WO2014136796A1 - Solid electrolyte capacitor and method for producing same - Google Patents

Solid electrolyte capacitor and method for producing same Download PDF

Info

Publication number
WO2014136796A1
WO2014136796A1 PCT/JP2014/055511 JP2014055511W WO2014136796A1 WO 2014136796 A1 WO2014136796 A1 WO 2014136796A1 JP 2014055511 W JP2014055511 W JP 2014055511W WO 2014136796 A1 WO2014136796 A1 WO 2014136796A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion medium
polyanion
polymerization
electrolytic capacitor
solid electrolytic
Prior art date
Application number
PCT/JP2014/055511
Other languages
French (fr)
Japanese (ja)
Inventor
泰之 田川
村田 直樹
元章 荒木
大久保 隆
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2015504342A priority Critical patent/JP6408459B2/en
Publication of WO2014136796A1 publication Critical patent/WO2014136796A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present invention relates to a solid electrolytic capacitor using a conductive polymer as a solid electrolyte and a method for manufacturing the same.
  • a solid electrolytic capacitor using a conductive polymer as a solid electrolyte has been proposed.
  • solid electrolytic capacitors include capacitors such as aluminum, tantalum, and niobium (such as aluminum electrolytic capacitors, tantalum electrolytic capacitors, and niobium electrolytic capacitors).
  • conductive polymers used in solid electrolytic capacitors include polythiophene, polypyrrole, polyaniline, polyacetylene, polyphenylene, poly (p-phenylene-vinylene), polyacene, polythiophene vinylene, and derivatives thereof. Further, a technique of doping a polyanion such as polystyrene sulfonic acid as a counter anion of a conjugated conductive polymer is known.
  • a monomer solution and an oxidant solution for obtaining a conductive polymer are applied on a dielectric oxide film formed on a metal surface having a valve action.
  • chemical polymerization or electrolytic polymerization is known.
  • a method of forming a solid electrolyte layer by applying a conductive polymer aqueous solution or suspension has been proposed.
  • Patent Document 1 discloses a step of impregnating a capacitor element with a liquid in which fine particles of a conductive polymer are dispersed in an aqueous medium to form a first solid electrolyte layer, and a surface of the first solid electrolyte layer. Then, the second solid electrolyte layer is formed by impregnating the solution containing the heterocyclic monomer and the solution containing the oxidizing agent individually or by impregnating the mixed solution containing the heterocyclic monomer and the oxidizing agent. The manufacturing method which comprised the process is shown.
  • a conductive polymer layer is formed as a solid electrolyte layer by chemical polymerization of a polymerizable monomer on a capacitor element in which a dielectric oxide film is formed on the surface of a sintered body obtained by sintering valve metal powder. After that, the capacitor element is immersed in a conductive polymer solution, or the conductive polymer solution is applied to the capacitor element and dried to make the conductive polymer layer thicker on the conductive polymer layer by chemical polymerization. The method of forming the layer is shown.
  • An object of the present invention is to provide a solid electrolytic capacitor having excellent capacitor characteristics by using a dispersion containing a conductive polymer, a polyanion and a dispersion medium.
  • a solid electrolytic capacitor having a porous body having at least an anode body made of a valve metal, a dielectric coating formed on the surface of the anode body, and a solid electrolyte formed on the surface of the porous body.
  • the solid electrolyte is formed by removing a part or all of a dispersion medium from a dispersion liquid containing a conductive polymer, a polyanion and a dispersion medium, and the dispersion liquid is a single amount in the dispersion medium.
  • a solid electrolytic capacitor produced by polymerizing a body, comprising a step of adding a polyanion in the course of the polymerization.
  • R 1 and R 2 each independently represents a hydrogen atom, an optionally substituted alkyl group having 1 to 18 carbon atoms, or an optionally substituted carbon group having 1 to 18 represents an alkoxy group having 18 or an optionally substituted alkylthio group having 1 to 18 carbon atoms, or R 1 and R 2 are a combination of R 1 and R 2 and R 1 and R 2 being Along with each carbon atom to be bonded, an alicyclic ring having 3 to 10 carbon atoms which may have a substituent, an aromatic ring having 6 to 10 carbon atoms which may have a substituent, and a substituent A C2-C10 oxygen atom-containing heterocycle, a C2-C10 sulfur atom-containing heterocycle which may have a substituent, or a C2-C10 which may have a substituent Represents a heterocycle containing a sulfur atom and an oxygen atom.
  • [4] The solid electrolytic capacitor as described in any one of [1] to [3], wherein ultrasonic irradiation is performed in the course of the polymerization.
  • [5] A step of applying a dispersion liquid containing a conductive polymer, a polyanion, and a dispersion medium to the surface of a porous body having at least an anode body made of a valve metal and a dielectric coating formed on the surface of the anode body. And a step of forming a solid electrolyte by removing a part or all of the dispersion medium, wherein the dispersion polymerizes monomers in the dispersion medium.
  • a method for producing a solid electrolytic capacitor comprising a step of adding a polyanion in the course of the polymerization.
  • Manufacturing method for solid electrolytic capacitor [7] The method for producing a solid electrolytic capacitor as described in [5] or [6] above, wherein 1 to 100% by mass of the total amount of the polyanion is added to the dispersion medium during the polymerization of the monomer.
  • a solid electrolytic capacitor having excellent capacitor characteristics can be obtained by using a conductive polymer dispersion excellent in impregnation into a dielectric coating.
  • the solid electrolytic capacitor of the present invention has a porous body having at least an anode body made of a valve metal, a dielectric film formed on the surface of the anode body, and a solid electrolyte layer formed on the surface of the porous body.
  • the anode body for forming the porous body is not particularly limited as long as it is used for a solid electrolytic capacitor.
  • a valve metal powder having a high surface area is sintered, or a valve metal foil is etched. What is obtained can be used.
  • the valve metal include at least one of Al, Be, Bi, Mg, Ge, Hf, Nb, Sb, Si, Sn, Ta, Ti, V, W and Zr, and at least one of these metals and other elements. And an alloy or a compound thereof.
  • these valve metals those composed of any one of Al, Nb, Ta and W are preferable.
  • the dielectric coating is formed, for example, by subjecting the anode body to chemical conversion treatment such as anodic oxidation. That is, the dielectric film is preferably a dielectric oxide film formed by oxidizing the valve metal constituting the anode body. Anodization is performed, for example, by applying a voltage to the anode body in a phosphoric acid solution. The magnitude of the formation voltage at this time is determined by the thickness of the dielectric film and the withstand voltage of the capacitor. Usually, the formation voltage is preferably 1 to 800V, more preferably 1 to 300V, and still more preferably 10 to 100V.
  • the method for forming the solid electrolyte is not particularly limited.
  • a conductive polymer dispersion is impregnated into the capacitor element (that is, the porous body) so as to be located on the surface of the porous body, and then the dispersion liquid is formed. It is formed by removing part or all of the dispersion medium.
  • a sintered body obtained by sintering valve metal powder is provided with an anode lead terminal, and the sintered body is further formed with a dielectric film by anodic oxidation.
  • the solid electrolyte of the solid electrolytic capacitor of the present application covers the whole or a part of the dielectric coating.
  • This solid electrolyte is preferably a solid electrolyte layer covering the whole or a part of the dielectric coating. Since the coverage cannot be strictly defined, the coverage was measured by the method described in EIAJ standard RC2361A. That is, after impregnating a conductive polymer dispersion with respect to the capacitance obtained by impregnating the capacitor element with an electrolytic solution (30% sulfuric acid solution), and then removing part or all of the dispersion medium. The ratio with the electrostatic capacity obtained, that is, the capacity appearance rate can be replaced with the coverage.
  • a conductive solid layer with a high coverage of preferably about 80 to 100%, more preferably 85 to 100%, and still more preferably 88 to 100%. It is. By increasing the coverage, it is possible to provide a solid electrolytic capacitor having high capacitance and low ESR.
  • the repairability of the dielectric film decreases as the coverage increases, it is possible to improve the repairability of the dielectric film by impregnating with an electrolytic solution.
  • the application amount of the solid electrolyte is not particularly limited, and can be appropriately determined depending on the type of the solid electrolyte and the use of the solid electrolytic capacitor.
  • the organic polymer by which the principal chain is comprised by (pi) conjugated system is preferable.
  • the organic polymer include polypyrroles, polythiophenes, polyacetylenes, polyphenylenes, polyphenylene vinylenes, polyanilines, polyacenes, polythiophene vinylenes, and copolymers thereof. Of these, polypyrroles, polythiophenes and polyanilines are preferred, and polythiophenes are more preferred.
  • the conductive polymer has a substituent such as an alkyl group, a carboxylic acid group, a sulfonic acid group, an alkoxyl group, a hydroxyl group, or a cyano group, high conductivity is obtained, which is preferable.
  • At least one selected from the group consisting of dioxythiophene) is preferable in terms of conductivity.
  • poly (3,4-ethylenedioxythiophene) is preferable in that it has particularly high conductivity and is excellent in heat resistance.
  • the conductive polymer is obtained by polymerizing a monomer corresponding to the structure.
  • Preferable monomers include at least one selected from the group consisting of pyrrole which may have a substituent, aniline which may have a substituent, and thiophene which may have a substituent.
  • Such monomers include pyrrole, N-methylpyrrole, 3-methylpyrrole, 3-ethylpyrrole, 3-n-propylpyrrole, 3-butylpyrrole, 3-octylpyrrole, 3-decylpyrrole, 3 -Dodecylpyrrole, 3,4-dimethylpyrrole, 3,4-dibutylpyrrole, 3-carboxylpyrrole, 3-methyl-4-carboxylpyrrole, 3-methyl-4-carboxyethylpyrrole, 3-methyl-4-carboxybutyl Pyrrole, 3-hydroxypyrrole, 3-methoxypyrrole, 3-ethoxypyrrole, 3-butoxypyrrole, 3-hexyloxypyrrole, 3-methyl-4-hexyloxypyrrole, 3-methyl-4-hexyloxypyrrole;
  • R 1 and R 2 each independently represents a hydrogen atom, an optionally substituted alkyl group having 1 to 18 carbon atoms, or an optionally substituted carbon group having 1 to 18 carbon atoms. It represents an alkoxy group or an alkylthio group which may having 1 to 18 carbon atoms have a substituent, or, together with R 1 and R 2 are bonded and the carbon atom to which R 1 and R 2 are attached An alicyclic ring having 3 to 10 carbon atoms which may have a substituent, an aromatic ring having 6 to 10 carbon atoms which may have a substituent, and 2 to 10 carbon atoms which may have a substituent.
  • An oxygen atom-containing heterocyclic ring, an optionally substituted sulfur atom-containing heterocyclic ring having 2 to 10 carbon atoms, or an optionally substituted sulfur atom and oxygen atom-containing heterocyclic ring having 2 to 10 carbon atoms May be formed.
  • oxygen atom-containing heterocycle examples include an oxirane ring, oxetane ring, furan ring, hydrofuran ring, pyran ring, pyrone ring, dioxane ring, and trioxane ring.
  • sulfur atom-containing heterocyclic ring examples include thiirane ring, thietane ring, thiophene ring, thiane ring, thiopyran ring, thiopyrylium ring, benzothiopyran ring, dithiane ring, dithiolane ring, and trithiane ring.
  • sulfur atom and oxygen atom-containing heterocycle examples include an oxathiolane ring and an oxathian ring.
  • a monomer contains the compound represented by the said formula (I) among said compounds.
  • the compound represented by the above formula (I) include thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3-butylthiophene, 3-hexylthiophene, 3-heptylthiophene, 3- Octylthiophene, 3-decylthiophene, 3-dodecylthiophene, 3-octadecylthiophene, 3-bromothiophene, 3-chlorothiophene, 3-iodothiophene, 3-cyanothiophene, 3-phenylthiophene, 3,4-dimethylthiophene, 3,4-dibutylthiophene, 3-hydroxythiophene, 3-methoxythiophene, 3-ethoxythiophene, 3-butoxythiophene, 3-hexyloxythiophen
  • R 3 and R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may have a substituent, or R 3 and R 4 are bonded to each other.
  • each of the carbon atoms to which OR 3 and OR 4 are bonded may form an oxygen atom-containing heterocycle having 3 to 6 carbon atoms which may have a substituent.
  • R 3 and R 4 preferably have 3 to 6 carbon atoms which may have a substituent, together with the carbon atoms to which R 3 and R 4 are bonded and to which OR 3 and OR 4 are bonded.
  • an oxygen atom-containing heterocycle examples include an oxirane ring, an oxetane ring, a furan ring, a hydrofuran ring, a pyran ring, a pyrone ring, a dioxane ring, and a trioxane ring, and a dioxane ring is preferable.
  • the monomer most preferably contains 3,4-ethylenedioxythiophene.
  • the polyanion used in the present invention is a polymer having an anionic group.
  • the anionic group include a group consisting of a sulfonic acid or a salt thereof, a group consisting of a phosphoric acid or a salt thereof, a monosubstituted phosphate group, a group consisting of a carboxylic acid or a salt thereof, a monosubstituted sulfate group.
  • a strongly acidic group is preferable, a group consisting of sulfonic acid or a salt thereof, a group consisting of phosphoric acid or a salt thereof is more preferable, and a group consisting of sulfonic acid or a salt thereof is most preferable.
  • the anionic group may be directly bonded to the polymer main chain or may be bonded to the side chain.
  • the anionic group is preferably bonded to the end of the side chain.
  • the polyanion may have a substituent other than the anionic group.
  • substituents include alkyl group, hydroxy group, alkoxy group, phenol group, cyano group, phenyl group, hydroxyphenyl group, ester group, halogeno group, alkenyl group, imide group, amide group, amino group, oxycarbonyl group, A carbonyl group etc. are mentioned. Among these, an alkyl group, a hydroxy group, a cyano group, a phenol group, and an oxycarbonyl group are preferable, and an alkyl group, a hydroxy group, and a cyano group are more preferable.
  • the substituent may be directly bonded to the polymer main chain or may be bonded to the side chain. When the substituent is bonded to the side chain, the substituent is preferably bonded to the end of the side chain in order to perform each function of the substituent.
  • the alkyl group that can be substituted in the polyanion can be expected to increase the solubility and dispersibility in the dispersion medium, the compatibility and dispersibility with the conjugated conductive polymer, and the like.
  • the alkyl group include a chain alkyl group such as methyl group, ethyl group, propyl group, butyl group, isobutyl group, t-butyl group, pentyl group, hexyl group, octyl group, decyl group and dodecyl group; cyclopropyl group, Examples thereof include cycloalkyl groups such as a cyclopentyl group and a cyclohexyl group.
  • an alkyl group having 1 to 12 carbon atoms is more preferable.
  • the hydroxy group that can be substituted in the polyanion facilitates the formation of hydrogen bonds with other hydrogen atoms, and has high solubility in dispersion media, high compatibility with conjugated conductive polymers, dispersibility, and adhesion. Can be expected.
  • the hydroxy group is preferably bonded to the terminal of an alkyl group having 1 to 6 carbon atoms bonded to the polymer main chain.
  • the cyano group and hydroxyphenyl group that can be substituted in the polyanion can be expected to have an effect of increasing the compatibility with the conjugated conductive polymer, the solubility in the dispersion medium, and the heat resistance.
  • the cyano group is bonded directly to the polymer main chain, bonded to the terminal of the alkyl group having 1 to 7 carbon atoms bonded to the polymer main chain, or terminal of the alkenyl group having 2 to 7 carbon atoms bonded to the polymer main chain. Those bonded to are preferred.
  • the oxycarbonyl group that can be substituted in the polyanion is preferably an alkyloxycarbonyl group, an aryloxycarbonyl group, or an alkyloxycarbonyl group or an aryloxycarbonyl group having another functional group directly bonded to the polymer main chain.
  • the polymer main chain of the polyanion is not particularly limited.
  • examples of the polymer main chain include polyalkylene, polyimide, polyamide, and polyester. Of these, polyalkylene is preferable from the viewpoint of synthesis and availability.
  • Polyalkylene is a polymer composed of repeating units of ethylenically unsaturated monomers.
  • the polyalkylene may have a carbon-carbon double bond in the main chain.
  • Examples of polyalkylene include polyethylene, polypropylene, polybutene, polypentene, polyhexene, polyvinyl alcohol, polyvinylphenol, poly (3,3,3-trifluoropropylene), polyacrylonitrile, polyacrylate, polymethacrylate, polystyrene, polybutadiene, poly And isoprene.
  • polyimides examples include pyromellitic dianhydride, biphenyltetracarboxylic dianhydride, benzophenonetetracarboxylic dianhydride, 2,2,3,3-tetracarboxydiphenyl ether dianhydride, 2,2- [4,4 Examples include those obtained by polycondensation reaction of acid anhydrides such as' -di (dicarboxyphenyloxy) phenyl] propane dianhydride and diamines such as oxydianiline, paraphenylenediamine, metaphenylenediamine, and benzophenonediamine. .
  • Polyamide includes polyamide 6, polyamide 6,6, polyamide 6,10 and the like.
  • polyester examples include polyethylene terephthalate and polybutylene terephthalate.
  • polystyrene sulfonic acid examples include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, and poly (2-acrylamide). -2-methylpropanesulfonic acid) and polyisoprenesulfonic acid. These may be homopolymers or two or more types of copolymers.
  • polystyrene sulfonic acid polyisoprene sulfonic acid, polyacrylic acid ethyl sulfonic acid, and polyacrylic acid butyl sulfonic acid are preferable.
  • Polyanions especially polymers with sulfonic acid groups, can mitigate the thermal decomposition of conjugated conductive polymers and improve the dispersibility of the monomers in the dispersion medium to obtain conjugated conductive polymers. And function as a dopant for the conjugated conductive polymer.
  • the polyanion used in the present invention has a weight average molecular weight of preferably 1,000 to 1,000,000, more preferably 5,000 to 300,000, still more preferably 10,000 to 300,000, and still more preferably 150,000 to 300,000. When the weight average molecular weight is within this range, the solubility of the polyanion in the dispersion medium and the compatibility between the polyanion and the conjugated conductive polymer are improved.
  • a weight average molecular weight is measured as a polystyrene conversion molecular weight using gel permeation chromatography.
  • the polyanion may have the above properties selected from commercially available products, or may be obtained by synthesis by a known method.
  • Examples of the method for synthesizing polyanions include the method described in Houben-Weyl, “Methoden der organischen Chemie” Vol. E20, Makromolekulare Stoffe, No. 2 (1987) p1141- Is mentioned.
  • the amount of the polyanion contained in the dispersion is preferably from 0.25 to 10 mol, more preferably from 0.1 to 10 mol, based on 1 mol of the monomer for obtaining the conductive polymer.
  • the amount is 8 to 8 mol, more preferably 0.8 to 5 mol.
  • the mass of the polyanion with respect to 100 parts by mass of the conductive polymer is preferably 10 to 10000 parts by mass, more preferably 50 to 5000 parts by mass, and still more preferably 100 to 1000 parts by mass.
