WO2014137126A1 - Method for preparing polyoxymethylene polymer, and polyoxymethylene polymer prepared thereby - Google Patents

Method for preparing polyoxymethylene polymer, and polyoxymethylene polymer prepared thereby Download PDF

Info

Publication number
WO2014137126A1
WO2014137126A1 PCT/KR2014/001752 KR2014001752W WO2014137126A1 WO 2014137126 A1 WO2014137126 A1 WO 2014137126A1 KR 2014001752 W KR2014001752 W KR 2014001752W WO 2014137126 A1 WO2014137126 A1 WO 2014137126A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
polyoxymethylene polymer
producing
polymerization
polymerization catalyst
Prior art date
Application number
PCT/KR2014/001752
Other languages
French (fr)
Korean (ko)
Inventor
박승진
성효제
변경섭
황요한
Original Assignee
한국엔지니어링플라스틱 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국엔지니어링플라스틱 주식회사 filed Critical 한국엔지니어링플라스틱 주식회사
Publication of WO2014137126A1 publication Critical patent/WO2014137126A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • C08G2/06Catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • C08G2/08Polymerisation of formaldehyde
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • C08G2/10Polymerisation of cyclic oligomers of formaldehyde
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G4/00Condensation polymers of aldehydes or ketones with polyalcohols; Addition polymers of heterocyclic oxygen compounds containing in the ring at least once the grouping —O—C—O—
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • C08L59/04Copolyoxymethylenes

Definitions

  • the present invention relates to a method for producing a polyoxymethylene polymer and a polyoxymethylene polymer prepared therefrom, and more particularly, to prepare a polyoxymethylene polymer using a novel polymerization catalyst and a polymerization terminator, thereby inactivating a catalyst.
  • the present invention relates to a method for preparing a polyoxymethylene polymer and a polyoxymethylene polymer prepared therefrom, which may be omitted or simplified, which is excellent in thermal stability, and which can reduce formaldehyde released in the manufacturing process.
  • polyoxymethylene resins are prepared by bulk polymerization, solution polymerization or suspension polymerization of trioxane alone or trioxane with cyclic ethers and / or cyclic acetals to prepare oxymethylene homopolymers or copolymers.
  • Patent Document 1 Korean Unexamined Patent Publication No. 10-2002-0074490
  • the polymer obtained by such bulk polymerization, solution polymerization or suspension polymerization is thermally unstable in itself, so in the case of the homopolymer, the end group is blocked by esterification or the like, and in the case of the copolymer, the unstable end group is decomposed.
  • the polymer is stabilized by removal, and it is necessary to deactivate the catalyst to stop the polymerization reaction before such stabilization step. That is, if the catalyst remaining in the reaction product in the oxymethylene homopolymer and copolymer obtained by cation polymerization of trioxane or the like is not deactivated, depolymerization gradually occurs and the molecular weight of the polymer is significantly lowered, resulting in thermal instability.
  • Patent Document 2 proposes the use of an amine compound and an alkali metal fluoride as the BF 3 polymerization catalyst deactivator.
  • depolymerization can be prevented only by removing the deactivator through a separate washing step, and the polymer is stabilized so that molecular weight does not decrease during long-term storage.
  • a polymerization catalyst that can be completely deactivated and a deactivator capable of effectively and completely deactivating such a polymerization catalyst are developed so that a cleaning step for removing the polymerization catalyst or deactivator is not necessary.
  • the method for producing polyoxymethylene polymer having low thermal stability and unstable portion is required.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2002-0074490
  • Patent Document 2 Japanese Unexamined Patent Publication No. 1994-211953
  • an object of the present invention is to provide a method for producing a polyoxymethylene polymer that can omit or simplify the deactivation process by using a novel polymerization catalyst capable of complete deactivation.
  • the present invention for achieving the above object is an oxymethylene homopolymer consisting of a repeating unit represented by the following formula (2) using a polymerization catalyst and a carbodiimide-based polymerization terminator represented by the following formula (1) or formula (2) It relates to a method for producing a polyoxymethylene polymer for producing an oxymethylene copolymer in which the repeating unit represented by the following and the repeating unit represented by the following formula (3) is bonded randomly.
  • X 1 and X 2 are each independently hydrogen or (C 1 -C 6) alkyl, not hydrogen at the same time, x is an integer selected from 2 to 6, n of formula 2 and m of formula 3 is 1 Is an integer selected from to 200.
  • the carbodiimide-based polymerization terminator may be a compound represented by the following formula (4).
  • R 1 and R 2 are each independently (C1-C20) alkyl, (C6-C20) aryl, (C1-C20) alkoxy, (C3-C20) cycloalkyl, (C2-C7) alkenyl , (C3-C20) heterocycloalkyl, (C4-C20) heteroaryl, wherein the alkyl, aryl, alkoxy, cycloalkyl, alkenyl, heterocycloalkyl of R 1 and R 2 are (C1) One or more selected from alkyl, halogen, nitro, cyano, amino may be further substituted, provided that at least one of R 1 and R 2 is (C 3 -C 20) cycloalkyl, (C 6 -C 20) Cyclic substituents selected from aryl, (C3-C20) heterocycloalkyl, (C4-C20) heteroaryl.)
  • the polymerization catalyst of Chemical Formula 1 may be selected from the following chemical formulas.
  • the carbodiimide-based polymerization terminator may be selected from one or two or more of the following Chemical Formulas 4-1 and 4-2.
  • N in Formula 4-1 is an integer selected from 50 to 200.
  • the polymerization catalyst may be included in an amount of 0.03 to 200 ppm based on the total monomer content, and the content of the polymerization terminator may be included in an amount of 10 to 5000 ppm based on the total monomer content.
  • the polymerization catalyst may be dissolved and added with an organic solvent, and the organic solvent may be ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, or di
  • the organic solvent may be ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, or di
  • One kind or two or more kinds may be selected from the group consisting of ethylene glycol methyl butyl ether, triethylene glycol butyl ether, propylene glycol dimethyl ether and dipropylene glycol dimethyl ether.
  • the present invention for achieving the above object relates to a polyoxymethylene polymer prepared by the above-described manufacturing method.
  • the terminal Formate content of the polyoxymethylene polymer is 3.0 to 8.0 ⁇ mol / g-POM, and the amount of formaldehyde released may be 50 to 200 ppm.
  • the present invention can omit or simplify the deactivation process using a novel polymerization catalyst, and effectively deactivate the polymerization catalyst by using a polymerization terminator optimized for the new polymerization catalyst, and have excellent thermal stability and low polyunsaturation. There is an advantage to prepare oxymethylene polymers.
  • the polyoxymethylene polymer polymerized by the present invention is a homopolymer composed of an oxymethylene repeating unit represented by the following Chemical Formula 2, using a polymerization catalyst represented by the following Chemical Formula 1 and a carbodiimide polymerization terminator, or
  • the repeating unit of and the repeating unit of Formula 3 may be a copolymer bonded randomly.
  • R 1 , R 2 and R 3 may be each independently selected from (C1-C20) alkyl, (C6-C20) aryl, (C1-C20) alkoxy, and (C4-C20) heteroaryl There is,
  • Alkyl, aryl, alkoxy and heteroaryl of R 1 , R 2 and R 3 may be further substituted with one or more selected from (C 1 -C 5) alkyl, halogen, nitro, cyano, amino.
  • Chemical Formula 1 X is oxygen, and R 1 , R 2, and R 3 are each independently (C 1 -C 20) alkyl, and more preferably, the polymerization catalyst of Chemical Formula 1 is selected from the following Chemical Formula: It is effective because it can omit or simplify the deactivation process of the polymerization catalyst.
  • the polymerization catalyst is dissolved and added to an organic solvent to induce the polymerization reaction uniformly to produce a uniform polyoxymethylene polymer.
  • the organic solvent is ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol methyl butyl ether, triethylene glycol butyl ether,
  • One kind or two or more kinds may be selected from the group consisting of propylene glycol dimethyl ether and dipropylene glycol dimethyl ether.
  • the content of the polymerization catalyst according to the present invention is preferably contained 0.03 to 200ppm, more preferably 0.1 to 100ppm relative to the total monomer content. If the content of the polymerization catalyst is less than 0.03ppm, the polymerization reaction may not occur sufficiently, and the reaction rate may be significantly slowed to increase the manufacturing cost. If the content is more than 200ppm, the reaction rate may be increased and polyoxy having an unstable portion.
  • the methylene polymer may be formed, the content of the polymerization catalyst to be inactivated increases, the content of the polymerization terminator increases, and thus the production cost may increase.
  • X 1 and X 2 are each independently hydrogen or (C 1 -C 6) alkyl, not hydrogen at the same time, x is an integer selected from 2 to 6,
  • N in Formula 2 and m in Formula 3 are integers selected from 1 to 200.
  • the polyoxymethylene polymer is not particularly limited, but may have a weight average molecular weight of 10,000 to 200,000 g / mol.
  • the oxymethylene homopolymer may be prepared by polymerizing formaldehyde or a cyclic oligomer thereof, that is, trioxane, and the oxymethylene copolymer in which the unit of Formula 2 and the unit of Formula 3 are combined with formaldehyde or a cyclic oligomer thereof. It can be obtained by random copolymerization of the cyclic ether represented by the following formula (5) or the cyclic formal represented by the following formula (6):
  • X 3 , X 4 , X 5 and X 6 are each independently hydrogen or (C 1 -C 6) alkyl and may be bonded to the same carbon atom or to other carbon atoms, and at the same time not hydrogen, n and m are Each is an integer selected from 2 to 6.
  • cyclic ethers include ethylene oxide, propylene oxide, butylene oxide, phenylene oxide, and the like
  • cyclic formales include 1,3-dioxolane, diethylene glycol formal, 1 , 3-propanediol formal, 1,4-butanediol formal, 1,3-dioxepan formal, 1,3,6-trioxokan etc. are mentioned.
  • one or two or more monomers selected from monomers such as ethylene oxide, 1,3-dioxolane and 1,4-butanediol formal can be used.
  • Oxymethylene copolymers can be obtained by adding these monomers to trioxane or formaldehyde as main monomers and random copolymerization using Lewis acid as a catalyst, whereby the copolymer obtained has a melting point of at least 150 ° C. and at least two in the main chain. It has a bonding carbon atom.
  • the ratio of the oxymethylene bond structure to the oxymethylene repeating unit is in the range of 0.05 to 50 mole times, preferably in the range of 0.1 to 20 mole times.
  • the polymerization method for preparing the polyoxymethylene polymer may be carried out in the form of bulk polymerization, suspension polymerization or solution polymerization, and is not limited as long as it is a polymerization method for producing polyoxymethylene polymer that is known in the art.
  • the temperature at the time of a polymerization reaction is 0-100 degreeC, It is effective to carry out at 20-80 degreeC more preferably.
  • the temperature of the above range The polymerization reaction at can control the reaction rate properly and can also help to effectively deactivate the polymerization catalyst.
  • an alkyl substituted phenol or an ether may be used as a chain transferring agent, and particularly preferably, an alkyl ether such as dimethoxymethane may be used.
  • the carbodiimide type polymerization terminator represented by following formula (4) can be added.
  • R 1 and R 2 are each independently (C1-C20) alkyl, (C6-C20) aryl, (C1-C20) alkoxy, (C3-C20) cycloalkyl, (C2-C7) alkenyl , (C3-C20) heterocycloalkyl, (C4-C20) heteroaryl,
  • Alkyl, aryl, alkoxy, cycloalkyl, alkenyl, heterocycloalkyl, and heteroaryl of R 1 and R 2 may be further substituted with one or more selected from (C1-C7) alkyl, halogen, nitro, cyano, and amino.
  • R 1 and R 2 is a cyclic substituent selected from (C3-C20) cycloalkyl, (C6-C20) aryl, (C3-C20) heterocycloalkyl, and (C4-C20) heteroaryl Includes.)
  • Formula 4 may be one or two or more selected from the following formula 4-1 and 4-2.
  • N in Formula 4-1 is an integer selected from 50 to 200.
  • the content of the polymerization terminator according to the present invention is preferably contained 10 to 5000ppm, more preferably 50 to 1000ppm relative to the content of the total monomer.
  • the content of the polymerization terminator is less than 10ppm, the deactivation effect on the polymerization catalyst may be reduced, which may cause a problem of lowering the thermal stability.
  • the content of the polymerization terminator is more than 5000ppm, the content of the low molecular weight polymer is increased to increase the physical properties of the polyoxymethylene polymer. It may be reduced or cause discoloration of the polymer, so it is effective to use it in the above-mentioned range.
  • the carbodiimide polymerization terminator according to the present invention may be added in the form as it is, or may be dissolved in an organic solvent and added.
  • Organic solvents that can dissolve the carbonimide-based polymerization terminator include aromatic hydrocarbons such as benzene, toluene, xylene, aliphatic hydrocarbons such as n-hexane, n-heptane, cyclohexane, alcohols such as methanol, chloroform and dichloromethane And organic solvents capable of dissolving carbodiimide polymerization terminators such as halogenated hydrocarbons such as 1,2-dichloroethane and ketones such as acetone and methyl ethyl ketone.
  • aromatic hydrocarbons such as benzene, toluene, xylene, aliphatic hydrocarbons such as n-hexane, n-heptane, cyclohexane, alcohols such as methanol, chloroform and dichloromethane
  • organic solvents capable of dissolving carbodiimide polymerization terminators such as halogenated hydrocarbons such as
  • alkoxy and other alkyl include both straight chain or branched forms, alkenyl includes both straight chain or branched forms having 2 to 8 carbon atoms and containing one or more double bonds.
  • the (C3-C20) cycloalkyl described in the present invention includes both saturated monocyclic or saturated bicyclic ring structures having 3 to 20 carbon atoms.
  • the aryls described in the present invention are organic radicals derived from aromatic hydrocarbons by one hydrogen removal, each containing a single or fused ring system containing 4 to 7 ring atoms, preferably 5 to 6 ring atoms, suitably for each ring. do.
  • Specific examples include, but are not limited to, phenyl, naphthyl, biphenyl, tolyl, and the like.
  • Heterocycloalkyl described in the present invention is a cycloalkyl group containing 1 to 3 heteroatoms selected from N, O and S as saturated cyclic hydrocarbon backbone atoms, and the remaining saturated monocyclic or bicyclic ring backbone atoms are carbon.
  • Heteroaryl described in the present invention means an aryl group containing 1 to 3 heteroatoms selected from N, O, and S as an aromatic ring skeleton atom, and the remaining aromatic ring skeleton atoms are carbons.
  • Heteroatoms include divalent aryl groups that are oxidized or quaternized to form, for example, N-oxides or quaternary salts.
  • a polymerization catalyst and a polymerization terminator of the present invention By adding a polymerization catalyst and a polymerization terminator of the present invention to prepare a polyoxymethylene polymer, it is possible to form a polyoxymethylene polymer having a uniform molecular weight distribution and other physical properties, which can omit or simplify the deactivation process, and after polymerization It is possible to effectively deactivate the polymerization catalyst to suppress depolymerization, thereby producing a polyoxymethylene polymer having a low molecular weight content and excellent thermal stability.
  • the terminal Formate content of the polyoxymethylene polymer prepared by the production method of the present invention is 3.0 to 8.0 ⁇ mol / g-POM, it can be seen that formaldehyde emission is significantly reduced to 50 to 200ppm.
  • MI Melt Index
  • the weight of the polyoxymethylene polymer sample extruded at a temperature of 190 ° C. and a load of 2.16 kg for 10 minutes at an orifice of constant internal diameter was measured. This value is a measure for evaluating the depolymerization rate of the polymer. Higher values indicate higher depolymerization rates.
  • the polyoxymethylene polymer of the present invention was prepared in the form of a film and immersed in a chloroform solution at 100 ° C. for 6 hours, and then measured the area of 1778 ⁇ 1697 cm ⁇ 1 area using FT-IR (Perkin Elmer Spectrum 2000).
  • the formate group is a representative unstable terminal of the polyoxymethylene polymer, and the higher the value, the easier the depolymerization and the poor the thermal stability.
  • 3g of the polyoxymethylene polymer sample pellet of the present invention is quantitatively analyzed for formaldehyde gas generated after 1 hour residence at 185 ° C using Headspace GC (7890A, Agilent). The higher the value, the worse the thermal stability.
  • Emission amount of formaldehyde using UV / VIS was extracted from the polyoxymethylene polymer of the present invention by making a test piece having a surface area of 100 cm 2 and immersing it in 3 wt% acetic acid solution at 40 ° C. for 10 days.
  • This value represents the degree of depolymerization of the polyoxymethylene polymer by acetic acid, and the higher the value, the higher the degree of depolymerization.
  • the polyoxymethylene polymer was obtained in the same manner as in Example 1 except that the solvent and content of the polymerization catalyst and the type and content of the polymerization terminator were changed.
  • the melt index, the terminal Formate content, the amount of formaldehyde generated, and the acid resistance of the above-described polymers were measured and the results are shown in Table 2.
  • TIN 765 (Bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate + methyl 1,2,2,6,6-pentamethyl-4-piperidyl as a polymerization terminator sebacate) Except that the addition of 3000ppm was carried out in the same manner as in Example 1 to obtain a polyoxymethylene polymer.
  • the melt index, the terminal Formate content, the amount of formaldehyde generated, and the acid resistance of the above-described polymers were measured and the results are shown in Table 2.
  • Example 2 As shown in Table 1, except that the content of the polymerization catalyst was changed, the same procedure as in Example 1 to obtain a polyoxymethylene polymer.
  • the melt index, the terminal Formate content, the amount of formaldehyde generated, and the acid resistance of the above-described polymers were measured and the results are shown in Table 2.
  • the polyoxymethylene polymers of Examples 1 to 10 of the present invention can polymerize a polyoxymethylene polymer having sufficient physical properties even with a small amount of a novel polymerization catalyst, and use a polymerization terminator suitable for such a polymerization catalyst. By doing so, it can be seen that the polymerization catalyst can be effectively deactivated, and the unstable portion can be significantly reduced to significantly improve durability and heat resistance.

