WO2014140449A1 - Soufflante de turbomoteur a flux multiple, et turbomoteur equipe d'une telle soufflante - Google Patents

Soufflante de turbomoteur a flux multiple, et turbomoteur equipe d'une telle soufflante Download PDF

Info

Publication number
WO2014140449A1
WO2014140449A1 PCT/FR2014/050472 FR2014050472W WO2014140449A1 WO 2014140449 A1 WO2014140449 A1 WO 2014140449A1 FR 2014050472 W FR2014050472 W FR 2014050472W WO 2014140449 A1 WO2014140449 A1 WO 2014140449A1
Authority
WO
WIPO (PCT)
Prior art keywords
blades
disk
fan
damping
disc
Prior art date
Application number
PCT/FR2014/050472
Other languages
English (en)
Inventor
Michaël DELAPIERRE
Patrick Jean-Louis Reghezza
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to GB1515665.6A priority Critical patent/GB2526475B/en
Priority to US14/776,300 priority patent/US20160032734A1/en
Publication of WO2014140449A1 publication Critical patent/WO2014140449A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/26Antivibration means not restricted to blade form or construction or to blade-to-blade connections or to the use of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/06Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially radially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • F01D11/006Sealing the gap between rotor blades or blades and rotor
    • F01D11/008Sealing the gap between rotor blades or blades and rotor by spacer elements between the blades, e.g. independent interblade platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/3007Fixing blades to rotors; Blade roots ; Blade spacers of axial insertion type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/32Locking, e.g. by final locking blades or keys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/32Locking, e.g. by final locking blades or keys
    • F01D5/323Locking of axial insertion type blades by means of a key or the like parallel to the axis of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/322Blade mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/34Application in turbines in ram-air turbines ("RATS")
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/36Application in turbines specially adapted for the fan of turbofan engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • F05D2230/64Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins
    • F05D2230/644Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins for adjusting the position or the alignment, e.g. wedges or eccenters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise

Definitions

  • Multi-flow turbine engine blower and turbine engine equipped with such a blower.
  • the present invention relates to a multi-flow turbine engine fan, in particular, a twin-jet aircraft turbojet fan.
  • a double-body turbojet comprises, from upstream to downstream in the direction of flow of the gases, a fan in a housing, a compressor, a combustion chamber, a turbine and an exhaust nozzle.
  • the two bodies, low pressure and high pressure rotate independently of each other and are coaxial with the longitudinal axis of the turbojet engine.
  • compressor is meant a low pressure compressor, upstream of a high pressure compressor, and by turbine, a high pressure turbine upstream of a low pressure turbine.
  • internal or external, or internal or external we will hear, in the description, internal or external, or inside or outside, the motor, radially, with respect to its longitudinal axis.
  • the blower is located upstream of the low pressure compressor in front of the low pressure body, and receives the entire flow of air entering the engine, inside a nacelle.
  • the fan comprises a fan disk provided, at its outer periphery, with radial vanes and internally connected, during operation of the turbojet engine, to the low pressure drive shaft of the corresponding turbine-compressor assembly.
  • Each radial blade comprises, from the outside to the inside, a blade located in the air flow, and a foot with a heel arranged to engage in a usual way in an alveolus or axial groove formed in the outer periphery of the blower disk.
  • Platforms, from which protrude outwardly the blades, are interposed between them and laterally extend the hood or conical upstream nose of the fan to the drum or rotor of the low pressure compressor.
  • the blades are engaged, by the heels ending their feet, in the axial receiving cavities of the disk with a certain angular displacement (1 to 2 °) in the radial plane.
  • the blades are struggling freely in their respective axial recesses at each rotation of the blower and this especially when the platforms are reported to the blades and, therefore, not integrated with the latter.
  • document EP 0081416 discloses a device for damping airfoil fan blades of pneumatic type from inflatable wedges.
  • the present invention aims to overcome these disadvantages and to provide a simple and effective solution to the problem of wear between the blades of the fan and the upstream flange of the compressor drum.
  • the present invention relates to a multi-flow turbine engine fan, comprising a fan disk adapted to be driven in rotation about a longitudinal axis and provided, at the outer periphery, with radial vanes each comprising a foot s' slidably engaging a groove of the disc, and externally thereto, a blade, platforms surrounding the disc being interposed between the radial vanes, and damping wedges provided in respective cavities delimited by the outer surface of the disc; disk, the feet of the blades and the platforms.
  • such a fan is remarkable in that the damping wedges are arranged tangentially at the outer periphery of said disk, close to the outer surface thereof, between two adjacent radial blade roots, are are elastically deformable, and have a tangential width at least equal to the distance separating two adjacent blades at the periphery of the disc, so that each wedge is in tangential contact by compression of the two adjacent blades, a fixed support being provided in each cavity housing a wedge to maintain radially in position the latter.
  • the angular displacement of the latter is limited, or even eliminated, so that, in autorotation of the fan, the blades remain substantially in position in the grooves, which eliminates or at least greatly reduces the relative sliding of the blades relative to the upstream flange of the drum with, consequently, the appearance and progression of wear.
  • the wedges being always slightly elastically deformed by compression between two consecutive blades, to immobilize them in position, the angular displacement of said blades at the origin of the problems is thus taken up and absorbed directly by the wedges, without further altering the production of the parts ( disk and blades) of the blower, or that of the drum.
  • the usual vibratory damping devices of the fan blades used when the fan is rotated by the low-pressure turbine-compressor shaft, do not deal with the problems described above when the fan is in the autorotation, and are therefore totally ineffective towards them.
  • the tangential damping wedges of the invention advantageously contribute to reducing the vibratory levels of the blade blades by adding damping during the phases of operation of the turbine engine, with the drive shaft coupled to the fan.
  • the damping wedges are provided between all the blades of the disk.
  • the elastically deformable damping shims are made of a synthetic or natural polymer material, such as an elastomer, and have a hardness in the range of 60 to 90 Shore.
  • each support is fixed, on one side, by a first fixing member associating the disc to a connecting flange of a compressor drum and, on the other side, by a second fastener associating the disc. to the corresponding platform.
  • each support is in the form of an inverted U-shaped stirrup between the wings of which the damping wedge is arranged and which engages between two external radial tabs of the disc cooperating respectively with a medial radial lug of the corresponding platform. and with the flange, said damping wedge tangentially protruding from said U-shaped support to be in contact with the two adjacent blade roots.
  • each elastically deformable cushioning shim has an oblong, elliptical or similar shape, having rounded, opposite lateral edges engaging the respective feet of the adjacent blades by compression. With such rounded edges, it is safe to have a prestressed contact with the side faces facing the blade roots.
  • a metal plate is attached to the outer face of each damping wedge.
  • the plate is overmolded to the damping wedge.
  • Each damping wedge may comprise at its axial ends counterbores for receiving parts of fixing members of the wedge to the disc.
  • the invention also relates to a double-shaft turbine engine comprising, from upstream to downstream in the direction of flow of the gases, a fan, a compressor, a combustion chamber, a turbine and an exhaust nozzle.
  • the fan is of the type defined above.
  • FIG. 1 schematically shows, in axial or longitudinal half-section, the front blower and low-pressure compressor part of a turbine engine, such as an aircraft turbojet engine.
  • FIGS. 2 and 3 are, respectively, an enlarged view of the bladed disc of the blower of FIG. 1 and a cross-sectional view along the line A-A of FIG. 2, showing the arrangement of one of the cleats of FIG. damping of the invention between two adjacent blades of the fan disk.
  • FIGS. 4 and 5 are fragmentary and cut-away perspective views of the fan disk in two distinct directions, showing the arrangement and attachment of one of the damping wedges between the fan disk and the low compressor drum. pressure.
  • Figure 6 is an enlargement of the attachment of the damping wedge relative to the fan disk and the compressor drum.
  • the front part 1 of the turbojet engine 2 with a double flow comprises from upstream to downstream in the direction of flow of the intake airflow F, with respect to the longitudinal axis A of the engine, a 3 blower housed in an outer casing or nacelle 4, and a low-pressure compressor 5 extending integrally in rotation the blower.
  • the compressor is surrounded by a fixed cylindrical body 6 which separates the flow F into a primary flow FP with the nacelle, and into a seperate flow.
  • FS condenser through the blades 7 of the low-pressure compressor 5.
  • a high pressure compressor In part downstream of the latter, and therefore not shown in Figure 1, there are successively and in the usual manner, a high pressure compressor, a combustion chamber, high turbines and low pressure and ejection nozzle.