  • the amount of the polyanion is not more than the upper limit value, the conductivity of the solid electrolyte layer formed from the dispersion tends to be improved.
  • the amount of the polyanion is not less than the lower limit value, in the dispersion of the conductive polymer. There is a tendency for the dispersibility of to improve.
  • the dispersion medium used for this invention will not be specifically limited if a conductive polymer and the polyanion doped to it can be disperse
  • a dispersion medium for example, water; Amides such as N-vinylpyrrolidone, hexamethylphosphortriamide, N-vinylformamide, N-vinylacetamide; Phenols such as cresol, phenol, xylenol; Dipropylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, diglycerin, isoprene glycol, butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, neopentyl Polyhydric alcohols such as glycols; Carbonate compounds such as ethylene carbonate and propylene carbonate; ethers such as dioxane, diethyl ether, propy
  • dispersion media can be used singly or in combination of two or more.
  • a dispersion medium containing 1 to 99% by mass of water is preferably used, more preferably 50 to 99% by mass of water, and even more preferably water alone.
  • the amount of the dispersion medium is preferably 1 to 10000 parts by weight, more preferably 50 to 9000 parts by weight, still more preferably 100 to 8000 parts by weight, and still more preferably 100 parts by weight of the total of the conductive polymer and the polyanion.
  • the amount is preferably 1000 to 8000 parts by weight, and more preferably 3000 to 7000 parts by weight.
  • the dispersion may contain an additive as necessary.
  • the additive is not particularly limited as long as it can be mixed with the conductive polymer and the polyanion. Examples thereof include water-soluble polymer compounds, water-dispersible compounds, alkaline compounds, surfactants, antifoaming agents, coupling agents, antioxidants, and electrical conductivity improvers.
  • the water-soluble polymer compound is a water-soluble polymer having a cationic group or a nonionic group in the main chain or side chain of the polymer.
  • Specific examples of the water-soluble polymer compound include, for example, polyoxyalkylene, water-soluble polyurethane, water-soluble polyester, water-soluble polyamide, water-soluble polyimide, water-soluble polyacryl, water-soluble polyacrylamide, polyvinyl alcohol, polyacrylic acid and the like. Is mentioned. Of these, polyoxyalkylene is preferred.
  • polyoxyalkylene examples include diethylene glycol, triethylene glycol, oligopolyethylene glycol, triethylene glycol monochlorohydrin, diethylene glycol monochlorohydrin, oligoethylene glycol monochlorohydrin, triethylene glycol monobromohydrin, diethylene glycol monobromhydrin, Oligoethylene glycol monobromohydrin, polyethylene glycol, glycidyl ethers, polyethylene glycol glycidyl ethers, polyethylene oxide, triethylene glycol / dimethyl ether, tetraethylene glycol / dimethyl ether, diethylene glycol / dimethyl ether, diethylene glycol / diethyl ether / diethylene glycol Dibutyl ether, dipropylene glycol, tripropylene glycol, polypropylene glycol, polypropylene dioxide, polyoxyethylene alkyl ethers, polyoxyethylene glycerol fatty acid esters, polyoxyethylene fatty acid amides.
  • a water-dispersible compound is a compound in which a part of a low hydrophilic compound is substituted with a highly hydrophilic functional group, or a compound having a highly hydrophilic functional group adsorbed around a low hydrophilic compound (E.g., an emulsion) that is dispersed without being precipitated in water.
  • a low hydrophilic compound E.g., an emulsion
  • Specific examples include polyester, polyurethane, acrylic resin, silicone resin, and emulsions of these polymers.
  • the water-soluble polymer compound and the water-dispersible compound can be used singly or in combination of two or more. When a water-soluble polymer compound and a water-dispersible compound are added, the dispersion containing the conductive polymer composition can be thickened or the coating performance can be improved.
  • the amount of the water-soluble polymer compound and the water-dispersible compound is preferably 1 to 4000 parts by mass, more preferably 50 to 2000 parts by mass with respect to a total of 100 parts by mass of the conjugated conductive polymer and the polyanion. .
  • the amount of the water-soluble polymer compound and the water-dispersible compound is at least the lower limit value, the conductivity tends to be high, and the ESR characteristics of the solid electrolytic capacitor tend to be improved.
  • Alkaline compounds are used for the purpose of adjusting the pH of the dispersion.
  • the pH is preferably 3 to 13 in order to prevent corrosion of metals and metal oxides used in the solid electrolytic capacitor. More preferably, the pH is adjusted to 4 to 7, and still more preferably adjusted to pH 4 to 6.
  • the pH is less than 3, the progress of corrosion can be suppressed even if aluminum is used. Further, when the pH is 13 or less, it is possible to prevent undoping of the polyanion doped in the conductive polymer.
  • alkaline compound known inorganic alkaline compounds and organic alkaline compounds can be used.
  • the inorganic alkaline compound include ammonia, sodium hydroxide, potassium hydroxide, calcium hydroxide, ammonia and the like.
  • the organic alkaline compound include aromatic amines, aliphatic amines, and alkali metal alkoxides.
  • nitrogen-containing heteroaryl ring compounds are preferred.
  • the nitrogen-containing heteroaryl ring compound is a nitrogen-containing heterocyclic compound that exhibits aromaticity.
  • the nitrogen atom contained in the heterocycle has a conjugated relationship with other atoms.
  • Nitrogen-containing heteroaryl ring compounds include pyridines, imidazoles, pyrimidines, pyrazines, triazines and the like. Of these, pyridines, imidazoles, and pyrimidines are preferable from the viewpoint of solvent solubility and the like.
  • aliphatic amine examples include ethylamine, n-octylamine, diethylamine, diisobutylamine, methylethylamine, trimethylamine, triethylamine, allylamine, 2-ethylaminoethanol, 2,2′-iminodiethanol, N-ethylethylenediamine, and the like. It is done.
  • alkali metal alkoxide examples include sodium alkoxide such as sodium methoxide and sodium ethoxide, potassium alkoxide and calcium alkoxide.
  • Surfactants include anionic surfactants such as carboxylates, sulfonates, sulfates and phosphates; cationic surfactants such as amine salts and quaternary ammonium salts; carboxybetaines and aminocarboxylic acids Examples include amphoteric surfactants such as salts and imidazolium betaines; nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene glycerin fatty acid esters, ethylene glycol fatty acid esters, and polyoxyethylene fatty acid amides.
  • antifoaming agent examples include silicone resin, polydimethylsiloxane, and silicone resin.
  • antioxidants examples include phenolic antioxidants, amine antioxidants, phosphorus antioxidants, sulfur antioxidants, sugars, and vitamins.
  • the electrical conductivity improver is not particularly limited as long as it increases the electrical conductivity of the solid electrolyte layer obtained from the dispersion.
  • Examples of the electrical conductivity improver include compounds containing an ether bond such as tetrahydrofuran; compounds containing a lactone group such as ⁇ -butyrolactone and ⁇ -valerolactone; caprolactam, N-methylcaprolactam, N, N-dimethylacetamide, N -Compounds containing amide or lactam groups such as methylacetamide, N, N-dimethylformamide, N-methylformamide, N-methylformanilide, N-methylpyrrolidone, N-octylpyrrolidone, pyrrolidone; tetramethylenesulfone, dimethylsulfoxide, etc.
  • Sulfone compounds or sulfoxide compounds comprising sugars or sugar derivatives such as sucrose, glucose, fructose and lactose; sugar alcohols such as sorbitol and mannitol; succinimide and maleimi And imides such as 2-furan carboxylic acid, furan derivatives such as 3-furan carboxylic acid; dialcohols such as ethylene glycol, propylene glycol, glycerol, diethylene glycol, triethylene glycol, and polyalcohols.
  • sugars or sugar derivatives such as sucrose, glucose, fructose and lactose
  • sugar alcohols such as sorbitol and mannitol
  • succinimide and maleimi And imides such as 2-furan carboxylic acid, furan derivatives such as 3-furan carboxylic acid
  • dialcohols such as ethylene glycol, propylene glycol, glycerol, diethylene glycol, triethylene glycol, and polyalcohols.
  • An electrical conductivity improver can be used individually by 1 type or in combination of 2 or more types.
  • the dispersion used in the present invention contains a conductive polymer, a polyanion, and a dispersion medium.
  • the dispersion may contain the aforementioned additives.
  • the types and contents of these conductive polymers, polyanions, dispersion media, and additives are as described above.
  • the solid concentration of the dispersion is preferably 0.1 to 15% by mass, more preferably 0.5 to 10% by mass, and still more preferably 1 to 5% by mass.
  • the total amount of the conductive polymer and the polyanion in the solid content of the dispersion is preferably 20 to 100% by mass, more preferably 40 to 90% by mass, and still more preferably 50 to 90% by mass.
  • the dispersion of the present invention is produced by polymerizing the monomer in the dispersion medium, and includes a step of adding the polyanion during the polymerization.
  • the monomer and, if necessary, an additive are added to the dispersion medium and dissolved, emulsified or dispersed, and the monomer solution, emulsion or A dispersion (hereinafter sometimes referred to as a monomer liquid) is obtained.
  • the monomer solution may be prepared by a powerful stirring device such as a homogenizer, but it is preferably by ultrasonic irradiation.
  • the ultrasonic irradiation energy is not particularly limited as long as a uniform monomer liquid can be obtained.
  • the ultrasonic irradiation is preferably performed for 0.1 to 2 hours / L at a power consumption of 5 to 500 W / L.
  • the power consumption is more preferably 1 to 200 W / L, still more preferably 20 to 100 W / L.
  • the irradiation time is more preferably 0.1 to 4 hours / L, still more preferably 0.5 to 2 hours / L.
  • the monomer liquid before the start of polymerization preferably contains a part of the polyanion finally contained in the dispersion.
  • the polyanion can be contained in the monomer liquid by mixing with the monomer and dissolving, emulsifying or dispersing the resulting mixture in a dispersion medium.
  • the amount of the polyanion to be contained in the monomer liquid before the start of polymerization is preferably 0 to 99% by mass, more preferably 10 to 90% by mass, still more preferably 20 to 80% by mass, based on the total amount of polyanions in the dispersion. More preferably, it is ⁇ 70% by mass.
  • the polymerization of the monomer is started by bringing the monomer to a predetermined temperature in the presence of an oxidizing agent.
  • oxidizing agents peroxodisulfates such as ammonium peroxynonisulfate, sodium peroxodisulfate, and potassium peroxodisulfate; metal halogen compounds such as boron trifluoride; And transition metal compounds such as cupric chloride; metal oxides such as silver oxide and cesium oxide; peroxides such as hydrogen peroxide and ozone; organic peroxides such as benzoyl peroxide; oxygen and the like.
  • peroxodisulfate is preferred.
  • a polyanion is added to the polymerization reaction solution during the polymerization.
  • a conductive polymer having excellent conductivity without excessively increasing the viscosity during the polymerization, so that it is possible to obtain a dispersion having excellent impregnation and coating properties for the porous body.
  • a solid electrolyte layer having excellent conductivity can be formed.
  • the polyanion is reliably doped into the conductive polymer having a regularly long main chain, a solid electrolytic capacitor having excellent high frequency characteristics can be manufactured.
  • the amount of the polyanion added to the dispersion medium during the polymerization is preferably 1 to 99% by mass, more preferably 20 to 80% by mass, and more preferably 20 to 60% by mass of the total amount of polyanions contained in the dispersion medium. More preferably, 30 to 50% by mass is even more preferable.
  • the addition of the polyanion is preferably performed continuously or intermittently in order to suppress a rapid increase in the polyanion concentration. Moreover, in order to mix the polyanion added to the polymerization reaction solution uniformly, it is preferable to add it as a polyanion solution.
  • a solution containing a dispersion medium used in the polymerization reaction solution a solution containing a dispersion medium used in the polymerization reaction solution.
  • the rate of addition of the polyanion varies depending on the scale of the reaction apparatus, and thus cannot be generally determined, but is usually 1 to 1000 parts by mass / hour, more preferably 5 to 100 parts by mass with respect to 100 parts by mass of the monomer. Part / hour, more preferably 10 to 50 parts by weight / hour.
  • the temperature during polymerization is usually 5 to 80 ° C., more preferably 10 to 50 ° C., and further preferably 12 to 35 ° C.
  • polymerization can be carried out at an appropriate reaction rate, increase in viscosity can be suppressed, and production of a dispersion containing a conductive polymer composition can be carried out stably and economically. And the conductivity of the resulting conductive polymer tends to be high.
  • polymerization can be managed by using a well-known heater and a cooler. Moreover, you may superpose
  • This dispersion treatment can be performed by a powerful stirring device such as a homogenizer, but is preferably performed by ultrasonic irradiation.
  • the ultrasonic irradiation energy is not particularly limited as long as aggregation of the conductive polymer can be suppressed.
  • the ultrasonic irradiation is preferably performed until the end of the reaction with the above-described power consumption.
  • the solid electrolytic capacitor of the present invention includes a step of applying a dispersion containing a conductive polymer, a polyanion, and a dispersion medium to the surface of the porous body, and removing a part or all of the dispersion medium to obtain a solid electrolyte. And a step of forming a layer.
  • the method for applying the dispersion to the surface of the porous body is not particularly limited, and a method of impregnating the porous body with the dispersion or a method of applying the dispersion to the surface of the porous body may be used. it can.
  • the dispersion can be applied once or twice or more.
  • the removal of the dispersion medium is preferably carried out by heat treatment because it is efficient.
  • the heating condition is preferably set in a range in which the conductive polymer does not undergo oxidative deterioration, and can be appropriately determined depending on the boiling point and volatility of the dispersion medium.
  • the heating temperature is 20 to 300 ° C, preferably 50 to 200 ° C, more preferably 80 to 150 ° C.
  • the heat treatment time is preferably 1 second to 10 hours, more preferably 5 seconds to 2 hours, still more preferably 10 minutes to 1 hour.
  • a known means used for producing a solid electrolytic capacitor can be used, and for example, a hot plate, an oven, a hot air dryer or the like can be used.
  • the heat treatment may be performed in the air, or may be performed under reduced pressure in order to quickly remove the dispersion medium.
  • heat treatment may be performed for each application, and the dispersion medium may be removed, or after applying a plurality of times, the dispersion medium is finally removed. May be.
  • the manufacturing method of the solid electrolytic capacitor of this invention can include the well-known process performed when manufacturing a solid electrolytic capacitor besides the above-mentioned process.
  • an arbitrary electrolytic solution can be further impregnated in the voids of the solid electrolyte layer formed by removing part or all of the dispersion medium.
  • a conductive polymer composition was prepared in the same manner as in the dispersion 1 except that the reaction was continued by stirring with a stirring blade and ultrasonic irradiation at 27 ° C. for 10 hours without adding polystyrene sulfonic acid during the reaction.
  • a comparative dispersion 1 containing was obtained.
  • the pH of this comparative dispersion was 4.5.
  • a conductive polymer composition was prepared in the same manner as in the dispersion 2 except that the reaction was continued by stirring with a stirring blade and ultrasonic irradiation at 27 ° C. for 10 hours without adding polystyrene sulfonic acid during the reaction.
  • a comparative dispersion 2 containing was obtained.
  • Comparative dispersion 3 containing a conductive polymer composition was produced in the same manner as comparative dispersion 1, except that the polymerization reaction was performed at 40 ° C. The pH of this comparative dispersion was 4.5.
  • Comparative dispersion 4 containing a conductive polymer composition was produced in the same manner as comparative dispersion 1, except that the polymerization reaction was carried out at 15 ° C. The pH of this comparative dispersion was 4.5.
  • Example 1 to 4 and Comparative Examples 1 to 4 (Examples 1 to 4 and Comparative Examples 1 to 4) (Formation of porous material)
  • a porous body used for a solid electrolytic capacitor a niobium powder for a capacitor is used to form a dielectric film made of niobium pentoxide on the surface of the anode body by the method described in Production Example 1 of JP2011-77257A.
  • a porous body was produced. That is, 20 mg of niobium powder for capacitors having a nominal CV product of 150,000 ⁇ F ⁇ V / g was molded together with a niobium wire to produce a molded body of 2 mm ⁇ 2 mm ⁇ 1.4 mm.
  • the niobium wire was planted on a 2 mm ⁇ 1.4 mm surface.
  • the niobium wire is an anode lead wire.
  • This molded body was fired at 1215 ° C. for 30 minutes under a reduced pressure of 4 ⁇ 10 ⁇ 3 Pa to be sintered.
  • the obtained sintered body that is, the anode body was immersed in a 1% by mass phosphoric acid aqueous solution at 80 ° C. and subjected to chemical conversion treatment at 30 V for 2 hours.
  • a dielectric layer containing niobium pentoxide was formed on the surface of the anode body.
  • the porous body was impregnated with the dispersion shown in Table 2 for 1 minute in an atmosphere at 25 ° C., and then dried with a hot air dryer at 110 ° C. for 30 minutes.
  • carbon paste (Tanaka Kikinzoku Co., Ltd. product name: TC-8260) is applied and dried so as to cover the entire surface of the porous body so as not to contact the anode lead terminal.
  • Noble Metal Co., Ltd. product name: TS-8205 was applied and dried so as to cover the entire porous body so as not to contact the anode lead terminal.
  • Table 1 shows the measurement results of the capacitance at 120 Hz and the equivalent series resistance (ESR) at 100 kHz of the obtained solid electrolytic capacitor.
  • Example 1 As shown in Table 1, in Example 1 and Comparative Example 1, the total amount of polyanions used for producing the dispersion is the same, but in Example 1, a part of the polyanions was added to the dispersion medium during the polymerization. In contrast, in Comparative Example 1, all of the polyanion is added to the dispersion medium before polymerization. In Example 1 and Comparative Example 1, the same operation is performed except that the timing of adding the polyanion to the dispersion medium is changed. Then, Example 1 has a larger capacitance and a smaller equivalent series resistance than Comparative Example 1. Similarly, in Examples 2 to 4 and Comparative Examples 2 to 4, the same operation is performed except that the timing of adding the polyanion to the dispersion medium is changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

The present invention provides a solid electrolyte capacitor that has superior capacitor characteristics using a dispersion containing a conductive polymer, a polyanion, and a dispersing medium. The solid electrolyte capacitor, which uses as the solid electrolyte the result formed by eliminating all or a portion of the dispersing medium from a dispersion containing a conductive polymer, a polyanion, and a dispersing medium, is characterized in that the dispersion is produced by polymerizing a monomer in the dispersing medium, and a step is included for adding the polyanion partway through the polymerization.

