WO2014136248A1 - Power supply apparatus - Google Patents

Power supply apparatus Download PDF

Info

Publication number
WO2014136248A1
WO2014136248A1 PCT/JP2013/056382 JP2013056382W WO2014136248A1 WO 2014136248 A1 WO2014136248 A1 WO 2014136248A1 JP 2013056382 W JP2013056382 W JP 2013056382W WO 2014136248 A1 WO2014136248 A1 WO 2014136248A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
supply device
electrically connected
power storage
Prior art date
Application number
PCT/JP2013/056382
Other languages
French (fr)
Japanese (ja)
Inventor
啓 角谷
伸治 今井
寛 岩澤
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2013/056382 priority Critical patent/WO2014136248A1/en
Publication of WO2014136248A1 publication Critical patent/WO2014136248A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0074Plural converter units whose inputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series

Definitions

  • the present invention relates to a power supply device.
  • Patent Document 1 includes a plurality of bridge circuits, and a DC power source (such as a lead battery) that outputs DC power is connected to each DC side connection terminal of each of the plurality of bridge circuits.
  • a power conversion device capable of converting DC power of a DC power supply and AC power of AC-side connection terminals connected in series of a plurality of bridge circuits by connecting terminals in series.
  • Patent Document 2 a DC side of a converter that converts AC power to DC power and a DC side of an inverter that converts DC power to AC power are electrically connected in series, and an AC power system and an AC load are connected.
  • An uninterruptible power supply apparatus in which a DC power source is electrically connected between a converter and an inverter is disclosed.
  • JP 2006-320103 A Japanese Patent Laying-Open No. 2005-45856
  • life management of a plurality of power storage devices constituting the power storage system is important.
  • As management of the plurality of power storage devices it is conceivable to manage the plurality of power storage devices collectively using an inverter or a power conditioner.
  • Inverter or a power conditioner when managing a plurality of power storage devices collectively, due to variations in the state and characteristics of the plurality of power storage devices, some of the low performance power storage devices affect other good performance power storage devices, It is conceivable that the life of the entire power storage system is shortened.
  • Patent Document 1 In order to extend the life of the power storage system, it is conceivable to employ the power conversion device disclosed in Patent Document 1 to configure the power storage system.
  • a plurality of power storage devices constituting the power storage system are divided into a plurality of power storage device groups, and the power storage devices are managed for each power storage device group. Because the state of charge of power storage devices can be controlled for each device group, due to variations in the status and characteristics of multiple power storage devices, some low performance power storage devices can be changed to other good performance power storage devices. The influence exerted can be reduced, and the life of the power storage system can be extended.
  • the power storage system employing the power conversion device disclosed in Patent Document 1 is electrically connected in parallel to the AC power system, the power generation system, and the AC load, power is stably supplied to the AC load.
  • it is necessary to cooperate closely with the AC system and the power generation system.
  • the AC power system tends to be unstable, it is necessary to increase the capacity of the power storage system of the power storage system in order to stabilize the unstable power of the AC power system.
  • a system that monitors the AC power system or power generation system is necessary to detect the power interruption and safely supply power to the AC load. It is.
  • power cut-off is not permitted, that is, when a medical or backbone communication network is used as an AC load, it is necessary to construct a system so that power cut-off can be suppressed, and the construction requires additional costs.
  • a typical problem to be solved is to balance the stabilization of power supply from the power supply device and the extension of the life of the power supply device.
  • the representative problem is that two sets of power conversion devices in which AC side connection terminals of a plurality of power conversion units capable of power conversion between DC power and AC power are electrically connected in series, and a plurality of power storage devices,
  • the plurality of power conversion units and the plurality of power storage devices constituting each of the two sets of power conversion devices are the same number, and each of the plurality of power storage devices constitutes one of the two sets of power conversion devices.
  • Provided in common for any one of the power conversion units and any one of the plurality of power conversion units constituting the other, and electrically connected to the DC side connection terminals of the corresponding two sets of power conversion units This can be solved by a typical solution.
  • power can be stably supplied from the power supply device, and the life of the power supply device can be extended.
  • the block diagram which shows schematic structure of a power supply device.
  • the circuit diagram which shows the structure of the 1st small size converter which comprises the 1st power converter device of FIG.
  • the time chart which shows the time change of the relationship with the voltage for 1 cycle.
  • the functional block diagram which shows the structure of the switching drive pattern correction
  • FIG. 6 is a graph showing the amount of power input to the corresponding power storage device from each of the four first small conversion devices constituting the first power conversion device of FIG. 1 according to the state of charge of the four power storage devices of FIG. 5. There is an example when the input power amounts are equal.
  • FIG. 6 is a graph showing the amount of power output from the corresponding power storage device to each of the four second small conversion devices constituting the second power conversion device of FIG. 1 according to the state of charge of the four power storage devices of FIG. 5. An example is shown when the output power amounts are equal. It is a graph which shows the charge condition in the certain measurement timing of each of the four electrical storage apparatuses which comprise the power supply device of FIG. 1, and shows an example when the charge condition varies.
  • FIG. 9 is a graph showing the amount of power input to the corresponding power storage device from each of the four first small conversion devices constituting the first power conversion device of FIG. 1 according to the state of charge of the four power storage devices of FIG. 8. There is an example when the input power amounts are different.
  • FIG. 9 is a graph showing the amount of power output from the corresponding power storage device to each of the four second small conversion devices constituting the second power conversion device of FIG. 1 according to the state of charge of the four power storage devices of FIG. 8. There is an example when the output power amounts are different.
  • the block diagram which shows schematic structure of another power supply device The block diagram which shows schematic structure of another power supply device.
  • the block diagram which shows schematic structure of another power supply device The block diagram which shows schematic structure of another power supply device.
  • the block diagram which shows schematic structure of another power supply device is schematic structure of another power supply device.
  • the block diagram which shows schematic structure of another power supply device The block diagram which shows schematic structure of another power supply device.
  • the block diagram which shows schematic structure of another power supply device The block diagram which shows schematic structure of another power supply device.
  • the block diagram which shows schematic structure of another power supply device The block diagram which shows schematic structure of another power supply device.
  • the block diagram which shows schematic structure of another power supply device The block diagram which shows schematic structure of another power supply device.
  • the present invention is applied to a power supply system that uses a power generation system that uses renewable energy such as wind power or sunlight as a main power source and an AC power system as a load, and supplies AC power supplied from the main power source to the load.
  • a power supply system that uses a power generation system that uses renewable energy such as wind power or sunlight as a main power source and an AC power system as a load, and supplies AC power supplied from the main power source to the load.
  • renewable energy such as wind power or sunlight
  • AC power system as a load
  • the stationary power supply device is installed in the power generation farm where the power generation system is located, and is installed in the power generation system.
  • ⁇ Power generation systems using renewable energy have the advantage of less impact on the natural environment, but the power generation capacity depends on the natural environment such as the weather, and the output to the AC power system fluctuates.
  • a stationary power supply device is provided.
  • the stationary power supply device discharges the power and compensates for the power shortage.
  • the stationary power supply device receives and charges the surplus power generated.
  • the stationary power supply device to which the present invention is applied is an uninterruptible power supply installed as a backup power source for avoiding power interruption in facilities that handle medical equipment such as hospitals, facilities that have server systems and communication facilities such as data centers, etc. It can also be applied to power supply devices.
  • the AC power system commercial power supply
  • the medical device, the server system, and the communication facility are the load side, and the stationary power supply device is electrically connected between them.
  • a stationary power supply apparatus to which the present invention is applied is installed in a consumer, stores power at night, discharges the stored power in the daytime, and balances the power load while maintaining the equipment of the consumer.
  • the present invention can also be applied to a power storage device that supplies power.
  • the AC power system commercial power supply
  • the consumer device is the load side
  • a stationary power supply device is electrically connected between them.
  • the stationary power supply device to which the present invention is applied is electrically connected in the middle of the transmission / distribution system, and is used as a countermeasure for fluctuation of power transmitted / distributed in the transmission / distribution system, a countermeasure for surplus power, a countermeasure for frequency, a countermeasure for reverse power flow, etc. It is applicable also to the power supply device used.
  • the power transmission system side is the main power supply side
  • the power distribution system side is the load side
  • the stationary power supply apparatus is electrically connected between them.
  • a DC power system can be considered as the main power source and load.
  • a plurality of power storage units each having a plurality of power storage units and a power conversion unit that controls power input / output to / from the power storage units are electrically connected in series.
  • a multiple inverter type power supply device configured to synthesize and output the output voltage is employed.
  • the plurality of capacitors are secondary batteries that store (charge) and discharge (discharge) electrical energy by an electrochemical action or charge storage structure, or passive elements having capacitance, and output voltages required for stationary power supply devices Depending on the specifications such as the storage capacity, they are electrically connected in series, in parallel, or in series-parallel.
  • a lithium ion secondary battery is used as a storage battery, but another secondary battery such as a lead battery or a nickel metal hydride battery, or a hybrid that combines two types of storage batteries, for example, a lithium ion secondary battery and a nickel metal hydride battery.
  • a secondary battery may be used.
  • a capacitor such as an electric double layer capacitor or a lithium ion capacitor can be used.
  • FIG. 1st Example is described using FIG. 1 thru
  • FIG. 1 shows a schematic configuration of the entire power supply device 1.
  • the power supply device 1 is provided in the middle of the power supply system from the power generation system 19 to the single-phase AC power system 20, and the single-phase AC power output from the power generation system 19 passes through the power supply device 1. Thus, it is supplied to the single-phase AC power system 20.
  • the output of the power generation system 19 is insufficient with respect to the request of the single-phase AC power system 20, power is supplemented from the power supply device 1, and the output of the power generation system 19 with respect to the request of the single-phase AC power system 20 Is excessive, power is absorbed by the power supply device 1.
  • a power supply side (AC primary side) connection terminal 17 is provided on one end side of the power supply device 1.
  • the power supply side connection terminal 17 is electrically connected to the AC side of the power generation system 19.
  • a load side (AC secondary side) connection terminal 18 is provided on the other end side of the power supply device 1.
  • a single-phase AC power system 20 is electrically connected to the load side connection terminal 18.
  • the power supply device 1 includes a central control device 2, a first power conversion device 7, a second power conversion device 12, and power storage devices 13 to 16 as main components.
  • the first power conversion device 7 includes first small conversion devices (power conversion units) 3 to 6.
  • Each of the first small converters 3 to 6 includes an AC side connection terminal and a DC side connection terminal.
  • the AC side connection terminals (reference numeral 33 in FIG. 2 to be described later) of the first small conversion devices 3 to 6 are electrically connected in series in the order of the potential of the AC voltage at the AC side connection terminal (from the top in FIG. 1). Are connected in series in electrical order below).
  • Each of the direct current side connection terminals (reference numeral 34 in FIG. 2 described later) of the first small conversion devices 3 to 6 is electrically connected to any one of the power storage devices 13 to 16.
  • the second power conversion device 12 includes second small conversion devices (power conversion units) 8 to 11.
  • Each of the second small conversion devices 8 to 11 includes an AC side connection terminal and a DC side connection terminal.
  • the AC side connection terminals (reference numeral 33 in FIG. 2 described later) of the second small converters 8 to 11 are electrically connected in series in the order of the potential of the AC voltage at the AC side connection terminal (from the top in FIG. 1). Are connected in series in electrical order below).
  • Each of the DC side connection terminals (reference numeral 34 in FIG. 2 described later) of the second small conversion devices 8 to 11 is electrically connected to any one of the power storage devices 13 to 16.
  • the first small conversion devices 3 to 6, the second small conversion devices 8 to 11 and the power storage devices 13 to 16 have the same number. For this reason, each of the power storage devices 13 to 16 is provided in common with any one of the first small conversion devices 3 to 6 and any one of the second small conversion devices 8 to 11. And electrically connected to the DC connection terminals of the corresponding first and second small conversion devices.
  • any one DC side connection terminal of the first small conversion devices 3 to 6 and any one DC side connection terminal of the second small conversion devices 8 to 11 are provided.
  • the corresponding first and second small conversion devices are electrically connected in series.
  • the first small conversion device and the second small conversion device having the same potential are electrically connected in series corresponding to the order of the potential of the AC voltage at the AC side connection terminal.
  • the first small conversion device and the second small conversion device of the same order are electrically connected in series corresponding to the order arranged from the top to the bottom.
  • Each of the electricity storage devices 13 to 16 includes a plurality of electricity storage devices (lithium ion secondary batteries) that are electrically connected in series and parallel, although not clearly shown in FIG.
  • the electrical connection of the plurality of capacitors is connected in series according to the specifications relating to the output voltage and the storage capacity required for the storage system constituted by the first and second power conversion devices 7 and 12 and the storage devices 13 to 16, Either parallel connection or series-parallel connection is used.
  • it is provided corresponding to the power generation system 19 using renewable energy, and high voltage and high capacity are required as specifications. Therefore, a plurality of capacitors are electrically connected in series and parallel.
  • the first and second power converters 7 and 12 are operated by the first small converters 3 to 6 and the second small converters 8 to 11 based on the command value output from the central controller 2.
  • the AC power output from the power generation system 19 is supplied to the single-phase AC power system 20.
  • the first power conversion device 7 converts the AC power received from the power generation system 19 at the power supply side connection terminal 17 into a plurality of DC power and inputs the converted power to each of the power storage devices 13 to 16.
  • the second power conversion device 12 converts the DC power transmitted from each of the power storage devices 13 to 16 into a plurality of AC powers, combines the converted AC powers into one AC power, and connects to the load side It is output to the single-phase AC power system 20 via the terminal 18.
  • the first power converter 7 functions exclusively as an AC ⁇ DC power converter (converter) and the second power converter 12 functions exclusively as a DC ⁇ AC power converter (inverter).
  • the power conversion in the direction opposite to the above direction is also possible by the circuit configuration described later using.
  • the central control device 2 is preinstalled with a control program (stored in a storage device).
  • the central controller 2 operates according to the control program, and calculates and outputs command values transmitted to the first small converters 3 to 6 and the second small converters 8 to 11, respectively.
  • the control program of the central control device 2 is set so that the operating states of the power generation system 19, the single-phase AC power system 20, and the power storage devices 13 to 16 are optimized. Therefore, although not clearly shown in FIG. 1, the central control device 2 uses sensors for measuring the operating state of the power generation system 19 connected to the power supply side connection terminal 17, for example, a voltage sensor and a current sensor, and an electric storage device.
  • FIG. 2 shows a circuit configuration of the first small conversion device 3.
  • the first small conversion devices 4 to 6 and the second small conversion devices 8 to 11 have the same circuit configuration as the first small conversion device 3. Therefore, the description of the configuration of the first small conversion devices 4 to 6 and the second small conversion devices 8 to 11 is omitted.
  • the same configuration as the first small conversion device 3 is described in the first small conversion devices 4 to 6 and the second small conversion devices 8 to 11, the same reference numerals as those of the first small conversion device 3 are used. To do.
  • the first small conversion device 3 includes, as main components, a switching circuit 30, an AC-side connection terminal 33 electrically connected to the switching circuit 30, an electrical connection to the switching circuit 30, and a connection to the power storage device 13. And a control device 35 that controls the operation of the switching circuit 30.
  • the switching circuit 30 includes switching elements 31a to 31d.
  • field effect transistors FETs
  • MOS Metal Oxide Semiconductor
  • MOFETs are used as the switching elements 31a to 31d
  • other switching elements such as IGBT (Insulated Gate Bipolar Transistor) may be used.
  • the switching circuit 30 is specifically composed of a single-phase full-bridge inverter circuit.
  • the single-phase full-bridge inverter circuit includes a first arm configured by electrically connecting a source of an upper arm switching element 31a and a drain of a lower arm switching element 31b in series, and an upper arm switching element 31c.
  • the second arm configured by electrically connecting the source of the lower arm and the drain of the lower arm switching element 31d in series are the drains of the upper arm switching elements 31a and 31c and the lower arm switching element 31b,
  • a circuit configuration in which the sources of 31d are electrically connected in parallel by being electrically connected to each other is provided.
  • a diode 32a is provided between the drain and source of the switching element 31a.
  • a diode 32b is provided between the drain and source of the switching element 31b so that the direction from the source to the drain is the forward direction.
  • a diode 32c is provided between the drain and source of the switching element 31c so that the direction from the source to the drain is the forward direction.
  • a diode 32d is provided between the drain and source of the switching element 31d so that the direction from the source to the drain is the forward direction.
  • the diodes 32a to 32d are diodes that are parasitic between the drains and sources of the switching elements 31a to 31d due to the structure of the MOSFET. Therefore, it is not necessary to separately provide a diode for each of the switching elements 31a to 31d.
  • the drains of the switching elements 31a and 31c of the upper arm are electrically connected to the positive terminal of the DC connection terminal 34 as the DC positive terminal.
  • the sources of the switching elements 31b and 31d of the lower arm are electrically connected to the negative electrode side terminal of the DC side connection terminal 34 as a DC negative electrode side connection end.
  • the middle point of the first arm that is, the electrical connection point between the source of the switching element 31a of the upper arm and the drain of the switching element 31b of the lower arm is drawn out as one side of the AC side connection end (load side connection end).
  • the AC side connection terminal 33 is electrically connected to a terminal on one side.
  • the middle point of the second arm that is, the electrical connection point between the source of the switching element 31c of the upper arm and the drain of the switching element 31d of the lower arm is drawn out as the other side of the AC side connection end (load side connection end).
  • the other side of the AC side connection terminal 33 is electrically connected.
  • One terminal of the AC side connection terminal 33 of the first small conversion device 3 is electrically connected to one terminal of the AC side connection terminal 17 of the first power conversion device 7.
  • the other terminal of the AC side connection terminal 33 of the first small conversion device 3 is connected in series to the first small conversion device 3 (adjacent in terms of the potential level of the AC voltage). It is electrically connected to a terminal on one side of the side connection terminal.
  • the electrical connection on the AC side of the first small conversion devices 4 to 6 and the second small conversion devices 8 to 11 has the following relationship.
  • a control program is preinstalled in the control device 35 (stored in a storage device).
  • the control device 35 operates in accordance with the control program, and the switching elements 31a to 31d are connected to the power generation system 19 connected to the power supply side AC terminal 17 to which the first power conversion device 7 is electrically connected.
  • the switching operation (ON / OFF) is controlled.
  • the control device 35 generates a drive pattern for switching each of the switching elements 31a to 31d (on / off) based on the command value transmitted from the central control device 2, and A drive signal corresponding to each of the generated drive patterns is output to each gate of the switching elements 31a to 31d.
  • the switching operation ON / OFF
  • the switching operation is controlled so that each of the switching elements 31a to 31d is turned ON / OFF corresponding to the generated drive pattern.
  • the switching operations (on / off) of the switching elements 31a to 31d are controlled in the same manner as the first small conversion device 3 so as to be linked to the power generation system 19. Yes.
  • the second small converters 8 to 11 are connected to the single-phase AC power system 20 connected to the load-side AC terminal 18 to which the second power converter 8 is electrically connected. 3, the switching operation (on / off) of the switching elements 31 a to 31 d is controlled. (Operation of the first power converter 7) Next, the operation of the first small conversion devices 3 to 6 constituting the first power conversion device 7 will be described with reference to FIG.
  • FIG. 3 shows one of the command values (target voltage) transmitted from the central control device 2 to the first power converter 7 and the AC side connection terminal 33 of each of the first small converters 3 to 6. The time change of the relationship with the rectangular wave voltage is shown.
  • the horizontal axis in FIG. 3 is the time axis and represents one cycle.
  • the vertical axis in FIG. 3 is the voltage axis, and in order from the top, Target voltage which is one of the command values transmitted from the central controller 2
  • Target voltage which is one of the command values transmitted from the central controller 2
  • the rectangular wave voltage V 3 input to the AC side connection terminal 33 of the first small converter 3
  • Rectangular wave voltage V 4 input to the AC side connection terminal 33 of the first small-sized conversion device 4
  • Rectangular wave voltage V 5 input to the AC side connection terminal 33 of the first small converter 5
  • the rectangular wave voltage V 6 input to the AC side connection terminal 33 of the first small converter 6
  • the upper side is a positive value and the lower side is a negative value with respect to the point where each voltage on the vertical axis in FIG. 3 becomes zero.
  • the central control device 2 controls the first power converter 7 (each of the first small converters 3 to 6) based on the AC voltage and AC current of the power generation system 19 electrically connected to the power supply side connection terminal 17.
  • a target voltage (modulated wave that is a sine wave) is calculated as one of the command values, and the calculated target voltage is output to the first power converter 7 (each of the first small converters 3 to 6).
  • the central controller 2 uses a carrier (a carrier wave such as a triangular wave or a sawtooth wave as another command value for each of the first small converters 3 to 6 and adjusts it. The period is shorter than the wave (the frequency is large) and the potential level is different corresponding to each of the first small-sized conversion devices 3 to 6), and the generated carrier is used as the corresponding first small-sized conversion device. Is output.
  • the target voltage (see FIG. 3A) output from the central controller 2 and the corresponding carrier (not shown) are transmitted as signals to each of the first small conversion devices 3 to 6.
  • Each of the first small-sized conversion devices 3 to 6 compares the target voltage and the carrier shown in FIG. 3A, and the portion where the switching element is turned on and becomes smaller at the portion where the absolute value of the target voltage is larger than the carrier.
  • Drive patterns for generating switching operations (ON / OFF) for each of the switching elements 31a to 31d are generated so that the switching elements are turned off, and a drive signal corresponding to the generated drive pattern is applied to the corresponding switching element. Output to the gate.
  • each of the switching elements 31a to 31d performs a switching operation (ON / OFF) corresponding to the drive pattern, and therefore the AC side connection terminals 33 of the first small-sized conversion devices 3 to 6 are connected to FIG. )
  • To (e) rectangular-wave voltages having different amplitude reference potentials and widths and the same amplitude height are input.
  • the first small size is generated in the period from time T 1 to time T 8 according to the phase of the target voltage.
  • voltage of the AC-side connection terminal 33 of the converter 6 is positive
  • the voltage of the AC-side connection terminals 33 of the first small converter 5 from the time T 2 is positive
  • the period from time T 7 is positive
  • the period of time T 6 from the time T 3 voltage of the first AC-side connection terminals 33 of the small converter 4 is positive
  • the rectangular wave voltage of the first small converter 3 on the AC side connection terminal 33 is a positive period of time T 5 from time T 4 multi in
  • the level voltage is input to the AC side connection terminals 33 of the first small conversion devices 3 to 6.
  • a negative voltage opposite is input from the time 0 to the period of time T 9.
  • a multilevel voltage corresponding to one cycle of the target voltage is input to the AC side connection terminals 33 of the first small-sized conversion devices 3 to 6.
  • the time is a value determined based on the phase of the target voltage, and changes based on a change in the phase of the target voltage.
  • the second power conversion device 12 operates in the same manner as the first power conversion device 7, so that a multilevel voltage as shown in FIG. Output from the load side AC terminal 33.
  • each of the second small converters 8 to 11 is one of command values calculated based on the AC voltage and AC current of the single-phase power system 20 electrically connected to the AC side connection terminal 33.
  • a carrier that is one of the target voltage and the command value is transmitted from the central controller 2.
  • Each of the second small converters 8 to 11 compares the target voltage with the carrier, and the switching element is turned on when the absolute value of the target voltage is larger than the carrier, and the switching element is turned off when the absolute value of the target voltage is smaller.
  • a drive pattern for switching the switching elements 31a to 31d (on / off) is generated, and a drive signal corresponding to the generated drive pattern is output to the gates of the switching elements 31a to 31d.
  • the switching elements 31a to 31d perform switching operation (ON / OFF) in accordance with the drive pattern, and therefore the reference potential and width of the amplitude are supplied from the AC side connection terminals 33 of the second small converters 8 to 11, respectively. Are different, and a rectangular wave voltage having the same amplitude is output. (Operation according to the state of power storage devices 13 to 16) Next, operations according to the states of the power storage devices 13 to 16 will be described with reference to FIGS.
  • the multilevel voltage corresponding to the target voltage is shared and input by each of the first small converters 3 to 6, and is shared by each of the second small converters 8 to 11. Output.