  • the fan 3 mainly comprises, with reference to FIGS. 1 and 2, a fan disk 8 which is rotated during the taxiing and flight phases of the aircraft by a low pressure shaft 9 driven by the turbine. low pressure, and a plurality of radial vanes 10 carried by the disk and evenly distributed from each other around the outer periphery 19 of the disk.
  • Each radial blade 10 comprises a blade 1 1 in the flow F and a foot 12.
  • fan platforms 14 are interposed between the radial vanes 10 and are attached to the fan to ensure, inter alia, the surface continuity between a conical cap 15 ending upstream of the fan 3 and a drum or rotor 16 of the low pressure compressor. These platforms 14 thus surround the disk 8 while being at a radial distance therefrom.
  • the blades 1 1 are radially located outside the platforms 14, while the feet 12 of the blades are located under the platforms.
  • the feet 12 terminate in engagement stubs 17 with receiving cavities or grooves 18, arranged parallel to the axis A of the disc and opening outwards from the periphery or outer surface 19 of the disc.
  • These heels have a shape of dovetail or bulb to cooperate with the cells in the manner of a tenon-mortise connection.
  • the radial vanes 10 have, relative to the cells 18, an angular clearance in the radial plane of the fan, admittedly limited, less than 1 or 2 °, necessary for their mounting.
  • the disc 8, the platforms 14 and the cover 15 of the blower are made integral with each other, as well as with the drum 16 of the compressor for the disc and platforms.
  • the fan disk 8 is fixed, on the one hand, to the drum 16 by first fasteners 20 (such as bolts) assembling outer radial tabs downstream 21 from the disc to the transverse face 22 of an upstream connecting flange 23 of the drum, the members 20 pass through coaxial holes provided in the legs and the upstream flange.
  • first fasteners 20 such as bolts
  • second fastening members 24 such as fixing pins
  • external radial tabs 25 located in the middle portion of the disc and at the periphery 19 of the disc, to the ears. (or tabs) internal radial 26 located in the middle part of the platforms 14.
  • the members 24 engage in coaxial holes corresponding legs and ears.
  • the platforms 14, here attached to the disc and not integrated therewith, are further attached to the upstream flange 23 of the drum by third fasteners 27 (bolts or the like).
  • Third radial lugs 28 downstream of the platforms are arranged facing the upstream flange to be fixed to this flange by the members 27 engaging in respective holes of the ears and the flange.
  • the fan 3 is equipped with damping wedges 31 whose purpose is to reduce and absorb as much as possible the angular displacement of the blades 10 in their respective cells 18 and, by way of Consequently, it is possible to limit or even eliminate wear produced by friction by the contact of the rear faces 13 of the blade roots 12 with the front face 22 of the upstream connecting flange 23 of the drum, when the fan 3 is in autorotation (not driven by the drive shaft 9) for the reasons stated above.
  • the damping wedges 31 are elastically deformable and arranged tangentially at the outer periphery 19 of the disk between the adjacent, adjacent blades 10, making contact therewith.
  • the damping wedges 31 are located in cavities 32 each delimited by the outer surface or periphery 19 of the disk, the two feet 12 of the adjacent blades and the bottom 33 of the platform reported 14.
  • the damping wedges are made of a polymeric material, such as an elastomer, for example a polyurethane, having a hardness of between 60 and 90 Shore, so as to have shims having a certain flexibility while being sufficiently rigid to maintain proper mechanical strength.
  • each damping wedge 31 is located radially close to the outer surface 19 of the disk, to absorb the angular deflection of the blades closest to the connection of the beads 17 with the cells 18.
  • the damping wedges 31 are disposed in the same radial plane of the disc and between all the radial vanes 10 of the disc (and therefore in number equal to the vanes) and are further dimensionally identical between them.
  • the damping wedges 31, in the illustrated non-limiting embodiment are cylindrical and flattened, in particular with an oblong, stadium-shaped cross section. Any other form could be considered.
  • the transverse width L of the wedge shown corresponding to the tangential width once mounted at the periphery of the disk, between its two rounded edges 34 is at least equal to or greater than the width separating the lateral faces facing the adjacent blades.
  • the wedges are made of an elastically deformable material, it is certain that the tangential contact with the blades is effective to better absorb their angular displacement symbolized by arrows D in FIG. 3.
  • the two rounded edges 34 of each spacer 31 are thus compressed and supported against the lateral faces facing the blade roots concerned, while the lower right portion 36 is turned towards the outer surface 19 of the disk, close to the latter, and the upper right portion 37 is turned towards the platform 14, remote from it.
  • the damping shims 31 thus pressed are positioned tangentially between the blade roots.
  • a support 40 receiving the shim and itself fixed at its corresponding ends to the disk 8.
  • the support 40 is housed in the inter-blade cavity 32 and has an inverted U-shaped stirrup shape between the lateral wings 41 of which the wedge 31 engages by its radial faces 42 perpendicular to the rounded edge 34.
  • the wings 41 of the stirrup which are also arranged radially by relative to the blower, in turn advantageously engage between the outer radial tabs 21 and 25 of the disc 8.
  • the fasteners 20 and 24 respectively of the drum disk and the disk platforms are also used to fix the receiving media 40 wedges to the disk 8.
  • the fasteners 20 and 24 respectively of the drum disk and the disk platforms are also used to fix the receiving media 40 wedges to the disk 8.
  • it avoids any structural modification of the latter and other parts Surrounding members for installing the damping wedges 31 with their supports 40.
  • These wedges are thus confined in the supports with their rounded edges 34 protruding tangentially from the stirrup supports 40, to come into contact with the faces 35 of the respective feet 12 of the adjacent blades. 10.
  • the reception and retention media 40 wedges are metallic.
  • counterbores 43 are formed in the radial faces 42 of shims 31 to receive corresponding nuts of fasteners 20, 24 and facilitate the mounting of shims and supports between the radial tabs of the disc.
  • the two counterbores 43 thus limit the axial clearances between each shim and its support, which ensures a constant and reliable positioning of the shims during repeated loading.
  • the downstream counterbore 43 according to the arrow F2 is further opening tangentially to assist in mounting the shim.
  • the two countersinks 43 have different geometrical characteristics making it possible to avoid errors in the direction of assembly of shims 31.
  • a metal plate 45 is arranged on the outer or upper face 37 of each shim. This plate is overmolded to the wedge so as to form a single set "wedge-plate".
  • a metal-to-metal contact is obtained between the wafer and the support providing optimum mechanical strength and durability to the elastically deformable damping shims. It is therefore understood that, by their tangential contact with the blades 10, the elastically deformable damping shims 31 introduced tangentially between the blade roots make it possible to contain the angular displacement of these blades in their cells 18.
  • damping wedges makes it possible, during the autorotation of the blower 3, to limit and eliminate the relative sliding between the rear faces 13 of the blade roots 12 and the front face 22 of the upstream flange 23 of the drum, and the phenomena of wear that ensue.
  • said shims thus arranged also participate, during the operation of the turbojet engine, when the fan 3 is driven by the low pressure shaft 9, to the absorption of the vibration phenomena of the vanes 1 1 blades, in the manner of known depreciation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