Description

固体電解コンデンサおよびその製造方法Solid electrolytic capacitor and manufacturing method thereof
 本発明は、導電性高分子を固体電解質として用いた、固体電解コンデンサおよびその製造方法に関する。 The present invention relates to a solid electrolytic capacitor using a conductive polymer as a solid electrolyte and a method for manufacturing the same.
 導電性高分子を固体電解質として用いた固体電解コンデンサが提案されている。固体電解コンデンサの例としては、アルミニウム、タンタル、ニオブなどのコンデンサ(アルミニウム電解コンデンサ、タンタル電解コンデンサ、ニオブ電解コンデンサなど)が知られている。 A solid electrolytic capacitor using a conductive polymer as a solid electrolyte has been proposed. Known examples of solid electrolytic capacitors include capacitors such as aluminum, tantalum, and niobium (such as aluminum electrolytic capacitors, tantalum electrolytic capacitors, and niobium electrolytic capacitors).
 固体電解コンデンサに用いられる導電性高分子として、ポリチオフェン、ポリピロール、ポリアニリン、ポリアセチレン、ポリフェニレン、ポリ(p-フェニレン-ビニレン)、ポリアセン、ポリチオフェンビニレンおよびその誘導体などが知られている。また共役系導電性重合体の対アニオンとして、ポリスチレンスルホン酸などのポリアニオンをドープする技術が知られている。 Known conductive polymers used in solid electrolytic capacitors include polythiophene, polypyrrole, polyaniline, polyacetylene, polyphenylene, poly (p-phenylene-vinylene), polyacene, polythiophene vinylene, and derivatives thereof. Further, a technique of doping a polyanion such as polystyrene sulfonic acid as a counter anion of a conjugated conductive polymer is known.
 一般的な固体電解質層の形成方法としては、弁作用を有する金属表面に形成された誘電体酸化被膜上に、導電性高分子重合体を得るための単量体溶液と酸化剤溶液とを塗布して化学重合するか、もしくは電解重合する方法が知られている。一方、近年、導電性高分子水溶液もしくは懸濁液の塗布によって固体電解質層を形成する方法が提案されている。 As a general method for forming a solid electrolyte layer, a monomer solution and an oxidant solution for obtaining a conductive polymer are applied on a dielectric oxide film formed on a metal surface having a valve action. Thus, chemical polymerization or electrolytic polymerization is known. On the other hand, in recent years, a method of forming a solid electrolyte layer by applying a conductive polymer aqueous solution or suspension has been proposed.
 例えば特許文献1には、導電性高分子の微粒子を水系媒体に分散させた液を、コンデンサ素子に含浸させて第1の固体電解質層を形成する工程と、この第1の固体電解質層の表面に、複素環式モノマーを含有する溶液と酸化剤を含有する溶液を個々に含浸するか、複素環式モノマーと酸化剤を含有する混合溶液を含浸することにより第2の固体電解質層を形成する工程とを具備した製造方法が示されている。 For example, Patent Document 1 discloses a step of impregnating a capacitor element with a liquid in which fine particles of a conductive polymer are dispersed in an aqueous medium to form a first solid electrolyte layer, and a surface of the first solid electrolyte layer. Then, the second solid electrolyte layer is formed by impregnating the solution containing the heterocyclic monomer and the solution containing the oxidizing agent individually or by impregnating the mixed solution containing the heterocyclic monomer and the oxidizing agent. The manufacturing method which comprised the process is shown.
 特許文献2には、弁金属粉末を焼結してなる焼結体の表面に誘電体酸化皮膜を形成したコンデンサ素子に、固体電解質層として重合性モノマーの化学重合により導電性高分子層を形成した後、このコンデンサ素子を導電性高分子溶液に浸漬、またはコンデンサ素子に導電性高分子溶液を塗布し、乾燥させることにより、化学重合による導電性高分子層の上にさらに厚く導電性高分子層を形成する方法が示されている。 In Patent Document 2, a conductive polymer layer is formed as a solid electrolyte layer by chemical polymerization of a polymerizable monomer on a capacitor element in which a dielectric oxide film is formed on the surface of a sintered body obtained by sintering valve metal powder. After that, the capacitor element is immersed in a conductive polymer solution, or the conductive polymer solution is applied to the capacitor element and dried to make the conductive polymer layer thicker on the conductive polymer layer by chemical polymerization. The method of forming the layer is shown.
特開2003-100561号公報Japanese Patent Laid-Open No. 2003-100561 特開2005-109252号公報JP 2005-109252 A
 近年の電子機器の小型化および汎用化に伴い、電解コンデンサの小型化、高周波性能の向上が求められている。特に、従来にも増して、固体電解コンデンサの高周波領域のインピーダンス特性が求められてきている。
 ところで、導電性重合体は分散媒中で凝集しやすく、導電性重合体を含む分散液は重合中に高粘度になることがある。高粘度の分散液は工業的な取扱いが不便である。また、固体電解コンデンサの要求性能として、設計容量を発現すること、低ESR(等価直列抵抗)が求められている。それら要求性能を顕現するためには、より高い導電性と誘電体被膜への含浸性が導電性重合体分散液に求められている。
With recent miniaturization and generalization of electronic devices, there is a demand for smaller electrolytic capacitors and improved high-frequency performance. In particular, the impedance characteristics in the high frequency region of solid electrolytic capacitors have been demanded more than ever.
By the way, the conductive polymer tends to aggregate in the dispersion medium, and the dispersion containing the conductive polymer may become highly viscous during the polymerization. High viscosity dispersions are inconvenient for industrial handling. In addition, as required performance of a solid electrolytic capacitor, a design capacity and low ESR (equivalent series resistance) are required. In order to realize these required performances, higher conductivity and impregnation into the dielectric film are required for the conductive polymer dispersion.
 本発明の目的は、導電性重合体、ポリアニオンおよび分散媒を含む分散液を用いて、コンデンサ特性に優れた、固体電解コンデンサを提供することである。 An object of the present invention is to provide a solid electrolytic capacitor having excellent capacitor characteristics by using a dispersion containing a conductive polymer, a polyanion and a dispersion medium.
 本発明は以下の〔1〕~〔16〕に関する。
〔1〕弁金属からなる陽極体と該陽極体表面に形成された誘電体被膜とを少なくとも有する多孔質体と、多孔質体の表面に形成された固体電解質とを有する固体電解コンデンサであって、前記固体電解質は、導電性重合体、ポリアニオンおよび分散媒を含む分散液から分散媒の一部もしくは全部を除去して形成されたものであり、前記分散液は、前記分散媒中で単量体を重合することにより製造されたものであって、該重合の途上に、ポリアニオンを添加する工程を含むことを特徴とする固体電解コンデンサ。
〔2〕前記単量体が、下記式(I)で表されるチオフェン誘導体である、前記〔1〕に記載の固体電解コンデンサ。
The present invention relates to the following [1] to [16].
[1] A solid electrolytic capacitor having a porous body having at least an anode body made of a valve metal, a dielectric coating formed on the surface of the anode body, and a solid electrolyte formed on the surface of the porous body. The solid electrolyte is formed by removing a part or all of a dispersion medium from a dispersion liquid containing a conductive polymer, a polyanion and a dispersion medium, and the dispersion liquid is a single amount in the dispersion medium. A solid electrolytic capacitor produced by polymerizing a body, comprising a step of adding a polyanion in the course of the polymerization.
[2] The solid electrolytic capacitor according to [1], wherein the monomer is a thiophene derivative represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式(I)中、R1およびR2は、各々独立に、水素原子、置換基を有してもよい炭素数1~18のアルキル基、置換基を有してもよい炭素数1~18のアルコキシ基、若しくは置換基を有してもよい炭素数1~18のアルキルチオ基を表す。または、R1およびR2は、R1とR2とが結合し且つR1とR2が結合する各炭素原子と一緒になって、置換基を有してもよい炭素数3~10の脂環、置換基を有してもよい炭素数6~10の芳香環、置換基を有してもよい炭素数2~10の酸素原子含有複素環、置換基を有してもよい炭素数2~10のイオウ原子含有複素環、若しくは置換基を有してもよい炭素数2~10のイオウ原子および酸素原子含有複素環を表す。)
〔3〕前記ポリアニオンが、スルホン酸またはその塩からなる基を有するポリマーである、前記〔1〕又は〔2〕に記載の固体電解コンデンサ。
〔4〕前記重合の途上に、超音波照射を行うことを特徴とする、前記〔1〕~〔3〕のいずれか1項に記載の固体電解コンデンサ。
〔5〕弁金属からなる陽極体と、該陽極体表面に形成された誘電体被膜とを少なくとも有する多孔質体の表面に、導電性重合体、ポリアニオンおよび分散媒を含む分散液を付与する工程と、前記分散媒の一部もしくは全部を取り除くことより、固体電解質を形成する工程とを含む固体電解コンデンサの製造方法であって、前記分散液は、前記分散媒中で単量体を重合することにより製造されたものであって、該重合の途上に、ポリアニオンを添加する工程を含むことを特徴とする固体電解コンデンサの製造方法。
〔6〕前記分散液は、酸化剤の存在下に前記単量体の重合を開始させる工程と、該重合途上に、ポリアニオンを添加する工程を含むことを特徴とする、前記〔5〕に記載の固体電解コンデンサの製造方法。
〔7〕前記単量体の重合途上に、前記ポリアニオンの総量の1~100質量%を前記分散媒に添加する、前記〔5〕又は〔6〕に記載の固体電解コンデンサの製造方法。
〔8〕前記単量体の重合途上に、前記ポリアニオンの総量の20~80質量%を前記分散媒に添加する、前記〔5〕~〔7〕のいずれか1項に記載の固体電解コンデンサの製造方法。
〔9〕前記単量体の重合開始前に、前記ポリアニオンの総量の0~99質量%を前記分散媒に添加する、前記〔5〕~〔8〕のいずれか1項に記載の固体電解コンデンサの製造方法。
〔10〕前記単量体の重合開始前に、前記ポリアニオンの総量20~80質量%を前記分散媒に添加する前記〔5〕~〔9〕のいずれか1項に記載の固体電解コンデンサの製造方法。
〔11〕前記分散媒中における前記単量体の重合時に、前記分散媒への前記ポリアニオンを連続的に又は断続的に添加する、前記〔5〕~〔10〕のいずれか1項に記載の固体電解コンデンサの製造方法。
〔12〕前記分散媒中における前記単量体の重合途上における、前記分散媒への前記ポリアニオンの添加速度は、前記分散媒中の前記単量体100質量部に対して、1~1000質量部/時間である、前記〔5〕~〔11〕のいずれか1項に記載の固体電解コンデンサの製造方法。
〔13〕前記分散媒中における前記単量体の重合途上における、前記分散媒への前記ポリアニオンの添加速度は、前記分散媒中の前記単量体100質量部に対して、10~100質量部/時間である、前記〔5〕~〔12〕のいずれか1項に記載の固体電解コンデンサの製造方法。
〔14〕重合時の温度が5~80℃である、前記〔5〕~〔13〕のいずれか1項に記載の固体電解コンデンサの製造方法。
〔15〕前記重合の途上に、超音波照射を行う、前記〔5〕~〔14〕のいずれか1項に記載の固体電解コンデンサの製造方法。
〔16〕前記重合の途上に、攪拌翼による撹拌と超音波照射を行う、前記〔5〕~〔15〕のいずれか1項に記載の固体電解コンデンサの製造方法。
(In Formula (I), R 1 and R 2 each independently represents a hydrogen atom, an optionally substituted alkyl group having 1 to 18 carbon atoms, or an optionally substituted carbon group having 1 to 18 represents an alkoxy group having 18 or an optionally substituted alkylthio group having 1 to 18 carbon atoms, or R 1 and R 2 are a combination of R 1 and R 2 and R 1 and R 2 being Along with each carbon atom to be bonded, an alicyclic ring having 3 to 10 carbon atoms which may have a substituent, an aromatic ring having 6 to 10 carbon atoms which may have a substituent, and a substituent A C2-C10 oxygen atom-containing heterocycle, a C2-C10 sulfur atom-containing heterocycle which may have a substituent, or a C2-C10 which may have a substituent Represents a heterocycle containing a sulfur atom and an oxygen atom.)
[3] The solid electrolytic capacitor according to [1] or [2], wherein the polyanion is a polymer having a group consisting of sulfonic acid or a salt thereof.
[4] The solid electrolytic capacitor as described in any one of [1] to [3], wherein ultrasonic irradiation is performed in the course of the polymerization.
[5] A step of applying a dispersion liquid containing a conductive polymer, a polyanion, and a dispersion medium to the surface of a porous body having at least an anode body made of a valve metal and a dielectric coating formed on the surface of the anode body. And a step of forming a solid electrolyte by removing a part or all of the dispersion medium, wherein the dispersion polymerizes monomers in the dispersion medium. A method for producing a solid electrolytic capacitor, comprising a step of adding a polyanion in the course of the polymerization.
[6] The dispersion according to [5], wherein the dispersion includes a step of initiating polymerization of the monomer in the presence of an oxidizing agent, and a step of adding a polyanion during the polymerization. Manufacturing method for solid electrolytic capacitor.
[7] The method for producing a solid electrolytic capacitor as described in [5] or [6] above, wherein 1 to 100% by mass of the total amount of the polyanion is added to the dispersion medium during the polymerization of the monomer.
[8] The solid electrolytic capacitor according to any one of [5] to [7], wherein 20 to 80% by mass of the total amount of the polyanion is added to the dispersion medium during the polymerization of the monomer. Production method.
[9] The solid electrolytic capacitor as described in any one of [5] to [8] above, wherein 0 to 99% by mass of the total amount of the polyanion is added to the dispersion medium before the polymerization of the monomer is started. Manufacturing method.
[10] The production of the solid electrolytic capacitor as described in any one of [5] to [9], wherein a total amount of the polyanion of 20 to 80% by mass is added to the dispersion medium before the polymerization of the monomer is started. Method.
[11] The method according to any one of [5] to [10], wherein the polyanion is continuously or intermittently added to the dispersion medium during the polymerization of the monomer in the dispersion medium. A method for producing a solid electrolytic capacitor.
[12] The rate of addition of the polyanion to the dispersion medium during the polymerization of the monomer in the dispersion medium is 1 to 1000 parts by mass with respect to 100 parts by mass of the monomer in the dispersion medium. The method for producing a solid electrolytic capacitor according to any one of [5] to [11], wherein
[13] The rate of addition of the polyanion to the dispersion medium during the polymerization of the monomer in the dispersion medium is 10 to 100 parts by mass with respect to 100 parts by mass of the monomer in the dispersion medium. 6. The method for producing a solid electrolytic capacitor as described in any one of [5] to [12], wherein
[14] The method for producing a solid electrolytic capacitor as described in any one of [5] to [13] above, wherein the polymerization temperature is 5 to 80 ° C.
[15] The method for producing a solid electrolytic capacitor as described in any one of [5] to [14], wherein ultrasonic irradiation is performed in the course of the polymerization.
[16] The method for producing a solid electrolytic capacitor as described in any one of [5] to [15] above, wherein stirring with a stirring blade and ultrasonic irradiation are performed during the polymerization.
 本発明によれば、誘電体被膜への含浸性に優れた導電性重合体分散液を用いて、コンデンサ特性に優れた固体電解コンデンサを得ることができる。 According to the present invention, a solid electrolytic capacitor having excellent capacitor characteristics can be obtained by using a conductive polymer dispersion excellent in impregnation into a dielectric coating.
[固体電解コンデンサ]
 本発明の固体電解コンデンサは、弁金属からなる陽極体と、陽極体表面に形成された誘電体被膜とを少なくとも有する多孔質体と、該多孔質体表面に形成された固体電解質層とを有する固体電解コンデンサであって、前記固体電解質は、導電性重合体、ポリアニオンおよび分散媒を含む分散液から分散媒の一部もしくは全部を除去して形成されたものであり、前記分散液は、前記分散媒中で単量体を重合することにより製造されたものであって、該重合の途上に、ポリアニオンを添加する工程を含むことを特徴とする固体電解コンデンサである。
[Solid electrolytic capacitor]
The solid electrolytic capacitor of the present invention has a porous body having at least an anode body made of a valve metal, a dielectric film formed on the surface of the anode body, and a solid electrolyte layer formed on the surface of the porous body. A solid electrolytic capacitor, wherein the solid electrolyte is formed by removing a part or all of a dispersion medium from a dispersion liquid containing a conductive polymer, a polyanion, and a dispersion medium. A solid electrolytic capacitor produced by polymerizing a monomer in a dispersion medium, comprising a step of adding a polyanion in the course of the polymerization.
<多孔質体>
 上記多孔質体を形成する陽極体としては固体電解コンデンサに用いられるものであれば特に制限は無く、例えば、高表面積を有する弁金属粉末を焼結してなるもの、あるいは、弁金属箔をエッチングして得られるものを用いることができる。弁金属としては例えば、Al、Be、Bi、Mg、Ge、Hf、Nb、Sb、Si、Sn、Ta、Ti、V、WおよびZrの少なくとも1つならびにこれらの金属の少なくとも1つと他の元素との合金または化合物が挙げられる。これら弁金属の中でも、Al、Nb、TaおよびWのいずれかから構成されるものが好ましい。
<Porous body>
The anode body for forming the porous body is not particularly limited as long as it is used for a solid electrolytic capacitor. For example, a valve metal powder having a high surface area is sintered, or a valve metal foil is etched. What is obtained can be used. Examples of the valve metal include at least one of Al, Be, Bi, Mg, Ge, Hf, Nb, Sb, Si, Sn, Ta, Ti, V, W and Zr, and at least one of these metals and other elements. And an alloy or a compound thereof. Among these valve metals, those composed of any one of Al, Nb, Ta and W are preferable.
