system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4674031A (en) * 1985-10-25 1987-06-16 Cara Corporation Peripheral power sequencer based on peripheral susceptibility to AC transients
JPS63187798A (en) * 1987-01-29 1988-08-03 Matsushita Electric Ind Co Ltd Terminal equipment interface
JP2002238155A (en) * 2001-02-07 2002-08-23 Yamatake Corp Device, system, and method for controlling interval of starting of apparatus
JP2009100469A (en) * 2007-09-26 2009-05-07 Daikin Ind Ltd Load driving method, and load driving apparatus
JP2012049638A (en) * 2010-08-24 2012-03-08 Panasonic Electric Works Co Ltd Current control device and communication system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2676235B2 (en) * 1988-11-15 1997-11-12 松下電工株式会社 Diagnostic signal transmission timing control method in wireless control system
JPH02184199A (en) * 1989-01-10 1990-07-18 Matsushita Electric Ind Co Ltd Terminal equipment interface
US5481178A (en) * 1993-03-23 1996-01-02 Linear Technology Corporation Control circuit and method for maintaining high efficiency over broad current ranges in a switching regulator circuit
BR112013008819A2 (en) * 2010-10-14 2016-06-28 Koninkl Philips Electronics Nv operating state apparatus, method and computer program and breakdown apparatus, method and computer program for identifying an electrical consumer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4674031A (en) * 1985-10-25 1987-06-16 Cara Corporation Peripheral power sequencer based on peripheral susceptibility to AC transients
JPS63187798A (en) * 1987-01-29 1988-08-03 Matsushita Electric Ind Co Ltd Terminal equipment interface
JP2002238155A (en) * 2001-02-07 2002-08-23 Yamatake Corp Device, system, and method for controlling interval of starting of apparatus
JP2009100469A (en) * 2007-09-26 2009-05-07 Daikin Ind Ltd Load driving method, and load driving apparatus
JP2012049638A (en) * 2010-08-24 2012-03-08 Panasonic Electric Works Co Ltd Current control device and communication system

Also Published As

Publication number Publication date
JP6089274B2 (en) 2017-03-08
TWI501573B (en) 2015-09-21
JP2014176049A (en) 2014-09-22
TW201442447A (en) 2014-11-01

Similar Documents

Publication Publication Date Title
KR101136049B1 (en) Communication system
EP3261296B1 (en) Method for managing configuration of industrial internet field broadband bus
US9548913B2 (en) Communication system and transmission unit employed in same
JP5469582B2 (en) Communication system and transmission unit
JP2013232800A (en) Communication system
WO2014141675A1 (en) Communication system, and communication terminal
US9288073B2 (en) Communication system and transmission unit employed in same
JP5369010B2 (en) Communications system
JP5469581B2 (en) Communication system and transmission unit
JP2014099677A (en) Communication system and terminal apparatus
WO2013161301A1 (en) Communication system
JP5379772B2 (en) Communication system and superposition apparatus
JP5853186B2 (en) Communication system and superposition module
KR20130086043A (en) Communication system and superimposed communication terminal
JP5906420B2 (en) Communication system and transmission unit
TW201924238A (en) Communication system, apparatus control system, communication device, communication control method, and program capable of easily realizing cooperation among a plurality of second systems
JP6041233B2 (en) Communication system and communication apparatus
US7710951B2 (en) Signaling method and signaling arrangement
JP5544002B2 (en) Communication system and superimposed communication terminal
JP2014179675A (en) Communication system and communication terminal
JP2013232798A (en) Communication system
JP2002245021A (en) Synchronizing method in giving command by communication.
JP2014099678A (en) Communication system and terminal apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14762694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14762694

Country of ref document: EP

Kind code of ref document: A1