Abstract

The present invention relates to a method for preparing a polyoxymethylene polymer, and a polyoxymethylene polymer prepared thereby, and more specifically, to: a method for preparing a polyoxymethylene polymer capable of omitting or simplifying the inactivation of a catalyst, having remarkable thermal stability and enable to reduce the formaldehyde discharged during a preparation process by preparing a polyoxymethylene polymer by using a novel polymerization catalyst and a polymerization terminator; and a polyoxymethylene polymer prepared thereby.

Description

폴리옥시메틸렌 중합체의 제조방법 및 이로 제조된 폴리옥시메틸렌 중합체Method for preparing polyoxymethylene polymer and polyoxymethylene polymer prepared therefrom
본 발명은 폴리옥시메틸렌 중합체의 제조방법 및 이로 제조된 폴리옥시메틸렌 중합체에 관한 것으로, 보다 상세하게는 신규한 중합촉매 및 중합정지제를 사용하여 폴리옥시메틸렌 중합체를 제조함으로써, 촉매의 실활공정을 생략하거나 간략화할 수 있으며, 열안정성이 우수하며, 제조과정에서 방출되는 포름알데히드를 저감시킬 수 있는 폴리옥시메틸렌 중합체의 제조방법 및 이로 제조된 폴리옥시메틸렌 중합체에 관한 것이다. The present invention relates to a method for producing a polyoxymethylene polymer and a polyoxymethylene polymer prepared therefrom, and more particularly, to prepare a polyoxymethylene polymer using a novel polymerization catalyst and a polymerization terminator, thereby inactivating a catalyst. The present invention relates to a method for preparing a polyoxymethylene polymer and a polyoxymethylene polymer prepared therefrom, which may be omitted or simplified, which is excellent in thermal stability, and which can reduce formaldehyde released in the manufacturing process.
일반적으로 폴리옥시메틸렌 수지는 트리옥산 단독 또는 트리옥산과 환상 에테르 및/또는 환상 아세탈을 괴상중합, 용액중합 또는 현탁중합하여 옥시메틸렌 호모폴리머 또는 코폴리머를 제조한다. 이러한 방법은 대한민국 공개특허 10-2002-0074490호(특허문헌 1)에 개시되어 있다. Generally, polyoxymethylene resins are prepared by bulk polymerization, solution polymerization or suspension polymerization of trioxane alone or trioxane with cyclic ethers and / or cyclic acetals to prepare oxymethylene homopolymers or copolymers. Such a method is disclosed in Korean Unexamined Patent Publication No. 10-2002-0074490 (Patent Document 1).
그러나, 이러한 괴상중합, 용액중합 또는 현탁중합으로 얻어진 중합체는 그 자체로는 열적으로 불안정하기 때문에, 호모폴리머의 경우에는 에스테르화 등에 의하여 말단기를 봉쇄시키며, 코폴리머의 경우에는 불안정한 말단기를 분해 제거함으로써 폴리머를 안정화시키고 있으며, 그러한 안정화 단계에 앞서 촉매를 실활시켜 중합반응을 정지하는 것이 필요하다. 즉, 트리옥산 등을 양이온(cation)중합시켜 얻어진 옥시메틸렌 호모폴리머와 코폴리머에서 반응생성물 중에 잔존하고 있는 촉매를 실활시키지 않으면 서서히 해중합을 일으켜 중합체의 분자량이 현저히 저하되어 열적으로 매우 불안정하게 된다.However, the polymer obtained by such bulk polymerization, solution polymerization or suspension polymerization is thermally unstable in itself, so in the case of the homopolymer, the end group is blocked by esterification or the like, and in the case of the copolymer, the unstable end group is decomposed. The polymer is stabilized by removal, and it is necessary to deactivate the catalyst to stop the polymerization reaction before such stabilization step. That is, if the catalyst remaining in the reaction product in the oxymethylene homopolymer and copolymer obtained by cation polymerization of trioxane or the like is not deactivated, depolymerization gradually occurs and the molecular weight of the polymer is significantly lowered, resulting in thermal instability.
이와 같은 촉매의 실활과 관련하여, 일본 공개특허 제1994-211953호(특허문헌 2)에서는 BF3계 중합촉매 실활제로 아민 화합물 및 알칼리 금속의 불화물의 사용을 제안하고 있으나, 이러한 물질로 촉매를 실활시킬 경우에는 별도의 세정 단계 등을 통하여 실활제를 제거해야만 해중합을 방지할 수 있으며, 중합체가 안정화되어 장기간 보존시 분자량 저하가 일어나지 않는다.In connection with such deactivation of the catalyst, Japanese Unexamined Patent Publication No. 1994-211953 (Patent Document 2) proposes the use of an amine compound and an alkali metal fluoride as the BF 3 polymerization catalyst deactivator. In the case of inactivation, depolymerization can be prevented only by removing the deactivator through a separate washing step, and the polymer is stabilized so that molecular weight does not decrease during long-term storage.
이처럼, 종래의 문제점을 해결하기 위하여, 완전히 실활시킬 수 있는 중합촉매 및 이러한 중합촉매를 효과적으로 완벽하게 실활시킬 수 있는 실활제를 개발하여, 중합촉매 또는 실활제를 제거하기 위한 세정공정이 필요하지 않고, 열안정성이 우수하고 불안정한 부분은 적은 폴리옥시메틸렌 중합체의 제조방법이 요구되고 있다. As such, in order to solve the conventional problems, a polymerization catalyst that can be completely deactivated and a deactivator capable of effectively and completely deactivating such a polymerization catalyst are developed so that a cleaning step for removing the polymerization catalyst or deactivator is not necessary. The method for producing polyoxymethylene polymer having low thermal stability and unstable portion is required.
[선행기술문헌][Preceding technical literature]
(특허문헌 1) 대한민국 공개특허 10-2002-0074490호(Patent Document 1) Republic of Korea Patent Publication No. 10-2002-0074490
(특허문헌 2) 일본 공개특허 제1994-211953호(Patent Document 2) Japanese Unexamined Patent Publication No. 1994-211953
상기와 같은 문제점을 해결하기 위하여, 본 발명은 완전 실활이 가능한 신규한 중합촉매를 사용하여 실활 공정을 생략하거나 간소화시킬 수 있는 폴리옥시메틸렌 중합체의 제조방법을 제공하는 것을 목적으로 한다. In order to solve the above problems, an object of the present invention is to provide a method for producing a polyoxymethylene polymer that can omit or simplify the deactivation process by using a novel polymerization catalyst capable of complete deactivation.
또한, 신규한 중합촉매의 실활에 최적화된 중합정지제를 사용함으로써 중합촉매의 완벽한 실활이 가능하고, 열안정성이 우수하며 불안정한 부분을 최소화한 폴리옥시메틸렌중합체의 제조방법을 제공하는 것을 목적으로 한다. It is also an object of the present invention to provide a method for producing a polyoxymethylene polymer which is capable of perfect deactivation of a polymerization catalyst, excellent thermal stability, and minimized unstable portions by using a polymerization terminator optimized for deactivation of a novel polymerization catalyst. .
상기와 같은 목적을 달성하기 위한 본 발명은 하기 화학식 1로 표시되는 중합촉매 및 카보디이미드계 중합정지제를 사용하여, 하기 화학식 2로 표시되는 반복단위로 구성되는 옥시메틸렌 호모폴리머 또는 하기 화학식 2로 표시되는 반복단위 및 하기 화학식 3으로 표시되는 반복단위가 랜덤하게 결합된 옥시메틸렌 코폴리머를 제조하는 폴리옥시메틸렌 중합체의 제조방법에 관한 것이다.The present invention for achieving the above object is an oxymethylene homopolymer consisting of a repeating unit represented by the following formula (2) using a polymerization catalyst and a carbodiimide-based polymerization terminator represented by the following formula (1) or formula (2) It relates to a method for producing a polyoxymethylene polymer for producing an oxymethylene copolymer in which the repeating unit represented by the following and the repeating unit represented by the following formula (3) is bonded randomly.
[화학식 1][Formula 1]
Figure PCTKR2014001752-appb-I000001
Figure PCTKR2014001752-appb-I000001
(상기 화학식 1에서, X는 질소 또는 산소이며, Y는 SiR1R2R3이고, n은 1 또는 2이다.)(In Formula 1, X is nitrogen or oxygen, Y is SiR 1 R 2 R 3 , n is 1 or 2.)
[화학식 2][Formula 2]
Figure PCTKR2014001752-appb-I000002
Figure PCTKR2014001752-appb-I000002
[화학식 3][Formula 3]
Figure PCTKR2014001752-appb-I000003
Figure PCTKR2014001752-appb-I000003
(상기 화학식 3에서 X1 및 X2 각각 독립적으로 수소 또는 (C1-C6)알킬이며, 동시에 수소가 아니고, x는 2 내지 6에서 선택되는 정수이며, 화학식 2의 n 및 화학식 3의 m은 1 내지 200에서 선택되는 정수이다.) (In Formula 3, X 1 and X 2 are each independently hydrogen or (C 1 -C 6) alkyl, not hydrogen at the same time, x is an integer selected from 2 to 6, n of formula 2 and m of formula 3 is 1 Is an integer selected from to 200.)
상기 카보디이미드계 중합정지제는 하기 화학식 4로 표시되는 화합물일 수 있다. The carbodiimide-based polymerization terminator may be a compound represented by the following formula (4).
[화학식 4][Formula 4]
Figure PCTKR2014001752-appb-I000004
Figure PCTKR2014001752-appb-I000004
