WO2014139335A1 - 铁、铝、钛还原熔盐法无渣生产工艺 - Google Patents

铁、铝、钛还原熔盐法无渣生产工艺 Download PDF

Info

Publication number
WO2014139335A1
WO2014139335A1 PCT/CN2014/070655 CN2014070655W WO2014139335A1 WO 2014139335 A1 WO2014139335 A1 WO 2014139335A1 CN 2014070655 W CN2014070655 W CN 2014070655W WO 2014139335 A1 WO2014139335 A1 WO 2014139335A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
solid
liquid
slag
ammonia
Prior art date
Application number
PCT/CN2014/070655
Other languages
English (en)
French (fr)
Inventor
胡长春
胡晓雪
Original Assignee
Hu Changchun
Hu Xiaoxue
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hu Changchun, Hu Xiaoxue filed Critical Hu Changchun
Publication of WO2014139335A1 publication Critical patent/WO2014139335A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/56Manufacture of steel by other methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/02Obtaining aluminium with reducing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B19/00Combinations of furnaces of kinds not covered by a single preceding main group
    • F27B19/04Combinations of furnaces of kinds not covered by a single preceding main group arranged for associated working
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat

Definitions

  • the invention belongs to the technical field of smelting and inorganic salts of ferrous metals and non-ferrous metals, and particularly relates to a slag-free production process of iron, aluminum and titanium reducing molten salt method. Background technique
  • red mud whose pH value was 12.1 ⁇ 13.0.
  • the world has accumulated hundreds of millions of tons of red mud, and in the production of alumina, a large amount of red mud has been continuously produced every year, which has caused many direct and indirect effects on human production and life.
  • the sodium salt content of 30 ⁇ 400 mg / L is a suitable range of public water sources, and the sodium salinity of the red mud liquid is as high as 26348 mg / L, so the red mud liquid with such high sodium salinity enters the water body, and its pollution is not said.
  • the application date is June 2, 2012, and the application number is 201210199691.3.
  • the name is “a process method for slag-free production using bauxite or red mud”; 2.
  • the application date is On July 27, 2012, the application number is 201210279677.4, the name is "a slag-free production process of iron, aluminum and titanium combined method”; 3.
  • the application date is January 21, 2012, the application number is 201210025393.2, and the name is "continuous temperature control of the rotary kiln with added melting points.
  • the smelting system of the furnace 4, the application date is January 21, 2012, the application number is 201210025404.7, and the name is "rotary kiln dynamic fluidized bed gas distribution system”.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide a slag-free production process of iron, aluminum and titanium reducing molten salt method, which can completely solve the problem that the latent heat of high temperature molten slag cannot be utilized or cannot be completely solved in the prior art.
  • the use of its own valuable elements can not extract the world's problems, as well as the waste residue pollution environment, resource waste, low productivity, etc., to achieve low-cost, high-efficiency to turn harmful substances into effective resources, and truly achieve the entire process of solid pollution Zero emissions, zero liquid emissions and gas emissions, green and environmentally friendly.
  • the technical solution adopted by the present invention to solve the technical problems thereof is: a slag-free production process of iron, aluminum and titanium reduction molten salt method, characterized in that: the following steps are included: 1) adding an appropriate amount of ammonium sulfate solution to the molten salt reaction tank; 2) adding high-temperature molten slag to a molten salt reaction tank containing an appropriate amount of ammonium sulfate solution; 3) inputting ammonia gas output from the ammonia gas outlet of the molten salt reaction tank to low-temperature waste heat power generation to generate electricity.
  • the method further comprises the following steps: 4) solid-liquid mixture of liquid aluminum sulfate and titanium oxysulfate, solid silica and calcium sulfate output from the reaction of the molten salt reaction tank to the first solid. The liquid is separated.
  • the method further comprises the following steps: 5) transporting the ammonia water after the low-temperature waste heat power generation to the ammonia rectification tower for rectification; pumping a part of the purified pure liquid ammonia into the melting furnace cracking tube; The hydrogen and nitrogen cracking gas from the melting furnace cracking pipe passes through the rotary kiln The distributor disc is passed into the rotary kiln.
  • the method further comprises the steps of: 7) transporting another portion of the liquid ammonia produced by the purification of the ammonia rectification column to the aluminum sulfate solution tank.
  • the method further comprises the following steps: 8) performing solid-liquid separation by the first solid-liquid separation to obtain solid silica and sulfuric acid tetrasulfide; and transferring the obtained liquid aluminum sulfate, titanyl sulfate, etc. to the hydrolysis reaction tank. Hydrolysis; 9) Hydrolysis and solid-liquid separation by second solid-liquid separation to obtain titanium dioxide solid and liquid aluminum sulfate; liquid aluminum sulfate enters the aluminum sulfate solution tank.
  • the method further comprises the following steps: 10) transporting the solid aluminum hydroxide and the ammonium sulfate aqueous solution formed by reacting the liquid ammonia in the aluminum sulfate solution tank with the aluminum sulfate to the third solid-liquid separation for solid-liquid separation to obtain solid hydroxide
  • Aluminum solution of ammonium sulfate is precipitated; ammonium sulfate aqueous solution is placed in the ammonium sulfate solution tank; 11) is pressurized by ammonium sulfate pump, and the ammonium sulfate aqueous solution is input into the molten salt reaction tank through the liquid inlet port, and then reacted with the high temperature molten slag. .
  • the method further comprises the following steps: 12) transporting the water extracted from the ammonia rectification column to a hydrolysis reaction tank for hydrolysis.
  • step 1) an appropriate amount of ammonium sulfate is added to the molten salt reaction tank from the inlet of the molten salt reaction tank.
