WO2014141473A1 - Method for producing and device for producing polycrystalline silicon ingot - Google Patents

Method for producing and device for producing polycrystalline silicon ingot Download PDF

Info

Publication number
WO2014141473A1
WO2014141473A1 PCT/JP2013/057470 JP2013057470W WO2014141473A1 WO 2014141473 A1 WO2014141473 A1 WO 2014141473A1 JP 2013057470 W JP2013057470 W JP 2013057470W WO 2014141473 A1 WO2014141473 A1 WO 2014141473A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
heat conductor
polycrystalline silicon
silicon ingot
cooling
Prior art date
Application number
PCT/JP2013/057470
Other languages
French (fr)
Japanese (ja)
Inventor
章一 日和佐
Original Assignee
Hiwasa Shoichi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiwasa Shoichi filed Critical Hiwasa Shoichi
Priority to PCT/JP2013/057470 priority Critical patent/WO2014141473A1/en
Priority to TW102120617A priority patent/TW201435160A/en
Publication of WO2014141473A1 publication Critical patent/WO2014141473A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a manufacturing apparatus for manufacturing a polycrystalline silicon ingot and a method for manufacturing a polycrystalline silicon ingot.
  • Multi-crystalline silicon is mainly used as a substrate material for solar cells.
  • Polycrystalline silicon used for solar cells and the like is usually manufactured by cutting a polycrystalline silicon ingot into an arbitrary size and shape.
  • An ingot of polycrystalline silicon is usually contained in a crucible, and is manufactured by heating the crucible to obtain molten silicon, and then cooling the crucible from its bottom to solidify the silicon (see Patent Documents 1 and 2). ).
  • Patent Documents 1 and 2 In recent years, in order to obtain a large-diameter polycrystalline silicon wafer, there is a demand for manufacturing a larger polycrystalline silicon ingot. In order to manufacture a large polycrystalline silicon ingot, it is required to appropriately control the solidification rate of silicon by controlling the amount of heat removed from the bottom of the crucible.
  • Patent Document 3 it is extremely difficult to control the solidification rate of silicon because the amount of heat removal needs to be delicately and precisely controlled.
  • the temperature of the molten silicon (melt temperature) was set so that solidification did not proceed rapidly from the initial solidification to the middle. It had to be kept at a temperature well above the solidification temperature of silicon (1410 ° C.) (eg 1440-1460 ° C.).
  • the silicon crystal obtained under such conditions has many lattice defects and has a quality problem such as low energy conversion efficiency when processed into a solar cell substrate.
  • Patent Document 3 a method for controlling the amount of heat removal by controlling the position of the crucible in the apparatus (Patent Document 3) and a method for controlling the temperature distribution in the crucible ( Patent Document 4) is known.
  • Patent Document 4 a method for controlling the temperature distribution in the crucible
  • JP 60-103017 A Japanese Unexamined Patent Publication No. Sho 63-166711 JP 2002-308616 A
  • An object of this invention is to provide the manufacturing apparatus for manufacturing a polycrystalline-silicon ingot which can control appropriately the amount of heat removal from a crucible.
  • Another object of the present invention is to provide a method for producing a good polycrystalline silicon ingot by appropriately controlling the amount of heat removed from the crucible.
  • the present invention can produce polycrystalline silicon ingots of various sizes by employing the above production apparatus and production method, and has very few crystal defects in the entire height direction of the polycrystalline silicon ingot.
  • An object is to obtain a polycrystalline silicon ingot having excellent crystal quality.
  • the present invention uses a heat conductor for cooling a crucible disposed below a crucible in manufacturing a polycrystalline silicon ingot, the heat conductor has a specific shape, and a method for cooling the heat conductor This is based on the knowledge that the heat removal amount of the crucible can be controlled appropriately by optimizing the above.
  • the present invention can include the following contents.
  • Polycrystalline silicon including a crucible capable of containing a silicon raw material, a heater disposed around the crucible, a heat conductor disposed below the crucible, and a cooling means for cooling the heat conductor
  • An ingot manufacturing apparatus wherein the heat conductor is formed in a bottomed cylindrical body that opens downward, and a bottom outer surface of the heat conductor is disposed to face a bottom outer surface of the crucible, The polycrystalline silicon ingot manufacturing apparatus is cooled by the cooling means while arbitrarily changing an opening area in the vicinity of the opening end over the entire solidification period.
  • Tg a ⁇ bt
  • a 1,250 to 1,400
  • b 10 to 35
  • t the elapsed time (hours) from the start of cooling)
  • the method for producing a polycrystalline silicon ingot according to [7] which is performed under the conditions: [9] The method for producing a polycrystalline silicon ingot according to [7] or [8], wherein the heating is performed by a heater disposed around the crucible and the thermal conductor heated by an induction heating coil. .
  • the present invention it is possible to provide a manufacturing apparatus for manufacturing a polycrystalline silicon ingot capable of appropriately controlling the amount of heat removed from the crucible.
  • heat can be appropriately removed from the crucible by the heat conductor having a special shape arranged below the crucible.
  • the crucible is supercooled by controlling the cooling of the crucible by focusing on the temperature of the heat conductor close to the crucible without relying on the conventional crucible top temperature or the cooling conditions of the crucible itself. It can be cooled at an appropriate temperature without being done.
  • molten silicon melt temperature ⁇ silicon solidification temperature molten silicon melt temperature ⁇ silicon solidification temperature
  • FIG. 6 shows time changes from the start to the end of solidification of the temperature Ts (° C.) of molten silicon, the temperature Tx (° C.) inside the bottom of the crucible, and the temperature Tg (° C.) of the outer surface of the bottom of the heat conductor in Example 1.
  • FIG. 4 shows time changes from the start to the end of solidification of molten silicon temperature Ts (° C.), crucible bottom inner temperature Tx (° C.), and heat conductor bottom outer surface temperature Tg (° C.) in Example 2.
  • FIG. 5 is a time change from the start to the end of solidification of a temperature Ts (° C.) of molten silicon and a temperature Tg (° C.) of a bottom outer surface of a water-cooled copper cooling chiller (a graphite support plate in contact with a crucible bottom) in Comparative Example 1; It is a time change from the solidification start to completion
  • the polycrystalline silicon ingot manufacturing apparatus of the present invention includes a crucible that can contain a silicon raw material, a heater disposed around the crucible, a heat conductor disposed below the crucible, and the heat conductor. Cooling means for cooling. Moreover, the polycrystalline silicon ingot manufacturing apparatus of the present invention optionally includes an induction heating coil, a heat insulating material, a lid, a nozzle for blowing an inert gas, and the like. Hereinafter, each member will be described.
  • a crucible is used to contain a silicon raw material, heat the silicon raw material to obtain molten silicon, and further cool it to produce a polycrystalline silicon ingot.
  • the shape of the crucible is preferably a bottomed cylindrical body having an open upper end, and more preferably the bottom is flat.
  • the bottom may be a circle or a polygon that is greater than or equal to a triangle, but is preferably a circle or a rectangle.
  • the size of the crucible depends on the size of the polycrystalline silicon to be produced, for example, when the crucible has a bottomed and square bottom, the outer size of the bottom is, for example, 300 to 1500 mm square, preferably Is 500 to 1200 mm square, more preferably 670 to 1000 mm square, and the thickness of the bottom is, for example, 1 to 50 mm, preferably 5 to 30 mm, more preferably 10 to 25 mm.
  • the height of the crucible is, for example, 100 to 1000 mm, preferably 200 to 800 mm, more preferably 300 to 700 mm.
  • the bottom is, for example, a circle having a radius of 150 to 750 mm, preferably a radius of 250 to 600 mm, more preferably a radius of 335 to 500 mm
  • the thickness of the bottom is, for example, 1 mm to It is appropriate that the thickness is 100 mm, preferably 5 mm to 70 mm, more preferably 10 mm to 50 mm.
  • the height of the crucible is, for example, 100 to 1000 mm, preferably 200 to 800 mm, more preferably 300 to 500 mm.
  • the thickness of the crucible wall is suitably 1 to 50 mm, preferably 5 to 30 mm, more preferably 10 to 25 mm, for example.
  • the thermal conductivity of the crucible is, for example, 1.2 to 11.6 W / m ⁇ K, preferably 1.7 to 5.8 W / m ⁇ K, more preferably 2.3 to 4.7 W when measured at 25 ° C. based on the flash method of JIS R1611. / m ⁇ K is appropriate.
  • a lid can be provided on the top of the crucible.
  • the crucible and lid are not particularly limited, and known crucibles and lids used in ordinary polycrystalline silicon ingot production apparatuses can be used.
  • the crucible is preferably opaque quartz and the lid is preferably graphite.
  • the wall surface of the crucible is preferably coated with silicon nitride containing, for example, 1 to 10% by mass, preferably 3 to 7% by mass, more preferably 4 to 6% by mass silica.
  • a nozzle for blowing an inert gas into the crucible may be provided, and the inert gas may be blown into the crucible from the nozzle.
  • the inert gas a rare gas is preferable, and for example, helium gas and argon gas are preferable.
  • a gas such as carbon monoxide gas that can lower and control the oxygen concentration may be added.
  • the concentration of carbon monoxide gas is, for example, 600 to 1400 ppmm, preferably 800 to 1200 ppm, more preferably 1000 to 1100 ppm.
  • silicon raw material contained in the crucible for example, polysilicon having a purity of 6-N or higher, preferably 7-N or higher, more preferably 9-N or higher (that is, a purity of 99.9999999%) is appropriate. It is.
  • Heater The heater is arranged around the crucible, that is, above and / or at least one side, preferably above.
  • a known heater such as a resistance heater or an induction heater using a graphite such as isotropic graphite or a carbon fiber composite (CCM) as a heating element is used. can do.
  • -Heat conductor A heat conductor is arrange
  • One or more crucibles may be arranged on one heat conductor. Further, the heat conductor and the crucible may be in close contact with each other or may be separated from each other, and a support plate for supporting the crucible may be provided between the heat conductor and the crucible.
  • FIG. 1 (a) shows a cylindrical body having a rectangular or square bottom.
  • FIG. 1B shows a cylindrical body having a shape in which the bottom portion is rectangular or square and the bottom portion protrudes outward from the wall portion of the side wall by a certain length.
  • FIG.1 (c) is a cylindrical body with a circular bottom part. The length of the bottom of the cylindrical body in FIG.
  • the shape of the heat conductor is preferably a cylindrical body having a bottom with a bottom that is open at one end.
  • the shape of the longitudinal section of the heat conductor is preferably concave (see FIG. 1 (a) or (c)), ⁇ -type (or saddle-shaped, see FIG. 1 (b)), and particularly concave. It is preferable.
  • a longitudinal sectional view of the concave heat conductor is shown in FIG.
  • the heat conductor has a bottomed cylindrical body that is open on the side opposite to the side where the crucible is arranged, that is, the bottom, and the inside of the heat conductor is hollowed out.
  • the shape of the longitudinal section of the inner part of the heat conductor, that is, the hollowed-out part, is a polygon such as a triangle (see FIGS. 2B and 2C), a quadrangle (see FIG. 2D), or a half It may be a curved shape such as a circle (see FIG. 2E).
  • the longitudinal sectional shape of the opening end portion (FIG. 2 (a) 9) may be a rectangle in which the thickness of the wall portion does not change, but as shown in FIG.
  • the thickness of the wall portion may be thinner by one step or two steps than the thickness of the wall portion.
  • the height of the wall (FIG. 2 (a) 7) is 500 to 1000 mm and the wall thickness is 60 to 180 mm
  • the height of the opening end (FIG. 2 (f) 9) is 50 to Appropriately
  • the thickness is 200 mm (5 to 20% of the height of the wall) and the thickness of the opening end is about 30 to 100 mm (30 to 60% of the thickness of the wall).
  • the thermal conductor has a thermal conductivity measured at room temperature (25 ° C.) (see JIS R1611 flash method), 30 to 150 W / m ⁇ K, preferably 40 to 120 W / m ⁇ K, more preferably 50 to Any material can be used as long as it is a solid of 100 W / m ⁇ K, but it is preferably made of graphite.
  • Particularly preferable graphite that can be used as the heat conductor includes isotropic graphites G535, G330, G320, and G347 manufactured by Tokai Carbon Co., Ltd.
  • the support plate is also preferably a solid having a thermal conductivity similar to that of the heat conductor, and more preferably made of graphite similar to the heat conductor.
  • the size of the heat conductor is such that the heat capacity of the heat conductor is equal to or less than the sum of the heat capacity of the crucible at the start of solidification and the heat capacity of the raw silicon and the solidification latent heat of the raw silicon. It is important that it is 90% or less, preferably 1 to 80%, more preferably 10 to 60%.
  • the heat conductor has a bottom and the bottom (that is, the inner bottom of the cylindrical body (FIG. 2 (a) 2)) is a square cylinder, the outer dimension of the bottom (FIG.
  • the outer dimension of the bottom of the heat conductor is, for example, 100 to 4000 mm square, preferably 200 to 2000 mm square, more preferably 300 to 1500 mm square.
  • the thickness of the bottom (FIG.
  • the height of the cylindrical wall portion (FIG. 2 (a) 7) is suitably, for example, 250 mm to 2000 mm, preferably 400 mm to 1500 mm, more preferably 500 mm to 1000 mm.
  • the thickness of the cylindrical wall (FIG. 2 (a) 8) is, for example, 20 mm to 300 mm, preferably 40 mm to 250 mm, and more preferably 60 to 180 mm.
  • the radius of the bottom is suitably, for example, ⁇ 200 mm, preferably ⁇ 100 mm, more preferably ⁇ 50 mm of the radius of the crucible.
  • the radius of the bottom is, for example, 100 to 1000 mm, preferably 150 to 800 mm, more preferably 200 to 500 mm.
  • the thickness of the bottom is, for example, 5 mm to 200 mm, preferably 20 mm to 100 mm, more preferably 30 mm to 60 mm.
  • the thickness of the cylindrical wall is, for example, 20 mm to 100 mm, preferably 30 mm to 70 mm, more preferably 40 mm to 50 mm, and the height of the cylindrical wall is, for example, 250 mm to 700 mm, preferably 350 mm to 550 mm.
  • the thickness is preferably 400 mm to 500 mm.
  • the thickness of the support plate is, for example, 5 to 100 mm, preferably 10 to 60 mm, more preferably 20 to 50 mm.
  • the heat conductor is cooled by the cooling means in the vicinity of the open end (FIG. 2 (a) 9) of the heat conductor.
  • the cooling means in the vicinity of the open end (FIG. 2 (a) 9) of the heat conductor.
  • heat conduction heat is directly transferred through the inside of the heat conductor at the bottom of the heat conductor close to the opening end, and the bottom is cooled (heat conduction).
  • heat conduction heat is transmitted to the vicinity of the opening end by radiation through the opening of the thermal conductor, and the bottom is cooled (thermal radiation).
  • the heat conductor of the present invention has the opening and the vicinity of the opening end of the heat conductor is cooled by the cooling means, whereby the bottom of the heat conductor can be uniformly cooled.
  • the cooling means includes a cooling portion such as an induction heating coil cooled by a refrigerant for cooling the wall of the lower chamber and the coil portion that are cooled on the inside. Since these cooling parts are arranged on the outer side facing the opening end of the heat conductor, the surface from the opening end of the heat conductor to the cooling part is not contacted with the opening end of the heat conductor. Cooling is performed using radiant heat transfer.
  • a liquid medium method such as a water cooling method or a gas medium method such as an inert gas or air cooling method can be used.
  • the amount of heat removal can be controlled while arbitrarily adjusting the surface area (A) of the open end of the conductor.
  • the portion near the opening end of the heat conductor cooled by the cooling means is not particularly limited, but when the height of the heat conductor cylindrical wall is 100%, it is 1 to 70%, preferably 1 from the opening end. An area with a height of ⁇ 50%, more preferably 1-40%.
  • the opening end itself may be included in the vicinity of the opening end.
  • the gap with the cooling means provided around the opening end of the heat conductor is, for example, larger than 0 mm and not more than 400 mm, preferably 1 mm to 300 mm, more preferably 10 mm to 200 mm.
  • the entire polycrystalline silicon manufacturing apparatus of the present invention in particular, the entire crucible and the entire heat conductor is insulated from the outside. Therefore, it is preferable that the heat conductor and the cooling means are insulated during heating.
  • a means to insulate for example, a mounting table for a heat conductor and a heat insulating material covering the crucible and the heat conductor may be closely attached.
  • the lower heat insulating material in the vicinity of the opening end portion of the heat conductor is lowered by the lifting cylinder of the heat insulating material to create a gap in the vicinity of the opening end portion of the heat conductor.
  • cooling is performed by radiant heat transfer to a cooling portion disposed on the outer peripheral portion without contacting a heat conductor such as a wall of the lower chamber or an induction heating coil.
  • the amount of radiant heat transfer can be arbitrarily controlled by changing the area of the opening at the opening end of the heat conductor according to the temperature at the opening end surface of the heat conductor and the surface temperature of the cooling portion.
  • the heat insulating material can cover at least a part of the crucible, the heater back surface, and the heat conductor.
  • a heat insulating material having heat resistance of at least 2000 ° C. or more, preferably 2500 ° C. or more is preferable.
  • a carbon fiber molded heat insulating material or the like is desirable. Examples of preferable heat insulating materials include DONACARBO (DON-1000, DON-2000, DON-3000, DON-4000) manufactured by Osaka Gas Chemical Co., Ltd.
  • a heat conductor may be heated by an induction heating coil, and may be used as a heater which can be heated from the lower part of a crucible. Since the induction heating coil can be arranged separately from the heat conductor, the heat conductor can be heated from the outside of the heat insulating material even when the heat conductor is covered with the heat insulating material. In addition, since the induction heating coil can heat not only the surface of the heat conductor but also the inside of the heat conductor, there is an advantage that the bottom of the heat conductor can be uniformly heated.
  • the induction heating coil is preferably provided with a temperature sensor so that the temperature can be adjusted.
  • the induction coil is controlled to a frequency of 1 to 500 Hz, preferably 10 to 300 Hz, more preferably 30 to 100 Hz, for example.
  • the polycrystalline silicon manufacturing method of the present invention is performed using the above-described polycrystalline silicon ingot manufacturing apparatus, and includes the following steps: (1) A process of containing silicon raw material in a crucible whose temperature can be adjusted, (2) a step of melting the silicon raw material by heating the silicon raw material in the crucible to a temperature equal to or higher than the melting point of silicon; (3) a step of cooling the molten silicon in the crucible through a heat conductor disposed below the crucible to obtain polycrystalline silicon; including.
  • Step of accommodating silicon raw material First, a silicon raw material is accommodated in a crucible. The details of the silicon raw material and the crucible are as described above.
  • Step of heating crucible Next, the silicon raw material in the crucible is heated to a temperature equal to or higher than the melting point of silicon to melt the silicon raw material. Heating is performed by a heater arranged around the crucible, preferably above. Details of the heater are as described above. Since the melting point of silicon is about 1410 ° C., the temperature of the molten silicon raw material in the crucible is sufficiently higher than the melting point, for example, 1450 ° C. or more, preferably 1450 to 1600 ° C., more preferably The temperature is about 1500 to 1550 ° C.
  • Heating may be performed by a combination of the heater and a heat conductor heated by an induction heating coil. Heating with a heater and a heat conductor is efficient because it can be heated from above and below the crucible. The details of the induction heating coil are as described above.
  • Step of cooling the crucible The molten silicon in the crucible is cooled via a heat conductor disposed below the crucible. In order to produce homogeneous polycrystalline silicon, it is particularly preferable that the cooling be performed while keeping the temperature of the bottom outer surface of the heat conductor (the side close to the bottom outer surface of the crucible) uniform.
  • Tg a ⁇ bt It is preferable to lower the temperature under conditions that satisfy In the formula, a is 1,250 to 1,400 (° C.), preferably 1,290 to 1,380 (° C.), more preferably 1,300 to 1,360 (° C.), and b is 10 to 35, preferably 15 to 33, more preferably 17 to 30 and t is the elapsed time (hours) from the start of cooling.
  • Tg it is preferable to lower Tg almost linearly at a rate of 10 to 35 ° C./hour, preferably 15 to 33 ° C./hour, more preferably 17 to 30 ° C./hour.
  • the temperature Tx at the portion where the molten silicon and the bottom of the crucible are in contact is suitably 40 to 200 ° C., preferably 50 to 150 ° C., more preferably 60 to 120 ° C. higher than Tg.
  • the solidification rate of the molten silicon is, for example, 0.1 to 1.5 mm / min, preferably 0.2 to 1.0 mm / min, and more preferably 0.3 to 0.5 mm / min. Is appropriate.
  • the superheat degree of molten silicon (the temperature of molten silicon ⁇ the solidification temperature of silicon) is suitably maintained at, for example, 40 ° C. or less, preferably 10 ° C. or less, more preferably 2 to 5 ° C. over the entire solidification time. .
  • FIG. 3A is a cross-sectional view of the polycrystalline silicon manufacturing apparatus of the present invention in the process of heating the crucible.
  • FIG.3 (b) is sectional drawing of the polycrystalline-silicon manufacturing apparatus of this invention in the process of cooling a crucible.
  • the polycrystalline silicon manufacturing apparatus (101) of the present invention is arranged above the crucible (103) capable of accommodating the silicon raw material (102) and the crucible (103).
  • the inside of the wall of the lower chamber (108) used as a cooling part and the inside of the induction heating coil (113) are cooled by a liquid medium method such as a water cooling method or a gas medium method such as an inert gas or air cooling method.
  • a lid (109) may be provided on the upper part of the crucible (103), and a support plate (110) for supporting the crucible (103) may be provided on the lower part of the crucible.
  • a nozzle (111) may be provided in the crucible (103), and an inert gas or the like is blown from the nozzle (111).
  • the crucible (103), the heater (104), and the heat conductor (106) are covered with heat insulating materials (112) and (114).
  • the gap (116) which is also a part of the cooling means (107). (See FIG. 3B) is closed.
  • the heat conductor (106) is heated by an induction heating coil (113) arranged outside the heat insulating material (112). Therefore, the cooling means (107) does not function in FIG.
  • FIG. 3A since the lower heat insulating material (114) constituting the cooling means (107) is in contact with the upper heat insulating material (112), the gap (116) which is also a part of the cooling means (107). (See FIG. 3B) is closed.
  • the heat conductor (106) is heated by an induction heating coil (113) arranged outside the heat insulating material (112). Therefore, the cooling means (107) does not function in
  • the lower heat insulating material (114) is lowered by the cylinder (115), and a gap (116) is provided.
  • a gap (116) is provided.
  • the vicinity of the open end of the heat conductor (106) in contact with the gap (116) is cooled.
  • the bottom temperature of the heater (104), the heat conductor (106), the opening end surface temperature, the front side temperature of the induction heating coil (113), and the furnace inner surface of the wall of the lower chamber are respectively temperature sensors (117). Can be measured.
  • Examples 1 and 2 Polycrystalline silicon was manufactured using a polycrystalline silicon manufacturing apparatus as shown in FIGS. 3 (a) and 3 (b). However, the support plate (110) was not used in the examples and comparative examples.
  • As the crucible a bottomed cylindrical crucible having a square bottom of 1000 mm square and a height of 650 mm was used. The thermal conductivity of the crucible was 4.5 W / m ⁇ K (measurement temperature 950 ° C.). The thickness of the crucible is 25 mm.
  • the crucible is made of opaque quartz, and a coating of silicon nitride added with 5% by mass of silica is applied to the inner surface of the crucible.
  • an isotropic graphite heat conductor G535 made by Tokai Carbon Co., Ltd. having a concave longitudinal section was used.
  • the heat conductor has a bottomed outer dimension of a square of 1100 mm square, and has a bottomed cylindrical shape with a wall height (Fig. 2 (a) 7) of 500 mm (Examples 1 and 2) (Fig. 1). (See (a), FIG. 2 (a)).
  • the thickness of the bottom and wall of the heat conductor (FIGS. 2 (a) 6 and 8) is 150 mm (Examples 1 and 2).
  • the thermal conductivity of the thermal conductor was 81 W / m ⁇ K (measured at room temperature (see JIS R1611 flash method)).
  • the air gap of the cooling means provided around the open end of the heat conductor was adjusted in the range of greater than 0 mm and not greater than 200 mm.
  • Polysilicon purchased by Wacker
  • isotropic graphite G535 manufactured by Tokai Carbon Co., Ltd. was used, and as a dielectric heating coil, a low frequency induction heating device (output 50 kW) manufactured by FUJI Electric Furnace was used.
  • Osaka Gas Chemical Co., Ltd. DONACARBO (DON-1000) was used for the heat insulating material in an apparatus.
  • the crucible was heated by a heater above the crucible and a heat conductor heated by a dielectric heating coil (50 Hz) so that the temperature of the molten silicon was 1550 ° C. After all of the silicon raw material has become molten silicon, stop heating the heat conductor, lower the lower heat insulating material for the heat conductor, provide a gap near the opening end of the heat conductor, and cool the heat conductor. Started.
  • the height of silicon added to the crucible is 300 mm
  • the solidification speed Vs is a target of 0.3 mm / min in Example 1, and a target of 0.5 mm / min in Example 2.
  • Comparative Example 1 instead of the heat conductor of the present invention, a water-cooled copper chiller (commercially deoxidized copper, 1,000 mm square, box-type cooling structure, cooling plate thickness: 12 mm, cooling water: A polycrystalline silicon ingot was produced in the same manner as in Example 1 except that a silicon raw material having a height of 250 mm was used and the silicon ingot was solidified when placed in the crucible. . Changes in the molten silicon surface temperature Ts (° C.), the temperature Tg (° C.) of the bottom outer surface of the water-cooled copper cooling chiller (the side in contact with the crucible bottom), and the solidification rate are shown in FIGS.