 上記誘電体被膜は例えば、上記陽極体を陽極酸化等の化成処理を行うことによって形成される。すなわち、誘電体被膜は、上記陽極体を構成する弁金属を酸化してなる誘電体酸化被膜であることが好ましい。陽極酸化は、例えばリン酸溶液中で陽極体に電圧を印加することにより行われる。このときの化成電圧の大きさは、誘電体被膜の厚さやコンデンサの耐電圧により決定される。通常、化成電圧は、好ましくは1~800V、より好ましくは1~300V、更に好ましくは10~100Vである。 The dielectric coating is formed, for example, by subjecting the anode body to chemical conversion treatment such as anodic oxidation. That is, the dielectric film is preferably a dielectric oxide film formed by oxidizing the valve metal constituting the anode body. Anodization is performed, for example, by applying a voltage to the anode body in a phosphoric acid solution. The magnitude of the formation voltage at this time is determined by the thickness of the dielectric film and the withstand voltage of the capacitor. Usually, the formation voltage is preferably 1 to 800V, more preferably 1 to 300V, and still more preferably 10 to 100V.
<固体電解質>
 固体電解質の形成方法は特に限定されないが、例えば、上記多孔質体の表面に位置するよう、導電性重合体分散液をコンデンサ素子(すなわち、多孔質体)に含浸し、ついで、前記分散液の分散媒の一部もしくは全部を取り除くことにより形成される。ここでいう、コンデンサ素子の一例をあげると、例えば、弁金属粉末を焼結してなる焼結体に陽極リード端子を備え、さらに焼結体が陽極酸化により誘電体被膜が形成されたもの。また、弁金属箔をエッチングし、ついで、陽極酸化して誘電体皮膜が形成された陽極箔と陰極箔とが配置されたものがあげられる。
<Solid electrolyte>
The method for forming the solid electrolyte is not particularly limited. For example, a conductive polymer dispersion is impregnated into the capacitor element (that is, the porous body) so as to be located on the surface of the porous body, and then the dispersion liquid is formed. It is formed by removing part or all of the dispersion medium. As an example of the capacitor element mentioned here, for example, a sintered body obtained by sintering valve metal powder is provided with an anode lead terminal, and the sintered body is further formed with a dielectric film by anodic oxidation. Further, there may be mentioned a structure in which an anode foil and a cathode foil in which a valve metal foil is etched and then anodized to form a dielectric film are arranged.
 本願の固体電解コンデンサの固体電解質は、誘電体被膜の全体またはその一部を被覆する。この固体電解質は、誘電体被膜の全体またはその一部を被覆する固体電解質層であることが好ましい。被覆率は厳密には規定できないことから、EIAJ規格RC2361Aに記載の方法により測定した。すなわち、上記コンデンサ素子に電解液(30%硫酸液)を含浸して得られた静電容量に対して、導電性高分子分散液を含浸し、ついで分散媒を一部もしくは全部を取り除いたのちに得られる静電容量との比率、すなわち容量出現率を被覆率に置き換えることができる。 The solid electrolyte of the solid electrolytic capacitor of the present application covers the whole or a part of the dielectric coating. This solid electrolyte is preferably a solid electrolyte layer covering the whole or a part of the dielectric coating. Since the coverage cannot be strictly defined, the coverage was measured by the method described in EIAJ standard RC2361A. That is, after impregnating a conductive polymer dispersion with respect to the capacitance obtained by impregnating the capacitor element with an electrolytic solution (30% sulfuric acid solution), and then removing part or all of the dispersion medium. The ratio with the electrostatic capacity obtained, that is, the capacity appearance rate can be replaced with the coverage.
 本願の固体電解コンデンサの製造方法によれば、好ましくは80~100%程度、より好ましくは85~100%、更に好ましくは88~100%の高い被覆率で導電性固体層を形成することが可能である。被覆率を高くすることで、高静電容量でかつ低ESRの固体電解コンデンサを提供することが可能となる。一方、被覆率が高くなると、誘電体皮膜の修復性が低下するという報告もあるが、電解液を含浸させることにより、誘電体皮膜の修復性を改善させることが可能である。 According to the method for producing a solid electrolytic capacitor of the present application, it is possible to form a conductive solid layer with a high coverage of preferably about 80 to 100%, more preferably 85 to 100%, and still more preferably 88 to 100%. It is. By increasing the coverage, it is possible to provide a solid electrolytic capacitor having high capacitance and low ESR. On the other hand, although there is a report that the repairability of the dielectric film decreases as the coverage increases, it is possible to improve the repairability of the dielectric film by impregnating with an electrolytic solution.
 固体電解質の適用量は特に制限はなく、固体電解質の種類や固体電解コンデンサの用途等によって適宜決定することができる。 The application amount of the solid electrolyte is not particularly limited, and can be appropriately determined depending on the type of the solid electrolyte and the use of the solid electrolytic capacitor.
 (導電性重合体)
 導電性重合体としては特に限定されないが、主鎖がπ共役系で構成されている有機高分子が好ましい。前記有機高分子としては例えば、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体などが挙げられる。これらのうち、ポリピロール類、ポリチオフェン類及びポリアニリン類が好ましく、ポリチオフェン類がより好ましい。導電性重合体は、アルキル基、カルボン酸基、スルホン酸基、アルコキシル基、ヒドロキシル基、シアノ基などの置換基を有していると、高い導電性が得られ、好ましい。
(Conductive polymer)
Although it does not specifically limit as a conductive polymer, The organic polymer by which the principal chain is comprised by (pi) conjugated system is preferable. Examples of the organic polymer include polypyrroles, polythiophenes, polyacetylenes, polyphenylenes, polyphenylene vinylenes, polyanilines, polyacenes, polythiophene vinylenes, and copolymers thereof. Of these, polypyrroles, polythiophenes and polyanilines are preferred, and polythiophenes are more preferred. When the conductive polymer has a substituent such as an alkyl group, a carboxylic acid group, a sulfonic acid group, an alkoxyl group, a hydroxyl group, or a cyano group, high conductivity is obtained, which is preferable.
 これら導電性重合体の中でも、ポリピロール類としてポリピロールおよびポリ(N-メチルピロール);ポリチオフェン類としてポリチオフェン、ポリ(3-メチルチオフェン)、ポリ(3-メトキシチオフェン)、およびポリ(3,4-エチレンジオキシチオフェン)からなる群から選ばれる少なくとも1つが、導電性の点で好ましい。特にポリ(3,4-エチレンジオキシチオフェン)は、導電性が特に高い上に、耐熱性に優れる点で好ましい。
 導電性重合体は、その構造に応じた単量体を重合することにより得られる。好ましい単量体としては、置換基を有してもよいピロール、置換基を有してもよいアニリン、および置換基を有してもよいチオフェンからなる群より選ばれる少なくとも一つが挙げられる。
Among these conductive polymers, polypyrrole and poly (N-methylpyrrole) as polypyrroles; polythiophene, poly (3-methylthiophene), poly (3-methoxythiophene), and poly (3,4-ethylene as polythiophenes At least one selected from the group consisting of dioxythiophene) is preferable in terms of conductivity. In particular, poly (3,4-ethylenedioxythiophene) is preferable in that it has particularly high conductivity and is excellent in heat resistance.
The conductive polymer is obtained by polymerizing a monomer corresponding to the structure. Preferable monomers include at least one selected from the group consisting of pyrrole which may have a substituent, aniline which may have a substituent, and thiophene which may have a substituent.
 係る単量体の具体例としては、ピロール、N-メチルピロール、3-メチルピロール、3-エチルピロール、3-n-プロピルピロール、3-ブチルピロール、3-オクチルピロール、3-デシルピロール、3-ドデシルピロール、3,4-ジメチルピロール、3,4-ジブチルピロール、3-カルボキシルピロール、3-メチル-4-カルボキシルピロール、3-メチル-4-カルボキシエチルピロール、3-メチル-4-カルボキシブチルピロール、3-ヒドロキシピロール、3-メトキシピロール、3-エトキシピロール、3-ブトキシピロール、3-ヘキシルオキシピロール、3-メチル-4-ヘキシルオキシピロール、3-メチル-4-ヘキシルオキシピロール;
 下記式(I)で表されるチオフェン誘導体;
 アニリン、2-メチルアニリン、3-イソブチルアニリン、2-アニリンスルホン酸、3-アニリンスルホン酸などが挙げられる。これらは1種単独でまたは2種以上を組み合わせて用いることができる。
Specific examples of such monomers include pyrrole, N-methylpyrrole, 3-methylpyrrole, 3-ethylpyrrole, 3-n-propylpyrrole, 3-butylpyrrole, 3-octylpyrrole, 3-decylpyrrole, 3 -Dodecylpyrrole, 3,4-dimethylpyrrole, 3,4-dibutylpyrrole, 3-carboxylpyrrole, 3-methyl-4-carboxylpyrrole, 3-methyl-4-carboxyethylpyrrole, 3-methyl-4-carboxybutyl Pyrrole, 3-hydroxypyrrole, 3-methoxypyrrole, 3-ethoxypyrrole, 3-butoxypyrrole, 3-hexyloxypyrrole, 3-methyl-4-hexyloxypyrrole, 3-methyl-4-hexyloxypyrrole;
A thiophene derivative represented by the following formula (I):
Examples include aniline, 2-methylaniline, 3-isobutylaniline, 2-aniline sulfonic acid, and 3-aniline sulfonic acid. These can be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(I)中、R1およびR2は、各々独立に、水素原子、置換基を有してもよい炭素数1~18のアルキル基、置換基を有してもよい炭素数1~18のアルコキシ基、若しくは置換基を有してもよい炭素数1~18のアルキルチオ基を表し、または、R1とR2とが結合し且つR1とR2が結合する各炭素原子と一緒になって、置換基を有してもよい炭素数3~10の脂環、置換基を有してもよい炭素数6~10の芳香環、置換基を有してもよい炭素数2~10の酸素原子含有複素環、置換基を有してもよい炭素数2~10のイオウ原子含有複素環、若しくは置換基を有してもよい炭素数2~10のイオウ原子および酸素原子含有複素環を形成してもよい。 In formula (I), R 1 and R 2 each independently represents a hydrogen atom, an optionally substituted alkyl group having 1 to 18 carbon atoms, or an optionally substituted carbon group having 1 to 18 carbon atoms. It represents an alkoxy group or an alkylthio group which may having 1 to 18 carbon atoms have a substituent, or, together with R 1 and R 2 are bonded and the carbon atom to which R 1 and R 2 are attached An alicyclic ring having 3 to 10 carbon atoms which may have a substituent, an aromatic ring having 6 to 10 carbon atoms which may have a substituent, and 2 to 10 carbon atoms which may have a substituent. An oxygen atom-containing heterocyclic ring, an optionally substituted sulfur atom-containing heterocyclic ring having 2 to 10 carbon atoms, or an optionally substituted sulfur atom and oxygen atom-containing heterocyclic ring having 2 to 10 carbon atoms May be formed.
 酸素原子含有複素環としては、オキシラン環、オキセタン環、フラン環、ヒドロフラン環、ピラン環、ピロン環、ジオキサン環、トリオキサン環などが挙げられる。 Examples of the oxygen atom-containing heterocycle include an oxirane ring, oxetane ring, furan ring, hydrofuran ring, pyran ring, pyrone ring, dioxane ring, and trioxane ring.
 イオウ原子含有複素環としては、チイラン環、チエタン環、チオフェン環、チアン環、チオピラン環、チオピリリウム環、ベンゾチオピラン環、ジチアン環、ジチオラン環、トリチアン環などが挙げられる。 Examples of the sulfur atom-containing heterocyclic ring include thiirane ring, thietane ring, thiophene ring, thiane ring, thiopyran ring, thiopyrylium ring, benzothiopyran ring, dithiane ring, dithiolane ring, and trithiane ring.
 イオウ原子および酸素原子含有複素環としては、オキサチオラン環、オキサチアン環などが挙げられる。 Examples of the sulfur atom and oxygen atom-containing heterocycle include an oxathiolane ring and an oxathian ring.
 単量体は、上記の化合物の中でも、上記式(I)で表される化合物を含むことが好ましい。上記式(I)で表される化合物の具体例としては、チオフェン、3-メチルチオフェン、3-エチルチオフェン、3-プロピルチオフェン、3-ブチルチオフェン、3-ヘキシルチオフェン、3-ヘプチルチオフェン、3-オクチルチオフェン、3-デシルチオフェン、3-ドデシルチオフェン、3-オクタデシルチオフェン、3-ブロモチオフェン、3-クロロチオフェン、3-ヨードチオフェン、3-シアノチオフェン、3-フェニルチオフェン、3,4-ジメチルチオフェン、3,4-ジブチルチオフェン、3-ヒドロキシチオフェン、3-メトキシチオフェン、3-エトキシチオフェン、3-ブトキシチオフェン、3-ヘキシルオキシチオフェン、3-ヘプチルオキシチオフェン、3-オクチルオキシチオフェン、3-デシルオキシチオフェン、3-ドデシルオキシチオフェン、3-オクタデシルオキシチオフェン、3,4-ジヒドロキシチオフェン、3,4-ジメトキシチオフェン、3,4-ジエトキシチオフェン、3,4-ジプロポキシチオフェン、3,4-ジブトキシチオフェン、3,4-ジヘキシルオキシチオフェン、3,4-ジヘプチルオキシチオフェン、3,4-ジオクチルオキシチオフェン、3,4-ジデシルオキシチオフェン、3,4-ジドデシルオキシチオフェン、3,4-エチレンジオキシチオフェン、3,4-プロピレンジオキシチオフェン、3,4-ブチレンジオキシチオフェン、3-メチル-4-メトキシチオフェン、3-メチル-4-エトキシチオフェン、3-カルボキシチオフェン、3-メチル-4-カルボキシチオフェン、3-メチル-4-カルボキシエチルチオフェン、3-メチル-4-カルボキシブチルチオフェン、3,4-エチレンオキシチアチオフェンが挙げられる。
 単量体は、より好ましくは下記式(II)で表される化合物を含む。
It is preferable that a monomer contains the compound represented by the said formula (I) among said compounds. Specific examples of the compound represented by the above formula (I) include thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3-butylthiophene, 3-hexylthiophene, 3-heptylthiophene, 3- Octylthiophene, 3-decylthiophene, 3-dodecylthiophene, 3-octadecylthiophene, 3-bromothiophene, 3-chlorothiophene, 3-iodothiophene, 3-cyanothiophene, 3-phenylthiophene, 3,4-dimethylthiophene, 3,4-dibutylthiophene, 3-hydroxythiophene, 3-methoxythiophene, 3-ethoxythiophene, 3-butoxythiophene, 3-hexyloxythiophene, 3-heptyloxythiophene, 3-octyloxythiophene, 3-decyloxy Offene, 3-dodecyloxythiophene, 3-octadecyloxythiophene, 3,4-dihydroxythiophene, 3,4-dimethoxythiophene, 3,4-diethoxythiophene, 3,4-dipropoxythiophene, 3,4-dibutoxy Thiophene, 3,4-dihexyloxythiophene, 3,4-diheptyloxythiophene, 3,4-dioctyloxythiophene, 3,4-didecyloxythiophene, 3,4-didodecyloxythiophene, 3,4-ethylene Dioxythiophene, 3,4-propylenedioxythiophene, 3,4-butylene dioxythiophene, 3-methyl-4-methoxythiophene, 3-methyl-4-ethoxythiophene, 3-carboxythiophene, 3-methyl-4 -Carboxythiophene, 3-methyl- - carboxyethyl thiophene, 3-methyl-4-carboxybutyl thiophene, 3,4-ethyleneoxythiathiophene.
The monomer more preferably contains a compound represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(II)中、R3およびR4は、各々独立に、水素原子または置換基を有してもよい炭素数1~4のアルキル基を表し、または、R3とR4とが結合し且つOR3とOR4が結合する各炭素原子と一緒になって、置換基を有してもよい炭素数3~6の酸素原子含有複素環を形成してもよい。 In formula (II), R 3 and R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may have a substituent, or R 3 and R 4 are bonded to each other. In addition, each of the carbon atoms to which OR 3 and OR 4 are bonded may form an oxygen atom-containing heterocycle having 3 to 6 carbon atoms which may have a substituent.
 R3およびR4は、好ましくは、R3とR4とが結合し且つOR3とOR4が結合する各炭素原子と一緒になって、置換基を有してもよい炭素数3~6の酸素原子含有複素環を形成する。酸素原子含有複素環としては、オキシラン環、オキセタン環、フラン環、ヒドロフラン環、ピラン環、ピロン環、ジオキサン環、トリオキサン環などが挙げられ、好ましくはジオキサン環である。 R 3 and R 4 preferably have 3 to 6 carbon atoms which may have a substituent, together with the carbon atoms to which R 3 and R 4 are bonded and to which OR 3 and OR 4 are bonded. To form an oxygen atom-containing heterocycle. Examples of the oxygen atom-containing heterocycle include an oxirane ring, an oxetane ring, a furan ring, a hydrofuran ring, a pyran ring, a pyrone ring, a dioxane ring, and a trioxane ring, and a dioxane ring is preferable.
 単量体は、最も好ましくは3,4-エチレンジオキシチオフェンを含む。 The monomer most preferably contains 3,4-ethylenedioxythiophene.
(ポリアニオン)
 本発明に用いられるポリアニオンは、アニオン性基を有するポリマーである。アニオン性基としては、スルホン酸またはその塩からなる基、リン酸またはその塩からなる基、一置換リン酸エステル基、カルボン酸またはその塩からなる基、一置換硫酸エステル基などが挙げられる。これらのうち、強酸性基が好ましく、スルホン酸またはその塩からなる基、リン酸またはその塩からなる基がより好ましく、スルホン酸またはその塩からなる基が最も好ましい。アニオン性基はポリマー主鎖に直接結合していてもよいし、側鎖に結合していてもよい。側鎖にアニオン性基が結合している場合、ドープ効果をより顕著に果たすので、アニオン性基は側鎖の末端に結合していることが好ましい。
(Polyanion)
The polyanion used in the present invention is a polymer having an anionic group. Examples of the anionic group include a group consisting of a sulfonic acid or a salt thereof, a group consisting of a phosphoric acid or a salt thereof, a monosubstituted phosphate group, a group consisting of a carboxylic acid or a salt thereof, a monosubstituted sulfate group. Among these, a strongly acidic group is preferable, a group consisting of sulfonic acid or a salt thereof, a group consisting of phosphoric acid or a salt thereof is more preferable, and a group consisting of sulfonic acid or a salt thereof is most preferable. The anionic group may be directly bonded to the polymer main chain or may be bonded to the side chain. When an anionic group is bonded to the side chain, the doping effect is more remarkably achieved. Therefore, the anionic group is preferably bonded to the end of the side chain.
 ポリアニオンは、アニオン性基以外の置換基を有してもよい。該置換基としては、アルキル基、ヒドロキシ基、アルコキシ基、フェノール基、シアノ基、フェニル基、ヒドロキシフェニル基、エステル基、ハロゲノ基、アルケニル基、イミド基、アミド基、アミノ基、オキシカルボニル基、カルボニル基などが挙げられる。これらの中でアルキル基、ヒドロキシ基、シアノ基、フェノール基、オキシカルボニル基が好ましく、アルキル基、ヒドロキシ基、シアノ基がより好ましい。当該置換基はポリマー主鎖に直接結合していてもよいし、側鎖に結合していてもよい。側鎖に当該置換基が結合している場合、当該置換基のそれぞれの作用を果たすために、置換基は側鎖の末端に結合していることが好ましい。 The polyanion may have a substituent other than the anionic group. Examples of the substituent include alkyl group, hydroxy group, alkoxy group, phenol group, cyano group, phenyl group, hydroxyphenyl group, ester group, halogeno group, alkenyl group, imide group, amide group, amino group, oxycarbonyl group, A carbonyl group etc. are mentioned. Among these, an alkyl group, a hydroxy group, a cyano group, a phenol group, and an oxycarbonyl group are preferable, and an alkyl group, a hydroxy group, and a cyano group are more preferable. The substituent may be directly bonded to the polymer main chain or may be bonded to the side chain. When the substituent is bonded to the side chain, the substituent is preferably bonded to the end of the side chain in order to perform each function of the substituent.