(상기 화학식 4에서 R1 및 R2는 각각 독립적으로 (C1-C20)알킬, (C6-C20)아릴, (C1-C20)알콕시, (C3-C20)시클로알킬, (C2-C7)알케닐, (C3-C20)헤테로시클로알킬, (C4-C20)의 헤테로아릴에서 선택되고, 상기 R1 및 R2의 알킬, 아릴, 알콕시, 시클로알킬, 알케닐, 헤테로시클로알킬, 헤테로아릴은 (C1-C7)알킬, 할로겐, 니트로, 시아노, 아미노로부터 선택된 하나 이상이 더 치환될 수 있고, 단, 상기 R1 및 R2 중에서 적어도 하나 이상은 (C3-C20)시클로알킬, (C6-C20)아릴, (C3-C20)헤테로시클로알킬, (C4-C20)헤테로아릴에서 선택되는 고리형 치환체를 포함한다.)(In Formula 4, R 1 and R 2 are each independently (C1-C20) alkyl, (C6-C20) aryl, (C1-C20) alkoxy, (C3-C20) cycloalkyl, (C2-C7) alkenyl , (C3-C20) heterocycloalkyl, (C4-C20) heteroaryl, wherein the alkyl, aryl, alkoxy, cycloalkyl, alkenyl, heterocycloalkyl of R 1 and R 2 are (C1) One or more selected from alkyl, halogen, nitro, cyano, amino may be further substituted, provided that at least one of R 1 and R 2 is (C 3 -C 20) cycloalkyl, (C 6 -C 20) Cyclic substituents selected from aryl, (C3-C20) heterocycloalkyl, (C4-C20) heteroaryl.)
상기 화학식 1의 중합촉매는 하기 화학식에서 선택될 수 있다. The polymerization catalyst of Chemical Formula 1 may be selected from the following chemical formulas.
Figure PCTKR2014001752-appb-I000005
Figure PCTKR2014001752-appb-I000005
상기 카보디이미드계 중합정지제는 하기 화학식 4-1 및 화학식 4-2에서 1종 또는 2종 이상 선택될 수 있다. The carbodiimide-based polymerization terminator may be selected from one or two or more of the following Chemical Formulas 4-1 and 4-2.
[화학식 4-1][Formula 4-1]
Figure PCTKR2014001752-appb-I000006
Figure PCTKR2014001752-appb-I000006
(상기 화학식 4-1에서 n은 50 내지 200에서 선택되는 정수이다.)(N in Formula 4-1 is an integer selected from 50 to 200.)
[화학식 4-2][Formula 4-2]
Figure PCTKR2014001752-appb-I000007
Figure PCTKR2014001752-appb-I000007
상기 중합촉매의 함량은 전체 단량체 함량에 대하여 0.03 내지 200ppm 포함되며, 상기 중합정지제의 함량은 전체 단량체 함량에 대하여 10 내지 5000ppm 포함될 수 있다. The polymerization catalyst may be included in an amount of 0.03 to 200 ppm based on the total monomer content, and the content of the polymerization terminator may be included in an amount of 10 to 5000 ppm based on the total monomer content.
상기 중합촉매는 유기용매로 용해하여 첨가할 수 있으며, 상기 유기용매는 에틸렌글리콜 디메틸에테르, 디에틸렌글리콜 디메틸에테르,트리에틸렌글리콜 디메틸에테르, 디에틸렌글리콜 디에틸에테르, 디에틸렌글리콜 메틸에틸에테르, 디에틸렌글리콜 메틸부틸에테르, 트리에틸렌글리골 메틸부틸에테르, 프로필렌글리콜 디메틸에테르 및 디프로필렌글리콜 디메틸에테르로 이루어진 군으로부터 1종 또는 2종 이상이 선택될 수 있다. The polymerization catalyst may be dissolved and added with an organic solvent, and the organic solvent may be ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, or di One kind or two or more kinds may be selected from the group consisting of ethylene glycol methyl butyl ether, triethylene glycol butyl ether, propylene glycol dimethyl ether and dipropylene glycol dimethyl ether.
또한, 상기와 같은 목적을 달성하기 위한 본 발명은 상술한 제조방법으로 제조된 폴리옥시메틸렌 중합체에 관한 것이다. In addition, the present invention for achieving the above object relates to a polyoxymethylene polymer prepared by the above-described manufacturing method.
상기 폴리옥시메틸렌 중합체의 말단 Formate 함량은 3.0 내지 8.0 μmol/g-POM이며, 포름알데히드 방출량은 50 내지 200ppm일 수 있다. The terminal Formate content of the polyoxymethylene polymer is 3.0 to 8.0 μmol / g-POM, and the amount of formaldehyde released may be 50 to 200 ppm.
본 발명은 신규한 중합촉매를 사용하여 실활공정을 생략하거나 간소화시킬 수 있으며, 신규한 중합촉매에 최적화된 중합정지제를 사용하여 중합촉매를 효과적으로 실활시키고, 열안정성이 우수하며 불안정부분이 적은 폴리옥시메틸렌 중합체를 제조할 수 있는 장점이 있다. The present invention can omit or simplify the deactivation process using a novel polymerization catalyst, and effectively deactivate the polymerization catalyst by using a polymerization terminator optimized for the new polymerization catalyst, and have excellent thermal stability and low polyunsaturation. There is an advantage to prepare oxymethylene polymers.
이하, 본 발명의 폴리옥시메틸렌 중합체의 제조방법 및 이로 제조된 폴리옥시메틸렌 중합체에 대하여 바람직한 실시형태 및 물성측정 방법을 상세히 설명한다. 본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이고, 첨부된 특허 청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다. Hereinafter, preferred embodiments of the polyoxymethylene polymer of the present invention and the polyoxymethylene polymer prepared therefrom will be described in detail with reference to preferred embodiments. The invention can be better understood by the following examples, which are intended for purposes of illustration of the invention and are not intended to limit the scope of protection defined by the appended claims.
이하, 본 발명의 각 구성에 대하여 보다 구체적으로 설명한다. Hereinafter, each structure of this invention is demonstrated more concretely.
본 발명에 의해 중합되는 폴리옥시메틸렌 중합체는 하기 화학식 1로 표시되는 중합촉매 및 카보이미드계 중합정지제를 사용하여, 하기 화학식 2로 표시되는 옥시메틸렌 반복단위로 구성되는 호모폴리머이거나, 하기 화학식 2의 반복단위와 하기 화학식 3의 반복단위가 랜덤하게 결합된 코폴리머일 수 있다. The polyoxymethylene polymer polymerized by the present invention is a homopolymer composed of an oxymethylene repeating unit represented by the following Chemical Formula 2, using a polymerization catalyst represented by the following Chemical Formula 1 and a carbodiimide polymerization terminator, or The repeating unit of and the repeating unit of Formula 3 may be a copolymer bonded randomly.
[화학식 1][Formula 1]
Figure PCTKR2014001752-appb-I000008
Figure PCTKR2014001752-appb-I000008
(상기 화학식 1에서, X는 질소 또는 산소이며, Y는 SiR1R2R3이고, n은 1 또는 2이다.)(In Formula 1, X is nitrogen or oxygen, Y is SiR 1 R 2 R 3 , n is 1 or 2.)
상기 화학식 1에서, R1, R2 및 R3은 각각 독립적으로 (C1-C20)알킬, (C6-C20)아릴, (C1-C20)알콕시, (C4-C20)의 헤테로아릴에서 선택될 수 있고, In Formula 1, R 1 , R 2 and R 3 may be each independently selected from (C1-C20) alkyl, (C6-C20) aryl, (C1-C20) alkoxy, and (C4-C20) heteroaryl There is,
상기 R1, R2 및 R3의 알킬, 아릴, 알콕시, 헤테로아릴은 (C1-C5)알킬, 할로겐, 니트로, 시아노, 아미노로부터 선택된 하나 이상이 더 치환될 수 있다. Alkyl, aryl, alkoxy and heteroaryl of R 1 , R 2 and R 3 may be further substituted with one or more selected from (C 1 -C 5) alkyl, halogen, nitro, cyano, amino.
구체적으로, 상기 화학식 1에서 X는 산소이고, R1, R2 및 R3은 각각 독립적으로 (C1-C20)알킬인 것이 바람직하며, 보다 바람직하게는 상기 화학식 1의 중합촉매는 하기 화학식에서 선택되는 것이 중합촉매의 실활과정을 생략하거나 간소화시킬 수 있으므로 효과적이다. Specifically, in Chemical Formula 1, X is oxygen, and R 1 , R 2, and R 3 are each independently (C 1 -C 20) alkyl, and more preferably, the polymerization catalyst of Chemical Formula 1 is selected from the following Chemical Formula: It is effective because it can omit or simplify the deactivation process of the polymerization catalyst.
Figure PCTKR2014001752-appb-I000009
Figure PCTKR2014001752-appb-I000009
본 발명의 폴리옥시메틸렌 중합체를 제조함에 있어서, 상기 중합촉매는 유기용매에 용해하여 첨가하는 것이 중합반응을 균일하게 유도하여 균일한 폴리옥시메틸렌 중합체를 제조할 수 있으므로 효과적이다. In preparing the polyoxymethylene polymer of the present invention, it is effective that the polymerization catalyst is dissolved and added to an organic solvent to induce the polymerization reaction uniformly to produce a uniform polyoxymethylene polymer.
상기 유기용매는 틸렌글리콜 디메틸에테르, 디에틸렌글리콜 디메틸에테르,트리에틸렌글리콜 디메틸에테르, 디에틸렌글리콜 디에틸에테르, 디에틸렌글리콜 메틸에틸에테르, 디에틸렌글리콜 메틸부틸에테르, 트리에틸렌글리골 메틸부틸에테르, 프로필렌글리콜 디메틸에테르 및 디프로필렌글리콜 디메틸에테르로 이루어진 군으로부터 1종 또는 2종 이상이 선택될 수 있다. The organic solvent is ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol methyl butyl ether, triethylene glycol butyl ether, One kind or two or more kinds may be selected from the group consisting of propylene glycol dimethyl ether and dipropylene glycol dimethyl ether.
본 발명에 따른 중합촉매의 함량은 전체 단량체의 함량에 대하여 0.03 내지 200ppm 포함되는 것이 바람직하며, 보다 바람직하게 0.1 내지 100ppm 포함되는 것이 효과적이다. 중합촉매의 함량이 0.03ppm 미만일 경우에는 중합반응이 충분히 일어나지 않을 수 있으며, 반응속도가 현저히 느려져 제조비용이 상승하는 문제가 발생할 수 있고, 200ppm 초과일 경우에는, 반응속도 빨라져 불안정한 부분을 가지는 폴리옥시메틸렌 중합체가 형성될 수 있으며, 실활시켜야 하는 중합촉매의 함량이 상승하여 중합정지제의 함량이 상승하고 이에 따라 제조단가가 상승하는 문제가 발생할 수 있다. The content of the polymerization catalyst according to the present invention is preferably contained 0.03 to 200ppm, more preferably 0.1 to 100ppm relative to the total monomer content. If the content of the polymerization catalyst is less than 0.03ppm, the polymerization reaction may not occur sufficiently, and the reaction rate may be significantly slowed to increase the manufacturing cost. If the content is more than 200ppm, the reaction rate may be increased and polyoxy having an unstable portion. The methylene polymer may be formed, the content of the polymerization catalyst to be inactivated increases, the content of the polymerization terminator increases, and thus the production cost may increase.