Abstract

This device that is for producing a polycrystalline silicon ingot and that contains a crucible, which can house a silicon starting material, a heater, which is disposed at the periphery of the crucible, a thermal transmitter, which is disposed below the crucible, and a cooling means, which cools the thermal transmitter, is characterized by the thermal transmitter forming a bottomed cylinder that opens downwards, the outer surface of the bottom of the thermal transmitter being disposed opposing the outer surface of the bottom of the crucible, and the vicinity of the open end of the thermal transmitter being cooled by the cooling means.

Description

多結晶シリコンインゴットの製造装置及びその製造方法Polycrystalline silicon ingot manufacturing apparatus and manufacturing method thereof
 本発明は、多結晶シリコンインゴットを製造するための製造装置及び多結晶シリコンインゴットを製造するための方法に関する。 The present invention relates to a manufacturing apparatus for manufacturing a polycrystalline silicon ingot and a method for manufacturing a polycrystalline silicon ingot.
 多結晶シリコン(multi-crystalline silicon)は、主に太陽電池用の基板材料として用いられる。太陽電池等に用いられる多結晶シリコンは、通常多結晶シリコンのインゴットから任意の大きさ及び形状に切断されて製造される。多結晶シリコンのインゴットは、通常、ルツボに収容され、該ルツボを加熱して溶融シリコンを得、その後ルツボをその底部から冷却してシリコンを凝固することによって製造される(特許文献1及び2参照)。近年では、大口径の多結晶シリコンウエハーを得るため、より大きな多結晶シリコンインゴットを製造する要求がある。大きな多結晶シリコンインゴットを製造するためには、ルツボ底部からの抜熱量を制御してシリコンの凝固速度を適切に制御することが要求される。しかし、シリコンの凝固速度の制御は、抜熱量を微妙かつ精密に制御する必要があるため、困難を極めていた(特許文献3)。たとえば溶融したシリコンの凝固中、従来の抜熱法ではルツボ底部からの抜熱量が大きい傾向にあったため、凝固初期から中期に急速に凝固が進行しないよう、溶融シリコンの温度(溶湯温度)を、シリコンの凝固温度(1410℃)より十分に高い温度(たとえば1440~1460℃)に保たなければならなかった。かかる条件下で得られるシリコン結晶は格子欠陥が多く、太陽電池用の基板に加工した場合にエネルギー変換効率が低くなるなど品質的な問題があった。また、シリコンの凝固速度を適切に制御するため、これまでに、装置内におけるルツボの位置を制御して抜熱量をコントロールする方法や(特許文献3)、ルツボ内の温度分布を制御する方法(特許文献4)などが知られている。しかし、これらの方法では、ルツボからの抜熱量を完全に制御することは困難であった。 Multi-crystalline silicon is mainly used as a substrate material for solar cells. Polycrystalline silicon used for solar cells and the like is usually manufactured by cutting a polycrystalline silicon ingot into an arbitrary size and shape. An ingot of polycrystalline silicon is usually contained in a crucible, and is manufactured by heating the crucible to obtain molten silicon, and then cooling the crucible from its bottom to solidify the silicon (see Patent Documents 1 and 2). ). In recent years, in order to obtain a large-diameter polycrystalline silicon wafer, there is a demand for manufacturing a larger polycrystalline silicon ingot. In order to manufacture a large polycrystalline silicon ingot, it is required to appropriately control the solidification rate of silicon by controlling the amount of heat removed from the bottom of the crucible. However, it is extremely difficult to control the solidification rate of silicon because the amount of heat removal needs to be delicately and precisely controlled (Patent Document 3). For example, during the solidification of molten silicon, the amount of heat removed from the bottom of the crucible tended to be large in the conventional heat removal method, so the temperature of the molten silicon (melt temperature) was set so that solidification did not proceed rapidly from the initial solidification to the middle. It had to be kept at a temperature well above the solidification temperature of silicon (1410 ° C.) (eg 1440-1460 ° C.). The silicon crystal obtained under such conditions has many lattice defects and has a quality problem such as low energy conversion efficiency when processed into a solar cell substrate. In addition, in order to appropriately control the solidification rate of silicon, a method for controlling the amount of heat removal by controlling the position of the crucible in the apparatus (Patent Document 3) and a method for controlling the temperature distribution in the crucible ( Patent Document 4) is known. However, with these methods, it has been difficult to completely control the amount of heat removed from the crucible.
特開昭60-103017号公報JP 60-103017 A 特開昭63-166711号公報Japanese Unexamined Patent Publication No. Sho 63-166711 特開2002-308616号公報JP 2002-308616 A
 本発明は、ルツボからの抜熱量を適切に制御可能な、多結晶シリコンインゴットを製造するための製造装置を提供することを目的とする。
 本発明は、また、ルツボからの抜熱量を適切に制御して良好な多結晶シリコンインゴットを製造するための方法を提供することを目的とする。
 本発明は、特に、上記製造装置及び製造方法を採用することにより、種々のサイズの多結晶シリコンインゴットを製造することができ、かつ、該多結晶シリコンインゴットの全高さ方向においてきわめて結晶欠陥の少ない優れた結晶品質を有する多結晶シリコンインゴットを得ることを目的とする。
 本発明は、多結晶シリコンインゴットを製造するに当たり、ルツボの下方に配置されたルツボを冷却するための熱伝導体を用い、当該熱伝導体を特定の形状とし、かつ、熱伝導体の冷却方法を適切化することによって、ルツボの抜熱量を適切に制御することができるとの知見に基づいてなされたものである。
An object of this invention is to provide the manufacturing apparatus for manufacturing a polycrystalline-silicon ingot which can control appropriately the amount of heat removal from a crucible.
Another object of the present invention is to provide a method for producing a good polycrystalline silicon ingot by appropriately controlling the amount of heat removed from the crucible.
In particular, the present invention can produce polycrystalline silicon ingots of various sizes by employing the above production apparatus and production method, and has very few crystal defects in the entire height direction of the polycrystalline silicon ingot. An object is to obtain a polycrystalline silicon ingot having excellent crystal quality.
The present invention uses a heat conductor for cooling a crucible disposed below a crucible in manufacturing a polycrystalline silicon ingot, the heat conductor has a specific shape, and a method for cooling the heat conductor This is based on the knowledge that the heat removal amount of the crucible can be controlled appropriately by optimizing the above.
 具体的に、本発明は以下の内容を含み得るものである。
[1]シリコン原料を収容できるルツボと、該ルツボの周囲に配置されたヒーターと、該ルツボの下方に配置された熱伝導体と、該熱伝導体を冷却する冷却手段とを含む多結晶シリコンインゴット製造装置であって、前記熱伝導体が下方に開口した有底の筒状体をなし、前記熱伝導体の底部外面が前記ルツボの底部外面と対向して配置され、前記熱伝導体の開口端部近傍の開口部面積を凝固期間全域に渡って任意に変化させながら前記冷却手段によって冷却されることを特徴とする、多結晶シリコンインゴット製造装置。
[2]前記熱伝導体が、JIS R1611のフラッシュ法に基づいて25℃で測定して30~150W/m・Kの熱伝導率を有する、[1]に記載の多結晶シリコンインゴット製造装置。
[3]前記熱伝導体が、黒鉛製である、[1]又は[2]に記載の多結晶シリコンインゴット製造装置。
[4]前記熱伝導体を加熱する誘導加熱コイルを更に含む、[1]~[3]のいずれか1項に記載の多結晶シリコンインゴット製造装置。
[5]前記ルツボ、前記ヒーター、及び前記熱伝導体の少なくとも一部を覆う断熱材を更に含む、[1]~[4]のいずれか1項に記載の多結晶シリコンインゴット製造装置。
[6]前記ルツボの開口端部を覆う蓋と、該ルツボ内部に不活性ガスを吹き込むためのノズルとを更に備える、[1]~[5]のいずれか1項に記載の多結晶シリコンインゴット製造装置。
Specifically, the present invention can include the following contents.
[1] Polycrystalline silicon including a crucible capable of containing a silicon raw material, a heater disposed around the crucible, a heat conductor disposed below the crucible, and a cooling means for cooling the heat conductor An ingot manufacturing apparatus, wherein the heat conductor is formed in a bottomed cylindrical body that opens downward, and a bottom outer surface of the heat conductor is disposed to face a bottom outer surface of the crucible, The polycrystalline silicon ingot manufacturing apparatus is cooled by the cooling means while arbitrarily changing an opening area in the vicinity of the opening end over the entire solidification period.
[2] The polycrystalline silicon ingot manufacturing apparatus according to [1], wherein the thermal conductor has a thermal conductivity of 30 to 150 W / m · K measured at 25 ° C. based on a flash method of JIS R1611.
[3] The polycrystalline silicon ingot manufacturing apparatus according to [1] or [2], wherein the thermal conductor is made of graphite.
[4] The polycrystalline silicon ingot manufacturing apparatus according to any one of [1] to [3], further including an induction heating coil for heating the heat conductor.
[5] The polycrystalline silicon ingot manufacturing apparatus according to any one of [1] to [4], further including a heat insulating material covering at least part of the crucible, the heater, and the heat conductor.
[6] The polycrystalline silicon ingot according to any one of [1] to [5], further comprising a lid that covers an open end of the crucible and a nozzle for blowing an inert gas into the crucible. Manufacturing equipment.
[7](1)温度調節が可能なルツボにシリコン原料を収容する工程、
(2)前記ルツボ内のシリコン原料を、シリコンの融点以上の温度に加熱して前記シリコン原料を溶融する工程、
(3)前記ルツボ内の溶融シリコンを、該ルツボの下方に配置された熱伝導体を介して冷却し、多結晶シリコンインゴットを得る工程、
を含む多結晶シリコンインゴット製造方法であって、前記熱伝導体が下方に開口した有底の筒状体をなし、前記熱伝導体の底部外面が前記ルツボの底部外面と対向して配置され、前記熱伝導体の開口端部近傍が前記冷却手段によって冷却されることを特徴とする、多結晶シリコンインゴット製造方法。
[8]前記冷却が、前記熱伝導体の底部外面の温度(Tg)(℃)を、以下の一次近似式
Tg=a-bt
(式中、aは1,250~1,400であり、bは10~35であり、tは冷却開始からの経過時間(時)である)
とする条件で行われる、[7]に記載の多結晶シリコンインゴット製造方法。
[9] 前記加熱が、前記ルツボの周囲に配置されたヒーターと、誘導加熱コイルによって加熱される前記熱伝導体とによって行われる、[7]又は[8]に記載の多結晶シリコンインゴット製造方法。
[10] 前記加熱及び冷却工程が、不活性ガス雰囲気下で行われる、[7]~[9]のいずれか1項に記載の多結晶シリコンインゴット製造方法。
[7] (1) The process of accommodating the silicon raw material in a temperature-controllable crucible,
(2) a step of melting the silicon raw material by heating the silicon raw material in the crucible to a temperature equal to or higher than the melting point of silicon;
(3) The step of cooling the molten silicon in the crucible through a heat conductor disposed below the crucible to obtain a polycrystalline silicon ingot;
A method for producing a polycrystalline silicon ingot, comprising: a bottomed tubular body in which the heat conductor is opened downward, and a bottom outer surface of the heat conductor is disposed to face a bottom outer surface of the crucible, A method for producing a polycrystalline silicon ingot, wherein the vicinity of the open end of the heat conductor is cooled by the cooling means.
[8] The cooling causes the temperature (Tg) (° C.) of the bottom outer surface of the heat conductor to be expressed by the following linear approximation Tg = a−bt
(Wherein, a is 1,250 to 1,400, b is 10 to 35, and t is the elapsed time (hours) from the start of cooling)
The method for producing a polycrystalline silicon ingot according to [7], which is performed under the conditions:
[9] The method for producing a polycrystalline silicon ingot according to [7] or [8], wherein the heating is performed by a heater disposed around the crucible and the thermal conductor heated by an induction heating coil. .
[10] The method for producing a polycrystalline silicon ingot according to any one of [7] to [9], wherein the heating and cooling steps are performed in an inert gas atmosphere.