 ポリアニオン中に置換し得るアルキル基は、分散媒への溶解性及び分散性、共役系導電性重合体との相溶性及び分散性などを高くする作用が期待できる。アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基などの鎖状アルキル基;シクロプロピル基、シクロペンチル基、シクロヘキシル基などのシクロアルキル基が挙げられる。分散媒への溶解性、共役系導電性重合体への分散性、立体障害などを考慮すると、炭素数1~12のアルキル基がより好ましい。 The alkyl group that can be substituted in the polyanion can be expected to increase the solubility and dispersibility in the dispersion medium, the compatibility and dispersibility with the conjugated conductive polymer, and the like. Examples of the alkyl group include a chain alkyl group such as methyl group, ethyl group, propyl group, butyl group, isobutyl group, t-butyl group, pentyl group, hexyl group, octyl group, decyl group and dodecyl group; cyclopropyl group, Examples thereof include cycloalkyl groups such as a cyclopentyl group and a cyclohexyl group. In consideration of solubility in a dispersion medium, dispersibility in a conjugated conductive polymer, steric hindrance, and the like, an alkyl group having 1 to 12 carbon atoms is more preferable.
 ポリアニオン中に置換し得るヒドロキシ基は、他の水素原子などとの水素結合を形成しやすくし、分散媒への溶解性、共役系導電性重合体との相溶性、分散性、接着性を高くする作用が期待できる。ヒドロキシ基は、ポリマー主鎖に結合した炭素数1~6のアルキル基の末端に結合したものが好ましい。 The hydroxy group that can be substituted in the polyanion facilitates the formation of hydrogen bonds with other hydrogen atoms, and has high solubility in dispersion media, high compatibility with conjugated conductive polymers, dispersibility, and adhesion. Can be expected. The hydroxy group is preferably bonded to the terminal of an alkyl group having 1 to 6 carbon atoms bonded to the polymer main chain.
 ポリアニオン中に置換し得るシアノ基及びヒドロキシフェニル基は、共役系導電性重合体との相溶性、分散媒への溶解性、耐熱性を高くする作用が期待できる。シアノ基は、ポリマー主鎖に直接結合したもの、ポリマー主鎖に結合した炭素数1~7のアルキル基の末端に結合したもの、ポリマー主鎖に結合した炭素数2~7のアルケニル基の末端に結合したものが好ましい。 The cyano group and hydroxyphenyl group that can be substituted in the polyanion can be expected to have an effect of increasing the compatibility with the conjugated conductive polymer, the solubility in the dispersion medium, and the heat resistance. The cyano group is bonded directly to the polymer main chain, bonded to the terminal of the alkyl group having 1 to 7 carbon atoms bonded to the polymer main chain, or terminal of the alkenyl group having 2 to 7 carbon atoms bonded to the polymer main chain. Those bonded to are preferred.
 ポリアニオン中に置換し得るオキシカルボニル基は、ポリマー主鎖に直接結合した、アルキルオキシカルボニル基、アリールオキシカルボニル基、他の官能基を介在してなるアルキルオキシカルボニル基又はアリールオキシカルボニル基が好ましい。 The oxycarbonyl group that can be substituted in the polyanion is preferably an alkyloxycarbonyl group, an aryloxycarbonyl group, or an alkyloxycarbonyl group or an aryloxycarbonyl group having another functional group directly bonded to the polymer main chain.
 ポリアニオンのポリマー主鎖は、特に制限されない。ポリマー主鎖としては、例えば、ポリアルキレン、ポリイミド、ポリアミド、ポリエステルなどが挙げられる。これらのうち、合成や入手し易さの観点から、ポリアルキレンが好ましい。 The polymer main chain of the polyanion is not particularly limited. Examples of the polymer main chain include polyalkylene, polyimide, polyamide, and polyester. Of these, polyalkylene is preferable from the viewpoint of synthesis and availability.
 ポリアルキレンは、エチレン性不飽和単量体の繰り返し単位で構成されるポリマーである。ポリアルキレンは主鎖に炭素-炭素二重結合を有してもよい。ポリアルキレンとしては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、ポリペンテン、ポリヘキセン、ポリビニルアルコール、ポリビニルフェノール、ポリ(3,3,3-トリフルオロプロピレン)、ポリアクリロニトリル、ポリアクリレート、ポリメタクリレート、ポリスチレン、ポリブタジエン、ポリイソプレンなどが挙げられる。 Polyalkylene is a polymer composed of repeating units of ethylenically unsaturated monomers. The polyalkylene may have a carbon-carbon double bond in the main chain. Examples of polyalkylene include polyethylene, polypropylene, polybutene, polypentene, polyhexene, polyvinyl alcohol, polyvinylphenol, poly (3,3,3-trifluoropropylene), polyacrylonitrile, polyacrylate, polymethacrylate, polystyrene, polybutadiene, poly And isoprene.
 ポリイミドとしては、ピロメリット酸二無水物、ビフェニルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、2,2,3,3-テトラカルボキシジフェニルエーテル二無水物、2,2-[4,4’-ジ(ジカルボキシフェニルオキシ)フェニル]プロパン二無水物などの酸無水物とオキシジアニリン、パラフェニレンジアミン、メタフェニレンジアミン、ベンゾフェノンジアミンなどのジアミンとの重縮合反応で得られるものが挙げられる。 Examples of polyimides include pyromellitic dianhydride, biphenyltetracarboxylic dianhydride, benzophenonetetracarboxylic dianhydride, 2,2,3,3-tetracarboxydiphenyl ether dianhydride, 2,2- [4,4 Examples include those obtained by polycondensation reaction of acid anhydrides such as' -di (dicarboxyphenyloxy) phenyl] propane dianhydride and diamines such as oxydianiline, paraphenylenediamine, metaphenylenediamine, and benzophenonediamine. .
 ポリアミドとしては、ポリアミド6、ポリアミド6,6、ポリアミド6,10などが挙げられる。 Polyamide includes polyamide 6, polyamide 6,6, polyamide 6,10 and the like.
 ポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどが挙げられる。 Examples of polyester include polyethylene terephthalate and polybutylene terephthalate.
 ポリアニオンとして好適に用いられるスルホン酸基を有するポリマーの具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸などが挙げられる。これらは単独重合体であってもよいし、2種以上の共重合体であってもよい。これらのうち、ポリスチレンスルホン酸、ポリイソプレンスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸が好ましい。ポリアニオン、特にスルホン酸基を有するポリマーは、共役系導電性重合体の熱分解を緩和することができ、共役系導電性重合体を得るための単量体の分散媒中での分散性を向上させ、さらに共役系導電性重合体のドーパントとして機能する。 Specific examples of the polymer having a sulfonic acid group suitably used as a polyanion include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, and poly (2-acrylamide). -2-methylpropanesulfonic acid) and polyisoprenesulfonic acid. These may be homopolymers or two or more types of copolymers. Among these, polystyrene sulfonic acid, polyisoprene sulfonic acid, polyacrylic acid ethyl sulfonic acid, and polyacrylic acid butyl sulfonic acid are preferable. Polyanions, especially polymers with sulfonic acid groups, can mitigate the thermal decomposition of conjugated conductive polymers and improve the dispersibility of the monomers in the dispersion medium to obtain conjugated conductive polymers. And function as a dopant for the conjugated conductive polymer.
 本発明に用いられるポリアニオンは、その重量平均分子量が好ましくは1000~1000000、より好ましくは5000~300000、更に好ましくは10000~300000、より更に好ましくは150000~300000である。重量平均分子量がこの範囲にあると、ポリアニオンの分散媒への溶解性、ポリアニオンと共役系導電性重合体との相溶性が良好となる。重量平均分子量は、ゲルパーミエーションクロマトグラフィーを用いて、ポリスチレン換算分子量として測定する。 The polyanion used in the present invention has a weight average molecular weight of preferably 1,000 to 1,000,000, more preferably 5,000 to 300,000, still more preferably 10,000 to 300,000, and still more preferably 150,000 to 300,000. When the weight average molecular weight is within this range, the solubility of the polyanion in the dispersion medium and the compatibility between the polyanion and the conjugated conductive polymer are improved. A weight average molecular weight is measured as a polystyrene conversion molecular weight using gel permeation chromatography.
 ポリアニオンは市販品の中から選ばれる上記特性を有するものであってもよいし、または公知の方法によって合成して得られるものであってもよい。ポリアニオンの合成法としては、例えば、Houben-Weyl, "Methoden der organischen Chemie" Vol. E20, Makromolekulare Stoffe, No. 2 (1987) p1141-に記載の方法、特許文献1~3などに記載の方法などが挙げられる。 The polyanion may have the above properties selected from commercially available products, or may be obtained by synthesis by a known method. Examples of the method for synthesizing polyanions include the method described in Houben-Weyl, “Methoden der organischen Chemie” Vol. E20, Makromolekulare Stoffe, No. 2 (1987) p1141- Is mentioned.
 分散液中に含まれるポリアニオンの量は、ポリアニオン中のアニオン性基が、導電性重合体を得るための単量体1モルに対して、好ましくは0.25~10モル、より好ましくは0.8~8モル、さらに好ましくは0.8~5モルとなる量である。また導電性重合体100質量部に対するポリアニオンの質量は、好ましくは10~10000質量部、より好ましくは50~5000質量部、さらに好ましくは100~1000質量部である。ポリアニオンの量が上限値以下であると、分散液から形成される固体電解質層の導電性が向上する傾向があり、ポリアニオンの量が下限値以上であると、導電性重合体の分散液中での分散性が向上する傾向がある。 The amount of the polyanion contained in the dispersion is preferably from 0.25 to 10 mol, more preferably from 0.1 to 10 mol, based on 1 mol of the monomer for obtaining the conductive polymer. The amount is 8 to 8 mol, more preferably 0.8 to 5 mol. The mass of the polyanion with respect to 100 parts by mass of the conductive polymer is preferably 10 to 10000 parts by mass, more preferably 50 to 5000 parts by mass, and still more preferably 100 to 1000 parts by mass. When the amount of the polyanion is not more than the upper limit value, the conductivity of the solid electrolyte layer formed from the dispersion tends to be improved. When the amount of the polyanion is not less than the lower limit value, in the dispersion of the conductive polymer. There is a tendency for the dispersibility of to improve.
(分散媒)
 本発明に用いられる分散媒は、導電性重合体と、それにドープされたポリアニオンとを分散させることができるものであれば特に限定されない。分散媒として、例えば、水;
 N-ビニルピロリドン、ヘキサメチルホスホルトリアミド、N-ビニルホルムアミド、N-ビニルアセトアミドなどのアミド類;
 クレゾール、フェノール、キシレノールなどのフェノール類;
 ジプロピレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、ジグリセリン、イソプレングリコール、ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、ネオペンチルグリコールなどの多価アルコール類;
 エチレンカーボネート、プロピレンカーボネートなどのカーボネート化合物;ジオキサン、ジエチルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテルなどのエーテル類;
 3-メチル-2-オキサゾリジノンなどの複素環化合物;アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル類などが挙げられる。
(Dispersion medium)
The dispersion medium used for this invention will not be specifically limited if a conductive polymer and the polyanion doped to it can be disperse | distributed. As a dispersion medium, for example, water;
Amides such as N-vinylpyrrolidone, hexamethylphosphortriamide, N-vinylformamide, N-vinylacetamide;
Phenols such as cresol, phenol, xylenol;
Dipropylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, diglycerin, isoprene glycol, butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, neopentyl Polyhydric alcohols such as glycols;
Carbonate compounds such as ethylene carbonate and propylene carbonate; ethers such as dioxane, diethyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether and polypropylene glycol dialkyl ether;
Heterocyclic compounds such as 3-methyl-2-oxazolidinone; nitriles such as acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, and benzonitrile.
 これら分散媒は、1種単独でまたは2種以上を組み合わせて用いることができる。これらのうち、水を1~99質量%含む分散媒を用いることが好ましく、水を50~99質量%含むことがより好ましく、水を単独で用いることがさらに好ましい。 These dispersion media can be used singly or in combination of two or more. Of these, a dispersion medium containing 1 to 99% by mass of water is preferably used, more preferably 50 to 99% by mass of water, and even more preferably water alone.
 分散媒の量は、導電性重合体とポリアニオンとの合計100質量部に対して、好ましくは1~10000重量部、より好ましくは50~9000重量部、更に好ましくは100~8000重量部、より更に好ましくは1000~8000重量部、より更に好ましくは3000~7000重量部である。分散媒の使用量が下限値以上であると分散液の粘度が低下する傾向がある。分散媒の使用量が上限値以下であると、分散液から分散媒を除去するための操作時間を短縮できるなど、固体電解質層を形成する際に都合がよい。 The amount of the dispersion medium is preferably 1 to 10000 parts by weight, more preferably 50 to 9000 parts by weight, still more preferably 100 to 8000 parts by weight, and still more preferably 100 parts by weight of the total of the conductive polymer and the polyanion. The amount is preferably 1000 to 8000 parts by weight, and more preferably 3000 to 7000 parts by weight. There exists a tendency for the viscosity of a dispersion liquid to fall that the usage-amount of a dispersion medium is more than a lower limit. When the amount of the dispersion medium used is not more than the upper limit value, it is convenient when forming the solid electrolyte layer, for example, the operation time for removing the dispersion medium from the dispersion liquid can be shortened.
(添加剤)
 分散液は、必要に応じて、添加剤を含んでいてもよい。添加剤は導電性重合体及びポリアニオンと混合しうるものであれば特に制限されない。例えば、水溶性高分子化合物、水分散性化合物、アルカリ性化合物、界面活性剤、消泡剤、カップリング剤、酸化防止剤、電気伝導率向上剤などが挙げられる。
(Additive)
The dispersion may contain an additive as necessary. The additive is not particularly limited as long as it can be mixed with the conductive polymer and the polyanion. Examples thereof include water-soluble polymer compounds, water-dispersible compounds, alkaline compounds, surfactants, antifoaming agents, coupling agents, antioxidants, and electrical conductivity improvers.
 水溶性高分子化合物は、高分子の主鎖又は側鎖にカチオン性基やノニオン性基を有する水溶性ポリマーである。水溶性高分子化合物の具体例としては、例えば、ポリオキシアルキレン、水溶性ポリウレタン、水溶性ポリエステル、水溶性ポリアミド、水溶性ポリイミド、水溶性ポリアクリル、水溶性ポリアクリルアミド、ポリビニルアルコール、ポリアクリル酸などが挙げられる。これらのうち、ポリオキシアルキレンが好ましい。 The water-soluble polymer compound is a water-soluble polymer having a cationic group or a nonionic group in the main chain or side chain of the polymer. Specific examples of the water-soluble polymer compound include, for example, polyoxyalkylene, water-soluble polyurethane, water-soluble polyester, water-soluble polyamide, water-soluble polyimide, water-soluble polyacryl, water-soluble polyacrylamide, polyvinyl alcohol, polyacrylic acid and the like. Is mentioned. Of these, polyoxyalkylene is preferred.
 ポリオキシアルキレンの具体例としては、ジエチレングリコール、トリエチレングリコール、オリゴポリエチレングリコール、トリエチレングリコールモノクロルヒドリン、ジエチレングリコールモノクロルヒドリン、オリゴエチレングリコールモノクロルヒドリン、トリエチレングリコールモノブロムヒドリン、ジエチレングリコールモノブロムヒドリン、オリゴエチレングリコールモノブロムヒドリン、ポリエチレングリコール、グリシジルエーテル類、ポリエチレングリコールグリシジルエーテル類、ポリエチレンオキシド、トリエチレングリコール・ジメチルエーテル、テトラエチレングリコール・ジメチルエーテル、ジエチレングリコール・ジメチルエーテル、ジエチレングリコール・ジエチルエーテル・ジエチレングリコール・ジブチルエーテル、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、ポリプロピレンジオキシド、ポリオキシエチレンアルキルエーテル、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸アミドなどが挙げられる。 Specific examples of polyoxyalkylene include diethylene glycol, triethylene glycol, oligopolyethylene glycol, triethylene glycol monochlorohydrin, diethylene glycol monochlorohydrin, oligoethylene glycol monochlorohydrin, triethylene glycol monobromohydrin, diethylene glycol monobromhydrin, Oligoethylene glycol monobromohydrin, polyethylene glycol, glycidyl ethers, polyethylene glycol glycidyl ethers, polyethylene oxide, triethylene glycol / dimethyl ether, tetraethylene glycol / dimethyl ether, diethylene glycol / dimethyl ether, diethylene glycol / diethyl ether / diethylene glycol Dibutyl ether, dipropylene glycol, tripropylene glycol, polypropylene glycol, polypropylene dioxide, polyoxyethylene alkyl ethers, polyoxyethylene glycerol fatty acid esters, polyoxyethylene fatty acid amides.
 水分散性化合物は、親水性の低い化合物の一部が親水性の高い官能基で置換されたもの、あるいは、親水性の低い化合物の周囲に親水性の高い官能基を有する化合物が吸着したもの(例えばエマルジョンなど)であって、水中で沈殿せずに分散するものが挙げられる。具体例としては、ポリエステル、ポリウレタン、アクリル樹脂、シリコーン樹脂、及びこれらポリマーのエマルジョンなどが挙げられる。水溶性高分子化合物及び水分散性化合物は、1種単独でまたは2種以上を組み合わせて用いることができる。水溶性高分子化合物及び水分散性化合物を添加すると導電性重合体組成物を含む分散液を増粘化させたり塗装性能を向上させたりすることができる。 A water-dispersible compound is a compound in which a part of a low hydrophilic compound is substituted with a highly hydrophilic functional group, or a compound having a highly hydrophilic functional group adsorbed around a low hydrophilic compound (E.g., an emulsion) that is dispersed without being precipitated in water. Specific examples include polyester, polyurethane, acrylic resin, silicone resin, and emulsions of these polymers. The water-soluble polymer compound and the water-dispersible compound can be used singly or in combination of two or more. When a water-soluble polymer compound and a water-dispersible compound are added, the dispersion containing the conductive polymer composition can be thickened or the coating performance can be improved.