  • step 2) the high-temperature molten slag which is pre-reduced by the rotary kiln and melted and reduced by the melting furnace is fed from the high-temperature molten slag of the molten furnace to the high-temperature molten slag inlet of the molten salt reaction tank, and is input to the molten salt.
  • the high-temperature molten slag reacts with ammonium sulfate to produce a solid-liquid mixture of ammonia gas, liquid aluminum sulfate and titanyl sulfate, solid silica and calcium sulfate.
  • the ammonia gas is output from the ammonia gas outlet at the top of the molten salt reaction tank, and is pressurized by the vacuum pressure unit to generate electricity through the low temperature waste heat; the low temperature waste heat power generation uses the working medium to heat up, and the screw expander is driven to generate electricity.
  • a solid-liquid mixture such as liquid aluminum sulphate and titanyl oxytitanate, solid silica and sulphuric acid sulphide are transported by a conveyor to the neutralization tank and then to the first Solid-liquid separation.
  • step 5 the ammonia water is sent to the ammonia rectification column for rectification by the ammonia water pump; the pure liquid ammonia is sent to the melting furnace cracking tube by using the liquid ammonia pump.
  • the pure liquid ammonia is sent to the aluminum sulfate solution tank using a liquid ammonia pump for generating an ammonia sulfate liquid and solid aluminum hydroxide.
  • the invention has the beneficial effects that: the invention can effectively recycle the high-temperature molten slag and turn waste into treasure; it can completely solve the problem that the latent heat energy of the high-temperature molten slag cannot be effectively utilized, and the valuable metal element Unable to extract the world's problems.
  • the invention fully utilizes the high heat content of the high-temperature molten slag itself, and reacts with the ammonium sulfate to completely liquefy the acid-soluble substance such as aluminum or titanium, which is unmatched by the conventional acid leaching method; Can extract all the valuable metals in the high-temperature molten slag, extract the alumina and iron in the acicular aluminite, and achieve the "Bayer method", “sintering method”, “combination method”; when using the bauxite When aluminum, iron, and titanium are produced by using the apparatus of the present invention, red mud is no longer generated and the environment is polluted, thereby completely changing the production status of alumina.
  • the invention is an organic combination of cross-industry and cross-domain technologies such as ferrous metal, non-ferrous metal, inorganic salt industry, organic synthesis, chemical ammonia and building materials industries, which completely changes the high pollution, high energy consumption and high price of the titanium dioxide production industry. status quo.
  • the invention can be widely promoted, and there is no need to set up a special titanium dioxide manufacturer; such a large-scale comprehensive utilization production plant can meet the demand of the domestic titanium dioxide market and return the titanium dioxide market to a reasonable price of natural abundance reserves. .
  • the total investment of the invention is greatly reduced compared with the prior art, the production cost is very low (one-fifth of the existing Bayer method), and no pollution is generated, the comprehensive energy consumption is very low, and the heat energy is repeatedly reused, green Environmental protection, the arrival of the metallurgical era of hydrogen industry production.
  • FIG. 1 is a block diagram showing the structure of an apparatus embodying the present invention
  • Figure 2 is a cross-sectional structural view of the rotary kiln of Figure 1.
  • Rotary kiln; l a rotary kiln disc; 2, melting furnace; 2a, high temperature molten slag outlet; 2b, melting furnace cracking pipe;
  • reaction to form solid-liquid mixture outlet 4, vacuum pressure unit; 5, low temperature waste heat power generation; 6, ammonia pump;
  • FIG. 1 and 2 it is one of the devices for carrying out the invention, and its structure is as follows: including rotary kiln 1, melting furnace 2, molten salt reaction tank 3, vacuum pressure unit 4 and low temperature waste heat power generation 5, rotary kiln 1
  • the head is connected to the tail of the melting furnace 2 through a closed passage;
  • the head of the rotary kiln 1 is provided with a rotary kiln disc;
  • the head of the melting furnace 2 is provided with a high-temperature molten slag outlet 2a, and the top of the melting furnace 2 is provided with a melting furnace for cracking Tube 2b;
  • the upper part of the molten salt reaction tank 3 is provided with an ammonia gas outlet 3a, the upper part is provided with a high-temperature molten slag inlet 3b,
  • the side tank wall is symmetrically arranged with nine inlet ports 3c at intervals of ninety degrees, and the bottom is arranged to form a solid-liquid mixture outlet 3d;
  • the high-temperature molten slag outlet 2a and the high-temperature molten slag inlet 3b are connected by a closed passage, the liquid inlet 3c is lower than the high-temperature molten slag inlet 3b, and the high-temperature molten slag inlet 3b is lower than the high-temperature molten slag outlet 2a; the ammonia gas at the top of the molten salt reaction tank 3
  • the outlet 3a is connected to the low temperature waste heat power generation 5 via the vacuum pressure unit 4, and the low temperature waste heat power generation 5 drives the screw expander to generate electricity;
  • the utility model further comprises an ammonia water pump 6, an ammonia rectification tower 7 and a liquid ammonia pump 8, wherein the ammonia rectification tower 7 is provided with a water outlet 7a and a liquid ammonia outlet 7b; an ammonia water pump 6, an ammonia rectification tower 7, a liquid ammonia pump 8, and a melting
  • the split furnace cracking pipe 2b and the rotary kiln gas collecting plate la are sequentially connected in sequence;
  • the conveyor 9, the neutralization tank 10, the first solid-liquid separation 11, the hydrolysis reaction tank 12, the second solid-liquid separation 13 and the aluminum sulfate solution tank 14 are also sequentially connected; the conveyor 9 and the reaction form a solid-liquid mixture outlet 3d connected, the water outlet 7a of the ammonia rectification column 7 is in communication with the hydrolysis reaction tank 12, and the liquid ammonia outlet 7b of the ammonia rectification column 7 is passed through the liquid ammonia pump 8, respectively, with the melting furnace cracking tube 2b and the stone aluminizing solution tank. 14 connected.