 本発明により、ルツボからの抜熱量を適切に制御可能な、多結晶シリコンインゴットを製造するための製造装置を提供できる。特に、ルツボの下方に配置された特殊な形状の熱伝導体により、ルツボから適切に抜熱することができる。また、本発明により、ルツボからの抜熱量を適切に制御して良好な品質の結晶を有する多結晶シリコンインゴットを製造するための方法を提供することができる。特に、冷却条件を従来のようなルツボの上部温度やルツボ自体の冷却条件に頼ることなく、ルツボに近接する熱伝導体の温度に着目してルツボの冷却を制御することにより、ルツボが過冷却されることなく適切な温度で冷却することができる。特に、シリコンの凝固時間全域に渡って、溶融シリコンの過熱度(溶融シリコンの溶湯温度-シリコンの凝固温度)を40℃以下、好ましくは10℃以下より好ましくは2~5℃に保つことにより、きわめて結晶欠陥の少ない高品質な多結晶シリコンを得ることができる。 According to the present invention, it is possible to provide a manufacturing apparatus for manufacturing a polycrystalline silicon ingot capable of appropriately controlling the amount of heat removed from the crucible. In particular, heat can be appropriately removed from the crucible by the heat conductor having a special shape arranged below the crucible. In addition, according to the present invention, it is possible to provide a method for producing a polycrystalline silicon ingot having crystals of good quality by appropriately controlling the amount of heat removed from the crucible. In particular, the crucible is supercooled by controlling the cooling of the crucible by focusing on the temperature of the heat conductor close to the crucible without relying on the conventional crucible top temperature or the cooling conditions of the crucible itself. It can be cooled at an appropriate temperature without being done. In particular, by maintaining the superheat degree of molten silicon (molten silicon melt temperature−silicon solidification temperature) at 40 ° C. or less, preferably 10 ° C. or less, more preferably 2 to 5 ° C. High-quality polycrystalline silicon with very few crystal defects can be obtained.
本発明の熱伝導体の概略図である。It is the schematic of the heat conductor of this invention. 本発明の熱伝導体の縦断面図である。It is a longitudinal cross-sectional view of the heat conductor of this invention. ルツボを加熱する工程における、本発明の多結晶シリコンインゴット製造装置の断面図である。It is sectional drawing of the polycrystalline-silicon ingot manufacturing apparatus of this invention in the process of heating a crucible. ルツボを冷却する工程における、本発明の多結晶シリコンインゴット製造装置の断面図である。It is sectional drawing of the polycrystalline-silicon ingot manufacturing apparatus of this invention in the process of cooling a crucible. 実施例1における溶融シリコンの温度Ts(℃)、ルツボ底部内側の温度Tx(℃)、熱伝導体の底部外面の温度Tg(℃)の凝固開始から終了までの時間変化である。FIG. 6 shows time changes from the start to the end of solidification of the temperature Ts (° C.) of molten silicon, the temperature Tx (° C.) inside the bottom of the crucible, and the temperature Tg (° C.) of the outer surface of the bottom of the heat conductor in Example 1. 実施例2における溶融シリコンの温度Ts(℃)、ルツボ底部内側の温度Tx(℃)、熱伝導体の底部外面の温度Tg(℃)の凝固開始から終了までの時間変化である。FIG. 4 shows time changes from the start to the end of solidification of molten silicon temperature Ts (° C.), crucible bottom inner temperature Tx (° C.), and heat conductor bottom outer surface temperature Tg (° C.) in Example 2. 比較例1における溶融シリコンの温度Ts(℃)、水冷式銅製冷却チラーの底部外面(ルツボ底部と接する黒鉛製支持板)の温度Tg(℃)の凝固開始から終了までの時間変化である。FIG. 5 is a time change from the start to the end of solidification of a temperature Ts (° C.) of molten silicon and a temperature Tg (° C.) of a bottom outer surface of a water-cooled copper cooling chiller (a graphite support plate in contact with a crucible bottom) in Comparative Example 1; 実施例1、2及び比較例1における凝固速度(mm/分)の凝固開始から終了までの時間変化である。It is a time change from the solidification start to completion | finish of solidification speed | rate (mm / min) in Example 1, 2 and Comparative Example 1. FIG.
[A]多結晶シリコン製造装置
 以下、本発明の多結晶シリコンインゴット製造装置について、詳細に説明する。
(1)本発明の多結晶シリコンインゴット製造装置は、シリコン原料を収容できるルツボと、該ルツボの周囲に配置されたヒーターと、該ルツボの下方に配置された熱伝導体と、該熱伝導体を冷却する冷却手段とを含む。また、本発明の多結晶シリコンインゴット製造装置は、任意に、誘導加熱コイル、断熱材、蓋、不活性ガスを吹き込むためのノズル等を含む。以下、それぞれの部材について説明する。
[A] Polycrystalline silicon manufacturing apparatus Hereinafter, the polycrystalline silicon ingot manufacturing apparatus of the present invention will be described in detail.
(1) The polycrystalline silicon ingot manufacturing apparatus of the present invention includes a crucible that can contain a silicon raw material, a heater disposed around the crucible, a heat conductor disposed below the crucible, and the heat conductor. Cooling means for cooling. Moreover, the polycrystalline silicon ingot manufacturing apparatus of the present invention optionally includes an induction heating coil, a heat insulating material, a lid, a nozzle for blowing an inert gas, and the like. Hereinafter, each member will be described.
・ルツボ
 ルツボは、シリコン原料を収容し、シリコン原料を加熱して溶融シリコンを得、さらに冷却して多結晶シリコンインゴットを製造するために使用される。ルツボの形状は、上端が開口した有底の筒状体であることが好ましく、底部がフラットであることがより好ましい。該底部は、円形又は三角形以上の多角形であってもよいが、円形や四角形が好ましい。ルツボの大きさは、作製する多結晶シリコンの大きさにもよるが、例えば、ルツボが有底で底部が正方形の筒形である場合、底部の外寸は、例えば、300~1500mm四方、好ましくは500~1200mm四方、より好ましくは670~1000mm四方であり、底部の厚みは、例えば、1~50mm、好ましくは5~30mm、より好ましくは10~25mmであることが適当である。ルツボの高さは、例えば100~1000mm、好ましくは200~800mm、より好ましくは300~700mmであることが適当である。例えば、ルツボが有底の円筒形である場合、底部は、例えば、半径150~750mm、好ましくは半径250~600mm、より好ましくは半径335~500mmの円形であり、底部の厚みは、例えば1mm~100mm、好ましくは5mm~70mm、より好ましくは10mm~50mmであることが適当である。ルツボの高さは、例えば、100~1000mm、好ましくは200~800mm、より好ましくは300~500mmであることが適当である。また、ルツボの壁部の厚みは、例えば、1~50mm、好ましくは5~30mm、より好ましくは10~25mmであることが適当である。ルツボの熱伝導率は、JIS R1611のフラッシュ法に基づいて25℃で測定した場合、例えば1.2~11.6W/m・K、好ましくは1.7~5.8W/m・K、より好ましくは2.3~4.7W/m・Kであることが適当である。
 ルツボの上部には、蓋を設けることができる。
 ルツボ及び蓋としては、特に限定されず、通常の多結晶シリコンインゴット製造装置に用いられる公知のルツボ及び蓋を使用できる。例えばルツボは不透明石英及び蓋としては黒鉛が好ましい。ルツボの壁面は、例えば1~10質量%、好ましくは3~7質量%、より好ましくは4~6質量%のシリカを含んだ窒化ケイ素でコーティングされていることが好ましい。
A crucible is used to contain a silicon raw material, heat the silicon raw material to obtain molten silicon, and further cool it to produce a polycrystalline silicon ingot. The shape of the crucible is preferably a bottomed cylindrical body having an open upper end, and more preferably the bottom is flat. The bottom may be a circle or a polygon that is greater than or equal to a triangle, but is preferably a circle or a rectangle. Although the size of the crucible depends on the size of the polycrystalline silicon to be produced, for example, when the crucible has a bottomed and square bottom, the outer size of the bottom is, for example, 300 to 1500 mm square, preferably Is 500 to 1200 mm square, more preferably 670 to 1000 mm square, and the thickness of the bottom is, for example, 1 to 50 mm, preferably 5 to 30 mm, more preferably 10 to 25 mm. The height of the crucible is, for example, 100 to 1000 mm, preferably 200 to 800 mm, more preferably 300 to 700 mm. For example, when the crucible is a bottomed cylinder, the bottom is, for example, a circle having a radius of 150 to 750 mm, preferably a radius of 250 to 600 mm, more preferably a radius of 335 to 500 mm, and the thickness of the bottom is, for example, 1 mm to It is appropriate that the thickness is 100 mm, preferably 5 mm to 70 mm, more preferably 10 mm to 50 mm. The height of the crucible is, for example, 100 to 1000 mm, preferably 200 to 800 mm, more preferably 300 to 500 mm. The thickness of the crucible wall is suitably 1 to 50 mm, preferably 5 to 30 mm, more preferably 10 to 25 mm, for example. The thermal conductivity of the crucible is, for example, 1.2 to 11.6 W / m · K, preferably 1.7 to 5.8 W / m · K, more preferably 2.3 to 4.7 W when measured at 25 ° C. based on the flash method of JIS R1611. / m · K is appropriate.
A lid can be provided on the top of the crucible.
The crucible and lid are not particularly limited, and known crucibles and lids used in ordinary polycrystalline silicon ingot production apparatuses can be used. For example, the crucible is preferably opaque quartz and the lid is preferably graphite. The wall surface of the crucible is preferably coated with silicon nitride containing, for example, 1 to 10% by mass, preferably 3 to 7% by mass, more preferably 4 to 6% by mass silica.
・ノズル
 多結晶シリコンインゴットの製造中、特に、シリコン原料を加熱及び冷却する際、ルツボ内部に不活性ガスを吹き込むためのノズルを設け、該ノズルから不活性ガスをルツボ内に吹き込んでもよい。不活性ガスとしては、希ガスが好ましく、例えばヘリウムガス、アルゴンガス等が好ましい。不活性ガスに加え、一酸化炭素ガスのような酸素濃度を低下・制御できるガスを加えてもよい。アルゴンガスに一酸化炭素ガスを加える場合、一酸化炭素ガスの濃度が、例えば600~1400ppmm、好ましくは800~1200ppm、より好ましくは1000~1100ppmであることが適当である。
・シリコン原料
 ルツボに収容されるシリコン原料としては、例えば純度6-N以上、好ましくは7-N以上、より好ましくは9-N以上(つまり純度99.9999999%)の純度を有するポリシリコンが適当である。
-Nozzle During the manufacture of the polycrystalline silicon ingot, particularly when heating and cooling the silicon raw material, a nozzle for blowing an inert gas into the crucible may be provided, and the inert gas may be blown into the crucible from the nozzle. As the inert gas, a rare gas is preferable, and for example, helium gas and argon gas are preferable. In addition to the inert gas, a gas such as carbon monoxide gas that can lower and control the oxygen concentration may be added. When carbon monoxide gas is added to the argon gas, the concentration of carbon monoxide gas is, for example, 600 to 1400 ppmm, preferably 800 to 1200 ppm, more preferably 1000 to 1100 ppm.
-Silicon raw material As the silicon raw material contained in the crucible, for example, polysilicon having a purity of 6-N or higher, preferably 7-N or higher, more preferably 9-N or higher (that is, a purity of 99.9999999%) is appropriate. It is.
・ヒーター
 ヒーターは、上記ルツボの周囲、即ち、上方及び/又は少なくとも一方向の側方、好ましくは上方に配置される。ヒーターとしては、温度調節可能なヒーターであれば、等方性黒鉛等の黒鉛や炭素繊維コンポジッット(CCM)等を発熱体に用いた抵抗加熱式ヒーターや誘導加熱式ヒーターなど、公知のヒーターを使用することができる。
・熱伝導体
 熱伝導体は、ルツボの下方に配置される。1つの熱伝導体上には、1つ又は複数のルツボを配置してもよい。また、熱伝導体とルツボとは密着していても離間していてもよく、さらに、熱伝導体とルツボとの間にルツボを支えるための支持板を備えていてもよい。熱伝導体は、該熱伝導体の底部外面が上記ルツボの底部外面と対向して配置される。このように配置されることにより、ルツボは熱伝導体を通じて効率的に冷却され、時には加熱される。熱伝導体の外形の例を図1に示す。図1(a)は、底部が矩形又は正方形の筒状体である。図1(b)は、底部が矩形又は正方形で、かつ底部が側壁の壁部から外方に向かって一定の長さ突き出た形状を有する筒状体である。図1(c)は、底部が円形の筒状体である。図1(b)の筒状体の底部が側壁から突き出る長さは、例えば、70~220mm、好ましくは、60~120mm、より好ましくは50~100mmであり、側壁の壁部の外寸の1~30%、好ましくは5~20%突き出ているものであってもよい。熱伝導体の形状として好ましくは、一端が開口した有底の底部が正方形の筒状体である。熱伝導体の縦断面の形状としては、凹型(図1(a)又は(c)参照)、π型(又はΠ型、図1(b)参照)、であることが好ましく、特に凹型であることが好ましい。凹型の熱伝導体の縦断面図を図2(a)に示す。熱伝導体は、ルツボが配置される側とは反対側、即ち、下方に開口した有底の筒状体をなし、熱伝導体の内側がくりぬかれた形状となっている。熱伝導体の内側の部分、即ち当該くりぬかれた部分の縦断面の形状は、三角形(図2(b)(c)参照)、四角形(図2(d)参照)等の多角形や、半円形(図2(e)参照)など曲線形であってもよい。
 また、図2(a)に示すとおり、開口端部(図2(a)9)の縦断面形状は、壁部の厚みが変化しない矩形であってもよいが、図2(f)のように壁部の厚みよりも一段階または二段階細くなっていてもよい。例えば、壁部の高さ(図2(a)7)が500~1000mmで壁部の厚さが、60~180mmの場合、開口端部(図2(f)9)の高さは50~200mm(壁部の高さの5~20%)、開口端部の厚さは30~100mm(壁部の厚さの30~60%)程度であることが適当である。
Heater The heater is arranged around the crucible, that is, above and / or at least one side, preferably above. As the heater, if it is a temperature adjustable heater, a known heater such as a resistance heater or an induction heater using a graphite such as isotropic graphite or a carbon fiber composite (CCM) as a heating element is used. can do.