 水溶性高分子化合物及び水分散性化合物の量は、共役系導電性重合体とポリアニオンとの合計100質量部に対して、好ましくは1~4000質量部、より好ましくは50~2000質量部である。水溶性高分子化合物及び水分散性化合物の量が下限値以上であると導電性が高くなり、固体電解コンデンサのESR特性が向上する傾向がある。 The amount of the water-soluble polymer compound and the water-dispersible compound is preferably 1 to 4000 parts by mass, more preferably 50 to 2000 parts by mass with respect to a total of 100 parts by mass of the conjugated conductive polymer and the polyanion. . When the amount of the water-soluble polymer compound and the water-dispersible compound is at least the lower limit value, the conductivity tends to be high, and the ESR characteristics of the solid electrolytic capacitor tend to be improved.
 アルカリ性化合物は、分散液のpHを調整する目的で用いられる。例えば、固体電解コンデンサに使用される金属および金属酸化物の腐食を防止するために、pHを3~13にすることが好ましく。さらに好ましくはpH4~7、より更に好ましくはpH4~6に調整される。pHが3未満以上だと、アルミニウムなどを使用しても腐食の進行を抑制できる。また、pH13以下であると、導電性重合体にドープしているポリアニオンの脱ドープが起こることが防止できる。 Alkaline compounds are used for the purpose of adjusting the pH of the dispersion. For example, the pH is preferably 3 to 13 in order to prevent corrosion of metals and metal oxides used in the solid electrolytic capacitor. More preferably, the pH is adjusted to 4 to 7, and still more preferably adjusted to pH 4 to 6. When the pH is less than 3, the progress of corrosion can be suppressed even if aluminum is used. Further, when the pH is 13 or less, it is possible to prevent undoping of the polyanion doped in the conductive polymer.
 アルカリ性化合物として、公知の無機アルカリ性化合物や有機アルカリ性化合物を使用できる。無機アルカリ性化合物としては、例えば、アンモニア、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニアなどが挙げられる。有機アルカリ性化合物として、芳香族アミン、脂肪族アミン、アルカリ金属アルコキシドなどが挙げられる。 As the alkaline compound, known inorganic alkaline compounds and organic alkaline compounds can be used. Examples of the inorganic alkaline compound include ammonia, sodium hydroxide, potassium hydroxide, calcium hydroxide, ammonia and the like. Examples of the organic alkaline compound include aromatic amines, aliphatic amines, and alkali metal alkoxides.
 芳香族アミンのうち、窒素含有ヘテロアリール環化合物が好ましい。窒素含有ヘテロアリール環化合物は芳香族性を示す窒素含有ヘテロ環化合物である。芳香族アミンにおいては、ヘテロ環に含まれる窒素原子が他の原子と共役関係を持つ。 Among aromatic amines, nitrogen-containing heteroaryl ring compounds are preferred. The nitrogen-containing heteroaryl ring compound is a nitrogen-containing heterocyclic compound that exhibits aromaticity. In aromatic amines, the nitrogen atom contained in the heterocycle has a conjugated relationship with other atoms.
 窒素含有ヘテロアリール環化合物としては、ピリジン類、イミダゾール類、ピリミジン類、ピラジン類、トリアジン類などが挙げられる。これらのうち、溶媒溶解性などの観点から、ピリジン類、イミダゾール類、ピリミジン類が好ましい。 Nitrogen-containing heteroaryl ring compounds include pyridines, imidazoles, pyrimidines, pyrazines, triazines and the like. Of these, pyridines, imidazoles, and pyrimidines are preferable from the viewpoint of solvent solubility and the like.
 脂肪族アミンとしては、例えば、エチルアミン、n-オクチルアミン、ジエチルアミン、ジイソブチルアミン、メチルエチルアミン、トリメチルアミン、トリエチルアミン、アリルアミン、2-エチルアミノエタノール、2,2’-イミノジエタノール、N-エチルエチレンジアミンなどが挙げられる。 Examples of the aliphatic amine include ethylamine, n-octylamine, diethylamine, diisobutylamine, methylethylamine, trimethylamine, triethylamine, allylamine, 2-ethylaminoethanol, 2,2′-iminodiethanol, N-ethylethylenediamine, and the like. It is done.
 アルカリ金属アルコキシドとしては、例えば、ナトリウムメトキシド、ナトリウムエトキシドなどのナトリウムアルコキシド、カリウムアルコキシド、カルシウムアルコキシドなどが挙げられる。 Examples of the alkali metal alkoxide include sodium alkoxide such as sodium methoxide and sodium ethoxide, potassium alkoxide and calcium alkoxide.
 界面活性剤としては、カルボン酸塩、スルホン酸塩、硫酸エステル塩、燐酸エステル塩などの陰イオン界面活性剤;アミン塩、4級アンモニウム塩などの陽イオン界面活性剤;カルボキシベタイン、アミノカルボン酸塩、イミダゾリウムベタインなどの両性界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレングリセリン脂肪酸エステル、エチレングリコール脂肪酸エステル、ポリオキシエチレン脂肪酸アミドなどの非イオン界面活性剤などが挙げられる。 Surfactants include anionic surfactants such as carboxylates, sulfonates, sulfates and phosphates; cationic surfactants such as amine salts and quaternary ammonium salts; carboxybetaines and aminocarboxylic acids Examples include amphoteric surfactants such as salts and imidazolium betaines; nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene glycerin fatty acid esters, ethylene glycol fatty acid esters, and polyoxyethylene fatty acid amides.
 消泡剤としては、シリコーン樹脂、ポリジメチルシロキサン、シリコーンレジンなどが挙げられる。 Examples of the antifoaming agent include silicone resin, polydimethylsiloxane, and silicone resin.
 酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、りん系酸化防止剤、硫黄系酸化防止剤、糖類、ビタミン類などが挙げられる。 Examples of antioxidants include phenolic antioxidants, amine antioxidants, phosphorus antioxidants, sulfur antioxidants, sugars, and vitamins.
 電気伝導率向上剤は、分散液から得られる固体電解質層の電気伝導率を増大させるものであれば特に制限されない。電気伝導率向上剤としては、例えば、テトラヒドロフランなどのエーテル結合を含む化合物;γ-ブチロラクトン、γ-バレロラクトンなどのラクトン基を含む化合物;カプロラクタム、N-メチルカプロラクタム、N,N-ジメチルアセトアミド、N-メチルアセトアミド、N,N-ジメチルホルムアミド、N-メチルホルムアミド、N-メチルホルムアニリド、N-メチルピロリドン、N-オクチルピロリドン、ピロリドンなどのアミド若しくはラクタム基を含む化合物;テトラメチレンスルホン、ジメチルスルホキシドなどのスルホン化合物若しくはスルホキシド化合物;スクロース、グルコース、フルクトース、ラクトースなどの糖類または糖類誘導体;ソルビトール、マンニトールなどの糖アルコール類;スクシンイミド、マレイミドなどのイミド類;2-フランカルボン酸、3-フランカルボン酸などのフラン誘導体;エチレングリコール、プロピレングリコール、グリセロール、ジエチレングリコール、トリエチレングリコールなどのジアルコール若しくはポリアルコールなどが挙げられる。これらのうち、テトラヒドロフラン、N-メチルホルムアミド、N-メチルピロリドン、エチレングリコール、プロピレングリコール、ジメチルスルホキシド、ソルビトールが、電気伝導率向上の観点から特に好ましい。電気伝導率向上剤は、1種単独でまたは2種以上を組み合わせて用いることができる。
(分散液)
 本発明で用いられる分散液は、導電性重合体、ポリアニオンおよび分散媒を含む。当該分散液は、前述の添加剤を含んでいてもよい。これら導電性重合体、ポリアニオン、分散媒、および添加剤の種類および含有量は、前述のとおりである。
 分散液の固形分濃度は、好ましくは0.1~15質量%、より好ましくは0.5~10質量%、更に好ましくは1~5質量%である。
 分散液の固形分中における、導電性重合体及びポリアニオンの合計量は、好ましくは20~100質量%、より好ましくは40~90質量%、更に好ましくは50~90質量%である。
The electrical conductivity improver is not particularly limited as long as it increases the electrical conductivity of the solid electrolyte layer obtained from the dispersion. Examples of the electrical conductivity improver include compounds containing an ether bond such as tetrahydrofuran; compounds containing a lactone group such as γ-butyrolactone and γ-valerolactone; caprolactam, N-methylcaprolactam, N, N-dimethylacetamide, N -Compounds containing amide or lactam groups such as methylacetamide, N, N-dimethylformamide, N-methylformamide, N-methylformanilide, N-methylpyrrolidone, N-octylpyrrolidone, pyrrolidone; tetramethylenesulfone, dimethylsulfoxide, etc. Sulfone compounds or sulfoxide compounds; sugars or sugar derivatives such as sucrose, glucose, fructose and lactose; sugar alcohols such as sorbitol and mannitol; succinimide and maleimi And imides such as 2-furan carboxylic acid, furan derivatives such as 3-furan carboxylic acid; dialcohols such as ethylene glycol, propylene glycol, glycerol, diethylene glycol, triethylene glycol, and polyalcohols. Of these, tetrahydrofuran, N-methylformamide, N-methylpyrrolidone, ethylene glycol, propylene glycol, dimethyl sulfoxide, and sorbitol are particularly preferable from the viewpoint of improving electrical conductivity. An electrical conductivity improver can be used individually by 1 type or in combination of 2 or more types.
(Dispersion)
The dispersion used in the present invention contains a conductive polymer, a polyanion, and a dispersion medium. The dispersion may contain the aforementioned additives. The types and contents of these conductive polymers, polyanions, dispersion media, and additives are as described above.
The solid concentration of the dispersion is preferably 0.1 to 15% by mass, more preferably 0.5 to 10% by mass, and still more preferably 1 to 5% by mass.
The total amount of the conductive polymer and the polyanion in the solid content of the dispersion is preferably 20 to 100% by mass, more preferably 40 to 90% by mass, and still more preferably 50 to 90% by mass.
(分散液の製造)
 本発明の分散液は、上記分散媒中で上記単量体を重合することにより製造され、該重合の途上に、上記ポリアニオンを添加する工程を含む。
(Manufacture of dispersion)
The dispersion of the present invention is produced by polymerizing the monomer in the dispersion medium, and includes a step of adding the polyanion during the polymerization.
 上記単量体を分散媒中で重合するために、先ず、該単量体および必要に応じて添加剤を分散媒に添加し、溶解、乳化または分散させて、単量体の溶液、乳液または分散液(以下、単量体液ということがある)を得る。単量体液の調製は、ホモジナイザーなどの強力な撹拌装置によって行ってもよいが、超音波照射によって行うことが好ましい。超音波照射エネルギは、均一な単量体液が得られるのであれば、特に限定されない。超音波照射は、消費電力5~500W/Lで、0.1~2時間/L行うことが好ましい。当該消費電力は、より好ましくは1~200W/L、更に好ましくは20~100W/Lである。当該照射時間は、より好ましくは0.1~4時間/L、更に好ましくは0.5~2時間/Lである。 In order to polymerize the monomer in a dispersion medium, first, the monomer and, if necessary, an additive are added to the dispersion medium and dissolved, emulsified or dispersed, and the monomer solution, emulsion or A dispersion (hereinafter sometimes referred to as a monomer liquid) is obtained. The monomer solution may be prepared by a powerful stirring device such as a homogenizer, but it is preferably by ultrasonic irradiation. The ultrasonic irradiation energy is not particularly limited as long as a uniform monomer liquid can be obtained. The ultrasonic irradiation is preferably performed for 0.1 to 2 hours / L at a power consumption of 5 to 500 W / L. The power consumption is more preferably 1 to 200 W / L, still more preferably 20 to 100 W / L. The irradiation time is more preferably 0.1 to 4 hours / L, still more preferably 0.5 to 2 hours / L.
 重合開始前における単量体液には、重合の途上に生成する導電性重合体の凝集を抑える観点から、最終的に分散液中に含有させるポリアニオンの一部を含有させておくことが好ましい。該ポリアニオンは、上記単量体と混合し、得られた混合物を分散媒中にて溶解、乳化または分散させることによって、単量体液に含有させることができる。重合開始前における単量体液に含有させるポリアニオンの量は、分散液中のポリアニオンの総量の0~99質量%が好ましく、10~90質量%がより好ましく、20~80質量%がさらに好ましく、40~70質量%がよりさらに好ましい。 From the viewpoint of suppressing aggregation of the conductive polymer generated during the polymerization, the monomer liquid before the start of polymerization preferably contains a part of the polyanion finally contained in the dispersion. The polyanion can be contained in the monomer liquid by mixing with the monomer and dissolving, emulsifying or dispersing the resulting mixture in a dispersion medium. The amount of the polyanion to be contained in the monomer liquid before the start of polymerization is preferably 0 to 99% by mass, more preferably 10 to 90% by mass, still more preferably 20 to 80% by mass, based on the total amount of polyanions in the dispersion. More preferably, it is ˜70% by mass.
 例えば、ポリピロール類やポリチオフェン類を導電性重合体として含む分散液を製造する場合、単量体の重合は、酸化剤の存在下に所定の温度にすることによって開始される。酸化剤としては、ペルオキノニ硫酸アンモニウム、ペルオキソニ硫酸ナトリウム、ペルオキソニ硫酸カリウムなどのペルオキソニ硫酸塩;三フッ化ホウ素などの金属ハロゲン化合物; p―トルエンスルホン酸鉄(III)、塩化第二鉄、硫酸第二鉄、塩化第二銅などの遷移金属化合物;酸化銀、酸化セシウムなどの金属酸化物;過酸化水素、オゾンなどの過酸化物;過酸化ベンゾイル等の有機過酸化物;酸素などが挙げられる。これらのうちペルオキソニ硫酸塩が好ましい。 For example, in the case of producing a dispersion containing polypyrroles or polythiophenes as a conductive polymer, the polymerization of the monomer is started by bringing the monomer to a predetermined temperature in the presence of an oxidizing agent. As oxidizing agents, peroxodisulfates such as ammonium peroxynonisulfate, sodium peroxodisulfate, and potassium peroxodisulfate; metal halogen compounds such as boron trifluoride; And transition metal compounds such as cupric chloride; metal oxides such as silver oxide and cesium oxide; peroxides such as hydrogen peroxide and ozone; organic peroxides such as benzoyl peroxide; oxygen and the like. Of these, peroxodisulfate is preferred.
 本発明においては、重合の途上にポリアニオンを重合反応液に添加する。この方法で、重合中に粘度が上昇しすぎることなく、導電性に優れた導電性重合体を得ることができるため、多孔質体への含浸性および塗布性に優れた分散液を得ることができ、また導電性に優れた固体電解質層を形成することができる。また主鎖が規則的に長く成長した導電性重合体にポリアニオンが確実にドープされるので、高周波特性に優れた固体電解コンデンサが製造できる。
 重合途上(重合開始後)における分散媒に添加するポリアニオンの量は、分散媒に含有させるポリアニオンの総量の1~99質量%が好ましく、20~80質量%がより好ましく、20~60質量%がさらに好ましく、30~50質量%がよりさらに好ましい。
In the present invention, a polyanion is added to the polymerization reaction solution during the polymerization. By this method, it is possible to obtain a conductive polymer having excellent conductivity without excessively increasing the viscosity during the polymerization, so that it is possible to obtain a dispersion having excellent impregnation and coating properties for the porous body. In addition, a solid electrolyte layer having excellent conductivity can be formed. In addition, since the polyanion is reliably doped into the conductive polymer having a regularly long main chain, a solid electrolytic capacitor having excellent high frequency characteristics can be manufactured.
The amount of the polyanion added to the dispersion medium during the polymerization (after the start of polymerization) is preferably 1 to 99% by mass, more preferably 20 to 80% by mass, and more preferably 20 to 60% by mass of the total amount of polyanions contained in the dispersion medium. More preferably, 30 to 50% by mass is even more preferable.
 ポリアニオンの添加は、急激なポリアニオン濃度の上昇を抑えるために、連続的または断続的に行うことが好ましい。また、重合反応液に添加したポリアニオンが均一に混ざり合うようにするために、ポリアニオン溶液にして添加することが好ましい。  The addition of the polyanion is preferably performed continuously or intermittently in order to suppress a rapid increase in the polyanion concentration. Moreover, in order to mix the polyanion added to the polymerization reaction solution uniformly, it is preferable to add it as a polyanion solution. *
 該溶液には重合反応液に使用している分散媒を含むものを溶媒として用いることが好ましい。ポリアニオンの添加速度は、反応装置の規模によっても異なるので、一概に決められないが、上記単量体100質量部に対して、通常、1~1000質量部/時間、より好ましくは5~100質量部/時間、さらに好ましくは10~50質量部/時間である。 It is preferable to use as the solvent a solution containing a dispersion medium used in the polymerization reaction solution. The rate of addition of the polyanion varies depending on the scale of the reaction apparatus, and thus cannot be generally determined, but is usually 1 to 1000 parts by mass / hour, more preferably 5 to 100 parts by mass with respect to 100 parts by mass of the monomer. Part / hour, more preferably 10 to 50 parts by weight / hour.
 重合時の温度は通常、5~80℃であり、より好ましくは10~50℃であり、さらに好ましくは12~35℃である。重合時の温度をこの範囲内にすると、適度な反応速度で重合を行うことができ、粘度の上昇を抑えることができ、導電性重合体組成物を含む分散液の製造を安定的に且つ経済的な時間で行うことができ、且つ得られる導電性重合体の導電率が高くなる傾向がある。重合時の温度は、公知のヒータやクーラを用いることにより管理することができる。また必要に応じ、上記範囲内で温度を変化させながら重合を行つてもよい。 The temperature during polymerization is usually 5 to 80 ° C., more preferably 10 to 50 ° C., and further preferably 12 to 35 ° C. When the temperature during polymerization is within this range, polymerization can be carried out at an appropriate reaction rate, increase in viscosity can be suppressed, and production of a dispersion containing a conductive polymer composition can be carried out stably and economically. And the conductivity of the resulting conductive polymer tends to be high. The temperature at the time of superposition | polymerization can be managed by using a well-known heater and a cooler. Moreover, you may superpose | polymerize, changing temperature within the said range as needed.
