WO2014139279A1 - 一种光通路装置 - Google Patents

一种光通路装置 Download PDF

Info

Publication number
WO2014139279A1
WO2014139279A1 PCT/CN2013/084350 CN2013084350W WO2014139279A1 WO 2014139279 A1 WO2014139279 A1 WO 2014139279A1 CN 2013084350 W CN2013084350 W CN 2013084350W WO 2014139279 A1 WO2014139279 A1 WO 2014139279A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
light
splitter
shunt
optical path
Prior art date
Application number
PCT/CN2013/084350
Other languages
English (en)
French (fr)
Inventor
徐继东
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014139279A1 publication Critical patent/WO2014139279A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/038Arrangements for fault recovery using bypasses

Definitions

  • the present invention relates to the field of optical communication technologies, and in particular, to a light path device.
  • BACKGROUND With the rapid development of optical fiber communication technology, low cost, and green environmental protection requirements, it has become a basic consensus that communication networks use core fibers from the core network, the metropolitan area network, and the access network. In order to make full use of fiber resources, combine multiple optical signals to share one fiber, or divide the optical signal into several paths and distribute the optical signals on one fiber to several branch fibers. This requires some passive.
  • Optical devices conduct light, such as: combiners, splitters, splitters, and wavelength division multiplexing devices; some of these devices are relatively large, but indispensable, such as: Splitter Is a more important device, as shown in Figure 1, it is a two-way device, one direction is split, and the other direction is multiplexed, it is widely used in point 2 multiple points (point 2 multiple point, A network that is abbreviated as P2MP, such as a Passive Optical Network (P0N), which consists of a trunk fiber and multiple branch fibers, and is used by an Optical Distribution Node (ODN). That is, after the splitter is connected. It is a typical high-loss passive optical device.
  • P0N Passive Optical Network
  • ODN Optical Distribution Node
  • the typical loss is (3N+M) dB, where M is the loss due to the actual production process, generally 1-5 Decibels increase with increasing splitting ratio, such as:
  • M the loss due to the actual production process, generally 1-5 Decibels increase with increasing splitting ratio, such as:
  • the loss is typically 17.5 dB ; it is a typical two-way device, whether it is downstream splitting or uplink multiplexing.
  • the corresponding optical loss is symmetrical and the same, such as:
  • the upstream optical loss or the downstream optical loss is 17.5 dB.
  • the root cause is that the OTDR signal has a huge loss when passing through the 0DN, and its weak branch fiber OTDR.
  • the reflected signal also needs to pass 0DN, and another huge loss, so when the signal reaches the OTDR, it has already lost its light.
  • I.e. root branching optical fiber can not be detected of the fault signal
  • operators urgently need to be able to solve this problem, which is also the problem that all high-loss devices encounter for some special applications.
  • the technical problem to be solved by the present invention is to provide an optical path device to at least solve the problem of optical loss in an optical path in the related art.
  • the present invention provides an optical path device, including: a shunt coupler, an optical path, a bypass, and a shunt router, wherein after the downstream light enters the shunt coupler, the optical path to the shunt After the router is transmitted to the subsequent Fibre Channel, or the downstream light is split by the split coupler, the downlink detection light enters the shunt router through the bypass device, and the downlink service light enters the shunt router through the optical path device, and enters the subsequent optical fiber through the shunt router. After the upstream light enters the shunt router, it passes through the bypass device to the branch coupler and then enters the pre-continuous fiber channel.
  • the uplink service light passes through the optical path device to reach the shunt coupler.
  • the uplink detection light passes through the bypass device to reach the shunt coupler, and the shunt coupler couples the incoming upstream light and then transmits it to the pre-continuous fiber channel.
  • the bypass device is an arrayed waveguide grating (AWG), one end of the AWG is a combined or splitting path, and the other end is a plurality of channels; the AWG is set to divide a path of light by wavelength The paths are given to the individual sub-paths, and the light from each of the paths is coupled together for transmission.
  • AWG arrayed waveguide grating
  • the bypass device is a multimode coupler (MC), one end of the MC is a multimode fiber, and the other end is a plurality of single mode fiber channels, and the MC is set to be from a single mode fiber.
  • the light is coupled into the other end of the multimode fiber channel.
  • the bypass device is a 1:N optical switch (OS), one end of the OS is a universal optical path, and the other end is a plurality of split fiber channels, and the OS is set to be divided.
  • One of the channels in the Fibre Channel is connected to the universal optical path.
  • the shunt coupler or the shunt router is a wavelength division splitter that conducts light according to a wavelength of light.
  • the wavelength division splitter comprises a universal port, a first wave interface and a second wave interface; the universal port enters and exits light of any wavelength, the first wave interface transmits light of a set wavelength, and the second wave The interface transmits the remaining part of the wavelength of light.
  • the shunt coupler or the shunt router is a direction splitter that conducts light according to the traveling direction of the light.
  • the directional splitter comprises three interfaces, the interface 1 is an inlet, the light can only enter; the interface 2 is an inlet and outlet, allowing light to enter and exit the interface freely; the interface 3 is an outlet, allowing only light to be output from the interface.
  • the shunt coupler or the shunt router is a hybrid splitter that conducts light according to the traveling direction of the light and the wavelength.
  • the hybrid splitter comprises a four-interface directional splitter and a wavelength division splitter; the interface 4 of the four-way directional splitter is connected to the first wave interface of the wavelength division splitter, four interfaces
  • the interface 1 of the direction splitter is connected to the universal interface of the wavelength division splitter; the light enters the hybrid splitter from the interface 2 of the direction splitter of the four interface, and the interface 3 of the splitter from the direction of the four interface Output; the light entering from the interface 4 of the splitter in the direction of the four interface passes through the first interface of the wavelength division splitter to the universal interface of the wavelength division splitter, and enters the interface 1 of the direction splitter of the four interface, Then output from the interface 2 of the splitter in the direction of the four interfaces; and the light entering from the second wavelength split interface of the wavelength division splitter, through the common interface of the wavelength
  • the four-directional directional splitter comprises two three-interface optical circulators, wherein the interface 3 of the first optical circulator is connected to the interface 1 of the second optical circulator, and the interface of the first optical circulator 2 is equivalent to the interface 2 of the directional splitter of the four interfaces; the interface 2 of the second optical circulator is equivalent to the interface 3 of the directional splitter of the four interfaces; the interface 1 of the first optical circulator is equivalent to the direction of the four interfaces Interface 1 of the router; and interface 3 of the second optical circulator is equivalent to interface 4 of the directional splitter of the four interface.
  • FIG. 1 is a schematic view of a conventional optical path device
  • FIG. 2 is a schematic structural view of a light path device according to an embodiment of the present invention
  • FIG. 3 is a schematic view showing a bypass device as an arrayed waveguide grating structure according to an embodiment of the present invention. It is a schematic structural diagram of a multi-mode coupler in the embodiment of the present invention;
  • FIG. 5 is a schematic structural diagram of an optical switch in which the bypass device is 1:N in the embodiment of the present invention;
  • 6 is a schematic structural diagram of a shunt coupler or a shunt router as a wavelength division splitter according to an embodiment of the present invention;
  • FIG. 7 is a schematic structural diagram of a shunt coupler or a shunt router as a direction router according to an embodiment of the present invention
  • 8 is a schematic structural diagram of a shunt coupler or a shunt router as a hybrid splitter in the embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a four-interface splitter in the embodiment of the present invention.
  • an embodiment of the present invention relates to an optical path device, including: a shunt coupler, an optical path, a bypass, and a shunt router, wherein after the downstream light enters the shunt coupler, the optical path is passed to the optical path device.
  • the branch router is connected to the subsequent Fibre Channel, or the downstream light is split by the shunt coupler