-Heat conductor A heat conductor is arrange | positioned under the crucible. One or more crucibles may be arranged on one heat conductor. Further, the heat conductor and the crucible may be in close contact with each other or may be separated from each other, and a support plate for supporting the crucible may be provided between the heat conductor and the crucible. The heat conductor is disposed so that the bottom outer surface of the heat conductor faces the bottom outer surface of the crucible. With this arrangement, the crucible is efficiently cooled through the heat conductor and sometimes heated. An example of the outer shape of the heat conductor is shown in FIG. FIG. 1 (a) shows a cylindrical body having a rectangular or square bottom. FIG. 1B shows a cylindrical body having a shape in which the bottom portion is rectangular or square and the bottom portion protrudes outward from the wall portion of the side wall by a certain length. FIG.1 (c) is a cylindrical body with a circular bottom part. The length of the bottom of the cylindrical body in FIG. 1B protruding from the side wall is, for example, 70 to 220 mm, preferably 60 to 120 mm, more preferably 50 to 100 mm. It may be protruding up to 30%, preferably 5-20%. The shape of the heat conductor is preferably a cylindrical body having a bottom with a bottom that is open at one end. The shape of the longitudinal section of the heat conductor is preferably concave (see FIG. 1 (a) or (c)), π-type (or saddle-shaped, see FIG. 1 (b)), and particularly concave. It is preferable. A longitudinal sectional view of the concave heat conductor is shown in FIG. The heat conductor has a bottomed cylindrical body that is open on the side opposite to the side where the crucible is arranged, that is, the bottom, and the inside of the heat conductor is hollowed out. The shape of the longitudinal section of the inner part of the heat conductor, that is, the hollowed-out part, is a polygon such as a triangle (see FIGS. 2B and 2C), a quadrangle (see FIG. 2D), or a half It may be a curved shape such as a circle (see FIG. 2E).
Further, as shown in FIG. 2 (a), the longitudinal sectional shape of the opening end portion (FIG. 2 (a) 9) may be a rectangle in which the thickness of the wall portion does not change, but as shown in FIG. 2 (f). Further, it may be thinner by one step or two steps than the thickness of the wall portion. For example, when the height of the wall (FIG. 2 (a) 7) is 500 to 1000 mm and the wall thickness is 60 to 180 mm, the height of the opening end (FIG. 2 (f) 9) is 50 to Appropriately, the thickness is 200 mm (5 to 20% of the height of the wall) and the thickness of the opening end is about 30 to 100 mm (30 to 60% of the thickness of the wall).
 熱伝導体は、熱伝導率が室温(25℃)で測定して(JIS R1611 フラッシュ法を参照)、30~150W/m・K、好ましくは40~120W/m・K、より好ましくは50~100W/m・Kの固体であればいかなる材料も使用できるが、好ましくは黒鉛製である。熱伝導体として使用できる特に好ましい黒鉛としては、東海カーボン(株)製の等方性黒鉛G535、G330、G320、G347等を挙げることができる。上記支持板も熱伝導体と同様の熱伝導率を有する固体であることが好ましく、より好ましくは熱伝導体と同様の黒鉛製である。
 熱伝導体のサイズは、凝固の制御精度を維持するために、熱伝導体の熱容量が凝固開始時のルツボの熱容量および原料シリコンの熱容量および原料シリコンの凝固潜熱の総和以下、例えば、該総和の90%以下、好ましくは1~80%、より好ましくは、10~60%であることが重要である。例えば、熱伝導体が有底で底部(即ち、筒状体の内側の底部(図2(a)2))が正方形の筒形である場合、該底部の外寸(図2(a)4)は、例えばルツボの外寸(ルツボを複数配置する場合は各ルツボの外寸の総和)の±400mm、好ましくはルツボの底部の外寸の±200mm,より好ましくはルツボの外寸の±50mmに等しいサイズが適当である。具体的には、熱伝導体の底部の外寸は、例えば、100~4000mm四方、好ましくは200~2000mm四方、より好ましくは300~1500mm四方であることが適当である。また底部の厚み(図2(a)6)は、例えば5mm~200mm,好ましくは20mm~100mm、より好ましくは30mm~60mmである。また筒状壁部の高さ(図2(a)7)は、例えば、250mm~2000mm、好ましくは400mm~1500mm、より好ましくは500mm~1000mmであることが適当である。筒状壁部の厚み(図2(a)8)は、例えば20mm~300mm、好ましくは40mm~250mm、より好ましくは60~180mmである。
 例えば、熱伝導体が有底の円筒形である場合、底部の半径は、例えば、ルツボの半径の±200mm、好ましくは±100mm,より好ましくは±50mmであることが適当である。具体的には、該底部の半径は、例えば100~1000mm、好ましくは半径150~800mm、より好ましくは半径200~500mmであることが適当である。また、底部の厚みは、例えば5mm~200mm、好ましくは20mm~100mm、より好ましくは30mm~60mmである。筒状壁部の厚みは、例えば20mm~100mm、好ましくは30mm~70mm、より好ましくは40mm~50mmであり、また筒状壁部の高さは、例えば250mm~700mm、好ましくは350mm~550mm、より好ましくは400mm~500mmである。支持板の厚さは、例えば、5~100mm、好ましくは10~60mm、より好ましくは20~50mmであることが適当である。
The thermal conductor has a thermal conductivity measured at room temperature (25 ° C.) (see JIS R1611 flash method), 30 to 150 W / m · K, preferably 40 to 120 W / m · K, more preferably 50 to Any material can be used as long as it is a solid of 100 W / m · K, but it is preferably made of graphite. Particularly preferable graphite that can be used as the heat conductor includes isotropic graphites G535, G330, G320, and G347 manufactured by Tokai Carbon Co., Ltd. The support plate is also preferably a solid having a thermal conductivity similar to that of the heat conductor, and more preferably made of graphite similar to the heat conductor.
In order to maintain the control accuracy of solidification, the size of the heat conductor is such that the heat capacity of the heat conductor is equal to or less than the sum of the heat capacity of the crucible at the start of solidification and the heat capacity of the raw silicon and the solidification latent heat of the raw silicon. It is important that it is 90% or less, preferably 1 to 80%, more preferably 10 to 60%. For example, when the heat conductor has a bottom and the bottom (that is, the inner bottom of the cylindrical body (FIG. 2 (a) 2)) is a square cylinder, the outer dimension of the bottom (FIG. 2 (a) 4 ) Is, for example, ± 400 mm of the outer dimensions of the crucible (the sum of the outer dimensions of each crucible when a plurality of crucibles are arranged), preferably ± 200 mm of the outer dimensions of the bottom of the crucible, more preferably ± 50 mm of the outer dimensions of the crucible. A size equal to is appropriate. Specifically, the outer dimension of the bottom of the heat conductor is, for example, 100 to 4000 mm square, preferably 200 to 2000 mm square, more preferably 300 to 1500 mm square. The thickness of the bottom (FIG. 2 (a) 6) is, for example, 5 mm to 200 mm, preferably 20 mm to 100 mm, more preferably 30 mm to 60 mm. The height of the cylindrical wall portion (FIG. 2 (a) 7) is suitably, for example, 250 mm to 2000 mm, preferably 400 mm to 1500 mm, more preferably 500 mm to 1000 mm. The thickness of the cylindrical wall (FIG. 2 (a) 8) is, for example, 20 mm to 300 mm, preferably 40 mm to 250 mm, and more preferably 60 to 180 mm.
For example, when the heat conductor has a bottomed cylindrical shape, the radius of the bottom is suitably, for example, ± 200 mm, preferably ± 100 mm, more preferably ± 50 mm of the radius of the crucible. Specifically, the radius of the bottom is, for example, 100 to 1000 mm, preferably 150 to 800 mm, more preferably 200 to 500 mm. The thickness of the bottom is, for example, 5 mm to 200 mm, preferably 20 mm to 100 mm, more preferably 30 mm to 60 mm. The thickness of the cylindrical wall is, for example, 20 mm to 100 mm, preferably 30 mm to 70 mm, more preferably 40 mm to 50 mm, and the height of the cylindrical wall is, for example, 250 mm to 700 mm, preferably 350 mm to 550 mm. The thickness is preferably 400 mm to 500 mm. The thickness of the support plate is, for example, 5 to 100 mm, preferably 10 to 60 mm, more preferably 20 to 50 mm.
・冷却手段
 上記熱伝導体は、該熱伝導体の開口端部(図2(a)9)の近傍が冷却手段によって冷却される。このように、開口端部近傍のみが冷却されることにより、該開口端部に近い熱伝導体の底部では、熱伝導体内部を直接熱が伝わり、該底部が冷却される(熱伝導)。また、該開口端部から遠い熱伝導体の底部では、熱伝導体の開口部を熱が輻射によって開口端部近傍に伝わり、該底部が冷却される(熱放射)。このように、本発明の熱伝導体は、開口部を有すること及び熱伝導体の開口端部近傍が冷却手段によって冷却されることにより、熱伝導体の底部を均一に冷却することができる。
 冷却手段としては、内側が冷却されている下部室の壁およびコイル部分を冷却するための冷媒によって冷却された誘導加熱コイルなどの冷却部分が挙げられる。これら冷却部分が熱伝導体開口端部に面して外側に配置されていることにより、熱伝導体の開口端部に接触すること無く、熱伝導体の開口端部表面から当該冷却部分への輻射伝熱を利用して冷却が行われる。冷却部分の冷却には水冷方式等の液体媒体方式や不活性ガスや空冷方式等の気体媒体方式を利用することができる。輻射伝熱量(Q)は、熱伝導体開口端部の表面温度(T1)の4乗と冷却部分の表面温度(T2)の4乗の差に比例するため(Q=A×B×k×(T14-T24)、式中、Aは熱伝導体開口端部の表面積、Bは形態係数、kはボルツマン係数)、上記冷却部分の表面温度を、温度センサーで測温しつつ、熱伝導体開口端部の開口している表面積(A)を任意に調整しながら、抜熱量を制御することができる。
 冷却手段によって冷却される熱伝導体の開口端部近傍部分は、特に限定されないが、熱伝導体筒状壁の高さを100%とした場合、開口端部から1~70%、好ましくは1~50%、より好ましくは1~40%の高さの領域を言う。開口端部近傍には、開口端部自体を含めてもよい。具体的には、熱伝導体の開口端部周辺に設けられた冷却手段との空隙は、例えば、0mmより大きく400mm以下、好ましくは1mm~300mm、より好ましくは10mm~200mmが適当である。
-Cooling means The heat conductor is cooled by the cooling means in the vicinity of the open end (FIG. 2 (a) 9) of the heat conductor. In this way, by cooling only the vicinity of the opening end, heat is directly transferred through the inside of the heat conductor at the bottom of the heat conductor close to the opening end, and the bottom is cooled (heat conduction). Further, at the bottom of the thermal conductor far from the opening end, heat is transmitted to the vicinity of the opening end by radiation through the opening of the thermal conductor, and the bottom is cooled (thermal radiation). As described above, the heat conductor of the present invention has the opening and the vicinity of the opening end of the heat conductor is cooled by the cooling means, whereby the bottom of the heat conductor can be uniformly cooled.
The cooling means includes a cooling portion such as an induction heating coil cooled by a refrigerant for cooling the wall of the lower chamber and the coil portion that are cooled on the inside. Since these cooling parts are arranged on the outer side facing the opening end of the heat conductor, the surface from the opening end of the heat conductor to the cooling part is not contacted with the opening end of the heat conductor. Cooling is performed using radiant heat transfer. For cooling the cooling part, a liquid medium method such as a water cooling method or a gas medium method such as an inert gas or air cooling method can be used. The amount of radiant heat transfer (Q) is proportional to the difference between the fourth power of the surface temperature (T1) of the open end of the heat conductor and the fourth power of the surface temperature (T2) of the cooling part (Q = A × B × k × (T1 4 -T2 4 ), where A is the surface area of the open end of the heat conductor, B is the shape factor, k is the Boltzmann coefficient), and the surface temperature of the cooling part is measured with a temperature sensor, The amount of heat removal can be controlled while arbitrarily adjusting the surface area (A) of the open end of the conductor.
The portion near the opening end of the heat conductor cooled by the cooling means is not particularly limited, but when the height of the heat conductor cylindrical wall is 100%, it is 1 to 70%, preferably 1 from the opening end. An area with a height of ˜50%, more preferably 1-40%. The opening end itself may be included in the vicinity of the opening end. Specifically, the gap with the cooling means provided around the opening end of the heat conductor is, for example, larger than 0 mm and not more than 400 mm, preferably 1 mm to 300 mm, more preferably 10 mm to 200 mm.
・断熱材
 ルツボ中のシリコン原料をヒーターにより加熱する際、本発明の多結晶シリコン製造装置全体、特にルツボ及び熱伝導体全体が外部から断熱されていることが熱効率の面から見て好ましい。従って、加熱中は熱伝導体と冷却手段が断熱されていることが好ましい。断熱する手段としては、例えば、熱伝導体用の置台と、ルツボ及び熱伝導体を覆う断熱材とを密着させることが挙げられる。一方、冷却中においては、例えば、当該熱伝導体開口端部近傍の下部断熱材を、該断熱材の昇降用シリンダーによって下降させ、熱伝導体の開口端部近傍に空隙を作る。この空隙を通して、下部室の壁や誘導加熱コイルなど熱伝導体に接触することなく外周部に配置された冷却部分への輻射伝熱によって冷却する。輻射伝熱量は、熱伝導体開口端部表面の温度及び冷却部分表面温度に応じて熱伝導体開口端部の開口部の面積を変化させることで任意に制御できる。ここで断熱材は、上記ルツボ、ヒーター背面、及び熱伝導体の少なくとも一部を覆うことができる。断熱材としては、少なくとも2000℃以上、好ましくは2500℃以上の耐熱性を有する断熱材が好ましい。断熱材としては炭素繊維成形断熱材等が望ましい。好ましい断熱材の例としては、例えば、大阪ガスケミカル(株)製のDONACARBO(DON-1000、DON-2000、DON-3000、DON-4000)を挙げることができる。