 分散液を製造する際は、重合の途上に、生成する導電性重合体を分散処理することが好ましい。この分散処理は、ホモジナイザーなどの強力な撹拌装置によって行うこともできるが、超音波照射によって行うことが好ましい。この分散処理によって、長い主鎖を有する導電性重合体の凝集を抑制することができる。超音波照射エネルギは、導電性重合体の凝集を抑制することができる限り、特に限定されない。超音波照射は、前述した消費電力で、反応終了時まで行うことが好ましい。 When producing the dispersion, it is preferable to disperse the produced conductive polymer during the polymerization. This dispersion treatment can be performed by a powerful stirring device such as a homogenizer, but is preferably performed by ultrasonic irradiation. By this dispersion treatment, aggregation of the conductive polymer having a long main chain can be suppressed. The ultrasonic irradiation energy is not particularly limited as long as aggregation of the conductive polymer can be suppressed. The ultrasonic irradiation is preferably performed until the end of the reaction with the above-described power consumption.
(分散液の粘度)
[固体電解コンデンサの製造方法]
 本発明の固体電解コンデンサは、上記多孔質体の表面に、導電性重合体、ポリアニオンおよび分散媒を含む分散液を付与する工程と、該分散媒の一部もしくは全部を取り除くことより、固体電解質層を形成する工程とを含む製造方法により製造される。
(Viscosity of dispersion)
[Method of manufacturing solid electrolytic capacitor]
The solid electrolytic capacitor of the present invention includes a step of applying a dispersion containing a conductive polymer, a polyanion, and a dispersion medium to the surface of the porous body, and removing a part or all of the dispersion medium to obtain a solid electrolyte. And a step of forming a layer.
(分散液の付与)
 上記分散液を、上記多孔質体の表面に付与する方法としては特に制限はなく、多孔質体を分散液に含浸する方法や、多孔質体の表面に分散液を塗布する方法を用いることができる。
 また上記分散液は、1回または2回以上付与することができる。
(Dispersion application)
The method for applying the dispersion to the surface of the porous body is not particularly limited, and a method of impregnating the porous body with the dispersion or a method of applying the dispersion to the surface of the porous body may be used. it can.
The dispersion can be applied once or twice or more.
(分散媒の除去)
 分散媒の除去は、加熱処理によって行うと、効率がよく、好ましい。加熱条件は、導電性高分子が酸化劣化しない範囲とすることが好ましく、分散媒の沸点や揮発性により適宜、決めることができる。通常、加熱温度は20~300℃、好ましくは50~200℃、更に好ましくは80~150℃である。加熱処理時間は、好ましくは1秒~10時間、より好ましくは5秒から2時間、更に好ましくは10分~1時間とすることが好ましい。
(Removal of dispersion medium)
The removal of the dispersion medium is preferably carried out by heat treatment because it is efficient. The heating condition is preferably set in a range in which the conductive polymer does not undergo oxidative deterioration, and can be appropriately determined depending on the boiling point and volatility of the dispersion medium. Usually, the heating temperature is 20 to 300 ° C, preferably 50 to 200 ° C, more preferably 80 to 150 ° C. The heat treatment time is preferably 1 second to 10 hours, more preferably 5 seconds to 2 hours, still more preferably 10 minutes to 1 hour.
 加熱処理には固体電解コンデンサの製造に用いられる公知の手段を用いることができ、例えば、ホットプレート、オーブン、熱風乾燥機等を用いることができる。加熱処理は大気下で行ってもよいし、分散媒を迅速に除去するために減圧下で行ってもよい。 For the heat treatment, a known means used for producing a solid electrolytic capacitor can be used, and for example, a hot plate, an oven, a hot air dryer or the like can be used. The heat treatment may be performed in the air, or may be performed under reduced pressure in order to quickly remove the dispersion medium.
 上記分散媒を付与する工程を、2回以上繰り返す場合は、付与ごとに加熱処理を行い、分散媒を除去してもよいし、複数回の付与を行った後、最後に分散媒を除去してもよい。 When the step of applying the dispersion medium is repeated twice or more, heat treatment may be performed for each application, and the dispersion medium may be removed, or after applying a plurality of times, the dispersion medium is finally removed. May be.
(その他の工程)
 本発明の固体電解コンデンサの製造方法は、上記した工程以外にも、固体電解コンデンサを製造する際に行われる、公知の工程を含むことができる。例えば、分散媒を一部または全部除去して形成した固体電解質層の空隙に、さらに任意の電解液を含浸することもできる。
(Other processes)
The manufacturing method of the solid electrolytic capacitor of this invention can include the well-known process performed when manufacturing a solid electrolytic capacitor besides the above-mentioned process. For example, an arbitrary electrolytic solution can be further impregnated in the voids of the solid electrolyte layer formed by removing part or all of the dispersion medium.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples.
(導電性重合体を含む分散液の製造)
(製造例1)
 イオン交換水733.3g、ポリスチレンスルホン酸ナトリウム(東ソー有機化学(株)製、商品名ポリナス(PS-50)、固形分濃度:20質量%、重量平均分子量:約2.3×105、以下PSS-Naともいう)81.5gを水に溶解させてポリスチレンスルホン酸ナトリウム2質量%水溶液を調製した。
(Manufacture of dispersion liquid containing conductive polymer)
(Production Example 1)
733.3 g of ion-exchanged water, sodium polystyrene sulfonate (manufactured by Tosoh Organic Chemical Co., Ltd., trade name Polynas (PS-50), solid content concentration: 20 mass%, weight average molecular weight: about 2.3 × 10 5 , below 81.5 g (also referred to as PSS-Na) was dissolved in water to prepare a 2% by weight aqueous solution of sodium polystyrenesulfonate.
 イオン交換水4288質量部、ポリスチレンスルホン酸ナトリウム2質量%水溶液7498質量部、およびp―トルエンスルホン酸鉄(III)6水和物2質量%水溶液(シグマアルドリッチ社製)420質量部を27℃ にて混ぜ合わせた。この溶液に27℃ にて超音波を照射しながら3,4-エチレンジオキシチオフェン(東京化成(株)製)100質量部を添加し混ぜ合わせた。 4288 parts by weight of ion-exchanged water, 7498 parts by weight of a 2% by weight aqueous solution of sodium polystyrene sulfonate, and 420 parts by weight of a 2% by weight aqueous solution of iron (III) p-toluenesulfonate hexahydrate (manufactured by Sigma-Aldrich Co.) And mixed. To this solution, 100 parts by mass of 3,4-ethylenedioxythiophene (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and mixed while irradiating ultrasonic waves at 27 ° C.
 得られた混合液に27℃ にて撹拌翼による撹拌と超音波照射とをしながらペルオキソニ硫酸ナトリウム(関東化学(株)製)210質量部を添加して重合反応を開始させた。次いで、ポリスチレンスルホン酸ナトリウム2質量%水溶液4999質量部を4時間かけて滴下した。その後、27℃ にて4時間撹拌翼による撹拌と超音波照射とをしながら反応させた。なお、超音波照射の消費電力は300W(50W/L)であり、照射時間は8時間(1.3時間/L)である。 To the obtained mixed solution, 210 parts by mass of sodium peroxodisulfate (manufactured by Kanto Chemical Co., Inc.) was added while stirring with a stirring blade and ultrasonic irradiation at 27 ° C. to initiate the polymerization reaction. Next, 4999 parts by mass of a 2% by weight aqueous sodium polystyrenesulfonate solution was added dropwise over 4 hours. Then, it was made to react, stirring with a stirring blade and ultrasonic irradiation for 4 hours at 27 degreeC. Note that the power consumption of ultrasonic irradiation is 300 W (50 W / L), and the irradiation time is 8 hours (1.3 hours / L).
 反応終了後、得られた反応液に陽イオン交換樹脂1100質量部および陰イオン交換樹脂1100質量部を添加して、反応液を12時間撹拌することによって、未反応モノマー、酸化剤および酸化触媒をイオン交換樹脂に吸着させた。該イオン交換樹脂をろ別して、ポリ(3,4-エチレンジオキシチオフェン)とそれにドープしたポリスチレンスルホン酸を含有してなる導電性重合体組成物を含む分散液を得た。この分散液の固形分濃度は2.0質量%、粘度は150mPa・s、pHは1.9であった。 After completion of the reaction, 1100 parts by mass of cation exchange resin and 1100 parts by mass of anion exchange resin are added to the resulting reaction solution, and the reaction solution is stirred for 12 hours, thereby removing unreacted monomers, oxidizing agent and oxidation catalyst. Adsorbed on an ion exchange resin. The ion exchange resin was filtered off to obtain a dispersion containing a conductive polymer composition containing poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid doped therein. This dispersion had a solid content concentration of 2.0% by mass, a viscosity of 150 mPa · s, and a pH of 1.9.
 次いで、上記導電性重合体組成物を含む分散液100質量部を撹拌しながら、アンモニア水を添加し、さらに、エチレングリコール10質量部を添加することで、分散液1を得た。この分散液のpHは4.5であった。 Next, while stirring 100 parts by mass of the dispersion containing the conductive polymer composition, ammonia water was added, and further 10 parts by mass of ethylene glycol was added to obtain dispersion 1. The pH of this dispersion was 4.5.
(製造例2)
 ポリスチレンスルホン酸ナトリウム2質量%水溶液を、和光純薬工業社製ポリスチレンスルホン酸20質量%水溶液を希釈して調製したポリスチレンスルホン酸水溶液2質量%水溶液に変えた以外は分散液1と同じ方法にて導電性重合体組成物を含む分散液2を製造した。この分散液のpHは4.5であった。
(製造例3)
 40℃で重合反応を行ったこと以外は分散液1と同じ方法にて導電性重合体組成物を含む分散液3を製造した。この分散液のpHは4.5であった。
(製造例4)
 15℃で重合反応を行ったこと以外は分散液1と同じ方法にて導電性重合体組成物を含む分散液4を製造した。この分散液のpHは4.5であった。
(Production Example 2)
The same method as in dispersion 1 except that the 2% by weight aqueous solution of sodium polystyrenesulfonate was changed to a 2% by weight aqueous solution of polystyrenesulfonic acid prepared by diluting a 20% by weight aqueous solution of polystyrenesulfonic acid manufactured by Wako Pure Chemical Industries, Ltd. Dispersion 2 containing a conductive polymer composition was produced. The pH of this dispersion was 4.5.
(Production Example 3)
Dispersion 3 containing the conductive polymer composition was produced in the same manner as dispersion 1, except that the polymerization reaction was performed at 40 ° C. The pH of this dispersion was 4.5.
(Production Example 4)
Dispersion 4 containing the conductive polymer composition was produced in the same manner as dispersion 1, except that the polymerization reaction was carried out at 15 ° C. The pH of this dispersion was 4.5.
(比較製造例1)
 反応途上でポリスチレンスルホン酸を添加することなく、27℃にて10時間撹拌翼による撹拌と超音波照射とをし続け反応させた他は分散液1と同様にして、導電性重合体組成物を含む比較分散液1を得た。この比較分散液のpHは4.5であった。
(比較製造例2)
 反応途上でポリスチレンスルホン酸を添加することなく、27℃にて10時間撹拌翼による撹拌と超音波照射とをし続け反応させた他は分散液2と同様にして、導電性重合体組成物を含む比較分散液2を得た。この比較分散液のpHは4.5であった。
(比較製造例3)
 40℃で重合反応を行ったこと以外は比較分散液1と同じ方法にて導電性重合体組成物を含む比較分散液3を製造した。この比較分散液のpHは4.5であった。
(比較製造例4)
 15℃で重合反応を行ったこと以外は比較分散液1と同じ方法にて導電性重合体組成物を含む比較分散液4を製造した。この比較分散液のpHは4.5であった。
(Comparative Production Example 1)
A conductive polymer composition was prepared in the same manner as in the dispersion 1 except that the reaction was continued by stirring with a stirring blade and ultrasonic irradiation at 27 ° C. for 10 hours without adding polystyrene sulfonic acid during the reaction. A comparative dispersion 1 containing was obtained. The pH of this comparative dispersion was 4.5.
(Comparative Production Example 2)
A conductive polymer composition was prepared in the same manner as in the dispersion 2 except that the reaction was continued by stirring with a stirring blade and ultrasonic irradiation at 27 ° C. for 10 hours without adding polystyrene sulfonic acid during the reaction. A comparative dispersion 2 containing was obtained. The pH of this comparative dispersion was 4.5.
(Comparative Production Example 3)
Comparative dispersion 3 containing a conductive polymer composition was produced in the same manner as comparative dispersion 1, except that the polymerization reaction was performed at 40 ° C. The pH of this comparative dispersion was 4.5.
(Comparative Production Example 4)
Comparative dispersion 4 containing a conductive polymer composition was produced in the same manner as comparative dispersion 1, except that the polymerization reaction was carried out at 15 ° C. The pH of this comparative dispersion was 4.5.
(実施例1~4および比較例1~4)
(多孔質体の形成)
 固体電解コンデンサに用いる多孔質体として、特開2011-77257号公報の製造例1に記載の方法により、コンデンサ用ニオブ粉末を用いて、陽極体表面に五酸化二ニオブからなる誘電体被膜が形成された多孔質体を作製した。
 すなわち、公称CV積150,000μF・V/gのコンデンサ用ニオブ粉末20mgをニオブ線とともに成形し、2mm×2mm×1.4mmの成形体を作成した。なお、ニオブ線は、2mm×1.4mmの面に植設されるようにした。該ニオブ線が陽極リード線である。この成形体を、4×10-3Paの減圧下、1215℃で30分間焼成して、焼結させた。得られた焼結体、すなわち陽極体を、80℃の1質量%リン酸水溶液中に漬け、30Vで2時間化成処理を行なった。陽極体表面に五酸化二ニオブを含有する誘電体層が形成された。
(Examples 1 to 4 and Comparative Examples 1 to 4)
(Formation of porous material)
As a porous body used for a solid electrolytic capacitor, a niobium powder for a capacitor is used to form a dielectric film made of niobium pentoxide on the surface of the anode body by the method described in Production Example 1 of JP2011-77257A. A porous body was produced.
That is, 20 mg of niobium powder for capacitors having a nominal CV product of 150,000 μF · V / g was molded together with a niobium wire to produce a molded body of 2 mm × 2 mm × 1.4 mm. The niobium wire was planted on a 2 mm × 1.4 mm surface. The niobium wire is an anode lead wire. This molded body was fired at 1215 ° C. for 30 minutes under a reduced pressure of 4 × 10 −3 Pa to be sintered. The obtained sintered body, that is, the anode body was immersed in a 1% by mass phosphoric acid aqueous solution at 80 ° C. and subjected to chemical conversion treatment at 30 V for 2 hours. A dielectric layer containing niobium pentoxide was formed on the surface of the anode body.
 この多孔質体の30%硫酸中での静電容量を、「EIAJ規格RC2361A」(2000年2月改正)に記載の方法で測定したところ、80μFであった。 The capacitance of this porous material in 30% sulfuric acid was measured by the method described in “EIAJ Standard RC2361A” (revised in February 2000), and was 80 μF.
(分散液の含浸)
 上記の多孔質体を25℃の大気下で、表2に示す分散液に1分間含浸させた後、110℃の熱風乾燥機で30分間乾燥した。次いでカーボンペースト(田中貴金属(株)製品名;TC-8260)を陽極リード端子に接触しないよう多孔質体全面を覆うように塗布、乾燥させ、さらに、陰極の接点をとるために銀ペースト(田中貴金属(株)製 品名;TS-8205)を陽極リード端子に接触しないよう多孔質体全面を覆うように塗布、乾燥させた。
(Impregnation of dispersion)
The porous body was impregnated with the dispersion shown in Table 2 for 1 minute in an atmosphere at 25 ° C., and then dried with a hot air dryer at 110 ° C. for 30 minutes. Next, carbon paste (Tanaka Kikinzoku Co., Ltd. product name: TC-8260) is applied and dried so as to cover the entire surface of the porous body so as not to contact the anode lead terminal. Noble Metal Co., Ltd. product name: TS-8205) was applied and dried so as to cover the entire porous body so as not to contact the anode lead terminal.
 得られた固体電解コンデンサの120Hzでの静電容量および100kHzでの等価直列抵抗(ESR)の測定結果を表1に示す。 Table 1 shows the measurement results of the capacitance at 120 Hz and the equivalent series resistance (ESR) at 100 kHz of the obtained solid electrolytic capacitor.
 表1に示すとおり、実施例1と比較例1とは、分散液の製造に用いられるポリアニオンの総量は同量であるが、実施例1ではポリアニオンの一部を重合中に分散媒に添加しているのに対して、比較例1ではポリアニオンの全部を重合前に分散媒に添加している。実施例1と比較例1とは、このようにポリアニオンを分散媒に添加するタイミングを異ならせたこと以外は同様の操作を行っている。そして、実施例1の方が比較例1よりも、静電容量が大きく、また等価直列抵抗が小さい値となっている。同様に、実施例2~4と比較例2~4も、それぞれ、ポリアニオンを分散媒に添加するタイミングを変えたこと以外は同様の操作を行っている。そして、重合中にポリアニオンを添加した実施例2~4の方が、重合中にポリアニオンを添加しなかった比較例2~4よりも、静電容量が大きく、また等価直列抵抗が小さい値となっている。
 表1より、本発明の固体電解コンデンサは、静電容量が大きく、等価直列抵抗が小さいことが分かる。
As shown in Table 1, in Example 1 and Comparative Example 1, the total amount of polyanions used for producing the dispersion is the same, but in Example 1, a part of the polyanions was added to the dispersion medium during the polymerization. In contrast, in Comparative Example 1, all of the polyanion is added to the dispersion medium before polymerization. In Example 1 and Comparative Example 1, the same operation is performed except that the timing of adding the polyanion to the dispersion medium is changed. Then, Example 1 has a larger capacitance and a smaller equivalent series resistance than Comparative Example 1. Similarly, in Examples 2 to 4 and Comparative Examples 2 to 4, the same operation is performed except that the timing of adding the polyanion to the dispersion medium is changed. In Examples 2 to 4 in which the polyanion was added during the polymerization, the capacitance was larger and the equivalent series resistance was smaller than those in Comparative Examples 2 to 4 in which the polyanion was not added during the polymerization. ing.
Table 1 shows that the solid electrolytic capacitor of the present invention has a large capacitance and a small equivalent series resistance.
Figure JPOXMLDOC01-appb-T000005
                                                                         
