WO2014136585A1 - Measurement system, integrated controller, sensor device control method, and program - Google Patents

Measurement system, integrated controller, sensor device control method, and program Download PDF

Info

Publication number
WO2014136585A1
WO2014136585A1 PCT/JP2014/054142 JP2014054142W WO2014136585A1 WO 2014136585 A1 WO2014136585 A1 WO 2014136585A1 JP 2014054142 W JP2014054142 W JP 2014054142W WO 2014136585 A1 WO2014136585 A1 WO 2014136585A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleep
sensor device
integrated controller
time
sleep time
Prior art date
Application number
PCT/JP2014/054142
Other languages
French (fr)
Japanese (ja)
Inventor
遠藤 聡
吉秋 小泉
利宏 妻鹿
一生 冨澤
上村 智之
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2014136585A1 publication Critical patent/WO2014136585A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/66Sleep mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity

Definitions

  • the present invention relates to a measurement system for measuring temperature or the like by a sensor device, an integrated controller, a sensor device control method, and a program.
  • the remote control includes a remote control thermistor that detects the ambient air temperature (remote control temperature).
  • the remote controller transmits the detected remote controller temperature to the indoor unit, and the indoor unit performs indoor air conditioning based on the received remote controller temperature and the like.
  • the remote controller described in Patent Document 1 controls the interval at which the remote controller temperature is transmitted to the indoor unit according to the detected remote controller temperature in order to suppress the consumption of the battery built in the remote controller.
  • the present invention has been made in view of such circumstances, and a measurement system, an integrated controller, and a sensor device that can suppress the consumption of a battery serving as a power source of the sensor device without hindering the operation of the facility device. It is an object to provide a control method and a program.
  • a measurement system includes: Equipment to adjust the environment of the target space; A sensor device that measures a value related to the environment of the target space and transmits measurement data storing the measured value to the facility device; An integrated controller for controlling the equipment device based on the measurement data from the sensor device, The facility device notifies the integrated controller of the operation state of the device, The integrated controller determines a sleep time and / or sleep interval of the sensor device based on the operation state notified from the facility device, and notifies the sensor device of the determined sleep time and / or sleep interval, The sensor device puts its own device into a sleep state according to the sleep time and / or sleep interval notified from the integrated controller.
  • the sensor device enters the sleep state according to the sleep time and / or sleep interval determined based on the operation state of the equipment device. As a result, it is possible to suppress the consumption of the battery serving as the power source of the sensor device without hindering the operation of the facility device.
  • FIG. 2 is a block diagram illustrating a configuration of an integrated controller according to the first embodiment.
  • 1 is a block diagram illustrating a configuration of a wireless master device according to a first embodiment. It is a block diagram which shows the structure of the sensor apparatus which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the structure of the installation equipment which concerns on Embodiment 1.
  • FIG. 3 is a flowchart illustrating processing by an integrated controller according to the first embodiment. 3 is a flowchart showing processing by the wireless master device according to the first embodiment. 4 is a flowchart illustrating processing by the sensor device according to the first embodiment.
  • FIG. It is a flowchart which shows the detail of execution and cancellation
  • FIG. It is a figure which shows the communication sequence of the measurement system which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the process by the installation equipment concerning Embodiment 2 of this invention. It is a figure which shows the communication sequence of the measurement system which concerns on Embodiment 2.
  • FIG. It is a block diagram which shows the structure (the 1) of the measurement system which concerns on other embodiment of this invention. It is a block diagram which shows the structure (the 2) of the measurement system which concerns on other embodiment of this invention.
  • FIG. 1 is a diagram showing an overall configuration of a measurement system 1 according to Embodiment 1 of the present invention.
  • the measurement system 1 is a system for realizing some functions of an equipment system introduced into an office building or the like, for example. More specifically, the measurement system 1 is a system that is used to measure temperature, humidity, and the like in the target space of each facility device 40 that constitutes the facility device system.
  • the measurement system 1 includes an integrated controller 10, i wireless master devices 20_1 to 20_i, j sensor devices 30_1 to 30_j, and k facility devices 40_1 to 40_k. Is done.
  • the radio master units 20_1 to 20_i will be referred to as radio master units 20 unless otherwise distinguished.
  • each of the sensor devices 30_1 to 30_j is not particularly distinguished, it is referred to as a sensor device 30.
  • Each of the facility devices 40_1 to 40_k is referred to as the facility device 40 unless particularly distinguished from each other.
  • the wireless master device 20, the sensor device 30, and the facility device 40 are associated with each other at 1: 1: 1. Therefore, the number of wireless master devices 20 (i), the number of sensor devices 30 (j), and the number of facility devices 40 (k) are the same. Note that the above correspondence relationship is an arbitrary design item.
  • the wireless master device 20, the sensor device 30, and the equipment device 40 may be associated in a 1: many: 1, 1: many: many, or the like. Good.
  • the integrated controller 10 is connected to each of the wireless master devices 20 via the communication line L2, and is connected to each of the plurality of facility devices 40 via the communication line L4.
  • the integrated controller 10 controls the operation of the equipment device 40 corresponding to the sensor device 30 according to a predetermined physical quantity indicating the air state measured by any of the sensor devices 30.
  • Each of the wireless master devices 20 communicates with the integrated controller 10 by wire (via the communication line L2) and communicates with the sensor device 30 wirelessly (via the wireless communication network L3).
  • Each of the wireless master devices 20 receives data (for example, measurement data) from the corresponding sensor device 30 and transmits the received data to the integrated controller 10.
  • Each of the wireless master devices 20 receives data (for example, a sleep time notification) from the integrated controller 10 and transmits data (for example, a sleep time setting request) based on the received data to the corresponding sensor device 30.
  • the wireless master device 20 can reduce communication lines.
  • the integrated controller 10 includes a control unit 11, a storage unit 12, a time management unit 13, a communication I / F unit 14, a communication I / F unit 15, and a user.
  • I / F unit 16 These components are connected to each other via a bus 17.
  • the integrated controller 10 is not physically illustrated, for example, an MPU (Micro-Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a readable / writable nonvolatile semiconductor memory, a hardware timer, It includes a transceiver circuit, a power supply circuit, an input device, a display device, and the like.
  • MPU Micro-Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • a readable / writable nonvolatile semiconductor memory a hardware timer
  • It includes a transceiver circuit, a power supply circuit, an input device, a display device, and the like.
  • the storage unit 12 includes, for example, a readable / writable nonvolatile semiconductor memory such as a flash memory.
  • the storage unit 12 stores various programs including a program for controlling each facility device 40.
  • the storage unit 12 also stores data used when executing these programs, data generated by executing these programs, and the like.
  • the time management unit 13 is a timer, for example, a hardware timer. Note that the timer function may be realized by a software timer.
  • the time management unit 13 starts timing in response to a command from the control unit 11 and notifies the control unit 11 and the like when a preset time has elapsed.
  • the time set in the time management unit 13 may be fixed, or may be appropriately changed by the control unit 11 according to the situation. Also, the time set in the time management unit 13 may be changed by a user operation.
  • the communication I / F unit 14 is connected to the communication line L4 and communicates with each facility device 40 via the communication line L4.
  • the communication I / F unit 15 is connected to the communication line L2, and communicates with each wireless master device 20 via the communication line L2. Note that I / F means an interface.
  • the user I / F unit 16 includes, for example, an input device such as a touch panel, a touch pad, a keyboard, a mouse, a dip switch, a push button, and a dial, and a display device such as a CRT display, a liquid crystal display, an organic EL display, and a plasma display. Consists of including.
  • the user I / F unit 16 receives an operation from the user.
  • the user I / F unit 16 displays various types of information in accordance with instructions from the control unit 11.
  • the user can register connection devices such as the wireless master device 20 and the facility device 40 and associate the facility device 40 with the sensor device 30 via the user I / F unit 16.
  • the sleep time of the sensor device 30_1 is changed according to the operating state (running or stopped) of the facility device 40_1.
  • the control unit 11 includes an MPU, a RAM, a ROM, and the like.
  • the control unit 11 generates control information for controlling the operation of the facility device 40 corresponding to the sensor device 30 based on the measurement data transmitted from the sensor device 30.
  • the control part 11 transmits the data (control information notification) which stored the produced
  • the control unit 11 also functions as a sleep time determination unit, and determines the sleep time of each sensor device 30 based on the operation state (operating or stopped) of each facility device 40.
  • Such a function of the control unit 11 is realized by the MPU executing a program stored in the ROM or the data storage unit 12.
  • each of the wireless master devices 20 includes a control unit 21, a storage unit 22, a time management unit 23, a communication I / F unit 24, a communication I / F unit 25, and a user I / F.
  • F part 26 is provided. These components are connected to each other via a bus 27.
  • Each of the wireless master devices 20 is physically not shown, but for example, MPU, RAM, ROM, readable / writable nonvolatile semiconductor memory, hardware timer, transceiver circuit, wireless module, antenna, power supply circuit, input device And a display device. *
  • the storage unit 22 is composed of, for example, a readable / writable nonvolatile semiconductor memory such as a flash memory.
  • the storage unit 22 stores a program related to processing to be described later executed by the wireless master device 20, data used when the program is executed, and the like.
  • the time management unit 23 is a timer similar to the time management unit 13 described above, starts time measurement in response to a command from the control unit 21, and notifies the control unit 21 and the like when a preset time has elapsed. .
  • the communication I / F unit 24 is connected to the communication line L2, and communicates with the integrated controller 10 via the communication line L2.
  • the communication I / F unit 25 is an interface for wireless communication, and performs wireless communication with the corresponding sensor device 30 via the wireless communication network L3.
  • the user I / F unit 26 includes, for example, an input device such as a touch panel, a touch pad, a dip switch, a push button, and a dial, and a display device such as a liquid crystal display, an organic EL display, and an LED display.
  • the user I / F unit 26 receives an operation from the user. Further, the user I / F unit 26 displays various types of information in accordance with instructions from the control unit 21. For example, the user can register a connected device (for example, the sensor device 30) via the user I / F unit 26.
  • the control unit 21 includes an MPU, a RAM, a ROM, and the like.
  • the control unit 21 receives data (measurement data notification) from the sensor device 30 corresponding to the wireless master device 20 via the communication I / F unit 25, and data (measurement data response) based on the received measurement data notification. Is transmitted to the integrated controller 10 via the communication I / F unit 24. Further, immediately after the corresponding sensor device 30 wakes up, the control unit 21 notifies the corresponding sensor device 30 of the sleep time determined by the integrated controller 10.
  • Such a function of the control unit 21 is realized by the MPU executing a program stored in the ROM or the data storage unit 22.
  • each of the sensor devices 30 includes a control unit 31, a storage unit 32, a time management unit 33, a communication I / F unit 34, a sensor unit 35, and a user I / F unit 36. . These components are connected to each other via a bus 37.
  • Each of the sensor devices 30 physically includes, for example, an MPU, a RAM, a ROM, a readable / writable nonvolatile semiconductor memory, a hardware timer, a wireless module, an antenna, a power supply circuit, an input device, a display device, and a temperature / humidity sensor module. Etc.
  • Each sensor device 30 includes a replaceable battery as a power source.
  • a battery consists of a primary battery, for example.
  • the kind of battery is arbitrary, For example, a secondary battery may be sufficient.
  • the storage unit 32 is configured by, for example, a readable / writable nonvolatile semiconductor memory such as a flash memory.
  • the storage unit 32 stores a program related to processing to be described later executed by the sensor device 30, data used when the program is executed, and the like.
  • the time management unit 33 is a timer similar to the time management unit 13 and the time management unit 23 described above, and starts time measurement according to a command from the control unit 31. When a preset time elapses, the time management unit 33 notifies the control unit. Notify 31 etc.
  • the communication I / F unit 34 is an interface for wireless communication, and performs wireless communication with the corresponding wireless master device 20 via the wireless communication network L3.
  • the sensor unit 35 measures a predetermined physical quantity (for example, temperature, humidity, illuminance, etc.) indicating an environmental state in the space where the sensor device 30 is installed.
  • each sensor device 30 is installed at an appropriate position in the vicinity of the corresponding facility device 40. That is, the sensor unit 35 measures a value related to the environment in the target space of the corresponding equipment device 40.
  • the sensor unit 35 includes, for example, a temperature / humidity sensor module, and measures, for example, a current temperature and humidity in a room that is air-conditioned by an air conditioner (equipment device 40). The operation of the facility device 40 is controlled so as to change or maintain the value measured by the corresponding sensor device 30.
  • the user I / F unit 36 includes, for example, input devices such as dip switches, push buttons, and dials, and display devices such as LED displays.
  • input devices such as dip switches, push buttons, and dials
  • display devices such as LED displays.
  • the user can make a registration request to the connected device (for example, the wireless master device 20) via the user I / F unit 36.
  • the control unit 31 stores data storing values (for example, temperature and humidity) measured by the sensor unit 35 via the communication I / F unit 34 in response to a predetermined timing or a request from the integrated controller 10.
  • the data is transmitted to the wireless master device 20 corresponding to the sensor device 30.
  • the control unit 31 acquires a value (measurement value) measured by the sensor unit 35 immediately after the sensor device 30 wakes up, and stores the measured value in the corresponding wireless master unit. 20 to send.
  • the control unit 31 also functions as a sleep control unit, and puts the sensor device 30 in the sleep state for the sleep time determined by the integrated controller 10. Such a function of the control unit 31 is realized by the MPU executing a program stored in the ROM or the data storage unit 22.
  • Each of the facility devices 40 is, for example, an air conditioner, and includes a communication unit 41 and a main control unit 42 as illustrated in FIG.
  • the main control unit 42 controls a drive unit (not shown) of the facility device 40.
  • the main control unit 42 performs control related to the air conditioning operation.
  • the communication unit 41 performs processing related to communication with the integrated controller 10.
  • the communication unit 41 includes a control unit 43, a storage unit 44, a communication I / F unit 45, and an internal communication I / F unit 46. These components are connected to each other via a bus 47.
  • the communication unit 41 includes, for example, an MPU, a RAM, a ROM, a readable / writable nonvolatile semiconductor memory, a transceiver circuit, and a power supply circuit.
  • the storage unit 44 is configured by, for example, a readable / writable nonvolatile semiconductor memory such as a flash memory.
  • the storage unit 44 stores a program related to processing to be described later executed by the control unit 43, data used when the program is executed, and the like.
  • the communication I / F unit 45 is connected to the communication line L4, and performs communication with the integrated controller 10 via the communication line L4.
  • the internal communication I / F unit 46 is an interface for communication with the main control unit 42.
  • control unit 43 When the control information notification is received from the integrated controller 10 by the communication I / F unit 45, the control unit 43 sends the control information included in the control information notification to the main control unit 42 via the internal communication I / F unit 46. Send.
  • control unit 43 also functions as an operation state acquisition unit, and when detecting a change in the operation state (operating or stopped) of the equipment 40, data (state) for notifying the changed operation state Change notification) is transmitted to the integrated controller 10 via the communication I / F unit 45.
  • the control unit 43 makes an inquiry about the operating state of the equipment 40 to the main control unit 42 at a predetermined timing (for example, a constant cycle).
  • the operation state acquired by the control unit 43 includes two states that are operating (operating) and stopped.
  • the control unit 43 is in the operation state at the time of the previous inquiry (for example, stored in the RAM or the storage unit 44).
  • the state change notification is transmitted to the integrated controller 10. This state change notification stores information indicating the operating state after the change.
  • control part 43 may detect the change of an operating state based on the measured value of the sensor which is not shown in the said equipment 40.
  • the sensor in this case measures, for example, the internal temperature, the amount of power consumption, the number of revolutions of the motor, the amount of exhaust, etc. in the equipment 40.
  • the user associates the wireless master device 20, the sensor device 30, and the facility device 40 prior to the processing of FIGS.
  • Such association can be performed, for example, via the user I / F units 16, 26, and 36.
  • the wireless master device 20_1, the sensor device 30_1, and the facility device 40_1 are associated with each other
  • the wireless master device 20_2, the sensor device 30_2, and the facility device 40_2 are associated with each other, and so on. They are associated with each other.
  • Data indicating the correspondence relationship between such devices is stored in the storage units 12, 22, and 32, for example. For example, by storing IDs (identifiers) assigned in advance to each device in the storage units 12, 22, and 32, each wireless master device 20, each sensor device 30, and each equipment device 40 can be identified. be able to.
  • FIG. 6 is a flowchart showing processing by the integrated controller 10, specifically processing related to the control of the equipment device 40.
  • the series of processing shown in FIG. 6 is repeatedly executed by the integrated controller 10 at a predetermined cycle (a cycle sufficiently short to obtain the required processing accuracy).
  • step S11 the control unit 11 determines whether or not a state change notification is received from any of the equipment devices 40.
  • step S11 When the state change notification is received (step S11; YES), in the subsequent step S12, the control unit 11 selects the target sensor device 30 and, based on the received state change notification, the sleep time of the sensor device 30. To decide. In the present embodiment, the sensor device 30 associated in advance with the equipment device 40 that has transmitted the state change notification is selected.
  • the control unit 11 determines an appropriate sleep time according to the changed operating state (operating or stopped) in the equipment device 40 that is the transmission source of the state change notification. Specifically, for example, when changing during stop, a long time (first sleep time) is set as the sleep time, while when changing during driving, the time is shorter than the first sleep time (second sleep time). ) Is set.
  • first sleep time and the second sleep time may be a predetermined time, may be derived using a predetermined calculation formula or table, or may be a plurality of sleep times prepared in advance ( You may make it select from choice.
  • step S12 the control unit 11 transmits data for notifying the determined sleep time (sleep time notification) to the wireless master device 20 associated with the selected sensor device 30, and step S13. Proceed to the process.
  • step S11 when the state change notification is not received (step S11; NO), the control unit 11 proceeds to the process of step S13 without performing the process of step S12.
  • step S13 the control unit 11 determines whether or not a predetermined time has elapsed since the transmission of the previous measurement data request. Specifically, the control unit 11 makes the above determination based on whether or not a notification indicating that a preset time has elapsed has been received from the first timer included in the time management unit 13. As a result, when the predetermined time has not elapsed (step S13; NO), the control unit 11 ends this process.
  • step S13 when a predetermined time has elapsed from the previous transmission of the measurement data request (step S13; YES), the control unit 11 sequentially selects the wireless master device 20 from all of the wireless master devices 20 in step S14. A measurement data request is transmitted to, and the process proceeds to step S15. In addition, when transmitting the measurement data request, the control unit 11 resets the first timer used in step S13 and starts timing, and also uses the second timer included in the time management unit 13 used in step S16. Reset and start timing.
  • step S15 the control unit 11 determines whether or not a measurement data response has been received from the wireless master device 20 that has transmitted the measurement data request.
  • step S15 If the measurement data response has not been received (step S15; NO), in the subsequent step S16, the control unit 11 has received a notification that a preset time has elapsed from the second timer, that is, received. Determine whether a timeout has occurred. Until it is determined in step S16 that the reception time-out has occurred, the control unit 11 waits for reception of a measurement data response. On the other hand, when the reception time-out is reached (step S16; YES), the control unit 11 ends this process.
  • step S15 When the measurement data response is received (step S15; YES), in the subsequent step S17, the control unit 11 stores (saves) the measurement data included in the received measurement data response in the storage unit 12. Then, in subsequent step S ⁇ b> 18, the control unit 11 transmits a control information notification generated based on the measurement data stored in the storage unit 12 to the corresponding equipment device 40.
  • the control unit 11 based on the measurement data stored in the storage unit 12, the control unit 11 provides control information for controlling the operation of the equipment 40 corresponding to the wireless master device 20 that is the transmission source of the measurement data response. Generate. For example, when the temperature (measurement data) measured by a certain sensor device 30 is equal to or higher than a predetermined threshold, the control unit 11 performs control to increase the output of the facility device 40 associated with the sensor device 30. Generate information. Then, the control unit 11 transmits a control information notification storing the generated control information to the facility device 40 via the communication I / F unit 14.
  • FIG. 7 is a flowchart showing processing by the wireless master device 20.
  • the series of processing shown in FIG. 7 is repeatedly executed at a predetermined cycle (a cycle that is sufficiently short to obtain necessary processing accuracy).
  • a predetermined cycle a cycle that is sufficiently short to obtain necessary processing accuracy.
  • the sleep time notification reception flag is OFF.
  • the control unit 21 determines whether or not a sleep time notification has been received from the integrated controller 10.
  • the control unit 21 turns on the sleep time notification reception flag and proceeds to the process of step S23.
  • the control unit 11 proceeds to the process of step S23 without performing the process of step S22.
  • step S23 the control unit 21 determines whether or not a measurement data request has been received from the integrated controller 10.
  • step S23; YES the measurement data request is received
  • step S24 the control unit 21 transmits a measurement data response storing the measurement data stored in the storage unit 22 to the integrated controller 10.
  • step S25 the control unit 21 proceeds to the process of step S25 without performing the process of step S24.
  • step S25 the control unit 21 determines whether or not a measurement data notification is received from the corresponding sensor device 30.
  • the control unit 21 stores (saves) the measurement data included in the received measurement data notification in the storage unit 22, and performs the process of step S27. Proceed to On the other hand, when the measurement data notification is not received (step S25; NO), the control unit 21 ends this process.
  • step S27 the control unit 21 determines whether or not the sleep time notification reception flag is ON.
  • step S27; NO the control unit 21 ends this process.
  • step S27; YES the control unit 21 transmits a sleep time setting request to the corresponding sensor device 30 in the subsequent step S28.
  • step S29 the control unit 21 turns off the sleep time information reception flag.
  • FIG. 8 is a flowchart showing processing by the sensor device 30. Note that the initial value of the sleep time is set in the sensor device 30 in advance. In the sensor device 30, data indicating the sleep time is stored in the storage unit 32.
  • the control unit 31 resets the time management unit 33 and starts measuring time (step S31). Then, the control unit 31 determines whether or not a predetermined time has elapsed since the start of timing (step S32). Specifically, the control unit 31 makes the above determination based on whether or not a notification that a preset time has elapsed from the time management unit 33 has been received. As a result, when the predetermined time has not elapsed (step S32; NO), the control unit 31 proceeds to the process of step S33.
  • step S33 the control unit 31 determines whether or not a sleep time setting request from the corresponding wireless master device 20 has been received.
  • the control unit 31 updates the sleep time stored in the storage unit 32 based on the received sleep time setting request (step S34). Then, the control part 31 returns to the process of step S32.
  • the control unit 31 returns to the process of step S32 without executing the process of step S34.
  • step S32 When a predetermined time has elapsed since the start of time measurement (step S32; YES), the control unit 31 prohibits reception of data in the sensor device 30 (step S35). Further, the control unit 31 executes sleep execution and release processing (step S36).
  • FIG. 9 is a flowchart showing sleep execution and release processing.
  • the control unit 31 executes sleep of the sensor device 30 (step S41). Specifically, the control unit 31 puts the sensor device 20 into a sleep state.
  • the sleep state is referred to as a so-called sleep mode, standby mode, standby mode, power saving mode, and the like, and refers to a state in which the power consumption is smaller than the normal operation state.
  • reception prohibition (step S35 in FIG. 8) and sleep execution are performed substantially simultaneously.
  • step S42 When the sleep time set in the sensor device 30, that is, the sleep time stored in the storage unit 32 has elapsed after the sleep is executed (step S42; YES), the control unit 31 cancels the sleep, Then, the sensor device 30 is woken up (step S43).
  • control unit 31 acquires measurement values (for example, temperature and humidity) from the sensor unit 35, and stores (saves) them as measurement data in the storage unit 32 (step S44).
  • measurement values for example, temperature and humidity
  • the control unit 31 transmits a measurement data notification including the measurement data stored in the storage unit 32 to the corresponding wireless master device 20 via the communication I / F unit 34 (step S45).
  • the control unit 31 permits the reception of data in the sensor device 30 (step S46). As a result, the sleep execution and release process ends, and the control unit 31 returns to the process of step S31 in FIG.
  • FIG. 10 is a flowchart showing processing by the equipment device 40, specifically, processing related to transmission of a state change notification. Note that the series of processes shown in FIG. 10 is repeatedly executed in each of the equipment devices 40 at a predetermined cycle (a cycle sufficiently short to obtain the required processing accuracy). In the initial state, it is assumed that the operation of the facility device 40 is stopped.
  • control unit 43 of the communication unit 41 acquires the current operating state of the equipment 40 from the main control unit 42 (step S51). And the control part 43 detects the change of a driving
  • step S52 When the driving state has changed from the stop state to the driving state (step S52; YES), the control unit 43 generates data (state change notification) storing information indicating that the driving state is in progress, and the generated state A change notification is transmitted to the integrated controller 10 via the communication I / F unit 45 (step S53), and this process ends.
  • Step S54 when the operation state has changed from operation to stop (step S54; YES), the control unit 43 transmits a state change notification storing information indicating that the operation is stopped to the integrated controller 10 ( Step S55), the process is terminated.
  • control unit 43 ends this processing without transmitting a state change notification to the integrated controller 10. Note that the data indicating the operation state acquired this time is stored in the storage unit 44.
  • FIG. 11 is a diagram illustrating a communication sequence of the measurement system 1 according to the present embodiment. It is assumed that the facility device 40 has already started operation at the start of this communication sequence. Further, it is assumed that the time T2 is set as the sleep time of the sensor device 30 corresponding to the facility device 40.
  • each time the sensor device 30 wakes up from the sleep state it acquires measurement data (see step S44 of FIG. 9) and notifies the measurement data including the measurement data (data D11 to D14). Is transmitted to the corresponding wireless master device 20 (see step S45 in FIG. 9).
  • the sensor device 30 When the sensor device 30 transmits the measurement data notification (data D11), the sensor device 30 is in a reception-permitted state for the time T1 (the time set in the time management unit 33) (see steps S32 and S33 in FIG. 8 and step S46 in FIG. 9). ). After that, when the time T1 elapses, the reception prohibited state and the sleep state are entered for the time T2 (set sleep time) (see step S35 in FIG. 8 and steps S41 and S42 in FIG. 9).
  • the integrated controller 10 selects the wireless master that sequentially selects the measurement data requests (data D31 to D34) from all the wireless master devices 20 every time T4 (time set in the first timer of the time management unit 13) elapses. It transmits to the machine 20 (see step S14 in FIG. 6).
  • each wireless master device 20 Upon receiving the measurement data requests (data D31 to D34) from the integrated controller 10, each wireless master device 20 transmits measurement data responses (data D41 to D44) to the integrated controller 10 (see step S24 in FIG. 7). .
  • the measurement data response includes measurement data received from the corresponding sensor device 30 (see steps S25 and S26 in FIG. 7).
  • the integrated controller 10 When the integrated controller 10 receives the measurement data responses (data D41 to D44) from each wireless master device 20, the integrated controller 10 receives the measurement data responses included in each measurement data response and each equipment device 40 corresponding to each wireless master device 20 receives the measurement data responses. Generate control information. Then, the integrated controller 10 transmits control information notifications (data D61 to D64) including the generated control information to each facility device 40 (see step S18 in FIG. 6).
  • each facility device 40 When each facility device 40 receives the control information notification (data D61 to D64) from the integrated controller 10, it performs an operation based on the control information included in the notification.
  • the facility device 40 When the facility device 40 stops operation, the facility device 40 transmits a state change notification (data D71) including information on the operation stop to the integrated controller 10 (see step S55 in FIG. 10).
  • the integrated controller 10 When the integrated controller 10 receives the state change notification (data D71) from the facility device 40, the integrated controller 10 determines the sleep time (time T3) based on the operating state (stopped) after the change of the facility device 40. Then, the sleep time notification (data D51) including the time T3 is transmitted to the wireless master device 20 corresponding to the facility device 40 (see step S12 in FIG. 6). Here, time T3 is longer than time T2.
  • the wireless master device 20 When receiving the sleep time notification (data D51) from the integrated controller 10, the wireless master device 20 transmits a sleep time setting request (data D21) including a request for setting the sleep time to the time T3 to the corresponding sensor device 30. (See step S28 in FIG. 7).
  • the sleep time setting request (data D21) is transmitted immediately after the measurement data notification (data D12) is received from the wake-up sensor device 30 (before the time T1 has elapsed). Therefore, at that time, the sensor device 30 is in a reception-permitted state (see steps S25 to S28 in FIG. 7 and steps S43 to S46 in FIG. 9).
  • the sensor device 30 Upon receiving the sleep time setting request (data D21) from the wireless master device 20, the sensor device 30 sets the sleep time (T3) based on the sleep time setting request (see step S34 in FIG. 8) and sets it.
  • the sleep state is entered according to the sleep time (see steps S41 and S42 in FIG. 9). That is, in this example, when the equipment device 40 is stopped, the corresponding sensor device 30 has a sleep time (time T3) longer than the sleep time (time T2) when the equipment device 40 is operating. Go to sleep.
  • the corresponding sensor device 30 wakes up (see step S43 in FIG. 9) and immediately acquires measurement data (see step S44 in FIG. 9). ), The measurement data notification (data D13) is transmitted to the corresponding wireless master device 20 (see step S45 in FIG. 9). And when time T1 passes after it will be in a reception permission state, said sensor apparatus 30 will be in a sleep state only for time T3 again.
  • the facility device 40 When the facility device 40 starts operation, the facility device 40 transmits a state change notification (data D72) including information on the operation start to the integrated controller 10 (see step S53 in FIG. 10).
  • the integrated controller 10 When the integrated controller 10 receives the state change notification (data D72) from the facility device 40, the integrated controller 10 determines the sleep time (time T2) based on the changed operation state (during operation) of the facility device 40. Then, a sleep time notification (data D52) including time T2 is transmitted to the wireless master device 20 corresponding to the facility device 40 (see step S12 in FIG. 6).
  • the wireless master device 20 When receiving the sleep time notification (data D52) from the integrated controller 10, the wireless master device 20 transmits a sleep time setting request (data D22) including a request for setting the sleep time to the time T2 to the corresponding sensor device 30. (See step S28 in FIG. 7).
  • the transmission of the sleep time setting request (data D22) is performed immediately after the measurement data notification (data D14) is received from the wake-up sensor device 30 (before the time T1 has elapsed). Therefore, at that time, the sensor device 30 is in a reception-permitted state (see steps S25 to S28 in FIG. 7 and steps S43 to S46 in FIG. 9).
  • the sensor device 30 Upon receiving the sleep time setting request (data D22) from the wireless master device 20, the sensor device 30 sets the sleep time (T2) based on the sleep time setting request (see step S34 in FIG. 8) and sets it.
  • the sleep state is entered according to the sleep time (see steps S41 and S42 in FIG. 9). That is, in this example, when the equipment device 40 is in operation, the corresponding sensor device 30 sleeps in a sleep time (time T2) shorter than the sleep time (time T3) when the equipment device 40 is stopped. It becomes a state.
  • the measurement system 1 includes the sensor device 30 that measures values (for example, temperature and humidity) related to the current environment of the target space (for example, the indoor space of a building), and the sensor device 30. And an integrated controller 10 that controls the facility device 40 based on the measured value relating to the environment.
  • the facility device 40 notifies the integrated controller 10 to that effect.
  • the integrated controller 10 determines the sleep time of the sensor device 30 corresponding to the facility device 40 based on the changed operating state of the facility device 40. Then, the sensor device 30 puts its own device into the sleep state according to the determined sleep time.
  • the integrated controller 10 sets the sleep time of the corresponding sensor device 30 to be longer than the normal sleep time when the equipment device 40 is stopped. Normally, in the equipment device 40, when the operation state is stopped, the possibility of requiring the measurement data of the corresponding sensor device 30 is lower than that during operation. Therefore, according to the measurement system 1 of the present embodiment, the battery consumption of the sensor device 30 can be suppressed without hindering the operation (operation) of the facility device 40. For example, in the time zone when the facility device 40 is not in operation, such as at night, the total time during which the sensor device 30 does not perform measurement and communication operations increases. It becomes possible.
  • the determined sleep time is notified to the sensor device 30 to the integrated controller 10. For this reason, the possibility of receiving the sleep time notification in the sensor device 30 increases. Therefore, it is possible to notify the sleep time efficiently.
  • control unit 31 of the sensor device 30 repeatedly executes sleep at predetermined intervals. Thereby, as a general rule, sleep is periodically executed, energy consumption is more reliably reduced, and consequently, consumption of the battery of the sensor device 30 can be suppressed.
  • the control unit 43 periodically acquires the operating state from the main control unit 42, determines whether or not there is a change, and if there is a change, Immediately, a state change notification storing information indicating operation start or operation stop is transmitted to the integrated controller 10. Therefore, the integrated controller 10 can immediately grasp the equipment device 40 whose operating state has changed and its contents.
  • Embodiment 2 The second embodiment of the present invention will be described focusing on the differences from the first embodiment.
  • symbol is attached
  • the measurement system according to the present embodiment also has basically the same configuration as the measurement system 1 according to the first embodiment (see FIGS. 1 to 5), and executes the processes shown in FIGS.
  • each of the facility devices 40 executes the process shown in FIG. 12 instead of the process shown in FIG.
  • control unit 43 of the communication unit 41 acquires the current operating state of the equipment 40 from the main control unit 42 (step S61). And the control part 43 judges whether there was any change in the driving
  • the cooling operation is started in a state where the difference between the current air temperature (the temperature measured by the sensor device 30) and the set temperature is large, and then the operation is changed to the operation for maintaining the current air temperature.
  • the difference between the current air temperature (the temperature measured by the sensor device 30) and the set temperature is large, and then the operation is changed to the operation for maintaining the current air temperature.
  • the measurement system of the present embodiment it is determined that the operating state of the equipment 40 has changed even in such a case.
  • the operation state acquired by the control unit 43 includes not only during operation and stop, but also, for example, operation type (heating / cooling / air blowing, etc.), control target values (set temperature, set humidity, etc.) ), Operation mode (normal operation mode / energy saving mode, etc.).
  • control part 43 may detect the change of the above driving
  • the sensor in this case measures, for example, the internal temperature, the amount of power consumption, the number of revolutions of the motor, the amount of exhaust, etc. in the equipment 40.
  • control unit 43 determines that the operation state of the equipment device 40 has changed (step S62; YES)
  • the control unit 43 sends a state change notification storing information indicating the changed operation state to the communication I / F unit. 45 to the integrated controller 10 (step S63), and this process ends.
  • control unit 43 ends this process without transmitting a state change notification to the integrated controller 10. Note that the data indicating the operation state acquired this time is stored in the storage unit 44.
  • FIG. 13 is a diagram illustrating a communication sequence of the measurement system according to the present embodiment. It is assumed that the facility device 40 has already started operation at the start of this communication sequence. Also, it is assumed that the time T11 is set as the sleep time of the sensor device 30 corresponding to the facility device 40.
  • each time the sensor device 30 wakes up from the sleep state it acquires measurement data (see step S44 of FIG. 9), and measurement data notification including the measurement data (data D11 to D14). Is transmitted to the corresponding wireless master device 20 (see step S45 in FIG. 9).
  • the operation state in which the facility device 40 for example, the air conditioner
  • the facility device 40 for example, the air conditioner
  • the sensor device 30 When the sensor device 30 transmits the measurement data notification (data D11), the sensor device 30 is in a reception-permitted state for a time T1 (see steps S32 and S33 in FIG. 8 and step S46 in FIG. 9). Thereafter, when the time T1 elapses, the reception prohibited state and the sleep state are entered for the time T11 (the set sleep time) (see step S35 in FIG. 8 and steps S41 and S42 in FIG. 9).
  • the equipment device 40 When the operation state of the equipment device 40 changes from the first operation state to the second operation state, the equipment device 40 integrates a state change notification (data D71) including information indicating the changed operation state (second operation state). The data is transmitted to the controller 10 (see step S63 in FIG. 12).
  • the integrated controller 10 determines the sleep time (time T12) based on the operation state after the change of the facility device 40 (second operation state). Then, the sleep time notification (data D51) including the time T12 is transmitted to the wireless master device 20 corresponding to the facility device 40 (see step S12 in FIG. 6).
  • the sleep time for example, time T12
  • the sleep time is shortened as the power consumption (energy consumption) of the facility device 40 increases. For example, when the cooling operation is started in a state where the difference between the current air temperature and the set temperature is large, the sleep time is shortened as the difference between the current air temperature and the set temperature is large. That is, in this example, the time T12 is longer than the time T11.
  • the wireless master device 20 Upon receiving the sleep time notification (data D51) from the integrated controller 10, the wireless master device 20 transmits a sleep time setting request (data D21) including a request for setting the sleep time to the time T12 to the corresponding sensor device 30. (See step S28 in FIG. 7).
  • the sleep time setting request (data D21) is transmitted immediately after the measurement data notification (data D12) is received from the wake-up sensor device 30 (before the time T1 has elapsed). Therefore, at that time, the sensor device 30 is in a reception-permitted state (see steps S25 to S28 in FIG. 7 and steps S43 to S46 in FIG. 9).
  • the sensor device 30 Upon receiving the sleep time setting request (data D21) from the wireless master device 20, the sensor device 30 sets the sleep time (T12) based on the sleep time setting request (see step S34 in FIG. 8) and sets it.
  • the sleep state is entered according to the sleep time (see steps S41 and S42 in FIG. 9). That is, in this example, when the equipment device 40 is in the second operation state, the corresponding sensor device 30 has a sleep time (time T11) longer than the sleep time (time T11) when the equipment device 40 is in the first operation state.
  • the sleep state is entered at time T12).
  • the corresponding sensor device 30 wakes up (see step S43 in FIG. 9) and acquires measurement data (see step S44 in FIG. 9). Then, the measurement data notification (data D13) is transmitted to the corresponding wireless master device 20 (see step S45 in FIG. 9). And when time T1 of a reception permission state passes, said sensor apparatus 30 will be in a sleep state only for time T12.
  • the facility device 40 When the operation state of the facility device 40 changes from the second operation state to the third operation state, the facility device 40 integrates a state change notification (data D72) including information indicating the changed operation state (third operation state). The data is transmitted to the controller 10 (see step S63 in FIG. 12).
  • the integrated controller 10 When the integrated controller 10 receives the state change notification (data D72) from the facility device 40, the integrated controller 10 determines the sleep time (time T13) based on the changed operation state (third operation state) of the facility device 40. Then, the sleep time notification (data D52) including the time T13 is transmitted to the wireless master device 20 corresponding to the facility device 40 (see step S12 in FIG. 6).
  • the wireless master device 20 When receiving the sleep time notification (data D52) from the integrated controller 10, the wireless master device 20 transmits a sleep time setting request (data D22) including a request to set the sleep time to the time T13 to the corresponding sensor device 30. (See step S28 in FIG. 7).
  • the transmission of the sleep time setting request (data D22) is performed immediately after the measurement data notification (data D14) is received from the wake-up sensor device 30 (before the time T1 has elapsed). Therefore, at that time, the sensor device 30 is in a reception-permitted state (see steps S25 to S28 in FIG. 7 and steps S43 to S46 in FIG. 9).
  • the sensor device 30 Upon receiving the sleep time setting request (data D22) from the wireless master device 20, the sensor device 30 sets the sleep time (T13) based on the sleep time setting request (see step S34 in FIG. 8) and sets it.
  • the sleep state is entered according to the sleep time (see steps S41 and S42 in FIG. 9). That is, in this example, when the equipment device 40 is in the third operating state, the corresponding sensor device 30 has a sleep time (time T12) longer than the sleep time (time T12) when the equipment device 40 is in the second operating state.
  • the sleep state is entered at time T13).
  • the sleep time of the sensor device 30 can be set stepwise according to the operating state of the facility device 40 to suppress battery consumption of the sensor device 30. it can.
  • the sleep time is updated when the operation of the equipment 40 is not started or stopped, and the operation state is changed even when the operation is in progress. For this reason, it becomes possible to set an appropriate sleep time more precisely according to the operating state of the equipment 40 (for example, an air conditioner).
  • the sleep time of the sensor device 30 is shortened as the operation state where the facility device 40 greatly changes the value related to the environment of the target space (as a result, the larger the energy consumption or the operation load). it can. For this reason, it is possible to set an appropriate sleep time according to the operating state of the facility device 40, and it is possible to more appropriately suppress battery consumption of the sensor device 30.
  • the timing at which the control unit 31 acquires the measurement value from the sensor unit 35 is not limited.
  • the control unit 31 may acquire measurement values from the sensor unit 35 at a predetermined cycle. In this case, immediately after waking up, the control unit 31 may read the measurement data stored in the storage unit 32 before going to sleep, and may transmit a measurement data notification including the measurement data to the corresponding wireless master device 20. .
  • the state change notification is transmitted directly from the facility device 40 to the integrated controller 10, but the state change is indirectly (from another device) to the integrated controller 10 from the facility device 40.
  • a notification may be sent.
  • control information notification may be transmitted from the integrated controller 10 indirectly to the facility device 40 (via another device).
  • the measurement system 1 in the first embodiment or the measurement system in the second embodiment may include a plurality of integrated controllers 10.
  • the wireless master device 20 may be removed from the configuration of the measurement system.
  • the integrated controller 10 is connected to each of the sensor devices 30 via the communication line L2.
  • the integrated controller 10 directly transmits data for notifying the sleep time to the sensor device 30 (sleep time notification).
  • the integrated controller 10 directly transmits data for requesting measurement data (measurement data request) to the sensor device 30.
  • the sensor device 30 directly transmits data storing measurement data (measurement data response) to the integrated controller 10.
  • the integrated controller 10 may transmit a sleep time notification to the sensor device 30 that transmitted the measurement data response immediately after receiving the measurement data response. .
  • the sleep time notification since the sleep time notification is transmitted to the sensor device 30 immediately after wake-up, the possibility of receiving the sleep time notification in the sensor device 30 is increased. Therefore, it is possible to notify the sleep time efficiently.
  • the measurement system may include m sensors 50_1 to 50_m.
  • a sensor 50 when each of the sensors 50_1 to 50_m is not particularly distinguished, it is referred to as a sensor 50.
  • each sensor 50 is a sensor for acquiring the operating state of the corresponding equipment device 40. That is, the sensor 50 functions as an operation state acquisition device or an operation state acquisition unit.
  • the sensor 50 measures, for example, power consumption of the corresponding equipment device 40, illuminance, temperature, humidity, air volume, and the like in the target space of the corresponding equipment device 40.
  • the integrated controller 10 is connected to each of the sensors 50 via a communication line L5. Each sensor 50 transmits a measurement value to the integrated controller 10.
  • the integrated controller 10 monitors the measurement value of the sensor 50 as the operation state of the facility device 40 corresponding to the sensor 50.
  • sleep time will be determined according to the driving
  • the facility device 40 does not need to have a function of detecting a change in the operating state and notifying the integrated controller 10 when it is detected.
  • the sleep interval (in other words, the duration of the non-sleep state, specifically, the time set in the time management unit 33 of the sensor device 30) may be determined based on the operating state of the facility device 40. . In this case, for example, when the operation state of the facility device 40 is in operation, a long time (first sleep interval) is set as the sleep interval. On the other hand, when it is stopped, the time is shorter than the first sleep interval (second sleep interval). Interval) can be set. Alternatively, the longer the power consumption (energy consumption) of the facility device 40, the longer the sleep interval can be set.
  • the consumption of the battery of the sensor device 30 can be suppressed without impeding the operation (operation) of the facility device 40. Furthermore, when the sleep interval and the sleep time are used in combination, it is possible to more appropriately suppress battery consumption of the sensor device.
  • a wired communication device is used instead of the wireless master device 20 so that the communication device and the corresponding sensor device 30 are communicably connected via a communication line. May be.
  • the integrated controller 10 and the wireless master device 20 and the integrated controller 10 and the facility device 40 may be connected so as to be able to communicate wirelessly by a wireless LAN or the like.
  • the equipment 40 is not limited to an air conditioner, and may be any device that adjusts the environment of the target space.
  • the environment referred to here includes, for example, air cleanliness, airflow, brightness (illuminance) and the like in addition to the temperature and humidity of the air.
  • the equipment 40 may be, for example, a blower that adjusts the airflow in the target space, a lighting device that adjusts the brightness (illuminance) of the target space, and the like.
  • the sensor device 30 is not limited to the temperature / humidity sensor module, and may be any device that measures values related to the environment adjusted by the facility device 40.
  • the sensor device 30 may be a device that measures the wind direction or the air volume.
  • the sensor device 30 may be a device that measures illuminance.
  • the communication format of each communication is arbitrary.
  • a text format using XML (Extensible Markup Language) or the like may be used, or another format such as a binary format may be used to reduce the communication size.
  • you may encrypt communication so that communication information may be concealed.
  • any storage device can be used as a storage device that holds data or a program.
  • ROM and flash memory for example, a magnetic storage device (hard disk drive, magnetic card, Magnetic tape or the like) or an optical disk may be used, or other storage device may be used. It is preferable to select an optimal storage device according to the application and the like.
  • the function of the integrated controller 10 may be realized by a general-purpose computer system (for example, a personal computer).
  • each program executed by the integrated controller 10, the wireless master device 20, the sensor device 30, or the facility device 40 is a flexible disk, a CD-ROM (Compact Disc Read Only Memory), a DVD (Digital Versatile Disc). ), MO (Magneto-Optical disk), etc., can be stored in a computer-readable recording medium and distributed. Then, by installing each program on a specific or general-purpose computer, each computer can function as the integrated controller 10, the wireless master device 20, the sensor device 30, and the facility device 40 in each of the above embodiments. Is possible.
  • the above program may be stored in a disk device or the like included in a server device on a communication network such as the Internet, and may be downloaded onto a computer, for example, superimposed on a carrier wave.
  • the above-described processing can also be achieved by starting and executing a program while transferring it via a communication network.
  • the above-described processing can also be achieved by executing all or part of the program on the server device and executing the program while the computer transmits and receives information regarding the processing via the communication network.
  • the present invention can be suitably employed in a system for controlling equipment installed in a building or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Power Sources (AREA)
  • Selective Calling Equipment (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

Facility devices (40) adjust the environment of a target space. Sensor devices (30) measure values related to the environment in the target space. An integrated controller (10) controls the facility devices (40) on the basis of the values related to the environment as measured by the sensor devices (30). The facility devices (40) report their operating status to the integrated controller (10). The integrated controller (10) determines a sleep time and/or a sleep interval for the sensor devices (30) on the basis of the operating status reported by the facility devices (40), and then reports this sleep time and/or sleep interval to the sensor devices (30). The sensor devices (30) enter a sleep state in accordance with the sleep time and/or the sleep interval transmitted from the integrated controller (10).

Description

計測システム、統合コントローラ、センサ機器制御方法、及びプログラムMeasurement system, integrated controller, sensor device control method, and program
 本発明は、センサ機器により温度等の計測を行う計測システム、統合コントローラ、センサ機器制御方法、及びプログラムに関する。 The present invention relates to a measurement system for measuring temperature or the like by a sensor device, an integrated controller, a sensor device control method, and a program.
 居室内の温度や湿度等を計測し、その計測値に応じて居室内の空気を適切に調和する技術について、様々な提案がされている。例えば、特許文献1に記載の空気調和機では、リモコンが、周辺の空気温度(リモコン温度)を検出するリモコンサーミスタを備える。このリモコンは、検出したリモコン温度を室内機へ送信し、室内機は、受信したリモコン温度などに基づいて室内の空調を行う。 Various proposals have been made regarding techniques for measuring temperature, humidity, etc. in a living room and appropriately harmonizing the air in the room according to the measured values. For example, in the air conditioner described in Patent Document 1, the remote control includes a remote control thermistor that detects the ambient air temperature (remote control temperature). The remote controller transmits the detected remote controller temperature to the indoor unit, and the indoor unit performs indoor air conditioning based on the received remote controller temperature and the like.
 特許文献1に記載のリモコンは、それに内蔵される電池の消耗を抑えるため、検出したリモコン温度に応じて、そのリモコン温度を室内機へ送信する間隔を制御する。 The remote controller described in Patent Document 1 controls the interval at which the remote controller temperature is transmitted to the indoor unit according to the detected remote controller temperature in order to suppress the consumption of the battery built in the remote controller.
特開2011-58721号公報JP 2011-58721 A
 特許文献1に記載のリモコンのように、消費電力を抑えるため、温度センサ等のセンサ機器の計測値に応じて、計測値をセンサ機器から他の機器へ送信する間隔を制御する技術は知られている。しかしながら、その計測値を用いることで運転を行う機器の状態に関わらずに送信間隔が制御されるため、当該機器の運転を阻害してしまうおそれもある。 As in the remote control described in Patent Document 1, a technique for controlling an interval at which a measured value is transmitted from a sensor device to another device is known in accordance with a measured value of a sensor device such as a temperature sensor in order to reduce power consumption. ing. However, since the transmission interval is controlled by using the measured value regardless of the state of the device that operates, there is a possibility that the operation of the device may be hindered.
 本発明は、このような実情に鑑みてなされたものであり、設備機器の運転を阻害することなく、センサ機器の電源となる電池の消耗を抑えることが可能な計測システム、統合コントローラ、センサ機器制御方法、及びプログラムを提供することを目的とする。 The present invention has been made in view of such circumstances, and a measurement system, an integrated controller, and a sensor device that can suppress the consumption of a battery serving as a power source of the sensor device without hindering the operation of the facility device. It is an object to provide a control method and a program.
 上記目的を達成するため、本発明に係る計測システムは、
 対象空間の環境を調整する設備機器と、
 前記対象空間の環境に関する値を計測し、計測した値を格納した計測データを前記設備機器に送信するセンサ機器と、
 前記センサ機器からの前記計測データに基づいて前記設備機器を制御する統合コントローラと、を備え、
 前記設備機器は、自機器の運転状態を前記統合コントローラに通知し、
 前記統合コントローラは、前記設備機器から通知された前記運転状態に基づいて前記センサ機器のスリープ時間及び/又はスリープ間隔を決定し、決定したスリープ時間及び/又はスリープ間隔を前記センサ機器に通知し、
 前記センサ機器は、前記統合コントローラから通知されたスリープ時間及び/又はスリープ間隔に従って自機器をスリープ状態にする。
In order to achieve the above object, a measurement system according to the present invention includes:
Equipment to adjust the environment of the target space;
A sensor device that measures a value related to the environment of the target space and transmits measurement data storing the measured value to the facility device;
An integrated controller for controlling the equipment device based on the measurement data from the sensor device,
The facility device notifies the integrated controller of the operation state of the device,
The integrated controller determines a sleep time and / or sleep interval of the sensor device based on the operation state notified from the facility device, and notifies the sensor device of the determined sleep time and / or sleep interval,
The sensor device puts its own device into a sleep state according to the sleep time and / or sleep interval notified from the integrated controller.
 本発明によれば、設備機器の運転状態に基づいて決定されるスリープ時間及び/又はスリープ間隔に従って、センサ機器はスリープ状態となる。これにより、設備機器の運転を阻害することなく、センサ機器の電源となる電池の消耗を抑えることが可能となる。 According to the present invention, the sensor device enters the sleep state according to the sleep time and / or sleep interval determined based on the operation state of the equipment device. As a result, it is possible to suppress the consumption of the battery serving as the power source of the sensor device without hindering the operation of the facility device.
本発明の実施形態1に係る計測システムの全体構成を示す図である。It is a figure which shows the whole structure of the measurement system which concerns on Embodiment 1 of this invention. 実施形態1に係る統合コントローラの構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of an integrated controller according to the first embodiment. 実施形態1に係る無線親機の構成を示すブロック図である。1 is a block diagram illustrating a configuration of a wireless master device according to a first embodiment. 実施形態1に係るセンサ機器の構成を示すブロック図である。It is a block diagram which shows the structure of the sensor apparatus which concerns on Embodiment 1. FIG. 実施形態1に係る設備機器の構成を示すブロック図である。It is a block diagram which shows the structure of the installation equipment which concerns on Embodiment 1. FIG. 実施形態1に係る統合コントローラによる処理を示すフローチャートである。3 is a flowchart illustrating processing by an integrated controller according to the first embodiment. 実施形態1に係る無線親機による処理を示すフローチャートである。3 is a flowchart showing processing by the wireless master device according to the first embodiment. 実施形態1に係るセンサ機器による処理を示すフローチャートである。4 is a flowchart illustrating processing by the sensor device according to the first embodiment. 図8に示す処理のうちスリープの実行及び解除処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of execution and cancellation | release processing of sleep among the processes shown in FIG. 実施形態1に係る設備機器による処理を示すフローチャートである。It is a flowchart which shows the process by the installation equipment which concerns on Embodiment 1. FIG. 実施形態1に係る計測システムの通信シーケンスを示す図である。It is a figure which shows the communication sequence of the measurement system which concerns on Embodiment 1. FIG. 本発明の実施形態2に係る設備機器による処理を示すフローチャートである。It is a flowchart which shows the process by the installation equipment concerning Embodiment 2 of this invention. 実施形態2に係る計測システムの通信シーケンスを示す図である。It is a figure which shows the communication sequence of the measurement system which concerns on Embodiment 2. FIG. 本発明の他の実施形態に係る計測システムの構成(その1)を示すブロック図である。It is a block diagram which shows the structure (the 1) of the measurement system which concerns on other embodiment of this invention. 本発明の他の実施形態に係る計測システムの構成(その2)を示すブロック図である。It is a block diagram which shows the structure (the 2) of the measurement system which concerns on other embodiment of this invention.
 以下、本発明の実施形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(実施形態1)
 図1は、本発明の実施形態1に係る計測システム1の全体構成を示す図である。この計測システム1は、例えば、オフィスビル等に導入される設備機器システムが有する一部の機能を実現するためのシステムである。より具体的には、計測システム1は、上記の設備機器システムを構成する各設備機器40の対象空間における温度や湿度等を計測するために使用されるシステムである。
(Embodiment 1)
FIG. 1 is a diagram showing an overall configuration of a measurement system 1 according to Embodiment 1 of the present invention. The measurement system 1 is a system for realizing some functions of an equipment system introduced into an office building or the like, for example. More specifically, the measurement system 1 is a system that is used to measure temperature, humidity, and the like in the target space of each facility device 40 that constitutes the facility device system.
 図1に示すように、計測システム1は、統合コントローラ10と、i個の無線親機20_1~20_iと、j個のセンサ機器30_1~30_jと、k個の設備機器40_1~40_kと、から構成される。以下、無線親機20_1~20_iの各々を特に区別しない場合、無線親機20と称する。センサ機器30_1~30_jの各々を特に区別しない場合、センサ機器30と称する。設備機器40_1~40_kの各々を特に区別しない場合、設備機器40と称する。 As shown in FIG. 1, the measurement system 1 includes an integrated controller 10, i wireless master devices 20_1 to 20_i, j sensor devices 30_1 to 30_j, and k facility devices 40_1 to 40_k. Is done. Hereinafter, the radio master units 20_1 to 20_i will be referred to as radio master units 20 unless otherwise distinguished. When each of the sensor devices 30_1 to 30_j is not particularly distinguished, it is referred to as a sensor device 30. Each of the facility devices 40_1 to 40_k is referred to as the facility device 40 unless particularly distinguished from each other.
 本実施形態では、無線親機20とセンサ機器30と設備機器40とが、1:1:1で対応付けられる。したがって、無線親機20の数(i個)とセンサ機器30の数(j個)と設備機器40の数(k個)とは、同一である。なお、上記の対応関係は任意の設計事項であり、例えば、無線親機20とセンサ機器30と設備機器40とが、1:多:1、1:多:多などで対応付けられていてもよい。 In the present embodiment, the wireless master device 20, the sensor device 30, and the facility device 40 are associated with each other at 1: 1: 1. Therefore, the number of wireless master devices 20 (i), the number of sensor devices 30 (j), and the number of facility devices 40 (k) are the same. Note that the above correspondence relationship is an arbitrary design item. For example, the wireless master device 20, the sensor device 30, and the equipment device 40 may be associated in a 1: many: 1, 1: many: many, or the like. Good.
 統合コントローラ10は、無線親機20の各々と通信線L2を介して接続され、複数の設備機器40の各々と通信線L4を介して接続される。統合コントローラ10は、センサ機器30の何れかにより計測された、空気の状態を示す予め定めた物理量に応じて、そのセンサ機器30に対応する設備機器40の動作を制御する。 The integrated controller 10 is connected to each of the wireless master devices 20 via the communication line L2, and is connected to each of the plurality of facility devices 40 via the communication line L4. The integrated controller 10 controls the operation of the equipment device 40 corresponding to the sensor device 30 according to a predetermined physical quantity indicating the air state measured by any of the sensor devices 30.
 無線親機20はそれぞれ、統合コントローラ10と有線で(通信線L2を介して)通信し、センサ機器30と無線で(無線通信網L3を介して)通信する。無線親機20はそれぞれ、対応するセンサ機器30からのデータ(例えば、計測データ)を受信し、受信したデータを統合コントローラ10に送信する。また、無線親機20はそれぞれ、統合コントローラ10からのデータ(例えば、スリープ時間通知)を受信し、受信したデータに基づくデータ(例えば、スリープ時間設定要求)を対応するセンサ機器30に送信する。無線親機20により、通信線を削減することが可能になる。 Each of the wireless master devices 20 communicates with the integrated controller 10 by wire (via the communication line L2) and communicates with the sensor device 30 wirelessly (via the wireless communication network L3). Each of the wireless master devices 20 receives data (for example, measurement data) from the corresponding sensor device 30 and transmits the received data to the integrated controller 10. Each of the wireless master devices 20 receives data (for example, a sleep time notification) from the integrated controller 10 and transmits data (for example, a sleep time setting request) based on the received data to the corresponding sensor device 30. The wireless master device 20 can reduce communication lines.
 本実施形態に係る統合コントローラ10は、図2に示すように、制御部11と、記憶部12と、時間管理部13と、通信I/F部14と、通信I/F部15と、ユーザI/F部16と、を備える。これらの各構成部は、バス17を介して相互に接続される。 As shown in FIG. 2, the integrated controller 10 according to the present embodiment includes a control unit 11, a storage unit 12, a time management unit 13, a communication I / F unit 14, a communication I / F unit 15, and a user. I / F unit 16. These components are connected to each other via a bus 17.
 統合コントローラ10は物理的には、図示しないが、例えば、MPU(Micro-Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、読み書き可能な不揮発性の半導体メモリ、ハードウェアタイマ、トランシーバ回路、電源回路、入力デバイス、表示デバイスなどを含んで構成される。 Although the integrated controller 10 is not physically illustrated, for example, an MPU (Micro-Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a readable / writable nonvolatile semiconductor memory, a hardware timer, It includes a transceiver circuit, a power supply circuit, an input device, a display device, and the like.
 記憶部12は、例えば、フラッシュメモリ等の読み書き可能な不揮発性の半導体メモリ等で構成される。記憶部12は、各設備機器40を制御するためのプログラムを含む各種のプログラムを記憶する。また、記憶部12は、これらのプログラムの実行時に使用されるデータや、これらのプログラムの実行によって生成されたデータ等を記憶する。 The storage unit 12 includes, for example, a readable / writable nonvolatile semiconductor memory such as a flash memory. The storage unit 12 stores various programs including a program for controlling each facility device 40. The storage unit 12 also stores data used when executing these programs, data generated by executing these programs, and the like.
 時間管理部13は、タイマであり、例えば、ハードウェアタイマである。なお、ソフトウェアタイマでタイマ機能を実現してもよい。時間管理部13は、制御部11からの指令により計時を開始し、予め設定された時間が経過すると、その旨を制御部11等に通知する。時間管理部13に設定される時間は、固定であってもよいし、状況に応じて制御部11が適宜変更してもよい。また、ユーザの操作によっても時間管理部13に設定される時間が変更されるようにしてもよい。 The time management unit 13 is a timer, for example, a hardware timer. Note that the timer function may be realized by a software timer. The time management unit 13 starts timing in response to a command from the control unit 11 and notifies the control unit 11 and the like when a preset time has elapsed. The time set in the time management unit 13 may be fixed, or may be appropriately changed by the control unit 11 according to the situation. Also, the time set in the time management unit 13 may be changed by a user operation.
 通信I/F部14は、通信線L4と接続し、各設備機器40と通信線L4を介した通信を行う。通信I/F部15は、通信線L2と接続し、各無線親機20と通信線L2を介した通信を行う。なお、I/Fは、インタフェースを意味する。 The communication I / F unit 14 is connected to the communication line L4 and communicates with each facility device 40 via the communication line L4. The communication I / F unit 15 is connected to the communication line L2, and communicates with each wireless master device 20 via the communication line L2. Note that I / F means an interface.
 ユーザI/F部16は、例えば、タッチパネル、タッチパッド、キーボード、マウス、ディップスイッチ、押しボタン、ダイヤル等の入力デバイスと、CRTディスプレイ、液晶ディスプレイ、有機ELディスプレイ、プラズマディスプレイ等の表示デバイスとを含んで構成される。ユーザI/F部16は、ユーザからの操作を受け付ける。また、ユーザI/F部16は、制御部11からの指示に従って各種の情報を表示する。例えば、ユーザは、ユーザI/F部16を介して、無線親機20、設備機器40などの接続機器の登録、設備機器40とセンサ機器30との対応付けなどを行うことが可能になる。例えば、設備機器40_1とセンサ機器30_1とが対応付けられた場合は、設備機器40_1の運転状態(運転中又は停止中)に応じてセンサ機器30_1のスリープ時間が変更される。 The user I / F unit 16 includes, for example, an input device such as a touch panel, a touch pad, a keyboard, a mouse, a dip switch, a push button, and a dial, and a display device such as a CRT display, a liquid crystal display, an organic EL display, and a plasma display. Consists of including. The user I / F unit 16 receives an operation from the user. In addition, the user I / F unit 16 displays various types of information in accordance with instructions from the control unit 11. For example, the user can register connection devices such as the wireless master device 20 and the facility device 40 and associate the facility device 40 with the sensor device 30 via the user I / F unit 16. For example, when the facility device 40_1 and the sensor device 30_1 are associated with each other, the sleep time of the sensor device 30_1 is changed according to the operating state (running or stopped) of the facility device 40_1.
 制御部11は、MPU、RAM、ROM等を含んで構成される。制御部11は、センサ機器30から送られてきた計測データに基づいて、そのセンサ機器30に対応する設備機器40の動作を制御するための制御情報を生成する。そして、制御部11は、生成した制御情報を格納したデータ(制御情報通知)を通信I/F部14を介して、対応する設備機器40に送信する。また、制御部11は、スリープ時間決定部としての機能も担い、各設備機器40の運転状態(運転中又は停止中)に基づいて、各センサ機器30のスリープ時間を決定する。制御部11のかかる機能は、MPUがROMやデータ記憶部12に格納されたプログラムを実行することにより実現される。 The control unit 11 includes an MPU, a RAM, a ROM, and the like. The control unit 11 generates control information for controlling the operation of the facility device 40 corresponding to the sensor device 30 based on the measurement data transmitted from the sensor device 30. And the control part 11 transmits the data (control information notification) which stored the produced | generated control information to the corresponding equipment 40 via the communication I / F part 14. FIG. The control unit 11 also functions as a sleep time determination unit, and determines the sleep time of each sensor device 30 based on the operation state (operating or stopped) of each facility device 40. Such a function of the control unit 11 is realized by the MPU executing a program stored in the ROM or the data storage unit 12.
 続いて、本実施形態に係る無線親機20の構成について説明する。無線親機20の各々は、図3に示すように、制御部21と、記憶部22と、時間管理部23と、通信I/F部24と、通信I/F部25と、ユーザI/F部26と、を備える。これらの各構成部は、バス27を介して相互に接続される。 Subsequently, the configuration of the wireless master device 20 according to the present embodiment will be described. As shown in FIG. 3, each of the wireless master devices 20 includes a control unit 21, a storage unit 22, a time management unit 23, a communication I / F unit 24, a communication I / F unit 25, and a user I / F. F part 26 is provided. These components are connected to each other via a bus 27.
 無線親機20の各々は物理的には、図示しないが、例えば、MPU、RAM、ROM、読み書き可能な不揮発性の半導体メモリ、ハードウェアタイマ、トランシーバ回路、無線モジュール、アンテナ、電源回路、入力デバイス、表示デバイスなどを含んで構成される。  Each of the wireless master devices 20 is physically not shown, but for example, MPU, RAM, ROM, readable / writable nonvolatile semiconductor memory, hardware timer, transceiver circuit, wireless module, antenna, power supply circuit, input device And a display device. *
 記憶部22は、例えば、フラッシュメモリ等の読み書き可能な不揮発性の半導体メモリ等で構成される。記憶部22は、当該無線親機20が実行する後述の処理に係るプログラムや、このプログラムの実行時に使用されるデータ等を記憶する。 The storage unit 22 is composed of, for example, a readable / writable nonvolatile semiconductor memory such as a flash memory. The storage unit 22 stores a program related to processing to be described later executed by the wireless master device 20, data used when the program is executed, and the like.
 時間管理部23は、上述した時間管理部13と同様のタイマであり、制御部21からの指令により計時を開始し、予め設定された時間が経過すると、その旨を制御部21等に通知する。 The time management unit 23 is a timer similar to the time management unit 13 described above, starts time measurement in response to a command from the control unit 21, and notifies the control unit 21 and the like when a preset time has elapsed. .
 通信I/F部24は、通信線L2と接続し、統合コントローラ10と通信線L2を介した通信を行う。通信I/F部25は、無線通信のためのインタフェースであり、対応するセンサ機器30と無線通信網L3を介した無線通信を行う。 The communication I / F unit 24 is connected to the communication line L2, and communicates with the integrated controller 10 via the communication line L2. The communication I / F unit 25 is an interface for wireless communication, and performs wireless communication with the corresponding sensor device 30 via the wireless communication network L3.
 ユーザI/F部26は、例えば、タッチパネル、タッチパッド、ディップスイッチ、押しボタン、ダイヤル等の入力デバイスと、液晶ディスプレイ、有機ELディスプレイ、LEDディスプレイ等の表示デバイスとを含んで構成される。ユーザI/F部26は、ユーザからの操作を受け付ける。また、ユーザI/F部26は、制御部21からの指示に従って各種の情報を表示する。例えば、ユーザは、ユーザI/F部26を介して、接続機器(例えば、センサ機器30)の登録などを行うことが可能になる。 The user I / F unit 26 includes, for example, an input device such as a touch panel, a touch pad, a dip switch, a push button, and a dial, and a display device such as a liquid crystal display, an organic EL display, and an LED display. The user I / F unit 26 receives an operation from the user. Further, the user I / F unit 26 displays various types of information in accordance with instructions from the control unit 21. For example, the user can register a connected device (for example, the sensor device 30) via the user I / F unit 26.
 制御部21は、MPU、RAM、ROM等を含んで構成される。制御部21は、当該無線親機20に対応するセンサ機器30からのデータ(計測データ通知)を通信I/F部25を介して受信し、受信した計測データ通知に基づくデータ(計測データ応答)を通信I/F部24を介して統合コントローラ10に送信する。また、制御部21は、対応するセンサ機器30がウェイクアップした直後に、統合コントローラ10により決定されたスリープ時間を、その対応するセンサ機器30に通知する。制御部21のかかる機能は、MPUがROMやデータ記憶部22に格納されたプログラムを実行することにより実現される。 The control unit 21 includes an MPU, a RAM, a ROM, and the like. The control unit 21 receives data (measurement data notification) from the sensor device 30 corresponding to the wireless master device 20 via the communication I / F unit 25, and data (measurement data response) based on the received measurement data notification. Is transmitted to the integrated controller 10 via the communication I / F unit 24. Further, immediately after the corresponding sensor device 30 wakes up, the control unit 21 notifies the corresponding sensor device 30 of the sleep time determined by the integrated controller 10. Such a function of the control unit 21 is realized by the MPU executing a program stored in the ROM or the data storage unit 22.
 続いて、本実施形態に係るセンサ機器30の構成について説明する。センサ機器30の各々は、図4に示すように、制御部31と、記憶部32と、時間管理部33と、通信I/F部34と、センサ部35と、ユーザI/F部36と、を備える。これらの各構成部は、バス37を介して相互に接続される。 Subsequently, the configuration of the sensor device 30 according to the present embodiment will be described. As shown in FIG. 4, each of the sensor devices 30 includes a control unit 31, a storage unit 32, a time management unit 33, a communication I / F unit 34, a sensor unit 35, and a user I / F unit 36. . These components are connected to each other via a bus 37.
 センサ機器30の各々は物理的には、例えば、MPU、RAM、ROM、読み書き可能な不揮発性の半導体メモリ、ハードウェアタイマ、無線モジュール、アンテナ、電源回路、入力デバイス、表示デバイス、温湿度センサモジュールなどから構成される。 Each of the sensor devices 30 physically includes, for example, an MPU, a RAM, a ROM, a readable / writable nonvolatile semiconductor memory, a hardware timer, a wireless module, an antenna, a power supply circuit, an input device, a display device, and a temperature / humidity sensor module. Etc.
 また、各センサ機器30は、電源として交換可能な電池を備える。電池は、例えば、一次電池からなる。なお、電池の種類は任意であり、例えば、二次電池であってもよい。 Each sensor device 30 includes a replaceable battery as a power source. A battery consists of a primary battery, for example. In addition, the kind of battery is arbitrary, For example, a secondary battery may be sufficient.
 記憶部32は、例えば、フラッシュメモリ等の読み書き可能な不揮発性の半導体メモリ等で構成される。記憶部32は、当該センサ機器30が実行する後述の処理に係るプログラムや、このプログラムの実行時に使用されるデータ等を記憶する。 The storage unit 32 is configured by, for example, a readable / writable nonvolatile semiconductor memory such as a flash memory. The storage unit 32 stores a program related to processing to be described later executed by the sensor device 30, data used when the program is executed, and the like.
 時間管理部33は、上述した時間管理部13や時間管理部23と同様のタイマであり、制御部31からの指令により計時を開始し、予め設定された時間が経過すると、その旨を制御部31等に通知する。 The time management unit 33 is a timer similar to the time management unit 13 and the time management unit 23 described above, and starts time measurement according to a command from the control unit 31. When a preset time elapses, the time management unit 33 notifies the control unit. Notify 31 etc.
 通信I/F部34は、無線通信のためのインタフェースであり、対応する無線親機20と無線通信網L3を介した無線通信を行う。 The communication I / F unit 34 is an interface for wireless communication, and performs wireless communication with the corresponding wireless master device 20 via the wireless communication network L3.
 センサ部35は、当該センサ機器30が設置された空間における環境状態を示す予め定めた物理量(例えば、温度、湿度、照度など)を計測する。本実施形態では、各センサ機器30は、対応する設備機器40近傍の適切な位置に設置される。即ち、センサ部35は、対応する設備機器40の対象空間における環境に関する値を計測する。具体的には、センサ部35は、例えば、温湿度センサモジュールを含んで構成され、例えば、空気調和機(設備機器40)により空調を行う室内の現在の温度及び湿度を計測する。設備機器40は、対応するセンサ機器30で計測された値を変化させるように又は維持するように運転が制御される。 The sensor unit 35 measures a predetermined physical quantity (for example, temperature, humidity, illuminance, etc.) indicating an environmental state in the space where the sensor device 30 is installed. In the present embodiment, each sensor device 30 is installed at an appropriate position in the vicinity of the corresponding facility device 40. That is, the sensor unit 35 measures a value related to the environment in the target space of the corresponding equipment device 40. Specifically, the sensor unit 35 includes, for example, a temperature / humidity sensor module, and measures, for example, a current temperature and humidity in a room that is air-conditioned by an air conditioner (equipment device 40). The operation of the facility device 40 is controlled so as to change or maintain the value measured by the corresponding sensor device 30.
 ユーザI/F部36は、例えば、ディップスイッチ、押しボタン、ダイヤル等の入力デバイスと、LEDディスプレイ等の表示デバイスとを含んで構成される。例えば、ユーザは、ユーザI/F部36を介して、接続機器(例えば、無線親機20)に対する登録依頼などを行うことが可能になる。 The user I / F unit 36 includes, for example, input devices such as dip switches, push buttons, and dials, and display devices such as LED displays. For example, the user can make a registration request to the connected device (for example, the wireless master device 20) via the user I / F unit 36.
 制御部31は、予め定めたタイミング又は統合コントローラ10からの要求に応じて、センサ部35で計測された値(例えば、温度及び湿度)を格納したデータを通信I/F部34を介して当該センサ機器30に対応する無線親機20に送信する。本実施形態では、制御部31は、当該センサ機器30がウェイクアップした直後に、センサ部35で計測された値(計測値)を取得し、その計測値を格納したデータを対応する無線親機20に送信する。また、制御部31は、スリープ制御部としての機能も担い、統合コントローラ10により決定されたスリープ時間だけ当該センサ機器30をスリープ状態にする。制御部31のかかる機能は、MPUがROMやデータ記憶部22に格納されたプログラムを実行することにより実現される。 The control unit 31 stores data storing values (for example, temperature and humidity) measured by the sensor unit 35 via the communication I / F unit 34 in response to a predetermined timing or a request from the integrated controller 10. The data is transmitted to the wireless master device 20 corresponding to the sensor device 30. In the present embodiment, the control unit 31 acquires a value (measurement value) measured by the sensor unit 35 immediately after the sensor device 30 wakes up, and stores the measured value in the corresponding wireless master unit. 20 to send. The control unit 31 also functions as a sleep control unit, and puts the sensor device 30 in the sleep state for the sleep time determined by the integrated controller 10. Such a function of the control unit 31 is realized by the MPU executing a program stored in the ROM or the data storage unit 22.
 続いて、本実施形態に係る設備機器40の構成について説明する。設備機器40の各々は、例えば、空気調和機であって、図5に示されるように、通信部41と、メイン制御部42とを備える。メイン制御部42は、当該設備機器40の駆動部(図示せず)を制御する。例えば、設備機器40が空気調和機である場合には、メイン制御部42は、空調運転に係る制御を行う。 Subsequently, the configuration of the equipment 40 according to the present embodiment will be described. Each of the facility devices 40 is, for example, an air conditioner, and includes a communication unit 41 and a main control unit 42 as illustrated in FIG. The main control unit 42 controls a drive unit (not shown) of the facility device 40. For example, when the equipment 40 is an air conditioner, the main control unit 42 performs control related to the air conditioning operation.
 通信部41は、統合コントローラ10との通信に係る処理を行う。通信部41は、制御部43と、記憶部44と、通信I/F部45と、内部通信I/F部46と、を備える。これらの各構成部は、バス47を介して相互に接続される。 The communication unit 41 performs processing related to communication with the integrated controller 10. The communication unit 41 includes a control unit 43, a storage unit 44, a communication I / F unit 45, and an internal communication I / F unit 46. These components are connected to each other via a bus 47.
 通信部41は物理的には、図示しないが、例えば、MPU、RAM、ROM、読み書き可能な不揮発性の半導体メモリ、トランシーバ回路、及び電源回路などから構成される。 Although the communication unit 41 is not physically illustrated, the communication unit 41 includes, for example, an MPU, a RAM, a ROM, a readable / writable nonvolatile semiconductor memory, a transceiver circuit, and a power supply circuit.
 記憶部44は、例えば、フラッシュメモリ等の読み書き可能な不揮発性の半導体メモリ等で構成される。記憶部44は、制御部43が実行する後述の処理に係るプログラムや、このプログラムの実行時に使用されるデータ等を記憶する。 The storage unit 44 is configured by, for example, a readable / writable nonvolatile semiconductor memory such as a flash memory. The storage unit 44 stores a program related to processing to be described later executed by the control unit 43, data used when the program is executed, and the like.
 通信I/F部45は、通信線L4と接続し、統合コントローラ10と通信線L4を介した通信を行う。内部通信I/F部46は、メイン制御部42との通信のためのインタフェースである。 The communication I / F unit 45 is connected to the communication line L4, and performs communication with the integrated controller 10 via the communication line L4. The internal communication I / F unit 46 is an interface for communication with the main control unit 42.
 制御部43は、統合コントローラ10から制御情報通知が通信I/F部45により受信されると、その制御情報通知に含まれる制御情報を内部通信I/F部46を介してメイン制御部42に送信する。また、制御部43は、運転状態取得部としての機能も担い、当該設備機器40の運転状態(運転中又は停止中)の変化を検出すると、変化後の運転状態を通知するためのデータ(状態変化通知)を通信I/F部45を介して統合コントローラ10に送信する。 When the control information notification is received from the integrated controller 10 by the communication I / F unit 45, the control unit 43 sends the control information included in the control information notification to the main control unit 42 via the internal communication I / F unit 46. Send. In addition, the control unit 43 also functions as an operation state acquisition unit, and when detecting a change in the operation state (operating or stopped) of the equipment 40, data (state) for notifying the changed operation state Change notification) is transmitted to the integrated controller 10 via the communication I / F unit 45.
 制御部43は、予め定めたタイミング(例えば、一定周期)でメイン制御部42に対して、当該設備機器40の運転状態の問い合わせを行う。本実施形態では、制御部43が取得する運転状態には、運転中(稼働中)及び停止中の2つの状態がある。かかる問い合わせに応答してメイン制御部42から、運転状態を示す情報が返ってくると、制御部43は、前回問い合わせした際の運転状態(例えば、RAMや記憶部44に保存されている。)と比較する。その結果、前回の運転状態から変化している場合(例えば、運転中→停止中、又は停止中→運転中)、上記の状態変化通知を統合コントローラ10に送信する。この状態変化通知には、変化後の運転状態を示す情報が格納される。 The control unit 43 makes an inquiry about the operating state of the equipment 40 to the main control unit 42 at a predetermined timing (for example, a constant cycle). In the present embodiment, the operation state acquired by the control unit 43 includes two states that are operating (operating) and stopped. When information indicating the operation state is returned from the main control unit 42 in response to the inquiry, the control unit 43 is in the operation state at the time of the previous inquiry (for example, stored in the RAM or the storage unit 44). Compare with As a result, when there is a change from the previous operation state (for example, during operation → stopping, or during stop → operation), the state change notification is transmitted to the integrated controller 10. This state change notification stores information indicating the operating state after the change.
 なお、制御部43は、当該設備機器40が備える図示しないセンサの計測値に基づいて運転状態の変化を検出してもよい。この場合のセンサは、例えば、当該設備機器40における、内部温度、消費電力量、モータの回転数、排気量等を計測する。 In addition, the control part 43 may detect the change of an operating state based on the measured value of the sensor which is not shown in the said equipment 40. The sensor in this case measures, for example, the internal temperature, the amount of power consumption, the number of revolutions of the motor, the amount of exhaust, etc. in the equipment 40.
 次に、図6~図10を参照して、計測システム1における処理の具体例について説明する。なお、本実施形態では、図6~図10の処理に先立って、ユーザが、無線親機20とセンサ機器30と設備機器40との対応付けをしておくものとする。こうした対応付けは、例えば、ユーザI/F部16、26、36を介して行うことができる。本実施形態では、無線親機20_1とセンサ機器30_1と設備機器40_1とを対応付けて、無線親機20_2とセンサ機器30_2と設備機器40_2とを対応付けて、…というように、同じ番号のもの同士が対応付けされる。このような機器の対応関係を示すデータは、例えば、記憶部12、22、32に保存される。例えば、各機器に予め割り振られたID(識別子)などを記憶部12、22、32に記憶させておくことで、各無線親機20、各センサ機器30、各設備機器40を識別可能にすることができる。 Next, a specific example of processing in the measurement system 1 will be described with reference to FIGS. In the present embodiment, it is assumed that the user associates the wireless master device 20, the sensor device 30, and the facility device 40 prior to the processing of FIGS. Such association can be performed, for example, via the user I / F units 16, 26, and 36. In the present embodiment, the wireless master device 20_1, the sensor device 30_1, and the facility device 40_1 are associated with each other, the wireless master device 20_2, the sensor device 30_2, and the facility device 40_2 are associated with each other, and so on. They are associated with each other. Data indicating the correspondence relationship between such devices is stored in the storage units 12, 22, and 32, for example. For example, by storing IDs (identifiers) assigned in advance to each device in the storage units 12, 22, and 32, each wireless master device 20, each sensor device 30, and each equipment device 40 can be identified. be able to.
 図6は、統合コントローラ10による処理、詳しくは設備機器40の制御に係る処理を示すフローチャートである。図6に示す一連の処理は、統合コントローラ10により、予め定めた周期(必要な処理精度を得るために十分に短い周期)で繰り返し実行される。 FIG. 6 is a flowchart showing processing by the integrated controller 10, specifically processing related to the control of the equipment device 40. The series of processing shown in FIG. 6 is repeatedly executed by the integrated controller 10 at a predetermined cycle (a cycle sufficiently short to obtain the required processing accuracy).
 図6のステップS11では、制御部11が、何れかの設備機器40から状態変化通知を受信したか否かを判断する。 6, in step S11, the control unit 11 determines whether or not a state change notification is received from any of the equipment devices 40.
 状態変化通知を受信した場合(ステップS11;YES)、続くステップS12で、制御部11は、対象となるセンサ機器30を選択し、受信した状態変化通知に基づいて、そのセンサ機器30のスリープ時間を決定する。本実施形態では、状態変化通知を送信した設備機器40に対して予め対応付けされたセンサ機器30が選択される。 When the state change notification is received (step S11; YES), in the subsequent step S12, the control unit 11 selects the target sensor device 30 and, based on the received state change notification, the sleep time of the sensor device 30. To decide. In the present embodiment, the sensor device 30 associated in advance with the equipment device 40 that has transmitted the state change notification is selected.
 制御部11は、状態変化通知の送信元の設備機器40における変化後の運転状態(運転中又は停止中)に応じて、適切なスリープ時間を決定する。具体的には、例えば、停止中に変化した場合、スリープ時間として長い時間(第1スリープ時間)を設定し、一方、運転中に変化した場合、第1スリープ時間より短い時間(第2スリープ時間)を設定する。第1スリープ時間及び第2スリープ時間は、それぞれ予め定めた時間であってもよいし、予め定めた計算式やテーブルを用いて導出してもよいし、あるいは、予め用意した複数のスリープ時間(選択肢)から選択するようにしてもよい。 The control unit 11 determines an appropriate sleep time according to the changed operating state (operating or stopped) in the equipment device 40 that is the transmission source of the state change notification. Specifically, for example, when changing during stop, a long time (first sleep time) is set as the sleep time, while when changing during driving, the time is shorter than the first sleep time (second sleep time). ) Is set. Each of the first sleep time and the second sleep time may be a predetermined time, may be derived using a predetermined calculation formula or table, or may be a plurality of sleep times prepared in advance ( You may make it select from choice.
 さらに、ステップS12では、制御部11は、選択したセンサ機器30に対応付けられた無線親機20に対して、決定したスリープ時間を通知するためのデータ(スリープ時間通知)を送信し、ステップS13の処理に進む。 Further, in step S12, the control unit 11 transmits data for notifying the determined sleep time (sleep time notification) to the wireless master device 20 associated with the selected sensor device 30, and step S13. Proceed to the process.
 一方、状態変化通知を受信していない場合(ステップS11;NO)には、制御部11は、ステップS12の処理を行わずに、ステップS13の処理に進む。 On the other hand, when the state change notification is not received (step S11; NO), the control unit 11 proceeds to the process of step S13 without performing the process of step S12.
 ステップS13では、制御部11は、前回の計測データ要求の送信から予め定めた時間が経過したか否かを判断する。具体的には、制御部11は、時間管理部13が備える第1タイマから予め設定された時間が経過した旨の通知を受けたか否かで上記の判断を行う。その結果、予め定めた時間が経過していない場合(ステップS13;NO)、制御部11は本処理を終了する。 In step S13, the control unit 11 determines whether or not a predetermined time has elapsed since the transmission of the previous measurement data request. Specifically, the control unit 11 makes the above determination based on whether or not a notification indicating that a preset time has elapsed has been received from the first timer included in the time management unit 13. As a result, when the predetermined time has not elapsed (step S13; NO), the control unit 11 ends this process.
 一方、前回の計測データ要求の送信から予め定めた時間が経過した(ステップS13;YES)、続くステップS14で、制御部11は、全ての無線親機20の中から順次選択した無線親機20に対して計測データ要求を送信し、ステップS15の処理に進む。また、制御部11は、この計測データ要求の送信に際して、ステップS13で使用した第1タイマをリセットすると共に計時を開始させ、また、ステップS16で使用する、時間管理部13が備える第2タイマをリセットすると共に計時を開始させる。 On the other hand, when a predetermined time has elapsed from the previous transmission of the measurement data request (step S13; YES), the control unit 11 sequentially selects the wireless master device 20 from all of the wireless master devices 20 in step S14. A measurement data request is transmitted to, and the process proceeds to step S15. In addition, when transmitting the measurement data request, the control unit 11 resets the first timer used in step S13 and starts timing, and also uses the second timer included in the time management unit 13 used in step S16. Reset and start timing.
 ステップS15では、制御部11は、計測データ要求を送信した無線親機20から計測データ応答を受信したか否かを判断する。 In step S15, the control unit 11 determines whether or not a measurement data response has been received from the wireless master device 20 that has transmitted the measurement data request.
 計測データ応答を受信していない場合(ステップS15;NO)、続くステップS16で、制御部11は、第2タイマから予め設定された時間が経過した旨の通知を受けたか否か、即ち、受信タイムアウトになったか否かを判断する。ステップS16で受信タイムアウトになったと判断するまでは、制御部11は、計測データ応答の受信を待つ。一方、受信タイムアウトになった場合(ステップS16;YES)、制御部11は本処理を終了する。 If the measurement data response has not been received (step S15; NO), in the subsequent step S16, the control unit 11 has received a notification that a preset time has elapsed from the second timer, that is, received. Determine whether a timeout has occurred. Until it is determined in step S16 that the reception time-out has occurred, the control unit 11 waits for reception of a measurement data response. On the other hand, when the reception time-out is reached (step S16; YES), the control unit 11 ends this process.
 計測データ応答を受信した場合(ステップS15;YES)、続くステップS17で、制御部11は、受信した計測データ応答に含まれる計測データを記憶部12に格納(保存)する。そして、続くステップS18で、制御部11は、記憶部12に格納した計測データに基づいて生成した制御情報通知を対応する設備機器40に送信する。 When the measurement data response is received (step S15; YES), in the subsequent step S17, the control unit 11 stores (saves) the measurement data included in the received measurement data response in the storage unit 12. Then, in subsequent step S <b> 18, the control unit 11 transmits a control information notification generated based on the measurement data stored in the storage unit 12 to the corresponding equipment device 40.
 具体的には、制御部11は、記憶部12に格納された計測データに基づいて、計測データ応答の送信元の無線親機20に対応する設備機器40の動作を制御するための制御情報を生成する。例えば、あるセンサ機器30の計測した温度(計測データ)が予め定めた閾値以上である場合、制御部11は、そのセンサ機器30と対応付けされている設備機器40の出力を大きくするような制御情報を生成する。そして、制御部11は、生成した制御情報を格納した制御情報通知を通信I/F部14を介して当該設備機器40へ送信する。 Specifically, based on the measurement data stored in the storage unit 12, the control unit 11 provides control information for controlling the operation of the equipment 40 corresponding to the wireless master device 20 that is the transmission source of the measurement data response. Generate. For example, when the temperature (measurement data) measured by a certain sensor device 30 is equal to or higher than a predetermined threshold, the control unit 11 performs control to increase the output of the facility device 40 associated with the sensor device 30. Generate information. Then, the control unit 11 transmits a control information notification storing the generated control information to the facility device 40 via the communication I / F unit 14.
 図7は、無線親機20による処理を示すフローチャートである。図7に示す一連の処理は、予め定めた周期(必要な処理精度を得るために十分に短い周期)で繰り返し実行される。また、初期設定では、スリープ時間通知受信フラグは、OFFになっているものとする。 FIG. 7 is a flowchart showing processing by the wireless master device 20. The series of processing shown in FIG. 7 is repeatedly executed at a predetermined cycle (a cycle that is sufficiently short to obtain necessary processing accuracy). In the initial setting, it is assumed that the sleep time notification reception flag is OFF.
 図7のステップS21では、制御部21は、統合コントローラ10からスリープ時間通知を受信したか否かを判断する。そして、スリープ時間通知を受信した場合(ステップS21;YES)、続くステップS22で、制御部21は、スリープ時間通知受信フラグをONにして、ステップS23の処理に進む。一方、スリープ時間通知を受信していない場合(ステップS21;NO)、制御部11は、ステップS22の処理を行わずに、ステップS23の処理に進む。 7, the control unit 21 determines whether or not a sleep time notification has been received from the integrated controller 10. When the sleep time notification is received (step S21; YES), in the subsequent step S22, the control unit 21 turns on the sleep time notification reception flag and proceeds to the process of step S23. On the other hand, when the sleep time notification is not received (step S21; NO), the control unit 11 proceeds to the process of step S23 without performing the process of step S22.
 ステップS23では、制御部21は、統合コントローラ10から計測データ要求を受信したか否かを判断する。そして、計測データ要求を受信した場合(ステップS23;YES)、続くステップS24で、制御部21は、記憶部22に記憶されている計測データを格納した計測データ応答を統合コントローラ10に送信して、ステップS25の処理に進む。一方、計測データ要求を受信していないと判断した場合(ステップS23;NO)、制御部21は、ステップS24の処理を行わずに、ステップS25の処理に進む。 In step S23, the control unit 21 determines whether or not a measurement data request has been received from the integrated controller 10. When the measurement data request is received (step S23; YES), in the subsequent step S24, the control unit 21 transmits a measurement data response storing the measurement data stored in the storage unit 22 to the integrated controller 10. The process proceeds to step S25. On the other hand, when determining that the measurement data request has not been received (step S23; NO), the control unit 21 proceeds to the process of step S25 without performing the process of step S24.
 ステップS25では、制御部21は、対応するセンサ機器30から計測データ通知を受信したか否かを判断する。計測データ通知を受信した場合(ステップS25;YES)、続くステップS26で、制御部21は、受信した計測データ通知に含まれる計測データを記憶部22に格納(保存)して、ステップS27の処理に進む。一方、計測データ通知を受信していない場合(ステップS25;NO)、制御部21は、本処理を終了する。 In step S25, the control unit 21 determines whether or not a measurement data notification is received from the corresponding sensor device 30. When the measurement data notification is received (step S25; YES), in the subsequent step S26, the control unit 21 stores (saves) the measurement data included in the received measurement data notification in the storage unit 22, and performs the process of step S27. Proceed to On the other hand, when the measurement data notification is not received (step S25; NO), the control unit 21 ends this process.
 ステップS27では、制御部21は、スリープ時間通知受信フラグがONになっているか否かを判断する。スリープ時間受信通知フラグがONになっていない場合(ステップS27;NO)、制御部21は、本処理を終了する。一方、スリープ時間通知受信フラグがONになっている場合(ステップS27;YES)、続くステップS28で、制御部21は、対応するセンサ機器30に対してスリープ時間設定要求を送信する。そして、ステップS29で、制御部21は、スリープ時間情報受信フラグをOFFする。 In step S27, the control unit 21 determines whether or not the sleep time notification reception flag is ON. When the sleep time reception notification flag is not ON (step S27; NO), the control unit 21 ends this process. On the other hand, when the sleep time notification reception flag is ON (step S27; YES), the control unit 21 transmits a sleep time setting request to the corresponding sensor device 30 in the subsequent step S28. In step S29, the control unit 21 turns off the sleep time information reception flag.
 図8は、センサ機器30による処理を示すフローチャートである。なお、センサ機器30には、予めスリープ時間の初期値が設定されている。また、センサ機器30において、スリープ時間を示すデータは記憶部32に記憶されるものとする。 FIG. 8 is a flowchart showing processing by the sensor device 30. Note that the initial value of the sleep time is set in the sensor device 30 in advance. In the sensor device 30, data indicating the sleep time is stored in the storage unit 32.
 制御部31は、時間管理部33をリセットすると共に計時を開始させる(ステップS31)。そして、制御部31は、計時を開始してから予め定めた時間が経過したか否かを判断する(ステップS32)。具体的には、制御部31は、時間管理部33から予め設定された時間が経過した旨の通知を受けたか否かで上記の判断を行う。その結果、予め定めた時間が経過していない場合(ステップS32;NO)、制御部31は、ステップS33の処理に進む。 The control unit 31 resets the time management unit 33 and starts measuring time (step S31). Then, the control unit 31 determines whether or not a predetermined time has elapsed since the start of timing (step S32). Specifically, the control unit 31 makes the above determination based on whether or not a notification that a preset time has elapsed from the time management unit 33 has been received. As a result, when the predetermined time has not elapsed (step S32; NO), the control unit 31 proceeds to the process of step S33.
 ステップS33では、制御部31は、対応する無線親機20からのスリープ時間設定要求を受信したか否かを判断する。スリープ時間設定要求を受信した場合(ステップS33;YES)、制御部31は、受信したスリープ時間設定要求に基づいて、記憶部32に記憶されているスリープ時間を更新する(ステップS34)。その後、制御部31は、ステップS32の処理に戻る。一方、スリープ時間設定要求を受信していない場合(ステップS33;NO)、制御部31は、ステップS34の処理を実行することなく、ステップS32の処理に戻る。 In step S33, the control unit 31 determines whether or not a sleep time setting request from the corresponding wireless master device 20 has been received. When the sleep time setting request is received (step S33; YES), the control unit 31 updates the sleep time stored in the storage unit 32 based on the received sleep time setting request (step S34). Then, the control part 31 returns to the process of step S32. On the other hand, when the sleep time setting request has not been received (step S33; NO), the control unit 31 returns to the process of step S32 without executing the process of step S34.
 計時を開始してから予め定めた時間が経過した場合(ステップS32;YES)、制御部31は、当該センサ機器30におけるデータの受信を禁止する(ステップS35)。さらに、制御部31は、スリープの実行及び解除処理を実行する(ステップS36)。 When a predetermined time has elapsed since the start of time measurement (step S32; YES), the control unit 31 prohibits reception of data in the sensor device 30 (step S35). Further, the control unit 31 executes sleep execution and release processing (step S36).
 図9は、スリープの実行及び解除処理を示すフローチャートである。先ず、制御部31は、当該センサ機器30のスリープを実行する(ステップS41)。具体的には、制御部31は、当該センサ機器20をスリープ状態にする。なお、スリープ状態とは、いわゆる、スリープモード、スタンドバイモード、待機モード、省電力モードなどと称され、通常の動作状態よりも、消費電力が小さい状態で動作している状態をいう。なお、本実施形態では、受信禁止(図8のステップS35)とスリープの実行とが略同時に行われる。 FIG. 9 is a flowchart showing sleep execution and release processing. First, the control unit 31 executes sleep of the sensor device 30 (step S41). Specifically, the control unit 31 puts the sensor device 20 into a sleep state. Note that the sleep state is referred to as a so-called sleep mode, standby mode, standby mode, power saving mode, and the like, and refers to a state in which the power consumption is smaller than the normal operation state. In the present embodiment, reception prohibition (step S35 in FIG. 8) and sleep execution are performed substantially simultaneously.
 スリープが実行されてから、当該センサ機器30に設定されたスリープ時間、即ち、記憶部32に記憶されているスリープ時間が経過すると(ステップS42;YES)、制御部31は、スリープを解除、即ち、当該センサ機器30をウェイクアップさせる(ステップS43)。 When the sleep time set in the sensor device 30, that is, the sleep time stored in the storage unit 32 has elapsed after the sleep is executed (step S42; YES), the control unit 31 cancels the sleep, Then, the sensor device 30 is woken up (step S43).
 次に、制御部31は、センサ部35から計測値(例えば、温度及び湿度)を取得し、計測データとして記憶部32に格納(保存)する(ステップS44)。 Next, the control unit 31 acquires measurement values (for example, temperature and humidity) from the sensor unit 35, and stores (saves) them as measurement data in the storage unit 32 (step S44).
 制御部31は、記憶部32に格納された計測データを含む計測データ通知を通信I/F部34を介して、対応する無線親機20に送信する(ステップS45)。 The control unit 31 transmits a measurement data notification including the measurement data stored in the storage unit 32 to the corresponding wireless master device 20 via the communication I / F unit 34 (step S45).
 制御部31は、当該センサ機器30におけるデータの受信を許可する(ステップS46)。これにより、スリープの実行及び解除処理は終了し、制御部31は、図8のステップS31の処理に戻る。 The control unit 31 permits the reception of data in the sensor device 30 (step S46). As a result, the sleep execution and release process ends, and the control unit 31 returns to the process of step S31 in FIG.
 図10は、設備機器40による処理、詳しくは状態変化通知の送信に係る処理を示すフローチャートである。なお、図10に示す一連の処理は、設備機器40の各々にて、予め定めた周期(必要な処理精度を得るために十分に短い周期)で繰り返し実行される。なお、初期状態では、設備機器40の運転は停止しているものとする。 FIG. 10 is a flowchart showing processing by the equipment device 40, specifically, processing related to transmission of a state change notification. Note that the series of processes shown in FIG. 10 is repeatedly executed in each of the equipment devices 40 at a predetermined cycle (a cycle sufficiently short to obtain the required processing accuracy). In the initial state, it is assumed that the operation of the facility device 40 is stopped.
 先ず、通信部41の制御部43は、メイン制御部42から当該設備機器40の現在の運転状態を取得する(ステップS51)。そして、制御部43は、取得した現在の運転状態と、前回取得した運転状態とを比較することで、運転状態の変化を検出する。 First, the control unit 43 of the communication unit 41 acquires the current operating state of the equipment 40 from the main control unit 42 (step S51). And the control part 43 detects the change of a driving | running state by comparing the acquired driving | running state with the driving | running state acquired last time.
 運転状態が停止中から運転中に変化している場合(ステップS52;YES)、制御部43は、運転中であることを示す情報を格納したデータ(状態変化通知)を生成し、生成した状態変化通知を通信I/F部45を介して統合コントローラ10に送信し(ステップS53)、本処理を終了する。 When the driving state has changed from the stop state to the driving state (step S52; YES), the control unit 43 generates data (state change notification) storing information indicating that the driving state is in progress, and the generated state A change notification is transmitted to the integrated controller 10 via the communication I / F unit 45 (step S53), and this process ends.
 一方、運転状態が運転中から停止中に変化している場合(ステップS54;YES)、制御部43は、停止中であることを示す情報を格納した状態変化通知を統合コントローラ10に送信し(ステップS55)、本処理を終了する。 On the other hand, when the operation state has changed from operation to stop (step S54; YES), the control unit 43 transmits a state change notification storing information indicating that the operation is stopped to the integrated controller 10 ( Step S55), the process is terminated.
 運転状態が変化していない場合、制御部43は、状態変化通知を統合コントローラ10に送信することなく、本処理を終了する。なお、今回取得した運転状態を示すデータは、記憶部44に保存される。 If the operating state has not changed, the control unit 43 ends this processing without transmitting a state change notification to the integrated controller 10. Note that the data indicating the operation state acquired this time is stored in the storage unit 44.
 図11は、本実施形態に係る計測システム1の通信シーケンスを示す図である。この通信シーケンスの開始時点においては、設備機器40がすでに運転を開始しているものとする。また、その設備機器40に対応するセンサ機器30のスリープ時間としては時間T2が設定されているものとする。 FIG. 11 is a diagram illustrating a communication sequence of the measurement system 1 according to the present embodiment. It is assumed that the facility device 40 has already started operation at the start of this communication sequence. Further, it is assumed that the time T2 is set as the sleep time of the sensor device 30 corresponding to the facility device 40.
 図11の通信シーケンスにおいては、センサ機器30が、スリープ状態からウェイクアップする都度、計測データを取得して(図9のステップS44参照)、その計測データを含む計測データ通知(データD11~D14)を対応する無線親機20に送信する(図9のステップS45参照)。 In the communication sequence of FIG. 11, each time the sensor device 30 wakes up from the sleep state, it acquires measurement data (see step S44 of FIG. 9) and notifies the measurement data including the measurement data (data D11 to D14). Is transmitted to the corresponding wireless master device 20 (see step S45 in FIG. 9).
 以下、図11の通信シーケンス例を用いて、センサ機器30のスリープ制御及び設備機器40の制御について具体的に説明する。 Hereinafter, the sleep control of the sensor device 30 and the control of the facility device 40 will be specifically described with reference to the communication sequence example of FIG.
 先ず、設備機器40が運転中の場合におけるセンサ機器30のスリープ制御について説明する。 First, sleep control of the sensor device 30 when the equipment device 40 is in operation will be described.
 センサ機器30は、計測データ通知(データD11)を送信すると、時間T1(時間管理部33に設定された時間)だけ受信許可状態になる(図8のステップS32、S33及び図9のステップS46参照)。その後、時間T1が経過すると、時間T2(設定されているスリープ時間)だけ受信禁止状態及びスリープ状態になる(図8のステップS35及び図9のステップS41、S42参照)。 When the sensor device 30 transmits the measurement data notification (data D11), the sensor device 30 is in a reception-permitted state for the time T1 (the time set in the time management unit 33) (see steps S32 and S33 in FIG. 8 and step S46 in FIG. 9). ). After that, when the time T1 elapses, the reception prohibited state and the sleep state are entered for the time T2 (set sleep time) (see step S35 in FIG. 8 and steps S41 and S42 in FIG. 9).
 次に、センサ機器30で取得された計測データに基づく設備機器40の制御について説明する。 Next, control of the equipment device 40 based on the measurement data acquired by the sensor device 30 will be described.
 統合コントローラ10は、時間T4(時間管理部13の第1タイマに設定された時間)経過ごとに計測データ要求(データD31~D34)を、全ての無線親機20の中から順次選択した無線親機20へ送信する(図6のステップS14参照)。 The integrated controller 10 selects the wireless master that sequentially selects the measurement data requests (data D31 to D34) from all the wireless master devices 20 every time T4 (time set in the first timer of the time management unit 13) elapses. It transmits to the machine 20 (see step S14 in FIG. 6).
 各無線親機20は、統合コントローラ10から計測データ要求(データD31~D34)をそれぞれ受信すると、統合コントローラ10に計測データ応答(データD41~D44)をそれぞれ送信する(図7のステップS24参照)。なお、計測データ応答には、それぞれ対応するセンサ機器30から受信した計測データが含まれる(図7のステップS25及びS26参照)。 Upon receiving the measurement data requests (data D31 to D34) from the integrated controller 10, each wireless master device 20 transmits measurement data responses (data D41 to D44) to the integrated controller 10 (see step S24 in FIG. 7). . The measurement data response includes measurement data received from the corresponding sensor device 30 (see steps S25 and S26 in FIG. 7).
 統合コントローラ10は、各無線親機20から計測データ応答(データD41~D44)を受信すると、各計測データ応答に含まれる計測データに基づいて、各無線親機20に対応する各設備機器40の制御情報を生成する。そして、統合コントローラ10は、生成した制御情報を含む制御情報通知(データD61~D64)を各設備機器40に送信する(図6のステップS18参照)。 When the integrated controller 10 receives the measurement data responses (data D41 to D44) from each wireless master device 20, the integrated controller 10 receives the measurement data responses included in each measurement data response and each equipment device 40 corresponding to each wireless master device 20 receives the measurement data responses. Generate control information. Then, the integrated controller 10 transmits control information notifications (data D61 to D64) including the generated control information to each facility device 40 (see step S18 in FIG. 6).
 各設備機器40は、統合コントローラ10から制御情報通知(データD61~D64)を受信すると、その通知に含まれる制御情報に基づいた動作を行う。 When each facility device 40 receives the control information notification (data D61 to D64) from the integrated controller 10, it performs an operation based on the control information included in the notification.
 次に、設備機器40が停止中である場合のセンサ機器30のスリープ制御について説明する。 Next, sleep control of the sensor device 30 when the equipment device 40 is stopped will be described.
 設備機器40は、運転を停止すると、運転停止の情報を含む状態変化通知(データD71)を統合コントローラ10に送信する(図10のステップS55参照)。 When the facility device 40 stops operation, the facility device 40 transmits a state change notification (data D71) including information on the operation stop to the integrated controller 10 (see step S55 in FIG. 10).
 統合コントローラ10は、設備機器40から状態変化通知(データD71)を受信すると、設備機器40の変化後の運転状態(停止中)に基づいてスリープ時間(時間T3)を決定する。そして、時間T3を含むスリープ時間通知(データD51)を当該設備機器40に対応する無線親機20に送信する(図6のステップS12参照)。ここで、時間T3は時間T2よりも長い時間である。 When the integrated controller 10 receives the state change notification (data D71) from the facility device 40, the integrated controller 10 determines the sleep time (time T3) based on the operating state (stopped) after the change of the facility device 40. Then, the sleep time notification (data D51) including the time T3 is transmitted to the wireless master device 20 corresponding to the facility device 40 (see step S12 in FIG. 6). Here, time T3 is longer than time T2.
 無線親機20は、統合コントローラ10からスリープ時間通知(データD51)を受信すると、スリープ時間を時間T3に設定する旨の要求を含むスリープ時間設定要求(データD21)を対応するセンサ機器30に送信する(図7のステップS28参照)。このスリープ時間設定要求(データD21)の送信は、ウェイクアップしたセンサ機器30から計測データ通知(データD12)を受信した直後(時間T1経過前)に行われる。このため、その時点では、このセンサ機器30は受信許可状態になっている(図7のステップS25~S28、図9のステップS43~S46参照)。 When receiving the sleep time notification (data D51) from the integrated controller 10, the wireless master device 20 transmits a sleep time setting request (data D21) including a request for setting the sleep time to the time T3 to the corresponding sensor device 30. (See step S28 in FIG. 7). The sleep time setting request (data D21) is transmitted immediately after the measurement data notification (data D12) is received from the wake-up sensor device 30 (before the time T1 has elapsed). Therefore, at that time, the sensor device 30 is in a reception-permitted state (see steps S25 to S28 in FIG. 7 and steps S43 to S46 in FIG. 9).
 センサ機器30は、無線親機20からスリープ時間設定要求(データD21)を受信すると、このスリープ時間設定要求に基づいてスリープ時間(T3)の設定を行い(図8のステップS34参照)、設定したスリープ時間に従ってスリープ状態になる(図9のステップS41、S42参照)。即ち、本例では、設備機器40が停止中の場合、対応するセンサ機器30は、この設備機器40が運転中である場合のスリープ時間(時間T2)よりも長いスリープ時間(時間T3)にてスリープ状態になる。 Upon receiving the sleep time setting request (data D21) from the wireless master device 20, the sensor device 30 sets the sleep time (T3) based on the sleep time setting request (see step S34 in FIG. 8) and sets it. The sleep state is entered according to the sleep time (see steps S41 and S42 in FIG. 9). That is, in this example, when the equipment device 40 is stopped, the corresponding sensor device 30 has a sleep time (time T3) longer than the sleep time (time T2) when the equipment device 40 is operating. Go to sleep.
 また、さらにその後、設備機器40が再び運転を開始する前に、対応するセンサ機器30がウェイクアップして(図9のステップS43参照)、直ちに計測データを取得して(図9のステップS44参照)、計測データ通知(データD13)を対応する無線親機20に送信する(図9のステップS45参照)。そして、受信許可状態になってから時間T1が経過すると、再び、上記のセンサ機器30は、時間T3だけスリープ状態になる。 Further, after that, before the facility device 40 starts operation again, the corresponding sensor device 30 wakes up (see step S43 in FIG. 9) and immediately acquires measurement data (see step S44 in FIG. 9). ), The measurement data notification (data D13) is transmitted to the corresponding wireless master device 20 (see step S45 in FIG. 9). And when time T1 passes after it will be in a reception permission state, said sensor apparatus 30 will be in a sleep state only for time T3 again.
 次に、設備機器40が再び運転を開始した場合におけるセンサ機器30のスリープ制御について説明する。 Next, sleep control of the sensor device 30 when the facility device 40 starts operation again will be described.
 設備機器40は、運転を開始すると、運転開始の情報を含む状態変化通知(データD72)を統合コントローラ10へ送信する(図10のステップS53参照)。 When the facility device 40 starts operation, the facility device 40 transmits a state change notification (data D72) including information on the operation start to the integrated controller 10 (see step S53 in FIG. 10).
 統合コントローラ10は、設備機器40から状態変化通知(データD72)を受信すると、設備機器40の変化後の運転状態(運転中)に基づいてスリープ時間(時間T2)を決定する。そして、時間T2を含むスリープ時間通知(データD52)を当該設備機器40に対応する無線親機20に送信する(図6のステップS12参照)。 When the integrated controller 10 receives the state change notification (data D72) from the facility device 40, the integrated controller 10 determines the sleep time (time T2) based on the changed operation state (during operation) of the facility device 40. Then, a sleep time notification (data D52) including time T2 is transmitted to the wireless master device 20 corresponding to the facility device 40 (see step S12 in FIG. 6).
 無線親機20は、統合コントローラ10からスリープ時間通知(データD52)を受信すると、スリープ時間を時間T2に設定する旨の要求を含むスリープ時間設定要求(データD22)を対応するセンサ機器30に送信する(図7のステップS28参照)。このスリープ時間設定要求(データD22)の送信は、ウェイクアップしたセンサ機器30から計測データ通知(データD14)を受信した直後(時間T1経過前)に行われる。このため、その時点では、このセンサ機器30は受信許可状態になっている(図7のステップS25~S28、図9のステップS43~S46参照)。 When receiving the sleep time notification (data D52) from the integrated controller 10, the wireless master device 20 transmits a sleep time setting request (data D22) including a request for setting the sleep time to the time T2 to the corresponding sensor device 30. (See step S28 in FIG. 7). The transmission of the sleep time setting request (data D22) is performed immediately after the measurement data notification (data D14) is received from the wake-up sensor device 30 (before the time T1 has elapsed). Therefore, at that time, the sensor device 30 is in a reception-permitted state (see steps S25 to S28 in FIG. 7 and steps S43 to S46 in FIG. 9).
 センサ機器30は、無線親機20からスリープ時間設定要求(データD22)を受信すると、このスリープ時間設定要求に基づいてスリープ時間(T2)の設定を行い(図8のステップS34参照)、設定したスリープ時間に従ってスリープ状態になる(図9のステップS41、S42参照)。即ち、本例では、設備機器40が運転中の場合、対応するセンサ機器30は、この設備機器40が停止中の場合のスリープ時間(時間T3)よりも短いスリープ時間(時間T2)にてスリープ状態になる。 Upon receiving the sleep time setting request (data D22) from the wireless master device 20, the sensor device 30 sets the sleep time (T2) based on the sleep time setting request (see step S34 in FIG. 8) and sets it. The sleep state is entered according to the sleep time (see steps S41 and S42 in FIG. 9). That is, in this example, when the equipment device 40 is in operation, the corresponding sensor device 30 sleeps in a sleep time (time T2) shorter than the sleep time (time T3) when the equipment device 40 is stopped. It becomes a state.
 以上説明したように、本実施形態の計測システム1は、対象空間(例えば、ビルの室内空間)の現在の環境に関する値(例えば、温度及び湿度)を計測するセンサ機器30と、センサ機器30により計測された環境に関する値に基づいて設備機器40を制御する統合コントローラ10と、を備える。設備機器40は、自機器の運転状態(運転中又は停止中)が変化すると、その旨を統合コントローラ10に通知する。かかる通知を受けると、統合コントローラ10は、設備機器40の変化後の運転状態に基づいて、当該設備機器40に対応するセンサ機器30のスリープ時間を決定する。そして、センサ機器30は、決定されたスリープ時間に従って自機器をスリープ状態にする。 As described above, the measurement system 1 according to the present embodiment includes the sensor device 30 that measures values (for example, temperature and humidity) related to the current environment of the target space (for example, the indoor space of a building), and the sensor device 30. And an integrated controller 10 that controls the facility device 40 based on the measured value relating to the environment. When the operation state (running or stopped) of the own device changes, the facility device 40 notifies the integrated controller 10 to that effect. Upon receiving such notification, the integrated controller 10 determines the sleep time of the sensor device 30 corresponding to the facility device 40 based on the changed operating state of the facility device 40. Then, the sensor device 30 puts its own device into the sleep state according to the determined sleep time.
 より詳細には、統合コントローラ10は、設備機器40が停止中の場合は、対応するセンサ機器30のスリープ時間を通常のスリープ時間より長めに設定する。通常、設備機器40において、運転状態が停止中の場合、対応するセンサ機器30の計測データを必要とする可能性は運転中に比べ低くなる。したがって、本実施形態の計測システム1によれば、設備機器40の運転(稼働)を阻害することなく、センサ機器30の電池の消耗を抑えることができる。例えば、夜間など、設備機器40が稼働していない時間帯では、センサ機器30おいて、計測及び通信動作を行わないトータル時間が増加するため、センサ機器30に内蔵される電池の長寿命化が可能になる。 More specifically, the integrated controller 10 sets the sleep time of the corresponding sensor device 30 to be longer than the normal sleep time when the equipment device 40 is stopped. Normally, in the equipment device 40, when the operation state is stopped, the possibility of requiring the measurement data of the corresponding sensor device 30 is lower than that during operation. Therefore, according to the measurement system 1 of the present embodiment, the battery consumption of the sensor device 30 can be suppressed without hindering the operation (operation) of the facility device 40. For example, in the time zone when the facility device 40 is not in operation, such as at night, the total time during which the sensor device 30 does not perform measurement and communication operations increases. It becomes possible.
 また、本実施形態の計測システム1において、センサ機器30がスリープ状態からウェイクアップした直後に、統合コントローラ10に決定されたスリープ時間が当該センサ機器30に通知される。このため、センサ機器30におけるスリープ時間通知の受信可能性が高まる。したがって、スリープ時間を効率的に通知することが可能になる。 Further, in the measurement system 1 of the present embodiment, immediately after the sensor device 30 wakes up from the sleep state, the determined sleep time is notified to the sensor device 30 to the integrated controller 10. For this reason, the possibility of receiving the sleep time notification in the sensor device 30 increases. Therefore, it is possible to notify the sleep time efficiently.
 本実施形態の計測システム1では、センサ機器30の制御部31は、予め定めた間隔で、繰り返しスリープを実行する。これにより、原則として、定期的にスリープが実行されるようになり、より確実に消費エネルギーが削減され、ひいてはセンサ機器30の電池の消耗を抑制することが可能になる。 In the measurement system 1 of the present embodiment, the control unit 31 of the sensor device 30 repeatedly executes sleep at predetermined intervals. Thereby, as a general rule, sleep is periodically executed, energy consumption is more reliably reduced, and consequently, consumption of the battery of the sensor device 30 can be suppressed.
 本実施形態の計測システム1は、設備機器40において、制御部43が、メイン制御部42から周期的に運転状態を取得して、変化があったか否かを判別し、変化があった場合には、直ちに、運転開始又は運転停止を示す情報を格納した状態変化通知を統合コントローラ10に送信する。したがって、統合コントローラ10は、運転状態が変化した設備機器40及びその内容を直ちに把握することができる。 In the measurement system 1 of the present embodiment, in the equipment 40, the control unit 43 periodically acquires the operating state from the main control unit 42, determines whether or not there is a change, and if there is a change, Immediately, a state change notification storing information indicating operation start or operation stop is transmitted to the integrated controller 10. Therefore, the integrated controller 10 can immediately grasp the equipment device 40 whose operating state has changed and its contents.
 (実施形態2)
 本発明の実施形態2について、上記実施形態1との相違点を中心に説明する。なお、実施形態1と共通する構成要素等については、同一の符号を付し、その説明を省略又は簡略化する。
(Embodiment 2)
The second embodiment of the present invention will be described focusing on the differences from the first embodiment. In addition, about the component etc. which are common in Embodiment 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted or simplified.
 本実施形態に係る計測システムも、基本的には、実施形態1に係る計測システム1と同様の構成(図1~図5参照)を有し、図6~図9に示す処理を実行する。ただし、本実施形態に係る計測システムでは、設備機器40の各々が、図10示す処理に代えて、図12に示す処理を実行する。 The measurement system according to the present embodiment also has basically the same configuration as the measurement system 1 according to the first embodiment (see FIGS. 1 to 5), and executes the processes shown in FIGS. However, in the measurement system according to the present embodiment, each of the facility devices 40 executes the process shown in FIG. 12 instead of the process shown in FIG.
 先ず、通信部41の制御部43は、メイン制御部42から当該設備機器40の現在の運転状態を取得する(ステップS61)。そして、制御部43は、取得した現在の運転状態と、前回取得した運転状態とを比較することで、運転状態に変化があったか否かを判断する。 First, the control unit 43 of the communication unit 41 acquires the current operating state of the equipment 40 from the main control unit 42 (step S61). And the control part 43 judges whether there was any change in the driving | running state by comparing the acquired driving | running state with the driving | running state acquired last time.
 例えば、空気調和機では、現在の空気温度(センサ機器30により計測された温度)と設定温度との差が大きい状態で冷房運転が開始され、その後、現在の空気温度を維持する運転に変化するケースが多々ある。本実施形態の計測システムでは、このような場合であったも設備機器40の運転状態が変化したものとして判断する。 For example, in the air conditioner, the cooling operation is started in a state where the difference between the current air temperature (the temperature measured by the sensor device 30) and the set temperature is large, and then the operation is changed to the operation for maintaining the current air temperature. There are many cases. In the measurement system of the present embodiment, it is determined that the operating state of the equipment 40 has changed even in such a case.
 即ち、本実施形態では、制御部43が取得する運転状態には、運転中及び停止のみならず、例えば、運転種別(暖房/冷房/送風など)、制御の目標値(設定温度、設定湿度など)、運転モード(通常運転モード/省エネルギーモードなど)などが含まれる。 That is, in the present embodiment, the operation state acquired by the control unit 43 includes not only during operation and stop, but also, for example, operation type (heating / cooling / air blowing, etc.), control target values (set temperature, set humidity, etc.) ), Operation mode (normal operation mode / energy saving mode, etc.).
 なお、制御部43は、当該設備機器40が備える図示しないセンサの出力値に基づいて、上記のような運転状態の変化を検出してもよい。この場合のセンサは、例えば、当該設備機器40における、内部温度、消費電力量、モータの回転数、排気量等を計測する。 In addition, the control part 43 may detect the change of the above driving | running states based on the output value of the sensor which is not shown in the said equipment 40. The sensor in this case measures, for example, the internal temperature, the amount of power consumption, the number of revolutions of the motor, the amount of exhaust, etc. in the equipment 40.
 制御部43は、設備機器40の運転状態が変化したと判断した場合(ステップS62;YES)、制御部43は、変化後の運転状態を示す情報を格納した状態変化通知を通信I/F部45を介して統合コントローラ10に送信し(ステップS63)、本処理を終了する。 When the control unit 43 determines that the operation state of the equipment device 40 has changed (step S62; YES), the control unit 43 sends a state change notification storing information indicating the changed operation state to the communication I / F unit. 45 to the integrated controller 10 (step S63), and this process ends.
 一方、運転状態が変化していない場合、制御部43は、状態変化通知を統合コントローラ10に送信することなく、本処理を終了する。なお、今回取得した運転状態を示すデータは、記憶部44に保存される。 On the other hand, when the operation state has not changed, the control unit 43 ends this process without transmitting a state change notification to the integrated controller 10. Note that the data indicating the operation state acquired this time is stored in the storage unit 44.
 図13は、本実施形態に係る計測システムの通信シーケンスを示す図である。この通信シーケンスの開始時点においては、設備機器40がすでに運転を開始しているものとする。また、その設備機器40に対応するセンサ機器30のスリープ時間としては時間T11が設定されているものとする FIG. 13 is a diagram illustrating a communication sequence of the measurement system according to the present embodiment. It is assumed that the facility device 40 has already started operation at the start of this communication sequence. Also, it is assumed that the time T11 is set as the sleep time of the sensor device 30 corresponding to the facility device 40.
 図13の通信シーケンスにおいては、センサ機器30が、スリープ状態からウェイクアップする都度、計測データを取得して(図9のステップS44参照)、その計測データを含む計測データ通知(データD11~D14)を対応する無線親機20に送信する(図9のステップS45参照)。 In the communication sequence of FIG. 13, each time the sensor device 30 wakes up from the sleep state, it acquires measurement data (see step S44 of FIG. 9), and measurement data notification including the measurement data (data D11 to D14). Is transmitted to the corresponding wireless master device 20 (see step S45 in FIG. 9).
 以下、図13の通信シーケンス例を用いて、センサ機器30のスリープ制御及び設備機器40の制御について具体的に説明する。 Hereinafter, the sleep control of the sensor device 30 and the control of the facility device 40 will be described in detail using the communication sequence example of FIG.
 先ず、設備機器40が第1運転状態である場合におけるセンサ機器30のスリープ制御について説明する。なお、本例では、設備機器40(例えば、空気調和機)が現在の空気温度と設定温度との差が大きい状態にて冷房運転を行っている運転状態を第1運転状態とする。 First, sleep control of the sensor device 30 when the equipment device 40 is in the first operation state will be described. In this example, the operation state in which the facility device 40 (for example, the air conditioner) performs the cooling operation in a state where the difference between the current air temperature and the set temperature is large is defined as the first operation state.
 センサ機器30は、計測データ通知(データD11)を送信すると、時間T1だけ受信許可状態になる(図8のステップS32、S33及び図9のステップS46参照)。その後、時間T1が経過すると、時間T11(設定されているスリープ時間)だけ受信禁止状態及びスリープ状態になる(図8のステップS35及び図9のステップS41、S42参照)。 When the sensor device 30 transmits the measurement data notification (data D11), the sensor device 30 is in a reception-permitted state for a time T1 (see steps S32 and S33 in FIG. 8 and step S46 in FIG. 9). Thereafter, when the time T1 elapses, the reception prohibited state and the sleep state are entered for the time T11 (the set sleep time) (see step S35 in FIG. 8 and steps S41 and S42 in FIG. 9).
 センサ機器30で取得された計測データに基づく設備機器40の制御については、実施形態1と同様であるため、説明を割愛する。 Since the control of the facility device 40 based on the measurement data acquired by the sensor device 30 is the same as that of the first embodiment, the description thereof is omitted.
 次に、設備機器40の運転状態が第1運転状態から第2運転状態に変化した場合のセンサ機器30のスリープ制御について説明する。本例では、設備機器40(例えば、空気調和機)が現在の空気温度と設定温度との差が小さい状態にて冷房運転を行っている運転状態を第2運転状態とする。 Next, sleep control of the sensor device 30 when the operation state of the equipment device 40 is changed from the first operation state to the second operation state will be described. In this example, the operation state in which the facility device 40 (for example, the air conditioner) performs the cooling operation in a state where the difference between the current air temperature and the set temperature is small is set as the second operation state.
 設備機器40の運転状態が第1運転状態から第2運転状態に変化すると、設備機器40は、変化後の運転状態(第2運転状態)を示す情報を含む状態変化通知(データD71)を統合コントローラ10へ送信する(図12のステップS63参照)。 When the operation state of the equipment device 40 changes from the first operation state to the second operation state, the equipment device 40 integrates a state change notification (data D71) including information indicating the changed operation state (second operation state). The data is transmitted to the controller 10 (see step S63 in FIG. 12).
 統合コントローラ10は、設備機器40から状態変化通知(データD71)を受信すると、設備機器40の変化後の運転状態(第2運転状態)に基づいてスリープ時間(時間T12)を決定する。そして、時間T12を含むスリープ時間通知(データD51)を当該設備機器40に対応する無線親機20に送信する(図6のステップS12参照)。本実施形態では、スリープ時間(例えば、時間T12)の決定の際、設備機器40の消費電力(消費エネルギー)が大きいほど、スリープ時間を短くする。例えば、現在の空気温度と設定温度との差が大きい状態で冷房運転を開始した場合、現在の空気温度と設定温度との差が大きいほど、スリープ時間を短くする。即ち、本例では、時間T12が時間T11よりも長くなる。 When the integrated controller 10 receives the state change notification (data D71) from the facility device 40, the integrated controller 10 determines the sleep time (time T12) based on the operation state after the change of the facility device 40 (second operation state). Then, the sleep time notification (data D51) including the time T12 is transmitted to the wireless master device 20 corresponding to the facility device 40 (see step S12 in FIG. 6). In the present embodiment, when the sleep time (for example, time T12) is determined, the sleep time is shortened as the power consumption (energy consumption) of the facility device 40 increases. For example, when the cooling operation is started in a state where the difference between the current air temperature and the set temperature is large, the sleep time is shortened as the difference between the current air temperature and the set temperature is large. That is, in this example, the time T12 is longer than the time T11.
 無線親機20は、統合コントローラ10からスリープ時間通知(データD51)を受信すると、スリープ時間を時間T12に設定する旨の要求を含むスリープ時間設定要求(データD21)を対応するセンサ機器30に送信する(図7のステップS28参照)。このスリープ時間設定要求(データD21)の送信は、ウェイクアップしたセンサ機器30から計測データ通知(データD12)を受信した直後(時間T1経過前)に行われる。このため、その時点では、このセンサ機器30は受信許可状態になっている(図7のステップS25~S28、図9のステップS43~S46参照)。 Upon receiving the sleep time notification (data D51) from the integrated controller 10, the wireless master device 20 transmits a sleep time setting request (data D21) including a request for setting the sleep time to the time T12 to the corresponding sensor device 30. (See step S28 in FIG. 7). The sleep time setting request (data D21) is transmitted immediately after the measurement data notification (data D12) is received from the wake-up sensor device 30 (before the time T1 has elapsed). Therefore, at that time, the sensor device 30 is in a reception-permitted state (see steps S25 to S28 in FIG. 7 and steps S43 to S46 in FIG. 9).
 センサ機器30は、無線親機20からスリープ時間設定要求(データD21)を受信すると、そのスリープ時間設定要求に基づいてスリープ時間(T12)の設定を行い(図8のステップS34参照)、設定したスリープ時間に従ってスリープ状態になる(図9のステップS41、S42参照参照)。即ち、本例では、設備機器40が第2運転状態である場合、対応するセンサ機器30は、この設備機器40が第1運転状態である場合のスリープ時間(時間T11)よりも長いスリープ時間(時間T12)にてスリープ状態になる。 Upon receiving the sleep time setting request (data D21) from the wireless master device 20, the sensor device 30 sets the sleep time (T12) based on the sleep time setting request (see step S34 in FIG. 8) and sets it. The sleep state is entered according to the sleep time (see steps S41 and S42 in FIG. 9). That is, in this example, when the equipment device 40 is in the second operation state, the corresponding sensor device 30 has a sleep time (time T11) longer than the sleep time (time T11) when the equipment device 40 is in the first operation state. The sleep state is entered at time T12).
 また、さらにその後、設備機器40の運転状態が変化する前に、対応するセンサ機器30がウェイクアップして(図9のステップS43参照)、計測データを取得して(図9のステップS44参照)、計測データ通知(データD13)を対応する無線親機20に送信する(図9のステップS45参照)。そして、受信許可状態の時間T1が経過すると、再び、上記のセンサ機器30は、時間T12だけスリープ状態になる。 Further, before that, before the operating state of the equipment device 40 changes, the corresponding sensor device 30 wakes up (see step S43 in FIG. 9) and acquires measurement data (see step S44 in FIG. 9). Then, the measurement data notification (data D13) is transmitted to the corresponding wireless master device 20 (see step S45 in FIG. 9). And when time T1 of a reception permission state passes, said sensor apparatus 30 will be in a sleep state only for time T12.
 次に、設備機器40の運転状態が第2運転状態から第3運転状態に変化した場合におけるセンサ機器30のスリープ制御について説明する。本例では、設備機器40(例えば、空気調和機)が、現在の空気温度と設定温度とが一致している状態にて冷房運転を行っている運転状態を第3運転状態とする。 Next, sleep control of the sensor device 30 when the operation state of the equipment device 40 is changed from the second operation state to the third operation state will be described. In this example, the operation state in which the facility device 40 (for example, the air conditioner) is performing the cooling operation in a state where the current air temperature and the set temperature coincide with each other is set as the third operation state.
 設備機器40の運転状態が第2運転状態から第3運転状態に変化すると、設備機器40は、変化後の運転状態(第3運転状態)を示す情報を含む状態変化通知(データD72)を統合コントローラ10に送信する(図12のステップS63参照)。 When the operation state of the facility device 40 changes from the second operation state to the third operation state, the facility device 40 integrates a state change notification (data D72) including information indicating the changed operation state (third operation state). The data is transmitted to the controller 10 (see step S63 in FIG. 12).
 統合コントローラ10は、設備機器40から状態変化通知(データD72)を受信すると、設備機器40の変化後の運転状態(第3運転状態)に基づいてスリープ時間(時間T13)を決定する。そして、時間T13を含むスリープ時間通知(データD52)を当該設備機器40に対応する無線親機20に送信する(図6のステップS12参照)。 When the integrated controller 10 receives the state change notification (data D72) from the facility device 40, the integrated controller 10 determines the sleep time (time T13) based on the changed operation state (third operation state) of the facility device 40. Then, the sleep time notification (data D52) including the time T13 is transmitted to the wireless master device 20 corresponding to the facility device 40 (see step S12 in FIG. 6).
 無線親機20は、統合コントローラ10からスリープ時間通知(データD52)を受信すると、スリープ時間を時間T13に設定する旨の要求を含むスリープ時間設定要求(データD22)を対応するセンサ機器30に送信する(図7のステップS28参照)。このスリープ時間設定要求(データD22)の送信は、ウェイクアップしたセンサ機器30から計測データ通知(データD14)を受信した直後(時間T1経過前)に行われる。このため、その時点では、このセンサ機器30は受信許可状態になっている(図7のステップS25~S28、図9のステップS43~S46参照)。 When receiving the sleep time notification (data D52) from the integrated controller 10, the wireless master device 20 transmits a sleep time setting request (data D22) including a request to set the sleep time to the time T13 to the corresponding sensor device 30. (See step S28 in FIG. 7). The transmission of the sleep time setting request (data D22) is performed immediately after the measurement data notification (data D14) is received from the wake-up sensor device 30 (before the time T1 has elapsed). Therefore, at that time, the sensor device 30 is in a reception-permitted state (see steps S25 to S28 in FIG. 7 and steps S43 to S46 in FIG. 9).
 センサ機器30は、無線親機20からスリープ時間設定要求(データD22)を受信すると、このスリープ時間設定要求に基づいてスリープ時間(T13)の設定を行い(図8のステップS34参照)、設定したスリープ時間に従ってスリープ状態になる(図9のステップS41、S42参照)。即ち、本例では、設備機器40が第3運転状態である場合、対応するセンサ機器30は、この設備機器40が第2運転状態にある場合のスリープ時間(時間T12)よりも長いスリープ時間(時間T13)にてスリープ状態になる。 Upon receiving the sleep time setting request (data D22) from the wireless master device 20, the sensor device 30 sets the sleep time (T13) based on the sleep time setting request (see step S34 in FIG. 8) and sets it. The sleep state is entered according to the sleep time (see steps S41 and S42 in FIG. 9). That is, in this example, when the equipment device 40 is in the third operating state, the corresponding sensor device 30 has a sleep time (time T12) longer than the sleep time (time T12) when the equipment device 40 is in the second operating state. The sleep state is entered at time T13).
 以上説明したように、本実施形態の計測システムによれば、設備機器40の運転状態に応じて、センサ機器30のスリープ時間を段階的に設定し、センサ機器30の電池の消耗を抑えることができる。特に、本実施形態の計測システムでは、設備機器40の運転が、開始又は停止された場合に限られず、稼働中であっても運転状態に変化があれば、スリープ時間が更新される。このため、設備機器40(例えば、空気調和機)の運転状態に応じて、より精密に適切なスリープ時間を設定することが可能になる。 As described above, according to the measurement system of the present embodiment, the sleep time of the sensor device 30 can be set stepwise according to the operating state of the facility device 40 to suppress battery consumption of the sensor device 30. it can. In particular, in the measurement system of the present embodiment, the sleep time is updated when the operation of the equipment 40 is not started or stopped, and the operation state is changed even when the operation is in progress. For this reason, it becomes possible to set an appropriate sleep time more precisely according to the operating state of the equipment 40 (for example, an air conditioner).
 本実施形態の計測システムでは、設備機器40が対象空間の環境に関する値を大きく変化させる運転状態であるほど(ひいては、消費エネルギーや運転負荷が大きいほど)、センサ機器30のスリープ時間を短くすることできる。このため、設備機器40の運転状態に応じて適切なスリープ時間を設定することが可能になり、より適切にセンサ機器30の電池の消耗を抑えることが可能になる。 In the measurement system of the present embodiment, the sleep time of the sensor device 30 is shortened as the operation state where the facility device 40 greatly changes the value related to the environment of the target space (as a result, the larger the energy consumption or the operation load). it can. For this reason, it is possible to set an appropriate sleep time according to the operating state of the facility device 40, and it is possible to more appropriately suppress battery consumption of the sensor device 30.
 また、本実施形態の計測システムにおいても、前述した実施形態1の効果と同等の効果が得られることは勿論である。 Of course, in the measurement system of this embodiment, the same effect as that of the first embodiment can be obtained.
 なお、本発明は、上記各実施形態に限定されず、本発明の要旨を逸脱しない範囲での種々の変更は勿論可能である。 Note that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.
 例えば、センサ機器30において、制御部31がセンサ部35から計測値を取得するタイミングに限定はない。例えば、非スリープ状態では、制御部31は、予め定めた周期でセンサ部35から計測値を取得するようにしてもよい。この場合、ウェイクアップした直後、制御部31は、スリープする前に記憶部32に保存された計測データを読み出し、この計測データを含む計測データ通知を対応する無線親機20に送信してもよい。 For example, in the sensor device 30, the timing at which the control unit 31 acquires the measurement value from the sensor unit 35 is not limited. For example, in the non-sleep state, the control unit 31 may acquire measurement values from the sensor unit 35 at a predetermined cycle. In this case, immediately after waking up, the control unit 31 may read the measurement data stored in the storage unit 32 before going to sleep, and may transmit a measurement data notification including the measurement data to the corresponding wireless master device 20. .
 また、上記各実施形態では、設備機器40から直接的に統合コントローラ10へ状態変化通知が送信されるが、設備機器40から間接的に(他の装置を経由して)統合コントローラ10へ状態変化通知が送信されるようにしてもよい。 In each of the above embodiments, the state change notification is transmitted directly from the facility device 40 to the integrated controller 10, but the state change is indirectly (from another device) to the integrated controller 10 from the facility device 40. A notification may be sent.
 また、統合コントローラ10から間接的に(他の装置を経由して)設備機器40へ制御情報通知が送信されるようにしてもよい。 Further, the control information notification may be transmitted from the integrated controller 10 indirectly to the facility device 40 (via another device).
 また、実施形態1に計測システム1又は実施形態2の計測システムに、複数の統合コントローラ10が含まれていてもよい。 Further, the measurement system 1 in the first embodiment or the measurement system in the second embodiment may include a plurality of integrated controllers 10.
 また、無線親機20の機能を統合コントローラ10に吸収することで、例えば、図14に示すように、計測システムの構成から無線親機20を除去してもよい。図14に示す構成では、上記各実施形態と異なり、統合コントローラ10は、センサ機器30の各々と通信線L2を介して接続される。この場合、統合コントローラ10は、直接的にセンサ機器30に対してスリープ時間を通知するためのデータ(スリープ時間通知)を送信する。また、統合コントローラ10は、直接的にセンサ機器30に対して、計測データを要求するためのデータ(計測データ要求)を送信する。そして、これに応答して、センサ機器30は、直接的に統合コントローラ10に対して、計測データを格納したデータ(計測データ応答)を送信する。 Further, by absorbing the function of the wireless master device 20 into the integrated controller 10, for example, as shown in FIG. 14, the wireless master device 20 may be removed from the configuration of the measurement system. In the configuration shown in FIG. 14, unlike the above embodiments, the integrated controller 10 is connected to each of the sensor devices 30 via the communication line L2. In this case, the integrated controller 10 directly transmits data for notifying the sleep time to the sensor device 30 (sleep time notification). Further, the integrated controller 10 directly transmits data for requesting measurement data (measurement data request) to the sensor device 30. In response to this, the sensor device 30 directly transmits data storing measurement data (measurement data response) to the integrated controller 10.
 なお、上記の図14に示す構成において、統合コントローラ10は、計測データ応答を受信した直後に、その計測データ応答を送信したセンサ機器30に対して、スリープ時間通知を送信するようにしてもよい。このようにすると、ウェイクアップした直後のセンサ機器30にスリープ時間通知が送信されることになるため、センサ機器30におけるスリープ時間通知の受信可能性が高まる。したがって、スリープ時間を効率的に通知することが可能になる。 In the configuration shown in FIG. 14, the integrated controller 10 may transmit a sleep time notification to the sensor device 30 that transmitted the measurement data response immediately after receiving the measurement data response. . In this way, since the sleep time notification is transmitted to the sensor device 30 immediately after wake-up, the possibility of receiving the sleep time notification in the sensor device 30 is increased. Therefore, it is possible to notify the sleep time efficiently.
 また、図15に示すように、計測システムが、m個のセンサ50_1~50_mを備える構成にしてもよい。以下、センサ50_1~50_mの各々を特に区別しない場合、センサ50と表記する。 Further, as shown in FIG. 15, the measurement system may include m sensors 50_1 to 50_m. Hereinafter, when each of the sensors 50_1 to 50_m is not particularly distinguished, it is referred to as a sensor 50.
 図15に示す計測システムにおいて、各センサ50は、対応する設備機器40の運転状態を取得するためのセンサである。即ち、センサ50は、運転状態取得装置又は運転状態取得部としての機能を担う。センサ50は、例えば、対応する設備機器40の消費電力、対応する設備機器40の対象空間における、照度、温度、湿度や風量などを計測する。統合コントローラ10は、センサ50の各々と通信線L5で接続される。センサ50は、それぞれ計測値を統合コントローラ10へ送信する。統合コントローラ10は、センサ50の計測値を当該センサ50に対応する設備機器40の運転状態として監視する。そして、設備機器40の運転状態の変化を検出すると、変化後の運転状態に応じてスリープ時間を決定し、決定したスリープ時間を当該設備機器40に対応するセンサ機器30に無線親機20を介して通知する。 In the measurement system shown in FIG. 15, each sensor 50 is a sensor for acquiring the operating state of the corresponding equipment device 40. That is, the sensor 50 functions as an operation state acquisition device or an operation state acquisition unit. The sensor 50 measures, for example, power consumption of the corresponding equipment device 40, illuminance, temperature, humidity, air volume, and the like in the target space of the corresponding equipment device 40. The integrated controller 10 is connected to each of the sensors 50 via a communication line L5. Each sensor 50 transmits a measurement value to the integrated controller 10. The integrated controller 10 monitors the measurement value of the sensor 50 as the operation state of the facility device 40 corresponding to the sensor 50. And if the change of the driving | running state of the equipment device 40 is detected, sleep time will be determined according to the driving | running state after a change, and the determined sleep time will be transmitted to the sensor apparatus 30 corresponding to the said equipment device 40 via the wireless main | base station 20. To notify.
 図15に示す構成にすれば、設備機器40は、運転状態の変化の検出及び検出した場合の統合コントローラ10への通知をする機能を備える必要がない。 With the configuration shown in FIG. 15, the facility device 40 does not need to have a function of detecting a change in the operating state and notifying the integrated controller 10 when it is detected.
 また、設備機器40の運転状態に基づいて、スリープ間隔(換言すると、非スリープ状態の継続時間、具体的には、センサ機器30の時間管理部33に設定される時間)を決定してもよい。この場合、例えば、設備機器40の運転状態が運転中の場合、スリープ間隔として長い時間(第1スリープ間隔)を設定し、一方、停止中の場合、第1スリープ間隔より短い時間(第2スリープ間隔)を設定することができる。あるいは、設備機器40の消費電力(消費エネルギー)が大きいほど、スリープ間隔として長い時間を設定することができる。 The sleep interval (in other words, the duration of the non-sleep state, specifically, the time set in the time management unit 33 of the sensor device 30) may be determined based on the operating state of the facility device 40. . In this case, for example, when the operation state of the facility device 40 is in operation, a long time (first sleep interval) is set as the sleep interval. On the other hand, when it is stopped, the time is shorter than the first sleep interval (second sleep interval). Interval) can be set. Alternatively, the longer the power consumption (energy consumption) of the facility device 40, the longer the sleep interval can be set.
 このようにしても、設備機器40の運転(稼働)を阻害することなく、センサ機器30の電池の消耗を抑えることができる。さらに、スリープ間隔とスリープ時間を併用すると、より適切にセンサ機器の電池の消耗を抑えることが可能になる。 Even in this case, the consumption of the battery of the sensor device 30 can be suppressed without impeding the operation (operation) of the facility device 40. Furthermore, when the sleep interval and the sleep time are used in combination, it is possible to more appropriately suppress battery consumption of the sensor device.
 また、上記の各実施形態において、無線親機20に代えて有線の通信機器を用いて、この通信機器と、対応するセンサ機器30とが、通信線を介して通信可能に接続されるようにしてもよい。 Further, in each of the above embodiments, a wired communication device is used instead of the wireless master device 20 so that the communication device and the corresponding sensor device 30 are communicably connected via a communication line. May be.
 また、統合コントローラ10と無線親機20との間、統合コントローラ10と設備機器40との間が、それぞれ、無線LAN等により無線で通信可能に接続されるようにしてもよい。 Further, the integrated controller 10 and the wireless master device 20 and the integrated controller 10 and the facility device 40 may be connected so as to be able to communicate wirelessly by a wireless LAN or the like.
 また、設備機器40は、空気調和機に限られず、対象空間の環境を調整する機器であればよい。ここでいう環境には、空気の温度、湿度の他に、例えば、空気の清浄度、気流、明るさ(照度)などが含まれる。即ち、設備機器40は、例えば、対象空間における気流を調整する送風機、対象空間の明るさ(照度)を調整する照明装置などであってもよい。 Moreover, the equipment 40 is not limited to an air conditioner, and may be any device that adjusts the environment of the target space. The environment referred to here includes, for example, air cleanliness, airflow, brightness (illuminance) and the like in addition to the temperature and humidity of the air. That is, the equipment 40 may be, for example, a blower that adjusts the airflow in the target space, a lighting device that adjusts the brightness (illuminance) of the target space, and the like.
 また、センサ機器30は、温湿度センサモジュールに限られず、設備機器40が調整する環境に関する値を計測する機器であればよい。例えば、設備機器40が送風機である場合、センサ機器30は、風向き又は風量を計測する機器であればよい。また、設備機器40が照明装置である場合、センサ機器30は照度を計測する機器であればよい。 The sensor device 30 is not limited to the temperature / humidity sensor module, and may be any device that measures values related to the environment adjusted by the facility device 40. For example, when the equipment device 40 is a blower, the sensor device 30 may be a device that measures the wind direction or the air volume. Further, when the facility device 40 is a lighting device, the sensor device 30 may be a device that measures illuminance.
 また、上記各実施形態において、各通信の通信フォーマットは、任意である。例えばXML(Extensible Markup Language)等を用いたテキスト形式を利用してもよいし、通信サイズを低減するためにバイナリ形式など他の形式を用いてもよい。また、通信情報を秘匿できるよう、通信の暗号化を行ってもよい。 In each of the above embodiments, the communication format of each communication is arbitrary. For example, a text format using XML (Extensible Markup Language) or the like may be used, or another format such as a binary format may be used to reduce the communication size. Moreover, you may encrypt communication so that communication information may be concealed.
 上記各実施形態において、データ又はプログラムを保持する記憶装置としては、任意の記憶装置を用いることが可能であり、ROMやフラッシュメモリの他にも、例えば、磁気記憶装置(ハードディスクドライブ、磁気カード、磁気テープなど)、又は光ディスクを用いてもよいし、その他の記憶装置を用いてもよい。用途等に応じて最適な記憶装置を選択することが好ましい。 In each of the above embodiments, any storage device can be used as a storage device that holds data or a program. In addition to ROM and flash memory, for example, a magnetic storage device (hard disk drive, magnetic card, Magnetic tape or the like) or an optical disk may be used, or other storage device may be used. It is preferable to select an optimal storage device according to the application and the like.
 上記各実施形態において、統合コントローラ10の機能は、汎用的なコンピュータシステム(例えばパーソナルコンピュータ)によって実現してもよい。 In each of the above embodiments, the function of the integrated controller 10 may be realized by a general-purpose computer system (for example, a personal computer).
 上記各実施形態において、統合コントローラ10、無線親機20、センサ機器30、又は設備機器40によって実行される各プログラムは、フレキシブルディスク、CD-ROM(Compact Disc Read Only Memory)、DVD(Digital Versatile Disc)、MO(Magneto-Optical disk)等のコンピュータ読み取り可能な記録媒体に格納して配布することも可能である。そして、かかる各プログラムを特定の又は汎用のコンピュータにそれぞれインストールすることによって、各コンピュータを上記各実施形態における統合コントローラ10、無線親機20、センサ機器30及び設備機器40のそれぞれとして機能させることも可能である。 In each of the above-described embodiments, each program executed by the integrated controller 10, the wireless master device 20, the sensor device 30, or the facility device 40 is a flexible disk, a CD-ROM (Compact Disc Read Only Memory), a DVD (Digital Versatile Disc). ), MO (Magneto-Optical disk), etc., can be stored in a computer-readable recording medium and distributed. Then, by installing each program on a specific or general-purpose computer, each computer can function as the integrated controller 10, the wireless master device 20, the sensor device 30, and the facility device 40 in each of the above embodiments. Is possible.
 また、上記のプログラムをインターネット等の通信ネットワーク上のサーバ装置が有するディスク装置等に格納しておき、例えば、搬送波に重畳させて、コンピュータにダウンロード等するようにしてもよい。また、通信ネットワークを介してプログラムを転送しながら起動実行することによっても、上述の処理を達成することができる。さらに、プログラムの全部又は一部をサーバ装置上で実行させ、その処理に関する情報をコンピュータが通信ネットワークを介して送受信しながらプログラムを実行することによっても、上述の処理を達成することができる。 Further, the above program may be stored in a disk device or the like included in a server device on a communication network such as the Internet, and may be downloaded onto a computer, for example, superimposed on a carrier wave. The above-described processing can also be achieved by starting and executing a program while transferring it via a communication network. Furthermore, the above-described processing can also be achieved by executing all or part of the program on the server device and executing the program while the computer transmits and receives information regarding the processing via the communication network.
 なお、上述の機能を、OS(Operating System)が分担して実現する場合又はOSとアプリケーションとの協働により実現する場合等には、OS以外の部分のみを上記の記録媒体に格納して配布してもよく、また、コンピュータにダウンロード等してもよい。 Note that when the above functions are realized by sharing an OS (Operating System) or when the functions are realized by cooperation between the OS and an application, only the part other than the OS is stored in the recording medium and distributed. It may also be downloaded to a computer.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. Further, the above-described embodiment is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
 本出願は、2013年3月6日に出願された日本国特許出願特願2013-43750号に基づく。本明細書中に、その明細書、特許請求の範囲及び図面全体を参照して取り込むものとする。 This application is based on Japanese Patent Application No. 2013-43750 filed on March 6, 2013. The specification, claims, and the entire drawing are incorporated herein by reference.
 本発明は、ビル等に設置される設備機器を制御するシステム等に好適に採用され得る。 The present invention can be suitably employed in a system for controlling equipment installed in a building or the like.
 1 計測システム、10 統合コントローラ、11 制御部、12 記憶部、13 時間管理部、14,15 通信I/F部、16 ユーザI/F部、17 バス、20,20_1~20_i 無線親機、21 制御部、22 記憶部、23 時間管理部、24,25 通信I/F部、26 ユーザI/F部、27 バス、30,30_1~30_j センサ機器、31 制御部、32 記憶部、33 時間管理部、34 通信I/F部、35 センサ部、36 ユーザI/F部、37 バス、40,40_1~40_k 設備機器、41 通信部、42 メイン制御部、43 制御部、44 記憶部、45 通信I/F部、46 内部通信I/F部、47 バス、50,50_1~50_m センサ。 1 measurement system, 10 integrated controller, 11 control unit, 12 storage unit, 13 time management unit, 14, 15 communication I / F unit, 16 user I / F unit, 17 bus, 20, 20_1 to 20_i wireless master unit, 21 Control unit, 22 storage unit, 23 time management unit, 24, 25 communication I / F unit, 26 user I / F unit, 27 bus, 30, 30_1 to 30_j sensor device, 31 control unit, 32 storage unit, 33 time management Unit, 34 communication I / F unit, 35 sensor unit, 36 user I / F unit, 37 bus, 40, 40_1 to 40_k equipment, 41 communication unit, 42 main control unit, 43 control unit, 44 storage unit, 45 communication I / F unit, 46 internal communication I / F unit, 47 bus, 50, 50_1 to 50_m sensor.

Claims (15)

  1.  対象空間の環境を調整する設備機器と、
     前記対象空間の環境に関する値を計測し、計測した値を格納した計測データを前記設備機器に送信するセンサ機器と、
     前記センサ機器からの前記計測データに基づいて前記設備機器を制御する統合コントローラと、を備え、
     前記設備機器は、自機器の運転状態を前記統合コントローラに通知し、
     前記統合コントローラは、前記設備機器から通知された前記運転状態に基づいて前記センサ機器のスリープ時間及び/又はスリープ間隔を決定し、決定したスリープ時間及び/又はスリープ間隔を前記センサ機器に通知し、
     前記センサ機器は、前記統合コントローラから通知されたスリープ時間及び/又はスリープ間隔に従って自機器をスリープ状態にする、計測システム。
    Equipment to adjust the environment of the target space;
    A sensor device that measures a value related to the environment of the target space and transmits measurement data storing the measured value to the facility device;
    An integrated controller for controlling the equipment device based on the measurement data from the sensor device,
    The facility device notifies the integrated controller of the operation state of the device,
    The integrated controller determines a sleep time and / or sleep interval of the sensor device based on the operation state notified from the facility device, and notifies the sensor device of the determined sleep time and / or sleep interval,
    The measurement system in which the sensor device puts its own device into a sleep state according to a sleep time and / or a sleep interval notified from the integrated controller.
  2.  前記統合コントローラにより決定されたスリープ時間及び/又はスリープ間隔は、前記センサ機器が前記スリープ状態からウェイクアップした直後に、前記センサ機器に通知される、請求項1に記載の計測システム。 The measurement system according to claim 1, wherein the sleep time and / or sleep interval determined by the integrated controller is notified to the sensor device immediately after the sensor device wakes up from the sleep state.
  3.  前記センサ機器は、前記スリープ状態からウェイクアップした直後に、前記計測データを前記統合コントローラに送信する、請求項1又は2に記載の計測システム。 The measurement system according to claim 1 or 2, wherein the sensor device transmits the measurement data to the integrated controller immediately after being woken up from the sleep state.
  4.  前記統合コントローラと有線又は無線で通信し、前記センサ機器と無線で通信する無線親機をさらに備え、
     前記無線親機は、
     前記センサ機器から受信した前記計測データを前記統合コントローラに送信し、
     前記統合コントローラから受信した、前記統合コントローラが決定したスリープ時間及び/又はスリープ間隔を示す情報を前記センサ機器に送信する、請求項1から3の何れか1項に記載の計測システム。
    A wireless master unit that communicates with the integrated controller in a wired or wireless manner and further communicates with the sensor device in a wireless manner,
    The wireless master unit is
    Transmitting the measurement data received from the sensor device to the integrated controller;
    The measurement system according to any one of claims 1 to 3, wherein information indicating a sleep time and / or a sleep interval determined by the integrated controller received from the integrated controller is transmitted to the sensor device.
  5.  前記設備機器は、自機器の運転状態が変化した場合に、変化後の運転状態を前記統合コントローラに通知し、
     前記統合コントローラは、前記設備機器から通知された前記変化後の運転状態に基づいて前記センサ機器のスリープ時間及び/又はスリープ間隔を決定する、請求項1から4の何れか1項に記載の計測システム。
    When the operation state of the device changes, the facility device notifies the integrated controller of the changed operation state,
    The measurement according to any one of claims 1 to 4, wherein the integrated controller determines a sleep time and / or a sleep interval of the sensor device based on the changed operating state notified from the facility device. system.
  6.  前記統合コントローラは、前記スリープ時間を、前記設備機器が停止中の場合は、第1の時間に決定し、前記設備機器が運転中の場合は、前記第1の時間よりも短い第2の時間に決定する、請求項1から5の何れか1項に記載の計測システム。 The integrated controller determines the sleep time as a first time when the facility device is stopped, and a second time shorter than the first time when the facility device is in operation. The measurement system according to claim 1, wherein the measurement system is determined as follows.
  7.  前記統合コントローラは、前記設備機器の運転状態に基づいて前記スリープ時間を段階的に決定する、請求項1から6の何れか1項に記載の計測システム。 The measurement system according to any one of claims 1 to 6, wherein the integrated controller determines the sleep time stepwise based on an operation state of the facility device.
  8.  前記統合コントローラは、前記設備機器の消費エネルギーが大きい運転状態であるほど、前記スリープ時間が短くなるように決定する、請求項7に記載の計測システム。 The measurement system according to claim 7, wherein the integrated controller determines that the sleep time is shorter as the operating state of the equipment is larger.
  9.  前記統合コントローラは、前記設備機器が前記対象空間の環境を大きく変化させる運転状態であるほど、前記スリープ時間が短くなるように決定する、請求項7に記載の計測システム。 The measurement system according to claim 7, wherein the integrated controller determines that the sleep time becomes shorter as the operation state of the facility device greatly changes the environment of the target space.
  10.  前記設備機器は、空気調和機である、
     ことを特徴とする請求項1から9の何れか1項に記載の計測システム。
    The equipment is an air conditioner,
    The measurement system according to any one of claims 1 to 9, wherein
  11.  前記環境に関する値には、前記対象空間における、空気温度、湿度、照度の内の少なくとも1つが含まれる、請求項1から10の何れか1項に記載の計測システム。 The measurement system according to any one of claims 1 to 10, wherein the value related to the environment includes at least one of air temperature, humidity, and illuminance in the target space.
  12.  対象空間の環境を調整する設備機器と、
     前記対象空間の環境に関する値を計測し、計測した値を格納した計測データを前記設備機器に送信するセンサ機器と、
     前記センサ機器からの前記計測データに基づいて前記設備機器を制御する統合コントローラと、
     前記設備機器の運転状態を取得し、取得した運転状態を前記統合コントローラに通知する運転状態取得装置と、を備え、
     前記統合コントローラは、前記運転状態取得装置から通知された前記運転状態に基づいて前記センサ機器のスリープ時間及び/又はスリープ間隔を決定し、決定したスリープ時間及び/又はスリープ間隔を前記センサ機器に通知し、
     前記センサ機器は、前記統合コントローラから通知されたスリープ時間及び/又はスリープ間隔に従って自機器をスリープ状態にする、計測システム。
    Equipment to adjust the environment of the target space;
    A sensor device that measures a value related to the environment of the target space and transmits measurement data storing the measured value to the facility device;
    An integrated controller for controlling the equipment device based on the measurement data from the sensor device;
    An operation state acquisition device that acquires the operation state of the equipment and notifies the acquired operation state to the integrated controller,
    The integrated controller determines a sleep time and / or sleep interval of the sensor device based on the operation state notified from the operation state acquisition device, and notifies the sensor device of the determined sleep time and / or sleep interval. And
    The measurement system in which the sensor device puts its own device into a sleep state according to a sleep time and / or a sleep interval notified from the integrated controller.
  13.  対象空間の環境を調整する設備機器を前記対象空間の環境に関する値に基づいて制御する統合コントローラであって、
     前記設備機器から通知された前記設備機器の運転状態に基づいて、前記対象空間の環境に関する値を計測するセンサ機器のスリープ時間及び/又はスリープ間隔を決定し、決定したスリープ時間及び/又はスリープ間隔を前記センサ機器に通知する、統合コントローラ。
    An integrated controller that controls equipment that adjusts the environment of the target space based on values related to the environment of the target space,
    Based on the operating state of the facility device notified from the facility device, the sleep time and / or sleep interval of the sensor device that measures a value related to the environment of the target space is determined, and the determined sleep time and / or sleep interval is determined. An integrated controller for notifying the sensor device.
  14.  運転状態取得部が、対象空間の環境を調整する設備機器の運転状態を取得し、
     スリープ時間決定部が、前記運転状態取得部により取得された運転状態に基づいて、前記対象空間の環境に関する値を計測するセンサ機器のスリープ時間及び/又はスリープ間隔を決定し、決定したスリープ時間及び/又はスリープ間隔を前記センサ機器に通知し、
     スリープ制御部が、前記スリープ時間決定部から通知されたスリープ時間及び/又はスリープ間隔に従ってセンサ機器をスリープ状態にする、センサ機器制御方法。
    The operating state acquisition unit acquires the operating state of the equipment that adjusts the environment of the target space,
    The sleep time determination unit determines a sleep time and / or a sleep interval of the sensor device that measures a value related to the environment of the target space based on the driving state acquired by the driving state acquisition unit, and determines the determined sleep time and / Or notify the sleep interval to the sensor device,
    A sensor device control method in which a sleep control unit puts a sensor device into a sleep state according to a sleep time and / or a sleep interval notified from the sleep time determination unit.
  15.  対象空間の環境を調整する設備機器を前記対象空間の環境に関する値に基づいて制御するコンピュータに、
     前記設備機器から通知された前記設備機器の運転状態に基づいて、前記対象空間の環境に関する値を計測するセンサ機器のスリープ時間及び/又はスリープ間隔を決定し、決定したスリープ時間及び/又はスリープ間隔を前記センサ機器に通知する機能を、を実現させるためのプログラム。
    A computer that controls equipment that adjusts the environment of the target space based on a value related to the environment of the target space,
    Based on the operating state of the facility device notified from the facility device, the sleep time and / or sleep interval of the sensor device that measures a value related to the environment of the target space is determined, and the determined sleep time and / or sleep interval is determined. A program for realizing the function of notifying the sensor device.
PCT/JP2014/054142 2013-03-06 2014-02-21 Measurement system, integrated controller, sensor device control method, and program WO2014136585A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013043750A JP5968253B2 (en) 2013-03-06 2013-03-06 MEASUREMENT SYSTEM, INTEGRATED CONTROLLER, PROGRAM, AND SENSOR DEVICE CONTROL METHOD
JP2013-043750 2013-03-06

Publications (1)

Publication Number Publication Date
WO2014136585A1 true WO2014136585A1 (en) 2014-09-12

Family

ID=51491107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054142 WO2014136585A1 (en) 2013-03-06 2014-02-21 Measurement system, integrated controller, sensor device control method, and program

Country Status (2)

Country Link
JP (1) JP5968253B2 (en)
WO (1) WO2014136585A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020056447A1 (en) * 2018-09-20 2020-03-26 Zen Ecosystems IP Pty Ltd Method, system and apparatus for controlling sensing devices of a hvac system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6409629B2 (en) 2015-03-11 2018-10-24 オムロン株式会社 Sensor system
US10034246B2 (en) * 2016-05-10 2018-07-24 Honeywell International Inc. Systems and methods to increase battery life in and identify misuse of a wireless device using environmental sensors
JP6724664B2 (en) * 2016-09-05 2020-07-15 住友電気工業株式会社 Wireless device and communication control program
JP2018156481A (en) * 2017-03-17 2018-10-04 株式会社東芝 Sensor device and control method
CN107589698B (en) 2017-09-20 2021-05-25 友达光电股份有限公司 Sensing device applied to Internet of things and control method
JP7271236B2 (en) * 2019-03-08 2023-05-11 三菱重工サーマルシステムズ株式会社 Control device, air conditioner, control method and program
JP7372040B2 (en) * 2019-03-22 2023-10-31 三菱重工サーマルシステムズ株式会社 Air conditioning control system and control method
JPWO2021245742A1 (en) * 2020-06-01 2021-12-09

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048531A (en) * 2008-08-25 2010-03-04 Daikin Ind Ltd Air conditioning control system
JP2013007504A (en) * 2011-06-23 2013-01-10 Panasonic Corp Air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048531A (en) * 2008-08-25 2010-03-04 Daikin Ind Ltd Air conditioning control system
JP2013007504A (en) * 2011-06-23 2013-01-10 Panasonic Corp Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020056447A1 (en) * 2018-09-20 2020-03-26 Zen Ecosystems IP Pty Ltd Method, system and apparatus for controlling sensing devices of a hvac system

Also Published As

Publication number Publication date
JP5968253B2 (en) 2016-08-10
JP2014173745A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
WO2014136585A1 (en) Measurement system, integrated controller, sensor device control method, and program
JP5555873B2 (en) Energy saving device and energy saving system
US9780961B2 (en) Communication system, relay apparatus, control apparatus, server apparatus, control method, and information processing method
JP6132128B2 (en) Device control apparatus, device control system, device control method and program
JP2011250027A (en) Remote control device and information communication system
CN107408809B (en) Improved wireless HVAC module
US20150369509A1 (en) Method and control apparatus for switching a night mode of a heating system and/or an air-conditioning system on and off
WO2015129566A1 (en) Management apparatus, operation-control apparatus, electrical-device management system, management method, operation-control method, and program
JP5898765B2 (en) Power saving control system, device control apparatus, and power saving control method
JP5491999B2 (en) Device control apparatus, device control system, and device control method
JP2010050664A (en) Household electric appliance controller and program thereof
JP6697769B2 (en) Energy management device and energy management method
JP6191897B1 (en) Energy management apparatus and energy management method
WO2014188979A1 (en) Controller, method for controlling electrical device, device control system, and program
JP2017220917A (en) Control device and control method
WO2015141413A1 (en) Control system, hems controller, and control method
KR20180054106A (en) Method of operating smart lighting system
US11573024B2 (en) Server and method for controlling multiple air conditioning units
JP5535125B2 (en) Remote controller
JP2019193564A (en) Energy management system, energy management apparatus, terminal, and energy management method
JP2006303933A (en) Security system, and slave station management method
KR20150102262A (en) System and Method for Controlling Lighting Device Based on Wireless Terminal
JP5855186B2 (en) Controller, target setting method, and program
JP2014121122A (en) Power control server, power control program, and power control system
JP2004257640A (en) Equipment control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14760848

Country of ref document: EP

Kind code of ref document: A1