  • the downlink detection light enters the shunt router through the bypass device
  • the downlink service light enters the shunt router through the optical path device, and enters the shunt router through the shunt router.
  • Subsequent Fibre Channel After the upstream light enters the shunt router, it passes through the bypass device to the shunt coupler and then enters the pre-continuous fiber channel.
  • the uplink service light reaches the shunt through the optical path device.
  • the coupler, the upstream detection light passes through the bypass to the shunt coupler, and the shunt coupler couples the incoming upstream light and transmits it to the pre-continuous fiber channel.
  • the downlink light includes downlink service light and downlink detection light.
  • the uplink light also includes uplink service light and uplink detection (reflection) light.
  • the downlink detection light refers to the downward light that is preset in the wavelength and/or the direction of the light.
  • the uplink detection light refers to the upward light that is preset in the wavelength and/or the direction of the light.
  • the function of the shunt coupler It can allow a part of specific downstream light (downlink detection light) to enter the bypasser, bypass the high-loss optical path (optical path), and enter the subsequent fiber channel after the branching router; A portion of the upstream light from the bypasser is coupled into the pre-continuous fiber channel via the split coupler; it can also split a portion of the specific downstream light and simultaneously couple a portion of the upstream light into the preceding fiber channel.
  • the function of the shunt router is similar to that of the shunt coupler: it can allow a certain part of the upstream light to enter the bypasser, bypass the high-loss optical path, and enter the pre-continuous fiber channel through the shunt coupler; A part of the downstream light from the bypass device is coupled into the subsequent fiber channel through the branching router; it can also divide a part of the specific upstream light and simultaneously couple a part of the downstream light into the subsequent fiber channel.
  • the role of the bypass It is a low-loss path device relative to the high-loss optical path, providing a corresponding low-loss path for the downstream or upstream light of the bypass.
  • the basic working principle and workflow of the optical path device are as follows: Firstly, the solution must ensure that the normal service light traffic mode has not changed, that is, the uplink or downlink light can pass through the high-loss optical path device, that is, the downstream light passes through the shunt coupler, The high-loss optical path device and the shunt router; the upstream light and the downstream light direction are opposite to each other through the shunt router, the high-loss optical path device, and the shunt coupler, wherein the optical losses of the shunt coupler and the shunt router are small, and basically do not affect The passage of uplight and downlight.
  • the fiber bypass can be unidirectional, that is, only the downstream light or the upward light can be allowed to pass, or can be bidirectional, that is, the upstream light and the downward light are allowed to pass at the same time, and it can allow single light passage or multiple light. Passage, its main feature is to provide a low loss path to the bypass signal.
  • the bypass device is first described. The basic features of the bypass device include: 1.
  • the Type A bypasser is an Array Waveguide Grating (AWG), which is a commonly used device in a WDM network. As shown in Figure 3, it is a typical point-to-multipoint device. It is a two-way device, one end of which is a multiplexed or split-wave path, and the other end is a plurality of channels.
  • the AWG can split a path of light into wavelengths for each sub-path, and can also couple light from each path.
  • the AWG can be a passive optical device, and its typical loss of one path is about six decibels.
  • the Type B bypasser is a Mode Coupler (MC). As shown in Figure 4, it is a point-to-multipoint unidirectional device with a multimode fiber at one end and a multimode fiber at the other end.
  • the main function of the MC is to couple the light from the single-mode fiber into the other end of the multimode fiber channel.
  • the typical loss is typically about one decibel, and the light is in turn from multimode to single mode. Extremely, even almost equivalent to a high-loss passer, so this trend is generally not used, as a one-way device application, it is also a passive device.
  • the Type C bypass is a 1:N optical switch (Optical Switch, abbreviated as 0S). As shown in Figure 5, it is a point-to-multipoint bidirectional device with one end of a universal optical path and the other end. A plurality of split Fibre Channels, the main function of the OS is to connect one of the split Fibre Channels to the general optical path, which is characterized in that only one sub-channel is connected to the general optical path at a time, and the rest are in an off state. The user selects by controlling the optical switch What path is connected and what path is broken. This is an active device that requires power to power the control chip and the optical switch to perform these functions.
  • 0S Optical Switch
  • the split coupler or the split router may be the same type of optical device, and the optical devices may be classified into the following types according to functions.
  • Type 1 Wavelength splitter, which is a device that conducts light according to the wavelength of light. As shown in Figure 6, one end of it is a universal port (C interface) that can enter and exit light of any wavelength, an interface (first wavelength division) The interface can transmit part of the wavelength of light, while the other interface (the second wavelength division interface) transmits the rest of the wavelength of light.
  • the thin film filter can meet the functional requirements of this device.
  • Type 2 Directional splitter, which is a device that conducts light according to the direction of travel of light.
  • a type three hybrid splitter which is a device that conducts light according to the direction of travel of the light and the wavelength, as shown in FIG. 8, which is composed of a four-interface directional splitter and a wavelength division splitter, and is connected.
  • the interface 4 of the directional splitter of the four interface is connected to the first wave interface of the wavelength division splitter, and the common interface of the interface 1 of the directional splitter of the four interface and the wavelength division splitter Connected.
  • the path of light through the hybrid splitter is as follows: Light enters the splitter from the interface 2 of the splitter in the direction of the four interface, and outputs from the interface 3 of the splitter in the direction of the four interface; The light entering the interface 4 of the splitter passes through the first-wave sub-interface of the wavelength division splitter, and the common interface of the wavelength-dividing splitter enters the interface 1 of the direction splitter of the four-interface, and then branches from the direction of the four-interface.
  • the interface 2 output of the router and the light entering from the second wavelength division interface of the wavelength division splitter, after the general interface of the wavelength division splitter and the interface 1 of the direction splitter of the four interface, from the four interface Interface 2 output of the direction splitter.
  • the hybrid splitter can be composed of a four-interface optical circulator and a thin film filter.
  • the interface of the first optical circulator 3 Connected to the interface 1 of the second optical circulator to form a four-directional directional splitter, the interface 2 of the first optical circulator is equivalent to the interface 2 of the directional splitter of the four interface; and the second optical ring
  • the interface 2 of the device is equivalent to the interface 3 of the direction splitter of the four interface;
  • the interface 1 of the first optical circulator is equivalent to the interface 1 of the directional splitter of the four interface;
  • the interface 3 of the second optical circulator is equivalent to the fourth Interface 4 of the direction splitter of the interface.
  • Embodiment 1 a type A bypass device, that is, an AWG arrayed waveguide grating is selected as a bypass device, and a typical structural schematic diagram thereof is shown in FIG. 2; a wave splitter of type one is generally selected as a shunt Coupler and shunt router; or select type three hybrid splitter as shunt coupler and shunt router, making its optical path slightly different.
  • a type A bypass device that is, an AWG arrayed waveguide grating is selected as a bypass device, and a typical structural schematic diagram thereof is shown in FIG. 2;
  • a wave splitter of type one is generally selected as a shunt Coupler and shunt router; or select type three hybrid splitter as shunt coupler and shunt router, making its optical path slightly different.
  • the operation of the light of this embodiment will be described below.
  • the workflow or the steps when the type 1 wave splitter is used in this embodiment are as follows: First, the downstream light enters the module system from the shunt coupler, and after the first wave splitter (shunt coupler) splits, the downlink
  • the service light enters the high-loss optical path from the first wave interface of the first wave splitter, and then enters the branch router, that is, the first wave interface of the second wave splitter, and the second wave splitting