  • the aluminum sulfate solution tank 14 is also connected to the third solid-liquid separation 15 , and the third solid-liquid separation 15 is further communicated with the inlet port 3c of the molten salt reaction tank 3 via the ammonium sulfate pump 16 and the ammonium sulfate pump 17.
  • the slag-free production process of iron, aluminum and titanium reduced molten salt method includes the following steps:
  • the ammonia water generated by the low-temperature residual heat 5 is sent from the ammonia water pump 6 to the ammonia rectification column 7 for rectification; a part of the purified pure liquid ammonia is sent to the furnace of the melting furnace 2 using the liquid ammonia pump 8.
  • the aluminum sulfate in the aluminum sulfate solution tank 14 reacts with the pure liquid ammonia from the liquid ammonia pump 8 to form a solid aluminum hydroxide and an aqueous ammonium sulfate solution; and the solid aluminum hydroxide and the ammonium sulfate aqueous solution are transported to the third solid-liquid separation. 15 performing solid-liquid separation to obtain a solid aluminum hydroxide aqueous solution of ammonium citrate; and placing an aqueous ammonium sulfate solution in the ammonium sulfate solution tank 16;
  • the mixture of carbon and hydrogen pre-reduced in the rotary kiln 1 enters the melting furnace 2 through the closed passage, and the molten slag is separated by the melting furnace 2, and the reduced hot molten iron is melted.
  • the bottom of the sub-furnace 2 flows out, and the upper high-temperature molten slag enters the molten salt reaction tank 3 from the high-temperature molten slag outlet 21 through the high-temperature molten slag inlet 3b;
  • An appropriate amount of ammonium sulfate is added to the molten salt reaction tank 3 from the liquid inlet 3c, and after the high-temperature molten slag enters, the aluminum and titanium pyrolysis stones are filled with acid ammonia to form a new inorganic stone-filled acid salt, which decomposes ammonia at a high temperature.
  • the aluminum oxide, titanium dioxide and acid-melted vanadium and niobium in the high-temperature molten slag combine with sulfate to form a new water-soluble sulfate, which respectively produces ammonia vapor, liquid aluminum sulfate and titanyl sulfate, and solid state.
  • ammonia vapor is output from the ammonia gas outlet 3a at the top of the molten salt reaction tank 3, pressurized by the vacuum pressure unit 4, and flows through the low-temperature waste heat power generation 5; the low-temperature waste heat power generation 5 is replaced by the working medium The heat is cooled to generate ammonia water, and the screw expander is driven to generate electricity;
  • the ammonia vapor is cooled by the low-temperature waste heat power generation 5 and becomes ammonia water, which is sent to the ammonia rectification column 7 by the ammonia water pump 6; the ammonia water is purified by the ammonia rectification column 7 to produce water and pure liquid ammonia having a purity of 99% or more.
  • a small portion of the pure liquid ammonia is directly pumped into the melting furnace cracking pipe 2b disposed in the top material of the melting furnace 2, and the melting furnace cracking pipe 2b is used to crack them into a hydrogen and nitrogen mixed gas; Due to the endothermic cracking of the ammonia gas, the temperature of the top refractory material of the melting furnace 2 is effectively reduced, thereby protecting the refractory material and prolonging the life of the refractory material;
  • the hydrogen and nitrogen cracking gas from the melting furnace cracking pipe 2b enters the rotary kiln 1 through the rotary kiln gas distribution plate la; the hydrogen is added under the coal-based reduced iron condition, thereby increasing the iron reduction rate; Under the premise of high reduction rate, the reduction temperature can be effectively and greatly reduced to less than 1000 degrees, thereby completely solving the worldwide problems of crusting and rolling ball of the rotary kiln 1; realizing low-cost hydrogen reduction of iron and nickel Ilmenite;
  • the other majority of the liquid ammonia produced by the purification of the ammonia rectification column 7 is sent to the aluminum sulfate solution tank 14 for producing an ammonium sulfate liquid and solid aluminum hydroxide;
  • the solid-liquid mixture of liquid aluminum sulfate and titanyl sulfate, solid silica and calcium sulfate is discharged from the bottom of the molten salt reaction tank 3 to form a solid-liquid mixture outlet 3d, and is conveyed.
  • the machine 9 is transported into the neutralization tank 10, and sulfuric acid is added to the neutralization tank 10 for further extraction of valuable elements; the solid-liquid mixture is further fed to the first solid-liquid separation 11 for solid-liquid separation to form solid silica, Calcium sulfate and liquid aluminum sulfate, titanium oxysulfate, etc.; solids such as silica and calcium sulfate, used for making high-grade building materials glass, etc., the iron content of which is PPM grade; liquid aluminum sulfate, titanium oxysulfate enters the hydrolysis reaction tank 12 After the hydrolysis is carried out, the solid-liquid separation is performed again by the second solid-liquid separation 12 to obtain titanium dioxide solid and liquid aluminum sulfate; the liquid aluminum sulfate enters the aluminum sulphate solution tank 14;
  • the liquid ammonia from the ammonia rectification column 7 reacts with the aluminum sulfate therein to form a solid aluminum hydroxide and an aqueous ammonium sulfate solution; and the third solid-liquid separation 15 performs solid-liquid separation to obtain a solid.
  • An aqueous solution of aluminum hydroxide and ammonium sulfate; an aqueous solution of ammonium sulfate is placed in an ammonium sulphate solution tank 16, and then pressurized by an ammonium sulphate pump 17, and input into the molten salt reaction tank 3 through the liquid inlet 3c, and then with a high temperature. The molten slag is reacted;
  • the aluminum sulfate solution in the aluminum sulfate solution tank 14 can also be passed into the neutralization tank 10 for further extraction of valuable elements;
  • the water extracted by the ammonia rectification column 7 enters the hydrolysis reaction tank 12 for replenishment of the hydrolysis water.
  • ammonia and sulfuric acid can be supplemented with only a small amount, thereby achieving the recycling of ammonia and sulfuric acid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