  • the voltage sharing is always the same, the usage time and frequency of power storage devices 13-16 vary, and the life of power storage devices 13-16 varies. When the life variation occurs, the life of the power supply device 1 as a whole is reduced.
  • the charging states of the power storage devices 13 to 16 vary, and depending on the operating state of the power supply device 1, the power storage device having the highest and lowest charging states can be charged / discharged. It may be considered that charging / discharging exceeds the value.
  • Charging / discharging exceeding the allowable value affects the deterioration of the power storage device and causes the life of the power storage devices 13 to 16 to vary. Further, the variation in the state of charge of power storage devices 13 to 16 is also caused by the difference in characteristics of power storage devices 13 to 16. For this reason, when charging / discharging the power storage devices 13 to 16, the amount of power input / output to / from each of the power storage devices 13 to 16 according to variations in characteristics, variations in charge state, variations in deterioration state, and the like. Is preferably controlled.
  • the amount of power input / output to / from each of the power storage devices 13 to 16 by charging / discharging can be controlled according to the state and characteristics of the power storage devices 13 to 16. Specifically, the respective switching drive patterns of the first small conversion devices 3 to 6 constituting the first power conversion device 7 and the second small conversion devices 8 to 11 constituting the second power conversion device 12 are corrected.
  • a drive pattern correction unit for this purpose is mounted on the central controller 2 by being incorporated into a control program (algorithm).
  • the drive pattern correction unit includes power storage device input / output power amount determination unit 401, first power conversion device drive pattern correction unit 402, and second power conversion device drive pattern correction unit 403 as main components.
  • the first small conversion devices 3 to 6 and the second small conversion devices 8 to 11 constituting the second power conversion device 12 are corrected so that the switching drive patterns calculated in the respective control devices 35 of the first small conversion devices 8 to 11 are corrected.
  • the switching drive pattern correction command value is output to the control devices 35 of the second small converters 8 to 11 constituting the small converters 3 to 6 and the second power converter 12.
  • the power storage device input / output power amount determination unit 401 determines the amount of power to be input / output to each of the power storage devices 13 to 16 according to the state and characteristics of each of the power storage devices 13 to 16, and the determined power amount is The power is output to each of the first power conversion device drive pattern correction unit 402 and the second power conversion device drive pattern correction unit 403.
  • a charged state SOC: State Of Charge
  • SOH State Of Health
  • the amount of electric power input / output to / from each of power storage devices 13-16 is the value of each of power storage devices 13-16 with respect to the average value of each state of power storage devices 13-16 (1/2 of the deviation between the maximum value and the minimum value). It is determined according to the state variation (difference).
  • a single arrow indicates a signal flow from the power storage device input / output power amount determination unit 401 to each of the first power conversion device drive pattern correction unit 402 and the second power conversion device drive pattern correction unit 403.
  • the power storage devices 13 to 16 are not supplied from the power storage device input / output power amount determination unit 401 to the first power conversion device drive pattern correction unit 402 and the second power conversion device drive pattern correction unit 403, respectively.
  • the amount of power input and output to each is transmitted as a signal.
  • the first power conversion device drive pattern correction unit 402 is configured so that each of the first small conversion devices 3 to 6 constituting the first power conversion device 7 is based on the amount of power determined by the power storage device input / output power amount determination unit 401.
  • the switching drive pattern correction command value is output to the control device 35 so as to correct the switching drive pattern calculated by comparing the target voltage signal transmitted from the central control device 2 with the carrier.
  • the second power conversion device drive pattern correction unit 403 includes each of the first small-sized conversion devices 8 to 11 constituting the second power conversion device 12 based on the amount of power determined by the power storage device input / output power amount determination unit 401.
  • the switching drive pattern correction command value is output to the control device 35 so as to correct the switching drive pattern calculated by comparing the target voltage signal transmitted from the central control device 2 with the carrier.
  • a deteriorated state may be used, or both a charged state and a deteriorated state may be used. (Operation when charge states of power storage devices 13 to 16 are substantially equal) First, the operation when the charging states of the power storage devices 13 to 16 are substantially equal will be described with reference to FIGS.
  • FIG. 5 shows the state of charge of each of the power storage devices 13-16.
  • the horizontal axis indicates the number (sign) of the power storage device, and the vertical axis indicates the state of charge of each of the power storage devices 13 to 16 at an arbitrary measurement timing.
  • each of power storage devices 13 to 16 is in a state where the state of charge is substantially equal (allowable range in which the difference in state of charge does not affect the variation in life), and in this state, the first power conversion device Power is input via 7, and power is output via the second power converter 12.
  • FIG. 6 shows the amount of electric power input from the first small conversion devices 3 to 6 to the power storage devices 13 to 16.
  • the horizontal axis indicates the number (sign) of the first small conversion device, and the vertical axis is input from the first small conversion devices 3 to 6 to the power storage devices 13 to 16 at the same timing as the measurement timing of FIG. 3 shows the amount of power in a period of one cycle of the target voltage shown in FIG.
  • the amounts of electric power input from the first small conversion devices 3 to 6 to the power storage devices 13 to 16 are made substantially equal to each other. Hold approximately equal charge states of ⁇ 16.
  • FIG. 7 shows the amount of power output from the power storage devices 13 to 16 to the second small conversion devices 8 to 11.
  • the horizontal axis indicates the number (sign) of the second small conversion device, and the vertical axis is output from the power storage devices 13 to 16 to the second small conversion devices 8 to 11 at the same timing as the measurement timing of FIG.
  • the electric energy in the period for 1 cycle of target voltages shown in FIG. 3 is shown.
  • the amount of power input from the first small conversion devices 3 to 6 to the power storage devices 13 to 16 is made substantially equal, and the amount of power output from the power storage devices 13 to 16 to the second small conversion devices 8 to 11 is almost the same.
  • the switching drive pattern control for equalizing the switching drive patterns in each of the first small conversion devices 3 to 6 are replaced every predetermined time, and the switching drive patterns in each of the second small conversion devices 8 to 11 are changed for a predetermined time. It is conceivable to replace them every time.
  • the voltage pattern input to the AC side connection terminal 33 of the first small conversion device 3 shown in FIG. 3B is the first small conversion device 4 shown in FIG.
  • the voltage pattern input to the AC side connection terminal 33 of the first small-sized conversion device 4 shown in FIG. 3C is the voltage pattern input to the AC side connection terminal 33 of FIG.
  • the voltage pattern input to the AC side connection terminal 33 of the first small conversion device 5 shown in FIG. 3D is the voltage pattern input to the AC side connection terminal 33 of the small conversion device 5 as shown in FIG.
  • the voltage pattern input to the AC side connection terminal 33 of the first small conversion device 6 shown in FIG. 3E is the voltage pattern input to the AC side connection terminal 33 of the first small conversion device 6 shown in FIG.
  • the carrier signal-transmitted from the central control device 2 to the respective control devices 35 of the first small conversion devices 3 to 6 is transferred to the first power so that the four voltage patterns are sequentially switched.
  • the switching drive pattern correction unit 402 may be replaced by the switching drive pattern correction command value transmitted to the respective control devices 35 of the first small-sized conversion devices 3 to 6.
  • the sum of the voltages input to the AC side connection terminals 33 of the first small conversion devices 3 to 6 when the carrier replacement is completed is almost equal, and the first small conversion is performed.
  • the total amount of electric power obtained by the product of the voltage input to each AC side connection terminal 33 of each of the devices 3 to 6 and the AC current flowing through each AC side connection terminal 33 of each of the first small converters 3 to 6, that is, The sum of the areas of the enclosed portions of the waveform obtained by multiplying the rectangular wave indicating the voltage and the sine wave indicating the alternating current becomes substantially equal. Accordingly, the amounts of power input from the first small conversion devices 3 to 6 to the power storage devices 13 to 16 are substantially equal, and the power storage devices 13 to 16 can be kept in an approximately equal charge state.
  • the central control device 2 to the second small conversion device 8 so that the four voltage patterns are sequentially replaced in the same manner as the switching drive pattern replacement of the first small conversion devices 3 to 6.
  • the switching drive pattern correction signal transmitted from the second power conversion device drive pattern correction unit 403 to the control device 35 of each of the second small conversion devices 8 to 11 It may be changed according to the command value.
  • the sum of the voltages output from the AC side connection terminals 33 of the second small conversion devices 8 to 11 when the carrier replacement is completed is almost equal, and the second small conversion device 8 To 11, the total amount of electric power obtained by the product of the voltage output from each AC side connection terminal 33 and the AC current flowing through each AC side connection terminal 33 of the second small converters 8 to 11, that is, the voltage
  • the sum of the areas of the enclosed portions of the waveform obtained by multiplying the rectangular wave shown by the sine wave showing the alternating current becomes substantially equal. Therefore, the amounts of power output from power storage devices 13 to 16 to second small conversion devices 8 to 11 are substantially equal, and the power storage devices 13 to 16 can be kept in an approximately equal charge state.
  • the amount of power input from the first small conversion devices 3 to 6 to the power storage devices 13 to 16 is made substantially equal, and the amount of power output from the power storage devices 13 to 16 to the second small conversion devices 8 to 11 is made substantially equal.
  • the switching drive pattern control for performing the switching drive pattern (rectangular shape) of the small conversion device having a long on-time of the switching element in a half cycle is included.
  • Wave is divided into several pulses in the pulse width direction, and a part of this divided pulse is separated and incorporated into the switching drive pattern of other small converters with short on-time of switching elements in half cycle , Switching in half cycle of multiple small converters in power converters Successive portions of the switching drive pattern as the ON time of the child is approximately equal, it is considered that reclassified.
  • the sum of the amounts of electric power obtained by the product of the alternating current flowing through the current that is, the sum of the areas of the enclosed portions of the waveform obtained by multiplying the rectangular wave indicating the voltage and the sine wave indicating the alternating current becomes substantially equal.
  • the amount of power input from the first small conversion devices 3 to 6 to the power storage devices 13 to 16 is made substantially equal, and the amount of power output from the power storage devices 13 to 16 to the second small conversion devices 8 to 11 Even if the switching of the first small conversion devices 3 to 6 and the second small conversion devices 8 to 11 is controlled so that the power storage devices 13 to 16 are charged and discharged, Variations in the state of charge of the power storage devices 13 to 16 occur due to differences in characteristics of the characteristics of .about.16.
  • FIG. 8 shows the state of charge of each of the power storage devices 13-16.
  • the horizontal axis indicates the number (sign) of the power storage device, and the vertical axis indicates the state of charge of each of the power storage devices 13 to 16 at an arbitrary measurement timing.
  • power storage devices 13 to 16 are in different charged states. Specifically, among the power storage devices 13 to 16, the power storage device 13 has the smallest charge state, the power storage device 16 has the largest charge state, and the power storage device 13, the power storage device 14, the power storage device 15, and the power storage device 16 In order, the state of charge is large. In this state, the power storage devices 13 to 16 input power via the first power conversion device 7 and output power via the second power conversion device 12.
  • FIG. 9 shows the amount of power input from the first small conversion devices 3 to 6 to the power storage devices 13 to 16.
  • the horizontal axis indicates the number (sign) of the first small conversion device, and the vertical axis is input from the first small conversion devices 3 to 6 to the power storage devices 13 to 16 at the same timing as the measurement timing of FIG. 3 shows the amount of power in a period of one cycle of the target voltage shown in FIG.
  • the charging states of power storage devices 13 to 16 are different, as shown in FIG. 9, the amount of power input to the power storage device having the smallest charging state among power storage devices 13 to 16 is the largest, and the charging state is the highest.
  • the amount of electric power input to a large power storage device is minimized, the input power is decreased as the state of charge increases, and the state of charge is adjusted so that the different state of charge of power storage devices 13 to 16 is approximately equal. .
  • FIG. 10 shows the amount of power output from the power storage devices 13-16 to the second small conversion devices 8-11.
  • the horizontal axis indicates the number (sign) of the second small conversion device, and the vertical axis is output from the power storage devices 13 to 16 to the second small conversion devices 8 to 11 at the same timing as the measurement timing of FIG.
  • the electric energy in the period for 1 cycle of target voltages shown in FIG. 3 is shown.
  • the amount of power output from the power storage device having the smallest charging state among power storage devices 13 to 16 is the smallest, and the charging state is the lowest.
  • the amount of power output from the large power storage device is maximized, and the output power is increased as the charge state increases, and the charge state is adjusted so that the different charge states of the power storage devices 13 to 16 are substantially equal. .
  • the amount of electric power input from the first small conversion devices 3 to 6 to the power storage devices 13 to 16 is changed according to the state of charge of the power storage devices 13 to 16, and the second small conversion device 8 from the power storage devices 13 to 16 is changed.
  • the switching drive pattern control for varying the amount of power output to 11 to 11 depending on the state of charge of the power storage devices 13 to 16 the switching drive pattern in each of the first small conversion devices 3 to 6 is used as the input power amount.
  • the power storage devices 13 to 16 are fixed until the different charging states of the power storage devices 13 to 16 are substantially equal, and the switching drive pattern in each of the second small conversion devices 8 to 11 is replaced according to the output power amount. It is conceivable that the different charging states are fixed until they are substantially equal.
  • the voltage pattern input to the AC side connection terminal 33 of the first small conversion device 3 shown in FIG. 3B is the AC side connection terminal of the first small conversion device 6 shown in FIG.
  • a voltage pattern input to the AC side connection terminal 33 of the first small conversion device 4 shown in FIG. 3C corresponds to a voltage pattern input to the first small conversion device 5 shown in FIG.
  • the voltage pattern input to the AC side connection terminal 33 of the first small conversion device 5 shown in FIG. 3D is changed to the voltage pattern input to the AC side connection terminal 33 as shown in FIG.
  • the voltage pattern input to the AC side connection terminal 33 of the first small-sized conversion device 6 shown in FIG. 3E is the voltage pattern input to the AC side connection terminal 33 of the conversion device 4 in FIG.
  • the amount of electric power input from the first small conversion device 3 to the power storage device 13 having the smallest charge state is the largest in accordance with the charge states of the power storage devices 13 to 16, and
  • the amount of power input from the first small conversion device 6 to the largest power storage device 16 becomes the smallest, and the input power decreases as the state of charge increases, and each AC side of the first small conversion devices 3 to 6
  • the area surrounded by the waveform obtained by multiplying the wave is smaller in the order of the first small conversion device 3, the first small conversion device 4, the first small conversion device 5, and the first small conversion device 6.
  • the amount of power input from the first small conversion devices 3 to 6 to the power storage devices 13 to 16 can be changed according to the charging state of the power storage devices 13 to 16, and the different charging states of the power storage devices 13 to 16 are almost the same.
  • the state of charge can be adjusted to be equal.
  • the voltage pattern of the second small conversion device 8 is different from the switching drive pattern replacement of the first small conversion devices 3 to 6 in other words.
  • 3B the voltage pattern of the second small conversion device 9 is shown in FIG. 3C
  • the voltage pattern of the second small conversion device 10 is shown in FIG. 3D
  • the second small conversion device. 11 is the voltage pattern shown in FIG. 3E, so that the carrier signal-transmitted from the central controller 2 to the respective control devices 35 of the second small conversion devices 8 to 11 What is necessary is just to replace with the command value for switching drive pattern correction
  • the amount of power output from the power storage device 13 having the smallest charge state to the second small conversion device 8 is the smallest and the charge state is the largest, depending on the state of charge of the power storage devices 13 to 16.
  • the amount of power output from the power storage device 16 to the second small conversion device 11 is the largest, and the output power increases as the state of charge increases, so that the AC connection of each of the second small conversion devices 8 to 11 is increased.
  • the area of the enclosed portion of the waveform obtained by multiplying is calculated in the order of the second small conversion device 8, the second small conversion device 9, the second small conversion device 10, and the second small conversion device 11. Kikunaru. Therefore, the amount of power output from the power storage devices 13 to 16 to the second small conversion devices 8 to 11 can be changed according to the charging state of the power storage devices 13 to 16, and the different charging states of the power storage devices 13 to 16 are almost the same. The state of charge can be adjusted to be equal.
  • Switching drive pattern control for varying the amount of output electric power according to the state of charge of the power storage devices 13 to 16 includes switching the switching drive patterns of a plurality of small conversion devices in the power conversion device, Divide the switching drive pattern (rectangular wave) of the device into several pulses in the pulse width direction, separate a part of this divided pulse, and incorporate it into the switching drive pattern of other small converters to convert power
  • the on-time of the switching element in a half cycle of a plurality of small conversion devices in the device depends on the state of charge of power storage devices 13-16 As changes, it is conceivable to rearrange some of the switching drive pattern.
  • the pulse width is reduced to reduce the switching on time.
  • the separated portion is incorporated into a switching drive pattern corresponding to the voltage pattern shown in FIG. 3B, for example, to widen the pulse width to increase the switching on time, and corresponds to the power storage device 13 having the smallest charged state.
  • the input power amount of the first small conversion device 3 is increased.
  • the amount of electric power obtained by the product of, and the voltage output from the AC side connection terminal 33 of each of the second small conversion devices 8 to 11 and the AC side connection terminal 33 of each of the second small conversion devices 8 to 11 The amount of electric power obtained by the product of the alternating current, that is, the area of the enclosed portion of the waveform obtained by multiplying the rectangular wave indicating the voltage and the sine wave indicating the alternating current is the charged state of the power storage devices 13-16. It changes depending on the situation.
  • the switching of both the first power conversion device 7 and the second power conversion device 12 is controlled by a command signal from the central control device 2 according to the state of charge of the power storage devices 13 to 16.
  • the charge states of the power storage devices 13 to 16 are adjusted so that the charge states of the power storage devices 13 to 16 are uniform. This adjustment is performed by either the first power conversion device 7 or the second power conversion device 12. You may make it carry out by.
  • the present embodiment described above it is possible to supply power to the single-phase AC power system 20 after the power supply device 1 is linked to the power generation system 19. Even when the output of the system 19 is insufficient, power can be stably supplied to the single-phase AC power system 20.
  • the surplus power is stored in the power supply device 1, and the stored power is used as the output of the power generation system 19. Since it can be supplied to the single-phase AC power system 20 when it is insufficient, the energy generated in the power generation system 19 can be used effectively.
  • the switching drive patterns of the first small conversion devices 3 to 6 and the second small conversion devices 8 to 11 are controlled so that the charge states of the power storage devices 13 to 16 are made uniform. Since the charging states of the devices 13 to 16 are adjusted, it is possible to suppress the variation in the life of the power storage devices 13 to 16 caused by the variation in the charging state of the power storage devices 13 to 16. The service life of the power supply device 1 can be extended. Therefore, in this embodiment, it is possible to achieve both stabilization of power supply by the power supply device 1 and extension of the life of the power supply device 1.
  • the power supply apparatus 101 having the same configuration as that of the power supply apparatus 1 of the first embodiment is provided, the single-phase AC power system 20 is connected to the power supply side connection terminal 17, the AC load 22 is connected to the load side connection terminal 18, respectively. Electrically connected.
  • a reactor 21 is provided between a terminal on one side of the AC side connection terminal 17 of the first power converter 7 and the single-phase AC power system 20, and is electrically connected in series between the two.
  • the reactor 21 is a stationary induction device using an inductor that is a winding wound with an electric wire.
  • the reactor 21 is provided to adjust the phase and amplitude of the AC voltage on the power supply device 101 side in accordance with the AC voltage on the power supply side, here the single-phase AC power system 20 side.
  • the reactor 21 also functions as a filter that smoothes the voltage and current between the single-phase AC power system 20 and the power supply device 101.
  • the power supply device 101 of the second embodiment also includes a central control device similar to that of the power supply device 1 of the first embodiment, but is not shown in FIG. 11 for the sake of simplicity. .
  • a power supply device 101 is provided between the single-phase AC power system 20 and the AC load 22, and power output from the single-phase AC power system 20 is supplied to the power storage devices 13 to 16 via the first power converter 7.
  • the power storage devices 13 to 16 are charged, and at the same time, the electric power output from the power storage devices 13 to 16 is supplied to the AC load 22 via the second power conversion device 12, thereby the single-phase AC power system 20
  • the power is stably supplied from the power storage devices 13 to 16 to the AC load 22. Can be supplied.
  • power may not be supplied from the power storage devices 13 to 16 to the AC load 22. Further, electric power may be supplied from the power storage devices 13 to 16 to the AC load 22 without charging the power storage devices 13 to 16. Furthermore, power may be supplied from the power storage devices 13 to 16 to the single-phase AC power system 20, or power may be supplied from the power storage devices 13 to 16 to both the single-phase AC power system 20 and the AC load 22. .
  • the power supply device 102 having the same configuration as the power supply device 1 of the first embodiment is provided, the power generation system (power generation device) 19 is provided in the power supply side connection terminal 17, the AC load 22 is provided in the load side connection terminal 18, Each is electrically connected.
  • a reactor 21 is provided between a terminal on one side of the AC side connection terminal 17 of the first power conversion device 7 and the power generation system 19, and is electrically connected in series between the two.
  • the reactor 21 is provided to adjust the phase and amplitude of the AC voltage on the power supply apparatus 102 side in accordance with the AC voltage on the power supply side, here the power generation system 19 side.
  • the reactor 21 also functions as a filter that smoothes the voltage and current between the power generation system 19 and the power supply device 102.
  • the power supply device 102 of the third embodiment also includes a central control device similar to that of the power supply device 1 of the first embodiment, but is not shown in FIG. 12 for the sake of simplicity. .
  • a power supply device 102 is provided between the power generation system 19 and the AC load 22, and the power output from the power generation system 19 is supplied to the power storage devices 13 to 16 via the first power conversion device 7 to supply the power storage devices 13 to 16.
  • the power output from the power storage devices 13 to 16 is supplied to the AC load 22 via the second power conversion device 12, so that the power is supplied to the AC load 22 while being connected to the power generation system 19. Can be supplied to the AC load 22 from the power storage devices 13 to 16 even when the supply of power from the power generation system 19 is stopped.
  • the power supply apparatus 103 having the same configuration as that of the power supply apparatus 1 of the first embodiment is provided, the DC power system 23 is connected to the power supply side connection terminal 17, and the AC load 22 is connected to the load side connection terminal 18. Connected to.
  • the small converters 3 to 6 are constituted by full bridge inverter circuits.
  • Full-bridge inverter circuit can convert DC voltage to AC voltage (positive and negative voltage), but does not convert in negative direction, but converts DC voltage to positive AC voltage, ie, voltage 0 and positive AC voltage It is also possible to do. If this principle is used, the DC power system 23 can be used as a kind of single-phase AC power system, and the power output from the DC power system 23 can be used as the first power converter 7. Conversion is performed by each of the small-sized conversion devices 3 to 6, and the converted electric power can be supplied to the power storage devices 13 to 16 to charge each of the power storage devices 13 to 16.
  • the power supply device 103 according to the fourth embodiment also includes a central control device similar to that of the power supply device 1 according to the first embodiment. However, in FIG. 13, the illustration thereof is omitted for simplification. .
  • the power supply device 103 is provided between the DC power system 23 and the AC load 22, and the power output from the DC power system 23 is supplied to the power storage devices 13 to 16 via the first power conversion device 7 to supply the power storage device 13.
  • power may not be supplied from the power storage devices 13 to 16 to the AC load 22. Further, electric power may be supplied from the power storage devices 13 to 16 to the AC load 22 without charging the power storage devices 13 to 16. Furthermore, power may be supplied from the power storage devices 13 to 16 to the DC power system 23, or power may be supplied from the power storage devices 13 to 16 to both the DC power system 23 and the AC load 22.
  • the first power conversion device 7 is caused to function as a device that converts direct current power into direct current power, for example, a DC-DC converter, and the direct current power output from the direct current power system 23 is converted into the first power conversion device 7.
  • Each of the power storage devices 13 to 16 can be charged by being divided into DC power for each of the power storage devices 13 to 16 by the small conversion devices 3 to 6 and supplied to each of the power storage devices 13 to 16.
  • 5th Example is a modification of 4th Example, is equipped with the power supply device 104 of the same structure as the power supply device 1 of 1st Example, and the other side of the alternating current side connection terminal 33 of the 1st small converter 4 is provided.