  • the general interface of the device enters the subsequent optical path; while the rest of the downstream light is split by the first wave splitter to exit its second wave interface into the universal port of the bypass, ie the universal port of the AWG, and then again via the AWG.
  • the splitting light enters its branch channel and reaches the shunt router, that is, the second wave sub-interface of the second wave splitter, and the general interface of the splitter enters the subsequent optical path; the upstream light enters the module system from the shunt router, After the two-wave splitter splits, the uplink traffic enters the high-loss optical path from the first wave interface of the second wave splitter, and then enters the split coupler, which is the first of the first wave splitter.
  • Wave division interface The common interface of a wave splitter enters the front light path; while the rest of the upstream light is split by the second wave splitter to the second wave interface into the branch of the bypass, ie the branch of the AWG
  • the port then merges into the universal channel through the AWG, and reaches the shunt coupler, that is, the second wave sub-interface of the first wave splitter, and the general interface of the splitter enters the front optical path.
  • the workflow or steps when the hybrid splitter of the third type is used in this embodiment is as follows: First, the downstream light enters the module system from the split coupler, and after the first hybrid splitter (shunt coupler), all the descending lights
  • the third interface of the first hybrid splitter directly enters the high-loss optical path, and then enters the shunt router, that is, the second interface of the second hybrid splitter, and exits the third interface to enter the subsequent optical path.
  • the upstream light enters the third interface of the branching router, that is, the second hybrid splitter.
  • the uplink service light still enters the second interface and enters the high-loss optical path, and then enters the shunt coupler, that is, The third interface of the second hybrid splitter exits the second interface and enters the front optical path; and the remaining light is split by the second hybrid splitter, and then the wavelength division optical interface enters the bypass optical path of the bypass connected thereto
  • the general interface of the bypass device reaches the second wave interface of the wavelength division splitter of the second hybrid splitter, and the universal interface enters the first interface of the router of the four interface direction, and then enters the second interface of the router.
  • Embodiment 2 In this embodiment, a type B bypass device, that is, an MC multimode coupler is selected as a bypass device, and a typical system structure schematic diagram thereof is shown in FIG. 2; a general selection type two-directional splitter is used as a shunt coupling. And the splitter router makes its optical path slightly different; or choose the type three hybrid splitter as a shunt coupler and a shunt router, so that its optical path is slightly different. The operation of the light of this embodiment will be described below.
  • the workflow or the steps in the embodiment using the directional splitter of the second type are as follows: First, the downstream light enters the module system from the split coupler, and enters from the second interface of the first direction splitter (shunt coupler). The light exits from the third interface of the first direction splitter, enters the high-loss optical path, and then enters the shunt router, that is, the first interface of the second direction splitter, and the second interface of the second direction splitter, Enter the follow-up light path.
  • the upstream light enters from the shunt router, that is, the second interface of the second direction splitter enters, exits its third interface, enters the bypass branch interface, and enters the multi-mode interface and enters the shunt coupler, that is, the first direction
  • the first interface of the splitter, the second interface enters the front optical path;
  • the workflow or the steps when the hybrid splitter of the third type is used in this embodiment is as follows: First, the downstream light enters the module system from the split coupler, After the first hybrid splitter (shunt coupler), all the downstream light enters the high-loss optical path directly from the third interface of the first hybrid splitter, and then enters the shunt router, that is, the second hybrid splitter.
  • the upstream light enters from the branching router, that is, the third interface of the second hybrid splitter enters, after the wavelength division is split, the uplink service light still exits the second interface into the high-loss optical path device, and then enters the shunt coupler. That is, the third interface of the second hybrid splitter exits the second interface and enters the front optical path; after the remaining upstream light is split by the second hybrid splitter, the wavelength division optical interface enters the bypass branch connected thereto.
  • Embodiment 3 This embodiment selects a type C bypass device, that is, an OS optical switch as a bypass device, and a typical system structure schematic diagram thereof is shown in FIG.
  • a type 1 wavelength division splitter can be selected as The shunt coupler and the shunt router; or the type three hybrid shunt, as the shunt coupler and the shunt router, make the optical path slightly different.
  • the operation of the light of this embodiment will be described below.
  • the workflow or steps when the type 1 wavelength division splitter is used in this embodiment is as follows: First, the downstream light enters the module system from the shunt coupler, and after the first wave splitter (shunt coupler) splits, the downlink service light enters the high-loss optical path from the first wavelength division interface of the first wave splitter.
  • the splitter splits out its second wave interface into the universal port of the bypass, that is, the general port of the OS, and then passes through the branch optical path of the OS to reach the corresponding branch router, that is, the second wave splitter.
  • the second wave interface, the general interface of the splitter enters the subsequent optical path; the upstream light enters the module system from the branch router, and after the second wave splitter (shunt router) splits, the uplink service light is from the first
  • the first wave sub-interface of the two-wave splitter enters the high-loss optical path, and then enters the shunt coupler, that is, the first-wave sub-interface of the first wave-divider, and the common one of the first-wave splitter Interface, enter the front light path; and
  • the remaining part of the upstream light is split by the second wavelength division splitter and the second wavelength sub-interface is connected to one of the branch optical paths via the OS, and then enters the branch port of the connected OS, and exits the general interface of the OS to reach the branch coupling.
  • the second wavelength division interface of the first wavelength division splitter, and the universal interface of the splitter enters the front optical path.
  • the workflow or steps when the hybrid splitter of the third type is used in this embodiment is as follows: First, the downstream light enters the module system from the split coupler, and after the first hybrid splitter (shunt coupler), all the descending lights.
  • the third interface of the first hybrid splitter directly enters the high-loss optical path, and then enters the shunt router, that is, the second interface of the second hybrid splitter, and exits the third interface to enter the subsequent optical path.
  • the upstream light enters from the branching router, that is, the third interface of the second hybrid splitter enters, after the wavelength division is split, the uplink service light still exits the second interface into the high-loss optical path device, and then enters the shunt coupler. That is, the third interface of the second hybrid splitter exits the second interface and enters the front optical path; after the remaining upstream light is split by the second hybrid splitter, the wavelength division optical interface enters and is connected to the bypass OS.
  • the branch optical path out of the general interface of the OS, reaches the second wave interface of the wavelength division splitter of the second hybrid splitter, and the universal interface enters the first interface of the four-interface direction router, and then the second interface Enter the previous light path.
  • an optical path device provided by an embodiment of the present invention has the following beneficial effects: by splitting part of the downstream light by a shunt coupler, processing by a bypasser and a shunt router to reach a subsequent fiber path, Or part of the upstream light is split by the shunt router, processed by the bypasser and the shunt coupler to reach the pre-continued fiber path, providing a low-loss path for the bypass signal. While the preferred embodiments of the present invention have been disclosed for purposes of illustration, those skilled in the art will recognize that various modifications, additions and substitutions are possible, and the scope of the invention should not be limited to the embodiments described above.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种光通路装置,包括:分路耦合器、光路器、旁路器和分路路由器,其中,下行光进入分路耦合器后,经光路器到分路路由器传入后续光纤通道,或者下行光经分路耦合器分路后,下行检测光经旁路器进入分路路由器,下行业务光经光路器进入分路路由器后进入后续光纤通道;上行光进入分路路由器后,经旁路器到达分路耦合器后传入前续光纤通道,或者,上行光经分路路由器分路后,上行业务光通过光路器到达分路耦合器,上行检测光通过旁路器到达分路耦合器,分路耦合器耦合后,将其传入前续光纤通道。本发明为旁路信号提供一个低损耗的通路,实现了低损耗。