-Heat insulating material When the silicon raw material in the crucible is heated by a heater, it is preferable from the viewpoint of thermal efficiency that the entire polycrystalline silicon manufacturing apparatus of the present invention, in particular, the entire crucible and the entire heat conductor is insulated from the outside. Therefore, it is preferable that the heat conductor and the cooling means are insulated during heating. As a means to insulate, for example, a mounting table for a heat conductor and a heat insulating material covering the crucible and the heat conductor may be closely attached. On the other hand, during cooling, for example, the lower heat insulating material in the vicinity of the opening end portion of the heat conductor is lowered by the lifting cylinder of the heat insulating material to create a gap in the vicinity of the opening end portion of the heat conductor. Through this gap, cooling is performed by radiant heat transfer to a cooling portion disposed on the outer peripheral portion without contacting a heat conductor such as a wall of the lower chamber or an induction heating coil. The amount of radiant heat transfer can be arbitrarily controlled by changing the area of the opening at the opening end of the heat conductor according to the temperature at the opening end surface of the heat conductor and the surface temperature of the cooling portion. Here, the heat insulating material can cover at least a part of the crucible, the heater back surface, and the heat conductor. As the heat insulating material, a heat insulating material having heat resistance of at least 2000 ° C. or more, preferably 2500 ° C. or more is preferable. As the heat insulating material, a carbon fiber molded heat insulating material or the like is desirable. Examples of preferable heat insulating materials include DONACARBO (DON-1000, DON-2000, DON-3000, DON-4000) manufactured by Osaka Gas Chemical Co., Ltd.
・誘導加熱コイル
 熱伝導体は、誘導加熱コイルによって加熱され、ルツボの下部から加熱できるヒーターとして用いてもよい。誘導加熱コイルは、熱伝導体と離間して配置できるので、熱伝導体が断熱材によって覆われている場合でも、当該断熱材の外側から熱伝導体を加熱することができる。また、誘導加熱コイルは、熱伝導体の表面のみならず、熱伝導体の内部も加熱することができるので、熱伝導体の底部を均一に加熱できるという利点がある。誘導加熱コイルは、温度センサーを設けて、温度調節できることが好ましい。誘導コイルは、例えば、1~500Hz、好ましくは10~300Hz、より好ましくは30~100Hzの周波数に制御される。
-Induction heating coil A heat conductor may be heated by an induction heating coil, and may be used as a heater which can be heated from the lower part of a crucible. Since the induction heating coil can be arranged separately from the heat conductor, the heat conductor can be heated from the outside of the heat insulating material even when the heat conductor is covered with the heat insulating material. In addition, since the induction heating coil can heat not only the surface of the heat conductor but also the inside of the heat conductor, there is an advantage that the bottom of the heat conductor can be uniformly heated. The induction heating coil is preferably provided with a temperature sensor so that the temperature can be adjusted. The induction coil is controlled to a frequency of 1 to 500 Hz, preferably 10 to 300 Hz, more preferably 30 to 100 Hz, for example.
[B]多結晶シリコンインゴット製造方法
 本発明の多結晶シリコン製造方法は、上述した多結晶シリコンインゴット製造装置を用いて行われ、かつ以下の工程、
(1)温度調節が可能なルツボにシリコン原料を収容する工程、
(2)前記ルツボ内のシリコン原料を、シリコンの融点以上の温度に加熱して前記シリコン原料を溶融する工程、
(3)前記ルツボ内の溶融シリコンを、該ルツボの下方に配置された熱伝導体を介して冷却し、多結晶シリコンを得る工程、
を含む。
[B] Polycrystalline silicon ingot manufacturing method The polycrystalline silicon manufacturing method of the present invention is performed using the above-described polycrystalline silicon ingot manufacturing apparatus, and includes the following steps:
(1) A process of containing silicon raw material in a crucible whose temperature can be adjusted,
(2) a step of melting the silicon raw material by heating the silicon raw material in the crucible to a temperature equal to or higher than the melting point of silicon;
(3) a step of cooling the molten silicon in the crucible through a heat conductor disposed below the crucible to obtain polycrystalline silicon;
including.
(1)シリコン原料を収容する工程
 まず、シリコン原料をルツボに収容する。シリコン原料及びルツボの詳細は上述した通りである。
(2)ルツボを加熱する工程
 次に、上記ルツボ内のシリコン原料を、シリコンの融点以上の温度に加熱して前記シリコン原料を溶融する。加熱はルツボの周囲、好ましくは上方に配置したヒーターによって行われる。ヒーターの詳細は上述した通りである。
 加熱は、シリコンの融点が約1410℃であることから、ルツボ内の溶融したシリコン原料の温度が該融点よりも十分に高い温度、例えば、1450℃以上、好ましくは1450~1600℃、より好ましくは1500~1550℃程度の温度となるように行われる。
 また、加熱は、上記ヒーターと、誘導加熱コイルによって加熱される熱伝導体との組み合わせによって行われてもよい。ヒーターと熱伝導体とによって加熱することによって、ルツボの上下から加熱することができるので効率的である。誘導加熱コイルの詳細は上述した通りである。
(1) Step of accommodating silicon raw material First, a silicon raw material is accommodated in a crucible. The details of the silicon raw material and the crucible are as described above.
(2) Step of heating crucible Next, the silicon raw material in the crucible is heated to a temperature equal to or higher than the melting point of silicon to melt the silicon raw material. Heating is performed by a heater arranged around the crucible, preferably above. Details of the heater are as described above.
Since the melting point of silicon is about 1410 ° C., the temperature of the molten silicon raw material in the crucible is sufficiently higher than the melting point, for example, 1450 ° C. or more, preferably 1450 to 1600 ° C., more preferably The temperature is about 1500 to 1550 ° C.
Heating may be performed by a combination of the heater and a heat conductor heated by an induction heating coil. Heating with a heater and a heat conductor is efficient because it can be heated from above and below the crucible. The details of the induction heating coil are as described above.
(3)ルツボを冷却する工程
 上記ルツボ内の溶融シリコンを、該ルツボの下方に配置された熱伝導体を介して冷却する。冷却は、特に熱伝導体の底部外面(ルツボの底部外面と近接する側)の温度を均一に保ちながら行われることが、均質な多結晶シリコンを製造するためには好ましい。また、熱伝導体の底部外面の温度をTg(℃)とすると、Tgが以下の一般式(一次近似式):
Tg=a-bt
を満たす条件で温度を下降させることが好ましい。式中、aは1,250~1,400(℃)、好ましくは、1,290~1,380(℃)、より好ましくは、1,300~1,360(℃)であり、bは10~35、好ましくは15~33、より好ましくは17~30であり、tは冷却開始からの経過時間(時)である。言い換えれば、Tgを、10~35℃/時、好ましくは15~33℃/時、より好ましくは17~30℃/時の速度でほぼ一次関数的に下げることが好ましい。
 また、溶融シリコンとルツボ底部が接する部分の温度Txは、Tgよりも40~200℃、好ましくは50~150℃、より好ましくは60~120℃高いことが適当である。ここで、溶融シリコンの凝固速度は、例えば、0.1~1.5mm/分、好ましくは、0.2~1.0mm/分、更に好ましくは、0.3~0.5mm/分であることが適当である。溶融シリコンの過熱度(溶融シリコンの温度-シリコンの凝固温度)は、凝固時間全域に渡って、例えば40℃以下、好ましくは10℃以下、より好ましくは2~5℃に保つことが適当である。
(3) Step of cooling the crucible The molten silicon in the crucible is cooled via a heat conductor disposed below the crucible. In order to produce homogeneous polycrystalline silicon, it is particularly preferable that the cooling be performed while keeping the temperature of the bottom outer surface of the heat conductor (the side close to the bottom outer surface of the crucible) uniform. When the temperature of the bottom outer surface of the heat conductor is Tg (° C.), Tg is the following general formula (primary approximation formula):
Tg = a−bt
It is preferable to lower the temperature under conditions that satisfy In the formula, a is 1,250 to 1,400 (° C.), preferably 1,290 to 1,380 (° C.), more preferably 1,300 to 1,360 (° C.), and b is 10 to 35, preferably 15 to 33, more preferably 17 to 30 and t is the elapsed time (hours) from the start of cooling. In other words, it is preferable to lower Tg almost linearly at a rate of 10 to 35 ° C./hour, preferably 15 to 33 ° C./hour, more preferably 17 to 30 ° C./hour.
The temperature Tx at the portion where the molten silicon and the bottom of the crucible are in contact is suitably 40 to 200 ° C., preferably 50 to 150 ° C., more preferably 60 to 120 ° C. higher than Tg. Here, the solidification rate of the molten silicon is, for example, 0.1 to 1.5 mm / min, preferably 0.2 to 1.0 mm / min, and more preferably 0.3 to 0.5 mm / min. Is appropriate. The superheat degree of molten silicon (the temperature of molten silicon−the solidification temperature of silicon) is suitably maintained at, for example, 40 ° C. or less, preferably 10 ° C. or less, more preferably 2 to 5 ° C. over the entire solidification time. .
[C]図面による多結晶シリコン製造装置の説明
 以下、本発明の多結晶シリコン製造装置について、図面を参照しながら説明する。
 図3(a)は、ルツボを加熱する工程における、本発明の多結晶シリコン製造装置の断面図である。図3(b)は、ルツボを冷却する工程における、本発明の多結晶シリコン製造装置の断面図である。
 図3(a)及び(b)に示すとおり、本発明の多結晶シリコン製造装置(101)は、シリコン原料(102)を収容できるルツボ(103)と該ルツボ(103)の上方に配置されたヒーター(104)とを含む上部室(105)と、該ルツボ(103)の下方に配置された熱伝導体(106)と該熱伝導体(106)を冷却する冷却手段(107)、及び冷却部分(108、113)とを含む下部室(108)とを備える。冷却部分として使用される下部室(108)の壁内部および誘導加熱コイル(113)の内部は、水冷方式等の液体媒体方式や不活性ガスや空冷方式等の気体媒体方式で冷却される。ルツボ(103)の上部には、蓋(109)を設けていてもよく、ルツボの下部には、ルツボ(103)を支えるための支持板(110)を設けてもよい。ルツボ(103)中にはノズル(111)を設けてもよく、該ノズル(111)から不活性ガス等が吹き込まれる。ルツボ(103)、ヒーター(104)、及び前記熱伝導体(106)は、断熱材(112)及び(114)によって覆われている。図3(a)において、冷却手段(107)を構成する下部断熱材(114)は、上部断熱材(112)と接しているので、同じく冷却手段(107)の一部である空隙(116)(図3(b)参照)は閉じられている。熱伝導体(106)は、断熱材(112)の外側に配置された誘導加熱コイル(113)によって加熱される。従って、冷却手段(107)は、図3(a)では機能しない。一方、図3(b)のように、ルツボ(103)を冷却する工程においては、シリンダー(115)によって下部断熱材(114)が降下し、空隙(116)が設けられる。これにより、空隙(116)と接する熱伝導体(106)の開口端部近傍が冷却される。なお、ヒーター(104)、熱伝導体(106)の底部温度、開口端部表面温度、誘導加熱コイル(113)の前面側温度及び下部室の壁の炉内側表面は、それぞれ温度センサー(117)で測定することができる。
[C] Description of Polycrystalline Silicon Manufacturing Apparatus with Drawings Hereinafter, a polycrystalline silicon manufacturing apparatus according to the present invention will be described with reference to the drawings.
FIG. 3A is a cross-sectional view of the polycrystalline silicon manufacturing apparatus of the present invention in the process of heating the crucible. FIG.3 (b) is sectional drawing of the polycrystalline-silicon manufacturing apparatus of this invention in the process of cooling a crucible.
As shown in FIGS. 3 (a) and 3 (b), the polycrystalline silicon manufacturing apparatus (101) of the present invention is arranged above the crucible (103) capable of accommodating the silicon raw material (102) and the crucible (103). An upper chamber (105) including a heater (104), a heat conductor (106) disposed below the crucible (103), a cooling means (107) for cooling the heat conductor (106), and cooling A lower chamber (108) including portions (108, 113). The inside of the wall of the lower chamber (108) used as a cooling part and the inside of the induction heating coil (113) are cooled by a liquid medium method such as a water cooling method or a gas medium method such as an inert gas or air cooling method. A lid (109) may be provided on the upper part of the crucible (103), and a support plate (110) for supporting the crucible (103) may be provided on the lower part of the crucible. A nozzle (111) may be provided in the crucible (103), and an inert gas or the like is blown from the nozzle (111). The crucible (103), the heater (104), and the heat conductor (106) are covered with heat insulating materials (112) and (114). In FIG. 3A, since the lower heat insulating material (114) constituting the cooling means (107) is in contact with the upper heat insulating material (112), the gap (116) which is also a part of the cooling means (107). (See FIG. 3B) is closed. The heat conductor (106) is heated by an induction heating coil (113) arranged outside the heat insulating material (112). Therefore, the cooling means (107) does not function in FIG. On the other hand, as shown in FIG. 3B, in the process of cooling the crucible (103), the lower heat insulating material (114) is lowered by the cylinder (115), and a gap (116) is provided. As a result, the vicinity of the open end of the heat conductor (106) in contact with the gap (116) is cooled. In addition, the bottom temperature of the heater (104), the heat conductor (106), the opening end surface temperature, the front side temperature of the induction heating coil (113), and the furnace inner surface of the wall of the lower chamber are respectively temperature sensors (117). Can be measured.