[화학식 2][Formula 2]
Figure PCTKR2014001752-appb-I000010
Figure PCTKR2014001752-appb-I000010
[화학식 3][Formula 3]
Figure PCTKR2014001752-appb-I000011
Figure PCTKR2014001752-appb-I000011
(상기 화학식 3에서 X1 및 X2 각각 독립적으로 수소 또는 (C1-C6)알킬이며, 동시에 수소가 아니고, x는 2 내지 6에서 선택되는 정수이며, (In Formula 3, X 1 and X 2 are each independently hydrogen or (C 1 -C 6) alkyl, not hydrogen at the same time, x is an integer selected from 2 to 6,
화학식 2의 n 및 화학식 3의 m은 1 내지 200에서 선택되는 정수이다.) N in Formula 2 and m in Formula 3 are integers selected from 1 to 200.)
상기 폴리옥시메틸렌 중합체는 특별히 제한되지 않으나 10,000 내지 200,000g/mol의 중량평균분자량을 갖는 것이 바람직할 수 있다. The polyoxymethylene polymer is not particularly limited, but may have a weight average molecular weight of 10,000 to 200,000 g / mol.
상기 옥시메틸렌 호모폴리머는 포름알데히드 또는 그의 환상 올리고머, 즉, 트리옥산을 중합함으로써 제조할 수 있으며, 상기 화학식 2의 단위와 화학식 3의 단위가 결합된 옥시메틸렌 코폴리머는 포름알데히드 또는 그의 환상 올리고머와 하기 화학식 5으로 표현되는 환상 에테르 또는 하기 화학식 6로 표현되는 환상 포르말을 랜덤 공중합시킴으로써 얻을 수 있다:The oxymethylene homopolymer may be prepared by polymerizing formaldehyde or a cyclic oligomer thereof, that is, trioxane, and the oxymethylene copolymer in which the unit of Formula 2 and the unit of Formula 3 are combined with formaldehyde or a cyclic oligomer thereof. It can be obtained by random copolymerization of the cyclic ether represented by the following formula (5) or the cyclic formal represented by the following formula (6):
[화학식 5][Formula 5]
Figure PCTKR2014001752-appb-I000012
Figure PCTKR2014001752-appb-I000012
[화학식 6][Formula 6]
Figure PCTKR2014001752-appb-I000013
Figure PCTKR2014001752-appb-I000013
상기 화학식 5 및 6에서,In Chemical Formulas 5 and 6,
X3, X4, X5 및 X6은 각각 독립적으로 수소 또는 (C1-C6)알킬이고, 같은 탄소원자에 결합되거나 다른 탄소원자에 결합될 수 있으며, 동시에 수소가 아니고, 상기 n 및 m은 각각 2 내지 6에서 선택되는 정수이다.X 3 , X 4 , X 5 and X 6 are each independently hydrogen or (C 1 -C 6) alkyl and may be bonded to the same carbon atom or to other carbon atoms, and at the same time not hydrogen, n and m are Each is an integer selected from 2 to 6.
상기 랜덤 공중합시 이용되는 공단량체 중, 환상 에테르로는 에틸렌옥사이드, 프로필렌옥사이드, 부틸렌옥사이드, 페닐렌옥사이드 등을 들 수 있으며, 환상 포르말로는 1,3-디옥솔란, 디에틸렌글리콜포르말, 1,3-프로판디올포르말, 1,4-부탄디올포르말, 1,3-디옥세판포르말, 1,3,6-트리옥소칸 등을 들 수 있다. 바람직하게는, 에틸렌옥사이드, 1,3-디옥솔란, 1,4-부탄디올포르말 등의 단량체로부터 선택된 1종 또는 2종 이상의 단량체를 사용할 수 있다. Among the comonomers used in the random copolymerization, cyclic ethers include ethylene oxide, propylene oxide, butylene oxide, phenylene oxide, and the like, and cyclic formales include 1,3-dioxolane, diethylene glycol formal, 1 , 3-propanediol formal, 1,4-butanediol formal, 1,3-dioxepan formal, 1,3,6-trioxokan etc. are mentioned. Preferably, one or two or more monomers selected from monomers such as ethylene oxide, 1,3-dioxolane and 1,4-butanediol formal can be used.
이들 단량체를 주단량체인 트리옥산 또는 포름알데히드에 첨가하고 루이스산을 촉매로 사용하여 랜덤공중합시킴으로써 옥시메틸렌 코폴리머를 얻을 수 있으며, 이에 의해 얻어진 코폴리머는 150℃ 이상의 융점을 가지며 주쇄 내에 두 개 이상의 결합 탄소원자를 갖는다.Oxymethylene copolymers can be obtained by adding these monomers to trioxane or formaldehyde as main monomers and random copolymerization using Lewis acid as a catalyst, whereby the copolymer obtained has a melting point of at least 150 ° C. and at least two in the main chain. It has a bonding carbon atom.
상기 옥시메틸렌 코폴리머에 있어서, 옥시메틸렌 반복단위에 대한 옥시메틸렌 결합구조의 비율은 0.05 내지 50몰배 범위, 바람직하게는 0.1 내지 20몰배의 범위이다.In the oxymethylene copolymer, the ratio of the oxymethylene bond structure to the oxymethylene repeating unit is in the range of 0.05 to 50 mole times, preferably in the range of 0.1 to 20 mole times.
폴리옥시메틸렌 중합체를 제조하기 위한 중합방법은 괴상중합, 현탁중합 또는 용액중합의 형태로 수행될 수 있으며, 당해 기술분야에 자명하게 공지된 폴리옥시메틸렌 중합체를 제조하기 위한 중합방법이면 제한되지 않는다. The polymerization method for preparing the polyoxymethylene polymer may be carried out in the form of bulk polymerization, suspension polymerization or solution polymerization, and is not limited as long as it is a polymerization method for producing polyoxymethylene polymer that is known in the art.
중합반응시의 온도는 0 내지 100℃인 것이 바람직하고, 보다 바람직하게는 20 내지 80℃에서 수행하는 것이 효과적이다. It is preferable that the temperature at the time of a polymerization reaction is 0-100 degreeC, It is effective to carry out at 20-80 degreeC more preferably.
중합온도가 0℃ 미만인 경우에는 중합반응이 일어나지 않는 문제가 발생할 수 있고, 100℃ 초과일 경우에는 반응속도가 너무 빨라 균일한 폴리옥시메틸렌 중합체를 형성하기 어려운 문제가 발생할 수 있으므로, 상기 범위의 온도에서 중합반응을 시키는 것이 반응속도를 적절히 컨트롤할 수 있으며, 중합촉매의 효과적인 실활에도 도움을 줄 수 있다. If the polymerization temperature is less than 0 ℃ may cause a problem that the polymerization reaction does not occur, if the temperature is higher than 100 ℃ may cause a problem that the reaction rate is too fast to form a uniform polyoxymethylene polymer, the temperature of the above range The polymerization reaction at can control the reaction rate properly and can also help to effectively deactivate the polymerization catalyst.
또한, 폴리옥시메틸렌의 중합반응시에는 사슬이동제 (chain transferring agent)로 알킬치환페놀이나 에테르류를 사용할 수 있으며, 특히 바람직하게는 디메톡시메탄 등과 같은 알킬에테르를 사용할 수 있다. In addition, in the polymerization reaction of polyoxymethylene, an alkyl substituted phenol or an ether may be used as a chain transferring agent, and particularly preferably, an alkyl ether such as dimethoxymethane may be used.
폴리옥시메틸렌의 중합반응을 정지시키기 위하여, 하기 화학식 4로 표시되는 카보이미드계 중합정지제를 첨가할 수 있다. In order to stop the polymerization reaction of polyoxymethylene, the carbodiimide type polymerization terminator represented by following formula (4) can be added.
[화학식 4][Formula 4]
Figure PCTKR2014001752-appb-I000014
Figure PCTKR2014001752-appb-I000014
(상기 화학식 4에서 R1 및 R2는 각각 독립적으로 (C1-C20)알킬, (C6-C20)아릴, (C1-C20)알콕시, (C3-C20)시클로알킬, (C2-C7)알케닐, (C3-C20)헤테로시클로알킬, (C4-C20)의 헤테로아릴에서 선택되고, (In Formula 4, R 1 and R 2 are each independently (C1-C20) alkyl, (C6-C20) aryl, (C1-C20) alkoxy, (C3-C20) cycloalkyl, (C2-C7) alkenyl , (C3-C20) heterocycloalkyl, (C4-C20) heteroaryl,
상기 R1 및 R2의 알킬, 아릴, 알콕시, 시클로알킬, 알케닐, 헤테로시클로알킬, 헤테로아릴은 (C1-C7)알킬, 할로겐, 니트로, 시아노, 아미노로부터 선택된 하나 이상이 더 치환될 수 있고,Alkyl, aryl, alkoxy, cycloalkyl, alkenyl, heterocycloalkyl, and heteroaryl of R 1 and R 2 may be further substituted with one or more selected from (C1-C7) alkyl, halogen, nitro, cyano, and amino. There is,
단, 상기 R1 및 R2 중에서 적어도 하나 이상은 (C3-C20)시클로알킬, (C6-C20)아릴, (C3-C20)헤테로시클로알킬, (C4-C20)헤테로아릴에서 선택되는 고리형 치환체를 포함한다.)Provided that at least one of R 1 and R 2 is a cyclic substituent selected from (C3-C20) cycloalkyl, (C6-C20) aryl, (C3-C20) heterocycloalkyl, and (C4-C20) heteroaryl Includes.)
상기 화학식 4는 하기 화학식 4-1 및 화학식 4-2에서 1종 또는 2종 이상이 선택될 수 있다. Formula 4 may be one or two or more selected from the following formula 4-1 and 4-2.
[화학식 4-1][Formula 4-1]
Figure PCTKR2014001752-appb-I000015
Figure PCTKR2014001752-appb-I000015
(상기 화학식 4-1에서 n은 50 내지 200에서 선택되는 정수이다.)(N in Formula 4-1 is an integer selected from 50 to 200.)
[화학식 4-2][Formula 4-2]
Figure PCTKR2014001752-appb-I000016
Figure PCTKR2014001752-appb-I000016