Description

一种光通路装置
技术领域 本发明涉及光通讯技术领域, 特别是涉及一种光通路装置。 背景技术 随着光纤通信技术的快速发展和低成本化以及绿色环保的要求, 通讯网络从核心 网、 城域网到接入网, 全部使用光纤组成网络已经成为基本共识。 为了尽可能充分利用光纤资源, 把多路光信号合在一起共用一根光纤, 或把光信 号分成几路及把一根光纤上的光信号分给几个分支光纤, 这就需要一些无源的光器件 进行导光, 如: 合波器, 分路器, 分光器以及波分复用器件等等; 在这些器件中有些 损耗比较大, 但又不可或缺, 如: 分光器 (Splitter) 就是一个比较重要的器件, 见图 1 所示, 它是一个双向器件, 它的一个方向是分路, 而另一个方向是合波, 它被广泛 应用在点到多点 (point 2 multiple point, 简称为 P2MP) 的网络中, 如: 无源光网络 (Passive Optical Network, 简称为 P0N), 它是由一根主干光纤与多个分支光纤, 通 过光分配网络 (Optical Distribution Node, 简称为 ODN) 即分光器连接后组成的。 它 是一个典型的高损耗无源光器件, 对于一个 1:2N的光器件, 其典型的损耗是(3N+M) dB, 其中 M是由于实际生产工艺造成的损耗, 一般在 1-5分贝之间, 是随著分光比的 增加而增加, 如: 对于典型的 1:32的分光器, 其损耗一般为 17.5 dB; 它是一个典型 的双向器件, 无论是下行分光, 还是上行合波, 其相应的光损耗是对称的且均相同, 如: 对一个 1:32的分光器, 其上行光损耗或下行光损耗均为 17.5 dB。 但对一些特殊的需求和应用, 如: 对一些特殊波长的光, 或一些上行光, 或一些 下行光能以较小的光损耗通过这个高损耗器件的节点, 因为正是这些高损耗使得其应 用受到限制, 如: 无源光网络对于许多运营商来说, 是光进铜退的最佳选择, 但是这 种 P2MP网络的光纤故障检测对运营商来说是比较头痛的事, 因为运营商希望在局方 即光线路终端 (optical line terminal, 简称为 0LT) 处安置一个光时域反射仪 (Optical Time Domain Reflectometer, 简称为 OTDR)用来检测整个 PON网络, 但是由于 ODN 中分光器的高损耗物理特性, 使得该 OTDR只能检测到主干光纤的故障位置, 而根本 检测不到分支光纤的故障信号,其根本原因是 OTDR的信号经过 0DN时有巨大损耗, 而其微弱的分支光纤的 OTDR反射信号也需经过 0DN, 又一次极大的损耗, 因此该 信号到达 OTDR仪时, 早已经损耗光了, 这也就是不能检测到分支光纤故障信号的根 本原因, 所以运营商迫切需要能解决这个问题, 这也是所有高损耗器件对于一些特殊 应用所遇到的问题。 发明内容 本发明要解决的技术问题是提供一种光通路装置, 以至少解决相关技术中光通路 中光损耗的问题。 为解决上述技术问题, 本发明提供一种光通路装置, 包括: 分路耦合器、光路器、 旁路器和分路路由器, 其中, 下行光进入分路耦合器后, 经光路器到分路路由器传入 后续光纤通道, 或者下行光经分路耦合器分路后, 下行检测光经旁路器进入分路路由 器, 下行业务光经光路器进入分路路由器, 经分路路由器后进入后续光纤通道; 上行 光进入分路路由器后, 经旁路器到达分路耦合器后传入前续光纤通道, 或者, 上行光 经分路路由器分路后, 上行业务光通过光路器到达分路耦合器, 上行检测光通过旁路 器到达分路耦合器, 分路耦合器对进入的上行光进行耦合后,将其传入前续光纤通道。 优选地, 所述旁路器为列阵波导光栅 (AWG), 所述 AWG 的一端是一个合波或 分波通路, 而另一端是多个通道; 所述 AWG设置为将一路光按波长分路给各个分通 路, 以及将来自各个通路的光耦合在一起进行传输。 优选地, 所述旁路器为多模耦合器 (MC), 所述 MC的一端是一个多模光纤, 而 另一端是多个单模光纤通道, 所述 MC设置为将来自单模光纤上的光耦合进另一端多 模光纤通道中。 优选地, 所述旁路器为 1:N的光开关(OS), 所述 OS的一端是一个通用光路, 而 另一端是多个分列的光纤通道, 所述 OS设置为将分列的光纤通道中的一个通路与通 用光路接通。 优选地, 所述分路耦合器或分路路由器为根据光波长进行导光的波分分路器。 优选地, 所述波分分路器包括通用口、 第一波分接口和第二波分接口; 通用口进 出任何波长的光, 第一波分接口传输设定波长的光, 第二波分接口传输剩余部分波长 的光。 优选地, 所述分路耦合器或分路路由器为根据光的行进方向进行导光的方向分路 器。 优选地, 所述方向分路器包括三个接口, 接口 1是进口, 光只能进入; 接口 2是 进出口, 允许光自由进出该接口; 接口 3是出口, 只允许光从该接口输出。 优选地, 所述分路耦合器或分路路由器为根据光的行进方向以及波长进行导光的 混合分路器。 优选地, 所述混合分路器包括四接口的方向分路器和波分分路器; 四接口的方向 分路器的接口 4与波分分路器的第一波分接口相连, 四接口的方向分路器的接口 1与 波分分路器的通用接口相连; 光从四接口的方向分路器的接口 2进入该混合分路器, 而从四接口的方向分路器的接口 3输出; 从四接口的方向分路器的接口 4进入的光经 波分分路器的第一波分接口出波分分路器的通用接口, 进入四接口的方向分路器的接 口 1, 然后从四接口的方向分路器的接口 2输出; 而从波分分路器的第二波分接口进 入的光, 经波分分路器的通用接口及四接口的方向分路器的接口 1后, 从四接口的方 向分路器的接口 2输出。 