La soufflante (3) comporte un disque de soufflante (8) apte à être entraîné en rotation autour d'un axe longitudinal et pourvu, en périphérie, d'aubes radiales (10) comprenant chacune un pied (12) s'engageant par coulisse- ment dans une rainure (18) du disque, et, extérieurement à celle-ci, une pale (11), des plateformes (14) entourant le disque en étant intercalées entre les aubes radiales. Avantageusement, la soufflante comporte de plus des cales d'amortissement (31) qui sont agencées tangentiellement en périphérie extérieure (19) dudit disque (8), sous les plateformes (14) et entre deux pieds (12) d'aubes radiales adjacentes, chaque cale (31) étant au contact tangentiel des deux aubes adjacentes.

Description

Soufflante de turbomoteur à flux multiple, et turbomoteur équipé d'une telle soufflante.
La présente invention concerne une soufflante de turbomoteur à flux multiple, en particulier, une soufflante de turboréacteur d'aéronef à double flux.
Pour rappel, un turboréacteur à double corps comporte, d'amont en aval dans le sens d'écoulement des gaz, une soufflante dans un carter, un compresseur, une chambre de combustion, une turbine et une tuyère d'éjection. Les deux corps, basse pression et haute pression, tournent indépendamment l'un de l'autre et sont coaxiaux à l'axe longitudinal du turboréacteur. Par compresseur, on entend un compresseur à basse pression, en amont d'un compresseur à haute pression, et par turbine, une turbine haute pression en amont d'une turbine basse pression. Par interne ou externe, ou intérieur ou extérieur, on entendra, dans la description, interne ou externe, ou intérieur ou extérieur, au moteur, radialement, par rapport à son axe lon- gitudinal.
La soufflante est située en amont du compresseur basse pression devant le corps basse pression, et reçoit la totalité du flux d'air pénétrant dans le moteur, à l'intérieur d'une nacelle.
Structurellement, la soufflante comprend un disque de soufflante pourvu, à sa périphérie extérieure, d'aubes radiales et relié intérieurement, lors du fonctionnement du turboréacteur, à l'arbre d'entraînement basse pression de l'ensemble turbine - compresseur correspondant. Chaque aube radiale comprend, de l'extérieur vers l'intérieur, une pale située dans le flux d'air, et un pied avec un talon agencé pour s'engager de façon usuelle dans une alvéole ou rainure axiale ménagée dans la périphérie extérieure du disque de soufflante. Des plateformes, d'où font saillie extérieurement les pales, sont intercalées entre ces dernières et prolongent latéralement le capot ou nez conique amont de la soufflante jusqu'au tambour ou rotor du compresseur basse pression.
On sait que, durant le fonctionnement du turboréacteur (en phase de vol ou de roulage au sol), lorsque la soufflante est entraînée en rotation par l'arbre basse pression, les aubes sont soumises à des phénomènes vibratoires qui accélèrent leur endommagement et diminuent leur longévité. Aussi, pour limiter cela, il est connu d'utiliser des dispositifs d'amortissement situés dans des logements de réception ménagés sous les plateformes des aubes comme l'enseigne notamment le brevet FR 2923557 du demandeur.
Par ailleurs, lors des opérations de maintenance, on a constaté des phéno- mènes d'usure entre la soufflante et le compresseur basse pression qui lui est associé. Plus particulièrement, ces usures sont situées au niveau des zones de contact entre la bride amont du tambour du compresseur et les pieds des aubes du disque de soufflante en vis-à-vis.
L'origine de ces usures provient du frottement des faces arrière des pieds des aubes contre la face avant de la bride amont, lorsque la soufflante fonctionne en phase d'autorotation au sol (en anglais « windmilling »), c'est-à-dire lorsque le disque de soufflante n'est pas entraîné par l'arbre d'entraînement basse pression.
En effet, notamment pour des raisons de montage, les aubes sont engagées, par les talons terminant leurs pieds, dans les alvéoles de réception axiales du disque avec un certain débattement angulaire (1 à 2°) dans le plan radial. Aussi, lorsque la soufflante n'est pas entraînée par l'arbre, et qu'elle est donc libre en rotation et mise en autorotation par l'air entrant dans celle-ci, les aubes se débattent librement dans leurs alvéoles axiales respectives à chaque rotation de la soufflante et cela en particulier quand les plateformes sont rapportées aux aubes et, donc, non intégrées à ces dernières.
Par suite de l'air aspiré et du glissement ou coulissement axial des aubes par rapport aux alvéoles vers le compresseur, des contacts d'appui se produisent entre les faces arrière des pieds des aubes et la face avant de la bride amont du tambour de compresseur. Ces contacts par pression engendrent des frottements et, comme ces contacts sont cycliques et peuvent avoir une intensité importante, des usures entre les pièces (aubes, tambour, etc.) apparaissent qui peuvent atteindre, à l'usage, une certaine profondeur et, par voie de conséquence, nuire à leur tenue mécanique et avoir un impact sur la durée de vie des pièces concernées.
Par ailleurs, par le document EP 0081416, on connaît un dispositif d'amortissement des aubes de soufflante, de type pneumatique, à partir de cales gonflables. La présente invention a pour but de pallier ces inconvénients et d'apporter une solution simple et efficace à ce problème d'usure entre les aubes de la soufflante et la bride amont du tambour du compresseur.
À cet effet, la présente invention concerne une soufflante de turbomoteur à flux multiple, comportant un disque de soufflante apte à être entraîné en rotation autour d'un axe longitudinal et pourvu, en périphérie extérieure, d'aubes radiales comprenant chacune un pied s'engageant par coulissement dans une rainure du disque, et, extérieurement à celle-ci, une pale, des plateformes entourant le disque en étant intercalées entre les aubes radiales, et des cales d'amortissement prévues dans des cavités respectives délimitées par la surface extérieure du disque, les pieds des aubes et les plateformes.
Selon l'invention, une telle soufflante est remarquable par le fait que les cales d'amortissement sont agencées tangentiellement en périphérie extérieure dudit disque, proches de la surface extérieure de celui-ci, entre deux pieds d'aubes radia- les adjacentes, sont élastiquement déformables, et ont une largeur tangentielle au moins égale à la distance séparant deux aubes adjacentes en périphérie du disque, de sorte que chaque cale est au contact tangentiel par compression des deux aubes adjacentes, un support fixe étant prévu dans chaque cavité logeant une cale pour maintenir radialement en position cette dernière.
Ainsi, grâce à l'agencement de cales d'amortissement tangentiellement entre les aubes, le débattement angulaire de ces dernières est limité, voire supprimé, de sorte que, en autorotation de la soufflante, les aubes restent sensiblement en position dans les rainures, ce qui supprime ou tout du moins diminue fortement le glissement relatif des aubes par rapport à la bride amont du tambour avec, pour conséquence, l'apparition et la progression des usures. Les cales étant toujours légèrement déformées élastiquement par compression entre deux aubes consécutives, pour les immobiliser en position, le débattement angulaire desdites aubes à l'origine des problèmes est ainsi repris et absorbé directement par les cales, sans modifier de plus la réalisation des pièces (disque et aubes) de la soufflante, ni celle du tambour. Ainsi, de telles cales peuvent s'adapter à tous les types de moteurs et devenir des cales « universelles ». On note, par ailleurs, que l'objectif n'est pas de réduire le contact (conséquence) entre les aubes et le tambour lorsque la soufflante se trouve en autorotation, mais d'empêcher le débattement angulaire (cause) des aubes dans leurs alvéoles en les immobilisant tangentiellement.