  • the terminal is electrically connected to one terminal of the power supply side connection terminal 24, and one terminal of the AC side connection terminal 33 of the first small-sized conversion device 5 is electrically connected to the other terminal of the power supply side connection terminal 24.
  • the power generation system 19 is electrically connected to the power supply side connection terminal 24 to electrically connect the first small conversion device 4 and the first small conversion device 5 via the power generation system 19. I try to connect.
  • a reactor 21 is electrically connected in series between one terminal of the power supply side connection terminal 24 and the power generation system 19.
  • the reactor 21 is provided to adjust the phase and amplitude of the AC voltage on the power supply device 104 side in accordance with the AC voltage on the power supply side, here the power generation system 19 side.
  • the reactor 21 also functions as a filter that smoothes the voltage and current between the power generation system 19 and the power supply device 104.
  • the power supply device 104 of the fifth embodiment also includes a central control device similar to that of the power supply device 1 of the first embodiment, but is not shown in FIG. 14 for simplicity of illustration. .
  • a power supply device 103 is provided between the DC power system 23 and the AC load 22, and the power output from the DC power system 23 and / or the power generation system 19 or both via the first power conversion device 7 is stored in the power storage devices 13 to 16.
  • power may not be supplied from the power storage devices 13 to 16 to the AC load 22. Further, electric power may be supplied from the power storage devices 13 to 16 to the AC load 22 without charging the power storage devices 13 to 16. Furthermore, power may be supplied from the power storage devices 13 to 16 to the DC power system 23, or power may be supplied from the power storage devices 13 to 16 to both the DC power system 23 and the AC load 22.
  • the sixth embodiment is a modification of the first embodiment.
  • the power supply device 1 constitutes a single-phase power supply device.
  • the power supply device 1 of the first embodiment is provided for three phases, and a three-phase power supply device 50 is configured.
  • the three-phase power supply device 50 includes a U-phase power supply device 1A, a V-phase power supply device 1B, and a W-phase power supply device 1C.
  • the U-phase power supply device 1A, V-phase power supply device 1B, and W-phase power supply device 1C all have the same configuration as the power supply device 1 of the first embodiment.
  • the U-phase power supply device 1A, V-phase power supply device 1B, and W-phase power supply device 1C of the sixth embodiment also have a central control device similar to the power supply device 1 of the first embodiment, but in FIG. The illustration is omitted for simplification of illustration.
  • the power supply side connection terminal 17A of the U-phase power supply device 1A, the power supply side connection terminal 17B of the V phase power supply device 1B, and the one side terminal of the power supply side connection terminal 17C of the W phase power supply device 1C generate three-phase AC power. It is electrically connected to the system 31.
  • the power supply side connection terminal 17A of the U phase power supply device 1A, the power supply side connection terminal 17B of the V phase power supply device 1B, and the other side terminal of the power supply side connection terminal 17C of the W phase power supply device 1C are electrically connected to the connection point 28. ing.
  • the connection point 28 corresponds to the neutral point of the three-phase connection. That is, the power supply sides of the U-phase power supply device 1A, the V-phase power supply device 1B, and the W-phase power supply device 1C are star (Y) connected.
  • One side of the load side connection terminal 18A of the U phase power supply device 1A, the load side connection terminal 18B of the V phase power supply device 1B, and the load side connection terminal 18C of the W phase power supply device 1C is electrically connected to the three-phase AC power system 30. It is connected to the.
  • the load-side connection terminal 18A of the U-phase power supply device 1A, the load-side connection terminal 18B of the V-phase power supply device 1B, and the other terminal of the load-side connection terminal 18C of the W-phase power supply device 1C are electrically connected to the connection point 26. ing.
  • the connection point 26 corresponds to the neutral point of the three-phase connection. That is, the load side of the U-phase power supply 1A, V-phase power supply 1B, and W-phase power supply 1C is star (Y) connected.
  • a three-phase power supply device 50 is provided between the power generation system 31 and the three-phase AC power system 30, and the power output from the power generation system 31 is stored in the power storage devices 13A to 16A via the first power conversion devices 7A, 7B, and 7C. , 13B to 16B, 13C to 16C to charge the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C, and at the same time, the power storage devices 13A to 16A via the second power conversion devices 12A, 12B, and 12C. , 13B to 16B, and 13C to 16C are supplied to the three-phase AC power system 30 to supply power to the three-phase AC power system 30 while being connected to the power generation system 31. Even when the supply of power from the power generation system 31 is stopped, the three-phase AC power system 3 from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C. Stable power can be supplied to the.
  • the power may not be supplied from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C to the three-phase AC power system 30.
  • power may be supplied from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C to the three-phase AC power system 30 without charging the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C.
  • the seventh embodiment will be described with reference to FIG.
  • the seventh embodiment includes a three-phase power supply device 501 having the same configuration as the three-phase power supply device 50 of the sixth embodiment, and includes a power supply side connection terminal 17A of the U phase power supply apparatus 1A and a power supply side connection terminal of the V phase power supply apparatus 1B. 17B, the three-phase AC power system 30 is connected to the power supply side connection terminal 17C of the W phase power supply device 1C, the load side connection terminal 18A of the U phase power supply device 1A, the load side connection terminal 18B of the V phase power supply device 1B, and the W phase power supply device.
  • a three-phase AC load 27 is electrically connected to the load-side connection terminal 18C of 1C.
  • the power supply side connection terminal 17A of the U phase power supply device 1A the power supply side connection terminal 17B of the V phase power supply device 1B, the one side terminal of the power supply side connection terminal 17C of the W phase power supply device 1C and the three-phase AC power system 30. Is provided with a reactor 29, which is electrically connected in series between the two.
  • the reactor 29 is a stationary induction device that uses an inductor that is a wire wound with an electric wire.
  • the reactor 29 is provided to adjust the phase and amplitude of the AC voltage on the power supply device 501 side in accordance with the AC voltage on the power supply side, here the three-phase AC power system 30 side.
  • the reactor 29 also functions as a filter that smoothes the voltage and current between the three-phase AC power system 30 and the power supply device 501.
  • the U-phase power supply device 1A, V-phase power supply device 1B, and W-phase power supply device 1C of the seventh embodiment also have a central control device similar to the power supply device 1 of the first embodiment, but in FIG. The illustration is omitted for simplification of illustration.
  • a power supply device 501 is provided between the three-phase AC power system 30 and the three-phase AC load 27, and the power output from the three-phase AC power system 30 is stored in the power storage device via the first power converters 7A, 7B, and 7C.
  • the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C are supplied to charge the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C.
  • the power storage devices are connected via the second power conversion devices 12A, 12B, and 12C.
  • the power is supplied to the three-phase AC load 27 while being connected to the three-phase AC power system 30.
  • the three-phase AC load 27 is supplied from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C. It is possible to stably supply power.
  • the power may not be supplied from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C to the three-phase AC load 27.
  • the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C may be supplied to the three-phase AC load 27 without charging the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C.
  • power is supplied from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C to the three-phase AC power system 30, or from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C. Electric power may be supplied to both the system 30 and the three-phase AC load 27.
  • a three-phase power supply device 502 having the same configuration as the three-phase power supply device 50 of the sixth embodiment is provided, the power supply side connection terminal 17A of the U phase power supply device 1A, and the power supply side connection terminal of the V phase power supply device 1B.
  • the power generation system (power generation device) 31 is connected to the power supply side connection terminal 17C of the 17B, W phase power supply device 1C, the load side connection terminal 18A of the U phase power supply device 1A, the load side connection terminal 18B of the V phase power supply device 1B, and the W phase power supply.
  • a three-phase AC load 27 is electrically connected to the load side connection terminal 18C of the device 1C.
  • a reactor is connected between the power generation system 31 and the power supply side connection terminal 17A of the U phase power supply device 1A, the power supply side connection terminal 17B of the V phase power supply device 1B, and the power supply side connection terminal 17C of the W phase power supply device 1C. 29 are electrically connected in series.
  • the reactor 29 is provided to adjust the phase and amplitude of the AC voltage on the power supply device 502 side in accordance with the AC voltage on the power supply side, here the power generation system 31 side.
  • the reactor 29 also functions as a filter that smoothes the voltage and current between the power generation system 31 and the power supply device 502.
  • the U-phase power supply device 1A, V-phase power supply device 1B, and W-phase power supply device 1C of the eighth embodiment also have a central controller similar to the power supply device 1 of the first embodiment, but in FIG. The illustration is omitted for simplification of illustration.
  • a power supply device 501 is provided between the power generation system 31 and the three-phase AC load 27, and the electric power output from the power generation system 31 via the first power conversion devices 7A, 7B, and 7C is stored in the power storage devices 13A to 16A, 13B to 16B, 13C to 16C are supplied to charge the power storage devices 13A to 16A, 13B to 16B, 13C to 16C, and at the same time, the power storage devices 13A to 16A, 13B to By supplying the power output from 16B, 13C to 16C to the three-phase AC load 27, it is possible to supply power to the three-phase AC load 27 while being linked to the power generation system 31, and from the power generation system 31. Even when the supply of power is stopped, power is stably supplied from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C to the three-phase AC load 27. It is possible to feed.
  • the power may not be supplied from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C to the three-phase AC load 27.
  • the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C may be supplied to the three-phase AC load 27 without charging the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C.
  • a three-phase power supply device 503 having the same configuration as the three-phase power supply device 50 of the sixth embodiment is provided, the power supply side connection terminal 17A of the U phase power supply device 1A, and the power supply side connection terminal of the V phase power supply device 1B.
  • the DC power system 35 is connected to the power supply side connection terminal 17C of the 17B, W phase power supply device 1C, the load side connection terminal 18A of the U phase power supply device 1A, the load side connection terminal 18B of the V phase power supply device 1B, and the W phase power supply device 1C.
  • a three-phase AC load 27 is electrically connected to the load side connection terminal 18C.
  • the power supply side connection terminal 17A of the U phase power supply device 1A, the power supply side connection terminal 17B of the V phase power supply device 1B, and the power supply side connection terminal 17C of the W phase power supply device 1C are electrically connected to the connection point 33.
  • the DC power system 35 is electrically connected to the positive electrode side.
  • the power supply side connection terminal 17A of the U phase power supply device 1A, the power supply side connection terminal 17B of the V phase power supply device 1B, and the other side terminal of the power supply side connection terminal 17C of the W phase power supply device 1C are electrically connected to the connection point 34.
  • the DC power system 35 is electrically connected to the negative electrode side.
  • the terminals on the other side of the AC side connection terminals 33A, 33B, 33C of the first small conversion devices 4A, 4B, 4C are electrically connected to terminals on one side of the power source side connection terminals 24A, 24B, 24C.
  • One side terminals of the AC side connection terminals 33A, 33B, 33C of the first small conversion devices 5A, 5B, 5C are electrically connected to the other side terminals of the power source side connection terminals 24A, 24B, 24C.
  • the power generation system 31 is electrically connected to the power supply side connection terminals 24A, 24B, and 24C. Accordingly, the first small conversion devices 4A, 4B, 4C and the first small conversion devices 5A, 5B, 5C are electrically connected via the power generation system 31.
  • a reactor 19 is electrically connected in series between one of the power supply side connection terminals 24 ⁇ / b> A, 24 ⁇ / b> B, and 24 ⁇ / b> C and the power generation system 31.
  • the reactor 29 is provided to adjust the phase and amplitude of the AC voltage on the power supply device 503 side in accordance with the AC voltage on the power supply side, here the power generation system 31 side.
  • the reactor 29 also functions as a filter that smoothes the voltage and current between the power generation system 31 and the power supply device 503.
  • the U-phase power supply device 1A, V-phase power supply device 1B, and W-phase power supply device 1C of the ninth embodiment also have a central control device similar to the power supply device 1 of the first embodiment, but in FIG. The illustration is omitted for simplification of illustration.
  • a power supply device 503 is provided between the DC power system 35 and the three-phase AC load 27, and the power output from the DC power system 35 and / or the power generation system 31 via the first power converters 7A, 7B, and 7C. Is supplied to the power storage devices 13A to 16A, 13B to 16B, 13C to 16C to charge the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C, and at the same time through the second power conversion devices 12A, 12B, and 12C. By supplying the power output from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C to the three-phase AC load 27, the power is supplied to the three-phase AC load 27 while being connected to the DC power system 35.
  • the power storage device 13A 16A, 13B ⁇ 16B, stably from @ 13 C ⁇ 16C into a three-phase AC load 27 may supply power.
  • the power may not be supplied from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C to the three-phase AC load 27.
  • the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C may be supplied to the three-phase AC load 27 without charging the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C.
  • power may be supplied from the power storage devices 13A to 16A, 13B to 16B, 13C to 16C to the DC power system 35, or the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C may be connected to the DC power system 35. Electric power may be supplied to both of the phase AC loads 27.
  • a three-phase power supply device 504 having the same configuration as the three-phase power supply device 50 of the sixth embodiment is provided, the power supply side connection terminal 17A of the U phase power supply device 1A, and the power supply side connection terminal of the V phase power supply device 1B.
  • a DC power supply 36 is connected to the power supply side connection terminal 17C of the W phase power supply device 1C, a load side connection terminal 18A of the U phase power supply device 1A, a load side connection terminal 18B of the V phase power supply device 1B, and a load of the W phase power supply device 1C.
  • the three-phase AC power system 30 is electrically connected to the side connection terminals 18C.
  • the power supply side connection terminal 17A of the U phase power supply device 1A, the power supply side connection terminal 17B of the V phase power supply device 1B, and the power supply side connection terminal 17C of the W phase power supply device 1C are electrically connected to the connection point 33.
  • the DC power source 36 is electrically connected to the positive electrode side.
  • the power supply side connection terminal 17A of the U phase power supply device 1A, the power supply side connection terminal 17B of the V phase power supply device 1B, and the other side terminal of the power supply side connection terminal 17C of the W phase power supply device 1C are electrically connected to the connection point 34.
  • the DC power source 36 is electrically connected to the negative electrode side.
  • the U-phase power supply device 1A, V-phase power supply device 1B, and W-phase power supply device 1C of the tenth embodiment also have a central control device similar to the power supply device 1 of the first embodiment, but in FIG. The illustration is omitted for simplification of illustration.
  • a three-phase power supply device 504 is provided between the DC power supply 36 and the three-phase AC power system 30, and the power output from the DC power supply 36 is stored in the power storage devices 13A to 16A via the first power conversion devices 7A, 7B, and 7C. , 13B to 16B, 13C to 16C to charge the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C, and at the same time, the power storage devices 13A to 16A via the second power conversion devices 12A, 12B, and 12C. , 13B to 16B, and 13C to 16C are supplied to the three-phase AC power system 30 to supply power to the three-phase AC power system 30 while being connected to the DC power source 36. Even when the supply of power from the DC power supply 36 is stopped, the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C can stably supply power to the three-phase AC power system 30. It can be supplied.
  • the power may not be supplied from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C to the three-phase AC power system 30.
  • power may be supplied from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C to the three-phase AC power system 30 without charging the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C.
  • the first power converters 7A, 7B, and 7C function as a device (converter) that converts direct current and alternating current.
  • the first power conversion devices 7A, 7B, and 7C function as a device that converts direct current power into direct current power, for example, a DC-DC converter.
  • the direct-current power output from the power source 36 is stored in the power storage devices 13A to 16A, 13B to 16B, and 13C by the first small-sized conversion devices 3A to 6A, 3B to 6B, and 3C to 6C of the first power conversion devices 7A, 7B, and 7C. Or divided into DC power for each of the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C, and charged to each of the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C. it can.
  • the terminals on one side of the power supply side connection terminal 17A of the U phase power supply apparatus 1A, the power supply side connection terminal 17B of the V phase power supply apparatus 1B, and the power supply side connection terminal 17C of the W phase power supply apparatus 1C are
  • the reactor 21 may be provided between the connection point 33 that is electrically connected and the positive electrode side of the DC power supply 36, and may be electrically connected in series between the two.
  • the reactor 21 is provided to adjust the phase and amplitude of the AC voltage on the power supply device 504 side in accordance with the AC voltage on the DC power source 36 side, which can be regarded as an AC power source here.
  • the reactor 21 also functions as a filter that smoothes the voltage and current between the DC power supply 36 and the power supply device 504. The reason why the DC power supply 36 can be regarded as an AC power supply is as described in the fourth embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

The present invention addresses the problem of providing a power supply apparatus capable of stably supplying power and also achieving a longer life. This problem can be solved by being provided with two power conversion devices in each of which alternating-current-side connection terminals of a plurality of power conversion units capable of power conversion between direct current power and alternating current power are electrically connected in series, and a plurality of power storage devices, making the number of the plurality of power conversion units constituting each of the two power conversion devices and the number of the plurality of power storage devices the same, providing each of the plurality of power storage devices such that the power storage device is common to any one of the plurality of power conversion units constituting one of the two power conversion devices and any one of the plurality of power conversion units constituting the other, and electrically connecting the power storage device to direct-current-side connection terminals of the corresponding two power conversion units.

Description

電源装置Power supply
 本発明は電源装置に関する。 The present invention relates to a power supply device.
 技術分野に関する背景技術としては、例えば特許文献1,2に開示された技術がある。 As background art in the technical field, for example, there are techniques disclosed in Patent Documents 1 and 2.
 特許文献1には、複数のブリッジ回路を備え、複数のブリッジ回路のそれぞれの直流側接続端子に、直流電力を出力する直流電源(鉛電池など)を接続し、複数のブリッジ回路の交流側接続端子を直列に接続することにより、直流電源の直流電力と、複数のブリッジ回路の直列に接続された交流側接続端子の交流電力とを変換可能とした電力変換装置が開示されている。 Patent Document 1 includes a plurality of bridge circuits, and a DC power source (such as a lead battery) that outputs DC power is connected to each DC side connection terminal of each of the plurality of bridge circuits. There is disclosed a power conversion device capable of converting DC power of a DC power supply and AC power of AC-side connection terminals connected in series of a plurality of bridge circuits by connecting terminals in series.
 特許文献2には、交流電力を直流電力に変換するコンバータの直流側と、直流電力を交流電力に変換するインバータの直流側とを電気的に直列に接続して、交流電力系統と交流負荷との間に電気的に接続し、コンバータとインバータとの間に直流電源を電気的に接続した無停電電源装置が開示されている。 In Patent Document 2, a DC side of a converter that converts AC power to DC power and a DC side of an inverter that converts DC power to AC power are electrically connected in series, and an AC power system and an AC load are connected. An uninterruptible power supply apparatus in which a DC power source is electrically connected between a converter and an inverter is disclosed.
特開2006-320103号公報JP 2006-320103 A 特開2005-45856号公報Japanese Patent Laying-Open No. 2005-45856
 近年、二酸化炭素の排出による地球温暖化や、化石燃料の枯渇が懸念されており、二酸化炭素の排出量の低減や、化石燃料への依存度の低下が求められている。二酸化炭素の排出量の低減や、化石燃料への依存度の低下を図るためには、風力や太陽光などの自然から得られる再生可能エネルギーを利用した発電システムの導入が有効であると考えられている。 In recent years, there are concerns about global warming due to carbon dioxide emissions and the depletion of fossil fuels, and there is a demand for a reduction in carbon dioxide emissions and a decrease in dependence on fossil fuels. In order to reduce carbon dioxide emissions and reduce dependence on fossil fuels, it is considered effective to introduce a power generation system that uses renewable energy such as wind power and sunlight. ing.
 再生可能エネルギーを利用した発電システムの導入にあたっては、気象条件に左右される再生可能エネルギーの変動に伴う電力変動を抑制する手段が必要であり、その一手段として、電気エネルギーの蓄積及び放出が可能な蓄電システムが注目されている。再生可能エネルギーを利用して発電した電力が余剰である場合には、蓄電システムはその余剰電力を貯蔵する。再生可能エネルギーを利用して発電した電力が不足している場合には、蓄電システムは、電力が不足している分、貯蔵している電力を放電する。このように、再生可能エネルギー発電システムに蓄電システムを併設することにより、再生可能エネルギーを有効利用することが可能である。 In order to introduce a power generation system that uses renewable energy, it is necessary to have a means to suppress power fluctuations associated with fluctuations in renewable energy, which are influenced by weather conditions, and as one means, electrical energy can be stored and released. Is attracting attention. When the power generated using renewable energy is surplus, the power storage system stores the surplus power. When the electric power generated using renewable energy is insufficient, the power storage system discharges the stored electric power as much as the electric power is insufficient. Thus, it is possible to effectively use renewable energy by providing a storage system in the renewable energy power generation system.
 再生可能エネルギーの発電システムに併設される蓄電システムは、比較的短いサイクルで充放電が繰り返されるため、蓄電システムを構成する複数の蓄電装置の寿命管理が重要である。複数の蓄電装置の管理としては、インバータ又はパワーコンディショナを用いて、複数の蓄電装置をまとめて管理することが考えられる。しかし、複数の蓄電装置をまとめて管理する場合、複数の蓄電装置の状態や特性のばらつきに起因して、一部の性能の低い蓄電装置が他の良好な性能の蓄電装置に影響を及ぼし、蓄電システム全体の寿命が短くなることが考えられる。 Since the power storage system provided in the renewable energy power generation system is repeatedly charged and discharged in a relatively short cycle, life management of a plurality of power storage devices constituting the power storage system is important. As management of the plurality of power storage devices, it is conceivable to manage the plurality of power storage devices collectively using an inverter or a power conditioner. However, when managing a plurality of power storage devices collectively, due to variations in the state and characteristics of the plurality of power storage devices, some of the low performance power storage devices affect other good performance power storage devices, It is conceivable that the life of the entire power storage system is shortened.
 蓄電システムの長寿命化を図るためには、特許文献1に開示された電力変換装置を採用して蓄電システムを構成することが考えられる。特許文献1に開示された電力変換装置を採用した蓄電システムによれば、蓄電システムを構成する複数の蓄電装置を複数の蓄電装置グループに分けて、蓄電装置グループ毎に蓄電装置を管理し、蓄電装置グループ毎に蓄電装置の充電状態を制御することができるので、複数の蓄電装置の状態や特性のばらつきに起因して、一部の性能の低い蓄電装置から他の良好な性能の蓄電装置に及ぼす影響を小さくでき、蓄電システムの長寿命化を図ることができる。 In order to extend the life of the power storage system, it is conceivable to employ the power conversion device disclosed in Patent Document 1 to configure the power storage system. According to the power storage system employing the power conversion device disclosed in Patent Document 1, a plurality of power storage devices constituting the power storage system are divided into a plurality of power storage device groups, and the power storage devices are managed for each power storage device group. Because the state of charge of power storage devices can be controlled for each device group, due to variations in the status and characteristics of multiple power storage devices, some low performance power storage devices can be changed to other good performance power storage devices. The influence exerted can be reduced, and the life of the power storage system can be extended.
 しかし、特許文献1に開示された電力変換装置を採用した蓄電システムは、交流電力系統、発電システム及び交流負荷に電気的に並列に接続されることから、交流負荷に安定的に電力を供給するためには、交流系統や発電システムと密に協調する必要がある。例えば交流電力系統が不安定な傾向にある場合には、交流電力系統の不安定電力を安定化するために、蓄電システムの蓄電装置容量を大きくする必要がある。また、交流電力系統や発電システムの電力供給が遮断された際には、その電力遮断を検出し、安全に交流負荷に電力を供給するために、交流電力系統や発電システムを監視するシステムが必要である。さらに、電力の遮断が許容されない場合、すなわち医療や基幹通信網を交流負荷とする場合には、電力の遮断を抑制できるようにシステムを構築する必要があり、その構築に追加コストを要する。 However, since the power storage system employing the power conversion device disclosed in Patent Document 1 is electrically connected in parallel to the AC power system, the power generation system, and the AC load, power is stably supplied to the AC load. For this purpose, it is necessary to cooperate closely with the AC system and the power generation system. For example, when the AC power system tends to be unstable, it is necessary to increase the capacity of the power storage system of the power storage system in order to stabilize the unstable power of the AC power system. Also, when the power supply of the AC power system or power generation system is interrupted, a system that monitors the AC power system or power generation system is necessary to detect the power interruption and safely supply power to the AC load. It is. Furthermore, when power cut-off is not permitted, that is, when a medical or backbone communication network is used as an AC load, it is necessary to construct a system so that power cut-off can be suppressed, and the construction requires additional costs.