优选地, 所述四接口的方向分路器包括两个三接口的光环行器, 其中, 第一光环 行器的接口 3与第二光环行器的接口 1相连, 第一光环行器的接口 2相当于四接口的 方向分路器的接口 2; 第二光环行器的接口 2相当于四接口的方向分路器的接口 3 ; 第 一光环行器的接口 1相当于四接口的方向分路器的接口 1 ;以及第二光环行器的接口 3 相当于四接口的方向分路器的接口 4。 本发明有益效果如下: 本发明通过将部分下行光由分路耦合器分光, 经旁路器以及分路路由器处理后到 达后续光纤通路, 或部分上行光由分路路由器分光, 经旁路器以及分路耦合器处理后 到达前续光纤通路, 为旁路信号提供一个低损耗的通路。 附图说明 图 1 是现有光路器的示意图; 图 2 是本发明实施例中光通路装置的结构示意图; 图 3 是本发明实施例中旁路器为列阵波导光栅结构的示意图; 图 4 是本发明实施例中旁路器为多模耦合器的结构示意图; 图 5 是本发明实施例中旁路器为 1 :N的光开关的结构示意图; 图 6 是本发明实施例中分路耦合器或分路路由器为波分分路器的结构示意图; 图 7 是本发明实施例中分路耦合器或分路路由器为方向路由器的结构示意图; 图 8 是本发明实施例中分路耦合器或分路路由器为混合型分路器的结构示意图; 图 9是本发明实施例中四接口方向分路器的结构示意图。 具体实施方式 以下结合附图以及实施例, 对本发明进行进一步详细说明。 应当理解, 此处所描 述的具体实施例仅仅用以解释本发明, 并不限定本发明。 如图 2所示, 本发明实施例涉及一种光通路装置, 包括: 分路耦合器、 光路器、 旁路器和分路路由器, 其中, 下行光进入分路耦合器后, 经光路器到分路路由器传入 后续光纤通道, 或者下行光经分路耦合器分路后, 下行检测光经旁路器进入分路路由 器, 下行业务光经光路器进入分路路由器, 经分路路由器后进入后续光纤通道; 上行 光进入分路路由器后, 经旁路器到达分路耦合器后传入前续光纤通道, 或者, 上行光 经分路路由器分路后, 上行业务光通过光路器到达分路耦合器, 上行检测光通过旁路 器到达分路耦合器, 分路耦合器对进入的上行光进行耦合后,将其传入前续光纤通道。 下行光包括下行业务光和下行检测光, 同样, 上行光也包括上行业务光和上行检 测 (反射) 光。 下行检测光是指对光的波长和 /或行经方向进行预先设定后的下行光; 同理, 上行检测光是指对光的波长和 /或行经方向进行预先设定后的上行光。 分路耦合器的作用: 可以允许分一部分特定的下行光 (下行检测光) 进入旁路器 后, 绕过高损耗光路器(光路器), 经分路路由器后进入后续光纤通道; 也可以允许一 部分从旁路器来的上行光, 经分路耦合器后耦合进前续光纤通道; 它也可以分一部分 特定的下行光以及同时耦合一部分的上行光进入前续光纤通道。 分路路由器的作用与分路耦合器的作用相似: 可以允许分一部分特定的上行光进 入旁路器后, 绕过高损耗光路器, 经分路耦合器后进入前续光纤通道; 也可以允许一 部分从旁路器来的下行光, 经分路路由器后耦合进后续光纤通道; 它也可以分一部分 特定的上行光以及同时耦合一部分的下行光进入后续光纤通道。 旁路器的作用: 它相对于高损耗光路器是一个低损耗的通路器件, 为绕路的下行 光或上行光提供相应的低损耗通路。 光通路装置的基本工作原理和工作流程如下所示: 首先该方案要保证正常的业务光通行方式没有改变, 即上行或下行光都能通过高 损耗光路器, 即下行光通过分路耦合器、 高损耗光路器以及分路路由器; 而上行光与 下行光方向相反经过分路路由器、 高损耗光路器以及分路耦合器, 其中分路耦合器和 分路路由器的光损耗较小, 基本不影响上行光和下行光的通行。 而绕路的部分下行光, 由分路耦合器分光, 经旁路器以及分路路由器到达后续光 纤通路, 或绕路的部分上行光, 由分路路由器分光, 经旁路器以及分路耦合器到达前 续光纤通路。 光纤旁路可以是单向的, 即只允许下行光或上行光通过, 或也可以是双向的, 即 允许上行光和下行光同时通过, 以及它可以允许单路光通行, 也可以多路光通行, 它 的最主要的特点是给旁路信号提供一个低损耗的通路。 下面, 首先描述一下旁路器, 旁路器基本特点包括: 一, 是一个 P2MP的器件, 它与高损耗通路器所有的通路都能一一对应的连接; 二, 通路光损耗必须远远小于高 损耗通路器, 这样它才有意义。 根据这些要求, 以下三种器件可以满足, 它们各有其 特点, 也会有相应的应用例子。 类型 A旁路器为列阵波导光栅 (Array Waveguide Grating, 简称为 AWG), 这是 一个在波分网络中常用的器件, 见图 3所示, 它是一个典型的点到多点的器件, 是一 个双向器件, 它的一端是一个合波或分波通路, 而另一端是多个通道, AWG可以把一 路光按波长分路给各个分通路, 也可以把来自各个通路的光耦合在一起进行传输, 根 据现有的技术发展, AWG可以是一个无源光器件,它的一个通路的典型损耗为六个分 贝左右。 