On note aussi que les dispositifs d'amortissement vibratoires usuels des aubes de soufflante, utilisés lorsque la soufflante est entraînée en rotation par l'arbre de turbine - compresseur basse pression, ne traitent pas des problèmes exposés ci- dessus lorsque la soufflante se trouve en autorotation, et sont donc totalement inefficaces vis-à-vis de ceux-ci. En revanche, les cales d'amortissement tangentiels de l'invention participent avantageusement à diminuer les niveaux vibratoires des pales des aubes en ajoutant de l'amortissement lors des phases de fonctionnement du turbomoteur, avec l'arbre d'entraînement couplé à la soufflante.
De préférence, les cales d'amortissement sont prévues entre la totalité des aubes du disque.
Par exemple, les cales d'amortissement élastiquement déformables sont réalisées en une matière polymère synthétique ou naturelle, telle qu'un élastomère, et leur dureté est comprise dans une plage de 60 à 90 Shore.
Par ailleurs, chaque support est fixé, d'un côté, par un premier organe de fixation associant le disque à une bride de liaison d'un tambour de compresseur et, de l'autre côté, par un second organe de fixation associant le disque à la plateforme correspondante.
En particulier, chaque support a une forme d'étrier en U inversé entre les ailes duquel est agencée la cale d'amortissement et qui s'engage entre deux pattes radiales externes du disque coopérant respectivement avec une oreille radiale mé- diane de la plateforme correspondante et avec la bride, ladite cale d'amortissement faisant tangentiellement saillie dudit support en U pour être au contact des deux pieds d'aubes adjacentes.
De préférence, chaque cale d'amortissement élastiquement déformable présente une forme oblongue, elliptique ou analogue, ayant des bords latéraux opposés arrondis venant au contact par compression des pieds respectifs des aubes adjacentes. Avec de tels bords arrondis, on est sûr d'avoir un contact avec précontrainte avec les faces latérales en regard des pieds des aubes. Pour éviter les phénomènes de fluage des cales d'amortissement, une plaquette métallique est rapportée sur la face extérieure de chaque cale d'amortissement. Avantageusement, la plaquette est surmoulée à la cale d'amortissement.
Chaque cale d'amortissement peut comprendre à ses extrémités axiales des lamages de réception de parties d'organes de fixation de la cale au disque.
L'invention concerne également un turbomoteur à double corps comportant, de l'amont vers l'aval selon le sens d'écoulement des gaz, une soufflante, un compresseur, une chambre de combustion, une turbine et une tuyère d'éjection.
Avantageusement, la soufflante est du type défini précédemment.
Les figures du dessin annexé feront bien comprendre comment l'invention peut être réalisée. Sur ces figures, des références identiques désignent des éléments semblables.
La figure 1 montre schématiquement, en demi-coupe axiale ou longitudinale, la partie avant à soufflante et compresseur basse pression d'un turbomoteur, tel qu'un turboréacteur à double flux d'aéronef.
Les figures 2 et 3 sont, respectivement, une vue agrandie du disque à aubes de la soufflante de la figure 1 et une vue en coupe transversale selon la ligne A - A de la figure 2, montrant l'agencement d'une des cales d'amortissement de l'invention entre deux aubes adjacentes du disque de la soufflante.
Les figures 4 et 5 sont des vues en perspective partielle et écorchée du disque de soufflante selon deux directions distinctes, mettant en évidence l'agencement et la fixation d'une des cales d'amortissement entre le disque de soufflante et le tambour du compresseur basse pression.
La figure 6 est un agrandissement de la fixation de la cale d'amortissement par rapport au disque de soufflante et au tambour du compresseur.
La partie avant 1 du turboréacteur 2 à double flux, représenté partiellement sur la figure 1 , comporte d'amont en aval dans le sens d'écoulement du flux d'air aspiré F, par rapport à l'axe longitudinal A du moteur, une soufflante 3 logée dans un carter externe ou nacelle 4, et un compresseur basse pression 5 prolongeant solidairement en rotation la soufflante. Le compresseur est entouré d'un corps cylindrique fixe 6 qui sépare le flux F en un flux primaire FP avec la nacelle, et en un flux se- condaire FS traversant les aubes 7 du compresseur basse pression 5. En partie aval de ce dernier, et donc non représentés sur la figure 1 , se trouvent successivement et de façon usuelle, un compresseur haute pression, une chambre de combustion, des turbines haute et basse pression et une tuyère d'éjection.
La soufflante 3 comporte principalement, en référence aux figures 1 et 2, un disque de soufflante 8 qui est entraîné en rotation, durant les phases de roulage au sol et de vol de l'avion, par un arbre basse pression 9 mû par la turbine basse pression, et une pluralité d'aubes radiales 10 portées par le disque et régulièrement réparties les unes des autres autour de la périphérie extérieure 19 du disque. Chaque aube radiale 10 comprend une pale 1 1 dans le flux F et un pied 12.
Dans ce type de moteur, des plateformes 14 de soufflante sont intercalées entre les aubes radiales 10 et sont rapportées à la soufflante pour assurer, entre autres, la continuité de surface entre un capot conique 15 terminant l'amont de la soufflante 3 et un tambour ou rotor 16 du compresseur basse pression. Ces plate- formes 14 entourent donc le disque 8 en étant à distance radiale de celui-ci.
En particulier, comme le montrent les figures 2 et 3, les pales 1 1 sont radia- lement situées à l'extérieur des plateformes 14, tandis que les pieds 12 des aubes sont situés sous les plateformes. Les pieds 12 se terminent par des talons d'engagement 17 avec des alvéoles ou rainures de réception 18, ménagées parallè- lement à l'axe A du disque et débouchant de la périphérie ou surface extérieure 19 du disque. Ces talons ont une forme de queue d'aronde ou de bulbe pour coopérer avec les alvéoles à la manière d'une liaison tenon-mortaise.
Les aubes radiales 10 présentent, par rapport aux alvéoles 18, un débattement angulaire dans le plan radial de la soufflante, certes limité, inférieur à 1 ou 2°, nécessaire pour leur montage.
Par ailleurs, le disque 8, les plateformes 14 et le capot 15 de la soufflante sont rendus solidaires entre eux, ainsi qu'avec le tambour 16 du compresseur pour ce qui est du disque et des plateformes.
Pour cela, comme le montrent les figures 2, 4 - 6, le disque de soufflante 8 est fixé, d'une part, au tambour 16 par des premiers organes de fixation 20 (tels que des boulons) assemblant des pattes radiales externes aval 21 du disque à la face transversale 22 d'une bride de liaison amont 23 du tambour, les organes 20 traver- sant des trous coaxiaux prévus dans les pattes et la bride amont. D'autre part, le disque 8 est associé aux plateformes 14 par des seconds organes de fixation 24 (tels que des pions de fixation) assemblant des pattes radiales externes 25 situées en partie médiane du disque et en périphérie 19 du disque, à des oreilles (ou pattes) radiales internes 26 situées en partie médiane des plateformes 14. Les organes 24 s'engagent dans des trous coaxiaux des pattes et oreilles correspondantes.
Les plateformes 14, ici rapportées au disque et non intégrées à celui-ci, sont en outre fixées à la bride amont 23 du tambour par des troisièmes organes de fixation 27 (boulons ou analogues). Des oreilles radiales internes 28 en aval des plate- formes sont agencées en regard de la bride amont pour être fixées à cette bride par les organes 27 s'engageant dans des trous respectifs des oreilles et de la bride.
Enfin, en amont, le disque 8 et les plateformes 14 sont fixés, par un flasque intermédiaire annulaire 29, à l'aval ou arrière du capot conique 15, via des organes de fixation 30.
Avantageusement, comme le montrent les figures 2 à 6, la soufflante 3 est équipée de cales d'amortissement 31 dont le but est de réduire et d'absorber le plus possible le débattement angulaire des aubes 10 dans leurs alvéoles respectives 18 et, par voie de conséquence, de limiter voire de supprimer les usures produites par frottement par le contact des faces arrière 13 des pieds 12 des aubes avec la face avant 22 de la bride de liaison amont 23 du tambour, lorsque la soufflante 3 est en autorotation (pas entraînée par l'arbre d'entraînement 9) pour les raisons énoncées précédemment.
Pour cela, les cales d'amortissement 31 sont élastiquement déformables et disposées tangentiellement en périphérie extérieure 19 du disque entre les aubes consécutives, adjacentes 10, en faisant contact avec celles-ci. En particulier, comme le montrent les figures 3 et 6, les cales d'amortissement 31 sont situées dans des cavités 32 délimitées chacune par la surface extérieure ou périphérie 19 du disque, les deux pieds 12 des aubes adjacentes et le dessous 33 de la plateforme rapportée 14. Les cales d'amortissement sont réalisées en une matière polymère, telles qu'un élastomère, par exemple un polyuréthane, ayant une dureté comprise entre 60 et 90 Shore, de façon à avoir des cales ayant une certaine souplesse tout en étant suffisamment rigide pour conserver une tenue mécanique appropriée. On remarque, par ailleurs, que chaque cale d'amortissement 31 est située radialement proche de la surface extérieure 19 du disque, pour absorber le débattement angulaire des aubes au plus près de la liaison des talons 17 avec les alvéoles 18.
Pour des raisons évidentes d'équilibrage de la soufflante, les cales d'amortissement 31 sont disposées dans un même plan radial du disque et entre toutes les aubes radiales 10 du disque (et donc en nombre égal aux aubes) et sont en outre dimensionnellement identiques entre elles. À ce propos, les cales d'amortissement 31 , dans l'exemple de réalisation illustré non limitatif, sont cylindri- ques et aplaties, en particulier avec une section transversale, oblongue, en forme de stade. Tout autre forme pourrait être envisagée.
Comme on le voit sur la figure 3, la largeur transversale L de la cale représentée, correspondant à la largeur tangentielle une fois montée en périphérie du disque, entre ses deux bords arrondis 34 est au moins égale ou supérieure à la lar- geur séparant les faces latérales en regard 35 des aubes adjacentes. Comme les cales sont réalisées en une matière élastiquement déformable, on est sûr que le contact tangentiel avec les aubes est effectif pour absorber au mieux leur débattement angulaire symbolisé par des flèches D sur la figure 3. Les deux bords arrondis 34 de chaque cale 31 sont ainsi comprimés et en appui contre les faces latérales en regard 35 des pieds d'aubes concernés, tandis que la partie droite inférieure 36 est tournée vers la surface extérieure 19 du disque, proche de celle-ci, et la partie droite supérieure 37 est tournée vers la plateforme 14, éloignée de celle-ci. Les cales d'amortissement 31 ainsi pressées sont positionnées tangentiellement entre les pieds des aubes.
De plus, pour maintenir les cales d'amortissement 31 en position radiale et comprimée entre les pieds des aubes radiales, on prévoit, pour chacune des cales, un support 40 recevant la cale et lui-même fixé à ses extrémités correspondantes au disque 8. Comme le montrent les figures 4 et 6, le support 40 est logé dans la cavité inter-aubes 32 et présente une forme d'étrier en U inversé entre les ailes latérales 41 duquel s'engage la cale 31 par ses faces radiales 42 perpendiculaires aux bord arrondis 34. Les ailes 41 de l'étrier, qui sont également agencées radialement par rapport à la soufflante, s'engagent à leur tour avantageusement entre les pattes radiales externes 21 et 25 du disque 8.
Ainsi, les organes de fixation 20 et 24 respectivement du disque au tambour et du disque aux plateformes servent à fixer également les supports de réception 40 des cales au disque 8. Par cela, on évite toute modification structurelle de ce dernier et d'autres pièces environnantes pour installer les cales d'amortissement 31 avec leurs supports 40. Ces cales sont ainsi confinées dans les supports avec leurs bords arrondis 34 faisant saillie tangentiellement des supports en étrier 40, pour venir au contact des faces 35 des pieds respectifs 12 des aubes adjacentes 10. En outre, pour encaisser les efforts centrifuges et assurer la tenue mécanique, les supports de réception et de rétention 40 des cales sont métalliques.
On voit de plus, sur les figures 5 et 6 et les loupes selon les flèches F1 et F2 de la figure 6, que des lamages 43 sont ménagés dans les faces radiales 42 des cales 31 pour recevoir des écrous correspondants des organes de fixation 20, 24 et faciliter le montage des cales et des supports entre les pattes radiales du disque. Les deux lamages 43 limitent ainsi les jeux axiaux entre chaque cale et son support, ce qui garantit un positionnement constant et fiable des cales au cours des chargements répétés. Le lamage aval 43 selon la flèche F2 est en outre débouchant tangentiellement pour aider au montage de la cale. Les deux lamages 43 présentent des caractéristiques géométriques différentes permettant d'éviter des erreurs dans le sens de montage des cales 31 .
On remarque également, sur les figures 4 et 5, le caractère curviligne des plateformes rapportées 14, distinctes des aubes, et la non-coaxialité entre les organes de fixation 20 et 24 du disque. Sur la figure 6, les deux organes ont été ramenés dans le même plan.
Pour éviter que les cales 31 ne fluent lors du fonctionnement du turboréacteur en vol, et cela malgré la présence des supports 40, une plaquette métallique 45 est agencée sur la face extérieure ou supérieure 37 de chaque cale. Cette plaquette est surmoulée à la cale de façon à ne former qu'un même ensemble « cale- plaquette ». De plus, on obtient un contact métal-métal entre la plaquette et le support assurant une tenue mécanique optimale et une longévité aux cales d'amortissement élastiquement déformables. On comprend donc que, par leur contact tangentiel avec les aubes 10, les cales d'amortissement élastiquement déformables 31 introduites tangentiellennent entre les pieds des aubes permettent de contenir le débattement angulaire de celles- ci dans leurs alvéoles 18. En conséquence, l'agencement des cales d'amortissement permet, lors de l'autorotation de la soufflante 3, de limiter et supprimer le glissement relatif entre les faces arrière 13 des pieds 12 des aubes et la face avant 22 de la bride amont 23 du tambour, et les phénomènes d'usure qui s'ensuivent. Par ailleurs, lesdites cales ainsi agencées participent également, lors du fonctionnement du turboréacteur, quand la soufflante 3 est entraînée par l'arbre basse pression 9, à l'absorption des phénomènes vibratoires des pales 1 1 des aubes, à la manière des dispositifs d'amortissement connus.

Claims

REVENDICATIONS
1 . Soufflante de turbomoteur à flux multiple, comportant un disque de soufflante (8) apte à être entraîné en rotation autour d'un axe longitudinal et pourvu, en périphérie, d'aubes radiales (10) comprenant chacune un pied (12) s'engageant par coulissement dans une rainure (18) du disque, et, extérieurement à celle-ci, une pale (1 1 ), des plateformes (14) entourant le disque en étant intercalées entre les aubes radiales, et des cales d'amortissement (31 ) prévues dans des cavités respectives (32) délimitées par la surface extérieure du disque, les pieds des aubes et les plate- formes,
caractérisée par le fait que, pour éviter le débattement angulaire des aubes dans les rainures du disque lorsque la soufflante fonctionne en phase d'autorotation au sol par l'air entrant dans celle-ci, les cales d'amortissement (31 ) sont agencées tangen- tiellement en périphérie extérieure (19) dudit disque (8) proches de la surface exté- rieure de celui-ci, entre deux pieds (12) d'aubes radiales adjacentes, sont élasti- quement déformables, et ont une largeur tangentielle (L) au moins égale à la distance séparant deux aubes adjacentes (10) en périphérie du disque (8), de sorte que chaque cale (31 ) est au contact tangentiel par compression des deux aubes adjacentes, un support fixe (40) étant prévu dans chaque cavité logeant une cale pour maintenir radialement en position cette dernière.
2. Soufflante selon la revendication 1 , dans laquelle les cales d'amortissement (31 ) sont prévues entre la totalité des aubes du disque.
3. Soufflante selon la revendication 1 ou 2, dans laquelle chaque support (40) est fixé, d'un côté, par un premier organe de fixation (20) associant le disque (8) à une bride de liaison (23) d'un tambour de compresseur et, de l'autre côté, par un second organe de fixation (24) associant le disque (8) à la plateforme (14).
4. Soufflante selon la revendication 3, dans laquelle chaque support (40) a une forme d'étrier en U inversé entre les ailes (41 ) duquel est agencée la cale d'amortissement (31 ), et qui s'engage entre deux pattes radiales externes du disque (8) coopérant respectivement avec une oreille radiale médiane de la plateforme correspondante (14) et avec la bride (23), ladite cale d'amortissement faisant tangen- tiellement saillie dudit support en U pour être au contact des deux pieds d'aubes adjacentes.
5. Soufflante selon l'une des revendications 1 à 4, dans laquelle chaque cale d'amortissement (31 ) présente une forme oblongue, elliptique ou analogue, ayant des bords latéraux opposés arrondis (34) venant au contact par compression des pieds respectifs des aubes adjacentes.
6. Soufflante selon l'une des revendications 1 et 5, dans laquelle une plaquette métallique (45) est rapportée sur la face extérieure (37) de chaque cale d'amortissement.
7. Soufflante selon la revendication 6, dans laquelle la plaquette (45) est surmoulée à la cale d'amortissement.
8. Soufflante selon l'une des revendications 1 à 7, dans laquelle les cales d'amortissement (31 ) sont réalisées en une matière polymère synthétique ou naturelle telle qu'un élastomère.
9. Soufflante selon la revendication 8, dans laquelle la matière des cales (31 ) a une dureté comprise dans une plage de 60 à 90 Shore.
10. Turbomoteur à double corps, comportant, de l'amont vers l'aval selon le sens d'écoulement des gaz, une soufflante (3), un compresseur (5), une chambre de combustion, une turbine et une tuyère d'éjection, caractérisé par le fait qu'il comporte la soufflante selon l'une des revendications 1 à 9.
PCT/FR2014/050472 2013-03-15 2014-03-04 Soufflante de turbomoteur a flux multiple, et turbomoteur equipe d'une telle soufflante WO2014140449A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1515665.6A GB2526475B (en) 2013-03-15 2014-03-04 Fan for a multi-flow turboshaft engine, and turboshaft engine equipped with such a fan
US14/776,300 US20160032734A1 (en) 2013-03-15 2014-03-04 Fan for a multi-flow turboshaft engine, and turboshaft engine equipped with such a fan

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1352318 2013-03-15
FR1352318A FR3003294B1 (fr) 2013-03-15 2013-03-15 Soufflante de turbomoteur a flux multiple, et turbomoteur equipe d'une telle soufflante

Publications (1)

Publication Number Publication Date
WO2014140449A1 true WO2014140449A1 (fr) 2014-09-18

Family

ID=48613887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/050472 WO2014140449A1 (fr) 2013-03-15 2014-03-04 Soufflante de turbomoteur a flux multiple, et turbomoteur equipe d'une telle soufflante

Country Status (4)

Country Link
US (1) US20160032734A1 (fr)
FR (1) FR3003294B1 (fr)
GB (1) GB2526475B (fr)
WO (1) WO2014140449A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105909557A (zh) * 2016-06-21 2016-08-31 中国航空工业集团公司沈阳发动机设计研究所 一种风扇转子叶片安装结构
FR3039225A1 (fr) * 2015-07-20 2017-01-27 Snecma Turbomachine, telle par exemple qu'un turboreacteur d'avion
FR3052484A1 (fr) * 2016-06-08 2017-12-15 Snecma Rotor resistant aux impacts

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10670037B2 (en) * 2017-11-21 2020-06-02 General Electric Company Turbofan engine's fan blade and setting method thereof
FR3075284B1 (fr) * 2017-12-18 2020-09-04 Safran Aircraft Engines Dispositif amortisseur
FR3085783B1 (fr) * 2018-09-10 2021-04-23 Safran Aircraft Engines Panneau de traitement acoustique pour turboreacteur

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0081416A1 (fr) 1981-12-03 1983-06-15 Societe Nationale D'etude Et De Construction De Moteurs D'aviation, "S.N.E.C.M.A." Dispositif d'amortissement des aubes d'une soufflante de turbomachine
EP0488874A1 (fr) * 1990-11-28 1992-06-03 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Rotor de soufflante avec aubes sans plates-formes et sabots reconstituant le profil de veine
EP0764766A1 (fr) * 1995-09-21 1997-03-26 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Agencement amortisseur monté entre des aubes de rotor
FR2923557A1 (fr) 2007-11-12 2009-05-15 Snecma Sa Ensemble d'une aube de soufflante et de son amortisseur, amortisseur d'aube de soufflante et methode de calibrage de l'amortisseur
FR2949142A1 (fr) * 2009-08-11 2011-02-18 Snecma Cale amortisseuse de vibrations pour aube de soufflante

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111603A (en) * 1976-05-17 1978-09-05 Westinghouse Electric Corp. Ceramic rotor blade assembly for a gas turbine engine
GB1549152A (en) * 1977-01-11 1979-08-01 Rolls Royce Rotor stage for a gas trubine engine
FR2665726B1 (fr) * 1990-08-08 1993-07-02 Snecma Soufflante de turbomachine a amortisseur dynamique a cames.
US5156528A (en) * 1991-04-19 1992-10-20 General Electric Company Vibration damping of gas turbine engine buckets
FR2716502B1 (fr) * 1994-02-23 1996-04-05 Snecma Garniture d'étanchéité entre des aubes et des plates-formes intermédiaires.
FR2888897B1 (fr) * 2005-07-21 2007-10-19 Snecma Dispositif d'amortissement des vibrations d'un anneau de retention axiale des aubes de soufflante d'une turbomachine
FR2903154B1 (fr) * 2006-06-29 2011-10-28 Snecma Rotor de turbomachine et turbomachine comportant un tel rotor
FR2948725B1 (fr) * 2009-07-28 2012-10-05 Snecma Dispositif anti-usure d'un rotor de turbomachine
US8066479B2 (en) * 2010-04-05 2011-11-29 Pratt & Whitney Rocketdyne, Inc. Non-integral platform and damper for an airfoil
US9366142B2 (en) * 2011-10-28 2016-06-14 General Electric Company Thermal plug for turbine bucket shank cavity and related method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0081416A1 (fr) 1981-12-03 1983-06-15 Societe Nationale D'etude Et De Construction De Moteurs D'aviation, "S.N.E.C.M.A." Dispositif d'amortissement des aubes d'une soufflante de turbomachine
EP0488874A1 (fr) * 1990-11-28 1992-06-03 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Rotor de soufflante avec aubes sans plates-formes et sabots reconstituant le profil de veine
EP0764766A1 (fr) * 1995-09-21 1997-03-26 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Agencement amortisseur monté entre des aubes de rotor
FR2923557A1 (fr) 2007-11-12 2009-05-15 Snecma Sa Ensemble d'une aube de soufflante et de son amortisseur, amortisseur d'aube de soufflante et methode de calibrage de l'amortisseur
FR2949142A1 (fr) * 2009-08-11 2011-02-18 Snecma Cale amortisseuse de vibrations pour aube de soufflante

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3039225A1 (fr) * 2015-07-20 2017-01-27 Snecma Turbomachine, telle par exemple qu'un turboreacteur d'avion
FR3052484A1 (fr) * 2016-06-08 2017-12-15 Snecma Rotor resistant aux impacts
CN105909557A (zh) * 2016-06-21 2016-08-31 中国航空工业集团公司沈阳发动机设计研究所 一种风扇转子叶片安装结构

Also Published As

Publication number Publication date
FR3003294A1 (fr) 2014-09-19
GB2526475B (en) 2018-05-16
GB2526475A (en) 2015-11-25
GB201515665D0 (en) 2015-10-21
FR3003294B1 (fr) 2018-03-30
US20160032734A1 (en) 2016-02-04

Similar Documents

Publication Publication Date Title
WO2014140449A1 (fr) Soufflante de turbomoteur a flux multiple, et turbomoteur equipe d'une telle soufflante
EP2366061B1 (fr) Roue de turbine avec système de rétention axiale des aubes
FR3132743A1 (fr) Ensemble de turbomachine comprenant un carter
EP3361058B1 (fr) Compresseur de turbomachine et turbomachine associée
EP2705256B1 (fr) Rotor de turbomachine avec moyen de retenue axiale des aubes
FR2660362A1 (fr) Structure de fixation des extremites exterieures des aubes d'une turbine.
WO2013107967A1 (fr) Secteur angulaire de redresseur a amortissement de vibrations par coin pour compresseur de turbomachine
FR3085712A1 (fr) Aube de roue mobile pour turbomachine d'aeronef, presentant un talon decouple de la pale de l'aube
CA2943461C (fr) Piece de revolution pour un rotor de turbomachine
EP3265654B1 (fr) Disque aubagé monobloc comportant un moyeu raccourci et une pièce de maintien
EP2307738B1 (fr) Couvercle de compresseur de turbomoteur à butée axiale
WO2021116567A1 (fr) Roue de rotor de turbine pour une turbomachine d'aeronef
FR3109796A1 (fr) Carter intermediaire de redressement avec bras structural rapporte
FR3109795A1 (fr) Carter intermediaire de redressement avec bras structural monobloc
FR3108149A1 (fr) Module de soufflante pour une turbomachine d’aeronef
WO2023247855A1 (fr) Ensemble de turbomachine comportant des plateformes ayant des bords pourvus de protubérances et d'échancrures complémentaires et turbomachine
WO2024156955A1 (fr) Rotor de turbomachine, turbine de turbomachine et turbomachine pour aéronef
EP4228964A1 (fr) Ensemble d'attache pour une aube de turbomachine
WO2023247903A1 (fr) Ensemble aubagé pour turbomachine, turbine pour turbomachine et turbomachine
FR3127786A1 (fr) Disque de rotor pour une turbomachine d’aeronef
FR3106615A1 (fr) Ensemble pour turbomachine
FR3144848A1 (fr) Ensemble rotorique de soufflante pour turbomachine
FR3117534A1 (fr) Rotor de soufflante à aubes à calage variable.
FR3126446A1 (fr) Amortisseur déformable pour roue mobile de turbomachine
FR3085411A1 (fr) Accouplement pour turbomachine de type curvic avec verrouillage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14713524

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1515665

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20140304

WWE Wipo information: entry into national phase

Ref document number: 1515665.6

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 14776300

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14713524

Country of ref document: EP

Kind code of ref document: A1