 交流負荷に安定的に電力を供給する有効な一手段としては、特許文献2に開示された無停電電源装置のように蓄電システムを構築することが考えられる。特許文献2に開示された無停電電源装置のように蓄電システムを構築することによれば、電力供給源として交流電力系統と直流電源とを備えることができるので、交流電力系統が不安定であったり、交流電力系統の電力が遮断されたりしても、安定的に交流負荷に電力を供給することができる。 As an effective means for stably supplying power to an AC load, it is conceivable to construct a power storage system like the uninterruptible power supply disclosed in Patent Document 2. According to the construction of the power storage system like the uninterruptible power supply disclosed in Patent Document 2, since the AC power system and the DC power source can be provided as power supply sources, the AC power system is unstable. Even if the power of the AC power system is cut off, power can be stably supplied to the AC load.
 しかし、特許文献2に開示された無停電電源装置は、直流電源の状態をコンバータ又はインバータを用いてまとめて制御しているので、直流電源を構成する複数の蓄電装置の状態や特性にばらつきがある場合には、直流電源全体の寿命に影響を及ぼし、無停電電源装置の寿命を短くすることが考えられる。 However, since the uninterruptible power supply disclosed in Patent Document 2 controls the state of the DC power supply collectively using a converter or an inverter, there are variations in the states and characteristics of the plurality of power storage devices constituting the DC power supply. In some cases, the life of the entire DC power supply is affected, and the life of the uninterruptible power supply can be shortened.
 解決すべき代表的な課題は、電源装置からの電力供給の安定化と電源装置の長寿命化の両立にある。 A typical problem to be solved is to balance the stabilization of power supply from the power supply device and the extension of the life of the power supply device.
 上記代表的な課題の解決にあたっては、システムをシンプルに構成し、かつ導入する蓄電装置の個数を必要最低限にすることにより、電源装置の導入コストを低く抑えることが好ましい。 In solving the above typical problems, it is preferable to keep the introduction cost of the power supply device low by simply configuring the system and minimizing the number of power storage devices to be introduced.
 上記代表的な課題は、直流電力と交流電力との電力変換が可能な複数の電力変換ユニットの交流側接続端子を電気的に直列に接続した2組の電力変換装置と、複数の蓄電装置とを備え、2組の電力変換装置のそれぞれを構成する複数の電力変換ユニットと複数の蓄電装置とを同じ個数とし、複数の蓄電装置のそれぞれを、2組の電力変換装置の一方を構成する複数の電力変換ユニットのいずれか一つと、他方を構成する複数の電力変換ユニットのいずれか一つとに対して共通に設けて、対応する2組の電力変換ユニットの直流側接続端子に電気的に接続するという、代表的な一解決手段によって解決できる。 The representative problem is that two sets of power conversion devices in which AC side connection terminals of a plurality of power conversion units capable of power conversion between DC power and AC power are electrically connected in series, and a plurality of power storage devices, The plurality of power conversion units and the plurality of power storage devices constituting each of the two sets of power conversion devices are the same number, and each of the plurality of power storage devices constitutes one of the two sets of power conversion devices. Provided in common for any one of the power conversion units and any one of the plurality of power conversion units constituting the other, and electrically connected to the DC side connection terminals of the corresponding two sets of power conversion units This can be solved by a typical solution.
 代表的な一解決手段によれば、電源装置から電力を安定に供給でき、しかも電源装置の長寿命化を図ることができる。 According to a typical solution, power can be stably supplied from the power supply device, and the life of the power supply device can be extended.
電源装置の概略構成を示すブロック図。The block diagram which shows schematic structure of a power supply device. 図1の第1電力変換装置を構成する第1小型変換装置の構成を示す回路図。The circuit diagram which shows the structure of the 1st small size converter which comprises the 1st power converter device of FIG. 図1の第1電力変換装置を構成する四つの第1小型変換装置のそれぞれに対する1サイクル分の指令値(目標電圧)と、四つの第1小型変換装置のそれぞれの交流側接続端子に入力される1サイクル分の電圧との関係の時間的変化を示すタイムチャート。A command value (target voltage) for one cycle for each of the four first small converters constituting the first power converter of FIG. 1 and the AC side connection terminals of the four first small converters are input. The time chart which shows the time change of the relationship with the voltage for 1 cycle. 図1の電源装置を構成する中央制御装置に実装されるスイッチング駆動パターン補正部の構成を示す機能ブロック図。The functional block diagram which shows the structure of the switching drive pattern correction | amendment part mounted in the central control apparatus which comprises the power supply device of FIG. 図1の電源装置を構成する四つの蓄電装置のそれぞれのある測定タイミングにおける充電状態を示すグラフであり、充電状態が揃っているときの一例を示す。It is a graph which shows the charging condition in a certain measurement timing of each of the four electrical storage apparatuses which comprise the power supply device of FIG. 1, and shows an example when the charging condition is prepared. 図5の四つの蓄電装置の充電状態に応じて、図1の第1電力変換装置を構成する四つの第1小型変換装置のそれぞれから、対応する蓄電装置に入力される電力量を示すグラフであり、入力電力量が等しいときの一例を示す。FIG. 6 is a graph showing the amount of power input to the corresponding power storage device from each of the four first small conversion devices constituting the first power conversion device of FIG. 1 according to the state of charge of the four power storage devices of FIG. 5. There is an example when the input power amounts are equal. 図5の四つの蓄電装置の充電状態に応じて、図1の第2電力変換装置を構成する四つの第2小型変換装置のそれぞれに、対応する蓄電装置から出力される電力量を示すグラフであり、出力電力量が等しいときの一例を示す。FIG. 6 is a graph showing the amount of power output from the corresponding power storage device to each of the four second small conversion devices constituting the second power conversion device of FIG. 1 according to the state of charge of the four power storage devices of FIG. 5. An example is shown when the output power amounts are equal. 図1の電源装置を構成する四つの蓄電装置のそれぞれのある測定タイミングにおける充電状態を示すグラフであり、充電状態がばらついているときの一例を示す。It is a graph which shows the charge condition in the certain measurement timing of each of the four electrical storage apparatuses which comprise the power supply device of FIG. 1, and shows an example when the charge condition varies. 図8の四つの蓄電装置の充電状態に応じて、図1の第1電力変換装置を構成する四つの第1小型変換装置のそれぞれから、対応する蓄電装置に入力される電力量を示すグラフであり、入力電力量がそれぞれ異なるときの一例を示す。FIG. 9 is a graph showing the amount of power input to the corresponding power storage device from each of the four first small conversion devices constituting the first power conversion device of FIG. 1 according to the state of charge of the four power storage devices of FIG. 8. There is an example when the input power amounts are different. 図8の四つの蓄電装置の充電状態に応じて、図1の第2電力変換装置を構成する四つの第2小型変換装置のそれぞれに、対応する蓄電装置から出力される電力量を示すグラフであり、出力電力量がそれぞれ異なるときの一例を示す。FIG. 9 is a graph showing the amount of power output from the corresponding power storage device to each of the four second small conversion devices constituting the second power conversion device of FIG. 1 according to the state of charge of the four power storage devices of FIG. 8. There is an example when the output power amounts are different. 他の電源装置の概略構成を示すブロック図。The block diagram which shows schematic structure of another power supply device. 他の電源装置の概略構成を示すブロック図。The block diagram which shows schematic structure of another power supply device. 他の電源装置の概略構成を示すブロック図。The block diagram which shows schematic structure of another power supply device. 他の電源装置の概略構成を示すブロック図。The block diagram which shows schematic structure of another power supply device. 他の電源装置の概略構成を示すブロック図。The block diagram which shows schematic structure of another power supply device. 他の電源装置の概略構成を示すブロック図。The block diagram which shows schematic structure of another power supply device. 他の電源装置の概略構成を示すブロック図。The block diagram which shows schematic structure of another power supply device. 他の電源装置の概略構成を示すブロック図。The block diagram which shows schematic structure of another power supply device. 他の電源装置の概略構成を示すブロック図。The block diagram which shows schematic structure of another power supply device. 他の電源装置の概略構成を示すブロック図。The block diagram which shows schematic structure of another power supply device.
 本発明の実施形態を説明する。
(発明の適用アプリケーションの概略説明)
 以下では、本発明を、風力や太陽光などの再生可能エネルギーを利用した発電システムを主電源、交流電力系統を負荷として、主電源から供給された交流電力を負荷に供給する電源系統に、副電源として電気的に接続された定置用電源装置に適用した場合を例に挙げて説明する。
An embodiment of the present invention will be described.
(Outline of the application application of the invention)
In the following, the present invention is applied to a power supply system that uses a power generation system that uses renewable energy such as wind power or sunlight as a main power source and an AC power system as a load, and supplies AC power supplied from the main power source to the load. A case where the present invention is applied to a stationary power supply apparatus electrically connected as a power supply will be described as an example.
 定置用電源装置は、発電システムが立地する発電ファーム内に設置され、発電システムに併置されている。 The stationary power supply device is installed in the power generation farm where the power generation system is located, and is installed in the power generation system.
 再生可能エネルギーを利用した発電システムは、自然環境に及ぼす負荷が少ないという利点がある反面、天候などの自然環境に発電能力が左右され、交流電力系統に対する出力が変動する。この出力変動の抑制(緩和)を図るために定置用電源装置は設けられている。発電システムから交流電力系統に出力される電力が所定の出力電力に対して不足状態にある場合、定置用電源装置は電力を放電し、発電不足分の電力を補う。発電システムから交流電力系統に出力される電力が所定の電力に対して余剰状態にある場合、定置用電源装置は発電余剰分の電力を受けて充電する。 ∙ Power generation systems using renewable energy have the advantage of less impact on the natural environment, but the power generation capacity depends on the natural environment such as the weather, and the output to the AC power system fluctuates. In order to suppress (relax) this output fluctuation, a stationary power supply device is provided. When the power output from the power generation system to the AC power system is insufficient with respect to the predetermined output power, the stationary power supply device discharges the power and compensates for the power shortage. When the power output from the power generation system to the AC power system is in a surplus state with respect to the predetermined power, the stationary power supply device receives and charges the surplus power generated.
 本発明を適用した定置用電源装置は、病院などの医療機器を扱う施設、データセンタなどのサーバーシステムや通信設備を設置した施設に、電力遮断を回避するためのバックアップ電源として設置される無停電電源装置にも適用できる。この実施形態の場合、交流電力系統(商用電源)を主電源側として、医療機器、サーバーシステムや通信設備を負荷側として、それらの間に定置用電源装置が電気的に接続される。 The stationary power supply device to which the present invention is applied is an uninterruptible power supply installed as a backup power source for avoiding power interruption in facilities that handle medical equipment such as hospitals, facilities that have server systems and communication facilities such as data centers, etc. It can also be applied to power supply devices. In the case of this embodiment, the AC power system (commercial power supply) is the main power supply side, the medical device, the server system, and the communication facility are the load side, and the stationary power supply device is electrically connected between them.
 また、本発明を適用した定置用電源装置は、需要家に設置され、夜間に電力を貯蔵し、この貯蔵された電力を昼間に放出して電力負荷の平準化を図りながら、需要家の機器に電力を供給する電力貯蔵装置にも適用できる。この実施形態の場合、交流電力系統(商用電源)を主電源側として、需要家の機器を負荷側として、それらの間に定置要電源装置が電気的に接続される。 A stationary power supply apparatus to which the present invention is applied is installed in a consumer, stores power at night, discharges the stored power in the daytime, and balances the power load while maintaining the equipment of the consumer. The present invention can also be applied to a power storage device that supplies power. In the case of this embodiment, the AC power system (commercial power supply) is the main power supply side, the consumer device is the load side, and a stationary power supply device is electrically connected between them.
 さらに、本発明を適用した定置用電源装置は、送配電系統の途中に電気的に接続され、送配電系統において送配電される電力の変動対策、余剰電力対策、周波数対策、逆潮流対策などとして用いられる電源装置にも適用できる。この実施形態の場合、送電系統側を主電源側として、配電系統側を負荷側として、それらの間に定置要電源装置が電気的に接続される。 Furthermore, the stationary power supply device to which the present invention is applied is electrically connected in the middle of the transmission / distribution system, and is used as a countermeasure for fluctuation of power transmitted / distributed in the transmission / distribution system, a countermeasure for surplus power, a countermeasure for frequency, a countermeasure for reverse power flow, etc. It is applicable also to the power supply device used. In the case of this embodiment, the power transmission system side is the main power supply side, the power distribution system side is the load side, and the stationary power supply apparatus is electrically connected between them.
 主電源や負荷としては、上記の他に、直流電力系統なども考えられる。
(電源装置の概略説明)
 定置用電源装置としては、複数の蓄電器を有する蓄電ユニット、及び蓄電ユニットに対する電力の入出力を制御する電力変換ユニットを備えた電源ユニットが複数、電気的に直列に接続され、複数の電源ユニットの出力電圧を合成して出力するように構成された多重インバータ方式の電源装置を採用している。
In addition to the above, a DC power system can be considered as the main power source and load.
(Overview of power supply)
As the stationary power supply device, a plurality of power storage units each having a plurality of power storage units and a power conversion unit that controls power input / output to / from the power storage units are electrically connected in series. A multiple inverter type power supply device configured to synthesize and output the output voltage is employed.
 複数の蓄電器は、電気化学的作用や電荷蓄積構造によって電気エネルギーを蓄積(充電)及び放出(放電)する二次電池又は容量性を有する受動素子であり、定置用電源装置に要求される出力電圧、蓄電容量などの仕様に応じて、電気的に直列或いは並列若しくは直並列に接続されている。 The plurality of capacitors are secondary batteries that store (charge) and discharge (discharge) electrical energy by an electrochemical action or charge storage structure, or passive elements having capacitance, and output voltages required for stationary power supply devices Depending on the specifications such as the storage capacity, they are electrically connected in series, in parallel, or in series-parallel.
 蓄電器としては、リチウムイオン二次電池を用いているが、鉛電池、ニッケル水素電池などの他の二次電池や、2種類の蓄電器、例えばリチウムイオン二次電池とニッケル水素電池とを組み合わせたハイブリッド二次電池を用いてもよい。容量性を有する受動素子としては、キャパシタ、例えば電気二重層キャパシタやリチウムイオンキャパシタなどを用いることができる。 A lithium ion secondary battery is used as a storage battery, but another secondary battery such as a lead battery or a nickel metal hydride battery, or a hybrid that combines two types of storage batteries, for example, a lithium ion secondary battery and a nickel metal hydride battery. A secondary battery may be used. As the capacitive passive element, a capacitor such as an electric double layer capacitor or a lithium ion capacitor can be used.
 以下、図面を用いて、本実施形態の実施例を説明する。 Hereinafter, examples of the present embodiment will be described with reference to the drawings.
 図1乃至10を用いて第1実施例を説明する。 1st Example is described using FIG. 1 thru | or 10. FIG.
 図1は電源装置1全体の概略構成を示す。
(電源装置1の構成)
 図1に示すように、発電システム19から、単相交流電力系統20に至る電源系統の途中には電源装置1が設けられ、発電システム19から出力された単相交流電力が電源装置1を介して単相交流電力系統20に供給されるようになっている。単相交流電力系統20の要求に対して発電システム19の出力が不足している場合には、電源装置1から電力が補われ、単相交流電力系統20の要求に対して発電システム19の出力が余剰になっている場合には、電源装置1に電力が吸収される。
FIG. 1 shows a schematic configuration of the entire power supply device 1.
(Configuration of power supply device 1)
As shown in FIG. 1, the power supply device 1 is provided in the middle of the power supply system from the power generation system 19 to the single-phase AC power system 20, and the single-phase AC power output from the power generation system 19 passes through the power supply device 1. Thus, it is supplied to the single-phase AC power system 20. When the output of the power generation system 19 is insufficient with respect to the request of the single-phase AC power system 20, power is supplemented from the power supply device 1, and the output of the power generation system 19 with respect to the request of the single-phase AC power system 20 Is excessive, power is absorbed by the power supply device 1.
 電源装置1の一端側には電源側(交流一次側)接続端子17が設けられている。電源側接続端子17には発電システム19の交流側が電気的に接続されている。電源装置1の他端側には負荷側(交流二次側)接続端子18が設けられている。負荷側接続端子18には単相交流電力系統20が電気的に接続されている。 A power supply side (AC primary side) connection terminal 17 is provided on one end side of the power supply device 1. The power supply side connection terminal 17 is electrically connected to the AC side of the power generation system 19. A load side (AC secondary side) connection terminal 18 is provided on the other end side of the power supply device 1. A single-phase AC power system 20 is electrically connected to the load side connection terminal 18.
 電源装置1は、主要な構成要素として、中央制御装置2、第1電力変換装置7、第2電力変換装置12及び蓄電装置13~16を備えている。 The power supply device 1 includes a central control device 2, a first power conversion device 7, a second power conversion device 12, and power storage devices 13 to 16 as main components.
 第1電力変換装置7は第1小型変換装置(電力変換ユニット)3~6を備えている。第1小型変換装置3~6のそれぞれは交流側接続端子及び直流側接続端子を備えている。第1小型変換装置3~6の交流側接続端子(後述する図2の符号33)は、交流側接続端子における交流電圧の電位の順に電気的に直列に接続されている(図1では上から下に順に電気的に直列に接続されている)。第1小型変換装置3~6の直流側接続端子(後述する図2の符号34)のそれぞれは、蓄電装置13~16のうちのいずれか一つに電気的に接続されている。 The first power conversion device 7 includes first small conversion devices (power conversion units) 3 to 6. Each of the first small converters 3 to 6 includes an AC side connection terminal and a DC side connection terminal. The AC side connection terminals (reference numeral 33 in FIG. 2 to be described later) of the first small conversion devices 3 to 6 are electrically connected in series in the order of the potential of the AC voltage at the AC side connection terminal (from the top in FIG. 1). Are connected in series in electrical order below). Each of the direct current side connection terminals (reference numeral 34 in FIG. 2 described later) of the first small conversion devices 3 to 6 is electrically connected to any one of the power storage devices 13 to 16.
 第2電力変換装置12は第2小型変換装置(電力変換ユニット)8~11を備えている。第2小型変換装置8~11のそれぞれは交流側接続端子及び直流側接続端子を備えている。第2小型変換装置8~11の交流側接続端子(後述する図2の符号33)は、交流側接続端子における交流電圧の電位の順に電気的に直列に接続されている(図1では上から下に順に電気的に直列に接続されている)。第2小型変換装置8~11の直流側接続端子(後述する図2の符号34)のそれぞれは、蓄電装置13~16のうちのいずれか一つに電気的に接続されている。 The second power conversion device 12 includes second small conversion devices (power conversion units) 8 to 11. Each of the second small conversion devices 8 to 11 includes an AC side connection terminal and a DC side connection terminal. The AC side connection terminals (reference numeral 33 in FIG. 2 described later) of the second small converters 8 to 11 are electrically connected in series in the order of the potential of the AC voltage at the AC side connection terminal (from the top in FIG. 1). Are connected in series in electrical order below). Each of the DC side connection terminals (reference numeral 34 in FIG. 2 described later) of the second small conversion devices 8 to 11 is electrically connected to any one of the power storage devices 13 to 16.
 第1小型変換装置3~6、第2小型変換装置8~11及び蓄電装置13~16は個数が同じである。このため、蓄電装置13~16のそれぞれは、第1小型変換装置3~6のうちのいずれか一つと、第2小型変換装置8~11のうちのいずれか一つとに対して共通に設けられており、対応する第1及び第2小型変換装置の直流接続端子に電気的に接続されている。 The first small conversion devices 3 to 6, the second small conversion devices 8 to 11 and the power storage devices 13 to 16 have the same number. For this reason, each of the power storage devices 13 to 16 is provided in common with any one of the first small conversion devices 3 to 6 and any one of the second small conversion devices 8 to 11. And electrically connected to the DC connection terminals of the corresponding first and second small conversion devices.
 上記構成によれば、図1に示すように、第1小型変換装置3~6のいずれか一つの直流側接続端子と第2小型変換装置8~11のいずれか一つの直流側接続端子とが電気的に接続されることになり、これによって、対応する第1及び第2小型変換装置同士が電気的に直列に接続されることになる。 According to the above configuration, as shown in FIG. 1, any one DC side connection terminal of the first small conversion devices 3 to 6 and any one DC side connection terminal of the second small conversion devices 8 to 11 are provided. Thus, the corresponding first and second small conversion devices are electrically connected in series.
 また、上記構成によれば、図1に示すように、第1小型変換装置3~6のいずれか一つと第2小型変換装置8~11のいずれか一つとの直流側接続端子の一方側(正極側)同士の電気的な接続回路(配線)と、他方側(負極側)同士の電気的な接続回路(配線)との間に、蓄電装置13~16のうちのいずれか一つが電気的に接続されることになり、これによって、蓄電装置13~16のそれぞれが、対応する第1及び第2小型変換装置に対して電気的に並列に接続されることになる。 In addition, according to the above configuration, as shown in FIG. 1, one side of the DC side connection terminal between any one of the first small conversion devices 3 to 6 and any one of the second small conversion devices 8 to 11 ( Any one of the power storage devices 13 to 16 is electrically connected between the electrical connection circuit (wiring) between the positive electrodes) and the electrical connection circuit (wiring) between the other electrodes (negative electrode). As a result, each of the power storage devices 13 to 16 is electrically connected to the corresponding first and second small conversion devices in parallel.
 本実施例では、交流側接続端子における交流電圧の電位の順に対応して、同じ電位の第1小型変換装置と第2小型変換装置とを電気的に直列に接続している。図1では、上から下に向かって並べられた順に対応して、同じ順番の第1小型変換装置と第2小型変換装置とを電気的に直列に接続している。 In this embodiment, the first small conversion device and the second small conversion device having the same potential are electrically connected in series corresponding to the order of the potential of the AC voltage at the AC side connection terminal. In FIG. 1, the first small conversion device and the second small conversion device of the same order are electrically connected in series corresponding to the order arranged from the top to the bottom.
 蓄電装置13~16のそれぞれは、図1には明記していないが、電気的に直並列に接続された複数の蓄電器(リチウムイオン二次電池)を備えている。複数の蓄電器の電気的な接続は、第1及び第2電力変換装置7,12及び蓄電装置13~16によって構成される蓄電システムに要求される出力電圧や蓄電容量などに関する仕様によって、直列接続、並列接続、直並列接続のいずれかが用いられる。本実施例では、再生可能エネルギーによる発電システム19に対応して設けられており、仕様として高電圧、高容量が要求されることから、複数の蓄電器を電気的に直並列に接続している。 Each of the electricity storage devices 13 to 16 includes a plurality of electricity storage devices (lithium ion secondary batteries) that are electrically connected in series and parallel, although not clearly shown in FIG. The electrical connection of the plurality of capacitors is connected in series according to the specifications relating to the output voltage and the storage capacity required for the storage system constituted by the first and second power conversion devices 7 and 12 and the storage devices 13 to 16, Either parallel connection or series-parallel connection is used. In this embodiment, it is provided corresponding to the power generation system 19 using renewable energy, and high voltage and high capacity are required as specifications. Therefore, a plurality of capacitors are electrically connected in series and parallel.
 第1及び第2電力変換装置7,12は、中央制御装置2から出力された指令値に基づいて、第1小型変換装置3~6及び第2小型変換装置8~11が作動することにより、発電システム19から出力された交流電力を単相交流電力系統20に供給している。第1電力変換装置7は、電源側接続端子17において発電システム19から受電した交流電力を複数の直流電力に変換して蓄電装置13~16のそれぞれに入力している。第2電力変換装置12は、蓄電装置13~16のそれぞれから送電された直流電力を複数の交流電力に変換し、この変換された複数の交流電力を1つの交流電力に合成し、負荷側接続端子18を介して単相交流電力系統20に出力している。 The first and second power converters 7 and 12 are operated by the first small converters 3 to 6 and the second small converters 8 to 11 based on the command value output from the central controller 2. The AC power output from the power generation system 19 is supplied to the single-phase AC power system 20. The first power conversion device 7 converts the AC power received from the power generation system 19 at the power supply side connection terminal 17 into a plurality of DC power and inputs the converted power to each of the power storage devices 13 to 16. The second power conversion device 12 converts the DC power transmitted from each of the power storage devices 13 to 16 into a plurality of AC powers, combines the converted AC powers into one AC power, and connects to the load side It is output to the single-phase AC power system 20 via the terminal 18.
 本実施例では、第1電力変換装置7は専ら交流→直流電力変換装置(コンバータ)として機能し、第2電力変換装置12は専ら直流→交流電力変換装置(インバータ)として機能するが、図2を用いて後述する回路構成により、上記方向とは逆方向の電力変換も可能である。 In this embodiment, the first power converter 7 functions exclusively as an AC → DC power converter (converter) and the second power converter 12 functions exclusively as a DC → AC power converter (inverter). The power conversion in the direction opposite to the above direction is also possible by the circuit configuration described later using.
 中央制御装置2には予め制御プログラムが実装(記憶装置に格納)されている。中央制御装置2は制御プログラムにしたがって動作し、第1小型変換装置3~6及び第2小型変換装置8~11のそれぞれに信号伝送される指令値を演算して出力している。中央制御装置2の制御プログラムは、発電システム19、単相交流電力系統20及び蓄電装置13~16の作動状態が最適化するように組まれている。このため、図1には明記していないが、中央制御装置2は、電源側接続端子17に接続される発電システム19の作動状態を計測するためのセンサ、例えば電圧センサ及び電流センサ、及び蓄電装置13~16の作動状態を計測するためのセンサ、例えば電圧センサ、電流センサ及び温度センサから出力された計測信号に基づいて、第1小型変換装置3~6のそれぞれに信号伝送される指令値を演算していると共に、負荷側接続端子18に接続される単相交流電力系統20の作動状態を計測するためのセンサ、例えば電圧センサ及び電流センサ、及び蓄電装置13~16の作動状態を計測するためのセンサ、例えば電圧センサ、電流センサ及び温度センサから出力された計測信号に基づいて、第2小型変換装置8~11のそれぞれに信号伝送される指令値を演算している。
(小型変換装置の構成)
 図2は、第1小型変換装置3の回路構成を示す。
The central control device 2 is preinstalled with a control program (stored in a storage device). The central controller 2 operates according to the control program, and calculates and outputs command values transmitted to the first small converters 3 to 6 and the second small converters 8 to 11, respectively. The control program of the central control device 2 is set so that the operating states of the power generation system 19, the single-phase AC power system 20, and the power storage devices 13 to 16 are optimized. Therefore, although not clearly shown in FIG. 1, the central control device 2 uses sensors for measuring the operating state of the power generation system 19 connected to the power supply side connection terminal 17, for example, a voltage sensor and a current sensor, and an electric storage device. Command values transmitted to each of the first small converters 3 to 6 based on measurement signals output from sensors for measuring the operating states of the devices 13 to 16, for example, voltage sensors, current sensors, and temperature sensors. And the sensors for measuring the operating state of the single-phase AC power system 20 connected to the load side connection terminal 18, such as voltage sensors and current sensors, and the operating states of the power storage devices 13 to 16 are measured. A signal is transmitted to each of the second small-sized conversion devices 8 to 11 based on measurement signals output from a sensor for performing, for example, a voltage sensor, a current sensor and a temperature sensor And calculates the command value.
(Configuration of small converter)
FIG. 2 shows a circuit configuration of the first small conversion device 3.
 尚、第1小型変換装置4~6及び第2小型変換装置8~11は第1小型変換装置3と同じ回路構成になっている。このことから、第1小型変換装置4~6及び第2小型変換装置8~11の構成についての説明は省略する。また、第1小型変換装置3と同じ構成を、第1小型変換装置4~6及び第2小型変換装置8~11において説明する場合には、第1小型変換装置3と同じ符号を用いることとする。 The first small conversion devices 4 to 6 and the second small conversion devices 8 to 11 have the same circuit configuration as the first small conversion device 3. Therefore, the description of the configuration of the first small conversion devices 4 to 6 and the second small conversion devices 8 to 11 is omitted. When the same configuration as the first small conversion device 3 is described in the first small conversion devices 4 to 6 and the second small conversion devices 8 to 11, the same reference numerals as those of the first small conversion device 3 are used. To do.
 第1小型変換装置3は、主要な構成要素として、スイッチング回路30、スイッチング回路30に電気的に接続された交流側接続端子33、スイッチング回路30に電気的に接続され、かつ蓄電装置13に接続される直流側接続端子34、及びスイッチング回路30の作動を制御する制御装置35を備えている。 The first small conversion device 3 includes, as main components, a switching circuit 30, an AC-side connection terminal 33 electrically connected to the switching circuit 30, an electrical connection to the switching circuit 30, and a connection to the power storage device 13. And a control device 35 that controls the operation of the switching circuit 30.
 スイッチング回路30はスイッチング素子31a~31dから構成されている。スイッチング素子31a~31dには電界効果トランジスタ(FET:Field Effect Transistor)を、その中でもMOS(Metal Oxide Semiconductor)FETを採用している。 The switching circuit 30 includes switching elements 31a to 31d. As the switching elements 31a to 31d, field effect transistors (FETs) are employed, and among these, MOS (Metal Oxide Semiconductor) FETs are employed.
 尚、本実施例では、スイッチング素子31a~31dとしてMOFETを用いた場合を例に挙げて説明するが、IGBT(Insulated Gate Bipolar Transistor)など、他のスイッチング素子を用いてもよい。 In this embodiment, the case where MOFETs are used as the switching elements 31a to 31d will be described as an example. However, other switching elements such as IGBT (Insulated Gate Bipolar Transistor) may be used.
 スイッチング回路30は、具体的には単相フルブリッジインバータ回路から構成されている。単相フルブリッジインバータ回路は、上アームのスイッチング素子31aのソースと下アームのスイッチング素子31bのドレインとが電気的に直列に接続されて構成された第1のアームと、上アームのスイッチング素子31cのソースと下アームのスイッチング素子31dのドレインとが電気的に直列に接続されて構成された第2のアームとが、上アームのスイッチング素子31a,31cのドレイン同士及び下アームのスイッチング素子31b,31dのソース同士がそれぞれ電気的に接続されることによって、電気的に並列に接続された回路構成になっている。 The switching circuit 30 is specifically composed of a single-phase full-bridge inverter circuit. The single-phase full-bridge inverter circuit includes a first arm configured by electrically connecting a source of an upper arm switching element 31a and a drain of a lower arm switching element 31b in series, and an upper arm switching element 31c. And the second arm configured by electrically connecting the source of the lower arm and the drain of the lower arm switching element 31d in series are the drains of the upper arm switching elements 31a and 31c and the lower arm switching element 31b, A circuit configuration in which the sources of 31d are electrically connected in parallel by being electrically connected to each other is provided.
 スイッチング素子31aのドレインとソースとの間にはダイオード32aが設けられている。スイッチング素子31bのドレインとソースとの間には、ソースからドレインに向かう方向が順方向になるように、ダイオード32bが設けられている。スイッチング素子31cのドレインとソースとの間には、ソースからドレインに向かう方向が順方向になるように、ダイオード32cが設けられている。スイッチング素子31dのドレインとソースとの間には、ソースからドレインに向かう方向が順方向になるように、ダイオード32dが設けられている。ダイオード32a~32dは、MOSFETの構造上、スイッチング素子31a~31dのそれぞれのドレインとソースとの間に寄生するダイオードである。このため、スイッチング素子31a~31dのそれぞれには、別途、ダイオードを設ける必要がない。 A diode 32a is provided between the drain and source of the switching element 31a. A diode 32b is provided between the drain and source of the switching element 31b so that the direction from the source to the drain is the forward direction. A diode 32c is provided between the drain and source of the switching element 31c so that the direction from the source to the drain is the forward direction. A diode 32d is provided between the drain and source of the switching element 31d so that the direction from the source to the drain is the forward direction. The diodes 32a to 32d are diodes that are parasitic between the drains and sources of the switching elements 31a to 31d due to the structure of the MOSFET. Therefore, it is not necessary to separately provide a diode for each of the switching elements 31a to 31d.
 尚、スイッチング素子としてIGBTを用いた場合には、スイッチング素子のドレインとソースとの間にダイオードを設ける必要がある。 When an IGBT is used as the switching element, it is necessary to provide a diode between the drain and source of the switching element.
 上アームのスイッチング素子31a,31cのドレインは直流正極側接続端として、直流側接続端子34の正極側端子に電気的に接続されている。下アームのスイッチング素子31b、31dのソースは直流負極側接続端として、直流側接続端子34の負極側端子に電気的に接続されている。 The drains of the switching elements 31a and 31c of the upper arm are electrically connected to the positive terminal of the DC connection terminal 34 as the DC positive terminal. The sources of the switching elements 31b and 31d of the lower arm are electrically connected to the negative electrode side terminal of the DC side connection terminal 34 as a DC negative electrode side connection end.
 第1のアームの中点、すなわち上アームのスイッチング素子31aのソースと下アームのスイッチング素子31bのドレインとの電気的な接続点は、交流側接続端(負荷側接続端)の一方側として引き出され、交流側接続端子33の一方側の端子に電気的に接続されている。第2のアームの中点、すなわち上アームのスイッチング素子31cのソースと下アームのスイッチング素子31dのドレインとの電気的な接続点は、交流側接続端(負荷側接続端)の他方側として引き出され、交流側接続端子33の他方側の端子に電気的に接続されている。 The middle point of the first arm, that is, the electrical connection point between the source of the switching element 31a of the upper arm and the drain of the switching element 31b of the lower arm is drawn out as one side of the AC side connection end (load side connection end). In addition, the AC side connection terminal 33 is electrically connected to a terminal on one side. The middle point of the second arm, that is, the electrical connection point between the source of the switching element 31c of the upper arm and the drain of the switching element 31d of the lower arm is drawn out as the other side of the AC side connection end (load side connection end). The other side of the AC side connection terminal 33 is electrically connected.
 第1小型変換装置3の交流側接続端子33の一方側の端子は、第1電力変換装置7の交流側接続端子17の一方側の端子に電気的に接続されている。第1小型変換装置3の交流側接続端子33の他方側の端子は、第1小型変換装置3に直列に接続される(交流電圧の電位レベル的に隣接する)第1小型変換装置4の交流側接続端子の一方側の端子に電気的に接続されている。 One terminal of the AC side connection terminal 33 of the first small conversion device 3 is electrically connected to one terminal of the AC side connection terminal 17 of the first power conversion device 7. The other terminal of the AC side connection terminal 33 of the first small conversion device 3 is connected in series to the first small conversion device 3 (adjacent in terms of the potential level of the AC voltage). It is electrically connected to a terminal on one side of the side connection terminal.
 尚、図1の構成に基づくと、第1小型変換装置4~6及び第2小型変換装置8~11の交流側の電気的な接続は次の関係になる。 Note that, based on the configuration of FIG. 1, the electrical connection on the AC side of the first small conversion devices 4 to 6 and the second small conversion devices 8 to 11 has the following relationship.
 <第1小型変換装置4の交流接続端子33>
  一方側の端子-第1小型変換装置3の交流接続端子33の他方側の端子
  他方側の端子-第1小型変換装置5の交流接続端子33の一方側の端子
 <第1小型変換装置5の交流接続端子33>
  一方側の端子-第1小型変換装置4の交流接続端子33の他方側の端子
  他方側の端子-第1小型変換装置6の交流接続端子33の一方側の端子
 <第1小型変換装置6の交流接続端子33>
  一方側の端子-第1小型変換装置5の交流接続端子33の他方側の端子
  他方側の端子-第1電力変換装置7の交流側接続端子17の他方側の端子
 <第2小型変換装置8の交流側接続端子33>
  一方側の端子-第2電力変換装置12の交流側接続端子18の一方側の端子
  他方側の端子-第2小型変換装置9の交流側接続端子33の一方側の端子
 <第2小型変換装置9の交流接続端子33>
  一方側の端子-第2小型変換装置8の交流接続端子33の他方側の端子
  他方側の端子-第2小型変換装置10の交流接続端子33の一方側の端子
 <第2小型変換装置10の交流接続端子33>
  一方側の端子-第2小型変換装置9の交流接続端子33の他方側の端子
  他方側の端子-第2小型変換装置11の交流接続端子33の一方側の端子
 <第2小型変換装置11の交流接続端子33>
  一方側の端子-第2小型変換装置10の交流接続端子33の他方側の端子
  他方側の端子-第2電力変換装置12の交流側接続端子18の他方側の端子
<AC connection terminal 33 of first small conversion device 4>
One terminal—the other terminal of the AC connection terminal 33 of the first small conversion device 3 The other terminal—the one terminal of the AC connection terminal 33 of the first small conversion device 5 <the first small conversion device 5 AC connection terminal 33>
One terminal—the other terminal of the AC connection terminal 33 of the first small conversion device 4 The other terminal—the one terminal of the AC connection terminal 33 of the first small conversion device 6 <of the first small conversion device 6 AC connection terminal 33>
One terminal—the other terminal of the AC connection terminal 33 of the first small converter 5 The other terminal—the other terminal of the AC connection terminal 17 of the first power converter 7 <Second small converter 8 AC side connection terminal 33>
One terminal—one terminal of the AC side connection terminal 18 of the second power converter 12 The other terminal—one terminal of the AC side connection terminal 33 of the second small converter 9 <Second small converter 9 AC connection terminals 33>
One terminal—the other terminal of the AC connection terminal 33 of the second small conversion device 8 The other terminal—the one terminal of the AC connection terminal 33 of the second small conversion device 10 <of the second small conversion device 10 AC connection terminal 33>
One terminal—the other terminal of the AC connection terminal 33 of the second small conversion device 9 The other terminal—the one terminal of the AC connection terminal 33 of the second small conversion device 11 <the second small conversion device 11 AC connection terminal 33>
One side terminal—the other side terminal of the AC connection terminal 33 of the second small converter 10 The other side terminal—the other side terminal of the AC side connection terminal 18 of the second power converter 12
 制御装置35には予め制御プログラムが実装(記憶装置に記憶)されている。制御装置35は、その制御プログラムにしたがって動作し、第1電力変換装置7が電気的に接続された電源側交流端子17に接続された発電システム19と連系するように、スイッチング素子31a~31dのスイッチング動作(オン・オフ)を制御している。具体的には、制御装置35は、中央制御装置2から信号伝送された指令値に基づいて、スイッチング素子31a~31dのそれぞれをスイッチング動作(オン・オフ)させるための駆動パターンを生成すると共に、この生成された駆動パターンのそれぞれに対応した駆動信号をスイッチング素子31a~31dのそれぞれのゲートに出力している。これにより、スイッチング素子31a~31dのそれぞれは、生成された駆動パターンに対応してオン・オフするように、スイッチング動作(オン・オフ)が制御される。 A control program is preinstalled in the control device 35 (stored in a storage device). The control device 35 operates in accordance with the control program, and the switching elements 31a to 31d are connected to the power generation system 19 connected to the power supply side AC terminal 17 to which the first power conversion device 7 is electrically connected. The switching operation (ON / OFF) is controlled. Specifically, the control device 35 generates a drive pattern for switching each of the switching elements 31a to 31d (on / off) based on the command value transmitted from the central control device 2, and A drive signal corresponding to each of the generated drive patterns is output to each gate of the switching elements 31a to 31d. Thereby, the switching operation (ON / OFF) is controlled so that each of the switching elements 31a to 31d is turned ON / OFF corresponding to the generated drive pattern.
 他の第1小型変換装置4~6においても、発電システム19と連系するように、第1小型変換装置3と同様に、スイッチング素子31a~31dのスイッチング動作(オン・オフ)を制御している。 In the other first small conversion devices 4 to 6, the switching operations (on / off) of the switching elements 31a to 31d are controlled in the same manner as the first small conversion device 3 so as to be linked to the power generation system 19. Yes.
 第2小型変換装置8~11は、第2電力変換装置8が電気的に接続された負荷側交流端子18に接続される単相交流電力系統20と連系するように、第1小型変換装置3と同様に、スイッチング素子31a~31dのスイッチング動作(オン・オフ)を制御している。
(第1電力変換装置7の動作)
 次に、図3を用いて、第1電力変換装置7を構成する第1小型変換装置3~6の動作を説明する。
The second small converters 8 to 11 are connected to the single-phase AC power system 20 connected to the load-side AC terminal 18 to which the second power converter 8 is electrically connected. 3, the switching operation (on / off) of the switching elements 31 a to 31 d is controlled.
(Operation of the first power converter 7)
Next, the operation of the first small conversion devices 3 to 6 constituting the first power conversion device 7 will be described with reference to FIG.
 図3は、中央制御装置2から第1電力変換装置7に信号伝送される指令値の一つ(目標電圧)と、第1小型変換装置3~6のそれぞれの交流側接続端子33に入力される矩形波状の電圧との関係の時間変化を示す。 FIG. 3 shows one of the command values (target voltage) transmitted from the central control device 2 to the first power converter 7 and the AC side connection terminal 33 of each of the first small converters 3 to 6. The time change of the relationship with the rectangular wave voltage is shown.
 図3の横軸は時間軸であり、1サイクル分を示す。 3 The horizontal axis in FIG. 3 is the time axis and represents one cycle.
 図3の縦軸は電圧軸であり、上から順番に、
  中央制御装置2から信号伝送された指令値の一つである目標電圧
  第1小型変換装置3の交流側接続端子33に入力された矩形波状の電圧V3
  第1小型変換装置4の交流側接続端子33に入力された矩形波状の電圧V4
  第1小型変換装置5の交流側接続端子33に入力された矩形波状の電圧V5
  第1小型変換装置6の交流側接続端子33に入力された矩形波状の電圧V6
をそれぞれ示す。図3の縦軸の各電圧がゼロとなる点に対して上側が正の値、下側が負の値になる。
The vertical axis in FIG. 3 is the voltage axis, and in order from the top,
Target voltage which is one of the command values transmitted from the central controller 2 The rectangular wave voltage V 3 input to the AC side connection terminal 33 of the first small converter 3
Rectangular wave voltage V 4 input to the AC side connection terminal 33 of the first small-sized conversion device 4
Rectangular wave voltage V 5 input to the AC side connection terminal 33 of the first small converter 5
The rectangular wave voltage V 6 input to the AC side connection terminal 33 of the first small converter 6
Respectively. The upper side is a positive value and the lower side is a negative value with respect to the point where each voltage on the vertical axis in FIG. 3 becomes zero.
 中央制御装置2は、電源側接続端子17に電気的に接続された発電システム19の交流電圧及び交流電流に基づいて、第1電力変換装置7(第1小型変換装置3~6のそれぞれ)に対する指令値の一つとして目標電圧(正弦波である変調波)を演算し、この演算された目標電圧を第1電力変換装置7(第1小型変換装置3~6のそれぞれ)に出力している。また、図3には明記していないが、中央制御装置2は、第1小型変換装置3~6のそれぞれに対する指令値の他の一つとしてキャリア(三角波やのこぎり波などの搬送波であり、調波に比べて周期が短く(周波数が大きく)、第1小型変換装置3~6のそれぞれに対応して電位レベルが異なる)を生成し、この生成されたキャリアを、対応する第1小型変換装置に出力している。 The central control device 2 controls the first power converter 7 (each of the first small converters 3 to 6) based on the AC voltage and AC current of the power generation system 19 electrically connected to the power supply side connection terminal 17. A target voltage (modulated wave that is a sine wave) is calculated as one of the command values, and the calculated target voltage is output to the first power converter 7 (each of the first small converters 3 to 6). . Although not clearly shown in FIG. 3, the central controller 2 uses a carrier (a carrier wave such as a triangular wave or a sawtooth wave as another command value for each of the first small converters 3 to 6 and adjusts it. The period is shorter than the wave (the frequency is large) and the potential level is different corresponding to each of the first small-sized conversion devices 3 to 6), and the generated carrier is used as the corresponding first small-sized conversion device. Is output.
 第1小型変換装置3~6のそれぞれには、中央制御装置2から出力された目標電圧(図3(a)参照)及び対応するキャリア(図示省略)が信号伝送されている。第1小型変換装置3~6のそれぞれは、図3(a)に示す目標電圧とキャリアとを比較し、キャリアよりも目標電圧の絶対値が大きくなる部分においてスイッチング素子がオンし、小さくなる部分においてスイッチング素子がオフするように、スイッチング素子31a~31dのそれぞれをスイッチング動作(オン・オフ)させるための駆動パターンを生成し、この生成された駆動パターンに対応した駆動信号を、対応するスイッチング素子のゲートに出力する。これにより、スイッチング素子31a~31dのそれぞれが駆動パターンに対応してスイッチング動作(オン・オフ)するので、第1小型変換装置3~6のそれぞれの交流側接続端子33には、図3(b)~(e)に示すように、振幅の基準電位及び幅が異なり、振幅の高さが同じ矩形波状の電圧が入力される。 The target voltage (see FIG. 3A) output from the central controller 2 and the corresponding carrier (not shown) are transmitted as signals to each of the first small conversion devices 3 to 6. Each of the first small-sized conversion devices 3 to 6 compares the target voltage and the carrier shown in FIG. 3A, and the portion where the switching element is turned on and becomes smaller at the portion where the absolute value of the target voltage is larger than the carrier. Drive patterns for generating switching operations (ON / OFF) for each of the switching elements 31a to 31d are generated so that the switching elements are turned off, and a drive signal corresponding to the generated drive pattern is applied to the corresponding switching element. Output to the gate. As a result, each of the switching elements 31a to 31d performs a switching operation (ON / OFF) corresponding to the drive pattern, and therefore the AC side connection terminals 33 of the first small-sized conversion devices 3 to 6 are connected to FIG. ) To (e), rectangular-wave voltages having different amplitude reference potentials and widths and the same amplitude height are input.
 具体的には、図3(b)~(e)に示すように、時刻0から時刻T9の期間では、目標電圧の位相に応じて、時刻T1から時刻T8の期間に第1小型変換装置6の交流側接続端子33の電圧が正、時刻T2から時刻T7の期間に第1小型変換装置5の交流側接続端子33の電圧が正、時刻T3から時刻T6の期間に第1小型変換装置4の交流側接続端子33の電圧が正、時刻T4から時刻T5の期間の第1小型変換装置3の交流側接続端子33の電圧が正となる矩形波状のマルチレベル電圧が、第1小型変換装置3~6のそれぞれの交流側接続端子33に入力される。また、時刻T9から時刻T10の期間では、時刻0から時刻T9の期間とは逆の負の電圧が入力される。これにより、目標電圧の1サイクルに応じたマルチレベル電圧が第1小型変換装置3~6のそれぞれの交流側接続端子33に入力されることなる。尚、上記時刻は、目標電圧の位相に基づいて決定される値であり、目標電圧の位相の変化に基づいて変わる。 Specifically, as shown in FIGS. 3B to 3E, in the period from time 0 to time T 9 , the first small size is generated in the period from time T 1 to time T 8 according to the phase of the target voltage. voltage of the AC-side connection terminal 33 of the converter 6 is positive, the voltage of the AC-side connection terminals 33 of the first small converter 5 from the time T 2, the period from time T 7 is positive, the period of time T 6 from the time T 3 voltage of the first AC-side connection terminals 33 of the small converter 4 is positive, the rectangular wave voltage of the first small converter 3 on the AC side connection terminal 33 is a positive period of time T 5 from time T 4 multi in The level voltage is input to the AC side connection terminals 33 of the first small conversion devices 3 to 6. Further, in the period from time T 10 from time T 9, a negative voltage opposite is input from the time 0 to the period of time T 9. As a result, a multilevel voltage corresponding to one cycle of the target voltage is input to the AC side connection terminals 33 of the first small-sized conversion devices 3 to 6. The time is a value determined based on the phase of the target voltage, and changes based on a change in the phase of the target voltage.
 図を用いて詳細に説明しなかったが、第2電力変換装置12においても第1電力変換装置7と同様に動作することにより、図3に示すようなマルチレベル電圧が第2電力変換装置12の負荷側交流端子33から出力される。 Although not described in detail with reference to the drawing, the second power conversion device 12 operates in the same manner as the first power conversion device 7, so that a multilevel voltage as shown in FIG. Output from the load side AC terminal 33.
 すなわち第2小型変換装置8~11のそれぞれには、交流側接続端子33に電気的に接続された単相電力系統20の交流電圧及び交流電流に基づいて演算された指令値の一つである目標電圧及び指令値の他の一つであるキャリアが中央制御装置2から信号伝送されている。第2小型変換装置8~11のそれぞれは、目標電圧とキャリアとを比較し、キャリアよりも目標電圧の絶対値が大きくなる部分においてスイッチング素子がオンし、小さくなる部分においてスイッチング素子がオフするように、スイッチング素子31a~31dをスイッチング動作(オン・オフ)させるための駆動パターンを生成し、この生成された駆動パターンに対応した駆動信号を、スイッチング素子31a~31dのゲートに出力する。これにより、スイッチング素子31a~31dが駆動パターンに対応してスイッチング動作(オン・オフ)するので、第2小型変換装置8~11のそれぞれの交流側接続端子33からは、振幅の基準電位及び幅が異なり、振幅の高さが同じ矩形波状の電圧が出力される。
(蓄電装置13~16の状態に応じた動作)
 次に、図4乃至10を用いて、蓄電装置13~16の状態に応じた動作を説明する。
That is, each of the second small converters 8 to 11 is one of command values calculated based on the AC voltage and AC current of the single-phase power system 20 electrically connected to the AC side connection terminal 33. A carrier that is one of the target voltage and the command value is transmitted from the central controller 2. Each of the second small converters 8 to 11 compares the target voltage with the carrier, and the switching element is turned on when the absolute value of the target voltage is larger than the carrier, and the switching element is turned off when the absolute value of the target voltage is smaller. In addition, a drive pattern for switching the switching elements 31a to 31d (on / off) is generated, and a drive signal corresponding to the generated drive pattern is output to the gates of the switching elements 31a to 31d. As a result, the switching elements 31a to 31d perform switching operation (ON / OFF) in accordance with the drive pattern, and therefore the reference potential and width of the amplitude are supplied from the AC side connection terminals 33 of the second small converters 8 to 11, respectively. Are different, and a rectangular wave voltage having the same amplitude is output.
(Operation according to the state of power storage devices 13 to 16)
Next, operations according to the states of the power storage devices 13 to 16 will be described with reference to FIGS.
 前述のように、本実施例では、目標電圧に応じたマルチレベル電圧を第1小型変換装置3~6のそれぞれで分担して入力し、第2小型変換装置8~11のそれぞれで分担して出力している。このため、電圧分担が常に同じであると、蓄電装置13~16のそれぞれの使用時間や頻度にばらつきが生じ、蓄電装置13~16の寿命にばらつきが生じる。寿命のばらつきが生じると、電源装置1全体としての寿命低下に繋がる。また、電圧分担が常に同じであると、蓄電装置13~16の充電状態にばらつきが生じ、電源装置1の運転状態によっては、充電状態の最も高い及び最も低い蓄電装置では蓄電器の充放電の許容値を超えて充放電される場合も考えられる。許容値を超えた充放電は蓄電装置の劣化に影響を及ぼし、蓄電装置13~16の寿命をばらつかせる。さらに、蓄電装置13~16の充電状態のばらつきは蓄電装置13~16の特性の固体差によっても生じる。このようなことから、蓄電装置13~16の充放電にあたっては、特性のばらつきや、充電状態のばらつき、劣化状態のばらつきなどに応じて、蓄電装置13~16のそれぞれに入出力される電力量を制御することが好ましい。 As described above, in this embodiment, the multilevel voltage corresponding to the target voltage is shared and input by each of the first small converters 3 to 6, and is shared by each of the second small converters 8 to 11. Output. For this reason, if the voltage sharing is always the same, the usage time and frequency of power storage devices 13-16 vary, and the life of power storage devices 13-16 varies. When the life variation occurs, the life of the power supply device 1 as a whole is reduced. If the voltage sharing is always the same, the charging states of the power storage devices 13 to 16 vary, and depending on the operating state of the power supply device 1, the power storage device having the highest and lowest charging states can be charged / discharged. It may be considered that charging / discharging exceeds the value. Charging / discharging exceeding the allowable value affects the deterioration of the power storage device and causes the life of the power storage devices 13 to 16 to vary. Further, the variation in the state of charge of power storage devices 13 to 16 is also caused by the difference in characteristics of power storage devices 13 to 16. For this reason, when charging / discharging the power storage devices 13 to 16, the amount of power input / output to / from each of the power storage devices 13 to 16 according to variations in characteristics, variations in charge state, variations in deterioration state, and the like. Is preferably controlled.
 そこで、本実施例では、充放電によって蓄電装置13~16のそれぞれに入出力する電力量を、蓄電装置13~16の状態や特性に応じて制御できるようにしている。具体的には、第1電力変換装置7を構成する第1小型変換装置3~6のそれぞれ及び第2電力変換装置12を構成する第2小型変換装置8~11のそれぞれのスイッチング駆動パターンを補正するための駆動パターン補正部を、制御プログラム(アルゴリズム)への組み込みによって、中央制御装置2に実装している。 Therefore, in this embodiment, the amount of power input / output to / from each of the power storage devices 13 to 16 by charging / discharging can be controlled according to the state and characteristics of the power storage devices 13 to 16. Specifically, the respective switching drive patterns of the first small conversion devices 3 to 6 constituting the first power conversion device 7 and the second small conversion devices 8 to 11 constituting the second power conversion device 12 are corrected. A drive pattern correction unit for this purpose is mounted on the central controller 2 by being incorporated into a control program (algorithm).
 駆動パターン補正部は、図4に示すように、主要な構成要素として、蓄電装置入出力電力量決定部401、第1電力変換装置駆動パターン補正部402及び第2電力変換装置駆動パターン補正部403を備え、第1小型変換装置3~6及び第2電力変換装置12を構成する第2小型変換装置8~11のそれぞれの制御装置35において演算されるスイッチング駆動パターンを補正するように、第1小型変換装置3~6及び第2電力変換装置12を構成する第2小型変換装置8~11のそれぞれの制御装置35に対して、スイッチング駆動パターン補正用指令値を出力している。 As shown in FIG. 4, the drive pattern correction unit includes power storage device input / output power amount determination unit 401, first power conversion device drive pattern correction unit 402, and second power conversion device drive pattern correction unit 403 as main components. The first small conversion devices 3 to 6 and the second small conversion devices 8 to 11 constituting the second power conversion device 12 are corrected so that the switching drive patterns calculated in the respective control devices 35 of the first small conversion devices 8 to 11 are corrected. The switching drive pattern correction command value is output to the control devices 35 of the second small converters 8 to 11 constituting the small converters 3 to 6 and the second power converter 12.
 蓄電装置入出力電力量決定部401は、蓄電装置13~16のそれぞれの状態や特性に応じて、蓄電装置13~16のそれぞれに入出力する電力量を決定し、この決定した電力量を第1電力変換装置駆動パターン補正部402及び第2電力変換装置駆動パターン補正部403のそれぞれに出力している。蓄電装置13~16のそれぞれの状態としては、充電状態(SOC:State Of Charge)や劣化状態(SOH:State Of Health)が考えられる。これらの状態は、蓄電装置13~16のそれぞれに設けられたセンサ、例えば電圧センサ、電流センサ、温度センサから出力された計測信号や、蓄電装置13~16のそれぞれの特性などに基づいて推測演算することができる。蓄電装置13~16のそれぞれに入出力する電力量は、蓄電装置13~16のそれぞれの状態の平均値(最大値と最小値との偏差の1/2)に対する蓄電装置13~16のそれぞれの状態のばらつき(差分)に応じて決定される。 The power storage device input / output power amount determination unit 401 determines the amount of power to be input / output to each of the power storage devices 13 to 16 according to the state and characteristics of each of the power storage devices 13 to 16, and the determined power amount is The power is output to each of the first power conversion device drive pattern correction unit 402 and the second power conversion device drive pattern correction unit 403. As the state of each of the power storage devices 13 to 16, a charged state (SOC: State Of Charge) and a deteriorated state (SOH: State Of Health) are conceivable. These states are estimated based on measurement signals output from sensors provided in the power storage devices 13 to 16, for example, voltage sensors, current sensors, and temperature sensors, and characteristics of the power storage devices 13 to 16, for example. can do. The amount of electric power input / output to / from each of power storage devices 13-16 is the value of each of power storage devices 13-16 with respect to the average value of each state of power storage devices 13-16 (1/2 of the deviation between the maximum value and the minimum value). It is determined according to the state variation (difference).
 尚、図4では、蓄電装置入出力電力量決定部401から第1電力変換装置駆動パターン補正部402及び第2電力変換装置駆動パターン補正部403のそれぞれに向かう信号の流れを一つの矢印で示したが、実際には、蓄電装置入出力電力量決定部401から第1電力変換装置駆動パターン補正部402及び第2電力変換装置駆動パターン補正部403のそれぞれに対しては、蓄電装置13~16のそれぞれに入出力する電力量が信号として伝送されている。 In FIG. 4, a single arrow indicates a signal flow from the power storage device input / output power amount determination unit 401 to each of the first power conversion device drive pattern correction unit 402 and the second power conversion device drive pattern correction unit 403. Actually, however, the power storage devices 13 to 16 are not supplied from the power storage device input / output power amount determination unit 401 to the first power conversion device drive pattern correction unit 402 and the second power conversion device drive pattern correction unit 403, respectively. The amount of power input and output to each is transmitted as a signal.
 第1電力変換装置駆動パターン補正部402は、蓄電装置入出力電力量決定手段401において決定された電力量に基づいて、第1電力変換装置7を構成する第1小型変換装置3~6のそれぞれの制御装置35に、中央制御装置2から信号伝送された目標電圧とキャリアとの比較によって演算されるスイッチング駆動パターンを補正するように、スイッチング駆動パターン補正用指令値を出力している。 The first power conversion device drive pattern correction unit 402 is configured so that each of the first small conversion devices 3 to 6 constituting the first power conversion device 7 is based on the amount of power determined by the power storage device input / output power amount determination unit 401. The switching drive pattern correction command value is output to the control device 35 so as to correct the switching drive pattern calculated by comparing the target voltage signal transmitted from the central control device 2 with the carrier.
 第2電力変換装置駆動パターン補正部403は、蓄電装置入出力電力量決定手段401において決定された電力量に基づいて、第2電力変換装置12を構成する第1小型変換装置8~11のそれぞれの制御装置35に、中央制御装置2から信号伝送された目標電圧とキャリアとの比較によって演算されるスイッチング駆動パターンを補正するように、スイッチング駆動パターン補正用指令値を出力している。 The second power conversion device drive pattern correction unit 403 includes each of the first small-sized conversion devices 8 to 11 constituting the second power conversion device 12 based on the amount of power determined by the power storage device input / output power amount determination unit 401. The switching drive pattern correction command value is output to the control device 35 so as to correct the switching drive pattern calculated by comparing the target voltage signal transmitted from the central control device 2 with the carrier.
 さらに説明を続けるが、ここからは、蓄電装置13~16の状態として、充電状態を用いた場合を例に挙げて説明する。 Further explanation will be continued, but from here on, the case where the state of charge is used as the state of the power storage devices 13 to 16 will be described as an example.
 蓄電装置13~16の状態としては劣化状態を用いてもよいし、充電状態と劣化状態の両方を用いてもよい。
(蓄電装置13~16の充電状態がほぼ等しい状態のときの動作)
 まず、図5乃至7を用いて、蓄電装置13~16の充電状態がほぼ等しいときの動作について説明する。
As the states of the power storage devices 13 to 16, a deteriorated state may be used, or both a charged state and a deteriorated state may be used.
(Operation when charge states of power storage devices 13 to 16 are substantially equal)
First, the operation when the charging states of the power storage devices 13 to 16 are substantially equal will be described with reference to FIGS.
 図5は蓄電装置13~16のそれぞれの充電状態を示す。横軸は蓄電装置の番号(符号)を示し、縦軸は任意の測定タイミングにおける蓄電装置13~16のそれぞれの充電状態を示す。図5に示すように、蓄電装置13~16は、それぞれ、充電状態がほぼ等しい状態(充電状態の差分が寿命のばらつきに影響を及ぼさない許容範囲)にあり、この状態において第1電力変換装置7を介して電力を入力し、第2電力変換装置12を介して電力を出力している。 FIG. 5 shows the state of charge of each of the power storage devices 13-16. The horizontal axis indicates the number (sign) of the power storage device, and the vertical axis indicates the state of charge of each of the power storage devices 13 to 16 at an arbitrary measurement timing. As shown in FIG. 5, each of power storage devices 13 to 16 is in a state where the state of charge is substantially equal (allowable range in which the difference in state of charge does not affect the variation in life), and in this state, the first power conversion device Power is input via 7, and power is output via the second power converter 12.
 図6は第1小型変換装置3~6から蓄電装置13~16に入力される電力量を示す。横軸は第1小型変換装置の番号(符号)を示し、縦軸は、図5の測定タイミングと同じタイミングにおいて、第1小型変換装置3~6から蓄電装置13~16に入力される、図3に示す目標電圧1サイクル分の期間における電力量を示す。蓄電装置13~16の充電状態がほぼ等しい場合には、図6に示すように、第1小型変換装置3~6から蓄電装置13~16に入力される電力量をほぼ等しくし、蓄電装置13~16のほぼ等しい充電状態を保持する。 FIG. 6 shows the amount of electric power input from the first small conversion devices 3 to 6 to the power storage devices 13 to 16. The horizontal axis indicates the number (sign) of the first small conversion device, and the vertical axis is input from the first small conversion devices 3 to 6 to the power storage devices 13 to 16 at the same timing as the measurement timing of FIG. 3 shows the amount of power in a period of one cycle of the target voltage shown in FIG. When the charging states of the power storage devices 13 to 16 are substantially equal, as shown in FIG. 6, the amounts of electric power input from the first small conversion devices 3 to 6 to the power storage devices 13 to 16 are made substantially equal to each other. Hold approximately equal charge states of ~ 16.
 図7は蓄電装置13~16から第2小型変換装置8~11に出力される電力量を示す。横軸は第2小型変換装置の番号(符号)を示し、縦軸は、図5の測定タイミングと同じタイミングにおいて、蓄電装置13~16から第2小型変換装置8~11からに出力される、図3に示す目標電圧1サイクル分の期間における電力量を示す。蓄電装置13~16の充電状態がほぼ等しい場合には、図7に示すように、蓄電装置13~16から第2小型変換装置8~11に出力される電力量をほぼ等しくし、蓄電装置13~16のほぼ等しい充電状態を保持する。 FIG. 7 shows the amount of power output from the power storage devices 13 to 16 to the second small conversion devices 8 to 11. The horizontal axis indicates the number (sign) of the second small conversion device, and the vertical axis is output from the power storage devices 13 to 16 to the second small conversion devices 8 to 11 at the same timing as the measurement timing of FIG. The electric energy in the period for 1 cycle of target voltages shown in FIG. 3 is shown. When the charging states of the power storage devices 13 to 16 are substantially equal, as shown in FIG. 7, the amounts of power output from the power storage devices 13 to 16 to the second small conversion devices 8 to 11 are substantially equal, and the power storage device 13 Hold approximately equal charge states of ~ 16.
 この場合、第1小型変換装置3~6から蓄電装置13~16に入力される電力量をほぼ等しくし、蓄電装置13~16から第2小型変換装置8~11に出力される電力量をほぼ等しくするためのスイッチング駆動パターン制御としては、第1小型変換装置3~6のそれぞれにおけるスイッチング駆動パターンを所定時間毎に入れ替えると共に、第2小型変換装置8~11のそれぞれにおけるスイッチング駆動パターンを所定時間毎に入れ替えるようにすることが考えられる。 In this case, the amount of power input from the first small conversion devices 3 to 6 to the power storage devices 13 to 16 is made substantially equal, and the amount of power output from the power storage devices 13 to 16 to the second small conversion devices 8 to 11 is almost the same. As the switching drive pattern control for equalizing, the switching drive patterns in each of the first small conversion devices 3 to 6 are replaced every predetermined time, and the switching drive patterns in each of the second small conversion devices 8 to 11 are changed for a predetermined time. It is conceivable to replace them every time.
 具体的には、所定期間経過後に、図3(b)に示す第1小型変換装置3の交流側接続端子33に入力される電圧パターンが、図3(c)に示す第1小型変換装置4の交流側接続端子33に入力される電圧パターンに、図3(c)に示す第1小型変換装置4の交流側接続端子33に入力される電圧パターンが、図3(d)に示す第1小型変換装置5の交流側接続端子33に入力される電圧パターンに、図3(d)に示す第1小型変換装置5の交流側接続端子33に入力される電圧パターンが、図3(e)に示す第1小型変換装置6の交流側接続端子33に入力される電圧パターンに、図3(e)に示す第1小型変換装置6の交流側接続端子33に入力される電圧パターンが、図3(a)に示す第1小型変換装置3の交流側接続端子33に入力される電圧パターンに、というように、四つの電圧パターンが順次、入れ替わるように、中央制御装置2から第1小型変換装置3~6のそれぞれの制御装置35に信号伝送されたキャリアを、第1電力変換装置駆動パターン補正部402から第1小型変換装置3~6のそれぞれの制御装置35に信号伝送されたスイッチング駆動パターン補正用指令値によって入れ替えるようにすればよい。 Specifically, after a predetermined period of time, the voltage pattern input to the AC side connection terminal 33 of the first small conversion device 3 shown in FIG. 3B is the first small conversion device 4 shown in FIG. The voltage pattern input to the AC side connection terminal 33 of the first small-sized conversion device 4 shown in FIG. 3C is the voltage pattern input to the AC side connection terminal 33 of FIG. The voltage pattern input to the AC side connection terminal 33 of the first small conversion device 5 shown in FIG. 3D is the voltage pattern input to the AC side connection terminal 33 of the small conversion device 5 as shown in FIG. The voltage pattern input to the AC side connection terminal 33 of the first small conversion device 6 shown in FIG. 3E is the voltage pattern input to the AC side connection terminal 33 of the first small conversion device 6 shown in FIG. Input to the AC side connection terminal 33 of the first small converter 3 shown in FIG. The carrier signal-transmitted from the central control device 2 to the respective control devices 35 of the first small conversion devices 3 to 6 is transferred to the first power so that the four voltage patterns are sequentially switched. The switching drive pattern correction unit 402 may be replaced by the switching drive pattern correction command value transmitted to the respective control devices 35 of the first small-sized conversion devices 3 to 6.
 このようなキャリアの入れ替えによれば、キャリアの入れ替えが一巡したときの第1小型変換装置3~6のそれぞれの交流側接続端子33に入力される電圧の合計がほぼ等しくなり、第1小型変換装置3~6のそれぞれの交流側接続端子33に入力される電圧と第1小型変換装置3~6のそれぞれの交流側接続端子33に流れる交流電流との積によって得られる電力量の合計、すなわち電圧を示す矩形波と交流電流を示す正弦波とを掛け合わせて得られる波形の囲まれた部分の面積の合計がほぼ等しくなる。従って、第1小型変換装置3~6から蓄電装置13~16に入力される電力量がほぼ等しく、蓄電装置13~16のほぼ等しい充電状態を保持することができる。 According to such carrier replacement, the sum of the voltages input to the AC side connection terminals 33 of the first small conversion devices 3 to 6 when the carrier replacement is completed is almost equal, and the first small conversion is performed. The total amount of electric power obtained by the product of the voltage input to each AC side connection terminal 33 of each of the devices 3 to 6 and the AC current flowing through each AC side connection terminal 33 of each of the first small converters 3 to 6, that is, The sum of the areas of the enclosed portions of the waveform obtained by multiplying the rectangular wave indicating the voltage and the sine wave indicating the alternating current becomes substantially equal. Accordingly, the amounts of power input from the first small conversion devices 3 to 6 to the power storage devices 13 to 16 are substantially equal, and the power storage devices 13 to 16 can be kept in an approximately equal charge state.
 ここでは、中央制御装置2から第1小型変換装置3~6のそれぞれの制御装置35に信号伝送されたキャリアを一つずつ順番にずらすやり方を説明したが、他のずらし方であってもよい(キャリアが一巡したとき、第1小型変換装置3~6のそれぞれに四つのキャリアのそれぞれが1回ずつ割り当てられていればよい)。 Here, the method of shifting the carriers that are signal-transmitted one by one from the central control device 2 to the respective control devices 35 of the first small conversion devices 3 to 6 has been described, but other shifting methods may be used. (When the carrier makes a round, each of the four carriers only needs to be assigned once to each of the first small conversion devices 3 to 6).
 第2小型変換装置8~11においても、第1小型変換装置3~6のスイッチング駆動パターン入れ替えと同様に、四つの電圧パターンが順次、入れ替わるように、中央制御装置2から第2小型変換装置8~11のそれぞれの制御装置35に信号伝送されたキャリアを、第2電力変換装置駆動パターン補正部403から第2小型変換装置8~11のそれぞれの制御装置35に信号伝送されたスイッチング駆動パターン補正用指令値によって入れ替えるようにすればよい。 Also in the second small conversion devices 8 to 11, the central control device 2 to the second small conversion device 8 so that the four voltage patterns are sequentially replaced in the same manner as the switching drive pattern replacement of the first small conversion devices 3 to 6. The switching drive pattern correction signal transmitted from the second power conversion device drive pattern correction unit 403 to the control device 35 of each of the second small conversion devices 8 to 11 It may be changed according to the command value.
 このような入れ替えによれば、キャリアの入れ替えが一巡したときの第2小型変換装置8~11のそれぞれの交流側接続端子33から出力される電圧の合計がほぼ等しくなり、第2小型変換装置8~11のそれぞれの交流側接続端子33から出力される電圧と第2小型変換装置8~11のそれぞれの交流側接続端子33に流れる交流電流との積によって得られる電力量の合計、すなわち電圧を示す矩形波と交流電流を示す正弦波とを掛け合わせて得られる波形の囲まれた部分の面積の合計がほぼ等しくなる。従って、蓄電装置13~16から第2小型変換装置8~11に出力される電力量がほぼ等しく、蓄電装置13~16のほぼ等しい充電状態を保持することができる。 According to such replacement, the sum of the voltages output from the AC side connection terminals 33 of the second small conversion devices 8 to 11 when the carrier replacement is completed is almost equal, and the second small conversion device 8 To 11, the total amount of electric power obtained by the product of the voltage output from each AC side connection terminal 33 and the AC current flowing through each AC side connection terminal 33 of the second small converters 8 to 11, that is, the voltage The sum of the areas of the enclosed portions of the waveform obtained by multiplying the rectangular wave shown by the sine wave showing the alternating current becomes substantially equal. Therefore, the amounts of power output from power storage devices 13 to 16 to second small conversion devices 8 to 11 are substantially equal, and the power storage devices 13 to 16 can be kept in an approximately equal charge state.
 また、第1小型変換装置3~6から蓄電装置13~16に入力される電力量をほぼ等しくし、蓄電装置13~16から第2小型変換装置8~11に出力される電力量をほぼ等しくするためのスイッチング駆動パターン制御としては、電力変換装置の中において複数の小型変換装置のスイッチング駆動パターンをローテーションさせる他に、半サイクルにおけるスイッチング素子のオン時間が長い小型変換装置のスイッチング駆動パターン(矩形波)をパルス幅方向に対していくつかのパルスに分割し、この分割したパルスの一部を分離して、半サイクルにおけるスイッチング素子のオン時間の短い他の小型変換装置のスイッチング駆動パターンに組み込み、電力変換装置の中において複数の小型変換装置の半サイクルにおけるスイッチング素子のオン時間がほぼ等しくなるようにスイッチング駆動パターンの一部を逐次、組み替えることが考えられる。 In addition, the amount of power input from the first small conversion devices 3 to 6 to the power storage devices 13 to 16 is made substantially equal, and the amount of power output from the power storage devices 13 to 16 to the second small conversion devices 8 to 11 is made substantially equal. In addition to rotating the switching drive patterns of a plurality of small conversion devices in the power conversion device, the switching drive pattern control for performing the switching drive pattern (rectangular shape) of the small conversion device having a long on-time of the switching element in a half cycle is included. Wave) is divided into several pulses in the pulse width direction, and a part of this divided pulse is separated and incorporated into the switching drive pattern of other small converters with short on-time of switching elements in half cycle , Switching in half cycle of multiple small converters in power converters Successive portions of the switching drive pattern as the ON time of the child is approximately equal, it is considered that reclassified.
 このような組み替えによれば、第1小型変換装置3~6のそれぞれの交流側接続端子33に入力される電圧と第1小型変換装置3~6のそれぞれの交流側接続端子33に流れる交流電流との積によって得られる電力量の合計、及び第2小型変換装置8~11のそれぞれの交流側接続端子33から出力される電圧と第2小型変換装置8~11のそれぞれの交流側接続端子33に流れる交流電流との積によって得られる電力量の合計、すなわち電圧を示す矩形波と交流電流を示す正弦波とを掛け合わせて得られる波形の囲まれた部分の面積の合計がほぼ等しくなる。
(蓄電装置13~16の充電状態にばらつきがある状態のときの動作)
 次に、図8乃至10を用いて、蓄電装置13~16の充電状態にばらつきがあるときの動作について説明する。
According to such a rearrangement, the voltage input to each AC side connection terminal 33 of the first small conversion devices 3 to 6 and the AC current flowing to each AC side connection terminal 33 of the first small conversion devices 3 to 6. And the total amount of electric power obtained by the product of, and the voltage output from each AC side connection terminal 33 of the second small conversion devices 8 to 11 and each AC side connection terminal 33 of the second small conversion devices 8 to 11. The sum of the amounts of electric power obtained by the product of the alternating current flowing through the current, that is, the sum of the areas of the enclosed portions of the waveform obtained by multiplying the rectangular wave indicating the voltage and the sine wave indicating the alternating current becomes substantially equal.
(Operation when there are variations in the state of charge of power storage devices 13 to 16)
Next, the operation when there are variations in the state of charge of the power storage devices 13 to 16 will be described with reference to FIGS.
 前述のように、第1小型変換装置3~6から蓄電装置13~16に入力される電力量をほぼ等しくし、蓄電装置13~16から第2小型変換装置8~11に出力される電力量をほぼ等しくするように、第1小型変換装置3~6及び第2小型変換装置8~11のスイッチングを制御していても、蓄電装置13~16を充放電させているうちに、蓄電装置13~16が有する特性の固体差によって、蓄電装置13~16の充電状態にばらつきが生じてくる。 As described above, the amount of power input from the first small conversion devices 3 to 6 to the power storage devices 13 to 16 is made substantially equal, and the amount of power output from the power storage devices 13 to 16 to the second small conversion devices 8 to 11 Even if the switching of the first small conversion devices 3 to 6 and the second small conversion devices 8 to 11 is controlled so that the power storage devices 13 to 16 are charged and discharged, Variations in the state of charge of the power storage devices 13 to 16 occur due to differences in characteristics of the characteristics of .about.16.
 そこで、本実施例では、蓄電装置13~16の充電状態のばらつきが所定以上になったときには、蓄電装置13~16のばらつきに応じて、第1小型変換装置3~6のそれぞれの入力電力量、及び第2小型変換装置8~11のそれぞれの出力電力量を決定し、これに基づいて、第1小型変換装置3~6のそれぞれ及び第2小型変換装置8~11のそれぞれのスイッチング駆動パターンを制御している。 Therefore, in this embodiment, when the variation in the charging state of the power storage devices 13 to 16 exceeds a predetermined value, the amount of input power of each of the first small conversion devices 3 to 6 according to the variation of the power storage devices 13 to 16 , And the output power amounts of the second small conversion devices 8 to 11, respectively, and based on this, the switching drive patterns of the first small conversion devices 3 to 6 and the second small conversion devices 8 to 11, respectively. Is controlling.
 図8は蓄電装置13~16のそれぞれの充電状態を示す。横軸は蓄電装置の番号(符号)を示し、縦軸は任意の測定タイミングにおける蓄電装置13~16のそれぞれの充電状態を示す。図8に示すように、蓄電装置13~16は、それぞれ、充電状態が異なる状態にある。具体的には、蓄電装置13~16のうち、蓄電装置13の充電状態が最も小さく、蓄電装置16の充電状態が最も大きいと共に、蓄電装置13、蓄電装置14、蓄電装置15、蓄電装置16の順に充電状態が大きい状態にある。この状態において、蓄電装置13~16は、第1電力変換装置7を介して電力を入力し、第2電力変換装置12を介して電力を出力している。 FIG. 8 shows the state of charge of each of the power storage devices 13-16. The horizontal axis indicates the number (sign) of the power storage device, and the vertical axis indicates the state of charge of each of the power storage devices 13 to 16 at an arbitrary measurement timing. As shown in FIG. 8, power storage devices 13 to 16 are in different charged states. Specifically, among the power storage devices 13 to 16, the power storage device 13 has the smallest charge state, the power storage device 16 has the largest charge state, and the power storage device 13, the power storage device 14, the power storage device 15, and the power storage device 16 In order, the state of charge is large. In this state, the power storage devices 13 to 16 input power via the first power conversion device 7 and output power via the second power conversion device 12.
 図9は第1小型変換装置3~6から蓄電装置13~16に入力される電力量を示す。横軸は第1小型変換装置の番号(符号)を示し、縦軸は、図8の測定タイミングと同じタイミングにおいて、第1小型変換装置3~6から蓄電装置13~16に入力される、図3に示す目標電圧1サイクル分の期間における電力量を示す。蓄電装置13~16の充電状態が異なる場合には、図9に示すように、蓄電装置13~16のうち、充電状態の最も小さい蓄電装置に入力される電力量は最も大きく、充電状態の最も大きい蓄電装置に入力される電力量は最も小さくすると共に、充電状態が大きくなるにしたがって入力電力が小さくなるようにし、蓄電装置13~16の異なる充電状態がほぼ等しくなるように充電状態を調整する。 FIG. 9 shows the amount of power input from the first small conversion devices 3 to 6 to the power storage devices 13 to 16. The horizontal axis indicates the number (sign) of the first small conversion device, and the vertical axis is input from the first small conversion devices 3 to 6 to the power storage devices 13 to 16 at the same timing as the measurement timing of FIG. 3 shows the amount of power in a period of one cycle of the target voltage shown in FIG. When the charging states of power storage devices 13 to 16 are different, as shown in FIG. 9, the amount of power input to the power storage device having the smallest charging state among power storage devices 13 to 16 is the largest, and the charging state is the highest. The amount of electric power input to a large power storage device is minimized, the input power is decreased as the state of charge increases, and the state of charge is adjusted so that the different state of charge of power storage devices 13 to 16 is approximately equal. .
 図10は蓄電装置13~16から第2小型変換装置8~11に出力される電力量を示す。横軸は第2小型変換装置の番号(符号)を示し、縦軸は、図8の測定タイミングと同じタイミングにおいて、蓄電装置13~16から第2小型変換装置8~11からに出力される、図3に示す目標電圧1サイクル分の期間における電力量を示す。蓄電装置13~16の充電状態が異なる場合には、図10に示すように、蓄電装置13~16のうち、充電状態の最も小さい蓄電装置から出力される電力量は最も小さく、充電状態の最も大きい蓄電装置から出力される電力量は最も大きくすると共に、充電状態が大きくなるにしたがって出力電力が大きくなるようにし、蓄電装置13~16の異なる充電状態がほぼ等しくなるように充電状態を調整する。 FIG. 10 shows the amount of power output from the power storage devices 13-16 to the second small conversion devices 8-11. The horizontal axis indicates the number (sign) of the second small conversion device, and the vertical axis is output from the power storage devices 13 to 16 to the second small conversion devices 8 to 11 at the same timing as the measurement timing of FIG. The electric energy in the period for 1 cycle of target voltages shown in FIG. 3 is shown. When the charging states of power storage devices 13 to 16 are different, as shown in FIG. 10, the amount of power output from the power storage device having the smallest charging state among power storage devices 13 to 16 is the smallest, and the charging state is the lowest. The amount of power output from the large power storage device is maximized, and the output power is increased as the charge state increases, and the charge state is adjusted so that the different charge states of the power storage devices 13 to 16 are substantially equal. .
 この場合、第1小型変換装置3~6から蓄電装置13~16に入力される電力量を蓄電装置13~16の充電状態に応じて異ならせ、蓄電装置13~16から第2小型変換装置8~11に出力される電力量を蓄電装置13~16の充電状態に応じて異ならせるためのスイッチング駆動パターン制御としては、第1小型変換装置3~6のそれぞれにおけるスイッチング駆動パターンを入力電力量に応じて入れ替え、蓄電装置13~16の異なる充電状態がほぼ等しくなるまで固定すると共に、第2小型変換装置8~11のそれぞれにおけるスイッチング駆動パターンを出力電力量に応じて入れ替え、蓄電装置13~16の異なる充電状態がほぼ等しくなるまで固定することが考えられる。 In this case, the amount of electric power input from the first small conversion devices 3 to 6 to the power storage devices 13 to 16 is changed according to the state of charge of the power storage devices 13 to 16, and the second small conversion device 8 from the power storage devices 13 to 16 is changed. As the switching drive pattern control for varying the amount of power output to 11 to 11 depending on the state of charge of the power storage devices 13 to 16, the switching drive pattern in each of the first small conversion devices 3 to 6 is used as the input power amount. The power storage devices 13 to 16 are fixed until the different charging states of the power storage devices 13 to 16 are substantially equal, and the switching drive pattern in each of the second small conversion devices 8 to 11 is replaced according to the output power amount. It is conceivable that the different charging states are fixed until they are substantially equal.
 具体的には、図3(b)に示す第1小型変換装置3の交流側接続端子33に入力される電圧パターンが、図3(e)に示す第1小型変換装置6の交流側接続端子33に入力される電圧パターンに、図3(c)に示す第1小型変換装置4の交流側接続端子33に入力される電圧パターンが、図3(d)に示す第1小型変換装置5の交流側接続端子33に入力される電圧パターンに、図3(d)に示す第1小型変換装置5の交流側接続端子33に入力される電圧パターンが、図3(b)に示す第1小型変換装置4の交流側接続端子33に入力される電圧パターンに、図3(e)に示す第1小型変換装置6の交流側接続端子33に入力される電圧パターンが、図3(a)に示す第1小型変換装置3の交流側接続端子33に入力される電圧パターンに、というように、四つの電圧パターンが逆転して入れ替わるように、中央制御装置2から第1小型変換装置3~6のそれぞれの制御装置35に信号伝送されたキャリアを、第1電力変換装置駆動パターン補正部402から第1小型変換装置3~6のそれぞれの制御装置35に信号伝送されたスイッチング駆動パターン補正用指令値によって入れ替えるようにすればよい。 Specifically, the voltage pattern input to the AC side connection terminal 33 of the first small conversion device 3 shown in FIG. 3B is the AC side connection terminal of the first small conversion device 6 shown in FIG. A voltage pattern input to the AC side connection terminal 33 of the first small conversion device 4 shown in FIG. 3C corresponds to a voltage pattern input to the first small conversion device 5 shown in FIG. The voltage pattern input to the AC side connection terminal 33 of the first small conversion device 5 shown in FIG. 3D is changed to the voltage pattern input to the AC side connection terminal 33 as shown in FIG. The voltage pattern input to the AC side connection terminal 33 of the first small-sized conversion device 6 shown in FIG. 3E is the voltage pattern input to the AC side connection terminal 33 of the conversion device 4 in FIG. Voltage pattern input to the AC side connection terminal 33 of the first small conversion device 3 shown The carrier signal-transmitted from the central controller 2 to the respective control devices 35 of the first small converters 3 to 6 is driven by the first power converter so that the four voltage patterns are reversed and switched. What is necessary is just to replace with the command value for switching drive pattern correction | amendment transmitted to the control apparatus 35 of each of the 1st small converters 3-6 from the pattern correction | amendment part 402. FIG.
 このようなキャリアの入れ替えによれば、蓄電装置13~16の充電状態に応じて、充電状態の最も小さい蓄電装置13に第1小型変換装置3から入力される電力量は最も大きく、充電状態の最も大きい蓄電装置16に第1小型変換装置6から入力される電力量は最も小さくなると共に、充電状態が大きくなるにしたがって入力電力が小さくなり、第1小型変換装置3~6のそれぞれの交流側接続端子33に入力される電圧と第1小型変換装置3~6のそれぞれの交流側接続端子33に流れる交流電流との積によって得られる電力量、すなわち電圧を示す矩形波と交流電流を示す正弦波とを掛け合わせて得られる波形の囲まれた部分の面積が、第1小型変換装置3、第1小型変換装置4、第1小型変換装置5、第1小型変換装置6の順に小さくなる。従って、第1小型変換装置3~6から蓄電装置13~16に入力される電力量を蓄電装置13~16の充電状態に応じて変えることができ、蓄電装置13~16の異なる充電状態がほぼ等しくなるように充電状態を調整することができる。 According to such replacement of the carriers, the amount of electric power input from the first small conversion device 3 to the power storage device 13 having the smallest charge state is the largest in accordance with the charge states of the power storage devices 13 to 16, and The amount of power input from the first small conversion device 6 to the largest power storage device 16 becomes the smallest, and the input power decreases as the state of charge increases, and each AC side of the first small conversion devices 3 to 6 The amount of electric power obtained by the product of the voltage input to the connection terminal 33 and the AC current flowing through each AC side connection terminal 33 of the first small converters 3 to 6, that is, a rectangular wave indicating the voltage and a sine indicating the AC current The area surrounded by the waveform obtained by multiplying the wave is smaller in the order of the first small conversion device 3, the first small conversion device 4, the first small conversion device 5, and the first small conversion device 6. Kunar. Therefore, the amount of power input from the first small conversion devices 3 to 6 to the power storage devices 13 to 16 can be changed according to the charging state of the power storage devices 13 to 16, and the different charging states of the power storage devices 13 to 16 are almost the same. The state of charge can be adjusted to be equal.
 第2小型変換装置8~11では、第1小型変換装置3~6のスイッチング駆動パターン入れ替えとは逆の関係になるように、別な言い方をすれば、第2小型変換装置8の電圧パターンが図3(b)に示す電圧パターンに、第2小型変換装置9の電圧パターンが図3(c)に、第2小型変換装置10の電圧パターンが図3(d)に、第2小型変換装置11の電圧パターンが図3(e)に示す電圧パターンに、それぞれなるように、中央制御装置2から第2小型変換装置8~11のそれぞれの制御装置35に信号伝送されたキャリアを、第2電力変換装置駆動パターン補正部403から第2小型変換装置8~11のそれぞれの制御装置35に信号伝送されたスイッチング駆動パターン補正用指令値によって入れ替えるようにすればよい。 In other words, in the second small conversion devices 8 to 11, the voltage pattern of the second small conversion device 8 is different from the switching drive pattern replacement of the first small conversion devices 3 to 6 in other words. 3B, the voltage pattern of the second small conversion device 9 is shown in FIG. 3C, the voltage pattern of the second small conversion device 10 is shown in FIG. 3D, and the second small conversion device. 11 is the voltage pattern shown in FIG. 3E, so that the carrier signal-transmitted from the central controller 2 to the respective control devices 35 of the second small conversion devices 8 to 11 What is necessary is just to replace with the command value for switching drive pattern correction | amendment signal-transmitted from the power converter drive pattern correction | amendment part 403 to each control apparatus 35 of the 2nd small conversion devices 8-11.
 このような入れ替えによれば、蓄電装置13~16の充電状態に応じて、充電状態の最も小さい蓄電装置13から第2小型変換装置8に出力される電力量は最も小さく、充電状態の最も大きい蓄電装置16から第2小型変換装置11かに出力される電力量は最も大きくなると共に、充電状態が大きくなるにしたがって出力電力が大きくなり、第2小型変換装置8~11のそれぞれの交流側接続端子33に入力される電圧と第2小型変換装置8~11のそれぞれの交流側接続端子33に流れる交流電流との積によって得られる電力量、すなわち電圧を示す矩形波と交流電流を示す正弦波とを掛け合わせて得られる波形の囲まれた部分の面積が、第2小型変換装置8、第2小型変換装置9、第2小型変換装置10、第2小型変換装置11の順に大きくなる。従って、蓄電装置13~16から第2小型変換装置8~11に出力される電力量を蓄電装置13~16の充電状態に応じて変えることができ、蓄電装置13~16の異なる充電状態がほぼ等しくなるように充電状態を調整することができる。 According to such replacement, the amount of power output from the power storage device 13 having the smallest charge state to the second small conversion device 8 is the smallest and the charge state is the largest, depending on the state of charge of the power storage devices 13 to 16. The amount of power output from the power storage device 16 to the second small conversion device 11 is the largest, and the output power increases as the state of charge increases, so that the AC connection of each of the second small conversion devices 8 to 11 is increased. The amount of power obtained by the product of the voltage input to the terminal 33 and the AC current flowing through each AC side connection terminal 33 of the second small converters 8 to 11, that is, a rectangular wave indicating the voltage and a sine wave indicating the AC current The area of the enclosed portion of the waveform obtained by multiplying is calculated in the order of the second small conversion device 8, the second small conversion device 9, the second small conversion device 10, and the second small conversion device 11. Kikunaru. Therefore, the amount of power output from the power storage devices 13 to 16 to the second small conversion devices 8 to 11 can be changed according to the charging state of the power storage devices 13 to 16, and the different charging states of the power storage devices 13 to 16 are almost the same. The state of charge can be adjusted to be equal.
 第1小型変換装置3~6から蓄電装置13~16に入力される電力量を蓄電装置13~16の充電状態に応じて異ならせ、蓄電装置13~16から第2小型変換装置8~11に出力される電力量を蓄電装置13~16の充電状態に応じて異ならせるためのスイッチング駆動パターン制御としては、電力変換装置の中において複数の小型変換装置のスイッチング駆動パターンを入れ替える他に、小型変換装置のスイッチング駆動パターン(矩形波)をパルス幅方向に対していくつかのパルスに分割し、この分割したパルスの一部を分離して、他の小型変換装置のスイッチング駆動パターンに組み込み、電力変換装置の中において複数の小型変換装置の半サイクルにおけるスイッチング素子のオン時間が、蓄電装置13~16の充電状態に応じて変わるように、スイッチング駆動パターンの一部を組み替えることが考えられる。 The amount of electric power input from the first small conversion devices 3 to 6 to the power storage devices 13 to 16 is changed according to the state of charge of the power storage devices 13 to 16, and the power storage devices 13 to 16 are changed to the second small conversion devices 8 to 11. Switching drive pattern control for varying the amount of output electric power according to the state of charge of the power storage devices 13 to 16 includes switching the switching drive patterns of a plurality of small conversion devices in the power conversion device, Divide the switching drive pattern (rectangular wave) of the device into several pulses in the pulse width direction, separate a part of this divided pulse, and incorporate it into the switching drive pattern of other small converters to convert power The on-time of the switching element in a half cycle of a plurality of small conversion devices in the device depends on the state of charge of power storage devices 13-16 As changes, it is conceivable to rearrange some of the switching drive pattern.
 例えば充電状態が最も大きい蓄電装置16に対応する第1小型変換装置6の入力電力量を最も小さくするためには、図3(e)に示す電圧パターンに対応するスイッチング駆動パターンから一部を分離してパルス幅を縮めてスイッチングのオン時間を小さくするようにする。その分離した分については、例えば図3(b)に示す電圧パターンに対応するスイッチング駆動パターンに組み込んでパルス幅を拡げてスイッチングのオン時間を大きくし、充電状態が最も小さい蓄電装置13に対応する第1小型変換装置3の入力電力量を大きくするようにする。 For example, in order to minimize the input power amount of the first small conversion device 6 corresponding to the power storage device 16 having the largest charge state, a part is separated from the switching drive pattern corresponding to the voltage pattern shown in FIG. Thus, the pulse width is reduced to reduce the switching on time. The separated portion is incorporated into a switching drive pattern corresponding to the voltage pattern shown in FIG. 3B, for example, to widen the pulse width to increase the switching on time, and corresponds to the power storage device 13 having the smallest charged state. The input power amount of the first small conversion device 3 is increased.
 このような組み替えによれば、第1小型変換装置3~6のそれぞれの交流側接続端子33に入力される電圧と第1小型変換装置3~6のそれぞれの交流側接続端子33に流れる交流電流との積によって得られる電力量、及び第2小型変換装置8~11のそれぞれの交流側接続端子33から出力される電圧と第2小型変換装置8~11のそれぞれの交流側接続端子33に流れる交流電流との積によって得られる電力量、すなわち電圧を示す矩形波と交流電流を示す正弦波とを掛け合わせて得られる波形の囲まれた部分の面積が、蓄電装置13~16の充電状態に応じて変わる。 According to such a rearrangement, the voltage input to each AC side connection terminal 33 of the first small conversion devices 3 to 6 and the AC current flowing to each AC side connection terminal 33 of the first small conversion devices 3 to 6. And the amount of electric power obtained by the product of, and the voltage output from the AC side connection terminal 33 of each of the second small conversion devices 8 to 11 and the AC side connection terminal 33 of each of the second small conversion devices 8 to 11 The amount of electric power obtained by the product of the alternating current, that is, the area of the enclosed portion of the waveform obtained by multiplying the rectangular wave indicating the voltage and the sine wave indicating the alternating current is the charged state of the power storage devices 13-16. It changes depending on the situation.
 尚、本実施例では、蓄電装置13~16の充電状態に応じて、中央制御装置2からの指令信号により、第1電力変換装置7及び第2電力変換装置12の双方のスイッチングを制御して、蓄電装置13~16の充電状態が均一化するように、蓄電装置13~16の充電状態を調整したが、この調整を、第1電力変換装置7或いは第2電力変換装置12のどちらか一方により行なうようにしてもよい。 In this embodiment, the switching of both the first power conversion device 7 and the second power conversion device 12 is controlled by a command signal from the central control device 2 according to the state of charge of the power storage devices 13 to 16. The charge states of the power storage devices 13 to 16 are adjusted so that the charge states of the power storage devices 13 to 16 are uniform. This adjustment is performed by either the first power conversion device 7 or the second power conversion device 12. You may make it carry out by.
 以上説明した本実施例では、電源装置1が発電システム19と連系しながらから単相交流電力系統20に電力を供給することが可能であり、単相交流電力系統20の要求に対して発電システム19の出力が不足した場合にも、単相交流電力系統20に安定して電力を供給することができる。一方、単相交流電力系統20の要求に対して発電システム19の出力が余剰になっている場合には、その余剰電力を電源装置1に蓄積し、この蓄積した電力を発電システム19の出力が不足しているときに単相交流電力系統20に供給することができるので、発電システム19において発電したエネルギーを有効に利用することができる。この際、本実施例では、第1小型変換装置3~6及び第2小型変換装置8~11のスイッチング駆動パターンを制御して、蓄電装置13~16の充電状態が均一化するように、蓄電装置13~16の充電状態を調整するようにしているので、蓄電装置13~16の充電状態のばらつきによって生じる蓄電装置13~16の寿命のばらつきを抑制することができ、蓄電装置13~16の長寿命化、ひいては電源装置1の長寿命化を図ることができる。従って、本実施例では、電源装置1による電力供給の安定化と、電源装置1の長寿命化とを両立することができる。 In the present embodiment described above, it is possible to supply power to the single-phase AC power system 20 after the power supply device 1 is linked to the power generation system 19. Even when the output of the system 19 is insufficient, power can be stably supplied to the single-phase AC power system 20. On the other hand, when the output of the power generation system 19 is surplus with respect to the request of the single-phase AC power system 20, the surplus power is stored in the power supply device 1, and the stored power is used as the output of the power generation system 19. Since it can be supplied to the single-phase AC power system 20 when it is insufficient, the energy generated in the power generation system 19 can be used effectively. At this time, in this embodiment, the switching drive patterns of the first small conversion devices 3 to 6 and the second small conversion devices 8 to 11 are controlled so that the charge states of the power storage devices 13 to 16 are made uniform. Since the charging states of the devices 13 to 16 are adjusted, it is possible to suppress the variation in the life of the power storage devices 13 to 16 caused by the variation in the charging state of the power storage devices 13 to 16. The service life of the power supply device 1 can be extended. Therefore, in this embodiment, it is possible to achieve both stabilization of power supply by the power supply device 1 and extension of the life of the power supply device 1.