类型 B旁路器为多模耦合器(Mode Coupler, 简称为 MC), 见图 4所示, 它是一 个点到多点的单向器件, 它的一端是一个多模光纤, 而另一端是多个单模光纤通道, MC 的主要作用是把来自单模光纤上的光耦合进另一端多模光纤通道, 其典型损耗一 般为一个分贝左右, 而反过来光从多模到单模其损耗极大, 甚至几乎与高损耗通路器 相当, 因此该走向一般不用, 把它做为单向器件应用, 它也是一个无源器件。 类型 C旁路器为 1:N的光开关(Optical Switch, 简称为 0S), 见图 5所示, 它是 一个点到多点的双向器件, 它的一端是一个通用光路, 而另一端是多个分列的光纤通 道, OS的主要作用是把分列的光纤通道中的一个通路与通用光路接通,其特点是一次 只有一个分通路与通用光路接通, 其余的处于断开状态, 用户通过控制光开关来选择 什么通路接通, 什么通路断开。 这是一个有源器件, 需要电源给控制芯片以及光开关 供电来实现这些功能。 为了降低成本, 实现大规模生产, 分路耦合器或分路路由器可以是同一种类型的 光器件, 这些光器件根据功能可以分成以下几种类型。 类型一: 波分分路器, 它是根据光波长进行导光的器件, 见图 6所示, 它的一端 是通用口 (C接口) 可以进出任何波长的光, 一接口 (第一波分接口) 可以传输部分 波长的光, 而另一接口 (第二波分接口)传输其余部分波长的光, 根据现有 TFF技术, 薄膜滤波片是可以满足这个器件的功能需求。 类型二: 方向分路器, 它是根据光的行进方向进行导光的器件, 见图 7所示, 它 的接口 1是进口, 光只能进入; 接口 2是进出口, 允许光自由进出该接口; 接口 3是 出口, 只允许光从这个口输出, 光环形器是可以满足这种器件的功能需求。 类型三混合分路器, 它是根据光的行进方向以及波长进行导光的器件, 见图 8所 示, 它是由四接口的方向分路器以及波分分路器组合而成, 其连接如图 8所示, 四接 口的方向分路器的接口 4与波分分路器的第一波分接口相连, 而四接口的方向分路器 的接口 1与波分分路器的通用接口相连。 光经过该混合分路器的路径如下所示: 光从 四接口的方向分路器的接口 2进入该分路器,而从四接口的方向分路器的接口 3输出; 从四接口的方向分路器的接口 4进入的光经波分分路器的第一波分接口出波分分路器 的通用接口,进入四接口的方向分路器的接口 1,然后从四接口的方向分路器的接口 2 输出; 而从波分分路器的第二波分接口进入的光, 经波分分路器的通用接口及四接口 的方向分路器的接口 1后, 从四接口的方向分路器的接口 2输出。 根据现有的技术, 该混合分路器可以由四接口的光环行器以及薄膜滤波片组成。 这里简单说明一下, 如没有四接口的光环行器(方向分路器), 也可由两个三接口 的光环行器进行组合也行, 见图 9所示, 把第一光环行器的接口 3与第二光环行器的 接口 1相连, 即可组成一个四接口的方向分路器, 其第一光环行器的接口 2相当于四 接口的方向分路器的接口 2; 而第二光环行器的接口 2相当于四接口的方向分路器的 接口 3 ; 第一光环行器的接口 1相当于四接口的方向分路器的接口 1 ; 以及第二光环行 器的接口 3相当于四接口的方向分路器的接口 4。 从以上不同类型的旁路器, 以及光分路器, 客户可以根据自己的需求进行挑选来 组合成满足要求的绕路通路器, 下面将举一些典型的例子来说明。 实施例一 本实施例将挑选类型 A旁路器, 即 AWG列阵波导光栅做为旁路器, 其典型的结 构原理图, 见图 2所示; 一般选择类型一的波分分路器做为分路耦合器以及分路路由 器; 或者选择类型三混合分路器做为分路耦合器以及分路路由器, 使其光路走向略有 不同。 下面对本实施例的光的工作情况进行描述。 本实施例采用类型一的波分分路器时的工作流程或步骤如下: 首先下行光从分路耦合器进入模块系统, 经第一波分分路器 (分路耦合器) 分光 后, 下行业务光从第一波分分路器第一波分接口进入高损耗光路器, 出来后进入分路 路由器, 即第二波分分路器的第一波分接口, 出第二波分分路器的通用接口, 进入后 续光路; 而其余部分的下行光, 由第一波分分路器分光出其第二波分接口进入旁路器 的通用口, 即 AWG的通用口, 然后经 AWG再次分光进入其分支通道, 到达分路路 由器, 即第二波分分路器的第二波分接口, 出该分路器的通用接口进入后续光路; 上行光从分路路由器进入模块系统, 经第二波分分路器分光后, 上行业务光从第 二波分分路器第一波分接口进入高损耗光路器, 出来后进入分路耦合器, 即第一波分 分路器的第一波分接口, 出第一波分分路器的通用接口, 进入前续光路; 而其余部分 的上行光, 由第二波分分路器分光出其第二波分接口进入旁路器的分支口, 即 AWG 的分支口, 然后经 AWG汇合进入其通用通道, 到达分路耦合器, 即第一波分分路器 的第二波分接口, 出该分路器的通用接口进入前续光路。 本实施例采用类型三的混合分路器时的工作流程或步骤如下: 首先下行光从分路耦合器进入模块系统, 经第一混合分路器 (分路耦合器) 后, 所有的下行光从第一混合分路器第三接口直接进入高损耗光路器, 出来后进入分路路 由器, 即第二混合分路器的第二接口, 出第三接口, 进入后续光路。 