铁、铝、钛还原熔盐法无渣生产工艺,包括以下步骤:1)在熔盐反应罐(3)中加入硫酸铵;2)加入高温熔融渣;3)氨气输入到低温余热发电(5);4)将硫酸铝、硫酸氧钛、二氧化硅和硫酸钙通入到第一固液分离(11)内;5)将氨水精馏,泵入熔分炉裂解管(2b);6)裂解气通入到回转窑内(1);7)液氨输送到硫酸铝溶液罐(14)中;8)硫酸铝、硫酸氧钛水解;9)由第二固液分离(13)分离。它彻底解决高温熔融渣潜热能、有价元素无法提取利用的难题。

Description

铁、 铝、 钛还原熔盐法无渣生产工艺 技术领域
本发明属于黑色金属、有色金属冶炼与无机盐技术领域, 具体涉 及一种铁、 铝、 钛还原熔盐法无渣生产工艺。 背景技术
目前, 钢铁行业, 提取铁后的高温熔融渣废弃, 其潜热白白浪废 或利用率非常低; 钛白粉生产只提取钛, 其它也全部废弃; 湿法冶金 电解镍生产, 也只提取镍其它也全部废弃; 铜冶金也是如此。 这些传 统的生产、 工艺方法已不适合环保要求。 它们既造成了环境的污染, 又造成了资源的浪废, 大量的热能白白浪废, 从而使生产成本高居不 下。
制铝工业使用铝土矿提取氧化铝后, 其余全部作为废渣排出, 于 是产生了大量的污染物——赤泥, 它的浸出液 pH值为 12.1 ~ 13.0 。 全世界至今已经堆存上亿吨赤泥, 而且在氧化铝生产中,每年又不断 新产生大量的赤泥, 已经对人类的生产、生活造成多方面的直接和间 接的影响。 一般认为钠盐含量为 30 ~ 400 mg/L是公共水源的适合范 围, 而赤泥附液的钠盐度高达 26348mg/L, 如此高钠盐度的赤泥附液 进入水体, 其污染不言而喻。 为解决这一难题, 人们曾经试图使用高 炉法、 磁选法(包括超导磁选法)或浮选法, 提取赤泥中的铁, 并藉 此"消化"大量堆存的赤泥, 但是, 因为赤泥中的铁是以深度氧化铁、 铁盐等状态存在的, 故磁选法 (包括超导磁选法)、 重选法或浮选法 根本无法提取其中的铁; 而高炉法, 因为其中含有较大量的铝、 钛及 其化合物, 由于这些物质非常粘稠, 不但阻止了高炉中的气固液三相 反应的进行, 而且使得高炉"吐渣"不能; 虽然可以掺入大量的含 4丐化 合物以解决"粘稠"问题,但就大大增加了生产成本,基本没有了效益, 失去了实用性, 所以不再被使用。
本人申请了以下中国发明专利: 1、 申请日为 2012年 6月 2日, 申请号为 201210199691.3名称为"一种利用铝土矿或赤泥进行无渣生 产的工艺方法"; 2、 申请日为 2012 年 7 月 27 日, 申请号为 201210279677.4, 名称为 "一种铁、 铝、 钛联合法无渣生产工艺"; 3、 申请日为 2012年 1月 21 日, 申请号为 201210025393.2, 名称为 "连 续控温的回转窑配加熔分炉的冶炼系统"; 4、 申请日为 2012年 1月 21 曰, 申请号为 201210025404.7, 名称为 "回转窑动态沸腾床配气系 统"。 以上专利, 首先解决了现有技术中高炉法"吐渣"不能的问题, 大大地降低了生产成本;其次是将使有毒的赤泥资源化,得到单质铁, 其回收率可达 99%以上, 解决了赤泥占地、 污染环境的问题。 虽然这 是一个大好的循环经济技术,但仍然存在着如下缺点: 它还没有完全 做到低成本、 热能高效综合重复利用。 虽能得到诸如硅钛铝合金、 微 晶石等副产品, 但提取后的高温熔融渣所含潜热没有很好地被利用, 仍然造成了资源的浪废,没有真正实现生产全过程地固体污染物零排 放、 液态污染零排放及气体达标排放, 绿色环保。 发明内容
本发明要解决的技术问题是:克服现有技术的不足,提供一种铁、 铝、钛还原熔盐法无渣生产工艺, 它能够彻底解决现有技术中高温熔 融渣潜热不能利用或不能完全利用、其自身有价元素不能提取利用的 世界性难题, 以及废渣污染环境、 资源浪费、 产能低下等问题, 达到 低成本、 高效能地将有害物质变为有效资源, 真正实现生产全过程固 体污染物零排放、 液态污染零排放及气体达标排放, 绿色环保。
本发明解决其技术问题所采用的技术方案是: 铁、 铝、 钛还原熔 盐法无渣生产工艺, 其特征在于: 包括如下步骤: 1 )在熔盐反应罐 中加入适量的硫酸铵溶液; 2 )将高温熔融渣加入到盛有适量的硫酸 铵溶液的熔盐反应罐中; 3 )将从熔盐反应罐的氨气出口输出的氨气 输入到低温余热发电, 进行发电。
优选的, 还包括如下步骤: 4 )将从熔盐反应罐的反应生成固液 混合物出口输出的液态硫酸铝和硫酸氧钛、固态二氧化硅和硫酸钙等 固液混合物, 输送到第一固液分离内。
优选的, 还包括如下步骤: 5 )将流经低温余热发电后的氨水, 输送到氨精馏塔进行精馏; 将提纯出的纯液氨的一部分, 泵入熔分炉 裂解管中; 6 )将从熔分炉裂解管出来的氢、 氮裂解气, 经过回转窑 分气盘通入到回转窑内。
优选的, 还包括如下步骤: 7 )将经氨精馏塔提纯产生的另一部 分液氨, 输送到硫酸铝溶液罐中。
优选的, 还包括如下步骤: 8 ) 由第一固液分离进行固液分离, 得到固体二氧化硅、 硫酸 4丐; 将同时得到的液态硫酸铝、 硫酸氧钛等 输送到水解反应罐中进行水解; 9 ) 经水解并由第二固液分离再次进 行固液分离, 得到二氧化钛固体和液态硫酸铝; 液态硫酸铝进入硫酸 铝溶液罐中。
优选的, 还包括如下步骤: 10 )将硫酸铝溶液罐中的液氨与硫酸 铝进行反应生成的固体氢氧化铝、硫酸铵水溶液输送到第三固液分离 进行固液分离,得到固体氢氧化铝析出硫酸铵水溶液; 将硫酸铵水溶 液置于硫酸铵溶液罐中; 11 )由硫酸铵泵加压, 将硫酸铵水溶液经进 液口输入到熔盐反应罐中, 再与高温熔融渣进行反应。
优选的, 还包括如下步骤: 12 )将氨精馏塔提取出的水, 输送到 水解反应罐中用于水解。