본 발명에 따른 중합정지제의 함량은 전체 단량체의 함량에 대하여 10 내지 5000ppm 포함되는 것이 바람직하며, 보다 바람직하게 50 내지 1000ppm 포함되는 것이 효과적이다. 중합정지제의 함량이 10ppm 미만일 경우에는 중합촉매에 대한 실활 효과가 감소되어 내열안정성이 저하되는 문제가 발생할 수 있으며, 5000ppm 초과일 경우에는 저분자량 중합체의 함량이 상승하여 폴리옥시메틸렌 중합체의 물성을 감소시키거나, 중합체의 변색을 야기할 수 있으므로, 상술한 범위로 사용하는 것이 효과적이다. The content of the polymerization terminator according to the present invention is preferably contained 10 to 5000ppm, more preferably 50 to 1000ppm relative to the content of the total monomer. When the content of the polymerization terminator is less than 10ppm, the deactivation effect on the polymerization catalyst may be reduced, which may cause a problem of lowering the thermal stability. When the content of the polymerization terminator is more than 5000ppm, the content of the low molecular weight polymer is increased to increase the physical properties of the polyoxymethylene polymer. It may be reduced or cause discoloration of the polymer, so it is effective to use it in the above-mentioned range.
본 발명에 따른 카보이미드계 중합정지제는 그대로의 형태로 첨가해도 좋고, 유기용매에 용해시켜 첨가해도 무방하다. The carbodiimide polymerization terminator according to the present invention may be added in the form as it is, or may be dissolved in an organic solvent and added.
카보이미드계 중합정지제를 용해할 수 있는 유기용매로는 벤젠, 톨루엔, 자일렌 등과 같은 방향족 탄화수소, n-헥산, n-헵탄, 시클로헥산 등과 같은 지방족 탄화수소, 메탄올 등과 같은 알콜류, 클로로포름, 디클로로메탄, 1,2-디클로로에탄 등과 같은 할로겐화 탄화수소, 아세톤, 메틸에틸케톤 등과 같은 케톤류 등 카보이미드계 중합정지제를 용해할 수 있는 유기용매이면 제한되지 않고 사용할 수 있다. Organic solvents that can dissolve the carbonimide-based polymerization terminator include aromatic hydrocarbons such as benzene, toluene, xylene, aliphatic hydrocarbons such as n-hexane, n-heptane, cyclohexane, alcohols such as methanol, chloroform and dichloromethane And organic solvents capable of dissolving carbodiimide polymerization terminators such as halogenated hydrocarbons such as 1,2-dichloroethane and ketones such as acetone and methyl ethyl ketone.
본 발명에 기재된 알킬. 알콕시 및 그 외 알킬을 포함하는 치환체는 직쇄 또는 분쇄 형태를 모두 포함하며, 알케닐은 2 내지 8개의 탄소 원자를 갖고 하나 이상의 이중결합을 함유하는 직쇄 또는 분쇄 형태를 모두 포함한다.Alkyl as described in the present invention. Substituents comprising alkoxy and other alkyl include both straight chain or branched forms, alkenyl includes both straight chain or branched forms having 2 to 8 carbon atoms and containing one or more double bonds.
본 발명에 기재된 (C3-C20)시클로알킬은 탄소 원자수가 3 내지 20개인 포화모노시클릭 또는 포화바이시클릭 고리 구조형태를 모두 포함한다. The (C3-C20) cycloalkyl described in the present invention includes both saturated monocyclic or saturated bicyclic ring structures having 3 to 20 carbon atoms.
본 발명에 기재된 아릴은 하나의 수소 제거에 의해서 방향족 탄화수소로부터 유도된 유기라디칼로 각 고리에 적절하게는 4 ~7개, 바람직하게는 5 ~ 6개의 고리원자를 포함하는 단일 또는 융합고리계를 포함한다. 구체적인 예로는 페닐, 나프틸, 비페닐, 톨릴 등을 포함하지만 이에 한정되는 것은 아니다. The aryls described in the present invention are organic radicals derived from aromatic hydrocarbons by one hydrogen removal, each containing a single or fused ring system containing 4 to 7 ring atoms, preferably 5 to 6 ring atoms, suitably for each ring. do. Specific examples include, but are not limited to, phenyl, naphthyl, biphenyl, tolyl, and the like.
본 발명에 기재된 헤테로시클로알킬은 포화시클릭 탄화수소 골격 원자로서 N, O, S로부터 선택되는 1 내지 3개의 헤테로원자를 포함하고, 나머지 포화모노시클릭 또는 바이시클릭 고리 골격 원자가 탄소인 시클로알킬 그룹을 의미하는 것으로, 피롤리디닐, 아제티디닐, 피라졸리디닐, 옥사졸리디닐, 피페리디닐, 피페라지닐, 모르폴리닐, 티오모르폴리닐,티아졸리디닐, 히단토이닐, 발레로락타밀, 옥시라닐, 옥세타닐, 디옥솔라닐, 디옥사닐, 옥사티올라닐, 옥사티아닐, 디티아닐, 디히드로푸라닐, 테트라히드로푸라닐, 디히드로피라닐, 테트라히드로피라닐, 테트라히드로피리디닐, 테트라히드로피리미디닐, 테트라히드로티오페닐, 테트라히드로티오피라닐, 디아제파닐 및 아제파닐을 들 수 있다. Heterocycloalkyl described in the present invention is a cycloalkyl group containing 1 to 3 heteroatoms selected from N, O and S as saturated cyclic hydrocarbon backbone atoms, and the remaining saturated monocyclic or bicyclic ring backbone atoms are carbon. Means, pyrrolidinyl, azetidinyl, pyrazolidinyl, oxazolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, hydantoinyl, valerolactamyl , Oxiranyl, oxetanyl, dioxolanyl, dioxanyl, oxathiolanyl, oxathanyl, ditianyl, dihydrofuranyl, tetrahydrofuranyl, dihydropyranyl, tetrahydropyranyl, tetrahydro Pyridinyl, tetrahydropyrimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, diazepanyl and azepanyl.
본 발명에 기재된 헤테로아릴은 방향족 고리 골격 원자로서 N, O, S로부터 선택되는 1 내지 3개의 헤테로원자를 포함하고, 나머지 방향족 고리 골격 원자가 탄소인 아릴 그룹을 의미하는 것으로, 상기 헤테로아릴기는 고리 내 헤테로원자가 산화되거나 사원화되어, 예를 들어 N-옥사이드 또는 4차 염을 형성하는 2가 아릴 그룹을 포함한다. 구체적인 예로 퓨릴, 티오펜일, 피롤릴, 피란일, 이미다졸릴, 피라졸릴, 티아졸릴, 티아디아졸릴, 이소티아졸릴, 이소사졸릴, 옥사졸릴, 옥사디아졸릴, 트리아진일, 테트라진일, 트리아졸릴, 테트라졸릴, 퓨라잔일, 피리딜, 피라진일, 피리미딘일, 피리다진일 등이 포함되며, 이에 제한되지 않는다. Heteroaryl described in the present invention means an aryl group containing 1 to 3 heteroatoms selected from N, O, and S as an aromatic ring skeleton atom, and the remaining aromatic ring skeleton atoms are carbons. Heteroatoms include divalent aryl groups that are oxidized or quaternized to form, for example, N-oxides or quaternary salts. Specific examples include furyl, thiophenyl, pyrrolyl, pyranyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isosazolyl, oxazolyl, oxdiazolyl, triazinyl, tetrazinyl, tria Zolyl, tetrazolyl, furazanyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl and the like.
본 발명의 중합촉매 및 중합정지제를 첨가하여 폴리옥시메틸렌 중합체를 제조함으로써, 분자량 분포 및 기타 물성이 균일하고, 실활공정을 생략하거나 간소화할 수 있는 폴리옥시메틸렌 중합체를 형성할 수 있으며, 중합 후에 중합촉매를 효과적으로 실활시켜 해중합이 발생하는 것을 억제할 수 있어, 저분자량의 함량이 적고 열안정성이 우수한 폴리옥시메틸렌 중합체를 제조할 수 있다. By adding a polymerization catalyst and a polymerization terminator of the present invention to prepare a polyoxymethylene polymer, it is possible to form a polyoxymethylene polymer having a uniform molecular weight distribution and other physical properties, which can omit or simplify the deactivation process, and after polymerization It is possible to effectively deactivate the polymerization catalyst to suppress depolymerization, thereby producing a polyoxymethylene polymer having a low molecular weight content and excellent thermal stability.
본 발명의 제조방법으로 제조된 폴리옥시메틸렌 중합체의 말단 Formate 함량은 3.0 내지 8.0μmol/g-POM이며, 포름알데히드 방출량은 50 내지 200ppm 으로 현저히 감소하는 것을 알 수 있다. The terminal Formate content of the polyoxymethylene polymer prepared by the production method of the present invention is 3.0 to 8.0μmol / g-POM, it can be seen that formaldehyde emission is significantly reduced to 50 to 200ppm.
이하, 본 발명의 폴리옥시메틸렌 중합체의 제조방법 및 이로 제조된 폴리옥시메틸렌 중합체를 실시예 및 비교예를 통하여 자세히 설명하고자 한다. Hereinafter, a method for preparing a polyoxymethylene polymer of the present invention and a polyoxymethylene polymer prepared therefrom will be described in detail through Examples and Comparative Examples.
물성측정Property measurement
1. 용융지수(MI)1. Melt Index (MI)
일정한 내경의 오리피스(Orifice)에서 온도 190℃, 하중 2.16kg으로 10분간 압출하여 나온 폴리옥시메틸렌 중합체 시료의 중량을 측정하였으며, 이 값은 중합체의 해중합률을 평가하는 척도가 되며, 용융지수 값이 높을수록 해중합률이 높음을 나타낸다. The weight of the polyoxymethylene polymer sample extruded at a temperature of 190 ° C. and a load of 2.16 kg for 10 minutes at an orifice of constant internal diameter was measured. This value is a measure for evaluating the depolymerization rate of the polymer. Higher values indicate higher depolymerization rates.
2. 말단 Formate함량 측정2. Terminal Formate Content Measurement
본 발명의 폴리옥시메틸렌 중합체를 필름형태로 제조하여 클로로포름 용액에 100℃에서 6시간 동안 침지 후 FT-IR(Perkin Elmer 社 Spectrum 2000)을 이용하여 1778~1697cm-1 영역의 면적을 측정한다. Formate기는 폴리옥시메틸렌 중합체의 대표적인 불안정 말단이며, 이 값이 높을수록 해중합이 쉽게 일어나고 열안정성이 나쁨을 나타낸다. The polyoxymethylene polymer of the present invention was prepared in the form of a film and immersed in a chloroform solution at 100 ° C. for 6 hours, and then measured the area of 1778˜1697 cm −1 area using FT-IR (Perkin Elmer Spectrum 2000). The formate group is a representative unstable terminal of the polyoxymethylene polymer, and the higher the value, the easier the depolymerization and the poor the thermal stability.