[D]多結晶シリコンの評価
 上記方法により製造された多結晶シリコンインゴットの特性は、太陽電池としてのエネルギー変換効率を測定することによって評価できる。エネルギー変換効率は、通常ソーラーライト社製ソーラーシミュレーター等を用い、STC(標準試験条件;Standard Test Cell conditions)に基づいて評価される。なおSTCは、日射強度1.0kW/m2、エアマスAM=1.5のソーラーシュミレーターを光源とし、太陽電池温度25℃で測定される太陽電池の最大出力電力に基づいて評価される。試料としては、得られた多結晶シリコンインゴットからシリコンウエハーを切り出して作成された太陽電池を用いることができる。
 以下、実施例及び比較例により本願発明を更に詳細に説明するが、実施例は本発明の一例であり、本発明の範囲を限定するものではない。
[D] Evaluation of polycrystalline silicon The characteristics of the polycrystalline silicon ingot produced by the above method can be evaluated by measuring the energy conversion efficiency as a solar cell. The energy conversion efficiency is usually evaluated based on STC (Standard Test Cell conditions) using a solar simulator or the like manufactured by Solar Light. Note that STC is evaluated based on the maximum output power of a solar cell measured at a solar cell temperature of 25 ° C. using a solar simulator with solar radiation intensity of 1.0 kW / m 2 and air mass AM = 1.5 as a light source. As a sample, a solar cell prepared by cutting a silicon wafer from the obtained polycrystalline silicon ingot can be used.
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, an Example is an example of this invention and does not limit the scope of the present invention.
実施例1及び2
 図3(a)及び(b)に示すような多結晶シリコン製造装置を用いて多結晶シリコンを製造した。但し、実施例及び比較例において、支持板(110)は使用しなかった。
 ルツボとして、1000mm四方の正方形の底部を有し、高さ650mmの有底の筒形ルツボを用いた。ルツボの熱伝導率は、4.5W/m・K(測定温度950℃)であった。ルツボの厚さは、25mmである。ルツボは不透明石英製でシリカ5質量%添加チッ化ケイ素のコーティングがルツボ内面に施されている。熱伝導体としては、縦断面が凹型の、東海カーボン(株)製等方性黒鉛製熱伝導体G535を使用した。熱伝導体は、1100mm四方の正方形の底部外寸を有し、壁部の高さ(図2(a)7)が500mm(実施例1および2)の有底の筒形である(図1(a)、図2(a)参照)。熱伝導体の底部及び壁部の厚さ(図2(a)6及び8)は150mm(実施例1および2)である。熱伝導体の熱伝導率は81W/m・K(室温で測定(JIS R1611 フラッシュ法を参照))であった。熱伝導体の開口端部周辺に設けられた冷却手段の空隙は、0mmより大きく200mm以下の範囲で調節した。
 上記ルツボに収容されるシリコン原料としては、純度99.9999999%以上のポリシリコン(Wacker社製)を用いた。
 ヒーターとしては、東海カーボン(株)製等方性黒鉛G535を使用し、誘電加熱コイルとしては、FUJI電機ファーネス製低周波誘導加熱装置(出力50kW)を使用した。また、装置内の断熱材には、大阪ガスケミカル(株)製DONACARBO(DON-1000)を使用した。
 まず、ルツボ上方のヒーターと、誘電加熱コイル(50Hz)で加熱された熱伝導体とにより、溶融シリコンの温度が1550℃となるようにルツボを加熱した。
 シリコン原料がすべて溶融シリコンとなった後、熱伝導体の加熱をやめ、熱伝導体用の下部断熱材を降下させて熱伝導体の開口端部近傍に空隙を設け、熱伝導体の冷却を開始した。熱伝導体の底部外面の温度Tg(℃)の温度プロファイルは、以下の一次近似式:
Tg=a-bt
で表すことができる。但し、式中a及びbは以下の表1に示すとおりであり、tは冷却開始からの経過時間(時)である。なお、実施例1及び2は、ルツボ中に加えたシリコンの高さが300mmであり、凝固中の溶融シリコン表面の温度Tsは融点1410℃より2℃高い状態(過熱度=2℃、Ts=1412℃)に維持した。凝固速度Vsは実施例1が目標0.3mm/分、実施例2が目標0.5mm/分である。実施例1及び2のTs(℃)、Tx(℃)、Tg(℃)および凝固速度の変化をグラフ化したものをそれぞれ図4、図5及び図7に示す。なお、凝固最終段階では溶融シリコンを固化させるため、ルツボ上方のヒーター出力レベルを一定に維持した。
Examples 1 and 2
Polycrystalline silicon was manufactured using a polycrystalline silicon manufacturing apparatus as shown in FIGS. 3 (a) and 3 (b). However, the support plate (110) was not used in the examples and comparative examples.
As the crucible, a bottomed cylindrical crucible having a square bottom of 1000 mm square and a height of 650 mm was used. The thermal conductivity of the crucible was 4.5 W / m · K (measurement temperature 950 ° C.). The thickness of the crucible is 25 mm. The crucible is made of opaque quartz, and a coating of silicon nitride added with 5% by mass of silica is applied to the inner surface of the crucible. As the heat conductor, an isotropic graphite heat conductor G535 made by Tokai Carbon Co., Ltd. having a concave longitudinal section was used. The heat conductor has a bottomed outer dimension of a square of 1100 mm square, and has a bottomed cylindrical shape with a wall height (Fig. 2 (a) 7) of 500 mm (Examples 1 and 2) (Fig. 1). (See (a), FIG. 2 (a)). The thickness of the bottom and wall of the heat conductor (FIGS. 2 (a) 6 and 8) is 150 mm (Examples 1 and 2). The thermal conductivity of the thermal conductor was 81 W / m · K (measured at room temperature (see JIS R1611 flash method)). The air gap of the cooling means provided around the open end of the heat conductor was adjusted in the range of greater than 0 mm and not greater than 200 mm.
Polysilicon (purchased by Wacker) with a purity of 99.9999999% or more was used as the silicon raw material contained in the crucible.
As a heater, isotropic graphite G535 manufactured by Tokai Carbon Co., Ltd. was used, and as a dielectric heating coil, a low frequency induction heating device (output 50 kW) manufactured by FUJI Electric Furnace was used. Moreover, Osaka Gas Chemical Co., Ltd. DONACARBO (DON-1000) was used for the heat insulating material in an apparatus.
First, the crucible was heated by a heater above the crucible and a heat conductor heated by a dielectric heating coil (50 Hz) so that the temperature of the molten silicon was 1550 ° C.
After all of the silicon raw material has become molten silicon, stop heating the heat conductor, lower the lower heat insulating material for the heat conductor, provide a gap near the opening end of the heat conductor, and cool the heat conductor. Started. The temperature profile of the temperature Tg (° C.) of the bottom outer surface of the heat conductor is the following first-order approximation:
Tg = a−bt
Can be expressed as In the formula, a and b are as shown in Table 1 below, and t is the elapsed time (hours) from the start of cooling. In Examples 1 and 2, the height of silicon added to the crucible is 300 mm, and the temperature Ts of the molten silicon surface during solidification is 2 ° C. higher than the melting point 1410 ° C. (superheat = 2 ° C., Ts = 1412 ° C). The solidification speed Vs is a target of 0.3 mm / min in Example 1, and a target of 0.5 mm / min in Example 2. The graphs showing changes in Ts (° C.), Tx (° C.), Tg (° C.) and coagulation rate in Examples 1 and 2 are shown in FIGS. 4, 5, and 7, respectively. In the final solidification stage, the heater output level above the crucible was kept constant in order to solidify the molten silicon.
比較例1
 本発明の熱伝導体の代わりに、従来方法であるルツボ底部に正対させて水冷式銅製チラー(市販脱酸銅、1,000mm四角、箱式冷却構造、冷却板部厚み:12mm ,冷却水:浄水、水量50l/分)を配置し、前記ルツボに収容した場合に250mmの高さとなるシリコン原料を用い、シリコンインゴットを凝固させた以外は、実施例1と同様に多結晶シリコンインゴットを製造した。この時の溶融シリコン表面温度Ts(℃)、水冷式銅製冷却チラーの底部外面(ルツボ底部と接する側)の温度Tg(℃)および凝固速度の変化を図6及び図7に示した。
Comparative Example 1
Instead of the heat conductor of the present invention, a water-cooled copper chiller (commercially deoxidized copper, 1,000 mm square, box-type cooling structure, cooling plate thickness: 12 mm, cooling water: A polycrystalline silicon ingot was produced in the same manner as in Example 1 except that a silicon raw material having a height of 250 mm was used and the silicon ingot was solidified when placed in the crucible. . Changes in the molten silicon surface temperature Ts (° C.), the temperature Tg (° C.) of the bottom outer surface of the water-cooled copper cooling chiller (the side in contact with the crucible bottom), and the solidification rate are shown in FIGS.
評価
 上記のようにして製造した実施例及び比較例のシリコンインゴットの下端20mm、上端10mm、側部20mmを切り落とし、残りのインゴットから150mm□のブロックを36本切り出した。36本のブロックから、さらに断面サイズ150mm、厚み200μmのシリコンウエハーを切り出し、太陽電池セルを作成した。当該太陽電池セルのエネルギー変換効率は、ソーラーライト社製ソーラーシミュレーター(16S-300-002)を用い、上述したSTC条件下で測定した。実施例1、実施例2および比較例で得られたシリコンインゴットに対応した全ウエハー毎にエネルギー変換効率の分布をまとめて表2に示す。
Evaluation The lower end 20 mm, the upper end 10 mm, and the side 20 mm of the silicon ingots of Examples and Comparative Examples manufactured as described above were cut off, and 36 150 mm square blocks were cut out from the remaining ingots. From 36 blocks, a silicon wafer having a cross-sectional size of 150 mm and a thickness of 200 μm was cut out to produce solar cells. The energy conversion efficiency of the solar cell was measured under the above-mentioned STC conditions using a solar simulator (16S-300-002) manufactured by Solarlight. Table 2 summarizes the distribution of energy conversion efficiency for all wafers corresponding to the silicon ingots obtained in Example 1, Example 2, and Comparative Example.
表1
Figure JPOXMLDOC01-appb-I000001
Table 1
Figure JPOXMLDOC01-appb-I000001
表2
Figure JPOXMLDOC01-appb-I000002
*実施例1、2及び比較例1の数値は全ウエハー中、該当変換効率を示したウエハーの枚数の割合(%)
Table 2
Figure JPOXMLDOC01-appb-I000002
* The numerical values in Examples 1 and 2 and Comparative Example 1 are the ratio (%) of the number of wafers showing the corresponding conversion efficiency in all wafers.
 上記表2のとおり、実施例1及び2ともに、比較的高いと言われる17%以上のエネルギー変換効率を有するシリコンウエハーの枚数が全体の70%以上得られたのに対し、従来法では20%と三分の一以下の収率であった。
 上記の結果、本発明の多結晶シリコンインゴット製造装置は、溶融シリコン温度を凝固全域にわたって融点よりわずかに高い温度に維持し、かつ凝固速度も、凝固全域にわたって低くかつ一定に維持できた。得られた多結晶シリコンインゴットから製造された多結晶シリコンは、比較例に比べ優れたエネルギー変換効率を有していた。
As shown in Table 2 above, in both Examples 1 and 2, the number of silicon wafers having an energy conversion efficiency of 17% or more, which is said to be relatively high, was obtained by 70% or more of the total, whereas 20% in the conventional method The yield was less than one third.
As a result, the polycrystalline silicon ingot producing apparatus of the present invention was able to maintain the molten silicon temperature at a temperature slightly higher than the melting point over the entire solidification region, and also maintain the solidification rate at a low and constant level throughout the solidification region. Polycrystalline silicon produced from the obtained polycrystalline silicon ingot had energy conversion efficiency superior to that of the comparative example.
1 底部外面
2 底部内面
3 壁部
4 底部外寸
5 底部内寸
6 底部の厚み
7 壁部の高さ
8 壁部の厚み
9 開口端部
101 多結晶シリコン製造装置
102 シリコン原料
103 ルツボ
104 ヒーター
105 上部室
106 熱伝導体
107 冷却手段
108 下部室
109 蓋
110 支持板
111 ノズル
112 上部断熱材
113 誘導加熱コイル
114 下部断熱材
115 シリンダー
116 空隙
117 温度センサー
DESCRIPTION OF SYMBOLS 1 Bottom part outer surface 2 Bottom part inner surface 3 Wall part 4 Bottom part outside dimension 5 Bottom part inside dimension 6 Bottom part thickness 7 Wall part height 8 Wall part thickness 9 Opening end part 101 Polycrystalline silicon manufacturing apparatus 102 Silicon raw material 103 Crucible 104 Heater 105 Upper chamber 106 Thermal conductor 107 Cooling means 108 Lower chamber 109 Lid 110 Support plate 111 Nozzle 112 Upper heat insulating material 113 Induction heating coil 114 Lower heat insulating material 115 Cylinder 116 Air gap 117 Temperature sensor