Figure JPOXMLDOC01-appb-T000005
                                                                         

Claims (16)

  1.  弁金属からなる陽極体と該陽極体表面に形成された誘電体被膜とを少なくとも有する多孔質体と、多孔質体の表面に形成された固体電解質とを有する固体電解コンデンサであって、
     前記固体電解質は、導電性重合体、ポリアニオンおよび分散媒を含む分散液から分散媒の一部もしくは全部を除去して形成されたものであり、
     前記分散液は、前記分散媒中で単量体を重合することにより製造されたものであって、該重合の途上に、ポリアニオンを添加する工程を含むことを特徴とする固体電解コンデンサ。
    A solid electrolytic capacitor having a porous body having at least an anode body made of a valve metal and a dielectric coating formed on the surface of the anode body, and a solid electrolyte formed on the surface of the porous body,
    The solid electrolyte is formed by removing a part or all of a dispersion medium from a dispersion liquid containing a conductive polymer, a polyanion and a dispersion medium.
    The dispersion liquid is produced by polymerizing a monomer in the dispersion medium, and includes a step of adding a polyanion in the course of the polymerization.
  2.    前記単量体が、下記式(I)で表されるチオフェン誘導体である、請求項1に記載の固体電解コンデンサ。
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、R1およびR2は、各々独立に、水素原子、置換基を有してもよい炭素数1~18のアルキル基、置換基を有してもよい炭素数1~18のアルコキシ基、若しくは置換基を有してもよい炭素数1~18のアルキルチオ基を表す。または、R1およびR2は、R1とR2とが結合し且つR1とR2が結合する各炭素原子と一緒になって、置換基を有してもよい炭素数3~10の脂環、置換基を有してもよい炭素数6~10の芳香環、置換基を有してもよい炭素数2~10の酸素原子含有複素環、置換基を有してもよい炭素数2~10のイオウ原子含有複素環、若しくは置換基を有してもよい炭素数2~10のイオウ原子および酸素原子含有複素環を表す。)
    The solid electrolytic capacitor according to claim 1, wherein the monomer is a thiophene derivative represented by the following formula (I).
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (I), R 1 and R 2 each independently represents a hydrogen atom, an optionally substituted alkyl group having 1 to 18 carbon atoms, or an optionally substituted carbon group having 1 to 18 represents an alkoxy group having 18 or an optionally substituted alkylthio group having 1 to 18 carbon atoms, or R 1 and R 2 are a combination of R 1 and R 2 and R 1 and R 2 being Along with each carbon atom to be bonded, an alicyclic ring having 3 to 10 carbon atoms which may have a substituent, an aromatic ring having 6 to 10 carbon atoms which may have a substituent, and a substituent A C2-C10 oxygen atom-containing heterocycle, a C2-C10 sulfur atom-containing heterocycle which may have a substituent, or a C2-C10 which may have a substituent Represents a heterocycle containing a sulfur atom and an oxygen atom.)
  3.  前記ポリアニオンが、スルホン酸またはその塩からなる基を有するポリマーである、請求項1又は2に記載の固体電解コンデンサ。 The solid electrolytic capacitor according to claim 1 or 2, wherein the polyanion is a polymer having a group consisting of sulfonic acid or a salt thereof.
  4.  前記重合の途上に、超音波照射を行うことを特徴とする、請求項1~3のいずれか1項に記載の固体電解コンデンサ。 4. The solid electrolytic capacitor according to claim 1, wherein ultrasonic irradiation is performed in the course of the polymerization.
  5.  弁金属からなる陽極体と、該陽極体表面に形成された誘電体被膜とを少なくとも有する多孔質体の表面に、導電性重合体、ポリアニオンおよび分散媒を含む分散液を付与する工程と、
     前記分散媒の一部もしくは全部を取り除くことより、固体電解質を形成する工程とを含む固体電解コンデンサの製造方法であって、
     前記分散液は、前記分散媒中で単量体を重合することにより製造されたものであって、該重合の途上に、ポリアニオンを添加する工程を含むことを特徴とする固体電解コンデンサの製造方法。
    Applying a dispersion containing a conductive polymer, a polyanion, and a dispersion medium to the surface of a porous body having at least an anode body made of a valve metal and a dielectric coating formed on the surface of the anode body;
    A method of producing a solid electrolytic capacitor comprising a step of forming a solid electrolyte by removing a part or all of the dispersion medium,
    The dispersion is produced by polymerizing a monomer in the dispersion medium, and includes a step of adding a polyanion in the course of the polymerization. .
  6.  前記分散液は、酸化剤の存在下に前記単量体の重合を開始させる工程と、該重合途上に、ポリアニオンを添加する工程を含むことを特徴とする、請求項5に記載の固体電解コンデンサの製造方法。 The solid electrolytic capacitor according to claim 5, wherein the dispersion includes a step of initiating polymerization of the monomer in the presence of an oxidizing agent, and a step of adding a polyanion during the polymerization. Manufacturing method.
  7.  前記単量体の重合途上に、前記ポリアニオンの総量の1~100質量%を前記分散媒に添加する、請求項5又は6に記載の固体電解コンデンサの製造方法。 The method for producing a solid electrolytic capacitor according to claim 5 or 6, wherein 1 to 100% by mass of the total amount of the polyanion is added to the dispersion medium during the polymerization of the monomer.
  8.  前記単量体の重合途上に、前記ポリアニオンの総量の20~80質量%を前記分散媒に添加する、請求項5~7のいずれか1項に記載の固体電解コンデンサの製造方法。 The method for producing a solid electrolytic capacitor according to any one of claims 5 to 7, wherein 20 to 80% by mass of the total amount of the polyanion is added to the dispersion medium during the polymerization of the monomer.
  9.  前記単量体の重合開始前に、前記ポリアニオンの総量の0~99質量%を前記分散媒に添加する、請求項5~8のいずれか1項に記載の固体電解コンデンサの製造方法。 The method for producing a solid electrolytic capacitor according to any one of claims 5 to 8, wherein 0 to 99 mass% of the total amount of the polyanion is added to the dispersion medium before the polymerization of the monomer is started.
  10.  前記単量体の重合開始前に、前記ポリアニオンの総量20~80質量%を前記分散媒に添加する、請求項5~9のいずれか1項に記載の固体電解コンデンサの製造方法。 The method for producing a solid electrolytic capacitor according to any one of claims 5 to 9, wherein a total amount of the polyanion of 20 to 80% by mass is added to the dispersion medium before the polymerization of the monomer is started.
  11.  前記分散媒中における前記単量体の重合時に、前記分散媒への前記ポリアニオンを連続的に又は断続的に添加する、請求項5~10のいずれか1項に記載の固体電解コンデンサの製造方法。 The method for producing a solid electrolytic capacitor according to any one of claims 5 to 10, wherein the polyanion is continuously or intermittently added to the dispersion medium during polymerization of the monomer in the dispersion medium. .
  12.  前記分散媒中における前記単量体の重合途上における、前記分散媒への前記ポリアニオンの添加速度は、前記分散媒中の前記単量体100質量部に対して、1~1000質量部/時間である、請求項5~11のいずれか1項に記載の固体電解コンデンサの製造方法。 The rate of addition of the polyanion to the dispersion medium during the polymerization of the monomer in the dispersion medium is 1 to 1000 parts by mass / hour with respect to 100 parts by mass of the monomer in the dispersion medium. The method for producing a solid electrolytic capacitor according to any one of claims 5 to 11, wherein:
  13.  前記分散媒中における前記単量体の重合途上における、前記分散媒への前記ポリアニオンの添加速度は、前記分散媒中の前記単量体100質量部に対して、10~100質量部/時間である、請求項5~12のいずれか1項に記載の固体電解コンデンサの製造方法。 The rate of addition of the polyanion to the dispersion medium during the polymerization of the monomer in the dispersion medium is 10 to 100 parts by mass / hour with respect to 100 parts by mass of the monomer in the dispersion medium. The method for producing a solid electrolytic capacitor according to any one of claims 5 to 12.
  14.  重合時の温度が5~80℃である、請求項5~13のいずれか1項に記載の固体電解コンデンサの製造方法。 The method for producing a solid electrolytic capacitor according to any one of claims 5 to 13, wherein the temperature during polymerization is 5 to 80 ° C.
  15.  前記重合の途上に、超音波照射を行う、請求項5~14のいずれか1項に記載の固体電解コンデンサの製造方法。 15. The method for producing a solid electrolytic capacitor according to claim 5, wherein ultrasonic irradiation is performed in the course of the polymerization.
  16.  前記重合の途上に、攪拌翼による撹拌と超音波照射を行う、請求項5~15のいずれか1項に記載の固体電解コンデンサの製造方法。 16. The method for producing a solid electrolytic capacitor according to claim 5, wherein stirring with a stirring blade and ultrasonic irradiation are performed during the polymerization.
PCT/JP2014/055511 2013-03-05 2014-03-04 Solid electrolyte capacitor and method for producing same WO2014136796A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015504342A JP6408459B2 (en) 2013-03-05 2014-03-04 Solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013042654 2013-03-05
JP2013-042654 2013-03-05

Publications (1)

Publication Number Publication Date
WO2014136796A1 true WO2014136796A1 (en) 2014-09-12

Family

ID=51491311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055511 WO2014136796A1 (en) 2013-03-05 2014-03-04 Solid electrolyte capacitor and method for producing same

Country Status (3)

Country Link
JP (1) JP6408459B2 (en)
TW (1) TWI632571B (en)
WO (1) WO2014136796A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016192425A (en) * 2015-03-30 2016-11-10 カーリットホールディングス株式会社 Conductive polymer dispersed liquid and use thereof
WO2019044044A1 (en) * 2017-08-31 2019-03-07 昭和電工株式会社 Method for manufacturing solid electrolytic capacitor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10658121B2 (en) * 2017-10-18 2020-05-19 Kemet Electronics Corporation Process for forming a solid electrolytic capacitor
WO2019130677A1 (en) * 2017-12-25 2019-07-04 昭和電工株式会社 Liquid dispersion composition for solid electrolytic capacitor production, and production method for solid electrolytic capacitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320897A (en) * 1996-05-31 1997-12-12 Hitachi Aic Inc Manufacture of solid-electrolytic capacitor
JPH1036687A (en) * 1996-07-18 1998-02-10 Nec Corp Conductive polymer compound, solid electrolyte capacitor using the same and its production
JPH11326375A (en) * 1998-05-19 1999-11-26 Nec Corp Manufacture of contact pin for inspecting printed wiring board
JP2006278794A (en) * 2005-03-30 2006-10-12 Shin Etsu Polymer Co Ltd Solid electrolytic capacitor and its manufacturing method
WO2012140881A1 (en) * 2011-04-13 2012-10-18 パナソニック株式会社 Process for producing solution having electrically conductive polymer dispersed therein, and electrolytic capacitor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7163746B2 (en) * 2002-06-12 2007-01-16 Eastman Kodak Company Conductive polymers on acicular substrates

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320897A (en) * 1996-05-31 1997-12-12 Hitachi Aic Inc Manufacture of solid-electrolytic capacitor
JPH1036687A (en) * 1996-07-18 1998-02-10 Nec Corp Conductive polymer compound, solid electrolyte capacitor using the same and its production
JPH11326375A (en) * 1998-05-19 1999-11-26 Nec Corp Manufacture of contact pin for inspecting printed wiring board
JP2006278794A (en) * 2005-03-30 2006-10-12 Shin Etsu Polymer Co Ltd Solid electrolytic capacitor and its manufacturing method
WO2012140881A1 (en) * 2011-04-13 2012-10-18 パナソニック株式会社 Process for producing solution having electrically conductive polymer dispersed therein, and electrolytic capacitor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016192425A (en) * 2015-03-30 2016-11-10 カーリットホールディングス株式会社 Conductive polymer dispersed liquid and use thereof
WO2019044044A1 (en) * 2017-08-31 2019-03-07 昭和電工株式会社 Method for manufacturing solid electrolytic capacitor
CN111052280A (en) * 2017-08-31 2020-04-21 昭和电工株式会社 Method for manufacturing solid electrolytic capacitor
JPWO2019044044A1 (en) * 2017-08-31 2020-08-13 昭和電工株式会社 Method for manufacturing solid electrolytic capacitor
CN111052280B (en) * 2017-08-31 2022-08-23 昭和电工株式会社 Method for manufacturing solid electrolytic capacitor
US11591480B2 (en) 2017-08-31 2023-02-28 Showa Denko K.K. Method for manufacturing solid electrolytic capacitor
JP7298475B2 (en) 2017-08-31 2023-06-27 株式会社レゾナック Manufacturing method of solid electrolytic capacitor

Also Published As

Publication number Publication date
JP6408459B2 (en) 2018-10-17
TWI632571B (en) 2018-08-11
TW201447943A (en) 2014-12-16
JPWO2014136796A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6539913B2 (en) Method of manufacturing solid electrolytic capacitor
JP5891160B2 (en) Capacitor and manufacturing method thereof
JP6271507B2 (en) Process for producing conductive polymer-containing dispersion
JP7298475B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007184318A (en) Method of manufacturing solid-state electrolytic capacitor
JP6408459B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5202806B2 (en) Manufacturing method of solid electrolytic capacitor
CN111527574B (en) Dispersion composition for producing solid electrolytic capacitor and method for producing solid electrolytic capacitor
JP6291419B2 (en) Method for producing dispersion containing conductive polymer composition and dispersion containing conductive polymer composition
JP7131941B2 (en) Method for producing dispersion containing conjugated conductive polymer, method for producing solid electrolytic capacitor, and solid electrolytic capacitor
CN111937106B (en) Method for producing solid electrolytic capacitor, and method for producing dispersion liquid containing conjugated conductive polymer
JP2024025961A (en) Liquid containing conductive polymer and its manufacturing method, and capacitor and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504342

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14760976

Country of ref document: EP

Kind code of ref document: A1