优选的, 步骤 1 ) 中, 由熔盐反应罐的进液口加入适量的硫酸铵 到熔盐反应罐中。
优选的, 步骤 2 ) 中, 将经回转窑预还原、 熔分炉熔融还原出来 的高温熔融渣,由熔分炉的高温熔融渣出口经熔盐反应罐的高温熔融 渣入口, 输入到熔盐反应罐中; 高温熔融渣与硫酸铵反应, 产生出氨 气、 液态硫酸铝和硫酸氧钛、 固态二氧化硅和硫酸钙等固液混合物。
优选的, 步骤 3 ) 中, 氨气由熔盐反应罐顶部的氨气出口输出, 经真空压力机组加压流经低温余热发电; 低温余热发电利用工质换 热, 推动螺杆膨胀机进行发电。
优选的, 步骤 4 ) 中, 液态石克酸铝和石克酸氧钛、 固态二氧化硅和 硫酸 4丐等固液混合物, 经输送机加压输送到中和罐内, 再输送到第一 固液分离内。
优选的, 步骤 5 ) 中, 氨水由氨水泵输送到氨精馏塔进行精馏; 纯液氨使用液氨泵, 输送到熔分炉裂解管中。
优选的, 步骤 7 ) 中, 使用液氨泵将纯液氨输送到硫酸铝溶液罐 中, 用于生成硫酸氨液体与固体氢氧化铝。 与现有技术相比, 本发明的有益效果是: 本发明可以有效地将高 温熔融渣资源化, 变废为宝; 它能够彻底解决了高温熔融渣潜热能无 法有效被利用、有价金属元素无法提取的世界性难题。 本发明充分有 效地利用了高温熔融渣自身热含高的特性, 加入硫酸铵与之彻底反 应, 将其中的铝、 钛等酸溶物产生浸出, 这是常规酸浸出方法所不能 比拟的; 它能全部提取高温熔融渣中的有价金属、提取针状铝铁矿中 的氧化铝和铁, 做到了 "拜耳法"、 "烧结法"、 "联合法"之所不能; 当 利用铝土矿使用本发明的装置制取铝、 铁、 钛时, 就不再产生赤泥而 污染环境, 从而彻底改变了氧化铝的生产现状。铝土矿配钛铁矿生产 钛白粉无需专门的生产厂家, 且不产生任何污染, 生产成本低。 本发 明是黑色金属、 有色金属、 无机盐工业、 有机合成、 化工制氨及建材 行业等跨行业、跨领域技术的有机结合, 它彻底改变了二氧化钛生产 行业的高污染、 高能耗、 高价格的现状。 本发明可以大规模地推广, 再没有必要设立专门的钛白粉生产厂家; 此类大规模综合利用生产 厂, 既可满足国内钛白粉市场的需求, 使二氧化钛市场回归到自然丰 度储量的合理价位。 本发明总投资较现有技术有大幅度降低, 生产成 本非常低(是现有拜尔法的五分之一), 且不产生任何污染, 综合能 耗非常低, 热能多次重复利用, 绿色环保, 实现氢工业生产冶金时代 的到来。 附图说明
图 1是实施本发明的装置的结构框图;
图 2是图 1中回转窑的剖视结构示意图。
图中标记为:
1、 回转窑; la、 回转窑分气盘; 2、 熔分炉; 2a、 高温熔融渣出 口; 2b、 熔分炉裂解管;
3、 熔盐反应罐; 3a、 氨气出口; 3b、 高温熔融渣入口; 3c、 进 液口;
3d、 反应生成固液混合物出口; 4、 真空压力机组; 5、 低温余热 发电; 6、 氨水泵;
7、 氨精馏塔; 7a、 水出口; 7b、 液氨出口; 8、 液氨泵; 9、 输 送机; 10、 中和罐;
11、 第一固液分离; 12、 水解反应罐; 13、 第二固液分离; 14、 石克酸铝溶液罐;
15、 第三固液分离; 16、 硫酸铵溶液罐; 17、 硫酸铵泵。 具体实施方式
如图 1、 2所示, 是实施本发明的装置之一, 其结构如下: 包括 回转窑 1、 熔分炉 2、 熔盐反应罐 3、 真空压力机组 4及低温余热发 电 5 , 回转窑 1头部通过密闭通道与熔分炉 2尾部连通; 回转窑 1头 部, 设置回转窑分气盘 la; 熔分炉 2头部设置高温熔融渣出口 2a, 熔分炉 2顶部设置熔分炉裂解管 2b; 熔盐反应罐 3顶部设置氨气出 口 3a, 上部设置高温熔融渣入口 3b, 侧面罐壁上间隔九十度对称设 置四个进液口 3c, 底部设置反应生成固液混合物出口 3d;
高温熔融渣出口 2a与高温熔融渣入口 3b由密闭通道连通,进液 口 3c低于高温熔融渣入口 3b, 高温熔融渣入口 3b低于高温熔融渣 出口 2a; 熔盐反应罐 3顶部的氨气出口 3a经真空压力机组 4与低温 余热发电 5连通, 低温余热发电 5推动螺杆膨胀机进行发电;
还包括氨水泵 6、 氨精馏塔 7以及液氨泵 8, 氨精馏塔 7上设置 有水出口 7a和液氨出口 7b; 氨水泵 6、 氨精馏塔 7、 液氨泵 8、 熔分 炉裂解管 2b、 回转窑分气盘 la依次顺序连通;
还包括依次顺序连通的输送机 9、 中和罐 10、 第一固液分离 11、 水解反应罐 12、 第二固液分离 13和硫酸铝溶液罐 14; 输送机 9与反 应生成固液混合物出口 3d连通,氨精馏塔 7的水出口 7a与水解反应 罐 12连通, 氨精馏塔 7的液氨出口 7b经液氨泵 8, 分别与熔分炉裂 解管 2b、 石充酸铝溶液罐 14连通。
硫酸铝溶液罐 14还连通第三固液分离 15 , 第三固液分离 15还 通过硫酸铵泵 16、 硫酸铵泵 17与熔盐反应罐 3的进液口 3c连通。
下面结合附图实施例, 对本发明做进一步描述:
如图 1、 2所示, 铁、 铝、 钛还原熔盐法无渣生产工艺, 包括如 下步骤:
1 )由熔盐反应罐 3的进液口 3c加入适量的硫酸铵到熔盐反应罐 3中;
2 )将经回转窑 1预还原、 熔分炉 2熔融还原实现渣铁分离出来 的高温熔融渣, 由熔分炉 2的高温熔融渣出口 2a经熔盐反应罐 3的 高温熔融渣入口 3b, 输入到熔盐反应罐 3 中; 高温熔融渣与其中的 石克酸铵进行反应, 产生出氨气、 液态石克酸铝和石克酸氧钛、 固态二氧化 硅和疏酸钙等固液混合物;
3 )反应产生的氨气, 由熔盐反应罐 3的氨气出口 3a输出, 经真 空压力机组 4加压, 流经低温余热发 5 , 低温余热发电 5利用工质换 热, 推动螺杆膨胀机进行发电;