上行光从分路路由器, 即第二混合分路器的第三接口进, 经波分分光后, 上行业 务光, 仍然出第二接口进入高损耗光路器, 出来后进入分路耦合器, 即第二混合分路 器的第三接口, 出第二接口, 进入前续光路; 而其余的光经第二混合分路器分光后, 出其波分分光接口进入与其相连的旁路器分支光路, 出旁路器的通用接口, 到达第二 混合分路器的波分分路器的第二波分接口, 出其通用口进入四接口方向路由器的第一 接口, 然后出其第二接口进入前续光路; 该方案的最大特点是下行光不分光, 而从上 行光中分出一部分光走旁路器的光路, 使的该旁路变的单向光路。 实施例二: 本实施例将挑选类型 B旁路器, 即 MC多模耦合器做为旁路器, 其典型的系统结 构原理图, 见图 2所示; 一般选择类型二方向分路器做为分路耦器以及分路路由器使 其光路走向略有不同; 或者选择类型三混合分路器做为分路耦合器以及分路路由器, 使其光路走向略有不同。 下面对本实施例的光的工作情况进行描述。 本实施例采用类型二的方向分路器时的工作流程或步骤如下: 首先下行光从分路耦合器进入模块系统, 从第一方向分路器 (分路耦合器) 第二 接口进入, 下行光从第一方向分路器第三接口出, 进入高损耗光路器, 出来后进入分 路路由器, 即第二方向分路器的第一接口, 出第二方向分路器的第二接口, 进入后续 光路。 上行光从分路路由器进入, 即第二方向分路器的第二接口进, 出其第三接口, 进 入旁路器分支接口, 出其多模接口后进入分路耦合器, 即第一方向分路器的第一接口, 出第二接口, 进入前续光路; 本实施例采用类型三的混合分路器时的工作流程或步骤如下: 首先下行光从分路耦合器进入模块系统, 经第一混合分路器 (分路耦合器) 后, 所有的下行光从第一混合分路器第三接口直接进入高损耗光路器, 出来后进入分路路 由器, 即第二混合分路器的第二接口, 出第三接口, 进入后续光路。 上行光从分路路由器进入, 即第二混合分路器的第三接口进, 经波分分光后, 上 行业务光, 仍然出第二接口进入高损耗光路器, 出来后进入分路耦合器, 即第二混合 分路器的第三接口, 出第二接口, 进入前续光路; 其余的上行光经第二混合分路器分 光后, 出其波分分光接口进入与其相连的旁路器分支接口, 出旁路器的通用接口, 到 达第二混合分路器的波分分路器的第二波分接口, 出其通用口进入四接口方向路由器 的第一接口, 然后出其第二接口进入前续光路; 该方案的最大特点是下行光不分光, 而从上行光中分出一部分光走旁路器的光路, 使的该旁路变为单向光路。 实施例三: 本实施例将挑选类型 C旁路器, 即 OS光开关作为旁路器, 其典型的系统结构原 理图, 见图 2所示; 可以选择类型一的波分分路器, 作为分路耦合器以及分路路由器; 或者选择类型三混合分路器,作为分路耦合器以及分路路由器使其光路走向略有不同。 下面对本实施例的光的工作情况进行描述。 本实施例采用类型一的波分分路器时的工作流程或步骤如下: 首先下行光从分路耦合器进入模块系统, 经第一波分分路器 (分路耦合器) 分光 后, 下行业务光从第一波分分路器第一波分接口进入高损耗光路器, 出来后进入分路 路由器, 即第二波分分路器的第一波分接口, 出第二波分分路器的通用接口, 进入后 续光路; 而其余部分的下行光, 由第一波分分路器分光出其第二波分接口进入旁路器 的通用口, 即 OS的通用口, 然后经 OS接通的分支光路, 到达相应的分路路由器, 即 第二波分分路器的第二波分接口, 出该分路器的通用接口进入后续光路; 上行光从分路路由器进入模块系统, 经第二波分分路器 (分路路由器) 分光后, 上行业务光从第二波分分路器第一波分接口进入高损耗光路器, 出来后进入分路耦合 器, 即第一波分分路器的第一波分接口, 出第一波分分路器的通用接口, 进入前续光 路; 而其余部分的上行光, 由第二波分分路器分光出其第二波分接口经 OS接通其中 一个分支光路后, 进入连接的 OS的分支口, 出 OS的通用接口, 到达分路耦合器, 即 第一波分分路器的第二波分接口, 出该分路器的通用接口进入前续光路。 本实施例采用类型三的混合分路器时的工作流程或步骤如下: 首先下行光从分路耦合器进入模块系统, 经第一混合分路器 (分路耦合器) 后, 所有的下行光从第一混合分路器第三接口直接进入高损耗光路器, 出来后进入分路路 由器, 即第二混合分路器的第二接口, 出第三接口, 进入后续光路。 上行光从分路路由器进入, 即第二混合分路器的第三接口进, 经波分分光后, 上 行业务光, 仍然出第二接口进入高损耗光路器, 出来后进入分路耦合器, 即第二混合 分路器的第三接口, 出第二接口, 进入前续光路; 其余的上行光经第二混合分路器分光后, 出其波分分光接口进入与由旁路器 OS 连接的分支光路, 出 OS 的通用接口, 到达第二混合分路器的波分分路器的第二波分 接口, 出其通用口进入四接口方向路由器的第一接口, 然后出其第二接口进入前续光 路。该方案的最大特点是下行光不分光, 而从上行光中分出一部分光走旁路器的光路, 使的该旁路变为单向光路; 而没有被 OS连接的分支光路, 其上的上行光中断了运行。 工业实用性 如上所述, 本发明实施例提供的一种光通路装置具有以下有益效果: 通过将部分 下行光由分路耦合器分光, 经旁路器以及分路路由器处理后到达后续光纤通路, 或部 分上行光由分路路由器分光, 经旁路器以及分路耦合器处理后到达前续光纤通路, 为 旁路信号提供一个低损耗的通路。 尽管为示例目的, 已经公开了本发明的优选实施例, 本领域的技术人员将意识到 各种改进、 增加和取代也是可能的, 因此, 本发明的范围应当不限于上述实施例。