Claims (10)

  1.  シリコン原料を収容できるルツボと、該ルツボの周囲に配置されたヒーターと、該ルツボの下方に配置された熱伝導体と、該熱伝導体を冷却する冷却手段とを含む多結晶シリコンインゴット製造装置であって、前記熱伝導体が下方に開口した有底の筒状体をなし、前記熱伝導体の底部外面が前記ルツボの底部外面と対向して配置され、前記熱伝導体の開口端部近傍が前記冷却手段によって冷却されることを特徴とする、多結晶シリコンインゴット製造装置。 A polycrystalline silicon ingot manufacturing apparatus comprising a crucible capable of containing a silicon raw material, a heater disposed around the crucible, a heat conductor disposed below the crucible, and a cooling means for cooling the heat conductor The heat conductor is a bottomed cylindrical body that opens downward, the bottom outer surface of the heat conductor is disposed to face the bottom outer surface of the crucible, and the open end of the heat conductor An apparatus for producing a polycrystalline silicon ingot, wherein the vicinity is cooled by the cooling means.
  2.  前記熱伝導体が、JIS R1611のフラッシュ法に基づいて25℃で測定して30~150W/m・Kの熱伝導率を有する、請求項1に記載の多結晶シリコンインゴット製造装置。 2. The polycrystalline silicon ingot producing apparatus according to claim 1, wherein the thermal conductor has a thermal conductivity of 30 to 150 W / m · K measured at 25 ° C. based on a flash method of JIS R1611.
  3.  前記熱伝導体が、黒鉛製である、請求項1又は2に記載の多結晶シリコンインゴット製造装置。 The polycrystalline silicon ingot manufacturing apparatus according to claim 1 or 2, wherein the thermal conductor is made of graphite.
  4.  前記熱伝導体を加熱する誘導加熱コイルを更に含む、請求項1~3のいずれか1項に記載の多結晶シリコンインゴット製造装置。 The polycrystalline silicon ingot manufacturing apparatus according to any one of claims 1 to 3, further comprising an induction heating coil for heating the heat conductor.
  5.  前記ルツボ、前記ヒーター、及び前記熱伝導体の少なくとも一部を覆う断熱材を更に含む、請求項1~4のいずれか1項に記載の多結晶シリコンインゴット製造装置。 The polycrystalline silicon ingot manufacturing apparatus according to any one of claims 1 to 4, further comprising a heat insulating material covering at least part of the crucible, the heater, and the heat conductor.
  6.  前記ルツボの開口端部を覆う蓋と、該ルツボ内部に不活性ガスを吹き込むためのノズルとを更に備える、請求項1~5のいずれか1項に記載の多結晶シリコンインゴット製造装置。 The polycrystalline silicon ingot manufacturing apparatus according to any one of claims 1 to 5, further comprising a lid that covers an open end of the crucible and a nozzle for blowing an inert gas into the crucible.
  7. (1)温度調節が可能なルツボにシリコン原料を収容する工程、
    (2)前記ルツボ内のシリコン原料を、シリコンの融点以上の温度に加熱して前記シリコン原料を溶融する工程、
    (3)前記ルツボ内の溶融シリコンを、該ルツボの下方に配置された熱伝導体を介して冷却し、多結晶シリコンインゴットを得る工程、
    を含む多結晶シリコンインゴット製造方法であって、前記熱伝導体が下方に開口した有底の筒状体をなし、前記熱伝導体の底部外面が前記ルツボの底部外面と対向して配置され、前記熱伝導体の開口端部近傍が前記冷却手段によって冷却されることを特徴とする、多結晶シリコンインゴット製造方法。
    (1) A process of containing silicon raw material in a crucible whose temperature can be adjusted,
    (2) a step of melting the silicon raw material by heating the silicon raw material in the crucible to a temperature equal to or higher than the melting point of silicon;
    (3) The step of cooling the molten silicon in the crucible through a heat conductor disposed below the crucible to obtain a polycrystalline silicon ingot;
    A method for producing a polycrystalline silicon ingot, comprising: a bottomed tubular body in which the heat conductor is opened downward, and a bottom outer surface of the heat conductor is disposed to face a bottom outer surface of the crucible, A method for producing a polycrystalline silicon ingot, wherein the vicinity of the open end of the heat conductor is cooled by the cooling means.
  8.  前記冷却が、前記熱伝導体の底部外面の温度(Tg)(℃)を、以下の一次近似式
    Tg=a-bt
    (式中、aは1,250~1,400であり、bは10~35であり、tは冷却開始からの経過時間(時)である)
    とする条件で行われる、請求項7に記載の多結晶シリコンインゴット製造方法。
    The cooling reduces the temperature (Tg) (° C.) of the bottom outer surface of the heat conductor to the following first-order approximation Tg = a−bt
    (Wherein, a is 1,250 to 1,400, b is 10 to 35, and t is the elapsed time (hours) from the start of cooling)
    The method for producing a polycrystalline silicon ingot according to claim 7, wherein the method is performed under the following conditions.
  9.  前記加熱が、前記ルツボの周囲に配置されたヒーターと、誘導加熱コイルによって加熱される前記熱伝導体とによって行われる、請求項7又は8に記載の多結晶シリコンインゴット製造方法。 The method for producing a polycrystalline silicon ingot according to claim 7 or 8, wherein the heating is performed by a heater disposed around the crucible and the thermal conductor heated by an induction heating coil.
  10.  前記加熱及び冷却工程が、不活性ガス雰囲気下で行われる、請求項7~9のいずれか1項に記載の多結晶シリコンインゴット製造方法。 The method for producing a polycrystalline silicon ingot according to any one of claims 7 to 9, wherein the heating and cooling steps are performed in an inert gas atmosphere.
PCT/JP2013/057470 2013-03-15 2013-03-15 Method for producing and device for producing polycrystalline silicon ingot WO2014141473A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/057470 WO2014141473A1 (en) 2013-03-15 2013-03-15 Method for producing and device for producing polycrystalline silicon ingot
TW102120617A TW201435160A (en) 2013-03-15 2013-06-11 Manufacturing device for polycrystalline silicon ingot and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/057470 WO2014141473A1 (en) 2013-03-15 2013-03-15 Method for producing and device for producing polycrystalline silicon ingot