3. 포름알데히드(Formaldehyde) 발생량 측정(HS-GC법)3. Formaldehyde generation amount measurement (HS-GC method)
본 발명의 폴리옥시메틸렌 중합체 시료 펠렛 3g을 Headspace GC(Agilent社 7890A)를 이용하여 185℃에서 1시간 동안 체류 후 발생된 포름알데히드 가스를 정량분석한다. 수치가 높을수록 열안정성이 나쁨을 나타낸다. 3g of the polyoxymethylene polymer sample pellet of the present invention is quantitatively analyzed for formaldehyde gas generated after 1 hour residence at 185 ° C using Headspace GC (7890A, Agilent). The higher the value, the worse the thermal stability.
4. 내 Acetic acid성 측정4. Acetic acid resistance measurement
본 발명의 폴리옥시메틸렌 중합체를 100cm2의 표면적을 가지는 시험편을 만들어 3wt%의 아세트산 용액에 40℃에서 10일 동안 침지시켜 만들어진 추출용액을 UV/VIS(Perkin-Elmer社)를 이용하여 포름알데히드 방출량을 정성분석한다. 이 값은아세트산에 의한 폴리옥시메틸렌 중합체의 해중합도를 나타내며, 값이 높을수록 해중합률이 높음을 나타낸다. Emission amount of formaldehyde using UV / VIS (Perkin-Elmer, Inc.) was extracted from the polyoxymethylene polymer of the present invention by making a test piece having a surface area of 100 cm 2 and immersing it in 3 wt% acetic acid solution at 40 ° C. for 10 days. Qualitative analysis This value represents the degree of depolymerization of the polyoxymethylene polymer by acetic acid, and the higher the value, the higher the degree of depolymerization.
[실시예 1]Example 1
600cc 용량의 중합기를 50℃로 유지시킨 후 정량 주입장치를 사용하여 트리옥산 500g 및 코모노머로 1,3-디옥솔란 20g을 주입한 다음 중합촉매로써 TMST(Trimethylsilyl trifluoromethanesulfonate) 0.0015g(에틸렌글리콜 디메틸에테르로 희석, 트리옥산에 대하여 3ppm)을 첨가하였다. 중합촉매를 첨가한 뒤 10분 경과 후에 중합정지제로 PCDI(Poly-(1,3,5-triisopropyl-phenylene -2,4-carbodiimide, Mw:20,000)를 폴리옥시메틸렌 공중합체에 대하여 100ppm(benzene으로 희석)을 첨가하고 10분 뒤에 반응을 완결하여 생성된 중합체를 수득하였다. 생성된 폴리옥시메틸렌 중합체에 대하여 상술한 용융지수, 말단 Formate함량, 포름알데히드 발생량 및 내Acetic acid성을 측정하고 그 결과를 표 2에 나타내었다. After maintaining a 600cc polymerizer at 50 ° C, 500 g of trioxane and 20 g of 1,3-dioxolane were injected into a comonomer using a metering device, followed by 0.0015 g of trimethylsilyl trifluoromethanesulfonate (TMST) as a polymerization catalyst. Dilution with 3 ppm per trioxane) was added. After 10 minutes after the addition of the polymerization catalyst, PCDI (Poly- (1,3,5-triisopropyl-phenylene-2,4-carbodiimide, Mw: 20,000)) was converted to 100 ppm (benzene) with respect to the polyoxymethylene copolymer. 10 minutes after the completion of the reaction, the resultant polymer was obtained, and the above-described melt index, terminal Formate content, formaldehyde generation rate, and acid resistance were measured for the resulting polyoxymethylene polymer. Table 2 shows.
[실시예 2 ~ 11][Examples 2 to 11]
하기 표 1에 나타난 바와 같이, 중합촉매의 용매 및 함량, 중합정지제의 종류 및 함량을 변화시킨 것을 제외하고 실시예 1과 동일하게 수행하여 폴리옥시메틸렌 중합체를 수득하였다. 생성된 폴리옥시메틸렌 중합체에 대하여 상술한 용융지수, 말단 Formate함량, 포름알데히드 발생량 및 내Acetic acid성을 측정하고 그 결과를 표 2에 나타내었다. As shown in Table 1, the polyoxymethylene polymer was obtained in the same manner as in Example 1 except that the solvent and content of the polymerization catalyst and the type and content of the polymerization terminator were changed. For the produced polyoxymethylene polymer, the melt index, the terminal Formate content, the amount of formaldehyde generated, and the acid resistance of the above-described polymers were measured and the results are shown in Table 2.
[비교예 1]Comparative Example 1
하기 표 1에 나타난 바와 같이, 중합촉매로 Boron trifluoride diethyl etherate를 벤젠에 용해하여 트리옥산에 대하여 70ppm을 포함하였으며, 중합정지제로 TPP(Triphenylphosphine)을 폴리옥시메틸렌 공중합체에 대하여 500ppm 첨가한 것을 제외하고 실시예 1과 동일하게 수행하여 폴리옥시메틸렌 중합체를 수득하였다. 생성된 폴리옥시메틸렌 중합체에 대하여 상술한 용융지수, 말단 Formate함량, 포름알데히드 발생량 및 내Acetic acid성을 측정하고 그 결과를 표 2에 나타내었다. As shown in Table 1 below, Boron trifluoride diethyl etherate was dissolved in benzene as a polymerization catalyst and contained 70 ppm of trioxane, except that 500 ppm of TPP (Triphenylphosphine) was added to the polyoxymethylene copolymer as a polymerization terminator. In the same manner as in Example 1, a polyoxymethylene polymer was obtained. For the produced polyoxymethylene polymer, the melt index, the terminal Formate content, the amount of formaldehyde generated, and the acid resistance of the above-described polymers were measured and the results are shown in Table 2.
[비교예 2]Comparative Example 2
하기 표 1에 나타난 바와 같이, 중합정지제로 TIN 765(Bis(1,2,2,6,6-pentamethyl-4-piperidyl)sebacate+methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate) 3000ppm 첨가한 것을 제외하고, 실시예 1과 동일하게 수행하여 폴리옥시메틸렌 중합체를 수득하였다. 생성된 폴리옥시메틸렌 중합체에 대하여 상술한 용융지수, 말단 Formate함량, 포름알데히드 발생량 및 내Acetic acid성을 측정하고 그 결과를 표 2에 나타내었다. As shown in Table 1, TIN 765 (Bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate + methyl 1,2,2,6,6-pentamethyl-4-piperidyl as a polymerization terminator sebacate) Except that the addition of 3000ppm was carried out in the same manner as in Example 1 to obtain a polyoxymethylene polymer. For the produced polyoxymethylene polymer, the melt index, the terminal Formate content, the amount of formaldehyde generated, and the acid resistance of the above-described polymers were measured and the results are shown in Table 2.
[비교예 3~4][Comparative Examples 3-4]
하기 표 1에 나타난 바와 같이, 중합촉매의 함량을 변화시킨 것을 제외하고, 실시예 1과 동일하게 수행하여 폴리옥시메틸렌 중합체를 수득하였다. 생성된 폴리옥시메틸렌 중합체에 대하여 상술한 용융지수, 말단 Formate함량, 포름알데히드 발생량 및 내Acetic acid성을 측정하고 그 결과를 표 2에 나타내었다. As shown in Table 1, except that the content of the polymerization catalyst was changed, the same procedure as in Example 1 to obtain a polyoxymethylene polymer. For the produced polyoxymethylene polymer, the melt index, the terminal Formate content, the amount of formaldehyde generated, and the acid resistance of the above-described polymers were measured and the results are shown in Table 2.
[표 1]TABLE 1
Figure PCTKR2014001752-appb-I000017
Figure PCTKR2014001752-appb-I000017
[표 2]TABLE 2
Figure PCTKR2014001752-appb-I000018
Figure PCTKR2014001752-appb-I000018
상기 표 2에 나타난 바와 같이, 비교예 1 내지 4는 실시예 1 내지 10에 비하여 용융지수, 말단 Formate 함량, 포름알데히드 방출량 및 내 Acetic acid성이 현저히 떨어지는 것을 알 수 있다. As shown in Table 2, Comparative Examples 1 to 4 can be seen that the melt index, the terminal Formate content, formaldehyde emission amount and Acetic acid resistance is significantly lower than that of Examples 1 to 10.
따라서, 본 발명의 실시예 1 내지 10의 폴리옥시메틸렌 중합체는 신규한 중합촉매를 소량만 사용하여도 충분한 물성을 가지는 폴리옥시메틸렌 중합체를 중합할 수 있으며, 이러한 중합촉매에 적합한 중합 정지제를 사용함으로써, 효과적으로 중합촉매를 실활시킬 수 있으며, 불안정한 부분을 현저히 감소시켜 내구성 및 내열성을 현저히 향상시킬 수 있음을 알 수 있다. Therefore, the polyoxymethylene polymers of Examples 1 to 10 of the present invention can polymerize a polyoxymethylene polymer having sufficient physical properties even with a small amount of a novel polymerization catalyst, and use a polymerization terminator suitable for such a polymerization catalyst. By doing so, it can be seen that the polymerization catalyst can be effectively deactivated, and the unstable portion can be significantly reduced to significantly improve durability and heat resistance.
이상에서 본 발명의 바람직한 실시예를 설명하였으나, 본 발명은 다양한 변화와 균등물을 사용할 수 있으며, 상기 실시예를 적절히 변형하여 동일하게 응용할 수 있음이 명확하다. 따라서, 상기 기재 내용은 하기의 특허청구범위의 한계에 의해 정해지는 본 발명의 범위를 한정하는 것이 아니다. Although the preferred embodiment of the present invention has been described above, it is clear that the present invention can use various changes and equivalents, and can be applied in the same manner by appropriately modifying the above embodiment. Accordingly, the above description is not intended to limit the scope of the invention as defined by the following claims.