Claims

权 利 要 求 书 、 一种光通路装置, 包括: 分路耦合器、 光路器、 旁路器和分路路由器, 其中, 下行光进入分路耦合器后, 经光路器到分路路由器传入后续光纤通道, 或者下 行光经分路耦合器分路后, 下行检测光经旁路器进入分路路由器, 下行业务光 经光路器进入分路路由器, 经分路路由器后进入后续光纤通道; 上行光进入分 路路由器后, 经旁路器到达分路耦合器后传入前续光纤通道, 或者, 上行光经 分路路由器分路后, 上行业务光通过光路器到达分路耦合器, 上行检测光通过 旁路器到达分路耦合器, 分路耦合器对进入的上行光进行耦合后, 将其传入前 续光纤通道。 、 如权利要求 1 所述的光通路装置, 其中, 所述旁路器为列阵波导光栅 AWG, 所述 AWG 的一端是一个合波或分波通路, 而另一端是多个通道; 所述 AWG 设置为将一路光按波长分路给各个分通路, 以及将来自各个通路的光耦合在一 起进行传输。 、 如权利要求 1所述的光通路装置, 其中, 所述旁路器为多模耦合器 MC, 所述 MC的一端是一个多模光纤, 而另一端是多个单模光纤通道, 所述 MC设置为 将来自单模光纤上的光耦合进另一端多模光纤通道中。 、 如权利要求 1所述的光通路装置, 其中, 所述旁路器为 1:N的光开关 OS, 所述 OS的一端是一个通用光路, 而另一端是多个分列的光纤通道, 所述 OS设置为 将分列的光纤通道中的一个通路与通用光路接通。 、 如权利要求 1~4中任一项所述的光通路装置, 其中, 所述分路耦合器或分路路 由器为根据光波长进行导光的波分分路器。 、 如权利要求 5所述的光通路装置, 其中, 所述波分分路器包括通用口、 第一波 分接口和第二波分接口; 通用口进出任何波长的光, 第一波分接口传输设定波 长的光, 第二波分接口传输剩余部分波长的光。 、 如权利要求 1~4中任一项所述的光通路装置, 其中, 所述分路耦合器或分路路 由器为根据光的行进方向进行导光的方向分路器。 、 如权利要求 7所述的光通路装置, 其中, 所述方向分路器包括三个接口, 接口 1是进口, 光只能进入; 接口 2是进出口, 允许光自由进出该接口; 接口 3是 出口, 只允许光从该接口输出。 、 如权利要求 1~4中任一项所述的光通路装置, 其中, 所述分路耦合器或分路路 由器为根据光的行进方向以及波长进行导光的混合分路器。 、 如权利要求 9所述的光通路装置, 其中, 所述混合分路器包括四接口的方向分 路器和波分分路器; 四接口的方向分路器的接口 4与波分分路器的第一波分接 口相连, 四接口的方向分路器的接口 1与波分分路器的通用接口相连; 光从四 接口的方向分路器的接口 2进入该混合分路器, 而从四接口的方向分路器的接 口 3输出; 从四接口的方向分路器的接口 4进入的光经波分分路器的第一波分 接口出波分分路器的通用接口, 进入四接口的方向分路器的接口 1, 然后从四 接口的方向分路器的接口 2输出; 而从波分分路器的第二波分接口进入的光, 经波分分路器的通用接口及四接口的方向分路器的接口 1后, 从四接口的方向 分路器的接口 2输出。 1、 如权利要求 10所述的光通路装置,其中,所述四接口的方向分路器包括两个三 接口的光环行器,其中,第一光环行器的接口 3与第二光环行器的接口 1相连, 第一光环行器的接口 2相当于四接口的方向分路器的接口 2; 第二光环行器的 接口 2相当于四接口的方向分路器的接口 3 ; 第一光环行器的接口 1相当于四 接口的方向分路器的接口 1 ; 以及第二光环行器的接口 3相当于四接口的方向 分路器的接口 4。
PCT/CN2013/084350 2013-03-13 2013-09-26 一种光通路装置 WO2014139279A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310079831.8A CN104052545A (zh) 2013-03-13 2013-03-13 一种光通路装置
CN201310079831.8 2013-03-13

Publications (1)

Publication Number Publication Date
WO2014139279A1 true WO2014139279A1 (zh) 2014-09-18

Family

ID=51504943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084350 WO2014139279A1 (zh) 2013-03-13 2013-09-26 一种光通路装置

Country Status (2)

Country Link
CN (1) CN104052545A (zh)
WO (1) WO2014139279A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110932773A (zh) * 2019-12-20 2020-03-27 西安西电电力系统有限公司 模块化多电平换流器内数据传输控制方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924590A (zh) * 2010-08-25 2010-12-22 中兴通讯股份有限公司 无源光网络光纤故障的检测系统和方法
CN101924962A (zh) * 2010-08-25 2010-12-22 中兴通讯股份有限公司 光纤故障检测的系统及方法
CN101984561A (zh) * 2010-11-15 2011-03-09 中兴通讯股份有限公司 无源光网络光纤故障的检测系统和方法
CN102201861A (zh) * 2010-03-24 2011-09-28 中兴通讯股份有限公司 基于长距无源光网络的故障检测系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201861A (zh) * 2010-03-24 2011-09-28 中兴通讯股份有限公司 基于长距无源光网络的故障检测系统及方法
CN101924590A (zh) * 2010-08-25 2010-12-22 中兴通讯股份有限公司 无源光网络光纤故障的检测系统和方法
CN101924962A (zh) * 2010-08-25 2010-12-22 中兴通讯股份有限公司 光纤故障检测的系统及方法
CN101984561A (zh) * 2010-11-15 2011-03-09 中兴通讯股份有限公司 无源光网络光纤故障的检测系统和方法

Also Published As

Publication number Publication date
CN104052545A (zh) 2014-09-17

Similar Documents

Publication Publication Date Title
US9036138B2 (en) Method and system for detecting fiber fault in passive optical network
WO2012065459A1 (zh) 无源光网络光纤故障的检测系统和方法
WO2012024982A1 (zh) 光纤故障检测的系统及方法
WO2013097785A1 (zh) 一种光纤故障检测方法及装置
WO2013087006A1 (zh) 无源光网络系统、光线路终端和光传输方法
JP2016516218A (ja) 光分岐アセンブリ、受動光ネットワーク、および光送信方法
CN104009794B (zh) 无源光网络光纤的故障检测方法及装置
CN101902665A (zh) 光线路终端、光分插复用器和光接入系统
WO2014139279A1 (zh) 一种光通路装置
CN103973361B (zh) 无源光网络的光纤故障检测系统及方法
CN104009796B (zh) 一种无源光网络光纤故障检测方法及系统
CN103281605A (zh) 多波长无源光网络系统
JP4015091B2 (ja) 光線路監視用デバイス
JP3308148B2 (ja) 波長多重通信方式用光海底ケーブル分岐装置およびそれを用いた波長多重光海底ケーブルネットワーク
CN103281603A (zh) 多波长无源光网络系统
CN103281609A (zh) 多波长无源光网络系统
EP2929641B1 (en) Routing in a wdm-based pon
TWI469544B (zh) Multi - wave channel thin film filter - type wavelength multiplexing and multi - processor
CN103297872A (zh) 多波长无源光网络系统
CN103281610A (zh) 多波长无源光网络系统
CN103297168A (zh) 多波长无源光网络系统
CN103281608A (zh) 多波长无源光网络系统
KR101529096B1 (ko) 광통신 네트워크의 wdm 서비스 통합을 위한 광 스플리터
CN103281604A (zh) 多波长无源光网络系统的下行传输方法
JP2005012278A (ja) 波長多重ponシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877938

Country of ref document: EP

Kind code of ref document: A1