4 )将从熔盐反应罐 3的反应生成固液混合物出口 3d输出的液态 硫酸铝和硫酸氧钛、 固态二氧化硅和硫酸钙等固液混合物, 经输送机 9加压输送到中和罐 10 内, 添加石克酸进一步中和其中所含残余的氨 气后输送到第一固液分离 11内;
5 )将经低温余热 5发电后的氨水, 由氨水泵 6输送到氨精馏塔 7进行精馏; 将提纯出的纯液氨的一部分, 使用液氨泵 8输送到熔分 炉 2的炉顶耐材中的熔分炉裂解管 2b中;
6 )将从熔分炉裂解管 2b出来的氢、 氮裂解气, 经过回转窑分气 盘 la通入到回转窑 1内;
7 )将经氨精馏塔 7提纯产生的另一部分液氨, 使用液氨泵 8输 送到硫酸铝溶液罐 14中;
8 )由第一固液分离 11进行固液分离, 得到固体二氧化硅、 硫酸 钙析出; 将同时得到的液态硫酸铝、 硫酸氧钛等输送到水解反应罐 12中进行水解;
9 )经水解反应罐 12中水解, 再由第二固液分离 13再次进行固 液分离,得到二氧化钛固体和液态硫酸铝; 液态硫酸铝进入硫酸铝溶 液罐 14中;
10 )硫酸铝溶液罐 14中的硫酸铝与来自液氨泵 8的纯液氨进行 反应, 生成固体氢氧化铝、 硫酸铵水溶液; 将固体氢氧化铝、 硫酸铵 水溶液输送到第三固液分离 15进行固液分离, 得到固体氢氧化铝石克 酸铵水溶液; 将硫酸铵水溶液置于硫酸铵溶液罐 16中;
11 )由石克酸铵泵 17加压, 将硫酸铵溶液罐 16中的石克酸铵水溶液 经进液口 3c输入到熔盐反应罐 3中, 再与高温熔融渣进行反应;
12 )将氨精馏塔 7提取出的水, 输送到水解反应罐 12中, 用于 水解。
本发明的工作原理与工作过程如下:
如图 1、 2所示, 在回转窑 1中经过碳、 氢预还原的混合物料, 由密闭通道进入熔分炉 2, 经过熔分炉 2进行熔融渣铁分离, 还原出 的热铁水由熔分炉 2底部流出, 上部高温熔融渣由高温熔融渣出口 21经高温熔融渣入口 3b进入到熔盐反应罐 3中;
由进液口 3c加入适量的硫酸铵到熔盐反应罐 3中, 高温熔融渣 进入后, 其中的铝、 钛高温分解石充酸氨, 形成新的无机石充酸盐, 高温 分解氨, 同时高温熔融渣中的三氧化二铝、 二氧化钛及酸熔的钒、 钪 等元素, 与硫酸根结合形成新的可水溶性硫酸盐, 即分别生成了氨蒸 汽、 液态硫酸铝和硫酸氧钛、 固态二氧化硅和硫酸钙等固液混合物; 氨蒸汽由熔盐反应罐 3顶部的氨气出口 3a输出, 经真空压力机 组 4加压, 流经低温余热发电 5; 低温余热发电 5利用工质换热将氨 蒸汽降温生成为氨水, 推动螺杆膨胀机进行发电;
氨蒸气经低温余热发电 5降温后成为氨水,由氨水泵 6输送到氨 精馏塔 7; 氨水经氨精馏塔 7提纯, 产生水以及纯度为 99 %以上的纯 液氨。 其中, 这些纯液氨的一小部分, 被直接泵入设置于熔分炉 2炉 顶耐材中的熔分炉裂解管 2b, 熔分炉裂解管 2b将它们裂解为氢、 氮 混合气; 由于氨气的吸热裂解, 有效地降低了熔分炉 2的炉顶耐火材 料的温度, 起到了保护耐材的作用, 延长了耐材的寿命;
从熔分炉裂解管 2b出来的氢、 氮裂解气, 通过回转窑分气盘 la 进入到回转窑 1内; 在煤基还原铁的条件下加入了氢气, 就提高了铁 的还原率; 在此高还原率的前提下, 可有效地、 大幅度地降低还原温 度至 1000度以内, 从而彻底解决了回转窑 1的结圏、 滚球等世界性 难题; 实现了低成本氢还原铁、 镍、 钛铁矿;
经氨精馏塔 7提纯产生的另一大部分液氨,被输送到硫酸铝溶液 罐 14中, 用于生成硫酸铵液体与固体氢氧化铝;
液态硫酸铝和硫酸氧钛、 固态二氧化硅和硫酸钙等固液混合物, 均由熔盐反应罐 3底部的反应生成固液混合物出口 3d排出, 经输送 机 9输送到中和罐 10内,在中和罐 10内加硫酸用于进一步提取有价 元素; 上述固液混合物再进到第一固液分离 11进行固液分离, 生成 固体二氧化硅、 硫酸钙及液态硫酸铝、 硫酸氧钛等; 二氧化硅、 硫酸 钙等固体, 用于制作高档建材玻璃等, 其含铁量为 PPM级; 液态硫 酸铝、 硫酸氧钛进入到水解反应罐 12中进行水解后, 由第二固液分 离 12再次进行固液分离, 得到二氧化钛固体和液态硫酸铝; 液态硫 酸铝进入石克酸铝溶液罐 14中;
在硫酸铝溶液罐 14中, 来自氨精馏塔 7的液氨与其中的硫酸铝 进行反应, 生成了固体氢氧化铝、 硫酸铵水溶液; 经第三固液分离 15 进行固液分离, 得到固体氢氧化铝和硫酸铵水溶液; 硫酸铵水溶 液置于石克酸铵溶液罐 16中, 再通过石克酸铵泵 17加压, 经进液口 3c 输入到熔盐反应罐 3中, 再与高温熔融渣进行反应;
硫酸铝溶液罐 14中的硫酸铝溶液,还可以通入中和罐 10内, 用 于进一步提取有价元素;
氨蒸汽流经低温余热发电 5后, 经氨精馏塔 7提取出的水, 进入 水解反应罐 12中, 用于水解用水的补充。
这样, 使得氨与硫酸可以只作少量的补充, 从而实现氨、 硫酸的 循还使用。
部分化学反应方程式为:
3(NH4)2S04 + AI203 = AI2(S04)3 + 4NH3 + 6H20 + N2
(NH4)2S04 + TI02 = TIOS04+ 2NH3 +H20
6NH3 H20 + AI2(S04)3 = 3(NH4)2S04 + 2AI(OH)3
以上所述,仅是本发明的较佳实施例而已, 并非是对本发明作其 它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术 内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发 单修改、 等同变化与改型, 仍属于本发明技术方案的保护范围。