Publications (1)

Publication Number Publication Date
WO2014141473A1 true WO2014141473A1 (en) 2014-09-18

Family

ID=51536167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057470 WO2014141473A1 (en) 2013-03-15 2013-03-15 Method for producing and device for producing polycrystalline silicon ingot

Country Status (2)

Country Link
TW (1) TW201435160A (en)
WO (1) WO2014141473A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003267717A (en) * 2002-03-12 2003-09-25 Kyocera Corp Manufacturing equipment and manufacturing method for silicon ingot
JP2011528308A (en) * 2007-07-20 2011-11-17 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Method and apparatus for producing cast silicon from seed crystals
JP2012025612A (en) * 2010-07-22 2012-02-09 Mitsubishi Materials Corp Polycrystalline silicon ingot production apparatus, polycrystalline silicon ingot production method, and polycrystalline silicon ingot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003267717A (en) * 2002-03-12 2003-09-25 Kyocera Corp Manufacturing equipment and manufacturing method for silicon ingot
JP2011528308A (en) * 2007-07-20 2011-11-17 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Method and apparatus for producing cast silicon from seed crystals
JP2012025612A (en) * 2010-07-22 2012-02-09 Mitsubishi Materials Corp Polycrystalline silicon ingot production apparatus, polycrystalline silicon ingot production method, and polycrystalline silicon ingot

Also Published As

Publication number Publication date
TW201435160A (en) 2014-09-16

Similar Documents

Publication Publication Date Title
JP2007284343A (en) Device and method for production of single crystal or polycrystalline material, in particular polycrystalline silicon
JP2007332022A (en) Apparatus for producing polycrystalline silicon ingot
CN105887186B (en) Silicon single crystal pulling apparatus and growth method
JP2009018987A (en) Apparatus for manufacturing crystalline material block by adjusting heat conductivity
KR100564770B1 (en) apparatus for continuously casting an low electroconductive material by induction
WO2013019401A1 (en) Liquid-cooled heat exchanger
TW201531598A (en) A technique for controlling temperature uniformity in crystal growth apparatus
CN103966657B (en) Ingotting furnace for polycrystalline silicon and quasi single crystal silicon and application method for ingotting furnace
CN104028733B (en) The regulate and control method of Ti-Zr-Nb-Cu-Be system amorphous composite material tissue and regulation device
KR20120138445A (en) Apparatus for fabricating ingot
CN216156017U (en) Resistance heating single crystal growing furnace by physical vapor transport method
JPH10158088A (en) Production of solid material and device therefor
JP2011510515A (en) Zone melt recrystallization of inorganic films.
KR101381326B1 (en) Method for producing semiconductor wafers composed of silicon
CN103726105A (en) Growing apparatus and method for Ti sapphire crystal
KR20140062093A (en) System for manufacturing a crystalline material by directional crystallization provided with an additional lateral heat source
WO2013145558A1 (en) Polycrystalline silicon and method for casting same
WO2014141473A1 (en) Method for producing and device for producing polycrystalline silicon ingot
JP6401051B2 (en) Method for producing polycrystalline silicon ingot
KR101411275B1 (en) The appratus of silicon for solar cell and the method thereof
JP2005162507A (en) Polycrystal semiconductor ingot and its manufacturing device and method
CN103266346B (en) The growth apparatus of a kind of crystal Pulling YVO4 crystal and growing method based on this growth apparatus
JP2002308616A (en) Method for producing polycrystalline silicon
KR20110028155A (en) Lower structure of manufacturing equipment for polysilicon ingot
JP2004284892A (en) Method of producing polycrystal silicon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13878331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP