WO2014136487A1 - Hydrometallurgical plant for nickel oxide ore and method for operating said hydrometallurgical plant - Google Patents

Hydrometallurgical plant for nickel oxide ore and method for operating said hydrometallurgical plant Download PDF

Info

Publication number
WO2014136487A1
WO2014136487A1 PCT/JP2014/051319 JP2014051319W WO2014136487A1 WO 2014136487 A1 WO2014136487 A1 WO 2014136487A1 JP 2014051319 W JP2014051319 W JP 2014051319W WO 2014136487 A1 WO2014136487 A1 WO 2014136487A1
Authority
WO
WIPO (PCT)
Prior art keywords
leaching
neutralization
tank
stage
solid
Prior art date
Application number
PCT/JP2014/051319
Other languages
French (fr)
Japanese (ja)
Inventor
諭 松原
中井 修
坂元 隆
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to EP14760507.5A priority Critical patent/EP2975142B1/en
Priority to US14/773,496 priority patent/US20160024614A1/en
Priority to AU2014227269A priority patent/AU2014227269B2/en
Priority to CA2904569A priority patent/CA2904569A1/en
Publication of WO2014136487A1 publication Critical patent/WO2014136487A1/en
Priority to PH12015501978A priority patent/PH12015501978B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/02Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes

Definitions

  • the present invention relates to a nickel oxide ore wet smelting plant that recovers nickel and cobalt from nickel oxide ore, and an operation method of the wet smelting plant.
  • the hydrometallurgical method of nickel oxide ore using this high pressure acid leaching method has processes as shown in the simplified process diagram of FIG. That is, an ore processing step in which nickel oxide ore is pulverized to a predetermined size to form a slurry, a sulfuric acid is added to the ore slurry to perform a leaching treatment under high temperature and high pressure (high pressure acid), and a leaching slurry.
  • a solid-liquid separation process for solid-liquid separation into a leachate containing an impurity element together with cobalt, and a neutralized starch containing the impurity element by adjusting the pH of the obtained leachate
  • a neutralization step for obtaining a neutralized final solution containing zinc together with nickel and cobalt, and dezincification for forming a nickel sulfide by adding a sulfiding agent to the neutralized final solution to obtain a nickel recovery mother liquor Process and nickel times
  • a nickel recovery process that forms a mixed sulfide containing nickel and cobalt by adding a sulfiding agent to the mother liquor, and a neutralization treatment is performed by mixing the waste liquid (poor liquid) in the nickel recovery process and the residue from the CCD process.
  • a final neutralization step see, for example, Patent Documents 1 and 2).
  • the leaching slurry obtained from the leaching step is adjusted to a pH at which cleaning can be performed efficiently during the multi-stage cleaning process in the next CCD step.
  • the pH of the leaching slurry is adjusted by charging the leaching slurry into a neutralization tank and adding a neutralizing agent such as calcium carbonate.
  • the pre-neutralized leaching slurry is then separated into a leaching solution and an leaching residue containing impurity elements together with nickel and cobalt while being subjected to multi-stage cleaning in a CCD process.
  • the separated leachate is sent to the neutralization step to become a neutralization final solution, and the leach residue is sent to the final neutralization step for processing.
  • the neutralized final solution is charged into the sulfurization reactor, and zinc sulfide, copper, etc. in the neutralized final solution are converted to sulfide by adding a sulfurizing agent such as hydrogen sulfide gas or sodium hydrosulfide. .
  • a nickel recovery mother liquor from which zinc sulfide has been removed is obtained by solid-liquid separation using a filter press or the like.
  • Patent Document 3 in a plant having a plurality of the same processes, even if there is a trouble or the like in a predetermined process on a series of processes by connecting processing facilities in a predetermined process with piping.
  • a technique for minimizing a decrease in operation efficiency is disclosed, which is a very effective technique in actual operation.
  • the technique described in Patent Document 3 is used as it is. It cannot be applied.
  • the present invention has been proposed in view of such circumstances, and is a nickel oxide ore capable of improving productivity by increasing the amount of ore treatment without causing a reaction failure or deterioration in operation efficiency.
  • An object of the present invention is to provide a wet smelting plant and an operation method thereof.
  • the inventors of the present invention have made extensive studies in order to achieve the above-described object.
  • the neutralization tank is provided in two stages, and the first stage neutralization tanks are arranged in a plurality of series. And it discovered that the subject mentioned above could be solved by making the neutralization processing tank of a 2nd step into a single series.
  • the hydrometallurgical plant for nickel oxide ore includes at least a leaching facility including a plurality of leaching treatment tanks for leaching the nickel oxide ore and a two-stage neutralization treatment tank, and the leaching treatment described above.
  • Pre-neutralization equipment that performs pre-neutralization to adjust the pH of the leached slurry discharged from the tank to a predetermined range, and a single series, the leached slurry discharged from the pre-neutralization equipment after pH adjustment,
  • the first stage neutralization tank is a leach provided in the leaching facility.
  • a plurality of series are provided so as to correspond to each series of treatment tanks, and the second stage in which the leaching slurry adjusted in pH in each series of neutralization treatment tanks constituting the first stage consists of a single series So as to join the neutralization tank Made which are, leached slurry joins the neutralization tank of the second stage, characterized in that it is transferred to the solid-liquid separation equipment.
  • the operation method of the nickel oxide ore hydrometallurgical plant according to the present invention is an operation method of the hydrometallurgical plant for recovering nickel and cobalt from the nickel oxide ore, the hydrometallurgy of the nickel oxide ore.
  • the plant includes at least a leaching facility including a plurality of leaching treatment tanks for leaching the nickel oxide ore and a two-stage neutralization treatment tank, and the pH of the leaching slurry discharged from the leaching treatment tank is within a predetermined range.
  • a pre-neutralization facility that performs pre-neutralization to be adjusted, and a single series of leaching slurry that has been pH-adjusted and discharged from the pre-neutralization facility are separated into a leaching solution and a leaching residue in a solid-liquid separation tank.
  • a plurality of first-stage neutralization treatment tanks correspond to each series of leaching treatment tanks provided in the leaching equipment.
  • the second stage neutralization treatment tanks are arranged in a single series, and the leach slurry discharged from each neutralization treatment tank in the first stage is formed from the single series. It is made to merge with the 2nd-stage neutralization processing tank, and the leached slurry which joined is transferred to the said solid-liquid separation equipment, It is characterized by the above-mentioned.
  • the pre-neutralization equipment for pre-neutralizing the leaching slurry is constituted by a two-stage neutralization tank, and the first-stage neutralization tank Is a plurality of series so as to correspond to a plurality of leaching treatment tanks, and the second stage neutralization treatment tank is a single series.
  • FIG. 1 is a configuration diagram of a nickel oxide ore hydrometallurgical plant.
  • FIG. 2 is a process diagram of a hydrometallurgical method using high pressure acid leaching of nickel oxide ore.
  • FIG. 3 is a diagram for explaining the flow of operation during normal operation.
  • FIG. 4 is a diagram for explaining the flow of operation for self-circulating transfer from the first-stage neutralization tank to the corresponding leaching tank.
  • FIG. 5 is a diagram for explaining an operation flow for transferring the leach slurry from the first-stage neutralization tank to the final neutralization facility.
  • FIG. 6 is a diagram for explaining an operation flow for transferring the leach slurry from the first-stage neutralization tank to the solid-liquid separation tank.
  • FIG. 7 is a simplified process diagram of a hydrometallurgical method using high pressure acid leaching of nickel oxide ore.
  • FIG. 8 is a simplified process diagram of a hydrometallurgical method using high pressure acid leaching of nickel oxide ore.
  • FIG. 9 is a simplified process diagram of a hydrometallurgical method using high pressure acid leaching of nickel oxide ore.
  • FIG. 10 is a simplified process diagram of a hydrometallurgical method using high pressure acid leaching of nickel oxide ore.
  • the nickel oxide ore hydrometallurgical plant according to the present embodiment includes, for example, a leaching process by a high-pressure acid leaching method, a preliminary neutralization process, and a solid-liquid separation. It is for performing the hydrometallurgical operation of the nickel oxide ore which consists of a process (CCD process), a neutralization process, a dezincification process, a sulfurization process, and a final neutralization process (detoxification process).
  • the hydrometallurgical plant 10 includes at least a leaching treatment tank 11 (1 to n) for leaching nickel oxide ore. ) With a plurality of (n) series leaching equipment 11 and a two-stage neutralization tank, and preliminary neutralization to adjust the pH of the leaching slurry discharged from the leaching tank 11 (1 to n) to a predetermined range.
  • the first stage neutralization treatment tank 12 A (1 to n) in the preliminary neutralization equipment 12 is the leaching treatment tank 11 (1 to n ) provided in the leaching equipment.
  • a plurality of (n) series are provided so as to correspond to each series, and a single leaching slurry whose pH is adjusted in each series of neutralization treatment tanks 12A (1 to n) constituting the first stage is provided. It is comprised so that it may join to the neutralization processing tank 12B of the 2nd step
  • stage which consists of a series.
  • the leached slurry that has joined the second-stage neutralization tank 12B is transferred to the solid-liquid separation facility 13.
  • the hydrometallurgical plant 10 includes two or more reaction tanks in a series of treatment facilities in a process before the preliminary neutralization process (hereinafter also referred to as “upper process”).
  • a series of processing equipment is configured from a single series (one series) of reaction vessels. In this way, it is possible to increase the amount of nickel oxide ore while reducing the number of parts and suppressing the equipment cost, using a leaching treatment facility of a size that has been used in the past. The production amount of mixed sulfide (product) can be stably increased.
  • the hydrometallurgical plant 10 even when the leaching slurry obtained from a plurality of series of treatment facilities has a variation in pH or the like, it is made to merge in the second-stage neutralization treatment tank 12B. Therefore, the variation can be eliminated, and solid-liquid separation processing can be performed in the solid-liquid separation facility 13 as a uniform leaching slurry.
  • the hydrometallurgical plant 10 by appropriately providing piping for connecting the first-stage neutralization treatment tank 12A (1 to n) and the reaction tank of the treatment equipment in other processes, for example, plant operation It is possible to prevent the leaching slurry at the stage where the leaching process, such as immediately after the start, has not progressed sufficiently, from being transferred to the solid-liquid separation process or a subsequent process. Thereby, generation
  • the nickel oxide ore wet smelting plant and the operation method of the wet smelting plant according to the present embodiment will be described more specifically.
  • This nickel oxide ore wet smelting method is a hydrometallurgical method of leaching and recovering nickel and cobalt from nickel oxide ore using, for example, a high-pressure acid leaching method (HPAL method).
  • HPAL method high-pressure acid leaching method
  • FIG. 2 shows an example of a process diagram of a hydrometallurgical method using high pressure acid leaching of nickel oxide ore.
  • the hydrometallurgical method of nickel oxide ore is a leaching step S1 in which sulfuric acid is added to a slurry of nickel oxide ore and leaching is performed under high temperature and high pressure, and the pH of the obtained leaching slurry is set to a predetermined value.
  • the zinc sulfide is generated by the above, and the zinc sulfide is separated and removed to obtain the nickel recovery mother liquor containing nickel and cobalt, and the sulfur recovery agent is added to the nickel recovery mother liquor.
  • a nickel recovery step S6 described form a mixed sulfide containing Kell and cobalt. Furthermore, this hydrometallurgy method has a final neutralization step S7 for recovering and detoxifying the leaching residue separated in the solid-liquid separation step S3 and the poor liquid discharged in the nickel recovery step S6.
  • Leaching process (1-1) About leaching process
  • a leaching process using, for example, a high-pressure acid leaching method is performed on the nickel oxide ore. Specifically, sulfuric acid is added to the ore slurry obtained by pulverizing the nickel oxide ore used as a raw material, and the ore slurry is stirred by pressurization under a high temperature condition of 220 to 280 ° C. A leach slurry consisting of the residue is formed.
  • Nickel oxide ores used in the leaching step S1 are mainly so-called laterite ores such as limonite or saprolite ores.
  • Laterite ore usually has a nickel content of 0.8 to 2.5% by weight and is contained as a hydroxide or siliceous clay (magnesium silicate) mineral.
  • the iron content is 10 to 50% by weight and is mainly in the form of trivalent hydroxide (goethite), but partly divalent iron is contained in the siliceous clay.
  • an oxidized ore containing valuable metals such as nickel, cobalt, manganese, and copper, for example, a manganese nodule that exists in the deep sea bottom is used.
  • a leaching reaction represented by the following formulas (1) to (3) and a high temperature thermal hydrolysis reaction represented by the following formulas (4) and (5) occur, and nickel, cobalt, etc.
  • Leaching as a sulfate and immobilizing the leached iron sulfate as hematite since the immobilization of iron ions does not proceed completely, the leaching slurry obtained usually contains divalent and trivalent iron ions in addition to nickel, cobalt and the like.
  • the amount of sulfuric acid added in the leaching step S1 is not particularly limited, and an excessive amount that allows iron in the ore to be leached is used. For example, 300 to 400 kg per ton of ore. If the amount of sulfuric acid added per ton of ore exceeds 400 kg, the sulfuric acid cost increases, which is not preferable.
  • the pH of the obtained leaching solution is adjusted to 0.1 to 1.0 from the viewpoint of filterability of the leaching residue containing hematite produced in the subsequent solid-liquid separation step S3. It is preferable to do.
  • the leaching process (high pressure acid leaching facility) 11 performs the leaching process in the leaching step S1 described above.
  • the leaching equipment 11 in the hydrometallurgical plant 10 includes a plurality of (n) series of leaching treatment tanks 11 (1 to n) for leaching nickel oxide ore (for example, FIG. 1).
  • (N 2 series) as shown in FIG.
  • the leaching treatment tank is referred to as “leaching treatment tank 11 (n) ” when the number of series is not specified.
  • a first-stage neutralization tank 12A (1 to n) which will be described later, is also expressed as “neutralization tank 12A (n) ”.
  • each series of leaching treatment tanks 11 (n) constituting the leaching equipment 11 for example, a high-temperature pressurized container (autoclave) is used.
  • the leaching treatment tank 11 (n) for example, ore slurry transferred from the ore treatment process, that is, a predetermined amount of ore slurry obtained by pulverizing ore to a predetermined particle size is loaded from each charging section. Entered.
  • the leaching processing tank 11 (n) which consists of an autoclave etc.
  • size comparable as what has been conventionally used for operation can be used.
  • a leaching slurry having a production amount of 1 million tons / year to 2 million tons / year in terms of nickel can be used.
  • the amount of nickel oxide ore can be increased, and the nickel-cobalt mixed sulfide obtained through a subsequent process Production volume can be increased.
  • the first stage of the neutralization treatment tank 12A constituting its leaching vessel 11 (n) a preliminary neutralizing facility 12 (n) and can be connected to pipe 21 (n) connecting the.
  • the pipe 21 (n) is a pipe that connects the leaching treatment tank 11 (n) and the first-stage neutralization treatment tank 12A (n) in the same series.
  • This piping 21 (n) causes the transfer pump 31 to circulate (self-circulate) the leaching slurry discharged from the first neutralization treatment tank 12A (n) to the same leaching treatment tank 11 (n). This is so-called self-circulation piping. The operation for self-circulation will be described in detail later.
  • Pre-neutralization step S2 Pre-neutralization treatment
  • the pH of the leaching slurry obtained in the leaching step S1 is adjusted to a predetermined range.
  • excess sulfuric acid is added from the viewpoint of improving the leaching rate. Therefore, the obtained leaching slurry contains free sulfuric acid (excess sulfuric acid not involved in the leaching reaction), and its pH is very low. Therefore, in the pre-neutralization step S2, the pH of the leaching slurry is adjusted to a predetermined range so that the washing is efficiently performed at the time of the multi-stage washing in the next solid-liquid separation step S3.
  • the leaching slurry used for the cleaning treatment is adjusted to a pH of about 2 to 6.
  • a pH When the pH is lower than 2, a cost for making the subsequent process equipment acid-resistant is required.
  • nickel leached in the leaching solution (slurry) may remain as a residue in the washing process (precipitate) and the washing efficiency may be reduced.
  • a set value may be selected depending on conditions such as the operation status of the leaching process in the leaching step S1 and the pH of the washing water used in the solid-liquid separation step S3 (about 5 if it is acid rain) in the pH range described above.
  • a set value may be selected.
  • the pH adjustment method is not particularly limited, but can be adjusted to a predetermined range by adding a neutralizing agent such as calcium carbonate slurry.
  • the pre-neutralization facility 12 performs the pre-neutralization process in the pre-neutralization step S2.
  • the preliminary neutralization equipment 12 in the hydrometallurgical plant 10 includes two stages of neutralization treatment tanks 12A and 12B as shown in FIG.
  • the first-stage neutralization tank 12A (n) corresponds to each series of the leaching tank 11 (n) provided in the leaching equipment 11 described above.
  • a plurality (n) series are provided to correspond.
  • the second stage neutralization treatment tank 12B is composed of a single series, and the leached slurry discharged from each of the first stage neutralization treatment tanks 12A (n) is the second stage neutralization treatment. It is comprised so that it may join the tank 12B.
  • the leaching equipment 11 includes two series of leaching treatment tanks (leaching treatment tank 11 (1) and leaching treatment tank 11 (2) ), the leaching treatment tanks 11 (1) and 11 (2) Correspondingly, a neutralization tank 12A (1) and a neutralization tank 12A (2) are provided as the first-stage neutralization tank 12A.
  • the second stage neutralization treatment tank 12B is composed of a single series of treatment tanks, and the neutralization treatment tank 12A (1) and the neutralization treatment tank 12A (2) constituting the first stage.
  • the leaching slurries discharged from each of the first and second wastewaters are joined to the second neutralization treatment tank 12B.
  • the slurry after pre-neutralization obtained by pre-neutralizing the leaching slurry with a plurality of series of neutralization treatment tanks is likely to vary in terms of pH, for example.
  • the leaching slurry obtained from the neutralization tank is not uniform.
  • the reaction varies and the like, and the efficient operation cannot be performed.
  • the preliminary neutralization facility 12 is provided with the two-stage neutralization treatment tanks 12A and 12B, and the upper process and the lower process are performed between the first stage and the second stage.
  • variation will be eliminated, and it transfers to the next solid-liquid separation process S3 as a uniform leaching slurry.
  • the second-stage neutralization treatment tank 12B can function as a retention tank (buffer), the flow rate of the leaching slurry can be accurately adjusted and stably transferred to the solid-liquid separation step S3. it can.
  • the processing amount of nickel oxide ore can be increased effectively, reducing a number of parts and reducing equipment cost effectively.
  • the low-pH leaching slurry obtained from the leaching treatment tanks 11 (n) of each series is subjected to the first stage neutralization treatment corresponding to each series.
  • the tank 12A (n) is charged and the leaching slurry is neutralized by adding a neutralizing agent such as a calcium carbonate slurry.
  • a neutralizing agent such as a calcium carbonate slurry.
  • the leaching slurry neutralized in each series of neutralization treatment tanks 12A (n) constituting the first stage is joined to the second stage neutralization treatment tank 12B, and leaching after preliminary neutralization.
  • a slurry is obtained.
  • a neutralizing agent may be added to finely adjust the pH of the leaching slurry.
  • the leaching slurry whose pH has been adjusted can be subjected to the solid-liquid separation process more stably.
  • the pipe 21 (n) is a pipe that connects the first-stage neutralization treatment tank 12A (n) and the charging section of the leaching treatment tank 11 (n) in the same series.
  • This pipe 21 (n) causes the leach slurry to be circulated (self-circulated) from the first stage neutralization tank 12A (n) to the leaching tank 11 (n) of the same series by the transfer pump 31.
  • This is so-called self-circulation piping.
  • the arrangement configuration of the pipe 21 (n) and the self-circulating operation will be described in detail later.
  • the first neutralization treatment tank 12A (n) in the preliminary neutralization equipment 12 includes the neutralization treatment tank 12A (n) and the final neutralization equipment 14 in the final neutralization step (detoxification step) S7. Can be connected to each other.
  • This pipe 22 is connected to the charging section of the final neutralization equipment 14 independently from each series of the first stage neutralization tank 12A (n) or integrated at a predetermined location from each series.
  • the leaching slurry discharged from the first-stage neutralization tank 12A (n) can be transferred to the final neutralization facility 14 by the transfer pump 31 provided in the pipe 22.
  • the arrangement configuration of the piping 22 and the operation of transferring the leaching slurry from the first-stage neutralization treatment tank 12A (n) to the final neutralization facility 14 will be described in detail later.
  • the piping 23 which connects each solid-liquid separation tank can be connected.
  • This pipe 23 is provided for each of the solid-liquid separation tanks provided in multiple stages independently from each series of the first stage neutralization treatment tank 12A (n) or integrated at a predetermined location from each series.
  • the leaching slurry discharged from the first stage neutralization tank 12A (n) is transferred to a predetermined solid-liquid separation tank by a transfer pump 31 provided in the pipe 23 and connected to the charging section. Make it possible.
  • the arrangement configuration of the piping 23 and the operation of transferring the leaching slurry from the first-stage neutralization treatment tank 12A (n) to the predetermined solid-liquid separation tank will be described in detail later.
  • FIG. 1 although the piping 21, 22, 23 mentioned above are made into common piping in part, and the transfer pump for transferring the leaching slurry is shown in common, it is limited to this. is not.
  • Each of the pipes 21, 22, and 23 may be provided individually and a transfer pump may be installed in each of the pipes 21, 22, and 23.
  • Solid-liquid separation step (3-1) Solid-liquid separation treatment
  • nickel and cobalt were washed while washing the leached slurry after pH adjustment obtained in the preliminary neutralization step S2 in multiple stages.
  • a leaching solution crude nickel sulfate aqueous solution
  • zinc as an impurity element is separated from a leaching residue.
  • the solid-liquid separation process is performed by the solid-liquid separation equipment such as a thickener using the flocculant supplied from the flocculant supply equipment. Specifically, the leaching slurry is first diluted with a cleaning liquid, and then the leaching residue in the slurry is concentrated as a thickener sediment. Thereby, the nickel content adhering to the leaching residue can be reduced according to the degree of dilution.
  • this solid-liquid separation step S3 it is preferable to perform solid-liquid separation while using multiple stages of solid-liquid separation tanks such as thickeners and washing the leach slurry in multiple stages.
  • a continuous countercurrent cleaning method CCD method: Counter-Current Decantation
  • a cleaning liquid is brought into contact with the leaching slurry in countercurrent
  • the cleaning liquid newly introduced into the system can be reduced, and the recovery rate of nickel and cobalt can be improved to 95% or more.
  • the cleaning liquid is not particularly limited, but it is preferable to use a liquid that does not include nickel and does not affect the process. Among them, it is preferable to use an aqueous solution having a pH of 1 to 3. When the pH of the cleaning liquid is high, a bulky aluminum hydroxide is produced when aluminum is contained in the leachate, which causes poor settling of the leach residue. For this reason, as the cleaning liquid, it is preferable to repeatedly use a low pH (pH of about 1 to 3) poor liquid obtained in the nickel recovery step S6 as a subsequent step.
  • the flocculant to be used is not particularly limited, and for example, an anionic flocculant can be used.
  • (3-2) Solid-liquid separation facility In the hydrometallurgical plant 10 according to the present embodiment, the solid-liquid separation facility 13 performs the solid-liquid separation process in the solid-liquid separation step S3 described above.
  • the solid-liquid separation facility 13 in the hydrometallurgical plant 10 is configured by connecting, for example, six-stage thickeners (solid-liquid separation tanks) (CCD1 to CCD6) as shown in FIG.
  • the leaching slurry after the pre-neutralization in the pre-neutralization step S2 (pH adjusted) is transferred by a transfer pump and charged into the first stage thickener (CCD 1).
  • the cleaning liquid cleaning water
  • the sixth-stage thickener CCD 6 at the final stage via a pipe (not shown).
  • the cleaning liquid charged in the CCD 6 at the final stage takes in the moisture adhering to the residue in the leaching slurry in the process of being transferred from the CCD 6 to the CCD 5, CCD 4,.
  • the concentration of valuable metals such as nickel in the cleaning liquid increases, and is finally discharged from the CCD 1 as a leachate and transferred to the neutralization step S4 of the next step.
  • the concentration of valuable metals in the cleaning liquid charged in the CCD 6 is, for example, approximately 0 g / L at the time of charging when the nickel concentration is 0.5 g in the transfer process from the CCD 6 to the CCD 5.
  • the leachate discharged from the CCD 1 has a nickel concentration of about 3 g / L.
  • the first-stage neutralization constituting each solid-liquid separation tank and the preliminary neutralization equipment 12 is provided in each charging portion of the solid-liquid separation tank such as thickener provided in multiple stages.
  • a pipe 23 connecting the treatment tank 12A (n) can be connected. This pipe 23 is provided for each of the solid-liquid separation tanks provided in multiple stages independently from each series of the first stage neutralization treatment tank 12A (n) or integrated at a predetermined location from each series.
  • the leaching slurry discharged from the first stage neutralization tank 12A (n) is transferred to a predetermined solid-liquid separation tank by a transfer pump 31 provided in the pipe 23 and connected to the charging section. Make it possible.
  • the arrangement configuration of the piping 23 and the operation of transferring the leaching slurry from the first-stage neutralization treatment tank 12A (n) to the predetermined solid-liquid separation tank will be described in detail later.
  • Neutralization step S4 the pH of the leachate (crude nickel sulfate aqueous solution) separated in the solid-liquid separation step S3 is adjusted, and the neutralized starch containing the impurity element is separated, and nickel and A neutralized final solution containing zinc together with cobalt is obtained.
  • the pH of the resulting neutralized final solution is 4 or less, preferably 3.0 to 3.5, more preferably 3.1 to 3, while suppressing oxidation of the separated leachate.
  • a neutralizing agent such as calcium carbonate is added to the leachate so as to be 3.2 to form a neutralized final solution and a neutralized starch slurry containing trivalent iron as an impurity element.
  • impurities such as trivalent iron ions and aluminum ions remaining in the solution are removed as neutralized starch in this way, and a neutralized final solution serving as a base for the nickel recovery mother liquor is generated. .
  • the neutralization process in neutralization process S4 is performed by the neutralization equipment.
  • the neutralization facility include a neutralization reaction tank that performs a neutralization reaction, and a separation treatment tank such as a thickener that separates the neutralized starch obtained by the neutralization reaction and the neutralized final solution.
  • This neutralization equipment consists of a single series.
  • the neutralization reaction tank in the neutralization facility the leachate (crude nickel sulfate aqueous solution) discharged from the CCD 1 in the solid-liquid separation facility 13 is charged, and a neutralizing agent such as calcium carbonate is charged for neutralization. A reaction occurs.
  • the separation treatment tank the slurry after the neutralization reaction is charged, and the slurry is separated into a neutralized final solution that becomes a mother liquor for nickel recovery and a neutralized starch slurry that contains trivalent iron as an impurity element. To do.
  • the neutralized starch slurry is extracted from the bottom of the separation treatment tank.
  • the neutralized final solution from which the neutralized starch has been separated overflows and is stored in a storage tank or the like, and is then transferred to the next dezincing step S5.
  • a zinc sulfide is generated by adding a sulfiding agent such as hydrogen sulfide gas to the neutralized final solution obtained from the neutralizing step S4 and subjecting it to a sulfiding treatment.
  • the zinc sulfide is separated and removed to obtain a nickel recovery mother liquor (dezincing final solution) containing nickel and cobalt.
  • a neutralized final solution containing zinc and nickel and cobalt is introduced into a pressurized container, and hydrogen sulfide gas or the like is blown into the gas phase, so that zinc is made against nickel and cobalt.
  • hydrogen sulfide gas or the like is blown into the gas phase, so that zinc is made against nickel and cobalt.
  • the dezincing process in the dezincing step S5 is performed in a dezincing facility.
  • the dezincification equipment includes, for example, a sulfidation reaction tank that performs a sulfidation reaction by blowing hydrogen sulfide gas or the like into the final neutralized solution, and a filter device that separates and removes zinc sulfide from the solution after the sulfidation reaction.
  • This dezincification equipment consists of a single series.
  • the neutralized final solution transferred through the above-described neutralization step S4 is charged, and a sulfiding agent such as hydrogen sulfide gas is blown to cause a sulfidation reaction.
  • the filter device is constituted by a filter cloth (filter cloth) or the like, and separates zinc sulfide from the post-sulfurization reaction solution containing zinc sulfide to generate a nickel recovery mother liquor. The obtained nickel recovery mother liquor is transferred to the next nickel recovery step S6.
  • Nickel recovery step S6 a sulfur recovery agent such as hydrogen sulfide gas is blown into the nickel recovery mother liquor obtained by separating and removing zinc, which is an impurity element, as zinc sulfide in the zinc removal step S5. A sulfurization reaction is caused to produce a sulfide (nickel / cobalt mixed sulfide) containing nickel and cobalt and a poor solution.
  • a sulfur recovery agent such as hydrogen sulfide gas is blown into the nickel recovery mother liquor obtained by separating and removing zinc, which is an impurity element, as zinc sulfide in the zinc removal step S5.
  • a sulfurization reaction is caused to produce a sulfide (nickel / cobalt mixed sulfide) containing nickel and cobalt and a poor solution.
  • the mother liquid for nickel recovery is a sulfuric acid solution in which impurity components are reduced from the leachate of nickel oxide ore through the neutralization step S4 and the dezincing step S5.
  • the nickel recovery mother liquor may contain several g / L of iron, magnesium, manganese, etc. as impurity components. These impurity components are sulfides with respect to nickel and cobalt to be recovered. As a result, the resulting sulfide is not contained.
  • Nickel recovery processing in the nickel recovery step S6 is executed in a nickel recovery facility.
  • the nickel recovery facility includes, for example, a sulfurization reaction tank that performs a sulfurization reaction by blowing hydrogen sulfide gas or the like into a nickel recovery mother liquor, and a solid-liquid separation tank that separates and recovers nickel-cobalt mixed sulfide from the liquid after the sulfurization reaction.
  • This nickel recovery facility consists of a single series. In the sulfidation reaction tank in the nickel recovery facility, the nickel recovery mother liquor transferred through the dezincing step S5 described above is charged, and a sulfidizing agent such as hydrogen sulfide gas is blown to cause a sulfidation reaction. Mixed sulfide is formed.
  • the solid-liquid separation tank is constituted by, for example, a thickener or the like, and is subjected to sedimentation treatment on the slurry after the sulfidation reaction containing nickel / cobalt mixed sulfide, so that nickel / cobalt mixed sulfide which is a precipitate is formed. Is recovered from the bottom of the thickener. On the other hand, the aqueous solution component overflows and is recovered as a poor solution.
  • the recovered poor solution is a solution having a very low concentration of valuable metals such as nickel, and contains impurity elements such as iron, magnesium, and manganese remaining without being sulfided. This poor solution is transferred to the final neutralization step S7 and detoxified.
  • Final neutralization step (7-1) Final neutralization treatment
  • the final stage of the solid-liquid separation tank provided in multiple stages in the solid-liquid separation process in the solid-liquid separation step S3 described above (for example, During the adjustment of the leaching residue discharged from the CCD 6) and the poor solution containing impurity elements such as iron, magnesium, manganese, etc. recovered in the nickel recovery step S6 to a predetermined pH range satisfying the discharge standard A summation process (detoxification process) is performed.
  • the pH adjustment method is not particularly limited, but can be adjusted to a predetermined range by adding a neutralizing agent such as calcium carbonate slurry.
  • the final neutralization facility 14 performs the neutralization process in the above-described final neutralization step S7.
  • a final neutralization treatment tank is provided in a single series.
  • the final neutralization facility 14 is charged with the leaching residue transferred from the solid-liquid separation step S3 and the poor solution transferred from the nickel recovery step S6.
  • the reaction tank the leaching residue and the poor liquid are mixed, and the pH is adjusted to a predetermined pH range by the neutralizing agent to become a waste slurry (tailing).
  • generated in this reaction tank is transferred to a tailing dam (waste storage place).
  • the charging section of the final neutralization facility 14 includes the final neutralization facility 14 and the first-stage neutralization treatment tank 12A (n) constituting the preliminary neutralization facility 12.
  • the pipe 22 to be connected can be connected. This pipe 22 is connected to the charging section of the final neutralization equipment 14 independently from each series of the first stage neutralization tank 12A (n) or integrated at a predetermined location from each series.
  • the leaching slurry discharged from the first-stage neutralization tank 12A (n) can be transferred to the final neutralization facility 14 by the transfer pump 31 provided in the pipe 22.
  • the arrangement of the piping 22 and the operation of transferring the leached slurry from the first stage neutralization tank 12A (n) to the final neutralization facility 14 will be described in detail later.
  • the hydrometallurgical plant 10 includes at least a leaching facility 11 including a plurality (n) of leaching treatment tanks 11 (n) for performing leaching treatment on nickel oxide ore, and two stages.
  • the neutralization treatment tanks 12A and 12B are provided, and the pre-neutralization equipment 12 for performing the pre-neutralization for adjusting the pH of the leaching slurry discharged from the leaching treatment tank 11 (n) to a predetermined range, and a single series, It comprises a solid-liquid separation facility 13 for solid-liquid separation of the leached slurry that has been adjusted in pH and discharged from the preliminary neutralization facility 12 in a solid-liquid separation tank (FIG. 1).
  • the first stage neutralization treatment tank 12 ⁇ / b > A (n) is a leaching treatment tank 11 provided in the leaching equipment 11.
  • a plurality of series are provided so as to correspond to each series of (n), and the leaching slurry whose pH is adjusted in each series of neutralization treatment tanks 12A (n) constituting the first stage consists of a single series.
  • the second stage neutralization tank 12B is configured to join, and the leachate that has joined the second stage neutralization tank is transferred to a solid-liquid separation facility.
  • the hydrometallurgical plant 10 configured in this way, by using a plurality of series of leaching treatment facilities having a size that has been conventionally operated (for example, the amount of leachate produced is 1 to 20,000 tons / year in terms of nickel).
  • the amount of nickel oxide ore can be increased.
  • the subsequent processes that is, the processes subsequent to the preliminary neutralization process, are integrated into one series, the number of parts can be reduced as a whole plant, and the equipment cost can be reduced.
  • each leaching slurry obtained from a plurality of series of treatment equipment has pH and the like. Even when there is a variation in properties, the leaching slurry discharged from each series is merged in the second stage neutralization treatment tank 12B, so that the variation can be eliminated and uniform.
  • a solid-liquid separation process can be performed as a leach slurry.
  • paragraph, and the reaction tank in the processing equipment in another process. 23 can be provided as appropriate.
  • the leaching slurry at a stage where the leaching process such as immediately after the start of plant operation is not sufficiently progressed can be prevented from being transferred to the solid-liquid separation step S3 or a later step, Generation
  • production of the reaction failure in a process, the fall of operational efficiency, etc. can be suppressed effectively.
  • FIG. 3 shows a diagram for explaining the flow of operation during normal operation.
  • nickel oxide ore slurry (ore slurry) that has been crushed to a predetermined size in an ore treatment process or the like is supplied to the leaching treatment facility 11.
  • the first series of leaching treatment tanks 11 (1) and the second series of leaching treatment tanks 11 (2), which are provided, are ores in the leaching treatment tanks 11 (1) and 11 (2) of each series. A leaching treatment is applied to the slurry.
  • the leaching slurry obtained by the leaching treatment in the leaching treatment tanks 11 (1) and 11 (2) is transferred to the preliminary neutralization equipment 12.
  • the leaching slurry discharged from the leaching treatment tanks 11 (1) and 11 (2) is stored in the first stage corresponding to each series of the leaching treatment tanks 11 (1) and 11 (2). It charges to sum processing tank 12A (1) , 12A (2) , respectively.
  • a neutralizing agent is added to the leached slurry charged to adjust the pH to a predetermined pH range.
  • the leaching slurry whose pH has been adjusted in the first stage neutralization tanks 12A (1) and 12A (2) is transferred to the second stage neutralization tank 12B and charged. That is, the leaching slurry whose pH is adjusted in each of the first and second series of neutralization treatment tanks 12A (1) and 12A (2) is used as a second stage neutralization treatment tank 12B composed of a single series. To join. In this way, in the second stage neutralization treatment tank 12B, the leaching slurries from each series are merged, so that variations in properties such as pH can be eliminated, and the uniform leaching slurry is transferred to the subsequent process. can do. In the second-stage neutralization treatment tank 12B, a neutralizing agent may be added to the combined leaching slurry to finely adjust the pH.
  • each of the first stage neutralization tanks 12A (1) and 12A (2) and the second stage neutralization tank It is transported by overflowing the leached slurry via the pipes 24 (1) and 24 (2) connecting to 12B.
  • the leaching slurry is discharged from the second-stage neutralization treatment tank 12B, and the leaching slurry is transferred to the solid-liquid separation facility 13.
  • the solid-liquid separation facility 13 can be a facility in which six stages of thickeners (CCD1 to CCD6) are connected, and the transferred leach slurry is used as the first stage thickener (CCD1).
  • CCD1 to CCD6 the first stage thickener
  • the discharge section of the second-stage neutralization tank 12B and the piping 25 connecting the charging section to the first-stage thickener (CCD 1) are used. Then, transfer is performed using a transfer pump 32 provided in the pipe 25.
  • the leaching slurry charged is contacted countercurrently with the cleaning liquid charged in the final stage CCD 6 in the process of transferring the leached slurry sequentially from the CCD 1 to the CCD 6.
  • the residue in the slurry is agglomerated.
  • a leachate (crude nickel sulfate aqueous solution) having a high concentration of valuable metals such as nickel is discharged from the CCD 1.
  • the leaching residue having a low concentration of valuable metals such as nickel is discharged from the CCD 6 at the final stage, transferred to the final neutralization equipment 14 and detoxified.
  • the process of leaching valuable metals from the ore slurry has hardly started, and the leaching process is performed from the leaching treatment tanks 11 (1) and 11 (2) constituting the leaching equipment 11. Insufficient leaching slurry is discharged.
  • the first stage neutralization treatment tanks 12A (1) and 12A (2) in the preliminary neutralization facility 12, and leaching Pipes 21 (1) and 21 (2) connecting the leaching treatment tanks 11 (1) and 11 (2) in the facility 11 are connected.
  • the pipes 21 (1) and 21 (2) are connected to the first stage neutralization tanks 12A (1) and 12A (2) and the charging sections of the leaching tanks 11 (1) and 11 (2). It is a pipe connected by the same series. That is, for example, the pipe 21 (2) connecting the second series of leaching treatment tank 11 (2) and the second series of neutralization treatment tank 12A (2) .
  • These pipes 21 (1) and 21 (2) are used for the process liquid (temperature increase ) for raising the temperature of the leaching treatment tanks 11 (1) and 11 (2) at the time of start-up after the start of operation as described above.
  • liquid) and leaching tank 11 (1), 11 (a leach slurry low nickel concentration discharged from the 2) leaching tank 11 (1), 11 (2) and neutralization tank 12A (1), 12A It is possible to circulate between (2) .
  • the pipes 21 (1) and 21 (2) are the same series of leaching treatment tanks for leaching slurry and process liquid discharged from the first stage neutralization treatment tanks 12A (1) and 12A (2).
  • 11 (1) and 11 (2) are self-circulating pipes that can be self-circulated.
  • the pipes 21 (1) and 21 (2) extend from the first-stage neutralization treatment tanks 12A (1) and 12A (2) , respectively, and then extend to predetermined locations (see FIG. 1 and FIG. 4 may be combined at the transfer pump 31 location), branched again, and connected to the respective leaching treatment tanks 11 (1) and 11 (2) , or completely for each series. It is good also as separate piping.
  • a transfer pump 31 is provided in the pipes 21 (1) and 21 (2) , and the leaching slurry discharged from the neutralization tanks 12A (1) and 12A (2) is transferred to the transfer pump 31. To the leaching treatment tanks 11 (1) and 11 (2) .
  • the transfer of the leach slurry is controlled between the neutralization tanks 12A (1) and 12A (2) and the transfer pump 31 described above.
  • ON / OFF valves 42 (1) and 42 (2) are provided.
  • the ON / OFF valves 42 (1) and 42 (2) are set in the ON state (“open” state) so that the discharged leached slurry can be transferred. In the normal operation described above, this for self circulation pipe 21 (1), 21 (2) to provided the ON / OFF valve 42 (1), 42 (2) the OFF state ( "closed” ).
  • the leaching process for the ore slurry is performed in the leaching treatment tank 11 (2) in the leaching equipment 11 in the initial stage such as immediately after the start of operation, that is, immediately after the start of the operation of the second system .
  • the obtained leaching slurry has an insufficient leaching state.
  • a process liquid temperature rising liquid
  • warm water is charged and the temperature rising process is performed.
  • the leaching slurry or the process liquid is discharged from the leaching treatment tank 11 (2), and the middle of the first stage of the same series. It is made to transfer to sum processing tank 12A (2) . Thereafter, the neutralization treatment tank 12A (2) and the leaching tank 11 (2) and via a pipe 21 (2) connecting the leaching treatment tank 11 from the first-stage neutralization treatment tank 12A (2) ( The leaching slurry or process liquid is self-circulated for 2) .
  • the self-circulation pipe 21 (2) connecting the first stage neutralization treatment tank 12A (2) and the leaching treatment tank 11 (2) is connected.
  • the provided ON / OFF valve 42 (2) is turned on (“open” state).
  • the leaching slurry or process liquid is circulated from the neutralization tank 12A (2) to the leaching tank 11 (2) by the transfer pump 31 provided in the self-circulation pipe 21 (2) .
  • This self-circulating operation is performed, for example, until the leaching treatment tank 11 (2) is sufficiently heated.
  • the supply of ore slurry and the supply of sulfuric acid to the leaching treatment tank 11 (2) are stopped. Therefore, when circulating the leaching slurry, the valuable metal concentration of the leaching slurry is substantially 0 g / L in terms of nickel.
  • the first stage neutralization treatment tanks 12A (1) and 12A (2) and the leaching treatment tanks 11 (1) and 11 (2) By providing the pipes 21 (1) and 21 (2) for connecting the leaching slurry and the process liquid for raising the temperature in the initial stage such as immediately after the start of operation, the self-circulation is enabled. Thereby, it is possible to prevent the leaching slurry and process liquid containing almost no nickel from being transferred to the subsequent solid-liquid separation process S3 or the like.
  • the first stage neutralization treatment tanks 12A (1) and 12A (2) in the preliminary neutralization facility 12 and leaching A pipe 22 connecting the leaching treatment tanks 11 (1) , 11 (2) and the final neutralization equipment 14 in the equipment 11 is connected.
  • the pipe 22 is independent from each series of the first stage neutralization treatment tanks 12A (1) and 12A (2) , or is integrated at a predetermined location from each series, so that the final neutralization equipment 14 Connected to the charging section.
  • the pipe 22 is provided with a transfer pump 31, and the leach slurry discharged from the first-stage neutralization tanks 12 A (1) and 12 A (2) is finally neutralized by the transfer pump 31. 14 to transfer.
  • an ON / OFF valve 42 (1) which controls the transfer of the leach slurry, for example, between the neutralization tanks 12A (1) , 12A (2) and the above-described transfer pump is provided inside the pipe 22. 42 (2) is provided.
  • the ON / OFF valve 42 ( 1) , 42 (2) is turned on (“open” state) to allow the discharged leach slurry to be transferred.
  • the ON / OFF valves 42 (1) and 42 (2) provided in the pipe for transferring to the final neutralization facility 14 are in the OFF state (“closed” state). ing.
  • the leaching process proceeds little by little in the leaching treatment tank 11 (2) .
  • the nickel concentration in the discharged leaching slurry is low.
  • the leaching slurry is discharged from the leaching treatment tank 11 (2) , and the first stage neutralization treatment tank of the same series. Transfer to 12A (2) . Then, via a pipe 22 which connects the neutralization tank 12A and (2) and a final neutralization equipment 14, transferring the leached slurry from the neutralization tank 12A (2) to a final neutralization equipment 14.
  • the leaching slurry is transferred to the final neutralization equipment 14, the above-described self-circulation piping (first stage neutralization treatment tank 12A (2) and leaching treatment tank 11 (2) are connected. Piping) 21
  • the ON / OFF valve 43 provided in (2) is turned off (“closed” state).
  • the ON / OFF valve 42 (2) provided in the pipe 22 connecting the first-stage neutralization treatment tank 12A (2) and the final neutralization equipment 14 is turned on ("open” state). To do.
  • the leach slurry is transferred from the neutralization tank 12A (2) to the final neutralization facility 14 by the transfer pump 31 provided in the pipe 22.
  • the transfer operation of the leaching slurry to the final neutralization equipment 14 is performed, for example, by the nickel concentration of the leaching slurry discharged from the leaching treatment tank 11 (2) among the thickeners provided in multiple stages in the solid-liquid separation equipment 13. This is performed when the nickel concentration in the liquid phase in the stage thickener (CCD 6) is lower.
  • the valuable metal concentration of the leaching slurry at this stage that is, the stage of carrying out the transfer operation to the final neutralization facility 14 is, for example, about 0 to 5 g / L in terms of nickel.
  • the piping 22 that connects the first-stage neutralization treatment tanks 12A (1) , 12A (2) and the final neutralization equipment 14 is provided.
  • the leaching slurry discharged at the stage where the leaching process is not sufficiently advanced at the start of operation can be transferred to the final neutralization facility 14.
  • the leaching slurry having a low nickel concentration from being transferred to the solid-liquid separation step S3 or the like in the subsequent step.
  • the first stage neutralization treatment tanks 12A (1) and 12A (2) in the preliminary neutralization facility 12 are In the liquid separation equipment 13, pipes 23 that connect the respective solid-liquid separation tanks (thickeners) provided in multiple stages are connected.
  • This pipe 23 is independent from each series of the first-stage neutralization treatment tanks 12A (1) and 12A (2) , or is integrated at a predetermined location from each series, so that each solid-liquid separation tank Connected to the charging section. More specifically, the pipe 23 extends from the first-stage neutralization treatment tanks 12A (1) and 12A (2) toward the solid-liquid separation facility 13 and has multiple stages constituting the solid-liquid separation facility 13. It branches so that it may be connected with each connected solid-liquid separation tank (CCD1, CCD2, ... CCD6).
  • CCD1 solid-liquid separation tank
  • the pipe 23 is provided with a transfer pump 31, and the leaching slurry discharged from the first-stage neutralization tanks 12 A (1) and 12 A (2) is solid-liquid separated by the transfer pump 31. 13 is transferred to a predetermined solid-liquid separation tank.
  • an ON / OFF valve 42 (1) for controlling the transfer of the leaching slurry between the neutralization tanks 12A (1) , 12A (2) and the above-described transfer pump 31, for example, is provided inside the pipe 23. , 42 (2) are provided.
  • the ON / OFF valve is used.
  • 42 (1) and 42 (2) are turned on (“open” state), and the discharged leached slurry can be transferred.
  • the ON / OFF valves 42 (1) and 42 (2) provided in the pipe 23 for transferring to a predetermined solid-liquid separation tank are in an OFF state (“closed” state). It has become.
  • the pipe 23 is provided with an ON / OFF valve 44 for controlling the transfer of the leaching slurry at each branch point toward the solid-liquid separation tanks connected in multiple stages.
  • an ON / OFF valve 44 for controlling the transfer of the leaching slurry at each branch point toward the solid-liquid separation tanks connected in multiple stages.
  • the leaching process tank 11 Since the nickel concentration of the leaching slurry discharged from 2) is low, it cannot be transferred to the next step. Specifically, for example, even when the leaching treatment proceeds and the valuable metal concentration in the leaching slurry exceeds 5 g / L in terms of nickel, the leaching slurry to be transferred to the second stage neutralization treatment tank 12B. If it is lower than the desired nickel concentration, it cannot be transferred to the next step.
  • the leaching slurry is discharged from the leaching treatment tank 11 (2) , and the first stage neutralization treatment tank of the same series. Transfer to 12A (2) . Then, via a pipe 23 for connecting the the solid-liquid separation equipment 13 neutralization treatment tank 12A (2), the leach slurry is transferred from the neutralization tank 12A (2) to solid-liquid separation equipment 13.
  • the valuable metal concentration in the leaching slurry is 2.5 g / L in terms of nickel
  • the second stage where the nickel equivalent concentration in the liquid phase during normal operation (steady state) is about 2.5 g / L. It is made to transfer to the solid-liquid separation tank (CCD2) of eyes. In this way, by appropriately controlling the transfer destination according to the valuable metal concentration in the leaching slurry, it is possible to prevent the first system during normal operation from being affected, and efficient operation is possible.
  • CCD2 solid-liquid separation tank
  • the above-described self-circulation piping (first stage neutralization treatment tank 12A (2) and leaching treatment tank 11 (2) , 21 )
  • the ON / OFF valve 43 provided in (2) is turned off (“closed” state).
  • the OFF valve 45 is turned off (“closed” state).
  • the ON / OFF valve 42 (2) provided in the pipe 23 connecting the first stage neutralization treatment tank 12A (2) and the solid-liquid separation facility 13 is turned on ("open" state). To do. Then, the leaching slurry is transferred from the first-stage neutralization tank 12A (2) to the solid-liquid separation facility 13 by the transfer pump 31 provided in the pipe 23. At this time, the ON / OFF valve 44 provided at each branch point for branching to each solid-liquid separation tank in the solid-liquid separation facility 13 is controlled so that the leached slurry is transferred to the CCD 2.
  • the ON / OFF valve 44 at the branch point to the CCD 2 is turned on (“open” state), and the ON / OFF valves 44 at the other branch points to the CCD 1 and CCD 3 to CCD 6 are turned off (“ Closed state).
  • the piping 23 that connects the first-stage neutralization tanks 12A (1) and 12A (2) and the solid-liquid separation facility 13 is provided.
  • the leaching process after the start of operation is not yet sufficient and the leaching slurry having a low nickel concentration can be transferred to a predetermined solid-liquid separation tank.
  • the amount of nickel oxide ore is increased and the production amount of nickel / cobalt mixed sulfide is improved while reducing the equipment cost. Can do. Further, even if the leaching slurries obtained from a plurality of series of treatment facilities have variations in properties such as pH, the leaching slurries discharged from the respective series are merged in the second stage neutralization treatment tank 12B. Therefore, the variation can be eliminated, and the solid-liquid separation process can be performed as a uniform leaching slurry.
  • the leaching slurry having a low nickel concentration is transferred to a subsequent process at an abnormal time such as when the processing equipment is started up. This can be prevented. Thereby, the reaction failure in a post process and the fall of operational efficiency can be suppressed.
  • the leaching slurry is self-circulated or transferred to the final neutralization facility 14 or the solid-liquid separation facility 13 while In the first series, it is possible to perform a normal operation as shown by a black arrow.
  • a two-stage neutralization tank is provided, and only one first-stage neutralization tank is provided as a plurality of lines, so that one of the lines is not affected.
  • the start-up operation at the start of operation can be performed.
  • FIGS. 3 to 6 show a configuration in which some of the pipes 21, 22, and 23 used in the non-normal operation are shared pipes.
  • the transfer pump 31 for transferring the leaching slurry through the pipes 21, 22, 23 is also common.
  • the present invention is not limited to this, and it goes without saying that the pipes 21, 22, and 23 may be provided completely individually, and a transfer pump may be provided for each of them.
  • this hydrometallurgical plant 10 what is necessary is just to determine the installation method of piping suitably in consideration of a transfer route. In addition, it is preferable because the number of equipment and the cost can be reduced by sharing the sharable parts in the piping.
  • FIGS. 3 to 6 show an embodiment in which all of the pipes 21, 22, and 23 used in the non-normal operation are shown, but one or two pipes are provided. May be.
  • a leaching facility 11 having two series of leaching treatment tanks 11 (1) and 11 (2) and a two-stage neutralization treatment tank are provided, and the first-stage neutralization treatment tanks 12A (1) and 12A ( The operation is performed by the hydrometallurgical plant 10 including the pre-neutralization facility 12 in which 2) corresponds to the leaching treatment tank and the second stage neutralization treatment tank 12B is a single series. It was.
  • the solid-liquid separation equipment 13 as shown in FIG. 1, six stages of thickeners (CCD1 to CCD6) are connected to perform multi-stage cleaning.
  • the production amount of the nickel / cobalt mixed sulfide obtained in this operation was 2500 tons in terms of nickel, and there was no problem in the product quality.
  • the set values of valuable metals in the liquid phase of the CCD of each stage in the solid-liquid separation equipment 13 are nickel equivalent concentrations, CCD1: 3 g / L, CCD 2: 2.5 g / L, CCD 3: 2 g / L, CCD 4: 1.5 g / L, CCD 5: 1 g / L, CCD 6: 0.5 g / L or less.
  • the amount of nickel-cobalt mixed sulfide produced was 2075 tons (about 83% of Operation Example 1), and there was no problem in product quality.
  • the leaching failure occurred in the leaching treatment tanks 11 (1) and 11 (2) in the first series or the second series five times. For this reason, the series where the leaching failure occurred was stopped and started up five times.
  • the leaching slurry discharged from the leaching treatment tanks 11 (1) and 11 (2) being started up that is, the leaching slurry having a low nickel concentration due to insufficient leaching treatment is used as it is. It was made to transfer to the neutralization processing tank 12B of the 2nd step via the neutralization processing tank 12A (1) , 12A (2) of the step. In such start-up operation, the average time from stop to return was 2 days.
  • the production amount of the obtained nickel-cobalt mixed sulfide was 2250 tons (about 90% of the operation example 1), but the product quality deteriorated. Specifically, the ratio of valuable metals in the nickel / cobalt mixed sulfide decreased, and it became a defective product that could not be shipped as a product, which had to be disposed of.
  • Table 1 below shows the transition of the nickel concentration (g / L) in the overflow from the first-stage solid-liquid separation tank (CCD1) when operated as described above. As shown in Table 1, it can be seen that in this operation example 5, the nickel concentration is extremely stable from the start of operation. In the sulfidation reaction in the subsequent sulfidation process using this overflow liquid as a treatment target, the reaction occurred stably without causing a reaction failure or the like.
  • Table 1 below shows the transition of the nickel concentration (g / L) in the overflow from the first-stage solid-liquid separation tank (CCD1) when operated as described above. As shown in Table 1, it can be seen that the nickel concentration decreased extremely over about half a day from the start of operation. As a result, in the subsequent sulfidation step, due to the extremely low nickel concentration, adjustment of the sulfidation reaction becomes very difficult, resulting in poor sulfidation reaction and excessive sulfidation reaction.

Abstract

The present invention makes it possible to increase the throughput in ore processing and thus attain enhanced productivity without causing poor reaction or deterioration in operation efficiency. This hydrometallurgical plant (10) is provided with: a leaching system (11) which is composed of multiple leaching lines that have leaching tanks (11(n)) respectively and in which the leaching of an ore is conducted; a preliminary neutralization system (12) which is equipped with first- and second-stage neutralization tanks and in which the pH of a leach slurry is adjusted; and a solid-liquid separation system (13) which is composed of one separation line and in which the pH-controlled leach slurry discharged from the preliminary neutralization system (12) is separated into a solid and a liquid. The preliminary neutralization system (12) is configured in a manner such that: multiple first-stage neutralization tanks (12A(n)) are arranged so as to correspond respectively to the leaching tanks (11(n)) of the multiple leaching lines; and the leach slurry streams, the pH values of which have been adjusted in the first-stage neutralization tanks (12A(n)), are joined in a single line which is composed of one second-stage neutralization tank (12B). The joined leach slurry streams are transferred to the solid-liquid separation system (13).

Description

ニッケル酸化鉱石の湿式製錬プラント、並びにその湿式製錬プラントの操業方法Nickel oxide ore hydrometallurgical plant and method of operating the hydrometallurgical plant
 本発明は、ニッケル酸化鉱石からニッケル及びコバルトを回収するニッケル酸化鉱石の湿式製錬プラント、並びにその湿式製錬プラントの操業方法に関する。本出願は、日本国において2013年3月8日に出願された日本特許出願番号特願2013-046986を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。 The present invention relates to a nickel oxide ore wet smelting plant that recovers nickel and cobalt from nickel oxide ore, and an operation method of the wet smelting plant. This application claims priority on the basis of Japanese Patent Application No. 2013-046986 filed on March 8, 2013 in Japan. This application is incorporated herein by reference. Incorporated.
 近年、ニッケル酸化鉱石の湿式製錬法として、硫酸を用いた高圧酸浸出法(High Pressure Acid Leach)が注目されている。この方法は、従来の一般的なニッケル酸化鉱石の製錬方法である乾式製錬法と異なり、還元及び乾燥工程等の乾式工程を含まず、一貫した湿式工程からなるので、エネルギー的及びコスト的に有利である。また、この方法では、ニッケル品位を50質量%程度まで上昇したニッケルとコバルトを含む硫化物(以下、「ニッケル・コバルト混合硫化物」又は「Ni・Co混合硫化物」ともいう。)を得ることができるという利点を有している。 Recently, high-pressure acid leaching using sulfuric acid (High Pressure Acid 注目 Leach) has attracted attention as a hydrometallurgical method for nickel oxide ore. Unlike the conventional dry smelting method, which is a conventional nickel oxide ore smelting method, this method does not include dry processes such as reduction and drying processes, and is a consistent wet process. Is advantageous. Further, in this method, a sulfide containing nickel and cobalt whose nickel quality is increased to about 50% by mass (hereinafter also referred to as “nickel / cobalt mixed sulfide” or “Ni / Co mixed sulfide”) is obtained. Has the advantage of being able to
 この高圧酸浸出法を用いたニッケル酸化鉱石の湿式製錬方法は、例えば図7の簡易工程図に示すような工程を有する。すなわち、ニッケル酸化鉱石を所定の大きさに粉砕等してスラリーとする鉱石処理工程と、鉱石スラリーに硫酸を添加して高温高圧下で浸出処理を施す(高圧酸)浸出工程と、浸出スラリーを多段洗浄する前に中和(以下、「予備中和」ともいう。)処理を施す予備中和工程と、予備中和処理を施して得られた浸出スラリーを多段洗浄しながら、浸出残渣とニッケル及びコバルトと共に不純物元素を含む浸出液とに固液分離する固液分離工程(以下、「CCD工程」ともいう。)と、得られた浸出液のpHを調整して不純物元素を含む中和澱物を分離し、ニッケル及びコバルトと共に亜鉛を含む中和終液を得る中和工程と、中和終液に硫化剤を添加することで亜鉛硫化物を形成して分離しニッケル回収用母液を得る脱亜鉛工程と、ニッケル回収用母液に硫化剤を添加することでニッケル及びコバルトを含む混合硫化物を形成させるニッケル回収工程と、ニッケル回収工程における排液(貧液)やCCD工程の残渣を混合して中和処理を施す最終中和工程とを有する(例えば、特許文献1、2を参照。)。 The hydrometallurgical method of nickel oxide ore using this high pressure acid leaching method has processes as shown in the simplified process diagram of FIG. That is, an ore processing step in which nickel oxide ore is pulverized to a predetermined size to form a slurry, a sulfuric acid is added to the ore slurry to perform a leaching treatment under high temperature and high pressure (high pressure acid), and a leaching slurry. A pre-neutralization step in which neutralization (hereinafter also referred to as “pre-neutralization”) treatment is performed before multi-stage washing, and the leach residue and nickel are washed while multi-stage washing is performed on the leach slurry obtained by the pre-neutralization treatment. And a solid-liquid separation process (hereinafter also referred to as “CCD process”) for solid-liquid separation into a leachate containing an impurity element together with cobalt, and a neutralized starch containing the impurity element by adjusting the pH of the obtained leachate A neutralization step for obtaining a neutralized final solution containing zinc together with nickel and cobalt, and dezincification for forming a nickel sulfide by adding a sulfiding agent to the neutralized final solution to obtain a nickel recovery mother liquor Process and nickel times A nickel recovery process that forms a mixed sulfide containing nickel and cobalt by adding a sulfiding agent to the mother liquor, and a neutralization treatment is performed by mixing the waste liquid (poor liquid) in the nickel recovery process and the residue from the CCD process. A final neutralization step (see, for example, Patent Documents 1 and 2).
 上述した湿式製錬における予備中和工程では、浸出工程から得られた浸出スラリーを、次工程のCCD工程における多段洗浄処理時に効率よく洗浄を実施することが可能なpHに調整する。具体的には、浸出スラリーを中和槽に装入して、炭酸カルシウム等の中和剤を添加することで浸出スラリーのpHを調整する。 In the pre-neutralization step in the above-described hydrometallurgy, the leaching slurry obtained from the leaching step is adjusted to a pH at which cleaning can be performed efficiently during the multi-stage cleaning process in the next CCD step. Specifically, the pH of the leaching slurry is adjusted by charging the leaching slurry into a neutralization tank and adding a neutralizing agent such as calcium carbonate.
 予備中和後の浸出スラリーは、次にCCD工程において、多段洗浄されながらニッケル及びコバルトと共に不純物元素を含む浸出液と浸出残渣とに分離される。分離された浸出液は中和工程に送られて中和終液となり、浸出残渣は最終中和工程に送られ処理される。 The pre-neutralized leaching slurry is then separated into a leaching solution and an leaching residue containing impurity elements together with nickel and cobalt while being subjected to multi-stage cleaning in a CCD process. The separated leachate is sent to the neutralization step to become a neutralization final solution, and the leach residue is sent to the final neutralization step for processing.
 脱亜鉛工程では、中和終液を硫化反応槽内に装入し、硫化水素ガスや水硫化ソーダ等の硫化剤を添加することで中和終液中の亜鉛や銅等を硫化物とする。硫化処理後は、フィルタープレス等で固液分離して、亜鉛硫化物を除去したニッケル回収用母液を得る。 In the dezincing process, the neutralized final solution is charged into the sulfurization reactor, and zinc sulfide, copper, etc. in the neutralized final solution are converted to sulfide by adding a sulfurizing agent such as hydrogen sulfide gas or sodium hydrosulfide. . After the sulfiding treatment, a nickel recovery mother liquor from which zinc sulfide has been removed is obtained by solid-liquid separation using a filter press or the like.
 ところで、ニッケル酸化鉱石の湿式製錬プラントを設計するに際して、その鉱石処理量(または予定生産量)が大きい場合には、例えば以下の2つの方策に基づいてプラントを設計することが考えられる。すなわち、
 [i]系全体を大きなものとする(例えば図8に示すように3万トン/年の系とする)
 [ii]小規模の系を2系列設置する(例えば図9に示すように1系列1.5万トン/年の系を2系列設置する)
By the way, when designing a hydrometallurgical plant of nickel oxide ore, when the ore processing amount (or planned production amount) is large, it is conceivable to design the plant based on the following two measures, for example. That is,
[I] Make the whole system large (for example, a system of 30,000 tons / year as shown in FIG. 8)
[Ii] Two series of small-scale systems are installed (for example, two systems of 15,000 tons / year are installed as shown in FIG. 9)
 しかしながら、[i]の場合、特に浸出工程を実行する浸出処理設備の設計においては、工業的に単に設備サイズを大きくするだけでは十分ではない。すなわち、浸出処理設備においては、所定の浸出反応を効率的に且つ効果的に生じさせて、高い浸出率で有価金属を浸出させなければならないという反応性の観点を十分に考慮することが必要となる。また、そのように設備サイズを大きくする場合には、必要に応じて修繕する際のコストが大きくなるといった経済性の観点での問題もある。したがって、工業的に単に設備サイズを大きくする方策は、実用上、非常に困難であり、従来実績のある1万トン/年~1万5千トン/年(ニッケル量換算での浸出スラリー生産量)の規模の設備で構成することが望ましい。 However, in the case of [i], it is not sufficient to industrially simply increase the equipment size, particularly in the design of the leaching treatment equipment for performing the leaching process. In other words, in the leaching treatment facility, it is necessary to sufficiently consider the viewpoint of reactivity that a predetermined leaching reaction must be efficiently and effectively caused to leach valuable metal at a high leaching rate. Become. In addition, when the facility size is increased as described above, there is a problem from the viewpoint of economy that the cost for repairing as necessary increases. Therefore, it is very difficult in practice to increase the size of equipment simply industrially, and 10,000 tons / year to 15,000 tons / year with a proven track record (leaching slurry production in terms of nickel) It is desirable to configure the equipment with a scale of
 また、[ii]の場合においても、複数系列とすることによって当然に設備点数が増加してしまい、設備投資コストが非常に大きなものとなる。また、効率の良い製錬操業を行うためには、それぞれの系列間で工程液(プロセス液)を相互に移送させるための連結配管も必要となるため(例えば、特許文献3参照。)、コストは更に大きくなる。 Also, in the case of [ii], the number of equipment is naturally increased by using a plurality of systems, and the equipment investment cost becomes very large. Moreover, in order to perform efficient smelting operation, since connection piping for mutually transferring a process liquid (process liquid) between each series is also needed (for example, refer patent document 3), cost. Becomes even larger.
 そこで、上述した[i]及び[ii]の方策の折衷案として、例えば以下の方策に基づいてプラントを設計することが容易に想起される。すなわち、
 [iii]上工程を2系列(複数系列)、以後の下工程を1系列とする(例えば図10に示すように、予備中和工程までの上工程を2系列とし、CCD工程以降の下工程と1系列として、3万トン/年の系とする)
Thus, as a compromise of the measures [i] and [ii] described above, for example, it is easily recalled that a plant is designed based on the following measures. That is,
[Iii] The upper process is two series (plural series) and the subsequent lower process is one series (for example, as shown in FIG. 10, the upper process up to the pre-neutralization process is made into two series, and the lower process after the CCD process. And a system of 30,000 tons / year)
 ところが、ニッケル酸化鉱石の湿式精錬方法においては、上述した上工程と下工程とにどの段階で分割することが操業上好ましいか、また下工程で合流したことに起因する、効率的な操業に与える問題点等については知られていない。 However, in the wet refining method of nickel oxide ore, which stage is preferably divided into the above-mentioned upper process and lower process, and it is given to efficient operation resulting from the merge in the lower process There are no known issues.
 このように、複数系列の上工程と、単一系列の下工程とに分割するように設計した場合、上工程のそれぞれの系列から移送された工程液(例えば浸出スラリー等)は、系列毎にバラつきが生じる可能性があり、単一系列からなる下工程には、不均一な工程液が移送されてくることになる。このような場合、下工程における処理設備での反応条件が不均一となって効率的な操業が不可能となるばかりか、反応不良等を生じさせ製品品質に影響を及ぼす可能性も考えられる。 In this way, when it is designed to be divided into a plurality of upper processes and a single lower process, the process liquid transferred from each of the upper processes (for example, leaching slurry) is There is a possibility that variations occur, and a non-uniform process liquid is transferred to a lower process consisting of a single series. In such a case, the reaction conditions in the processing equipment in the lower process are not uniform, so that efficient operation is impossible, and there is a possibility of causing a reaction failure and affecting product quality.
 さらに、複数系列とした上工程のうちの一つの系列に、例えば浸出工程における浸出不良等のトラブルが発生した場合や操業停止後の立ち上げ操業の場合等では、それ以外の系列に不良が生じていなくても、下工程で合流して1系列としていることからプラント全体を停止せざるを得ず、操業効率が著しく悪化してしまうという問題がある。 Furthermore, if a trouble such as a leaching failure in the leaching process occurs in one of the upper processes made up of a plurality of processes, or a start-up operation after the operation is stopped, a defect occurs in the other processes. Even if it is not, there is a problem that the entire plant is forced to stop because it joins in the lower process to make one line, and the operation efficiency is remarkably deteriorated.
 例えば、特許文献3には、同一プロセスを複数備えたプラントにおいて、所定の工程における処理設備同士を配管で連結させることにより、一連の工程上の所定の工程における設備にトラブル等があった場合でも、操業効率の低下を最小とする技術が開示されており、実操業上、大変有効な技術である。しかしながら、上述したような理由により、上工程が2系列で操業され、その後に合流して下工程で1系列となるプラントを対象とした場合等には、この特許文献3に記載の技術をそのまま適用することはできない。 For example, in Patent Document 3, in a plant having a plurality of the same processes, even if there is a trouble or the like in a predetermined process on a series of processes by connecting processing facilities in a predetermined process with piping. A technique for minimizing a decrease in operation efficiency is disclosed, which is a very effective technique in actual operation. However, for the reasons described above, when the upper process is operated in two lines, and then a plant that merges and becomes a single line in the lower process is targeted, the technique described in Patent Document 3 is used as it is. It cannot be applied.
特開平06-116660号公報Japanese Patent Laid-Open No. 06-116660 特開2005-350766号公報JP-A-2005-350766 特開2011-225908号公報JP 2011-225908 A
 本発明は、このような実情に鑑みて提案されたものであり、反応不良や操業効率の悪化を生じさせることなく、鉱石処理量を増加させて生産性を向上させることが可能なニッケル酸化鉱石の湿式製錬プラント、並びにその操業方法を提供することを目的とする。 The present invention has been proposed in view of such circumstances, and is a nickel oxide ore capable of improving productivity by increasing the amount of ore treatment without causing a reaction failure or deterioration in operation efficiency. An object of the present invention is to provide a wet smelting plant and an operation method thereof.
 本発明者らは、上述した目的を達成するために鋭意検討を重ねた。その結果、浸出処理後に得られた浸出スラリーに対して予備中和処理を施す予備中和設備において、中和処理槽を2段階で備えるようにし、第1段目の中和処理槽を複数系列とし、第2段目の中和処理槽を単一系列とすることによって、上述した課題を解決できることを見出した。 The inventors of the present invention have made extensive studies in order to achieve the above-described object. As a result, in the pre-neutralization facility for pre-neutralizing the leaching slurry obtained after the leaching treatment, the neutralization tank is provided in two stages, and the first stage neutralization tanks are arranged in a plurality of series. And it discovered that the subject mentioned above could be solved by making the neutralization processing tank of a 2nd step into a single series.
 すなわち、本発明に係るニッケル酸化鉱石の湿式製錬プラントは、少なくとも、ニッケル酸化鉱石に対する浸出処理を施す浸出処理槽を複数系列備える浸出設備と、2段の中和処理槽を備え、上記浸出処理槽から排出された浸出スラリーのpHを所定範囲に調整する予備中和を行う予備中和設備と、単一の系列からなり、pH調整されて上記予備中和設備から排出された浸出スラリーを、固液分離槽で浸出液と浸出残渣とに固液分離する固液分離設備とを具備し、上記予備中和設備では、第1段目の中和処理槽が、上記浸出設備に備えられた浸出処理槽の各系列に対応するように複数系列備えられ、その第1段目を構成する各系列の中和処理槽にてpH調整された浸出スラリーが単一の系列からなる第2段目の中和処理槽に合流するように構成されており、該第2段目の中和処理槽に合流した浸出スラリーが上記固液分離設備に移送されることを特徴とする。 That is, the hydrometallurgical plant for nickel oxide ore according to the present invention includes at least a leaching facility including a plurality of leaching treatment tanks for leaching the nickel oxide ore and a two-stage neutralization treatment tank, and the leaching treatment described above. Pre-neutralization equipment that performs pre-neutralization to adjust the pH of the leached slurry discharged from the tank to a predetermined range, and a single series, the leached slurry discharged from the pre-neutralization equipment after pH adjustment, A solid-liquid separation facility for solid-liquid separation into a leachate and a leach residue in a solid-liquid separation tank. In the preliminary neutralization facility, the first stage neutralization tank is a leach provided in the leaching facility. A plurality of series are provided so as to correspond to each series of treatment tanks, and the second stage in which the leaching slurry adjusted in pH in each series of neutralization treatment tanks constituting the first stage consists of a single series So as to join the neutralization tank Made which are, leached slurry joins the neutralization tank of the second stage, characterized in that it is transferred to the solid-liquid separation equipment.
 また、本発明に係るニッケル酸化鉱石の湿式製錬プラントの操業方法は、ニッケル酸化鉱石からニッケル及びコバルトを回収するための湿式製錬プラントの操業方法であって、上記ニッケル酸化鉱石の湿式製錬プラントは、少なくとも、ニッケル酸化鉱石に対する浸出処理を施す浸出処理槽を複数系列備える浸出設備と、2段の中和処理槽を備え、上記浸出処理槽から排出された浸出スラリーのpHを所定範囲に調整する予備中和を行う予備中和設備と、単一の系列からなり、pH調整されて上記予備中和設備から排出された浸出スラリーを、固液分離槽で浸出液と浸出残渣とに固液分離する固液分離設備とを具備し、上記予備中和設備では、第1段目の中和処理槽が、上記浸出設備に備えられた浸出処理槽の各系列に対応するように複数系列備えられ、第2段目の中和処理槽が単一の系列から構成されており、上記第1段目における各中和処理槽から排出された浸出スラリーを、単一系列からなる上記第2段目の中和処理槽に合流させ、合流した浸出スラリーを上記固液分離設備に移送することを特徴とする。 The operation method of the nickel oxide ore hydrometallurgical plant according to the present invention is an operation method of the hydrometallurgical plant for recovering nickel and cobalt from the nickel oxide ore, the hydrometallurgy of the nickel oxide ore. The plant includes at least a leaching facility including a plurality of leaching treatment tanks for leaching the nickel oxide ore and a two-stage neutralization treatment tank, and the pH of the leaching slurry discharged from the leaching treatment tank is within a predetermined range. A pre-neutralization facility that performs pre-neutralization to be adjusted, and a single series of leaching slurry that has been pH-adjusted and discharged from the pre-neutralization facility are separated into a leaching solution and a leaching residue in a solid-liquid separation tank. In the preliminary neutralization facility, a plurality of first-stage neutralization treatment tanks correspond to each series of leaching treatment tanks provided in the leaching equipment. The second stage neutralization treatment tanks are arranged in a single series, and the leach slurry discharged from each neutralization treatment tank in the first stage is formed from the single series. It is made to merge with the 2nd-stage neutralization processing tank, and the leached slurry which joined is transferred to the said solid-liquid separation equipment, It is characterized by the above-mentioned.
 本発明に係るニッケル酸化鉱石の湿式製錬プラントでは、浸出スラリーに対して予備中和処理を施す予備中和設備を2段の中和処理槽で構成し、第1段目の中和処理槽を複数系列からなる浸出処理槽と対応するように複数系列とし、第2段目の中和処理槽を単一系列とする。これにより、設備コストを抑えながら鉱石処理量を増加させることができるとともに、工程液である浸出スラリーのバラつきを解消させることができ、反応不良や操業効率の低下を効果的に防止することが可能となる。 In the nickel oxide ore hydrometallurgical plant according to the present invention, the pre-neutralization equipment for pre-neutralizing the leaching slurry is constituted by a two-stage neutralization tank, and the first-stage neutralization tank Is a plurality of series so as to correspond to a plurality of leaching treatment tanks, and the second stage neutralization treatment tank is a single series. As a result, it is possible to increase the amount of ore processing while reducing equipment costs, and to eliminate variations in the leach slurry, which is a process liquid, and to effectively prevent reaction failures and operational efficiency degradation. It becomes.
 また、本発明に係る湿式製錬プラントでは、上述のように2段の中和処理槽を備えるようにしているので、その第1段目の中和処理槽と他の工程における処理設備の反応槽とを接続させる配管を適宜設けることで、例えばプラント立ち上げ時等の非通常時においても、通常操業が可能な他の系列に悪影響を与えることなく、しかも操業効率の低下を抑制しながら、効率的な立ち上げ操業を行うことができる。 Moreover, in the hydrometallurgical plant according to the present invention, since the two-stage neutralization tank is provided as described above, the reaction of the first-stage neutralization tank and the processing equipment in other processes. By appropriately providing piping for connecting the tank, for example, at an abnormal time such as when the plant is started up, it does not adversely affect other systems capable of normal operation and while suppressing a decrease in operation efficiency, Efficient start-up operation can be performed.
図1は、ニッケル酸化鉱石の湿式製錬プラントの構成図である。FIG. 1 is a configuration diagram of a nickel oxide ore hydrometallurgical plant. 図2は、ニッケル酸化鉱石の高圧酸浸出による湿式製錬方法の工程図である。FIG. 2 is a process diagram of a hydrometallurgical method using high pressure acid leaching of nickel oxide ore. 図3は、通常操業時の操業の流れを説明するための図である。FIG. 3 is a diagram for explaining the flow of operation during normal operation. 図4は、第1段目の中和処理槽から対応する浸出処理槽へ自己循環移送させる操業の流れを説明するための図である。FIG. 4 is a diagram for explaining the flow of operation for self-circulating transfer from the first-stage neutralization tank to the corresponding leaching tank. 図5は、第1段目の中和処理槽から最終中和設備へ浸出スラリーを移送する操業の流れを説明するための図である。FIG. 5 is a diagram for explaining an operation flow for transferring the leach slurry from the first-stage neutralization tank to the final neutralization facility. 図6は、第1段目の中和処理槽から固液分離槽へ浸出スラリーを移送する操業の流れを説明するための図である。FIG. 6 is a diagram for explaining an operation flow for transferring the leach slurry from the first-stage neutralization tank to the solid-liquid separation tank. 図7は、ニッケル酸化鉱石の高圧酸浸出による湿式製錬方法の簡易工程図である。FIG. 7 is a simplified process diagram of a hydrometallurgical method using high pressure acid leaching of nickel oxide ore. 図8は、ニッケル酸化鉱石の高圧酸浸出による湿式製錬方法の簡易工程図である。FIG. 8 is a simplified process diagram of a hydrometallurgical method using high pressure acid leaching of nickel oxide ore. 図9は、ニッケル酸化鉱石の高圧酸浸出による湿式製錬方法の簡易工程図である。FIG. 9 is a simplified process diagram of a hydrometallurgical method using high pressure acid leaching of nickel oxide ore. 図10は、ニッケル酸化鉱石の高圧酸浸出による湿式製錬方法の簡易工程図である。FIG. 10 is a simplified process diagram of a hydrometallurgical method using high pressure acid leaching of nickel oxide ore.
 以下、本発明に係るニッケル酸化鉱石の湿式製錬プラント、並びにその操業方法について、図面を参照しながら以下の順で詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
 1.ニッケル酸化鉱石の湿式製錬プラントの概要
 2.ニッケル酸化鉱石の湿式製錬について
 3.湿式製錬プラントの構成、並びに湿式製錬プラントの操業方法
  3-1.基本構成、並びに通常操業時の操業フロー
  3-2.自己循環用の構成、並びに自己循環時の操業フロー
  3-3.最終中和設備への移送構成、並びに最終中和設備への移送時の操業フロー
  3-4.固液分離槽への移送構成、並びに固液分離槽への移送時の操業フロー
  3-5.非通常時操業から通常操業への移行
  3-6.まとめ
 4.実施例
Hereinafter, the nickel oxide ore hydrometallurgical plant according to the present invention and the operation method thereof will be described in detail in the following order with reference to the drawings. Note that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the gist of the present invention.
1. 1. Outline of nickel oxide ore hydrometallurgical plant 2. About hydrometallurgy of nickel oxide ore 3. Structure of hydrometallurgical plant and method of operating hydrometallurgical plant 3-1. Basic configuration and operation flow during normal operation 3-2. Configuration for self-circulation and operation flow during self-circulation 3-3. Transfer configuration to final neutralization equipment and operation flow when transferring to final neutralization equipment 3-4. Transfer configuration to solid-liquid separation tank and operation flow at the time of transfer to solid-liquid separation tank 3-5. Transition from non-normal operation to normal operation 3-6. Summary 4. Example
 ≪1.ニッケル酸化鉱石の湿式製錬プラントの概要≫
 本実施の形態に係るニッケル酸化鉱石の湿式製錬プラント(以下、単に「湿式製錬プラント」ともいう。)は、例えば、高圧酸浸出法による浸出工程と、予備中和工程と、固液分離工程(CCD工程)と、中和工程と、脱亜鉛工程と、硫化工程と、最終中和工程(無害化工程)とからなるニッケル酸化鉱石の湿式製錬操業を実行するためのものである。
<< 1. Overview of nickel oxide ore hydrometallurgical plant >>
The nickel oxide ore hydrometallurgical plant according to the present embodiment (hereinafter also simply referred to as “wet hydrometallurgical plant”) includes, for example, a leaching process by a high-pressure acid leaching method, a preliminary neutralization process, and a solid-liquid separation. It is for performing the hydrometallurgical operation of the nickel oxide ore which consists of a process (CCD process), a neutralization process, a dezincification process, a sulfurization process, and a final neutralization process (detoxification process).
 具体的に、図1の湿式製錬プラントの構成図に示すように、本実施の形態に係る湿式製錬プラント10は、少なくとも、ニッケル酸化鉱石に対する浸出処理を施す浸出処理槽11(1~n)を複数(n)系列備える浸出設備11と、2段の中和処理槽を備え、浸出処理槽11(1~n)から排出された浸出スラリーのpHを所定範囲に調整する予備中和を行う予備中和設備12と、単一の系列からなり、pH調整されて予備中和設備12から排出された浸出スラリーを固液分離槽にて固液分離する固液分離設備13とを具備するものである。 Specifically, as shown in the block diagram of the hydrometallurgical plant in FIG. 1, the hydrometallurgical plant 10 according to the present embodiment includes at least a leaching treatment tank 11 (1 to n) for leaching nickel oxide ore. ) With a plurality of (n) series leaching equipment 11 and a two-stage neutralization tank, and preliminary neutralization to adjust the pH of the leaching slurry discharged from the leaching tank 11 (1 to n) to a predetermined range. A pre-neutralization facility 12 to be performed, and a solid-liquid separation facility 13 that consists of a single series and separates the leached slurry that has been pH adjusted and discharged from the pre-neutralization facility 12 into a solid-liquid separation tank. Is.
 そして、この湿式製錬プラント10では、上述の予備中和設備12において、第1段目の中和処理槽12A(1~n)が、浸出設備に備えられた浸出処理槽11(1~n)の各系列に対応するように複数(n)系列備えられ、その第1段目を構成する各系列の中和処理槽12A(1~n)にてpH調整された浸出スラリーが単一の系列からなる第2段目の中和処理槽12Bに合流するように構成されている。そして、その第2段目の中和処理槽12Bに合流した浸出スラリーは、固液分離設備13に移送されるようになっている。 In the hydrometallurgical plant 10, the first stage neutralization treatment tank 12 A (1 to n) in the preliminary neutralization equipment 12 is the leaching treatment tank 11 (1 to n ) provided in the leaching equipment. A plurality of (n) series are provided so as to correspond to each series, and a single leaching slurry whose pH is adjusted in each series of neutralization treatment tanks 12A (1 to n) constituting the first stage is provided. It is comprised so that it may join to the neutralization processing tank 12B of the 2nd step | stage which consists of a series. The leached slurry that has joined the second-stage neutralization tank 12B is transferred to the solid-liquid separation facility 13.
 なお、図1のプラント構成図では、浸出処理槽11(1~n)と第1段目の中和処理槽12A(1~n)を、2系列(n=2)備える場合を具体例として示すものであるが、系列数は2系列に限定されるものではない。 In the plant configuration diagram of FIG. 1, as a specific example, the leaching treatment tank 11 (1 to n) and the first stage neutralization treatment tank 12A (1 to n) are provided in two series (n = 2). As shown, the number of sequences is not limited to two.
 この湿式製錬プラント10は、上述のように、予備中和工程以前の工程(以下、「上工程」ともいう。)では、一連の処理設備において2系列以上の反応槽を備えるようにし、予備中和工程以後の工程(以下、「下工程」ともいう。)では、一連の処理設備において単一の系列(1系列)の反応槽から構成されるようにしている。このようにすることで、従来操業実績のあるサイズの浸出処理設備を用いて、部品点数を低減させて設備コストを抑制しながら、ニッケル酸化鉱石の処理量を増加させることができ、ニッケル・コバルト混合硫化物(製品)の生産量を安定的に増加させることができる。 As described above, the hydrometallurgical plant 10 includes two or more reaction tanks in a series of treatment facilities in a process before the preliminary neutralization process (hereinafter also referred to as “upper process”). In the process after the neutralization process (hereinafter, also referred to as “lower process”), a series of processing equipment is configured from a single series (one series) of reaction vessels. In this way, it is possible to increase the amount of nickel oxide ore while reducing the number of parts and suppressing the equipment cost, using a leaching treatment facility of a size that has been used in the past. The production amount of mixed sulfide (product) can be stably increased.
 また、湿式製錬プラント10によれば、複数系列の処理設備から得られる各浸出スラリーにpH等のバラつきが生じた場合でも、第2段目の中和処理槽12Bにて合流させるようにしているので、そのバラつきを解消することができ、均一な浸出スラリーとして固液分離設備13において固液分離処理を行うことができる。 In addition, according to the hydrometallurgical plant 10, even when the leaching slurry obtained from a plurality of series of treatment facilities has a variation in pH or the like, it is made to merge in the second-stage neutralization treatment tank 12B. Therefore, the variation can be eliminated, and solid-liquid separation processing can be performed in the solid-liquid separation facility 13 as a uniform leaching slurry.
 さらに、湿式製錬プラント10によれば、第1段目の中和処理槽12A(1~n)と他の工程における処理設備の反応槽とを接続させる配管を適宜設けることによって、例えばプラント操業開始直後等の浸出処理が十分に進行していない段階の浸出スラリーが、固液分離工程やそれよりも後の工程に移送されることを防止することができる。これにより、各工程における反応不良や操業効率の低下等の発生を効果的に抑制することができる。 Furthermore, according to the hydrometallurgical plant 10, by appropriately providing piping for connecting the first-stage neutralization treatment tank 12A (1 to n) and the reaction tank of the treatment equipment in other processes, for example, plant operation It is possible to prevent the leaching slurry at the stage where the leaching process, such as immediately after the start, has not progressed sufficiently, from being transferred to the solid-liquid separation process or a subsequent process. Thereby, generation | occurrence | production of the reaction failure in each process, the fall of operational efficiency, etc. can be suppressed effectively.
 以下、より具体的に、本実施の形態に係るニッケル酸化鉱石の湿式製錬プラント及びその湿式製錬プラントの操業方法について説明する。 Hereinafter, the nickel oxide ore wet smelting plant and the operation method of the wet smelting plant according to the present embodiment will be described more specifically.
 ≪2.ニッケル酸化鉱石の湿式製錬について≫
 先ず、本実施の形態に係る湿式製錬プラント10が実行するニッケル酸化鉱石の湿式製錬方法について説明する。このニッケル酸化鉱石の湿式製錬方法は、例えば高圧酸浸出法(HPAL法)を用いて、ニッケル酸化鉱石からニッケル及びコバルトを浸出させて回収する湿式製錬方法である。
≪2. About hydrometallurgy of nickel oxide ore >>
First, the nickel oxide ore wet smelting method executed by the hydrometallurgical plant 10 according to the present embodiment will be described. This nickel oxide ore wet smelting method is a hydrometallurgical method of leaching and recovering nickel and cobalt from nickel oxide ore using, for example, a high-pressure acid leaching method (HPAL method).
 図2に、ニッケル酸化鉱石の高圧酸浸出法による湿式製錬方法の工程(プロセス)図の一例を示す。図2に示すように、ニッケル酸化鉱石の湿式製錬方法は、ニッケル酸化鉱石のスラリーに硫酸を添加して高温高圧下で浸出処理を施す浸出工程S1と、得られた浸出スラリーのpHを所定範囲に調整する予備中和を行う予備中和工程S2と、pH調整された浸出スラリーを多段洗浄しながら残渣を分離して、ニッケル及びコバルトと共に不純物元素を含む浸出液を得る固液分離工程S3と、浸出液のpHを調整し、不純物元素を含む中和澱物を分離してニッケル及びコバルトと共に亜鉛を含む中和終液を得る中和工程S4と、中和終液に硫化剤を添加することで亜鉛硫化物を生成させ、その亜鉛硫化物を分離除去してニッケル及びコバルトを含むニッケル回収用母液を得る脱亜鉛工程S5と、ニッケル回収用母液に硫化剤を添加することでニッケル及びコバルトを含む混合硫化物を形成するニッケル回収工程S6とを有する。さらに、この湿式製錬方法では、固液分離工程S3にて分離された浸出残渣やニッケル回収工程S6にて排出された貧液を回収して無害化する最終中和工程S7を有する。 FIG. 2 shows an example of a process diagram of a hydrometallurgical method using high pressure acid leaching of nickel oxide ore. As shown in FIG. 2, the hydrometallurgical method of nickel oxide ore is a leaching step S1 in which sulfuric acid is added to a slurry of nickel oxide ore and leaching is performed under high temperature and high pressure, and the pH of the obtained leaching slurry is set to a predetermined value. A pre-neutralization step S2 for pre-neutralization to adjust to a range; a solid-liquid separation step S3 for separating a residue while performing multi-stage washing of a pH-adjusted leaching slurry to obtain a leachate containing impurity elements together with nickel and cobalt; Adjusting the pH of the leachate, separating neutralized starch containing impurity elements to obtain a neutralized final solution containing zinc together with nickel and cobalt, and adding a sulfurizing agent to the neutralized final solution The zinc sulfide is generated by the above, and the zinc sulfide is separated and removed to obtain the nickel recovery mother liquor containing nickel and cobalt, and the sulfur recovery agent is added to the nickel recovery mother liquor. And a nickel recovery step S6 described form a mixed sulfide containing Kell and cobalt. Furthermore, this hydrometallurgy method has a final neutralization step S7 for recovering and detoxifying the leaching residue separated in the solid-liquid separation step S3 and the poor liquid discharged in the nickel recovery step S6.
 (1)浸出工程
 (1-1)浸出処理について
 浸出工程S1では、ニッケル酸化鉱石に対して、例えば高圧酸浸出法を用いた浸出処理を施す。具体的には、原料となるニッケル酸化鉱石を粉砕等して得られた鉱石スラリーに硫酸を添加し、220~280℃の高い温度条件下で加圧することによって鉱石スラリーを攪拌し、浸出液と浸出残渣とからなる浸出スラリーを形成する。
(1) Leaching process (1-1) About leaching process In the leaching process S1, a leaching process using, for example, a high-pressure acid leaching method is performed on the nickel oxide ore. Specifically, sulfuric acid is added to the ore slurry obtained by pulverizing the nickel oxide ore used as a raw material, and the ore slurry is stirred by pressurization under a high temperature condition of 220 to 280 ° C. A leach slurry consisting of the residue is formed.
 浸出工程S1で用いるニッケル酸化鉱としては、主としてリモナイト鉱及びサプロライト鉱等のいわゆるラテライト鉱である。ラテライト鉱のニッケル含有量は、通常、0.8~2.5重量%であり、水酸化物又はケイ苦土(ケイ酸マグネシウム)鉱物として含有される。また、鉄の含有量は、10~50重量%であり、主として3価の水酸化物(ゲーサイト)の形態であるが、一部2価の鉄がケイ苦土鉱物に含有される。また、浸出工程S1では、このようなラテライト鉱の他に、ニッケル、コバルト、マンガン、銅等の有価金属を含有する酸化鉱石、例えば深海底に賦存するマンガン瘤等が用いられる。 Nickel oxide ores used in the leaching step S1 are mainly so-called laterite ores such as limonite or saprolite ores. Laterite ore usually has a nickel content of 0.8 to 2.5% by weight and is contained as a hydroxide or siliceous clay (magnesium silicate) mineral. The iron content is 10 to 50% by weight and is mainly in the form of trivalent hydroxide (goethite), but partly divalent iron is contained in the siliceous clay. In the leaching step S1, in addition to such a laterite ore, an oxidized ore containing valuable metals such as nickel, cobalt, manganese, and copper, for example, a manganese nodule that exists in the deep sea bottom is used.
 この浸出工程S1における浸出処理では、下記式(1)~(3)で表される浸出反応と下記式(4)及び(5)で表される高温熱加水分解反応が生じ、ニッケル、コバルト等の硫酸塩としての浸出と、浸出された硫酸鉄のヘマタイトとしての固定化が行われる。ただし、鉄イオンの固定化は完全には進行しないため、通常、得られる浸出スラリーの液部分には、ニッケル、コバルト等の他に2価と3価の鉄イオンが含まれる。 In the leaching process in the leaching step S1, a leaching reaction represented by the following formulas (1) to (3) and a high temperature thermal hydrolysis reaction represented by the following formulas (4) and (5) occur, and nickel, cobalt, etc. Leaching as a sulfate and immobilizing the leached iron sulfate as hematite. However, since the immobilization of iron ions does not proceed completely, the leaching slurry obtained usually contains divalent and trivalent iron ions in addition to nickel, cobalt and the like.
 ・浸出反応
 MO+HSO → MSO+HO ・・・(1)
 (なお、式中Mは、Ni、Co、Fe、Zn、Cu、Mg、Cr、Mn等を表す。)
 2Fe(OH)+3HSO 
  → Fe(SO+6HO ・・・(2)
 FeO+HSO → FeSO+HO ・・・(3)
 ・高温熱加水分解反応
 2FeSO+HSO+1/2O
  → Fe(SO+HO ・・・(4)
 Fe(SO+3HO → Fe+3HSO ・・・(5)
・ Leaching reaction MO + H 2 SO 4 → MSO 4 + H 2 O (1)
(In the formula, M represents Ni, Co, Fe, Zn, Cu, Mg, Cr, Mn, etc.)
2Fe (OH) 3 + 3H 2 SO 4
→ Fe 2 (SO 4 ) 3 + 6H 2 O (2)
FeO + H 2 SO 4 → FeSO 4 + H 2 O (3)
High temperature thermal hydrolysis reaction 2FeSO 4 + H 2 SO 4 + 1 / 2O 2
→ Fe 2 (SO 4 ) 3 + H 2 O (4)
Fe 2 (SO 4 ) 3 + 3H 2 O → Fe 2 O 3 + 3H 2 SO 4 (5)
 浸出工程S1における硫酸の添加量としては、特に限定されるものではなく、鉱石中の鉄が浸出されるような過剰量が用いられる。例えば、鉱石1トン当り300~400kgとする。鉱石1トン当りの硫酸添加量が400kgを超えると、硫酸コストが大きくなり好ましくない。なお、浸出工程S1では、後工程の固液分離工程S3で生成されるヘマタイトを含む浸出残渣の濾過性の観点から、得られる浸出液のpHが0.1~1.0にとなるように調整することが好ましい。 The amount of sulfuric acid added in the leaching step S1 is not particularly limited, and an excessive amount that allows iron in the ore to be leached is used. For example, 300 to 400 kg per ton of ore. If the amount of sulfuric acid added per ton of ore exceeds 400 kg, the sulfuric acid cost increases, which is not preferable. In the leaching step S1, the pH of the obtained leaching solution is adjusted to 0.1 to 1.0 from the viewpoint of filterability of the leaching residue containing hematite produced in the subsequent solid-liquid separation step S3. It is preferable to do.
 (1-2)浸出設備について
 本実施の形態に係る湿式製錬プラント10では、浸出設備(高圧酸浸出設備)11にて、上述した浸出工程S1における浸出処理が実行される。
(1-2) About Leaching Facility In the hydrometallurgical plant 10 according to the present embodiment, the leaching process (high pressure acid leaching facility) 11 performs the leaching process in the leaching step S1 described above.
 具体的に、この湿式製錬プラント10における浸出設備11は、図1に示すように、ニッケル酸化鉱石に対する浸出処理を施す浸出処理槽11(1~n)を複数(n)系列(例えば図1に示すようにn=2系列)備えている。なお、以下、浸出処理槽については、系列数を特定しない場合は「浸出処理槽11(n)」と表記する。また、後述する第1段目の中和処理槽12A(1~n)についても同様に「中和処理槽12A(n)」と表記する。 Specifically, as shown in FIG. 1, the leaching equipment 11 in the hydrometallurgical plant 10 includes a plurality of (n) series of leaching treatment tanks 11 (1 to n) for leaching nickel oxide ore (for example, FIG. 1). (N = 2 series) as shown in FIG. Hereinafter, the leaching treatment tank is referred to as “leaching treatment tank 11 (n) ” when the number of series is not specified. Similarly, a first-stage neutralization tank 12A (1 to n), which will be described later, is also expressed as “neutralization tank 12A (n) ”.
 浸出設備11を構成する各系列の浸出処理槽11(n)としては、例えば高温加圧容器(オートクレーブ)が用いられる。浸出処理槽11(n)には、それぞれの装入部から、例えば鉱石処理工程から移送された鉱石スラリー、すなわち所定の粒径に鉱石が粉砕等されて得られた所定量の鉱石スラリーが装入される。 As each series of leaching treatment tanks 11 (n) constituting the leaching equipment 11, for example, a high-temperature pressurized container (autoclave) is used. In the leaching treatment tank 11 (n) , for example, ore slurry transferred from the ore treatment process, that is, a predetermined amount of ore slurry obtained by pulverizing ore to a predetermined particle size is loaded from each charging section. Entered.
 オートクレーブ等からなる浸出処理槽11(n)の大きさとしては、特に限定されないが、従来操業に用いられてきたものと同程度の大きさのものを用いることができる。例えば、浸出スラリーの生産量がニッケル量換算で1.0万トン/年~2.0万トン/年のものを用いることができる。このように、従来用いられてきた浸出処理槽を複数系列備えた浸出設備とすることで、ニッケル酸化鉱石の処理量を増加させることができ、後工程を経て得られるニッケル・コバルト混合硫化物の生産量を増加させることができる。 Although it does not specifically limit as a magnitude | size of the leaching processing tank 11 (n) which consists of an autoclave etc., The thing of the magnitude | size comparable as what has been conventionally used for operation can be used. For example, a leaching slurry having a production amount of 1 million tons / year to 2 million tons / year in terms of nickel can be used. Thus, by using a leaching facility equipped with a plurality of leaching treatment tanks conventionally used, the amount of nickel oxide ore can be increased, and the nickel-cobalt mixed sulfide obtained through a subsequent process Production volume can be increased.
 ここで、詳しくは後述するが、浸出処理槽11(n)の装入部には、その浸出処理槽11(n)と予備中和設備12を構成する第1段目の中和処理槽12A(n)とをつなげる配管21(n)を接続させることができる。この配管21(n)は、浸出処理槽11(n)と第1段目の中和処理槽12A(n)とを同一系列同士で接続する配管である。この配管21(n)は、移送ポンプ31によって、第1の中和処理槽12A(n)から排出される浸出スラリーを同系列の浸出処理槽11(n)に循環(自己循環)移送させることを可能にする、いわゆる自己循環用配管である。なお、自己循環させる操業については、後で詳述する。 Here, although the details will be described later, in the loading section of the leaching tank 11 (n), the first stage of the neutralization treatment tank 12A constituting its leaching vessel 11 (n) a preliminary neutralizing facility 12 (n) and can be connected to pipe 21 (n) connecting the. The pipe 21 (n) is a pipe that connects the leaching treatment tank 11 (n) and the first-stage neutralization treatment tank 12A (n) in the same series. This piping 21 (n) causes the transfer pump 31 to circulate (self-circulate) the leaching slurry discharged from the first neutralization treatment tank 12A (n) to the same leaching treatment tank 11 (n). This is so-called self-circulation piping. The operation for self-circulation will be described in detail later.
 (2)予備中和工程
 (2-1)予備中和処理について
 予備中和工程S2では、浸出工程S1にて得られた浸出スラリーのpHを所定範囲に調整する。上述した高圧酸浸出法による浸出処理を行う浸出工程S1では、浸出率を向上させる観点から過剰の硫酸を加えるようにしている。そのため、得られた浸出スラリーにはフリー硫酸(浸出反応に関与しなかった余剰の硫酸)が含まれており、そのpHは非常に低い。このことから、予備中和工程S2では、次工程の固液分離工程S3における多段洗浄時に効率よく洗浄が行われるように、浸出スラリーのpHを所定の範囲に調整する。
(2) Pre-neutralization step (2-1) Pre-neutralization treatment In the pre-neutralization step S2, the pH of the leaching slurry obtained in the leaching step S1 is adjusted to a predetermined range. In the leaching step S1 in which the leaching process by the high-pressure acid leaching method described above is performed, excess sulfuric acid is added from the viewpoint of improving the leaching rate. Therefore, the obtained leaching slurry contains free sulfuric acid (excess sulfuric acid not involved in the leaching reaction), and its pH is very low. Therefore, in the pre-neutralization step S2, the pH of the leaching slurry is adjusted to a predetermined range so that the washing is efficiently performed at the time of the multi-stage washing in the next solid-liquid separation step S3.
 具体的に、洗浄処理に供する浸出スラリーとしては、そのpHを2~6程度に調整したものであることが好ましい。pHが2より低いと、後工程の設備を耐酸性とするためのコストが必要となる。一方で、pHが6より高いと、浸出液(スラリー)中に浸出したニッケルが、洗浄の過程で(沈殿して)残渣として残るようになって洗浄効率が低下する可能性がある。なお、実操業においては、上述したpH範囲のうち、浸出工程S1における浸出処理の操業状況や、固液分離工程S3において用いる洗浄水のpH(酸性雨だと5程度)等の条件により適切な設定値を選択すればよい。 Specifically, it is preferable that the leaching slurry used for the cleaning treatment is adjusted to a pH of about 2 to 6. When the pH is lower than 2, a cost for making the subsequent process equipment acid-resistant is required. On the other hand, if the pH is higher than 6, nickel leached in the leaching solution (slurry) may remain as a residue in the washing process (precipitate) and the washing efficiency may be reduced. In the actual operation, it is appropriate depending on conditions such as the operation status of the leaching process in the leaching step S1 and the pH of the washing water used in the solid-liquid separation step S3 (about 5 if it is acid rain) in the pH range described above. A set value may be selected.
 pHの調整方法としては、特に限定されないが、例えば炭酸カルシウムスラリー等の中和剤を添加することによって所定の範囲に調整することができる。 The pH adjustment method is not particularly limited, but can be adjusted to a predetermined range by adding a neutralizing agent such as calcium carbonate slurry.
 (2-2)予備中和設備について
 本実施の形態に係る湿式製錬プラント10では、予備中和設備12にて、上述した予備中和工程S2における予備中和処理が実行される。
(2-2) Pre-neutralization facility In the hydrometallurgical plant 10 according to the present embodiment, the pre-neutralization facility 12 performs the pre-neutralization process in the pre-neutralization step S2.
 具体的に、この湿式製錬プラント10における予備中和設備12は、図1に示すように、2段の中和処理槽12A,12Bを備えている。そして、2段の中和処理槽12A,12Bのうち、第1段目の中和処理槽12A(n)は、上述した浸出設備11に備えられた浸出処理槽11(n)の各系列に対応するように複数(n)系列備えられている。また、第2段目の中和処理槽12Bは、単一の系列からなり、第1段目の各中和処理槽12A(n)から排出された浸出スラリーが第2段目の中和処理槽12Bに合流するように構成されている。 Specifically, the preliminary neutralization equipment 12 in the hydrometallurgical plant 10 includes two stages of neutralization treatment tanks 12A and 12B as shown in FIG. Of the two- stage neutralization tanks 12A and 12B, the first-stage neutralization tank 12A (n) corresponds to each series of the leaching tank 11 (n) provided in the leaching equipment 11 described above. A plurality (n) series are provided to correspond. Further, the second stage neutralization treatment tank 12B is composed of a single series, and the leached slurry discharged from each of the first stage neutralization treatment tanks 12A (n) is the second stage neutralization treatment. It is comprised so that it may join the tank 12B.
 例えば、浸出設備11が2系列の浸出処理槽(浸出処理槽11(1)、浸出処理槽11(2))を備える場合には、その各浸出処理槽11(1)、11(2)に対応するように、第1段目の中和処理槽12Aとして中和処理槽12A(1)及び中和処理槽12A(2)を備える。そして、第2段目の中和処理槽12Bは、単一の系列の処理槽からなっており、第1段目を構成する中和処理槽12A(1)及び中和処理槽12A(2)からそれぞれ排出された浸出スラリーが第2の中和処理槽12Bに合流するようになっている。 For example, when the leaching equipment 11 includes two series of leaching treatment tanks (leaching treatment tank 11 (1) and leaching treatment tank 11 (2) ), the leaching treatment tanks 11 (1) and 11 (2) Correspondingly, a neutralization tank 12A (1) and a neutralization tank 12A (2) are provided as the first-stage neutralization tank 12A. The second stage neutralization treatment tank 12B is composed of a single series of treatment tanks, and the neutralization treatment tank 12A (1) and the neutralization treatment tank 12A (2) constituting the first stage. The leaching slurries discharged from each of the first and second wastewaters are joined to the second neutralization treatment tank 12B.
 ここで、通常の操業においては、複数系列の中和処理槽によって浸出スラリーを予備中和して得られる予備中和後のスラリーは、例えばpH等の点でバラつきが生じ易く、それぞれの系列の中和処理槽から得られる浸出スラリーは不均一なものとなる。このような各系列間で不均一な性状の浸出スラリーを用いて、以降の工程における処理を行った場合、反応のバラつき等が生じて、効率的な操業ができなくなる。 Here, in normal operation, the slurry after pre-neutralization obtained by pre-neutralizing the leaching slurry with a plurality of series of neutralization treatment tanks is likely to vary in terms of pH, for example. The leaching slurry obtained from the neutralization tank is not uniform. When such a leaching slurry having a non-uniform property between the respective series is used and the process in the subsequent steps is performed, the reaction varies and the like, and the efficient operation cannot be performed.
 そこで、本実施の形態では、上述のように、予備中和設備12において2段の中和処理槽12A,12Bを設け、この第1段目と第2段目の間で上工程と下工程とを分けるようにし、第1段目の中和処理槽12A(n)までを複数系列とし、第2段目の中和処理槽12Bにて各系列を統合させるようにする。このように構成することにより、第2段目の中和処理槽12Bにて浸出スラリーが合流するためバラつきが解消されるようになり、均一な浸出スラリーとして次工程の固液分離工程S3に移送させることができる。また、この第2段目の中和処理槽12Bを滞留槽(バッファー)として機能させることもできるので、浸出スラリーの流量を的確に調整して安定的に固液分離工程S3に移送させることができる。 Therefore, in the present embodiment, as described above, the preliminary neutralization facility 12 is provided with the two-stage neutralization treatment tanks 12A and 12B, and the upper process and the lower process are performed between the first stage and the second stage. Are divided into a plurality of series up to the first stage neutralization treatment tank 12A (n) , and each series is integrated in the second stage neutralization treatment tank 12B. By comprising in this way, since a leaching slurry joins in the neutralization processing tank 12B of the 2nd step | paragraph, a dispersion | variation will be eliminated, and it transfers to the next solid-liquid separation process S3 as a uniform leaching slurry. Can be made. In addition, since the second-stage neutralization treatment tank 12B can function as a retention tank (buffer), the flow rate of the leaching slurry can be accurately adjusted and stably transferred to the solid-liquid separation step S3. it can.
 さらに、浸出工程S1における浸出処理槽11(n)を複数系列とすることでニッケル酸化鉱石の処理量を増加させるようにし、その次の工程である予備中和工程S2にて複数系列を統合(合流)させることによって、浸出処理後の早い段階で合流させることができ、プラントを構成する設備の部品点数を削減することができる。このように、本実施の形態に係る湿式製錬プラント10では、部品点数を削減して設備コストを効果的に低減させながら、ニッケル酸化鉱石の処理量を効果的に増加させることができる。 Furthermore, by treating the leaching treatment tanks 11 (n) in the leaching step S1 as a plurality of series, the amount of nickel oxide ore is increased, and the series is integrated in the preliminary neutralization step S2 (the next step) ( Merging), it is possible to merge at an early stage after the leaching process, and it is possible to reduce the number of parts of equipment constituting the plant. Thus, in the hydrometallurgical plant 10 which concerns on this Embodiment, the processing amount of nickel oxide ore can be increased effectively, reducing a number of parts and reducing equipment cost effectively.
 この予備中和設備12における具体的な中和方法としては、各系列の浸出処理槽11(n)から得られたpHの低い浸出スラリーを、各系列に対応する第1段目の中和処理槽12A(n)に装入し、例えば炭酸カルシウムスラリー等の中和剤を添加することによって浸出スラリーを中和する。その後、第1段目を構成する各系列の中和処理槽12A(n)にて中和された浸出スラリーを第2段目の中和処理槽12Bに合流させて、予備中和後の浸出スラリーを得る。なお、第2段目の中和処理槽12Bにおいても、浸出スラリーのpHの微調整を行うために中和剤を添加してもよい。これにより、より安定的に、pH調整された浸出スラリーを固液分離処理に供することができる。 As a specific neutralization method in the pre-neutralization facility 12, the low-pH leaching slurry obtained from the leaching treatment tanks 11 (n) of each series is subjected to the first stage neutralization treatment corresponding to each series. The tank 12A (n) is charged and the leaching slurry is neutralized by adding a neutralizing agent such as a calcium carbonate slurry. Thereafter, the leaching slurry neutralized in each series of neutralization treatment tanks 12A (n) constituting the first stage is joined to the second stage neutralization treatment tank 12B, and leaching after preliminary neutralization. A slurry is obtained. In the second stage neutralization tank 12B, a neutralizing agent may be added to finely adjust the pH of the leaching slurry. Thereby, the leaching slurry whose pH has been adjusted can be subjected to the solid-liquid separation process more stably.
 ここで、予備中和設備12における第1段目の中和処理槽12A(n)には、その中和処理槽12A(n)と浸出設備11における浸出処理槽11(n)とをつなげる配管21(n)を接続させることができる。この配管21(n)は、第1段目の中和処理槽12A(n)と浸出処理槽11(n)の装入部とを同一系列同士で接続する配管である。この配管21(n)は、浸出スラリーを、移送ポンプ31によって、第1段目の中和処理槽12A(n)から同系列の浸出処理槽11(n)に循環(自己循環)移送させることを可能にする、いわゆる自己循環用配管である。なお、配管21(n)の配置構成や、自己循環させる操業については、後で詳述する。 Here, the pipe connecting the neutralization tank 12A (n) and the leaching tank 11 (n) in the leaching equipment 11 to the first stage neutralization tank 12A (n) in the preliminary neutralization equipment 12 21 (n) can be connected. The pipe 21 (n) is a pipe that connects the first-stage neutralization treatment tank 12A (n) and the charging section of the leaching treatment tank 11 (n) in the same series. This pipe 21 (n) causes the leach slurry to be circulated (self-circulated) from the first stage neutralization tank 12A (n) to the leaching tank 11 (n) of the same series by the transfer pump 31. This is so-called self-circulation piping. The arrangement configuration of the pipe 21 (n) and the self-circulating operation will be described in detail later.
 また、予備中和設備12における第1段目の中和処理槽12A(n)には、その中和処理槽12A(n)と最終中和工程(無害化工程)S7における最終中和設備14とをつなげる配管22を接続させることができる。この配管22は、第1段目の中和処理槽12A(n)の各系列からそれぞれ単独で、若しくは、各系列から所定の箇所で統合されて、最終中和設備14の装入部に接続されており、その配管22に設けられた移送ポンプ31により、第1段目の中和処理槽12A(n)から排出される浸出スラリーを最終中和設備14に移送させることを可能にする。なお、配管22の配置構成や、第1段目の中和処理槽12A(n)から最終中和設備14に浸出スラリーを移送させる操業については、後で詳述する。 Further, the first neutralization treatment tank 12A (n) in the preliminary neutralization equipment 12 includes the neutralization treatment tank 12A (n) and the final neutralization equipment 14 in the final neutralization step (detoxification step) S7. Can be connected to each other. This pipe 22 is connected to the charging section of the final neutralization equipment 14 independently from each series of the first stage neutralization tank 12A (n) or integrated at a predetermined location from each series. The leaching slurry discharged from the first-stage neutralization tank 12A (n) can be transferred to the final neutralization facility 14 by the transfer pump 31 provided in the pipe 22. In addition, the arrangement configuration of the piping 22 and the operation of transferring the leaching slurry from the first-stage neutralization treatment tank 12A (n) to the final neutralization facility 14 will be described in detail later.
 また、予備中和設備12における第1段目の中和処理槽12A(n)には、その中和処理槽12A(n)と固液分離工程S3における固液分離設備13に多段に設けられた各固液分離槽とをつなげる配管23を接続させることができる。この配管23は、第1段目の中和処理槽12A(n)の各系列からそれぞれ単独で、若しくは、各系列から所定の箇所で統合されて、多段に設けられた各固液分離槽の装入部に接続されており、その配管23に設けられた移送ポンプ31により、第1段目の中和処理槽12A(n)から排出される浸出スラリーを所定の固液分離槽に移送させることを可能にする。なお、配管23の配置構成や、第1段目の中和処理槽12A(n)から所定の固液分離槽に浸出スラリーを移送させる操業については、後で詳述する。 Further, in the first stage of the neutralization tank 12A in the pre-neutralization equipment 12 (n), provided in multiple stages in the solid-liquid separation equipment 13 in the neutralization tank 12A (n) and the solid-liquid separation process S3 Moreover, the piping 23 which connects each solid-liquid separation tank can be connected. This pipe 23 is provided for each of the solid-liquid separation tanks provided in multiple stages independently from each series of the first stage neutralization treatment tank 12A (n) or integrated at a predetermined location from each series. The leaching slurry discharged from the first stage neutralization tank 12A (n) is transferred to a predetermined solid-liquid separation tank by a transfer pump 31 provided in the pipe 23 and connected to the charging section. Make it possible. In addition, the arrangement configuration of the piping 23 and the operation of transferring the leaching slurry from the first-stage neutralization treatment tank 12A (n) to the predetermined solid-liquid separation tank will be described in detail later.
 なお、図1においては、上述した配管21,22,23を一部で共用配管とし、また浸出スラリーを移送させるための移送ポンプも共通としている態様を示しているが、これに限定されるものではない。各配管21,22,23をそれぞれ個別に単独に設け、それぞれの配管21,22,23に移送ポンプを設置するようにしてもよい。 In addition, in FIG. 1, although the piping 21, 22, 23 mentioned above are made into common piping in part, and the transfer pump for transferring the leaching slurry is shown in common, it is limited to this. is not. Each of the pipes 21, 22, and 23 may be provided individually and a transfer pump may be installed in each of the pipes 21, 22, and 23.
 (3)固液分離工程
 (3-1)固液分離処理について
 固液分離工程S3では、予備中和工程S2にて得られたpH調整後の浸出スラリーを多段で洗浄しながら、ニッケル及びコバルトのほか不純物元素として亜鉛を含む浸出液(粗硫酸ニッケル水溶液)と浸出残渣とを分離する。
(3) Solid-liquid separation step (3-1) Solid-liquid separation treatment In the solid-liquid separation step S3, nickel and cobalt were washed while washing the leached slurry after pH adjustment obtained in the preliminary neutralization step S2 in multiple stages. In addition, a leaching solution (crude nickel sulfate aqueous solution) containing zinc as an impurity element is separated from a leaching residue.
 固液分離工程S3では、例えば、浸出スラリーを洗浄液と混合した後、凝集剤供給設備等から供給される凝集剤を用いて、シックナー等の固液分離設備により固液分離処理を施す。具体的には、先ず、浸出スラリーが洗浄液により希釈され、次に、スラリー中の浸出残渣がシックナーの沈降物として濃縮される。これにより、浸出残渣に付着するニッケル分をその希釈の度合いに応じて減少させることができる。 In the solid-liquid separation step S3, for example, after the leaching slurry is mixed with the cleaning liquid, the solid-liquid separation process is performed by the solid-liquid separation equipment such as a thickener using the flocculant supplied from the flocculant supply equipment. Specifically, the leaching slurry is first diluted with a cleaning liquid, and then the leaching residue in the slurry is concentrated as a thickener sediment. Thereby, the nickel content adhering to the leaching residue can be reduced according to the degree of dilution.
 この固液分離工程S3では、シックナー等の固液分離槽を多段に連結させて用い、浸出スラリーを多段洗浄しながら固液分離をすることが好ましい。具体的に、多段洗浄方法としては、例えば、浸出スラリーに対して洗浄液を向流に接触させる連続向流洗浄法(CCD法:Counter Current Decantation)を用いることができる。これにより、系内に新たに導入する洗浄液を削減できるとともに、ニッケル及びコバルトの回収率を95%以上に向上させることができる。 In this solid-liquid separation step S3, it is preferable to perform solid-liquid separation while using multiple stages of solid-liquid separation tanks such as thickeners and washing the leach slurry in multiple stages. Specifically, as the multi-stage cleaning method, for example, a continuous countercurrent cleaning method (CCD method: Counter-Current Decantation) in which a cleaning liquid is brought into contact with the leaching slurry in countercurrent can be used. Thereby, the cleaning liquid newly introduced into the system can be reduced, and the recovery rate of nickel and cobalt can be improved to 95% or more.
 洗浄液(洗浄水)としては、特に限定されないが、ニッケルを含まず、工程に影響を及ぼさないものを用いることが好ましい。その中でも、pHが1~3の水溶液を用いることが好ましい。洗浄液のpHが高いと、浸出液中にアルミニウムが含まれる場合には嵩の高いアルミニウム水酸化物が生成され、浸出残渣の沈降不良の原因となる。このことから、洗浄液としては、好ましくは、後工程であるニッケル回収工程S6で得られる低pH(pHが1~3程度)の貧液を繰り返して利用するとよい。 The cleaning liquid (cleaning water) is not particularly limited, but it is preferable to use a liquid that does not include nickel and does not affect the process. Among them, it is preferable to use an aqueous solution having a pH of 1 to 3. When the pH of the cleaning liquid is high, a bulky aluminum hydroxide is produced when aluminum is contained in the leachate, which causes poor settling of the leach residue. For this reason, as the cleaning liquid, it is preferable to repeatedly use a low pH (pH of about 1 to 3) poor liquid obtained in the nickel recovery step S6 as a subsequent step.
 使用する凝集剤としては、特に限定されるものではなく、例えばアニオン系の凝集剤を用いることができる。 The flocculant to be used is not particularly limited, and for example, an anionic flocculant can be used.
 (3-2)固液分離設備について
 本実施の形態に係る湿式製錬プラント10では、固液分離設備13にて、上述した固液分離工程S3における固液分離処理が実行される。
(3-2) Solid-liquid separation facility In the hydrometallurgical plant 10 according to the present embodiment, the solid-liquid separation facility 13 performs the solid-liquid separation process in the solid-liquid separation step S3 described above.
 具体的に、この湿式製錬プラント10における固液分離設備13は、図1に示すように、例えば6段のシックナー(固液分離槽)(CCD1~CCD6)を連結させて構成される。この固液分離設備13には、予備中和工程S2における予備中和後の(pH調整された)浸出スラリーが移送ポンプにより移送されて第1段目のシックナー(CCD1)に装入される。一方で、洗浄液(洗浄水)は、図示しない配管を介して、最終段の第6段目のシックナー(CCD6)に装入される。 Specifically, the solid-liquid separation facility 13 in the hydrometallurgical plant 10 is configured by connecting, for example, six-stage thickeners (solid-liquid separation tanks) (CCD1 to CCD6) as shown in FIG. In this solid-liquid separation facility 13, the leaching slurry after the pre-neutralization in the pre-neutralization step S2 (pH adjusted) is transferred by a transfer pump and charged into the first stage thickener (CCD 1). On the other hand, the cleaning liquid (cleaning water) is charged into the sixth-stage thickener (CCD 6) at the final stage via a pipe (not shown).
 この固液分離設備13では、CCD1に装入された浸出スラリーが、CCD1から順にCCD2、CCD3、・・・CCD6へと移送される過程で、CCD6に装入した洗浄液との向流接触と、浸出スラリー中の残渣の凝集とが繰り返し行われ、残渣に付着した浸出液が洗い流されていく。この操作により、最終段目のCCD6からは、ニッケル等の有価金属を含む、浸出液が殆ど無くなった残渣が排出される。具体的に、残渣に付着した水分中のニッケル濃度としては、ほぼ0g/Lであり、最大でも0.5g/L程度に洗浄された残渣が排出される。排出された残渣は、最終中和工程S7に移送されて無害化処理される。 In this solid-liquid separation equipment 13, in the process in which the leach slurry charged in the CCD 1 is transferred from the CCD 1 to the CCD 2, CCD 3,. The agglomeration of the residue in the leaching slurry is repeated, and the leaching solution adhering to the residue is washed away. By this operation, the residue containing almost no leachate containing valuable metals such as nickel is discharged from the final stage CCD 6. Specifically, the nickel concentration in the moisture adhering to the residue is approximately 0 g / L, and the residue cleaned to a maximum of about 0.5 g / L is discharged. The discharged residue is transferred to the final neutralization step S7 and detoxified.
 一方で、最終段のCCD6に装入された洗浄液は、CCD6から順にCCD5、CCD4、・・・CCD1へと移送される過程で、浸出スラリー中の残渣に付着した水分を取り込んでいく。これにより、洗浄液中のニッケル等の有価金属の濃度が上昇していき、最終的にCCD1から浸出液として排出され、次工程の中和工程S4に移送される。具体的に、CCD6に装入された洗浄液中の有価金属の濃度としては、例えばニッケル濃度では、装入時点でほぼ0g/Lであったものが、CCD6からCCD5への移送過程で0.5g/L程度、CCD5からCCD4への移送過程で1g/L程度と順次上昇していき、最終的にCCD1から排出される浸出液としては、3g/L程度のニッケル濃度となる。 On the other hand, the cleaning liquid charged in the CCD 6 at the final stage takes in the moisture adhering to the residue in the leaching slurry in the process of being transferred from the CCD 6 to the CCD 5, CCD 4,. As a result, the concentration of valuable metals such as nickel in the cleaning liquid increases, and is finally discharged from the CCD 1 as a leachate and transferred to the neutralization step S4 of the next step. Specifically, the concentration of valuable metals in the cleaning liquid charged in the CCD 6 is, for example, approximately 0 g / L at the time of charging when the nickel concentration is 0.5 g in the transfer process from the CCD 6 to the CCD 5. In the process of transfer from the CCD 5 to the CCD 4, it gradually rises to about 1 g / L, and finally the leachate discharged from the CCD 1 has a nickel concentration of about 3 g / L.
 なお、上述の例では、シックナー等の固液分離槽を6段連結させて設けた例を示したが、連結段数としてはこれに限定されるものではなく、湿式製錬プラントにおける設置スペースや、製品規格、次工程以降の処理能力等を勘案して適宜設定することができる。また、回収する浸出液中の有価金属の所望とする濃度についても、同様にして適宜設定することが好ましい。また、固液分離設備13を構成する各シックナー(CCD)の液相におけるニッケル濃度も、上述した濃度に限定されるものではない。 In the above example, an example in which six stages of solid-liquid separation tanks such as thickeners are connected is shown, but the number of connected stages is not limited to this, and the installation space in the hydrometallurgical plant, It can be set as appropriate in consideration of product specifications, processing capacity in subsequent processes, and the like. Further, it is preferable that the desired concentration of the valuable metal in the leachate to be recovered is appropriately set in the same manner. Further, the nickel concentration in the liquid phase of each thickener (CCD) constituting the solid-liquid separation facility 13 is not limited to the above-described concentration.
 ここで、上述したように、多段に設けたシックナー等の固液分離槽のそれぞれの装入部には、その各固液分離槽と予備中和設備12を構成する第1段目の中和処理槽12A(n)とをつなげる配管23を接続させることができる。この配管23は、第1段目の中和処理槽12A(n)の各系列からそれぞれ単独で、若しくは、各系列から所定の箇所で統合されて、多段に設けられた各固液分離槽の装入部に接続されており、その配管23に設けられた移送ポンプ31により、第1段目の中和処理槽12A(n)から排出される浸出スラリーを所定の固液分離槽に移送させることを可能にする。なお、配管23の配置構成や、第1段目の中和処理槽12A(n)から所定の固液分離槽に浸出スラリーを移送させる操業については、後で詳述する。 Here, as described above, in each charging portion of the solid-liquid separation tank such as thickener provided in multiple stages, the first-stage neutralization constituting each solid-liquid separation tank and the preliminary neutralization equipment 12 is provided. A pipe 23 connecting the treatment tank 12A (n) can be connected. This pipe 23 is provided for each of the solid-liquid separation tanks provided in multiple stages independently from each series of the first stage neutralization treatment tank 12A (n) or integrated at a predetermined location from each series. The leaching slurry discharged from the first stage neutralization tank 12A (n) is transferred to a predetermined solid-liquid separation tank by a transfer pump 31 provided in the pipe 23 and connected to the charging section. Make it possible. In addition, the arrangement configuration of the piping 23 and the operation of transferring the leaching slurry from the first-stage neutralization treatment tank 12A (n) to the predetermined solid-liquid separation tank will be described in detail later.
 (4)中和工程
 中和工程S4では、固液分離工程S3にて分離された浸出液(粗硫酸ニッケル水溶液)のpHを調整し、不純物元素を含む中和澱物を分離して、ニッケル及びコバルトと共に亜鉛を含む中和終液を得る。
(4) Neutralization step In the neutralization step S4, the pH of the leachate (crude nickel sulfate aqueous solution) separated in the solid-liquid separation step S3 is adjusted, and the neutralized starch containing the impurity element is separated, and nickel and A neutralized final solution containing zinc together with cobalt is obtained.
 具体的に、中和工程S4では、分離された浸出液の酸化を抑制しながら、得られる中和終液のpHが4以下、好ましくは3.0~3.5、より好ましくは3.1~3.2になるように、その浸出液に炭酸カルシウム等の中和剤を添加して、中和終液と不純物元素として3価の鉄を含む中和澱物スラリーとを形成する。中和工程S4では、このようにして溶液中に残留する3価の鉄イオンやアルミニウムイオン等の不純物を中和澱物として除去し、ニッケル回収用母液の元となる中和終液と生成する。 Specifically, in the neutralization step S4, the pH of the resulting neutralized final solution is 4 or less, preferably 3.0 to 3.5, more preferably 3.1 to 3, while suppressing oxidation of the separated leachate. A neutralizing agent such as calcium carbonate is added to the leachate so as to be 3.2 to form a neutralized final solution and a neutralized starch slurry containing trivalent iron as an impurity element. In the neutralization step S4, impurities such as trivalent iron ions and aluminum ions remaining in the solution are removed as neutralized starch in this way, and a neutralized final solution serving as a base for the nickel recovery mother liquor is generated. .
 中和工程S4における中和処理は、中和設備にて実行される。中和設備としては、例えば、中和反応を行う中和反応槽と、中和反応により得られた中和澱物と中和終液とを分離するシックナー等の分離処理槽とを備える。この中和設備は、単一の系列からなる。中和設備における中和反応槽では、上述した固液分離設備13におけるCCD1から排出された浸出液(粗硫酸ニッケル水溶液)が装入されるとともに、炭酸カルシウム等の中和剤が投入されて中和反応が生じる。また、分離処理槽では、中和反応後のスラリーが装入され、そのスラリーをニッケル回収用の母液となる中和終液と不純物元素として3価の鉄を含む中和澱物スラリーとに分離する。この分離処理槽においては、中和澱物スラリーが分離処理槽の底部から抜き出される。また、中和澱物が分離された中和終液はオーバーフローして貯留槽等に貯留された後、次工程の脱亜鉛工程S5に移送される。 The neutralization process in neutralization process S4 is performed by the neutralization equipment. Examples of the neutralization facility include a neutralization reaction tank that performs a neutralization reaction, and a separation treatment tank such as a thickener that separates the neutralized starch obtained by the neutralization reaction and the neutralized final solution. This neutralization equipment consists of a single series. In the neutralization reaction tank in the neutralization facility, the leachate (crude nickel sulfate aqueous solution) discharged from the CCD 1 in the solid-liquid separation facility 13 is charged, and a neutralizing agent such as calcium carbonate is charged for neutralization. A reaction occurs. Also, in the separation treatment tank, the slurry after the neutralization reaction is charged, and the slurry is separated into a neutralized final solution that becomes a mother liquor for nickel recovery and a neutralized starch slurry that contains trivalent iron as an impurity element. To do. In this separation treatment tank, the neutralized starch slurry is extracted from the bottom of the separation treatment tank. The neutralized final solution from which the neutralized starch has been separated overflows and is stored in a storage tank or the like, and is then transferred to the next dezincing step S5.
 (5)脱亜鉛工程
 脱亜鉛工程S5では、中和工程S4から得られた中和終液に硫化水素ガス等の硫化剤を添加して硫化処理を施すことにより亜鉛硫化物を生成させ、その亜鉛硫化物を分離除去してニッケル及びコバルトを含むニッケル回収用母液(脱亜鉛終液)を得る。
(5) Dezincing step In the dezincing step S5, a zinc sulfide is generated by adding a sulfiding agent such as hydrogen sulfide gas to the neutralized final solution obtained from the neutralizing step S4 and subjecting it to a sulfiding treatment. The zinc sulfide is separated and removed to obtain a nickel recovery mother liquor (dezincing final solution) containing nickel and cobalt.
 具体的には、例えば、加圧された容器内にニッケル及びコバルトと共に亜鉛を含む中和終液を導入し、気相中へ硫化水素ガス等を吹き込むことによって、亜鉛をニッケル及びコバルトに対して選択的に硫化し、亜鉛硫化物とニッケル回収用母液とを生成する。 Specifically, for example, a neutralized final solution containing zinc and nickel and cobalt is introduced into a pressurized container, and hydrogen sulfide gas or the like is blown into the gas phase, so that zinc is made against nickel and cobalt. Selectively sulfides to produce zinc sulfide and nickel recovery mother liquor.
 脱亜鉛工程S5における脱亜鉛処理は、脱亜鉛設備にて実行される。脱亜鉛設備としては、例えば、中和終液に対し硫化水素ガス等を吹き込んで硫化反応を行う硫化反応槽と、硫化反応後液から亜鉛硫化物を分離除去するフィルター装置とを備える。この脱亜鉛設備は、単一の系列からなる。脱亜鉛設備における硫化反応槽では、上述した中和工程S4を経て移送された中和終液が装入されるとともに、硫化水素ガス等の硫化剤が吹き込まれて硫化反応が生じる。また、フィルター装置は、ろ布(フィルタークロス)等によって構成され、亜鉛硫化物を含んだ硫化反応後液から亜鉛硫化物を分離してニッケル回収用母液を生成する。得られたニッケル回収用母液は、次のニッケル回収工程S6に移送される。 The dezincing process in the dezincing step S5 is performed in a dezincing facility. The dezincification equipment includes, for example, a sulfidation reaction tank that performs a sulfidation reaction by blowing hydrogen sulfide gas or the like into the final neutralized solution, and a filter device that separates and removes zinc sulfide from the solution after the sulfidation reaction. This dezincification equipment consists of a single series. In the sulfidation reaction tank in the dezincification facility, the neutralized final solution transferred through the above-described neutralization step S4 is charged, and a sulfiding agent such as hydrogen sulfide gas is blown to cause a sulfidation reaction. The filter device is constituted by a filter cloth (filter cloth) or the like, and separates zinc sulfide from the post-sulfurization reaction solution containing zinc sulfide to generate a nickel recovery mother liquor. The obtained nickel recovery mother liquor is transferred to the next nickel recovery step S6.
 (6)ニッケル回収工程
 ニッケル回収工程S6では、脱亜鉛工程S5にて不純物元素である亜鉛を亜鉛硫化物として分離除去して得られたニッケル回収用母液に硫化水素ガス等の硫化剤を吹き込んで硫化反応を生じさせ、ニッケル及びコバルトを含む硫化物(ニッケル・コバルト混合硫化物)と貧液とを生成する。
(6) Nickel recovery step In the nickel recovery step S6, a sulfur recovery agent such as hydrogen sulfide gas is blown into the nickel recovery mother liquor obtained by separating and removing zinc, which is an impurity element, as zinc sulfide in the zinc removal step S5. A sulfurization reaction is caused to produce a sulfide (nickel / cobalt mixed sulfide) containing nickel and cobalt and a poor solution.
 ニッケル回収用母液は、ニッケル酸化鉱石の浸出液から中和工程S4や脱亜鉛工程S5を経て不純物成分が低減された硫酸溶液である。なお、このニッケル回収用母液には、不純物成分として鉄、マグネシウム、マンガン等が数g/L程度含まれている可能性があるが、これら不純物成分は、回収するニッケル及びコバルトに対して硫化物としての安定性が低く、生成する硫化物には含有されることはない。 The mother liquid for nickel recovery is a sulfuric acid solution in which impurity components are reduced from the leachate of nickel oxide ore through the neutralization step S4 and the dezincing step S5. The nickel recovery mother liquor may contain several g / L of iron, magnesium, manganese, etc. as impurity components. These impurity components are sulfides with respect to nickel and cobalt to be recovered. As a result, the resulting sulfide is not contained.
 ニッケル回収工程S6におけるニッケル回収処理は、ニッケル回収設備にて実行される。ニッケル回収設備は、例えば、ニッケル回収用母液に対し硫化水素ガス等を吹き込んで硫化反応を行う硫化反応槽と、硫化反応後液からニッケル・コバルト混合硫化物を分離回収する固液分離槽とを備える。このニッケル回収設備は、単一の系列からなる。ニッケル回収設備における硫化反応槽では、上述した脱亜鉛工程S5を経て移送されたニッケル回収用母液が装入されるとともに、硫化水素ガス等の硫化剤が吹き込まれて硫化反応が生じ、ニッケル・コバルト混合硫化物が生成する。また、固液分離槽は、例えばシックナー等によって構成され、ニッケル・コバルト混合硫化物を含んだ硫化反応後のスラリーに対して沈降分離処理を施すことで、沈殿物であるニッケル・コバルト混合硫化物をシックナーの底部より分離回収する。一方で、水溶液成分はオーバーフローさせて貧液として回収する。なお、回収した貧液は、ニッケル等の有価金属濃度の極めて低い溶液であり、硫化されずに残留した鉄、マグネシウム、マンガン等の不純物元素を含む。この貧液は、最終中和工程S7に移送されて無害化処理される。 Nickel recovery processing in the nickel recovery step S6 is executed in a nickel recovery facility. The nickel recovery facility includes, for example, a sulfurization reaction tank that performs a sulfurization reaction by blowing hydrogen sulfide gas or the like into a nickel recovery mother liquor, and a solid-liquid separation tank that separates and recovers nickel-cobalt mixed sulfide from the liquid after the sulfurization reaction. Prepare. This nickel recovery facility consists of a single series. In the sulfidation reaction tank in the nickel recovery facility, the nickel recovery mother liquor transferred through the dezincing step S5 described above is charged, and a sulfidizing agent such as hydrogen sulfide gas is blown to cause a sulfidation reaction. Mixed sulfide is formed. Further, the solid-liquid separation tank is constituted by, for example, a thickener or the like, and is subjected to sedimentation treatment on the slurry after the sulfidation reaction containing nickel / cobalt mixed sulfide, so that nickel / cobalt mixed sulfide which is a precipitate is formed. Is recovered from the bottom of the thickener. On the other hand, the aqueous solution component overflows and is recovered as a poor solution. The recovered poor solution is a solution having a very low concentration of valuable metals such as nickel, and contains impurity elements such as iron, magnesium, and manganese remaining without being sulfided. This poor solution is transferred to the final neutralization step S7 and detoxified.
 (7)最終中和工程
 (7-1)最終中和処理について
 最終中和工程S7では、上述した固液分離工程S3における固液分離処理で多段に設けた固液分離槽の最終段(例えばCCD6)から排出された浸出残渣や、ニッケル回収工程S6にて回収された、鉄、マグネシウム、マンガン等の不純物元素を含む貧液等に対して、排出基準を満たす所定のpH範囲に調整する中和処理(無害化処理)が施される。
(7) Final neutralization step (7-1) Final neutralization treatment In the final neutralization step S7, the final stage of the solid-liquid separation tank provided in multiple stages in the solid-liquid separation process in the solid-liquid separation step S3 described above (for example, During the adjustment of the leaching residue discharged from the CCD 6) and the poor solution containing impurity elements such as iron, magnesium, manganese, etc. recovered in the nickel recovery step S6 to a predetermined pH range satisfying the discharge standard A summation process (detoxification process) is performed.
 pHの調整方法としては、特に限定されないが、例えば炭酸カルシウムスラリー等の中和剤を添加することによって所定の範囲に調整することができる。 The pH adjustment method is not particularly limited, but can be adjusted to a predetermined range by adding a neutralizing agent such as calcium carbonate slurry.
 (7-2)最終中和設備について
 本実施の形態に係る湿式製錬プラント10では、最終中和設備14にて、上述した最終中和工程S7における中和処理が実行される。
(7-2) Final Neutral Facility In the hydrometallurgy plant 10 according to the present embodiment, the final neutralization facility 14 performs the neutralization process in the above-described final neutralization step S7.
 具体的に、この湿式製錬プラント10における最終中和設備14としては、例えば最終中和処理槽が単一の系列で設けられている。具体的に、最終中和設備14には、上述した固液分離工程S3から移送された浸出残渣と、ニッケル回収工程S6から移送された貧液とが装入される。そして、その反応槽内で、浸出残渣と貧液とが混合されながら、中和剤によって所定のpH範囲に調整され、廃棄スラリー(テーリング)となる。この反応槽にて生成されたテーリングは、テーリングダム(廃棄物貯留場)に移送される。 Specifically, as the final neutralization equipment 14 in the hydrometallurgical plant 10, for example, a final neutralization treatment tank is provided in a single series. Specifically, the final neutralization facility 14 is charged with the leaching residue transferred from the solid-liquid separation step S3 and the poor solution transferred from the nickel recovery step S6. Then, in the reaction tank, the leaching residue and the poor liquid are mixed, and the pH is adjusted to a predetermined pH range by the neutralizing agent to become a waste slurry (tailing). The tailing produced | generated in this reaction tank is transferred to a tailing dam (waste storage place).
 ここで、上述したように、最終中和設備14の装入部には、その最終中和設備14と予備中和設備12を構成する第1段目の中和処理槽12A(n)とをつなげる配管22を接続させることができる。この配管22は、第1段目の中和処理槽12A(n)の各系列からそれぞれ単独で、若しくは、各系列から所定の箇所で統合されて、最終中和設備14の装入部に接続されており、その配管22に設けられた移送ポンプ31により、第1段目の中和処理槽12A(n)から排出される浸出スラリーを最終中和設備14に移送させることを可能にする。なお、この配管22の配置構成や、第1段目の中和処理槽12A(n)から最終中和設備14に浸出スラリーを移送させる操業については、後で詳述する。 Here, as described above, the charging section of the final neutralization facility 14 includes the final neutralization facility 14 and the first-stage neutralization treatment tank 12A (n) constituting the preliminary neutralization facility 12. The pipe 22 to be connected can be connected. This pipe 22 is connected to the charging section of the final neutralization equipment 14 independently from each series of the first stage neutralization tank 12A (n) or integrated at a predetermined location from each series. The leaching slurry discharged from the first-stage neutralization tank 12A (n) can be transferred to the final neutralization facility 14 by the transfer pump 31 provided in the pipe 22. The arrangement of the piping 22 and the operation of transferring the leached slurry from the first stage neutralization tank 12A (n) to the final neutralization facility 14 will be described in detail later.
 ≪3.湿式製錬プラントの構成、並びに湿式製錬プラントの操業方法≫
 <3-1.基本構成、並びに通常操業時の操業フロー>
  <3-1-1.基本構成>
 上述したように、本実施の形態に係る湿式製錬プラント10は、少なくとも、ニッケル酸化鉱石に対する浸出処理を施す浸出処理槽11(n)を複数(n)系列備える浸出設備11と、2段の中和処理槽12A,12Bを備え、浸出処理槽11(n)から排出された浸出スラリーのpHを所定範囲に調整する予備中和を行う予備中和設備12と、単一の系列からなり、pH調整されて予備中和設備12から排出された浸出スラリーを固液分離槽で固液分離する固液分離設備13とを具備するものである(図1)。
≪3. Structure of hydrometallurgical plant and method of operating hydrometallurgical plant >>
<3-1. Basic configuration and operation flow during normal operation>
<3-1-1. Basic configuration>
As described above, the hydrometallurgical plant 10 according to the present embodiment includes at least a leaching facility 11 including a plurality (n) of leaching treatment tanks 11 (n) for performing leaching treatment on nickel oxide ore, and two stages. The neutralization treatment tanks 12A and 12B are provided, and the pre-neutralization equipment 12 for performing the pre-neutralization for adjusting the pH of the leaching slurry discharged from the leaching treatment tank 11 (n) to a predetermined range, and a single series, It comprises a solid-liquid separation facility 13 for solid-liquid separation of the leached slurry that has been adjusted in pH and discharged from the preliminary neutralization facility 12 in a solid-liquid separation tank (FIG. 1).
 そして、図1に示したように、湿式製錬プラント10では、予備中和設備12において、第1段目の中和処理槽12A(n)が、浸出設備11に備えられた浸出処理槽11(n)の各系列に対応するように複数系列備えられ、その第1段目を構成する各系列の中和処理槽12A(n)にてpH調整された浸出スラリーが単一の系列からなる第2段目の中和処理槽12Bに合流するように構成されており、その第2段目の中和処理槽に合流した浸出液が固液分離設備に移送されるようになっている。 As shown in FIG. 1, in the hydrometallurgical plant 10, in the preliminary neutralization facility 12, the first stage neutralization treatment tank 12 </ b > A (n) is a leaching treatment tank 11 provided in the leaching equipment 11. A plurality of series are provided so as to correspond to each series of (n), and the leaching slurry whose pH is adjusted in each series of neutralization treatment tanks 12A (n) constituting the first stage consists of a single series. The second stage neutralization tank 12B is configured to join, and the leachate that has joined the second stage neutralization tank is transferred to a solid-liquid separation facility.
 このようにして構成された湿式製錬プラント10によれば、従来操業実績のあるサイズの浸出処理設備(例えば、浸出液生産量としてニッケル換算で1~2万トン/年)を複数系列用いることにより、ニッケル酸化鉱石の処理量を増加させることができる。また、それ以降の工程、すなわち予備中和工程より以降の工程からは1系列に統合させるようにしているので、プラント全体として部品点数を減少させることができ、設備コストを低減させることができる。 According to the hydrometallurgical plant 10 configured in this way, by using a plurality of series of leaching treatment facilities having a size that has been conventionally operated (for example, the amount of leachate produced is 1 to 20,000 tons / year in terms of nickel). The amount of nickel oxide ore can be increased. Further, since the subsequent processes, that is, the processes subsequent to the preliminary neutralization process, are integrated into one series, the number of parts can be reduced as a whole plant, and the equipment cost can be reduced.
 また、この湿式製錬プラント10によれば、複数系列の処理設備(浸出処理槽11(n)、第1段目の中和処理槽12A(n))から得られる各浸出スラリーにpH等の性状のバラつきが生じた場合でも、その各系列から排出された浸出スラリーを第2段目の中和処理槽12Bにて合流させるようにしているので、そのバラつきを解消することができ、均一な浸出スラリーとして固液分離処理を施すことができる。 In addition, according to this hydrometallurgical plant 10, each leaching slurry obtained from a plurality of series of treatment equipment (leaching treatment tank 11 (n) , first stage neutralization treatment tank 12A (n) ) has pH and the like. Even when there is a variation in properties, the leaching slurry discharged from each series is merged in the second stage neutralization treatment tank 12B, so that the variation can be eliminated and uniform. A solid-liquid separation process can be performed as a leach slurry.
 また、この湿式製錬プラント10によれば、詳しくは後述するが、第1段目の中和処理槽12A(n)と他の工程における処理設備における反応槽とを接続させる配管21,22,23を適宜設けるようにすることができる。これにより、例えばプラント操業開始直後等の浸出処理が十分に進行していない段階の浸出スラリーが、固液分離工程S3やそれよりも後の工程に移送されることを防止することができ、各工程における反応不良や操業効率の低下等の発生を効果的に抑制することができる。 Moreover, according to this hydrometallurgical plant 10, although mentioned later in detail, the piping 21,22 which connects the neutralization processing tank 12A (n) of the 1st step | paragraph, and the reaction tank in the processing equipment in another process. 23 can be provided as appropriate. Thereby, for example, the leaching slurry at a stage where the leaching process such as immediately after the start of plant operation is not sufficiently progressed can be prevented from being transferred to the solid-liquid separation step S3 or a later step, Generation | occurrence | production of the reaction failure in a process, the fall of operational efficiency, etc. can be suppressed effectively.
  <3-1-2.通常操業時の操業フロー>
 ここで、上述した湿式製錬プラント10の通常操業時の操業方法について説明する。図3に通常操業時の操業の流れを説明するための図を示す。なお、ここでは、複数系列備える処理設備においては、図1及び図3に示すように、「第1系列(1)」と「第2系列(2)」の2系列(n=2)備える場合を例に挙げて説明する。
<3-1-2. Operation flow during normal operation>
Here, the operation method at the time of normal operation of the hydrometallurgical plant 10 mentioned above is demonstrated. FIG. 3 shows a diagram for explaining the flow of operation during normal operation. Here, in the processing facility having a plurality of series, as shown in FIG. 1 and FIG. 3, two series (n = 2) of “first series (1)” and “second series (2)” are provided. Will be described as an example.
 図3において黒塗り矢印で示すように、この湿式製錬プラント10では、例えば鉱石処理工程等において所定の大きさに粉砕等されたニッケル酸化鉱石のスラリー(鉱石スラリー)を、浸出処理設備11に備えられた第1系列の浸出処理槽11(1)と第2系列の浸出処理槽11(2)とに装入して、各系列の浸出処理槽11(1),11(2)において鉱石スラリーに対する浸出処理を施す。 As shown by black arrows in FIG. 3, in this hydrometallurgical plant 10, for example, nickel oxide ore slurry (ore slurry) that has been crushed to a predetermined size in an ore treatment process or the like is supplied to the leaching treatment facility 11. The first series of leaching treatment tanks 11 (1) and the second series of leaching treatment tanks 11 (2), which are provided, are ores in the leaching treatment tanks 11 (1) and 11 (2) of each series. A leaching treatment is applied to the slurry.
 次に、浸出処理槽11(1),11(2)における浸出処理により得られた浸出スラリーを、予備中和設備12に移送する。具体的には、浸出処理槽11(1),11(2)から排出された浸出スラリーを、その浸出処理槽11(1),11(2)の各系列に対応する第1段目の中和処理槽12A(1),12A(2)にそれぞれ装入する。そして、各系列の中和処理槽12A(1),12A(2)では、装入された浸出スラリーに対して中和剤を添加して、そのpHを所定のpH範囲に調整する。 Next, the leaching slurry obtained by the leaching treatment in the leaching treatment tanks 11 (1) and 11 (2) is transferred to the preliminary neutralization equipment 12. Specifically, the leaching slurry discharged from the leaching treatment tanks 11 (1) and 11 (2) is stored in the first stage corresponding to each series of the leaching treatment tanks 11 (1) and 11 (2). It charges to sum processing tank 12A (1) , 12A (2) , respectively. In each of the series of neutralization treatment tanks 12A (1) and 12A (2) , a neutralizing agent is added to the leached slurry charged to adjust the pH to a predetermined pH range.
 次に、第1段目の中和処理槽12A(1),12A(2)にてpH調整された浸出スラリーを、第2段目の中和処理槽12Bに移送して装入する。すなわち、第1系列、第2系列の中和処理槽12A(1),12A(2)のそれぞれにおいてpH調整された浸出スラリーを、単一の系列からなる第2段目の中和処理槽12Bに合流させる。このように、第2段目の中和処理槽12Bにおいて、各系列からの浸出スラリーを合流させることで、pH等の性状のバラつきを解消することができ、均一な浸出スラリーを後工程に移送することができる。なお、この第2段目の中和処理槽12Bにおいても、合流させた浸出スラリーに対して中和剤を添加して、そのpHを微調整するようにしてもよい。 Next, the leaching slurry whose pH has been adjusted in the first stage neutralization tanks 12A (1) and 12A (2) is transferred to the second stage neutralization tank 12B and charged. That is, the leaching slurry whose pH is adjusted in each of the first and second series of neutralization treatment tanks 12A (1) and 12A (2) is used as a second stage neutralization treatment tank 12B composed of a single series. To join. In this way, in the second stage neutralization treatment tank 12B, the leaching slurries from each series are merged, so that variations in properties such as pH can be eliminated, and the uniform leaching slurry is transferred to the subsequent process. can do. In the second-stage neutralization treatment tank 12B, a neutralizing agent may be added to the combined leaching slurry to finely adjust the pH.
 この第2段目の中和処理槽12Bへの浸出スラリーの移送に際しては、第1段目の中和処理槽12A(1),12A(2)のそれぞれと第2段目の中和処理槽12Bとを接続する配管24(1),24(2)を介して、浸出スラリーをオーバーフローさせることにより移送する。 When transferring the leach slurry to the second stage neutralization tank 12B, each of the first stage neutralization tanks 12A (1) and 12A (2) and the second stage neutralization tank It is transported by overflowing the leached slurry via the pipes 24 (1) and 24 (2) connecting to 12B.
 続いて、第2段目の中和処理槽12Bから浸出スラリーを排出させて、その浸出スラリーを固液分離設備13に移送する。固液分離設備13は、例えば図3に示すように、6段のシックナー(CCD1~CCD6)を連結させた設備とすることができ、移送された浸出スラリーを第1段目のシックナー(CCD1)に装入する。固液分離設備13への浸出スラリーの移送に際しては、第2段目の中和処理槽12Bの排出部と第1段目のシックナー(CCD1)に装入部とを接続する配管25を介して、その配管25に設けられた移送ポンプ32を用いて移送させる。 Subsequently, the leaching slurry is discharged from the second-stage neutralization treatment tank 12B, and the leaching slurry is transferred to the solid-liquid separation facility 13. As shown in FIG. 3, for example, the solid-liquid separation facility 13 can be a facility in which six stages of thickeners (CCD1 to CCD6) are connected, and the transferred leach slurry is used as the first stage thickener (CCD1). To charge. When the leach slurry is transferred to the solid-liquid separation facility 13, the discharge section of the second-stage neutralization tank 12B and the piping 25 connecting the charging section to the first-stage thickener (CCD 1) are used. Then, transfer is performed using a transfer pump 32 provided in the pipe 25.
 その後、固液分離設備13においては、装入された浸出スラリーがCCD1から順にCCD6の方へと移送される過程で、最終段目のCCD6に装入された洗浄液と向流で接触するとともに、スラリー中の残渣が凝集していく。そして最終的に、ニッケル等の有価金属濃度の高い浸出液(粗硫酸ニッケル水溶液)がCCD1から排出される。一方で、ニッケル等の有価金属濃度の低い浸出残渣は、最終段目のCCD6から排出されて、最終中和設備14に移送され、無害化処理される。 Thereafter, in the solid-liquid separation facility 13, the leaching slurry charged is contacted countercurrently with the cleaning liquid charged in the final stage CCD 6 in the process of transferring the leached slurry sequentially from the CCD 1 to the CCD 6. The residue in the slurry is agglomerated. Finally, a leachate (crude nickel sulfate aqueous solution) having a high concentration of valuable metals such as nickel is discharged from the CCD 1. On the other hand, the leaching residue having a low concentration of valuable metals such as nickel is discharged from the CCD 6 at the final stage, transferred to the final neutralization equipment 14 and detoxified.
 <3-2.自己循環用の構成、並びに自己循環時の操業フロー>
  <3-2-1.自己循環用の構成>
 ところで、定期点検後や2系列のうちの一方又は両方の停止後における湿式製錬プラント10の立ち上げ時(操業開始時、スタートアップ時)では、浸出設備11での浸出処理が通常(定常)操業時のレベルまで到達するのに所定の時間を要する。具体的には、浸出設備11では、高温高圧下で浸出処理が行われるため、所定の温度まで昇温させることが必要となる。そのため、操業開始直後等の初期段階においては、鉱石スラリーから有価金属を浸出させる処理がほとんど始まっておらず、浸出設備11を構成する浸出処理槽11(1),11(2)から、浸出処理が不十分な状態の浸出スラリーが排出されることになる。
<3-2. Self-circulation configuration and operation flow during self-circulation>
<3-2-1. Self-circulating configuration>
By the way, when the hydrometallurgical plant 10 is started up after periodic inspection or after stopping one or both of the two systems (at the start of operation, at start-up), the leaching process in the leaching equipment 11 is a normal (steady) operation. It takes a certain amount of time to reach the hour level. Specifically, in the leaching equipment 11, since the leaching process is performed under high temperature and high pressure, it is necessary to raise the temperature to a predetermined temperature. Therefore, in the initial stage such as immediately after the start of operation, the process of leaching valuable metals from the ore slurry has hardly started, and the leaching process is performed from the leaching treatment tanks 11 (1) and 11 (2) constituting the leaching equipment 11. Insufficient leaching slurry is discharged.
 このような浸出スラリーを、そのまま予備中和工程S2や固液分離工程S3が実行される処理設備に移送すると、得られる浸出液中の有価金属濃度が著しく低下し、ニッケル回収工程S6等における硫化反応の反応不良や操業効率の低下を齎す。このような有価金属濃度低下は、特に、浸出処理槽11(1),11(2)における浸出処理開始後の初期段階に排出される浸出スラリーや、一方の系列が正常に運転している状況下で他方の系列をスタートアップさせる場合に浸出設備11から排出される昇温用の排水等が原因となる。 When such a leaching slurry is transferred as it is to a processing facility in which the pre-neutralization step S2 and the solid-liquid separation step S3 are performed, the concentration of valuable metals in the obtained leachate is significantly reduced, and the sulfidation reaction in the nickel recovery step S6 and the like This will cause poor reaction and decrease in operational efficiency. Such a decrease in the valuable metal concentration is particularly caused when the leaching slurry discharged in the initial stage after the start of the leaching treatment in the leaching treatment tanks 11 (1) and 11 (2), or when one of the series is operating normally. When the other system is started up below, the temperature rise drainage discharged from the leaching equipment 11 is the cause.
 そこで、本実施の形態に係る湿式製錬プラント10においては、図4に示すように、予備中和設備12における第1段目の中和処理槽12A(1),12A(2)と、浸出設備11における浸出処理槽11(1),11(2)とをつなげる配管21(1),21(2)を接続させる。この配管21(1),21(2)は、第1段目の中和処理槽12A(1),12A(2)と浸出処理槽11(1),11(2)の装入部とを同一系列同士で接続する配管である。すなわち、例えば、第2系列の浸出処理槽11(2)と第2系列の中和処理槽12A(2)とを接続する配管21(2)である。 Therefore, in the hydrometallurgical plant 10 according to the present embodiment, as shown in FIG. 4, the first stage neutralization treatment tanks 12A (1) and 12A (2) in the preliminary neutralization facility 12, and leaching Pipes 21 (1) and 21 (2) connecting the leaching treatment tanks 11 (1) and 11 (2) in the facility 11 are connected. The pipes 21 (1) and 21 (2) are connected to the first stage neutralization tanks 12A (1) and 12A (2) and the charging sections of the leaching tanks 11 (1) and 11 (2). It is a pipe connected by the same series. That is, for example, the pipe 21 (2) connecting the second series of leaching treatment tank 11 (2) and the second series of neutralization treatment tank 12A (2) .
 この配管21(1),21(2)は、上述したような操業開始後の立ち上げ時において、浸出処理槽11(1),11(2)を昇温等するための工程液(昇温液)や浸出処理槽11(1),11(2)から排出された低ニッケル濃度の浸出スラリーを、浸出処理槽11(1),11(2)と中和処理槽12A(1),12A(2)との間で循環させることが可能となっている。このように、配管21(1),21(2)は、第1段目の中和処理槽12A(1),12A(2)から排出される浸出スラリーや工程液を同系列の浸出処理槽11(1),11(2)に自己循環させることが可能な自己循環用配管となっている。 These pipes 21 (1) and 21 (2) are used for the process liquid (temperature increase ) for raising the temperature of the leaching treatment tanks 11 (1) and 11 (2) at the time of start-up after the start of operation as described above. liquid) and leaching tank 11 (1), 11 (a leach slurry low nickel concentration discharged from the 2) leaching tank 11 (1), 11 (2) and neutralization tank 12A (1), 12A It is possible to circulate between (2) . In this way, the pipes 21 (1) and 21 (2) are the same series of leaching treatment tanks for leaching slurry and process liquid discharged from the first stage neutralization treatment tanks 12A (1) and 12A (2). 11 (1) and 11 (2) are self-circulating pipes that can be self-circulated.
 この配管21(1),21(2)は、図4に示すように、第1段目の中和処理槽12A(1),12A(2)のそれぞれから延びた後に、所定の箇所(図1及び図4では移送ポンプ31の設置箇所)で合流し、再度分岐して、それぞれの浸出処理槽11(1),11(2)に接続させるようにしてもよく、または系列毎にそれぞれ完全に別個の配管としてもよい。また、この配管21(1),21(2)には、移送ポンプ31が設けられており、中和処理槽12A(1),12A(2)から排出される浸出スラリーを、その移送ポンプ31によって浸出処理槽11(1),11(2)に移送する。 As shown in FIG. 4, the pipes 21 (1) and 21 (2) extend from the first-stage neutralization treatment tanks 12A (1) and 12A (2) , respectively, and then extend to predetermined locations (see FIG. 1 and FIG. 4 may be combined at the transfer pump 31 location), branched again, and connected to the respective leaching treatment tanks 11 (1) and 11 (2) , or completely for each series. It is good also as separate piping. In addition, a transfer pump 31 is provided in the pipes 21 (1) and 21 (2) , and the leaching slurry discharged from the neutralization tanks 12A (1) and 12A (2) is transferred to the transfer pump 31. To the leaching treatment tanks 11 (1) and 11 (2) .
 また、この配管21(1),21(2)の内部には、例えば中和処理槽12A(1),12A(2)と上述の移送ポンプ31との間に、浸出スラリーの移送を制御するON/OFFバルブ42(1),42(2)が設けられている。そして、後で詳述するが、第1段目の中和処理槽12A(1),12A(2)から浸出処理槽11(1),11(2)に浸出スラリーを自己循環させる際には、そのON/OFFバルブ42(1),42(2)をON状態(「開」状態)として、排出された浸出スラリーを移送可能とする。なお、上述した通常操業時においては、この自己循環用の配管21(1),21(2)に設けられたON/OFFバルブ42(1),42(2)はOFF状態(「閉」状態)となっている。 Further, in the pipes 21 (1) and 21 (2) , for example, the transfer of the leach slurry is controlled between the neutralization tanks 12A (1) and 12A (2) and the transfer pump 31 described above. ON / OFF valves 42 (1) and 42 (2) are provided. As will be described in detail later, when the leaching slurry is self-circulated from the first stage neutralization treatment tanks 12A (1) , 12A (2) to the leaching treatment tanks 11 (1) , 11 (2). Then, the ON / OFF valves 42 (1) and 42 (2) are set in the ON state (“open” state) so that the discharged leached slurry can be transferred. In the normal operation described above, this for self circulation pipe 21 (1), 21 (2) to provided the ON / OFF valve 42 (1), 42 (2) the OFF state ( "closed" ).
  <3-2-2.自己循環時の操業フロー>
 次に、湿式製錬プラント10において、上述した自己循環用の配管21(1),21(2)を用いた自己循環時の操業方法について、図4の自己循環時の操業の流れを示す図を用いて説明する。なお、図4に示すように、第1系列と第2系列の複数系列のうちの第2系列の処理設備において、自己循環操業を行う場合を例に挙げて説明する。以下、同様にして、第2系列の処理設備を立ち上げた後の操業を例に挙げて説明する。
<3-2-2. Operational flow during self-circulation>
Next, in the hydrometallurgical plant 10, the flow of the operation at the time of self-circulation of FIG. 4 regarding the operation method at the time of self-circulation using the above-described self- circulation pipes 21 (1) and 21 (2) Will be described. In addition, as shown in FIG. 4, the case where a self-circulation operation is performed in the processing equipment of the second series among the plurality of series of the first series and the second series will be described as an example. Hereinafter, similarly, an operation after starting up the second-line processing facility will be described as an example.
 例えば、第2系列の処理設備のみを立ち上げた段階、すなわち操業開始直後等の初期段階においては、浸出設備11における浸出処理槽11(2)にて鉱石スラリーに対する浸出処理を施したとしても、例えば浸出処理槽11(2)の昇温が不十分なために、得られる浸出スラリーは浸出状態が不十分なものとなっている。また、この操業開始直後においては、浸出処理設備11(2)を昇温させるために温水等の工程液(昇温液)を装入して昇温処理が施される。 For example, even if the leaching process for the ore slurry is performed in the leaching treatment tank 11 (2) in the leaching equipment 11 in the initial stage such as immediately after the start of operation, that is, immediately after the start of the operation of the second system , For example, since the temperature rise of the leaching treatment tank 11 (2) is insufficient, the obtained leaching slurry has an insufficient leaching state. Immediately after the start of the operation, in order to raise the temperature of the leaching treatment equipment 11 (2) , a process liquid (temperature rising liquid) such as warm water is charged and the temperature rising process is performed.
 そこで、このような段階においては、図4の白抜き矢印で示す流れのように、先ず、浸出処理槽11(2)から浸出スラリー又は工程液を排出させ、同系列の第1段目の中和処理槽12A(2)に移送させる。その後、その中和処理槽12A(2)と浸出処理槽11(2)とを接続する配管21(2)を介し、第1段目の中和処理槽12A(2)から浸出処理槽11(2)に対して浸出スラリー又は工程液を自己循環させる。 Therefore, in such a stage, as shown by the flow indicated by the white arrow in FIG. 4, first, the leaching slurry or the process liquid is discharged from the leaching treatment tank 11 (2), and the middle of the first stage of the same series. It is made to transfer to sum processing tank 12A (2) . Thereafter, the neutralization treatment tank 12A (2) and the leaching tank 11 (2) and via a pipe 21 (2) connecting the leaching treatment tank 11 from the first-stage neutralization treatment tank 12A (2) ( The leaching slurry or process liquid is self-circulated for 2) .
 具体的に、浸出スラリー又は工程液の自己循環に際しては、第1段目の中和処理槽12A(2)と浸出処理槽11(2)とを接続する自己循環用の配管21(2)に設けられたON/OFFバルブ42(2)をON状態(「開」状態)とする。そして、その自己循環用の配管21(2)に設けられた移送ポンプ31により、中和処理槽12A(2)から浸出処理槽11(2)へ浸出スラリー又は工程液を循環させる。 Specifically, in the self-circulation of the leaching slurry or process liquid, the self-circulation pipe 21 (2) connecting the first stage neutralization treatment tank 12A (2) and the leaching treatment tank 11 (2) is connected. The provided ON / OFF valve 42 (2) is turned on (“open” state). The leaching slurry or process liquid is circulated from the neutralization tank 12A (2) to the leaching tank 11 (2) by the transfer pump 31 provided in the self-circulation pipe 21 (2) .
 この自己循環操業は、例えば浸出処理槽11(2)が十分に昇温されるまで行う。なお、この自己循環時には、浸出処理槽11(2)への鉱石スラリーの供給や硫酸の供給は停止されている。そのため、浸出スラリーを循環させる場合には、その浸出スラリーの有価金属濃度はニッケル換算で実質的にほぼ0g/Lである。 This self-circulating operation is performed, for example, until the leaching treatment tank 11 (2) is sufficiently heated. During the self-circulation, the supply of ore slurry and the supply of sulfuric acid to the leaching treatment tank 11 (2) are stopped. Therefore, when circulating the leaching slurry, the valuable metal concentration of the leaching slurry is substantially 0 g / L in terms of nickel.
 以上のように、本実施の形態に係る湿式製錬プラント10では、第1段目の中和処理槽12A(1),12A(2)と浸出処理槽11(1),11(2)とをつなげる配管21(1),21(2)を設けることで、操業開始直後等の初期段階における浸出スラリー又は昇温用の工程液の自己循環を可能にしている。これにより、ニッケルを殆ど含まない浸出スラリーや工程液が後工程の固液分離工程S3等に移送されることを防止することができる。 As described above, in the hydrometallurgical plant 10 according to the present embodiment, the first stage neutralization treatment tanks 12A (1) and 12A (2) and the leaching treatment tanks 11 (1) and 11 (2) By providing the pipes 21 (1) and 21 (2) for connecting the leaching slurry and the process liquid for raising the temperature in the initial stage such as immediately after the start of operation, the self-circulation is enabled. Thereby, it is possible to prevent the leaching slurry and process liquid containing almost no nickel from being transferred to the subsequent solid-liquid separation process S3 or the like.
 <3-3.最終中和設備への移送構成、並びに最終中和設備への移送時の操業フロー>
  <3-3-1.最終中和設備への移送構成>
 また、操業開始後の立ち上げ操作で、例えば浸出処理槽11(2)の昇温が終了し、鉱石スラリーや硫酸の供給が開始された状況においても、その浸出処理槽11(2)では未だ十分な浸出処理が行われず、所望とするニッケル濃度の浸出スラリーが排出されない。そのような浸出開始直後の殆どニッケル等が浸出していない浸出スラリーは、やはり次工程に移送することはできない。
<3-3. Transfer configuration to final neutralization equipment and operation flow during transfer to final neutralization equipment>
<3-3-1. Transfer configuration to final neutralization equipment>
Further, even when the temperature rise of the leaching treatment tank 11 (2) is completed and the supply of ore slurry and sulfuric acid is started by the start-up operation after the start of the operation, the leaching treatment tank 11 (2) is still not in the leaching treatment tank 11 (2). Sufficient leaching treatment is not performed, and a leaching slurry having a desired nickel concentration is not discharged. Such a leach slurry in which almost no nickel or the like has been leached immediately after the start of leaching cannot be transferred to the next step.
 そこで、本実施の形態に係る湿式製錬プラント10においては、図5に示すように、予備中和設備12における第1段目の中和処理槽12A(1),12A(2)と、浸出設備11における浸出処理槽11(1),11(2)と最終中和設備14とをつなげる配管22を接続させる。この配管22は、第1段目の中和処理槽12A(1),12A(2)の各系列からそれぞれ単独で、若しくは、各系列から所定の箇所で統合されて、最終中和設備14の装入部に接続されている。 Therefore, in the hydrometallurgical plant 10 according to the present embodiment, as shown in FIG. 5, the first stage neutralization treatment tanks 12A (1) and 12A (2) in the preliminary neutralization facility 12 and leaching A pipe 22 connecting the leaching treatment tanks 11 (1) , 11 (2) and the final neutralization equipment 14 in the equipment 11 is connected. The pipe 22 is independent from each series of the first stage neutralization treatment tanks 12A (1) and 12A (2) , or is integrated at a predetermined location from each series, so that the final neutralization equipment 14 Connected to the charging section.
 この配管22には、移送ポンプ31が設けられており、第1段目の中和処理槽12A(1),12A(2)から排出される浸出スラリーを、その移送ポンプ31によって最終中和設備14に移送する。 The pipe 22 is provided with a transfer pump 31, and the leach slurry discharged from the first- stage neutralization tanks 12 A (1) and 12 A (2) is finally neutralized by the transfer pump 31. 14 to transfer.
 また、この配管22の内部には、例えば中和処理槽12A(1),12A(2)と上述の移送ポンプとの間に、浸出スラリーの移送を制御するON/OFFバルブ42(1),42(2)が設けられている。そして、後で詳述するが、第1段目の中和処理槽12A(1),12A(2)から最終中和設備14に浸出スラリーを移送させる際には、そのON/OFFバルブ42(1),42(2)をON状態(「開」状態)として、排出された浸出スラリーを移送可能とする。なお、上述した通常操業時においては、この最終中和設備14に移送するための配管に設けられたON/OFFバルブ42(1),42(2)はOFF状態(「閉」状態)となっている。 In addition, an ON / OFF valve 42 (1) , which controls the transfer of the leach slurry, for example, between the neutralization tanks 12A (1) , 12A (2) and the above-described transfer pump is provided inside the pipe 22. 42 (2) is provided. As will be described in detail later, when the leaching slurry is transferred from the first stage neutralization treatment tanks 12A (1) and 12A (2) to the final neutralization facility 14, the ON / OFF valve 42 ( 1) , 42 (2) is turned on (“open” state) to allow the discharged leach slurry to be transferred. During the normal operation described above, the ON / OFF valves 42 (1) and 42 (2) provided in the pipe for transferring to the final neutralization facility 14 are in the OFF state (“closed” state). ing.
  <3-3-2.最終中和設備への移送時の操業フロー>
 次に、湿式製錬プラント10において、上述した配管22を用いた、最終中和設備14への移送時の操業方法について、図5の操業の流れを示す図を用いて説明する。なお、図5に示すように、第1系列と第2系列の複数系列のうちの第2系列の処理設備において、浸出スラリーを最終中和設備14へ移送する操業を例に挙げて説明する。
<3-3-2. Operation flow during transfer to final neutralization equipment>
Next, an operation method at the time of transfer to the final neutralization facility 14 using the above-described pipe 22 in the hydrometallurgical plant 10 will be described with reference to the operation flow diagram of FIG. As shown in FIG. 5, the operation of transferring the leached slurry to the final neutralization facility 14 in the second series of processing equipment of the first series and the second series will be described as an example.
 例えば、第2系列の処理設備のみの立ち上げ操作を行った後、浸出処理槽11(2)の昇温が終了した段階では、その浸出処理槽11(2)にて少しずつ浸出処理が進行しているものの、未だ不十分な状態であるため、排出される浸出スラリー中のニッケル濃度は低いものとなっている。 For example, after the start-up operation of only the second-line processing equipment, after the temperature rise of the leaching treatment tank 11 (2) is completed, the leaching process proceeds little by little in the leaching treatment tank 11 (2) . However, since it is still insufficient, the nickel concentration in the discharged leaching slurry is low.
 そこで、このような段階においては、図5の白抜き矢印で示す流れのように、先ず、浸出処理槽11(2)から浸出スラリーを排出させ、同系列の第1段目の中和処理槽12A(2)に移送させる。その後、その中和処理槽12A(2)と最終中和設備14とを接続する配管22を介し、中和処理槽12A(2)から最終中和設備14へ浸出スラリーを移送させる。 Therefore, in such a stage, as shown by the flow indicated by the white arrow in FIG. 5, first, the leaching slurry is discharged from the leaching treatment tank 11 (2) , and the first stage neutralization treatment tank of the same series. Transfer to 12A (2) . Then, via a pipe 22 which connects the neutralization tank 12A and (2) and a final neutralization equipment 14, transferring the leached slurry from the neutralization tank 12A (2) to a final neutralization equipment 14.
 具体的に、浸出スラリーを最終中和設備14に移送させるに際しては、上述した自己循環用の配管(第1段目の中和処理槽12A(2)と浸出処理槽11(2)とを接続する配管)21(2)に設けられたON/OFFバルブ43をOFF状態(「閉」状態)とする。次に、第1段目の中和処理槽12A(2)と最終中和設備14とを接続する配管22に設けられたON/OFFバルブ42(2)をON状態(「開」状態)とする。そして、その配管22に設けられた移送ポンプ31により、中和処理槽12A(2)から最終中和設備14へ浸出スラリーを移送させる。 Specifically, when the leaching slurry is transferred to the final neutralization equipment 14, the above-described self-circulation piping (first stage neutralization treatment tank 12A (2) and leaching treatment tank 11 (2) are connected. Piping) 21 The ON / OFF valve 43 provided in (2) is turned off (“closed” state). Next, the ON / OFF valve 42 (2) provided in the pipe 22 connecting the first-stage neutralization treatment tank 12A (2) and the final neutralization equipment 14 is turned on ("open" state). To do. Then, the leach slurry is transferred from the neutralization tank 12A (2) to the final neutralization facility 14 by the transfer pump 31 provided in the pipe 22.
 この最終中和設備14への浸出スラリーの移送操業は、例えば、浸出処理槽11(2)から排出される浸出スラリーのニッケル濃度が、固液分離設備13において多段に設けたシックナーのうちの最終段目のシックナー(CCD6)における液相のニッケル濃度よりも低い場合に行うようにする。なお、この段階、すなわち最終中和設備14への移送操業を行う段階における浸出スラリーの有価金属濃度としては、例えばニッケル換算で0~5g/L程度である。 The transfer operation of the leaching slurry to the final neutralization equipment 14 is performed, for example, by the nickel concentration of the leaching slurry discharged from the leaching treatment tank 11 (2) among the thickeners provided in multiple stages in the solid-liquid separation equipment 13. This is performed when the nickel concentration in the liquid phase in the stage thickener (CCD 6) is lower. Note that the valuable metal concentration of the leaching slurry at this stage, that is, the stage of carrying out the transfer operation to the final neutralization facility 14 is, for example, about 0 to 5 g / L in terms of nickel.
 以上のように、本実施の形態に係る湿式製錬プラント10では、第1段目の中和処理槽12A(1),12A(2)と最終中和設備14とをつなげる配管22を設けることで、操業開始の十分に浸出処理が進行していない段階で排出された浸出スラリーを、最終中和設備14に移送させることを可能にしている。これにより、ニッケル濃度の低い浸出スラリーを後工程における固液分離工程S3等に移送されることを防止することができる。 As described above, in the hydrometallurgical plant 10 according to the present embodiment, the piping 22 that connects the first-stage neutralization treatment tanks 12A (1) , 12A (2) and the final neutralization equipment 14 is provided. Thus, the leaching slurry discharged at the stage where the leaching process is not sufficiently advanced at the start of operation can be transferred to the final neutralization facility 14. Thereby, it is possible to prevent the leaching slurry having a low nickel concentration from being transferred to the solid-liquid separation step S3 or the like in the subsequent step.
 <3-4.固液分離槽への移送構成、並びに固液分離槽への移送時の操業フロー>
  <3-4-1.固液分離槽への移送構成>
 さらに、操業開始後から徐々に浸出処理が進行し、浸出処理槽11(2)から排出される浸出スラリーのニッケル濃度が固液分離設備の最終段目のシックナー(CCD6)における浸出液のニッケル濃度より高くなった場合でも、未だニッケル濃度が十分ではない場合には、次工程に移送することができない。すなわち、第2段目の中和処理槽12Bに移送すべき浸出スラリーの所望とするニッケル濃度よりも低い場合には、次工程に移送することができない。
<3-4. Transfer configuration to solid-liquid separation tank and operation flow at the time of transfer to solid-liquid separation tank>
<3-4-1. Transfer configuration to solid-liquid separation tank>
Furthermore, the leaching process gradually proceeds after the start of operation, and the nickel concentration of the leaching slurry discharged from the leaching treatment tank 11 (2) is more than the nickel concentration of the leachate in the final stage thickener (CCD 6) of the solid-liquid separation facility. Even if it becomes high, if the nickel concentration is still insufficient, it cannot be transferred to the next step. That is, when it is lower than the desired nickel concentration of the leaching slurry to be transferred to the second-stage neutralization tank 12B, it cannot be transferred to the next step.
 そこで、本実施の形態に係る湿式製錬プラント10においては、図6に示すように、予備中和設備12における第1段目の中和処理槽12A(1),12A(2)と、固液分離設備13において多段に設けた各固液分離槽(シックナー)とをつなげる配管23を接続させる。この配管23は、第1段目の中和処理槽12A(1),12A(2)の各系列からそれぞれ単独で、若しくは、各系列から所定の箇所で統合されて、各固液分離槽の装入部に接続されている。より具体的には、この配管23は、第1段目の中和処理槽12A(1),12A(2)から固液分離設備13の方向へ延び、固液分離設備13を構成する多段に連結されたそれぞれの固液分離槽(CCD1、CCD2、・・・CCD6)に連結されるように分岐している。 Therefore, in the hydrometallurgical plant 10 according to the present embodiment, as shown in FIG. 6, the first stage neutralization treatment tanks 12A (1) and 12A (2) in the preliminary neutralization facility 12 are In the liquid separation equipment 13, pipes 23 that connect the respective solid-liquid separation tanks (thickeners) provided in multiple stages are connected. This pipe 23 is independent from each series of the first-stage neutralization treatment tanks 12A (1) and 12A (2) , or is integrated at a predetermined location from each series, so that each solid-liquid separation tank Connected to the charging section. More specifically, the pipe 23 extends from the first-stage neutralization treatment tanks 12A (1) and 12A (2) toward the solid-liquid separation facility 13 and has multiple stages constituting the solid-liquid separation facility 13. It branches so that it may be connected with each connected solid-liquid separation tank (CCD1, CCD2, ... CCD6).
 この配管23には、移送ポンプ31が設けられており、第1段目の中和処理槽12A(1),12A(2)から排出される浸出スラリーを、その移送ポンプ31によって固液分離設備13における所定の固液分離槽に移送する。 The pipe 23 is provided with a transfer pump 31, and the leaching slurry discharged from the first- stage neutralization tanks 12 A (1) and 12 A (2) is solid-liquid separated by the transfer pump 31. 13 is transferred to a predetermined solid-liquid separation tank.
 また、この配管23の内部には、例えば中和処理槽12A(1),12A(2)と上述の移送ポンプ31との間に、浸出スラリーの移送を制御するON/OFFバルブ42(1),42(2)が設けられている。そして、後で詳述するが、中和処理槽12A(1),12A(2)から固液分離設備13における所定の固液分離槽に浸出スラリーを移送させる際には、そのON/OFFバルブ42(1),42(2)をON状態(「開」状態)として、排出された浸出スラリーを移送可能とする。なお、上述した通常操業時においては、所定の固液分離槽に移送するための配管23に設けられたON/OFFバルブ42(1),42(2)はOFF状態(「閉」状態)となっている。 In addition, an ON / OFF valve 42 (1) for controlling the transfer of the leaching slurry between the neutralization tanks 12A (1) , 12A (2) and the above-described transfer pump 31, for example, is provided inside the pipe 23. , 42 (2) are provided. As will be described in detail later, when the leaching slurry is transferred from the neutralization tanks 12A (1) and 12A (2) to a predetermined solid-liquid separation tank in the solid-liquid separation facility 13, the ON / OFF valve is used. 42 (1) and 42 (2) are turned on (“open” state), and the discharged leached slurry can be transferred. In the normal operation described above, the ON / OFF valves 42 (1) and 42 (2) provided in the pipe 23 for transferring to a predetermined solid-liquid separation tank are in an OFF state (“closed” state). It has become.
 さらに、この配管23には、多段に連結されたそれぞれ固液分離槽へ向かう各分岐点において、浸出スラリーの移送を制御するON/OFFバルブ44が設けられている。これにより、移送する浸出スラリー中のニッケル濃度に応じて、適切な移送先である固液分離槽に移送制御することが可能となっている。なお、移送先を制御する方法としては、所定の分岐点に移送先を切り替える切替バルブを設けて、その切替バルブの切替制御によって行うようにしてもよい。 Further, the pipe 23 is provided with an ON / OFF valve 44 for controlling the transfer of the leaching slurry at each branch point toward the solid-liquid separation tanks connected in multiple stages. Thereby, according to the nickel density | concentration in the leaching slurry to transfer, it is possible to carry out transfer control to the solid-liquid separation tank which is an appropriate transfer destination. As a method for controlling the transfer destination, a switching valve for switching the transfer destination may be provided at a predetermined branch point, and switching control of the switching valve may be performed.
  <3-4-2.固液分離槽への移送時の操業フロー>
 次に、湿式製錬プラント10において、上述した配管23を用いた、固液分離設備13を構成する固液分離槽への移送時の操業方法について、図6の操業の流れを示す図を用いて説明する。なお、図6に示すように、第1系列と第2系列の複数系列のうちの第2系列の処理設備において、浸出スラリーを固液分離設備13における第2段目の固液分離槽(CCD2)へ移送する操業を例に挙げて説明する。
<3-4-2. Operation flow during transfer to solid-liquid separation tank>
Next, in the hydrometallurgical plant 10, about the operation method at the time of the transfer to the solid-liquid separation tank which comprises the solid-liquid separation equipment 13 using the piping 23 mentioned above, the figure which shows the flow of operation of FIG. 6 is used. I will explain. As shown in FIG. 6, in the second series of processing equipment of the first series and the second series, the leach slurry is used as the second-stage solid-liquid separation tank (CCD 2) in the solid-liquid separation equipment 13. ) Will be described as an example.
 例えば、第2系列の処理設備の立ち上げ操作を行った後に浸出処理が徐々に進行している状況においても、通常操業のレベルほどに浸出処理が十分ではない場合には、浸出処理槽11(2)から排出される浸出スラリーのニッケル濃度が低いため、次工程に移送することができない。具体的には、例えば、浸出処理が進行して浸出スラリー中の有価金属濃度がニッケル換算で5g/Lを超えるようなときでも、第2段目の中和処理槽12Bに移送すべき浸出スラリーの所望とするニッケル濃度よりも低い場合には、次工程に移送することができない。 For example, even in a situation where the leaching process is gradually progressing after the start-up operation of the second series of processing equipment, if the leaching process is not sufficient to the level of the normal operation, the leaching process tank 11 ( Since the nickel concentration of the leaching slurry discharged from 2) is low, it cannot be transferred to the next step. Specifically, for example, even when the leaching treatment proceeds and the valuable metal concentration in the leaching slurry exceeds 5 g / L in terms of nickel, the leaching slurry to be transferred to the second stage neutralization treatment tank 12B. If it is lower than the desired nickel concentration, it cannot be transferred to the next step.
 そこで、このような段階においては、図6の白抜き矢印で示す流れのように、先ず、浸出処理槽11(2)から浸出スラリーを排出させ、同系列の第1段目の中和処理槽12A(2)に移送させる。その後、その中和処理槽12A(2)と固液分離設備13とを接続する配管23を介し、中和処理槽12A(2)から固液分離設備13へ浸出スラリーを移送させる。 Therefore, in such a stage, as shown by the flow indicated by the white arrow in FIG. 6, first, the leaching slurry is discharged from the leaching treatment tank 11 (2) , and the first stage neutralization treatment tank of the same series. Transfer to 12A (2) . Then, via a pipe 23 for connecting the the solid-liquid separation equipment 13 neutralization treatment tank 12A (2), the leach slurry is transferred from the neutralization tank 12A (2) to solid-liquid separation equipment 13.
 このとき、浸出スラリー中の有価金属濃度に応じて、その濃度に見合った固液分離槽に送るようにする。例えば、浸出スラリー中の有価金属濃度がニッケル換算で2.5g/Lであった場合には、通常操業(定常)時における液相のニッケル換算濃度が約2.5g/Lである第2段目の固液分離槽(CCD2)に移送させるようにする。このように、その浸出スラリー中の有価金属濃度に応じて移送先を適切に制御することにより、通常操業中の第1系列に影響を与えることを防止することができ、効率的な操業を可能にする。 At this time, depending on the valuable metal concentration in the leaching slurry, it is sent to the solid-liquid separation tank corresponding to the concentration. For example, when the valuable metal concentration in the leaching slurry is 2.5 g / L in terms of nickel, the second stage where the nickel equivalent concentration in the liquid phase during normal operation (steady state) is about 2.5 g / L. It is made to transfer to the solid-liquid separation tank (CCD2) of eyes. In this way, by appropriately controlling the transfer destination according to the valuable metal concentration in the leaching slurry, it is possible to prevent the first system during normal operation from being affected, and efficient operation is possible. To.
 具体的に、浸出スラリーを固液分離設備13におけるCCD2に移送させるに際しては、上述した自己循環用の配管(第1段目の中和処理槽12A(2)と浸出処理槽11(2)とを接続する配管)21(2)に設けられたON/OFFバルブ43をOFF状態(「閉」状態)とする。さらに、上述した最終中和設備14へ浸出スラリーを移送するため配管(第1段目の中和処理槽12A(2)と最終中和設備14とを接続する配管)22に設けられたON/OFFバルブ45をOFF状態(「閉」状態)とする。 Specifically, when the leaching slurry is transferred to the CCD 2 in the solid-liquid separation facility 13, the above-described self-circulation piping (first stage neutralization treatment tank 12A (2) and leaching treatment tank 11 (2) , 21 ) The ON / OFF valve 43 provided in (2) is turned off (“closed” state). Further, an ON / OFF provided in a pipe 22 (a pipe connecting the first-stage neutralization treatment tank 12A (2) and the final neutralization equipment 14) 22 for transferring the leach slurry to the final neutralization equipment 14 described above. The OFF valve 45 is turned off (“closed” state).
 次に、第1段目の中和処理槽12A(2)と固液分離設備13とを接続する配管23に設けられたON/OFFバルブ42(2)をON状態(「開」状態)とする。そして、その配管23に設けられた移送ポンプ31により、第1段目の中和処理槽12A(2)から固液分離設備13へ浸出スラリーを移送させる。このとき、固液分離設備13における各固液分離槽へ分岐させる各分岐点に設けられたON/OFFバルブ44を制御して、CCD2に浸出スラリーが移送されるようにする。具体的には、CCD2への分岐点におけるON/OFFバルブ44をON状態(「開」状態)とし、それ以外のCCD1、CCD3~CCD6への分岐点のON/OFFバルブ44をOFF状態(「閉」状態)とする。 Next, the ON / OFF valve 42 (2) provided in the pipe 23 connecting the first stage neutralization treatment tank 12A (2) and the solid-liquid separation facility 13 is turned on ("open" state). To do. Then, the leaching slurry is transferred from the first-stage neutralization tank 12A (2) to the solid-liquid separation facility 13 by the transfer pump 31 provided in the pipe 23. At this time, the ON / OFF valve 44 provided at each branch point for branching to each solid-liquid separation tank in the solid-liquid separation facility 13 is controlled so that the leached slurry is transferred to the CCD 2. Specifically, the ON / OFF valve 44 at the branch point to the CCD 2 is turned on (“open” state), and the ON / OFF valves 44 at the other branch points to the CCD 1 and CCD 3 to CCD 6 are turned off (“ Closed state).
 以上のように、本実施の形態に係る湿式製錬プラント10では、第1段目の中和処理槽12A(1),12A(2)と固液分離設備13とをつなげる配管23を設けることで、操業開始後の未だ浸出処理が十分ではなくニッケル濃度の低い浸出スラリーを、所定の固液分離槽に移送させることを可能にしている。これにより、ニッケル濃度の低い浸出スラリーが、通常操業を継続している系列から排出された浸出スラリーと混じって移送されることを防止し、後工程における反応不良や操業効率の低下を防止することができる。 As described above, in the hydrometallurgical plant 10 according to the present embodiment, the piping 23 that connects the first- stage neutralization tanks 12A (1) and 12A (2) and the solid-liquid separation facility 13 is provided. Thus, the leaching process after the start of operation is not yet sufficient and the leaching slurry having a low nickel concentration can be transferred to a predetermined solid-liquid separation tank. This prevents the leaching slurry with a low nickel concentration from being mixed with the leaching slurry discharged from the series that is normally operating, and prevents reaction failures and deterioration of operation efficiency in the subsequent process. Can do.
 <3-5.非通常時操業から通常操業への移行>
 そして、操業開始から所定の時間が経過し、浸出処理槽11(2)から排出される浸出スラリー中の有価金属濃度や送液流量等の操業条件が通常操業時のレベルに復帰したときには、上述したそれぞれの非通常時操業のルートを閉じて、通常操業時のルートにて通常操業を行うようにする。
<3-5. Transition from non-normal operation to normal operation>
Then, when a predetermined time has elapsed from the start of operation and the operation conditions such as the concentration of valuable metals in the leaching slurry discharged from the leaching treatment tank 11 (2) and the flow rate of the liquid return to the normal operation level, Each non-normal operation route is closed, and normal operation is performed on the normal operation route.
 すなわち、浸出処理槽11(2)から排出された浸出スラリーを第1段目の中和処理槽12A(2)に移送した後、第1段目の中和処理槽12A(2)と第2段目の中和処理槽12Bとをつなぐ配管24(2)を通じて、浸出スラリーを第2段目の中和処理槽12Bにオーバーフローさせる。そして、第2段目の中和処理槽12Bから、固液分離設備13におけるCCD1に浸出スラリーを移送して固液分離処理を施すようにする。 That is, after transferring the leach slurry discharged from the leaching vessel 11 (2) to the first stage of the neutralization tank 12A (2), first stage neutralization tank 12A and (2) second Through the pipe 24 (2) connecting the stage neutralization tank 12B, the leaching slurry is allowed to overflow into the second stage neutralization tank 12B. Then, the leaching slurry is transferred from the second-stage neutralization tank 12B to the CCD 1 in the solid-liquid separation facility 13 to perform the solid-liquid separation process.
 <3-6.まとめ>
 以上のように、本実施の形態に係る湿式製錬プラント10によれば、設備コストを低減させながら、ニッケル酸化鉱石の処理量を増加させてニッケル・コバルト混合硫化物の生産量を向上させることができる。また、複数系列の処理設備から得られる各浸出スラリーにpH等の性状のバラつきが生じた場合でも、その各系列から排出された浸出スラリーを第2段目の中和処理槽12Bにて合流させるようにしているので、そのバラつきを解消することができ、均一な浸出スラリーとして固液分離処理を施すことができる。
<3-6. Summary>
As described above, according to the hydrometallurgical plant 10 according to the present embodiment, the amount of nickel oxide ore is increased and the production amount of nickel / cobalt mixed sulfide is improved while reducing the equipment cost. Can do. Further, even if the leaching slurries obtained from a plurality of series of treatment facilities have variations in properties such as pH, the leaching slurries discharged from the respective series are merged in the second stage neutralization treatment tank 12B. Therefore, the variation can be eliminated, and the solid-liquid separation process can be performed as a uniform leaching slurry.
 また、この湿式製錬プラント10では、上述したような配管21,22,23を備えることによって、処理設備の立ち上げ時等の非通常時において、ニッケル濃度の低い浸出スラリーが後工程に移送させることを防止することができる。これにより、後工程における反応不良や操業効率の低下を抑制することができる。 Moreover, in this hydrometallurgical plant 10, by providing the pipes 21, 22, and 23 as described above, the leaching slurry having a low nickel concentration is transferred to a subsequent process at an abnormal time such as when the processing equipment is started up. This can be prevented. Thereby, the reaction failure in a post process and the fall of operational efficiency can be suppressed.
 そして、この湿式製錬プラント10では、上述した配管21,22,23を、2段の中和処理槽で構成した予備中和設備12のうちの第1段目の中和処理槽12A(1),12A(2)から接続させるようにしている。このことから、通常操業を継続している一方の系列における操業に影響を与えることがない。つまり、図4~6の例で示したように、立ち上げ操業中の第2系列においては、浸出スラリーを自己循環、または最終中和設備14や固液分離設備13に移送させている一方で、第1系列においては、黒塗り矢印で示す流れのように、通常通りの操業を行うことが可能となっている。このように、湿式製錬プラント10では、2段の中和処理槽を設けるようにし、第1段目の中和処理槽のみを複数系列とすることによって、一方の系列に影響を与えることなく、操業開始時の立ち上げ操作(非通常時操業)を行うことができる。 And in this hydrometallurgical plant 10, the first-stage neutralization tank 12A (1 ) of the pre-neutralization equipment 12 in which the pipes 21, 22, and 23 described above are constituted by two-stage neutralization tanks. ) , 12A (2) . For this reason, there is no influence on the operation in one of the lines where the normal operation is continued. That is, as shown in the examples of FIGS. 4 to 6, in the second series during the start-up operation, the leaching slurry is self-circulated or transferred to the final neutralization facility 14 or the solid-liquid separation facility 13 while In the first series, it is possible to perform a normal operation as shown by a black arrow. In this way, in the hydrometallurgical plant 10, a two-stage neutralization tank is provided, and only one first-stage neutralization tank is provided as a plurality of lines, so that one of the lines is not affected. The start-up operation at the start of operation (non-normal operation) can be performed.
 なお、一方の系列(例えば第2系列)において非通常時の操業を行った場合には、両系列共に通常操業を行った場合に比べて、第2段目の中和処理槽12Bに移送される浸出スラリーの液量が少なくなる。そのため、その液量に見合う程度に、通常操業時用のポンプの能力や後工程における処理能力を低下させて、操業を継続することになる。しかしながら、上述したように、他方の系列(例えば第1系列)において、運転を停止させることなく通常操業が可能となっているため、製品の品質等には何ら影響は出ない。 It should be noted that when the non-normal operation is performed in one of the series (for example, the second series), it is transferred to the second stage neutralization treatment tank 12B as compared to the case where both the series are operated normally. The amount of leaching slurry is reduced. Therefore, the operation is continued by reducing the capacity of the pump for normal operation and the processing capacity in the subsequent process to the extent appropriate for the amount of liquid. However, as described above, in the other series (for example, the first series), normal operation is possible without stopping the operation, so there is no influence on the quality of the product.
 また、図1、図3~6では、非通常時操業にて使用する配管21,22,23の一部を共用配管とした構成を示している。また、浸出スラリーをそれら配管21,22,23を介して移送するための移送ポンプ31も共通としている。しかしながら、これに限られるものではなく、それぞれの配管21,22,23を完全に個別に設けるようにしてもよく、それぞれに移送ポンプを設けるようにしてもよいことは言うまでもない。また、この湿式製錬プラント10においては、移送経路等を考慮して適宜配管の設置方法を決定すればよい。なお、配管において、共用可能な部分については共用とすることによって設備点数やコストを削減することができ、好ましい。 1 and FIGS. 3 to 6 show a configuration in which some of the pipes 21, 22, and 23 used in the non-normal operation are shared pipes. Moreover, the transfer pump 31 for transferring the leaching slurry through the pipes 21, 22, 23 is also common. However, the present invention is not limited to this, and it goes without saying that the pipes 21, 22, and 23 may be provided completely individually, and a transfer pump may be provided for each of them. Moreover, in this hydrometallurgical plant 10, what is necessary is just to determine the installation method of piping suitably in consideration of a transfer route. In addition, it is preferable because the number of equipment and the cost can be reduced by sharing the sharable parts in the piping.
 また、図1、図3~6では、非通常時操業にて使用する配管21,22,23のすべてを備えた態様を示しているが、何れか1つ又は2つの配管を備えるものであってもよい。 1 and FIGS. 3 to 6 show an embodiment in which all of the pipes 21, 22, and 23 used in the non-normal operation are shown, but one or two pipes are provided. May be.
 ≪4.実施例≫
 次に、本発明を適用した実施例を説明するが、本発明は下記の実施例に何ら限定されるものではない。
<< 4. Examples >>
Next, examples to which the present invention is applied will be described, but the present invention is not limited to the following examples.
 <湿式製錬プラントの操業>
 (操業例1)
 ニッケル酸化鉱石の湿式製錬プラントにおいて、図1に示すように各処理設備を構成させ、30日間の湿式製錬操業を実施した。
<Operation of wet smelting plant>
(Operation example 1)
In a nickel oxide ore hydrometallurgical plant, each treatment facility was configured as shown in FIG. 1 and a 30-day hydrometallurgical operation was carried out.
 すなわち、2系列の浸出処理槽11(1),11(2)を有する浸出設備11と、2段の中和処理槽を備え、第1段目の中和処理槽12A(1),12A(2)を浸出処理槽と対応するように2系列とし、第2段目の中和処理槽12Bを単一の系列とした予備中和設備12とを具備する湿式製錬プラント10により操業を行った。なお、固液分離設備13では、図1に示すように、シックナーを6段連結(CCD1~CCD6)させて多段洗浄を行うようにした。 That is, a leaching facility 11 having two series of leaching treatment tanks 11 (1) and 11 (2) and a two-stage neutralization treatment tank are provided, and the first-stage neutralization treatment tanks 12A (1) and 12A ( The operation is performed by the hydrometallurgical plant 10 including the pre-neutralization facility 12 in which 2) corresponds to the leaching treatment tank and the second stage neutralization treatment tank 12B is a single series. It was. In the solid-liquid separation equipment 13, as shown in FIG. 1, six stages of thickeners (CCD1 to CCD6) are connected to perform multi-stage cleaning.
 その結果、30日の期間に、高圧酸浸出を行った浸出設備での浸出不良等は発生せず、2系列のいずれの系においても、操業が停止することはなかった。また、この操業にて得られたニッケル・コバルト混合硫化物の生産量は、ニッケル換算量で2500トンであり、その製品品質にも何ら問題はなかった。 As a result, no leaching failure occurred in the leaching equipment subjected to high pressure acid leaching during the 30-day period, and the operation did not stop in any of the two systems. Further, the production amount of the nickel / cobalt mixed sulfide obtained in this operation was 2500 tons in terms of nickel, and there was no problem in the product quality.
 なお、固液分離設備13における各段のCCDの液相における有価金属の設定値は、ニッケル換算濃度で、CCD1:3g/L、CCD2:2.5g/L、CCD3:2g/L、CCD4:1.5g/L、CCD5:1g/L、CCD6:0.5g/L以下となるようにした。 The set values of valuable metals in the liquid phase of the CCD of each stage in the solid-liquid separation equipment 13 are nickel equivalent concentrations, CCD1: 3 g / L, CCD 2: 2.5 g / L, CCD 3: 2 g / L, CCD 4: 1.5 g / L, CCD 5: 1 g / L, CCD 6: 0.5 g / L or less.
 (操業例2)
 操業例1において使用した湿式製錬プラント10と同様のプラントを用いて、30日間の湿式製錬操業を実施した。なお、固液分離設備13における各段のCCDの液相における有価金属の設定値は、操業例1と同様となるようにした。
(Operation example 2)
Using a plant similar to the wet smelting plant 10 used in Operation Example 1, a 30 day wet smelting operation was carried out. The set value of the valuable metal in the liquid phase of the CCD of each stage in the solid-liquid separation equipment 13 was set to be the same as in Operation Example 1.
 この操業例2の操業では、その操業期間中に、第1系列又は第2系列における浸出処理槽11(1),11(2)での設備トラブルによる停止が5回発生した。そのため、設備トラブルが生じた系列の停止と立ち上げ操業を5回実施した。このとき、立ち上げ操業に際しては、図4~図6に示したように、浸出処理槽11(1),11(2)から排出される浸出スラリーのニッケル濃度に応じて、非通常時の操業を行うようにした。なお、そのような立ち上げ操業において、停止から復帰までの平均所要時間は1日であった。 In the operation of this operation example 2, during the operation period, there were five stoppages due to equipment troubles in the leaching treatment tanks 11 (1) and 11 (2) in the first line or the second line. For this reason, we stopped and started up the line where the equipment trouble occurred, 5 times. At this time, in the start-up operation, as shown in FIGS. 4 to 6, the operation is performed in an abnormal state according to the nickel concentration of the leaching slurry discharged from the leaching treatment tanks 11 (1) and 11 (2). To do. In such start-up operation, the average required time from stop to return was one day.
 30日間の操業の結果、得られたニッケル・コバルト混合硫化物の生産量は、2075トン(操業例1の約83%)であり、製品品質にも何ら問題はなかった。 As a result of operation for 30 days, the amount of nickel-cobalt mixed sulfide produced was 2075 tons (about 83% of Operation Example 1), and there was no problem in product quality.
 (操業例3)
 操業例1において使用した湿式製錬プラント10と同様のプラントを用いて、30日間の湿式製錬操業を実施した。なお、固液分離設備13における各段のCCDの液相における有価金属の設定値は、操業例1と同様となるようにした。
(Operation example 3)
Using a plant similar to the wet smelting plant 10 used in Operation Example 1, a 30 day wet smelting operation was carried out. The set value of the valuable metal in the liquid phase of the CCD of each stage in the solid-liquid separation equipment 13 was set to be the same as in Operation Example 1.
 この操業例3においても、操業例2と同様に、その操業期間中に、第1系列又は第2系列における浸出処理槽11(1),11(2)での浸出不良が5回発生した。そのため、浸出不良が生じた系列の停止と立ち上げ操業を5回実施した。このとき、操業例3においては、湿式製錬プラント10全体を停止させた。なお、そのような立ち上げ操業において、停止から復帰までの平均時間は2日であった。 Also in this operation example 3, like the operation example 2, during the operation period, the leaching failure occurred in the leaching treatment tanks 11 (1) and 11 (2) in the first series or the second series five times. For this reason, the series where the leaching failure occurred was stopped and started up five times. At this time, in Operation Example 3, the entire hydrometallurgical plant 10 was stopped. In such start-up operation, the average time from stop to return was 2 days.
 30日間の操業の結果、得られたニッケル・コバルト混合硫化物の製品品質には問題はなかったものの、その生産量が、1300トン(操業例1の約52%)と非常に少なくなり十分な量を生産できなかった。 As a result of the operation for 30 days, there was no problem in the product quality of the obtained nickel-cobalt mixed sulfide, but its production amount was very small as 1300 tons (about 52% of Operation Example 1) Could not produce quantity.
 理論上の単純計算では、操業例1の67%程度の生産量を見込めたものの、1300トンとなってしまった理由としては、浸出不良が生じた際に、湿式製錬プラント10全体を停止させるようにしたことに依ると考えられる。すなわち、プラント全体を停止させたために、例えば脱亜鉛工程S5やニッケル回収工程S6等における操業の停止及び再立ち上げを行う必要が生じ、またプラントにおける各処理設備の操業開始のタイミングを合わせたために、余分な停止時間が必要となってしまったと考えられる。 In theoretical simple calculation, although the production volume of about 67% of the operation example 1 can be expected, the reason for having become 1300 tons is to stop the entire hydrometallurgical plant 10 when leaching failure occurs. It is thought that it depends on doing so. That is, because the entire plant is stopped, for example, it is necessary to stop and restart the operation in the dezincing step S5, the nickel recovery step S6, etc., and the timing of starting the operation of each processing facility in the plant is adjusted. It is thought that extra stop time was required.
 (操業例4)
 操業例1において使用した湿式製錬プラント10と同様のプラントを用いて、30日間の湿式製錬操業を実施した。
(Operation example 4)
Using a plant similar to the wet smelting plant 10 used in Operation Example 1, a 30 day wet smelting operation was carried out.
 この操業例4においても、操業例2と同様に、その操業期間中に、第1系列又は第2系列における浸出処理槽11(1),11(2)での浸出不良が5回発生した。そのため、浸出不良が生じた系列の停止と立ち上げ操業を5回実施した。このとき、操業例4においては、立ち上げ中の浸出処理槽11(1),11(2)から排出された浸出スラリー、すなわち浸出処理が十分ではなくニッケル濃度の低い浸出スラリーを、そのまま第1段目の中和処理槽12A(1),12A(2)を経由して第2段目の中和処理槽12Bに移送させた。なお、そのような立ち上げ操業において、停止から復帰までの平均時間は2日であった。 Also in this operation example 4, like the operation example 2, during the operation period, the leaching failure occurred in the leaching treatment tanks 11 (1) and 11 (2) in the first series or the second series five times. For this reason, the series where the leaching failure occurred was stopped and started up five times. At this time, in the operation example 4, the leaching slurry discharged from the leaching treatment tanks 11 (1) and 11 (2) being started up, that is, the leaching slurry having a low nickel concentration due to insufficient leaching treatment is used as it is. It was made to transfer to the neutralization processing tank 12B of the 2nd step via the neutralization processing tank 12A (1) , 12A (2) of the step. In such start-up operation, the average time from stop to return was 2 days.
 30日間の操業の結果、得られたニッケル・コバルト混合硫化物の生産量は、2250トン(操業例1の約90%)であったものの、その製品品質が悪化してしまった。具体的には、ニッケル・コバルト混合硫化物中の有価金属比率が低下し、またバラついて、製品として出荷できない不良品となってしまい、廃棄処分をせざるを得なかった。 As a result of the operation for 30 days, the production amount of the obtained nickel-cobalt mixed sulfide was 2250 tons (about 90% of the operation example 1), but the product quality deteriorated. Specifically, the ratio of valuable metals in the nickel / cobalt mixed sulfide decreased, and it became a defective product that could not be shipped as a product, which had to be disposed of.
 このことは、立ち上げ操業(非通常時操業)においても、浸出処理が不十分な段階で得られた浸出スラリーをそのまま後工程に移送させるようにしたことに依ると考えられる。すなわち、ニッケル濃度の低い浸出スラリーが後工程に移送されて固液分離され、得られた低ニッケル濃度の浸出液によってニッケル回収工程S6における硫化処理が行われたため、その硫化反応に反応不良が生じ、その結果として製品品質が悪化したものと考えられる。 This is considered to be due to the fact that in the start-up operation (non-normal operation), the leaching slurry obtained at the stage where the leaching treatment is insufficient is transferred to the subsequent process as it is. That is, the leaching slurry having a low nickel concentration is transferred to a subsequent process and subjected to solid-liquid separation, and the sulfidation treatment in the nickel recovery step S6 is performed by the obtained low nickel concentration leaching solution. As a result, product quality is thought to have deteriorated.
 なお、固液分離設備13における各段のCCDの液相における有価金属の設定値は、操業例1と同様となるようにしたものの、度々、濃度の低い浸出スラリーを受け入れたために、固液分離槽(CCD)における濃度の振れ幅が大きくなり、安定した操業を実施することができなかった。 In addition, although the setting value of the valuable metal in the liquid phase of the CCD of each stage in the solid-liquid separation facility 13 was set to be the same as that of the operation example 1, the low-concentration leaching slurry was often accepted, so the solid-liquid separation The fluctuation range of concentration in the tank (CCD) was increased, and stable operation could not be performed.
 <オーバーフロー液中のニッケル濃度の推移について>
 次に、片系列(第1系列又は第2系列)の浸出工程S1における浸出処理槽11(1),11(2)が設備トラブルによって停止し、その後の立ち上げ操業を実施したケースにおいて、下記の操業例5、操業例6での第1段目の固液分離槽(CCD1)におけるオーバーフロー液中のニッケル濃度の推移を調べた。
<Changes in nickel concentration in overflow liquid>
Next, in the case where the leaching treatment tanks 11 (1) and 11 (2) in the leaching step S1 of the single series (first series or second series) were stopped due to equipment trouble, and the startup operation was performed thereafter, The transition of the nickel concentration in the overflow liquid in the first-stage solid-liquid separation tank (CCD 1) in the operation examples 5 and 6 was examined.
 (操業例5)
 操業例5では、上述の操業例2と同様に、停止した系列のみ、系内の昇温時には浸出処理槽に循環し、その後、酸浸出を開始して、ニッケル濃度が規定の濃度に達するまでは、ニッケル濃度に従って最終中和設備14(最終中和工程S7)、若しくは適正なニッケル濃度の固液分離槽に送液する操業を行った(図4~図6)。
(Operation example 5)
In the operation example 5, as in the operation example 2 described above, only the stopped line is circulated to the leaching treatment tank at the time of temperature rise in the system, and then acid leaching is started until the nickel concentration reaches a prescribed concentration. In accordance with the nickel concentration, operation was performed to send the solution to the final neutralization facility 14 (final neutralization step S7) or the solid-liquid separation tank having an appropriate nickel concentration (FIGS. 4 to 6).
 下記表1に、上述したように操業した場合の第1段目の固液分離槽(CCD1)からのオーバーフロー液中のニッケル濃度(g/L)の推移を示す。表1に示されるように、この操業例5では、操業開始から極めて安定的に同程度のニッケル濃度となっていることが分かる。そして、このオーバーフロー液を処理対象とした後工程の硫化工程における硫化反応では、反応不良等を生じさせることなく安定的に反応が生じた。 Table 1 below shows the transition of the nickel concentration (g / L) in the overflow from the first-stage solid-liquid separation tank (CCD1) when operated as described above. As shown in Table 1, it can be seen that in this operation example 5, the nickel concentration is extremely stable from the start of operation. In the sulfidation reaction in the subsequent sulfidation process using this overflow liquid as a treatment target, the reaction occurred stably without causing a reaction failure or the like.
 (操業例6)
 操業例6では、上述の操業例4と同様に、停止した系列の昇温時の液、及び酸浸出開始直後のニッケル濃度が規定の濃度に達していない浸出液すべてを、通常操業を継続する系列と同様に、第2段目の予備中和槽12Bに移送させた。
(Operation example 6)
In the operation example 6, as in the operation example 4 described above, all of the liquids at the time of the temperature increase in the stopped series and the leachate in which the nickel concentration immediately after the start of the acid leaching does not reach the specified concentration are continuously operated. In the same manner as described above, the sample was transferred to the second stage pre-neutralization tank 12B.
 下記表1に、上述のように操業した場合の第1段目の固液分離槽(CCD1)からのオーバーフロー液中のニッケル濃度(g/L)の推移を示す。表1に示されるように、ニッケル濃度は、操業開始から約半日間に亘って極端に低下したことが分かる。これにより、後工程の硫化工程においては、その極端なニッケル濃度の低下に起因して、硫化反応の調整が非常に困難となり、硫化反応不良及び硫化反応過剰を引き起こすこととなった。 Table 1 below shows the transition of the nickel concentration (g / L) in the overflow from the first-stage solid-liquid separation tank (CCD1) when operated as described above. As shown in Table 1, it can be seen that the nickel concentration decreased extremely over about half a day from the start of operation. As a result, in the subsequent sulfidation step, due to the extremely low nickel concentration, adjustment of the sulfidation reaction becomes very difficult, resulting in poor sulfidation reaction and excessive sulfidation reaction.
  
Figure JPOXMLDOC01-appb-T000001
  
Figure JPOXMLDOC01-appb-T000001

Claims (11)

  1.  少なくとも、
     ニッケル酸化鉱石に対する浸出処理を施す浸出処理槽を複数系列備える浸出設備と、
     2段の中和処理槽を備え、上記浸出処理槽から排出された浸出スラリーのpHを所定範囲に調整する予備中和を行う予備中和設備と、
     単一の系列からなり、pH調整されて上記予備中和設備から排出された浸出スラリーを、固液分離槽で浸出液と浸出残渣とに固液分離する固液分離設備とを具備し、
     上記予備中和設備では、第1段目の中和処理槽が、上記浸出設備に備えられた浸出処理槽の各系列に対応するように複数系列備えられ、その第1段目を構成する各系列の中和処理槽にてpH調整された浸出スラリーが単一の系列からなる第2段目の中和処理槽に合流するように構成されており、該第2段目の中和処理槽に合流した浸出スラリーが上記固液分離設備に移送されることを特徴とするニッケル酸化鉱石の湿式製錬プラント。
    at least,
    A leaching facility comprising a plurality of leaching treatment tanks for leaching the nickel oxide ore;
    A pre-neutralization facility comprising a two-stage neutralization tank, and performing pre-neutralization to adjust the pH of the leaching slurry discharged from the leaching tank to a predetermined range;
    Comprising a single series, a solid-liquid separation facility for solid-liquid separation of the leaching slurry adjusted in pH and discharged from the pre-neutralization facility into a leaching solution and a leaching residue in a solid-liquid separation tank,
    In the preliminary neutralization equipment, the first stage neutralization treatment tank is provided with a plurality of series so as to correspond to each series of the leaching treatment tank provided in the leaching equipment, and each of the first stage constituting the first stage A leaching slurry whose pH is adjusted in a series of neutralization tanks is configured to merge with a second stage neutralization tank consisting of a single series, and the second stage neutralization tank A nickel oxide ore hydrometallurgical plant characterized in that the leaching slurry that joins the slag is transferred to the solid-liquid separation facility.
  2.  上記第1段目の中和処理槽と上記浸出設備における浸出処理槽の装入部とを同系列同士で接続する配管が設けられており、
     上記第1段目の中和処理槽から排出された浸出スラリー又は工程液を、上記浸出設備における同一系列の浸出処理槽に循環可能とされていることを特徴とする請求項1記載のニッケル酸化鉱石の湿式製錬プラント。
    A pipe for connecting the first stage neutralization treatment tank and the charging section of the leaching treatment tank in the leaching equipment in the same series is provided,
    The nickel oxidation according to claim 1, wherein the leaching slurry or the process liquid discharged from the first stage neutralization treatment tank can be circulated to the same series of leaching treatment tanks in the leaching equipment. Ore hydrometallurgical plant.
  3.  上記固液分離設備にて固液分離されて得られた浸出残渣に対して中和処理を施す最終中和設備を備えるとともに、上記第1段目の中和処理槽と該最終中和設備の装入部とを接続する配管が設けられており、
     上記第1段目の中和処理槽から排出された浸出スラリーを上記最終中和設備に移送可能とされていることを特徴とする請求項1記載のニッケル酸化鉱石の湿式製錬プラント。
    A final neutralization facility for performing a neutralization treatment on the leach residue obtained by solid-liquid separation in the solid-liquid separation facility, and the first-stage neutralization tank and the final neutralization facility Piping connecting the charging section is provided,
    2. The nickel oxide ore hydrometallurgical plant according to claim 1, wherein the leaching slurry discharged from the first stage neutralization treatment tank can be transferred to the final neutralization facility.
  4.  上記固液分離設備は、固液分離槽を多段に設けて、上記中和処理槽から排出された浸出スラリーを多段洗浄しながら固液分離することを特徴とする請求項1記載のニッケル酸化鉱石の湿式製錬プラント。 2. The nickel oxide ore according to claim 1, wherein the solid-liquid separation facility is provided with multi-stage solid-liquid separation tanks and separates the leached slurry discharged from the neutralization tank while performing multi-stage washing. Wet smelting plant.
  5.  上記第1段目の中和処理槽と上記固液分離設備において多段に設けられた各固液分離槽の装入部とを接続する配管が設けられており、
     上記第1段目の中和処理槽から排出された浸出スラリーを上記各固液分離槽に移送可能とされていることを特徴とする請求項4記載のニッケル酸化鉱石の湿式製錬プラント。
    A pipe is provided to connect the first-stage neutralization tank and the charging section of each solid-liquid separation tank provided in multiple stages in the solid-liquid separation facility,
    5. The nickel oxide ore hydrometallurgical plant according to claim 4, wherein the leaching slurry discharged from the first stage neutralization treatment tank can be transferred to each of the solid-liquid separation tanks.
  6.  上記浸出設備における浸出スラリーの生産量が、ニッケル量換算で1.0万トン/年~2.0万トン/年であることを特徴とする請求項1記載のニッケル酸化鉱石の湿式製錬プラント。 2. The nickel oxide ore hydrometallurgical plant according to claim 1, wherein the amount of leaching slurry in the leaching equipment is 1 million tons / year to 2 million tons / year in terms of nickel amount. .
  7.  ニッケル酸化鉱石からニッケル及びコバルトを回収するための湿式製錬プラントの操業方法であって、
     上記ニッケル酸化鉱石の湿式製錬プラントは、少なくとも、
     ニッケル酸化鉱石に対する浸出処理を施す浸出処理槽を複数系列備える浸出設備と、
     2段の中和処理槽を備え、上記浸出処理槽から排出された浸出スラリーのpHを所定範囲に調整する予備中和を行う予備中和設備と、
     単一の系列からなり、pH調整されて上記予備中和設備から排出された浸出スラリーを、固液分離槽で浸出液と浸出残渣とに固液分離する固液分離設備とを具備し、
     上記予備中和設備では、第1段目の中和処理槽が、上記浸出設備に備えられた浸出処理槽の各系列に対応するように複数系列備えられ、第2段目の中和処理槽が単一の系列から構成されており、
     上記第1段目における各中和処理槽から排出された浸出スラリーを、単一系列からなる上記第2段目の中和処理槽に合流させ、合流した浸出スラリーを上記固液分離設備に移送することを特徴とするニッケル酸化鉱石の湿式製錬プラントの操業方法。
    A method of operating a hydrometallurgical plant for recovering nickel and cobalt from nickel oxide ore,
    The nickel oxide ore hydrometallurgical plant is at least:
    A leaching facility comprising a plurality of leaching treatment tanks for leaching the nickel oxide ore;
    A pre-neutralization facility comprising a two-stage neutralization tank, and performing pre-neutralization to adjust the pH of the leaching slurry discharged from the leaching tank to a predetermined range;
    Comprising a single series, a solid-liquid separation facility for solid-liquid separation of the leaching slurry adjusted in pH and discharged from the pre-neutralization facility into a leaching solution and a leaching residue in a solid-liquid separation tank,
    In the preliminary neutralization facility, the first stage neutralization tank is provided with a plurality of series corresponding to each series of the leaching tanks provided in the leaching equipment, and the second stage neutralization tank. Consists of a single series,
    The leaching slurry discharged from each neutralization treatment tank in the first stage is merged with the second stage neutralization treatment tank consisting of a single series, and the merged leaching slurry is transferred to the solid-liquid separation facility. A method for operating a nickel oxide ore hydrometallurgical smelting plant.
  8.  上記第1段目の中和処理槽と上記浸出設備における浸出処理槽の装入部とを同系列同士で接続する配管が設けられており、
     操業開始直後の段階においては、上記浸出処理槽から排出された浸出スラリー又は工程液を、上記第1段目の中和処理槽から上記配管を介して該浸出処理槽に循環させることを特徴とする請求項7記載のニッケル酸化鉱石の湿式製錬プラントの操業方法。
    A pipe for connecting the first stage neutralization treatment tank and the charging section of the leaching treatment tank in the leaching equipment in the same series is provided,
    In the stage immediately after the start of operation, the leaching slurry or process liquid discharged from the leaching treatment tank is circulated from the first stage neutralization treatment tank to the leaching treatment tank via the pipe. A method for operating a nickel oxide ore hydrometallurgical plant according to claim 7.
  9.  上記固液分離設備は、固液分離槽を多段に設けて、上記中和処理槽から排出された浸出液を多段洗浄しながら固液分離を行うことを特徴とする請求項7記載のニッケル酸化鉱石の湿式製錬プラントの操業方法。 8. The nickel oxide ore according to claim 7, wherein the solid-liquid separation facility is provided with multi-stage solid-liquid separation tanks and performs solid-liquid separation while washing the leachate discharged from the neutralization tank multi-stage. To operate a wet smelting plant.
  10.  上記固液分離設備にて固液分離されて得られた浸出残渣に対して中和処理を施す最終中和設備を備えるとともに、上記第1段目の中和処理槽と該最終中和設備の装入部とを接続する配管が設けられており、
     上記浸出処理槽から排出された浸出スラリーのニッケル濃度が上記固液分離設備の最終段目の固液分離槽における浸出液のニッケル濃度よりも低い場合には、該浸出処理槽から排出された浸出スラリーを、上記第1段目の中和処理槽から上記配管を介して上記最終中和設備に移送することを特徴とする請求項9記載のニッケル酸化鉱石の湿式製錬プラントの操業方法。
    A final neutralization facility for performing a neutralization treatment on the leach residue obtained by solid-liquid separation in the solid-liquid separation facility, and the first-stage neutralization tank and the final neutralization facility Piping connecting the charging section is provided,
    When the nickel concentration of the leaching slurry discharged from the leaching treatment tank is lower than the nickel concentration of the leaching liquid in the solid-liquid separation tank at the final stage of the solid-liquid separation facility, the leaching slurry discharged from the leaching treatment tank 10. The method for operating a nickel oxide ore hydrometallurgical plant according to claim 9, wherein the first-stage neutralization treatment tank is transferred to the final neutralization equipment via the pipe.
  11.  上記第1段目の中和処理槽と上記固液分離設備において多段に設けられた各固液分離槽の装入部とを接続する配管が設けられており、
     上記浸出処理槽から排出された浸出スラリーのニッケル濃度が上記第2段目の中和処理槽に移送すべき浸出液の所望のニッケル濃度よりも低い場合には、該浸出処理槽から排出された浸出スラリーを、上記第1段目の中和処理槽から上記配管を介して所定の段の固液分離槽に移送することを特徴とする請求項9記載のニッケル酸化鉱石の湿式製錬プラントの操業方法。
    A pipe is provided to connect the first-stage neutralization tank and the charging section of each solid-liquid separation tank provided in multiple stages in the solid-liquid separation facility,
    When the nickel concentration of the leaching slurry discharged from the leaching treatment tank is lower than the desired nickel concentration of the leaching liquid to be transferred to the second stage neutralization treatment tank, the leaching discharged from the leaching treatment tank The operation of the nickel oxide ore hydrometallurgical plant according to claim 9, wherein the slurry is transferred from the first-stage neutralization tank to the solid-liquid separation tank of a predetermined stage via the pipe. Method.
PCT/JP2014/051319 2013-03-08 2014-01-23 Hydrometallurgical plant for nickel oxide ore and method for operating said hydrometallurgical plant WO2014136487A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14760507.5A EP2975142B1 (en) 2013-03-08 2014-01-23 Hydrometallurgical plant for nickel oxide ore and method for operating said hydrometallurgical plant
US14/773,496 US20160024614A1 (en) 2013-03-08 2014-01-23 Hydrometallurgical plant for nickel oxide ore and method for operating the hydrometallurgical plant
AU2014227269A AU2014227269B2 (en) 2013-03-08 2014-01-23 Hydrometallurgical plant for nickel oxide ore and method for operating said hydrometallurgical plant
CA2904569A CA2904569A1 (en) 2013-03-08 2014-01-23 Hydrometallurgical plant for nickel oxide ore and method for operating the hydrometallurgical plant
PH12015501978A PH12015501978B1 (en) 2013-03-08 2015-09-07 Hydrometallurgical plant for nickel oxide ore and method for operating said hydrometallurgical plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-046986 2013-03-08
JP2013046986A JP5569611B1 (en) 2013-03-08 2013-03-08 Nickel oxide ore hydrometallurgical plant and method of operating the hydrometallurgical plant

Publications (1)

Publication Number Publication Date
WO2014136487A1 true WO2014136487A1 (en) 2014-09-12

Family

ID=51427236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051319 WO2014136487A1 (en) 2013-03-08 2014-01-23 Hydrometallurgical plant for nickel oxide ore and method for operating said hydrometallurgical plant

Country Status (7)

Country Link
US (1) US20160024614A1 (en)
EP (1) EP2975142B1 (en)
JP (1) JP5569611B1 (en)
AU (1) AU2014227269B2 (en)
CA (1) CA2904569A1 (en)
PH (1) PH12015501978B1 (en)
WO (1) WO2014136487A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194709A1 (en) * 2015-06-02 2016-12-08 住友金属鉱山株式会社 Free acid-removing equipment, free acid-removing method, and method for manufacturing mixed nickel and cobalt sulfide

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5772869B2 (en) * 2013-04-24 2015-09-02 住友金属鉱山株式会社 Method for producing hematite for iron making
JP5679372B2 (en) 2013-07-03 2015-03-04 住友金属鉱山株式会社 Method for producing hematite for iron making
JP5776913B2 (en) 2014-01-17 2015-09-09 住友金属鉱山株式会社 Method for producing hematite for iron making
JP5871026B2 (en) * 2014-05-13 2016-03-01 住友金属鉱山株式会社 Method for neutralizing acidic sulfuric acid solution and method for hydrometallizing nickel oxide ore
CN205810815U (en) * 2016-07-13 2016-12-14 京东方科技集团股份有限公司 A kind of organic electroluminescence display panel
JP6750698B2 (en) * 2019-02-25 2020-09-02 住友金属鉱山株式会社 Solid-liquid separation method of nickel high pressure leaching residue

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116660A (en) 1991-10-09 1994-04-26 Taiheiyo Kinzoku Kk Method for frecovering valuable metal from oxidized ore
JP2005350766A (en) 2004-05-13 2005-12-22 Sumitomo Metal Mining Co Ltd Hydrometallurgical process of nickel oxide ore
JP2007077459A (en) * 2005-09-15 2007-03-29 Taiheiyo Kinzoku Kk Method for recovering nickel or cobalt
JP2011225908A (en) 2010-04-15 2011-11-10 Sumitomo Metal Mining Co Ltd Plant for hydrometallurgy of nickel oxide ore and method of operating the same
JP2012031446A (en) * 2010-07-28 2012-02-16 Sumitomo Metal Mining Co Ltd Method for producing ferronickel smelting raw material from low grade lateritic nickel ore
JP2012237030A (en) * 2011-05-10 2012-12-06 Sumitomo Metal Mining Co Ltd Method for separating manganese from nickel chloride solution

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US416780A (en) * 1889-12-10 goetz
US6039789A (en) * 1998-03-27 2000-03-21 Barrick Gold Corporation Removal of boron and fluoride from water
US6391089B1 (en) * 2000-11-29 2002-05-21 Walter Curlook Acid leaching of nickel laterite ores for the extraction of their nickel and cobalt values
WO2010020245A1 (en) * 2008-08-20 2010-02-25 Intex Resources Asa An improved process of leaching lateritic ore with sulphoric acid
AU2009212947B2 (en) * 2008-09-19 2014-06-05 Sumitomo Metal Mining Co., Ltd. Hydrometallurgical process of nickel laterite ore
WO2011048927A1 (en) * 2009-10-19 2011-04-28 住友金属鉱山株式会社 Wet smelting plant for nickel oxide ore and method for operating same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116660A (en) 1991-10-09 1994-04-26 Taiheiyo Kinzoku Kk Method for frecovering valuable metal from oxidized ore
JP2005350766A (en) 2004-05-13 2005-12-22 Sumitomo Metal Mining Co Ltd Hydrometallurgical process of nickel oxide ore
JP2007077459A (en) * 2005-09-15 2007-03-29 Taiheiyo Kinzoku Kk Method for recovering nickel or cobalt
JP2011225908A (en) 2010-04-15 2011-11-10 Sumitomo Metal Mining Co Ltd Plant for hydrometallurgy of nickel oxide ore and method of operating the same
JP2012031446A (en) * 2010-07-28 2012-02-16 Sumitomo Metal Mining Co Ltd Method for producing ferronickel smelting raw material from low grade lateritic nickel ore
JP2012237030A (en) * 2011-05-10 2012-12-06 Sumitomo Metal Mining Co Ltd Method for separating manganese from nickel chloride solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194709A1 (en) * 2015-06-02 2016-12-08 住友金属鉱山株式会社 Free acid-removing equipment, free acid-removing method, and method for manufacturing mixed nickel and cobalt sulfide

Also Published As

Publication number Publication date
PH12015501978A1 (en) 2016-01-18
EP2975142B1 (en) 2017-12-20
EP2975142A1 (en) 2016-01-20
US20160024614A1 (en) 2016-01-28
JP5569611B1 (en) 2014-08-13
AU2014227269B2 (en) 2018-05-10
JP2014173136A (en) 2014-09-22
EP2975142A4 (en) 2016-12-07
PH12015501978B1 (en) 2016-01-18
AU2014227269A1 (en) 2015-09-24
CA2904569A1 (en) 2014-09-12

Similar Documents

Publication Publication Date Title
WO2014136487A1 (en) Hydrometallurgical plant for nickel oxide ore and method for operating said hydrometallurgical plant
JP5435058B2 (en) Neutralization treatment method and neutralization treatment plant
WO2013150642A1 (en) Method for recovering chromite, and method for wet smelting of nickel oxide ore
JP5644878B2 (en) Solid-liquid separation treatment method and nickel oxide ore hydrometallurgy method
WO2013133172A1 (en) Dezincification plant, method for operating dezincification plant, and hydrometallurgical method for nickel oxide ore
WO2018155114A1 (en) Method for producing sulfide, and method for hydrometallurgically refining nickel oxide ore
JP5692458B1 (en) Solid-liquid separation treatment method and nickel oxide ore hydrometallurgy method
WO2016194709A1 (en) Free acid-removing equipment, free acid-removing method, and method for manufacturing mixed nickel and cobalt sulfide
JP5892301B2 (en) Neutralization method in the hydrometallurgy of nickel oxide ore
JP5804147B2 (en) Nickel oxide ore hydrometallurgical plant
JP6953988B2 (en) How to remove sulfide
JP5790839B2 (en) Chromite recovery method
JP7200698B2 (en) Hydrometallurgical method for nickel oxide ore
JP7238686B2 (en) Neutralization method
JP2017061733A (en) Hydrometallurgical process of nickel oxide ore and exudation treatment facility
JP5725143B2 (en) Neutralization treatment plant
JP2020028858A (en) Final neutralization method in wet refining process for nickel oxide ore
JP7147452B2 (en) Filtration facility for removing zinc sulfide and method for producing nickel-cobalt mixed sulfide using the same
JP7285427B2 (en) Nickel oxide ore leaching method
JP2022104019A (en) Neutralization treatment method, and hydrometallurgical method of nickel oxidized ore
JP7087601B2 (en) Sulfide removal method and nickel oxide ore hydrometallurgy method
JP2019157161A (en) Wet-type smelting process for nickel oxide ore
JP2023043553A (en) pH MEASUREMENT DEVICE, AND WET REFINING METHOD OF NICKEL OXIDE ORE USING THE SAME
JP2022055767A (en) Dezincification method, and wet smelting method of nickel oxide ore

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760507

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12015501978

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2904569

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14773496

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014227269

Country of ref document: AU

Date of ref document: 20140123

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014760507

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201506311

Country of ref document: ID