Claims

权利要求书
1、 铁、 铝、 钛还原熔盐法无渣生产工艺, 其特征在于: 包括如 下步骤:
1 )在熔盐反应罐中加入适量的硫酸铵溶液;
2 )将高温熔融渣加入到熔盐反应罐中;
3 )将由氨气出口输出的氨气输送到低温余热发电, 进行发电。
2、 根据权利要求 1所述的铁、 铝、 钛还原熔盐法无渣生产工艺, 其特征在于: 还包括如下步骤:
4 )将反应生成固液混合物出口输出的液态石克酸铝和石克酸氧钛、 固态二氧化硅和硫酸钙固液混合物, 通入到第一固液分离中。
3、 根据权利要求 2所述的铁、 铝、 钛还原熔盐法无渣生产工艺, 其特征在于: 还包括如下步骤:
5 )将流经低温余热发电后的氨水, 进行精馏; 将提纯出的液氨, 泵入熔分炉裂解管中;
6 )将从熔分炉裂解管出来的氢、 氮裂解气, 通入到回转窑内。
4、 根据权利要求 3所述的铁、 铝、 钛还原熔盐法无渣生产工艺, 其特征在于: 还包括如下步骤:
7 )将经氨精馏塔提纯产生的液氨, 输送到硫酸铝溶液罐中。
5、 根据权利要求 2至 4任一所述的铁、 铝、 钛还原熔盐法无渣 生产工艺, 其特征在于: 还包括如下步骤:
8 )由第一固液分离进行固液分离, 得到固体二氧化硅、 硫酸 4丐; 将同时得到的液态硫酸铝、硫酸氧钛,输送到水解反应罐中进行水解;
9 ) 经水解并由第二固液分离进行固液分离, 得到二氧化钛固体 和液态硫酸铝; 液态硫酸铝进入硫酸铝溶液罐中。
6、 根据权利要求 5所述的铁、 铝、 钛还原熔盐法无渣生产工艺, 其特征在于: 还包括如下步骤:
10 )将硫酸铝溶液罐中的硫酸铝与液氨进行反应生成的固体氢氧 化铝、石克酸铵水溶液输送到第三固液分离进行固液分离,得到固体氢 氧化铝和^ £酸铵水溶液; 将^ £酸铵水溶液置于^ £酸铵溶液罐;
11 )将硫酸铵水溶液输入到熔盐反应罐中, 再与高温熔融渣进行 反应。
7、 根据权利要求 6所述的铁、 铝、 钛还原熔盐法无渣生产工艺, 其特征在于: 还包括如下步骤:
12 )将氨精馏塔提取出的水, 输送到水解反应罐中。
8、 根据权利要求 7所述的铁、 铝、 钛还原熔盐法无渣生产工艺, 其特征在于: 步骤 1 ) 中, 由熔盐反应罐的进液口加入适量的硫酸铵 溶液到熔盐反应罐中。
9、 根据权利要求 8所述的铁、 铝、 钛还原熔盐法无渣生产工艺, 其特征在于: 步骤 2 ) 中, 将经回转窑预还原、 熔分炉熔融还原出来 的高温熔融渣,由熔分炉的高温熔融渣出口经熔盐反应罐的高温熔融 渣入口,输入到熔盐反应罐中;高温熔融渣与硫酸铵反应产生出氨气、 液态硫酸铝和硫酸氧钛、 固态二氧化硅和硫酸钙等固液混合物。
10、根据权利要求 9所述的铁、铝、钛还原熔盐法无渣生产工艺, 其特征在于: 步骤 3 ) 中, 氨气由熔盐反应罐顶部的氨气出口输出, 经真空压力机组加压流经低温余热发电, 低温余热发电利用工质换 热, 推动螺杆膨胀机进行发电。
11、 根据权利要求 10所述的铁、 铝、 钛还原熔盐法无渣生产工 艺, 其特征在于: 步骤 4 ) 中, 液态硫酸铝和硫酸氧钛、 固态二氧化 硅和硫酸 4丐等固液混合物, 经输送机加压输送到中和罐内中和后, 再 输送到第一固液分离内。
12、 根据权利要求 11所述的铁、 铝、 钛还原熔盐法无渣生产工 艺, 其特征在于: 步骤 5 ) 中, 氨水由氨水泵输送到氨精馏塔进行精 馏; 使用液氨泵, 将纯液氨输送到熔分炉裂解管中。
13、 根据权利要求 12所述的铁、 铝、 钛还原熔盐法无渣生产工 艺, 其特征在于: 步骤 7 ) 中, 使用液氨泵将纯液氨泵入硫酸铝溶液 罐中。
PCT/CN2014/070655 2013-03-14 2014-01-15 铁、铝、钛还原熔盐法无渣生产工艺 WO2014139335A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310103941.3 2013-03-14
CN201310103941.3A CN103146863B (zh) 2013-03-14 2013-03-14 铁、铝、钛还原熔盐法无渣生产工艺

Publications (1)

Publication Number Publication Date
WO2014139335A1 true WO2014139335A1 (zh) 2014-09-18

Family

ID=48545178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070655 WO2014139335A1 (zh) 2013-03-14 2014-01-15 铁、铝、钛还原熔盐法无渣生产工艺

Country Status (2)

Country Link
CN (1) CN103146863B (zh)
WO (1) WO2014139335A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115417465A (zh) * 2022-10-19 2022-12-02 中原工学院 一种二硫化镍电极材料及制备方法和应用
TWI823758B (zh) * 2023-01-19 2023-11-21 中國鋼鐵股份有限公司 含矽鋁質粉末的高爐堵泥材組成物及其製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103146863B (zh) * 2013-03-14 2015-04-22 胡长春 铁、铝、钛还原熔盐法无渣生产工艺
CN113044868B (zh) * 2021-04-25 2023-03-17 青岛核盛智能环保设备有限公司 赤泥氢还原铁二次热熔盐铁、钪、镓、铝、钛、硅分解工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101709661A (zh) * 2009-12-11 2010-05-19 中冶京诚工程技术有限公司 余热发电系统及发电方法
CN103146863A (zh) * 2013-03-14 2013-06-12 胡长春 铁、铝、钛还原熔盐法无渣生产工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101402885A (zh) * 2008-11-14 2009-04-08 昆明理工大学 利用高温冶金熔融渣气化可燃固体废物并制备液体燃料的方法
CN102766714A (zh) * 2012-07-27 2012-11-07 胡长春 一种铁、铝、钛联合法无渣生产工艺

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101709661A (zh) * 2009-12-11 2010-05-19 中冶京诚工程技术有限公司 余热发电系统及发电方法
CN103146863A (zh) * 2013-03-14 2013-06-12 胡长春 铁、铝、钛还原熔盐法无渣生产工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, SIJIA ET AL.: "Recovery of Titanium from Titanium-Bearing Blast Furnace Slag by Ammonium Sulfate Melting Method", CIESC JOURNAL, vol. 3, no. 63, 31 March 2012 (2012-03-31), pages 991 - 995 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115417465A (zh) * 2022-10-19 2022-12-02 中原工学院 一种二硫化镍电极材料及制备方法和应用
TWI823758B (zh) * 2023-01-19 2023-11-21 中國鋼鐵股份有限公司 含矽鋁質粉末的高爐堵泥材組成物及其製造方法

Also Published As

Publication number Publication date
CN103146863A (zh) 2013-06-12
CN103146863B (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
CN102277483B (zh) 白云鄂博稀土精矿制备氯化稀土的方法
WO2018000587A1 (zh) 一种真空感应炉、电弧炉真空炼镁系统及其炼镁方法
WO2014139335A1 (zh) 铁、铝、钛还原熔盐法无渣生产工艺
CN103898330A (zh) 从赤泥中综合回收铁、铝、钪、钛、钒等有价金属的方法
WO2020206831A1 (zh) 一种钙化-碳化高铁赤泥回收铁及尾渣水泥化的方法
CN100588727C (zh) 粘土矿湿法提钒工艺
CN112458298B (zh) 热态钒渣直接钠化提钒的方法
CN106823238A (zh) 一种硫化砷渣水热稳定固化处理方法
WO2014139334A2 (zh) 铁、铝、钛还原熔盐法无渣生产的装置
CN104229846A (zh) 一种氧化铝的制备方法
CN102344983B (zh) 一种利用赤泥制取热铁水及副产品的装置
CN106745416A (zh) 一种高温熔融铜渣处理污酸中砷和氟的应用及其应用方法
CN110042192A (zh) 转炉加纯碱生产含钠钒渣及其氧化浸出的方法
CN110042191A (zh) 转炉生产含钠钒渣及其氧化浸出的方法
CN106882839A (zh) 一种钛白废酸综合利用的方法
CN110079641A (zh) 钠系钒渣的转炉生产及其氧化浸出提钒的方法
CN104176753A (zh) 从粉煤灰中提取复合氧化铝的方法
CN203159650U (zh) 铁、铝、钛还原熔盐法无渣生产的装置
CN108928843A (zh) 一种绿色环保减量化提取粉煤灰中氧化铝的方法
CN108193059A (zh) 一种铌钽矿中铌、钽元素的提取方法
CN101100709B (zh) 氧化钒生产过程中回收铬的方法
CN110004265A (zh) 转炉含钠钒渣的生产及其后续浸出提钒的方法
CN105621496B (zh) 一种铁铬固废制备铬改性云母氧化铁的方法
CN115178749B (zh) 一种利用还原法制备高纯钼粉的方法
CN104860338A (zh) 一种硫基铵盐混合介质体系提取粉煤灰中氧化铝的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14764935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14764935

Country of ref document: EP

Kind code of ref document: A1