Claims (9)

  1. 하기 화학식 1로 표시되는 중합촉매 및 카보디이미드계 중합정지제를 사용하여, 하기 화학식 2로 표시되는 반복단위로 구성되는 옥시메틸렌 호모폴리머 또는 하기 화학식 2로 표시되는 반복단위 및 하기 화학식 3으로 표시되는 반복단위가 랜덤하게 결합된 옥시메틸렌 코폴리머를 제조하는 폴리옥시메틸렌 중합체의 제조방법.The oxymethylene homopolymer composed of the repeating unit represented by the following formula (2) or the repeating unit represented by the following formula (2) and the following formula (3) using a polymerization catalyst represented by the following formula (1) and a carbodiimide-based polymerization terminator Method of producing a polyoxymethylene polymer for producing an oxymethylene copolymer bonded randomly repeating units.
    [화학식 1][Formula 1]
    Figure PCTKR2014001752-appb-I000019
    Figure PCTKR2014001752-appb-I000019
    (상기 화학식 1에서, X는 질소 또는 산소이며, Y는 SiR1R2R3이고, n은 1 또는 2이다.)(In Formula 1, X is nitrogen or oxygen, Y is SiR 1 R 2 R 3 , n is 1 or 2.)
    [화학식 2][Formula 2]
    Figure PCTKR2014001752-appb-I000020
    Figure PCTKR2014001752-appb-I000020
    [화학식 3][Formula 3]
    Figure PCTKR2014001752-appb-I000021
    Figure PCTKR2014001752-appb-I000021
    (상기 화학식 3에서 X1 및 X2 각각 독립적으로 수소 또는 (C1-C6)알킬이며, 동시에 수소가 아니고, x는 2 내지 6에서 선택되는 정수이며, (In Formula 3, X 1 and X 2 are each independently hydrogen or (C 1 -C 6) alkyl, not hydrogen at the same time, x is an integer selected from 2 to 6,
    화학식 2의 n 및 화학식 3의 m은 1 내지 200에서 선택되는 정수이다.) N in Formula 2 and m in Formula 3 are integers selected from 1 to 200.)
  2. 제 1항에 있어서, The method of claim 1,
    상기 카보디이미드계 중합정지제는 하기 화학식 4로 표시되는 화합물인 폴리옥시메틸렌 중합체의 제조방법The carbodiimide-based polymerization terminator is a method for producing a polyoxymethylene polymer is a compound represented by the following formula (4)
    [화학식 4][Formula 4]
    Figure PCTKR2014001752-appb-I000022
    Figure PCTKR2014001752-appb-I000022
    (상기 화학식 4에서 R1 및 R2는 각각 독립적으로 (C1-C20)알킬, (C6-C20)아릴, (C1-C20)알콕시, (C3-C20)시클로알킬, (C2-C7)알케닐, (C3-C20)헤테로시클로알킬, (C4-C20)의 헤테로아릴에서 선택되고, (In Formula 4, R 1 and R 2 are each independently (C1-C20) alkyl, (C6-C20) aryl, (C1-C20) alkoxy, (C3-C20) cycloalkyl, (C2-C7) alkenyl , (C3-C20) heterocycloalkyl, (C4-C20) heteroaryl,
    상기 R1 및 R2의 알킬, 아릴, 알콕시, 시클로알킬, 알케닐, 헤테로시클로알킬, 헤테로아릴은 (C1-C7)알킬, 할로겐, 니트로, 시아노, 아미노로부터 선택된 하나 이상이 더 치환될 수 있고,Alkyl, aryl, alkoxy, cycloalkyl, alkenyl, heterocycloalkyl, and heteroaryl of R 1 and R 2 may be further substituted with one or more selected from (C1-C7) alkyl, halogen, nitro, cyano, and amino. There is,
    단, 상기 R1 및 R2 중에서 적어도 하나 이상은 (C3-C20)시클로알킬, (C6-C20)아릴, (C3-C20)헤테로시클로알킬, (C4-C20)헤테로아릴에서 선택되는 고리형 치환체를 포함한다.)Provided that at least one of R 1 and R 2 is a cyclic substituent selected from (C3-C20) cycloalkyl, (C6-C20) aryl, (C3-C20) heterocycloalkyl, and (C4-C20) heteroaryl Includes.)
  3. 제 1항에 있어서, The method of claim 1,
    상기 화학식 1의 중합촉매는 하기 화학식에서 선택되는 것인 폴리옥시메틸렌 중합체의 제조방법The polymerization catalyst of Formula 1 is a method for producing a polyoxymethylene polymer is selected from the following formula
    Figure PCTKR2014001752-appb-I000023
    Figure PCTKR2014001752-appb-I000023
  4. 제 2항에 있어서, The method of claim 2,
    상기 카보디이미드계 중합정지제는 하기 화학식 4-1 및 화학식 4-2에서 선택되는 1종 또는 2종 이상인 폴리옥시메틸렌 중합체의 제조방법. The carbodiimide-based polymerization terminator is a method for producing a polyoxymethylene polymer is one or two or more selected from formulas (4-1) and (4-2).
    [화학식 4-1][Formula 4-1]
    Figure PCTKR2014001752-appb-I000024
    Figure PCTKR2014001752-appb-I000024
    (상기 화학식 4-1에서 n은 50 내지 200에서 선택되는 정수이다.)(N in Formula 4-1 is an integer selected from 50 to 200.)
    [화학식 4-2][Formula 4-2]
    Figure PCTKR2014001752-appb-I000025
    Figure PCTKR2014001752-appb-I000025
  5. 제 1항에 있어서, The method of claim 1,
    상기 중합촉매의 함량은 전체 단량체 함량에 대하여 0.03 내지 200ppm 포함되며, The content of the polymerization catalyst is included 0.03 to 200ppm relative to the total monomer content,
    상기 중합정지제의 함량은 전체 단량체 함량에 대하여 10 내지 5000ppm 포함되는 폴리옥시메틸렌 중합체의 제조방법. The content of the polymerization terminator is a method for producing a polyoxymethylene polymer containing 10 to 5000ppm relative to the total monomer content.
  6. 제 1항에 있어서, The method of claim 1,
    상기 중합촉매는 유기용매로 용해하여 첨가하는 폴리옥시메틸렌 중합체의 제조방법. The polymerization catalyst is a method for producing a polyoxymethylene polymer dissolved in an organic solvent and added.
  7. 제 6항에 있어서, The method of claim 6,
    상기 유기용매는 에틸렌글리콜 디메틸에테르, 디에틸렌글리콜 디메틸에테르,트리에틸렌글리콜 디메틸에테르, 디에틸렌글리콜 디에틸에테르, 디에틸렌글리콜 메틸에틸에테르, 디에틸렌글리콜 메틸부틸에테르, 트리에틸렌글리골 메틸부틸에테르, 프로필렌글리콜 디메틸에테르 및 디프로필렌글리콜 디메틸에테르로 이루어진 군으로부터 선택되는 1종 또는 2종 이상의 유기용매인 폴리옥시메틸렌 중합체의 제조방법. The organic solvent may be ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol methyl butyl ether, triethylene glycol butyl ether, A method for producing a polyoxymethylene polymer, which is one or two or more organic solvents selected from the group consisting of propylene glycol dimethyl ether and dipropylene glycol dimethyl ether.
  8. 제 1항 내지 제 7항에서 선택되는 어느 한 항의 제조방법으로 제조된 폴리옥시메틸렌 중합체.A polyoxymethylene polymer prepared by the method of any one of claims 1 to 7.
  9. 제 8항에 있어서, The method of claim 8,
    상기 폴리옥시메틸렌 중합체의 말단 Formate 함량은 3.0 내지 8.0 μmol/g-POM이며, 포름알데히드 방출량은 50 내지 200ppm인 폴리옥시메틸렌 중합체.The terminal Formate content of the polyoxymethylene polymer is 3.0 to 8.0 μmol / g-POM, formaldehyde emission amount is 50 to 200 ppm polyoxymethylene polymer.
PCT/KR2014/001752 2013-03-04 2014-03-04 Method for preparing polyoxymethylene polymer, and polyoxymethylene polymer prepared thereby WO2014137126A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0022717 2013-03-04
KR1020130022717A KR101522978B1 (en) 2013-03-04 2013-03-04 Method for polymerizing polyoxymethylene polymer and polyoxymethylene polymer using thereof

Publications (1)

Publication Number Publication Date
WO2014137126A1 true WO2014137126A1 (en) 2014-09-12

Family

ID=51491592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001752 WO2014137126A1 (en) 2013-03-04 2014-03-04 Method for preparing polyoxymethylene polymer, and polyoxymethylene polymer prepared thereby

Country Status (2)

Country Link
KR (1) KR101522978B1 (en)
WO (1) WO2014137126A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136006A1 (en) * 2022-01-14 2023-07-20 ポリプラスチックス株式会社 Method for producing polyacetal polymer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3072610A (en) * 1959-02-14 1963-01-08 Bayer Ag Polymerization of formaldehyde
KR960010248B1 (en) * 1990-10-05 1996-07-26 아사히가세이고오교 가부시끼가이샤 Polyoxymethylene copolymer and production thereof
KR100574165B1 (en) * 2004-10-08 2006-04-27 한국엔지니어링플라스틱 주식회사 Polyoxymethylene Resin Composition Having an Excellent Heat Stability
KR20130005695A (en) * 2011-07-07 2013-01-16 한국엔지니어링플라스틱 주식회사 Method for polymerizing polyoxymethylene polymer
KR20130009664A (en) * 2011-07-15 2013-01-23 티코나 게엠베하 Process for producing oxymethylene polymers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100574164B1 (en) * 2003-04-09 2006-04-27 한국엔지니어링플라스틱 주식회사 Polyoxymethylene Resin Composition Having an Excellent Heat Stability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3072610A (en) * 1959-02-14 1963-01-08 Bayer Ag Polymerization of formaldehyde
KR960010248B1 (en) * 1990-10-05 1996-07-26 아사히가세이고오교 가부시끼가이샤 Polyoxymethylene copolymer and production thereof
KR100574165B1 (en) * 2004-10-08 2006-04-27 한국엔지니어링플라스틱 주식회사 Polyoxymethylene Resin Composition Having an Excellent Heat Stability
KR20130005695A (en) * 2011-07-07 2013-01-16 한국엔지니어링플라스틱 주식회사 Method for polymerizing polyoxymethylene polymer
KR20130009664A (en) * 2011-07-15 2013-01-23 티코나 게엠베하 Process for producing oxymethylene polymers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136006A1 (en) * 2022-01-14 2023-07-20 ポリプラスチックス株式会社 Method for producing polyacetal polymer
JP2023103736A (en) * 2022-01-14 2023-07-27 ポリプラスチックス株式会社 Method for producing polyacetal polymer

Also Published As

Publication number Publication date
KR101522978B1 (en) 2015-05-28
KR20140108878A (en) 2014-09-15

Similar Documents

Publication Publication Date Title
KR101301818B1 (en) Method for Producing Polyoxymethylenes
JP5567779B2 (en) Process for producing oxymethylene polymers, selected polymers, and uses thereof
WO2014137126A1 (en) Method for preparing polyoxymethylene polymer, and polyoxymethylene polymer prepared thereby
EP3507328B1 (en) Method of attenuating concentration of acrolein
KR101646977B1 (en) Polyoxymethylene resin composition having good thermal-stability
Matyjaszewski Anionic ring‐opening polymerization of cyclotetrasilanes
JP2011516702A (en) Oxymethylene copolymer and use thereof and method for producing oxymethylene copolymer
JP5594483B2 (en) Method for producing oxymethylene polymer and apparatus suitable for the purpose
KR101532623B1 (en) Manufacturing method of poly oxymethylene copolymer using cocatalyst and poly oxymethylene copolymer therefrom
JP3326171B1 (en) How to stop the oxymethylene polymerization reaction
US11787892B2 (en) Process for making an oxymethylene polymer
JP2853982B2 (en) How to stop the polymerization reaction
JPS62285909A (en) Production of oxymethylene copolymer
KR20000022652A (en) Process for the preparation of thermally stable polyoxymethylene copolymers
JPS62257922A (en) Termination of polymerization reaction
JP7448571B2 (en) Method for producing polyacetal polymer
KR20130005695A (en) Method for polymerizing polyoxymethylene polymer
KR20240046427A (en) Method for producing oxymethylene copolymer and method for producing molded articles
JPS62267311A (en) Termination of polymerization reaction
Mormann et al. Copolymers from Methacrylic Acid and Trimethylsilyl Methacrylate‐Synthesis, Reactivity Ratios and Thermal Properties
US3557058A (en) Process for obtaining polyoxymethylenes having controlled molecular weight and products obtained therefrom
WO2018074781A1 (en) Polyoxymethylene resin composition
US3385826A (en) Process for preparing trioxane homo-and copolymers
JPS6112713A (en) Production of oxymethylene copolymer
KR101147948B1 (en) Method for preserving cyclic formal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14761199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14761199

Country of ref document: EP

Kind code of ref document: A1