 図11を用いて第2実施例を説明する。 A second embodiment will be described with reference to FIG.
 第2実施例では、第1実施例の電源装置1と同じ構成の電源装置101を備え、電源側接続端子17に単相交流電力系統20を、負荷側接続端子18に交流負荷22を、それぞれ電気的に接続している。第1電力変換装置7の交流側接続端子17の一方側の端子と単相交流電力系統20との間にはリアクトル21が設けられ、両者間に電気的に直列に接続されている。 In the second embodiment, the power supply apparatus 101 having the same configuration as that of the power supply apparatus 1 of the first embodiment is provided, the single-phase AC power system 20 is connected to the power supply side connection terminal 17, the AC load 22 is connected to the load side connection terminal 18, respectively. Electrically connected. A reactor 21 is provided between a terminal on one side of the AC side connection terminal 17 of the first power converter 7 and the single-phase AC power system 20, and is electrically connected in series between the two.
 リアクトル21は、電線を巻いた巻線であるインダクタを利用した静止誘導機器である。第2実施例の場合、リアクトル21は、電源側、ここでは単相交流電力系統20側の交流電圧に合わせて、電源装置101側の交流電圧の位相と振幅を調整するために設けられている。また、リアクトル21は、単相交流電力系統20と電源装置101との間において、電圧及び電流を平滑するフィルタとしても機能している。 The reactor 21 is a stationary induction device using an inductor that is a winding wound with an electric wire. In the case of the second embodiment, the reactor 21 is provided to adjust the phase and amplitude of the AC voltage on the power supply device 101 side in accordance with the AC voltage on the power supply side, here the single-phase AC power system 20 side. . The reactor 21 also functions as a filter that smoothes the voltage and current between the single-phase AC power system 20 and the power supply device 101.
 尚、第2実施例の電源装置101においても、第1実施例の電源装置1と同様の中央制御装置を備えているが、図11では、図示簡略化のため、その図示を省略している。 The power supply device 101 of the second embodiment also includes a central control device similar to that of the power supply device 1 of the first embodiment, but is not shown in FIG. 11 for the sake of simplicity. .
 単相交流電力系統20と交流負荷22との間に電源装置101を設け、第1電力変換装置7を介して、単相交流電力系統20から出力された電力を蓄電装置13~16に供給して蓄電装置13~16を充電し、これと同時に、第2電力変換装置12を介して、蓄電装置13~16から出力された電力を交流負荷22に供給することにより、単相交流電力系統20と連系しながら、交流負荷22に電力を供給することができると共に、単相交流電力系統20からの電力の供給が停止した場合でも、蓄電装置13~16から交流負荷22に安定して電力を供給することができる。 A power supply device 101 is provided between the single-phase AC power system 20 and the AC load 22, and power output from the single-phase AC power system 20 is supplied to the power storage devices 13 to 16 via the first power converter 7. The power storage devices 13 to 16 are charged, and at the same time, the electric power output from the power storage devices 13 to 16 is supplied to the AC load 22 via the second power conversion device 12, thereby the single-phase AC power system 20 In addition to being able to supply power to the AC load 22 while being connected to the power source, even when the supply of power from the single-phase AC power system 20 is stopped, the power is stably supplied from the power storage devices 13 to 16 to the AC load 22. Can be supplied.
 尚、蓄電装置13~16を充電する場合、蓄電装置13~16から交流負荷22に電力を供給しないこともある。また、蓄電装置13~16を充電することなく、交流負荷22に蓄電装置13~16から電力を供給することもある。さらに、蓄電装置13~16から単相交流電力系統20に電力を供給することもあれば、蓄電装置13~16から単相交流電力系統20と交流負荷22の両方に電力を供給することもある。 When charging the power storage devices 13 to 16, power may not be supplied from the power storage devices 13 to 16 to the AC load 22. Further, electric power may be supplied from the power storage devices 13 to 16 to the AC load 22 without charging the power storage devices 13 to 16. Furthermore, power may be supplied from the power storage devices 13 to 16 to the single-phase AC power system 20, or power may be supplied from the power storage devices 13 to 16 to both the single-phase AC power system 20 and the AC load 22. .
 図12を用いて第3実施例を説明する。 A third embodiment will be described with reference to FIG.
 第3実施例では、第1実施例の電源装置1と同じ構成の電源装置102を備え、電源側接続端子17に発電システム(発電装置)19を、負荷側接続端子18に交流負荷22を、それぞれ電気的に接続している。第1電力変換装置7の交流側接続端子17の一方側の端子と発電システム19との間にはリアクトル21が設けられ、両者間に電気的に直列に接続されている。 In the third embodiment, the power supply device 102 having the same configuration as the power supply device 1 of the first embodiment is provided, the power generation system (power generation device) 19 is provided in the power supply side connection terminal 17, the AC load 22 is provided in the load side connection terminal 18, Each is electrically connected. A reactor 21 is provided between a terminal on one side of the AC side connection terminal 17 of the first power conversion device 7 and the power generation system 19, and is electrically connected in series between the two.
 第3実施例の場合、リアクトル21は、電源側、ここでは発電システム19側の交流電圧に合わせて、電源装置102側の交流電圧の位相と振幅を調整するために設けられている。また、リアクトル21は、発電システム19と電源装置102との間において、電圧及び電流を平滑するフィルタとしても機能している。 In the case of the third embodiment, the reactor 21 is provided to adjust the phase and amplitude of the AC voltage on the power supply apparatus 102 side in accordance with the AC voltage on the power supply side, here the power generation system 19 side. The reactor 21 also functions as a filter that smoothes the voltage and current between the power generation system 19 and the power supply device 102.
 尚、第3実施例の電源装置102においても、第1実施例の電源装置1と同様の中央制御装置を備えているが、図12では、図示簡略化のため、その図示を省略している。 The power supply device 102 of the third embodiment also includes a central control device similar to that of the power supply device 1 of the first embodiment, but is not shown in FIG. 12 for the sake of simplicity. .
 発電システム19と交流負荷22との間に電源装置102を設け、第1電力変換装置7を介して、発電システム19から出力された電力を蓄電装置13~16に供給して蓄電装置13~16を充電し、同時に、第2電力変換装置12を介して、蓄電装置13~16から出力された電力を交流負荷22に供給することにより、発電システム19と連系しながら、交流負荷22に電力を供給することができると共に、発電システム19からの電力の供給が停止した場合でも、蓄電装置13~16から交流負荷22に安定して電力を供給することができる。 A power supply device 102 is provided between the power generation system 19 and the AC load 22, and the power output from the power generation system 19 is supplied to the power storage devices 13 to 16 via the first power conversion device 7 to supply the power storage devices 13 to 16. At the same time, the power output from the power storage devices 13 to 16 is supplied to the AC load 22 via the second power conversion device 12, so that the power is supplied to the AC load 22 while being connected to the power generation system 19. Can be supplied to the AC load 22 from the power storage devices 13 to 16 even when the supply of power from the power generation system 19 is stopped.
 尚、蓄電装置13~16を充電する場合、蓄電装置13~16から交流負荷22に電力を供給しないこともある。また、蓄電装置13~16を充電することなく、交流負荷22に蓄電装置13~16から電力を供給することもある。 When charging the power storage devices 13 to 16, power may not be supplied from the power storage devices 13 to 16 to the AC load 22. Further, electric power may be supplied from the power storage devices 13 to 16 to the AC load 22 without charging the power storage devices 13 to 16.
 図13を用いて第4実施例を説明する。 A fourth embodiment will be described with reference to FIG.
 第4実施例では、第1実施例の電源装置1と同じ構成の電源装置103を備え、電源側接続端子17に直流電力系統23を、負荷側接続端子18に交流負荷22を、それぞれ電気的に接続している。 In the fourth embodiment, the power supply apparatus 103 having the same configuration as that of the power supply apparatus 1 of the first embodiment is provided, the DC power system 23 is connected to the power supply side connection terminal 17, and the AC load 22 is connected to the load side connection terminal 18. Connected to.
 第1実施例において説明したように、小型変換装置3~6はフルブリッジインバータ回路によって構成されている。フルブリッジインバータ回路は、直流電圧を交流電圧(正負の電圧)に変換可能であるが、負方向には変換せず、直流電圧を正のみの交流電圧、すなわち電圧0と正の交流電圧に変換することも可能である。この原理を利用するようにすれば、直流電力系統23を一種の単相交流電力系統として見立てて利用することができ、直流電力系統23から出力された電力を第1電力変換装置7の第1小型変換装置3~6のそれぞれによって変換し、この変換された電力を蓄電装置13~16に供給して蓄電装置13~16のそれぞれを充電することができる。 As described in the first embodiment, the small converters 3 to 6 are constituted by full bridge inverter circuits. Full-bridge inverter circuit can convert DC voltage to AC voltage (positive and negative voltage), but does not convert in negative direction, but converts DC voltage to positive AC voltage, ie, voltage 0 and positive AC voltage It is also possible to do. If this principle is used, the DC power system 23 can be used as a kind of single-phase AC power system, and the power output from the DC power system 23 can be used as the first power converter 7. Conversion is performed by each of the small-sized conversion devices 3 to 6, and the converted electric power can be supplied to the power storage devices 13 to 16 to charge each of the power storage devices 13 to 16.
 尚、第4実施例の電源装置103においても、第1実施例の電源装置1と同様の中央制御装置を備えているが、図13では、図示簡略化のため、その図示を省略している。 The power supply device 103 according to the fourth embodiment also includes a central control device similar to that of the power supply device 1 according to the first embodiment. However, in FIG. 13, the illustration thereof is omitted for simplification. .
 直流電力系統23と交流負荷22との間に電源装置103を設け、第1電力変換装置7を介して、直流電力系統23から出力された電力を蓄電装置13~16に供給して蓄電装置13~16を充電し、同時に、第2電力変換装置12を介して、蓄電装置13~16から出力された電力を交流負荷22に供給することにより、直流電力系統23と連系しながら、交流負荷22に電力を供給することができると共に、直流電力系統23からの電力の供給が停止した場合でも、蓄電装置13~16から交流負荷22に安定して電力を供給することができる。 The power supply device 103 is provided between the DC power system 23 and the AC load 22, and the power output from the DC power system 23 is supplied to the power storage devices 13 to 16 via the first power conversion device 7 to supply the power storage device 13. To 16 and simultaneously supplying the power output from the power storage devices 13 to 16 to the AC load 22 via the second power converter 12, so that the AC load is connected to the AC power system 23. 22 can be supplied with power, and even when the supply of power from the DC power system 23 is stopped, power can be stably supplied from the power storage devices 13 to 16 to the AC load 22.
 尚、蓄電装置13~16を充電する場合、蓄電装置13~16から交流負荷22に電力を供給しないこともある。また、蓄電装置13~16を充電することなく、交流負荷22に蓄電装置13~16から電力を供給することもある。さらに、蓄電装置13~16から直流電力系統23に電力を供給することもあれば、蓄電装置13~16から直流電力系統23と交流負荷22の両方に電力を供給することもある。 When charging the power storage devices 13 to 16, power may not be supplied from the power storage devices 13 to 16 to the AC load 22. Further, electric power may be supplied from the power storage devices 13 to 16 to the AC load 22 without charging the power storage devices 13 to 16. Furthermore, power may be supplied from the power storage devices 13 to 16 to the DC power system 23, or power may be supplied from the power storage devices 13 to 16 to both the DC power system 23 and the AC load 22.
 また、第1電力変換装置7を、直流電力を直流電力に変換する装置、例えばDC-DCコンバータとして機能させ、直流電力系統23から出力された直流電力を、第1電力変換装置7の第1小型変換装置3~6によって、蓄電装置13~16のそれぞれに対する直流電力に分割して蓄電装置13~16のそれぞれに供給し、蓄電装置13~16のそれぞれを充電することもできる。 Further, the first power conversion device 7 is caused to function as a device that converts direct current power into direct current power, for example, a DC-DC converter, and the direct current power output from the direct current power system 23 is converted into the first power conversion device 7. Each of the power storage devices 13 to 16 can be charged by being divided into DC power for each of the power storage devices 13 to 16 by the small conversion devices 3 to 6 and supplied to each of the power storage devices 13 to 16.
 図14を用いて第5実施例を説明する。 The fifth embodiment will be described with reference to FIG.
 第5実施例は、第4実施例の変形例であり、第1実施例の電源装置1と同じ構成の電源装置104を備え、第1小型変換装置4の交流側接続端子33の他方側の端子を電源側接続端子24の一方側の端子に電気的に接続し、第1小型変換装置5の交流側接続端子33の一方側の端子を電源側接続端子24の他方側の端子に電気的に接続すると共に、電源側接続端子24に発電システム19を電気的に接続することにより、第1小型変換装置4と第1小型変換装置5との間を、発電システム19を介して電気的に接続するようにしている。電源側接続端子24の一方側の端子と発電システム19との間にはリアクトル21が電気的に直列に接続されている。 5th Example is a modification of 4th Example, is equipped with the power supply device 104 of the same structure as the power supply device 1 of 1st Example, and the other side of the alternating current side connection terminal 33 of the 1st small converter 4 is provided. The terminal is electrically connected to one terminal of the power supply side connection terminal 24, and one terminal of the AC side connection terminal 33 of the first small-sized conversion device 5 is electrically connected to the other terminal of the power supply side connection terminal 24. And the power generation system 19 is electrically connected to the power supply side connection terminal 24 to electrically connect the first small conversion device 4 and the first small conversion device 5 via the power generation system 19. I try to connect. A reactor 21 is electrically connected in series between one terminal of the power supply side connection terminal 24 and the power generation system 19.
 第5実施例の場合、リアクトル21は、電源側、ここでは発電システム19側の交流電圧に合わせて、電源装置104側の交流電圧の位相と振幅を調整するために設けられている。また、リアクトル21は、発電システム19と電源装置104との間において、電圧及び電流を平滑するフィルタとしても機能している。 In the case of the fifth embodiment, the reactor 21 is provided to adjust the phase and amplitude of the AC voltage on the power supply device 104 side in accordance with the AC voltage on the power supply side, here the power generation system 19 side. The reactor 21 also functions as a filter that smoothes the voltage and current between the power generation system 19 and the power supply device 104.
 尚、第5実施例の電源装置104においても、第1実施例の電源装置1と同様の中央制御装置を備えているが、図14では、図示簡略化のため、その図示を省略している。 The power supply device 104 of the fifth embodiment also includes a central control device similar to that of the power supply device 1 of the first embodiment, but is not shown in FIG. 14 for simplicity of illustration. .
 直流電力系統23と交流負荷22との間に電源装置103を設け、第1電力変換装置7を介して、直流電力系統23或いは発電システム19若しくはその両方から出力された電力を蓄電装置13~16に供給して蓄電装置13~16を充電し、同時に、第2電力変換装置12を介して、蓄電装置13~16から出力された電力を交流負荷22に供給することにより、直流電力系統23と連系しながら、交流負荷22に電力を供給することができると共に、直流電力系統23或いは発電システム19若しくはその両方からの電力の供給が停止した場合でも、蓄電装置13~16から交流負荷22に安定して電力を供給することができる。 A power supply device 103 is provided between the DC power system 23 and the AC load 22, and the power output from the DC power system 23 and / or the power generation system 19 or both via the first power conversion device 7 is stored in the power storage devices 13 to 16. To charge the power storage devices 13 to 16 and simultaneously supply the power output from the power storage devices 13 to 16 to the AC load 22 via the second power conversion device 12. While being connected, power can be supplied to the AC load 22, and even when the supply of power from the DC power system 23 and / or the power generation system 19 is stopped, the power storage devices 13 to 16 can supply power to the AC load 22. Power can be supplied stably.
 尚、蓄電装置13~16を充電する場合、蓄電装置13~16から交流負荷22に電力を供給しないこともある。また、蓄電装置13~16を充電することなく、交流負荷22に蓄電装置13~16から電力を供給することもある。さらに、蓄電装置13~16から直流電力系統23に電力を供給することもあれば、蓄電装置13~16から直流電力系統23と交流負荷22の両方に電力を供給することもある。 When charging the power storage devices 13 to 16, power may not be supplied from the power storage devices 13 to 16 to the AC load 22. Further, electric power may be supplied from the power storage devices 13 to 16 to the AC load 22 without charging the power storage devices 13 to 16. Furthermore, power may be supplied from the power storage devices 13 to 16 to the DC power system 23, or power may be supplied from the power storage devices 13 to 16 to both the DC power system 23 and the AC load 22.
 図15を用いて第6実施例を説明する。 The sixth embodiment will be described with reference to FIG.
 第6実施例は第1実施例の変形例である。第1実施例では、電源装置1によって単相電源装置を構成していた。第6実施例では、第1実施例の電源装置1を三相分備え、三相電源装置50を構成している。 The sixth embodiment is a modification of the first embodiment. In the first embodiment, the power supply device 1 constitutes a single-phase power supply device. In the sixth embodiment, the power supply device 1 of the first embodiment is provided for three phases, and a three-phase power supply device 50 is configured.
 三相電源装置50は、U相電源装置1A、V相電源装置1B、W相電源装置1Cを備えている。U相電源装置1A、V相電源装置1B,W相電源装置1Cはいずれも、第1実施例の電源装置1と同じ構成になっている。 The three-phase power supply device 50 includes a U-phase power supply device 1A, a V-phase power supply device 1B, and a W-phase power supply device 1C. The U-phase power supply device 1A, V-phase power supply device 1B, and W-phase power supply device 1C all have the same configuration as the power supply device 1 of the first embodiment.
 尚、第6実施例のU相電源装置1A、V相電源装置1B,W相電源装置1Cにおいても、第1実施例の電源装置1と同様の中央制御装置を備えているが、図15では、図示簡略化のため、その図示を省略している。 The U-phase power supply device 1A, V-phase power supply device 1B, and W-phase power supply device 1C of the sixth embodiment also have a central control device similar to the power supply device 1 of the first embodiment, but in FIG. The illustration is omitted for simplification of illustration.
 U相電源装置1Aの電源側接続端子17A,V相電源装置1Bの電源側接続端子17B,W相電源装置1Cの電源側接続端子17Cの一方側の端子は、三相交流電力を出力する発電システム31に電気的に接続されている。U相電源装置1Aの電源側接続端子17A,V相電源装置1Bの電源側接続端子17B,W相電源装置1Cの電源側接続端子17Cの他方側の端子は接続点28に電気的に接続されている。接続点28は三相結線の中性点にあたる。すなわちU相電源装置1A,V相電源装置1B,W相電源装置1Cの電源側はスター(Y)結線されている。 The power supply side connection terminal 17A of the U-phase power supply device 1A, the power supply side connection terminal 17B of the V phase power supply device 1B, and the one side terminal of the power supply side connection terminal 17C of the W phase power supply device 1C generate three-phase AC power. It is electrically connected to the system 31. The power supply side connection terminal 17A of the U phase power supply device 1A, the power supply side connection terminal 17B of the V phase power supply device 1B, and the other side terminal of the power supply side connection terminal 17C of the W phase power supply device 1C are electrically connected to the connection point 28. ing. The connection point 28 corresponds to the neutral point of the three-phase connection. That is, the power supply sides of the U-phase power supply device 1A, the V-phase power supply device 1B, and the W-phase power supply device 1C are star (Y) connected.
 U相電源装置1Aの負荷側接続端子18A,V相電源装置1Bの負荷側接続端子18B,W相電源装置1Cの負荷側接続端子18Cの一方側の端子は三相交流電力系統30に電気的に接続されている。U相電源装置1Aの負荷側接続端子18A,V相電源装置1Bの負荷側接続端子18B,W相電源装置1Cの負荷側接続端子18Cの他方側の端子は接続点26に電気的に接続されている。接続点26は三相結線の中性点にあたる。すなわちU相電源装置1A,V相電源装置1B,W相電源装置1Cの負荷側はスター(Y)結線されている。 One side of the load side connection terminal 18A of the U phase power supply device 1A, the load side connection terminal 18B of the V phase power supply device 1B, and the load side connection terminal 18C of the W phase power supply device 1C is electrically connected to the three-phase AC power system 30. It is connected to the. The load-side connection terminal 18A of the U-phase power supply device 1A, the load-side connection terminal 18B of the V-phase power supply device 1B, and the other terminal of the load-side connection terminal 18C of the W-phase power supply device 1C are electrically connected to the connection point 26. ing. The connection point 26 corresponds to the neutral point of the three-phase connection. That is, the load side of the U-phase power supply 1A, V-phase power supply 1B, and W-phase power supply 1C is star (Y) connected.
 発電システム31と三相交流電力系統30との間に三相電源装置50を設け、第1電力変換装置7A,7B,7Cを介して、発電システム31から出力された電力を蓄電装置13A~16A,13B~16B,13C~16Cに供給して蓄電装置13A~16A,13B~16B,13C~16Cを充電し、同時に、第2電力変換装置12A,12B,12Cを介して、蓄電装置13A~16A,13B~16B,13C~16Cから出力された電力を三相交流電力系統30に供給することにより、発電システム31と連系しながら、三相交流電力系統30に電力を供給することができると共に、発電システム31からの電力の供給が停止した場合でも、蓄電装置13A~16A,13B~16B,13C~16Cから三相交流電力系統30に安定して電力を供給することができる。 A three-phase power supply device 50 is provided between the power generation system 31 and the three-phase AC power system 30, and the power output from the power generation system 31 is stored in the power storage devices 13A to 16A via the first power conversion devices 7A, 7B, and 7C. , 13B to 16B, 13C to 16C to charge the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C, and at the same time, the power storage devices 13A to 16A via the second power conversion devices 12A, 12B, and 12C. , 13B to 16B, and 13C to 16C are supplied to the three-phase AC power system 30 to supply power to the three-phase AC power system 30 while being connected to the power generation system 31. Even when the supply of power from the power generation system 31 is stopped, the three-phase AC power system 3 from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C. Stable power can be supplied to the.
 尚、蓄電装置13A~16A,13B~16B,13C~16Cを充電する場合、蓄電装置13A~16A,13B~16B,13C~16Cから三相交流電力系統30に電力を供給しないこともある。また、蓄電装置13A~16A,13B~16B,13C~16Cを充電することなく、三相交流電力系統30に蓄電装置13A~16A,13B~16B,13C~16Cから電力を供給することもある。 When charging the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C, the power may not be supplied from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C to the three-phase AC power system 30. In addition, power may be supplied from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C to the three-phase AC power system 30 without charging the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C.
 図16を用いて第7実施例を説明する。 The seventh embodiment will be described with reference to FIG.
 第7実施例では、第6実施例の三相電源装置50と同じ構成の三相電源装置501を備え、U相電源装置1Aの電源側接続端子17A,V相電源装置1Bの電源側接続端子17B,W相電源装置1Cの電源側接続端子17Cに三相交流電力系統30を、U相電源装置1Aの負荷側接続端子18A,V相電源装置1Bの負荷側接続端子18B,W相電源装置1Cの負荷側接続端子18Cに三相交流負荷27を、それぞれ電気的に接続している。U相電源装置1Aの電源側接続端子17A,V相電源装置1Bの電源側接続端子17B,W相電源装置1Cの電源側接続端子17Cの一方側の端子と三相交流電力系統30との間にはリアクトル29が設けられ、両者間に電気的に直列に接続されている。 The seventh embodiment includes a three-phase power supply device 501 having the same configuration as the three-phase power supply device 50 of the sixth embodiment, and includes a power supply side connection terminal 17A of the U phase power supply apparatus 1A and a power supply side connection terminal of the V phase power supply apparatus 1B. 17B, the three-phase AC power system 30 is connected to the power supply side connection terminal 17C of the W phase power supply device 1C, the load side connection terminal 18A of the U phase power supply device 1A, the load side connection terminal 18B of the V phase power supply device 1B, and the W phase power supply device. A three-phase AC load 27 is electrically connected to the load-side connection terminal 18C of 1C. Between the power supply side connection terminal 17A of the U phase power supply device 1A, the power supply side connection terminal 17B of the V phase power supply device 1B, the one side terminal of the power supply side connection terminal 17C of the W phase power supply device 1C and the three-phase AC power system 30. Is provided with a reactor 29, which is electrically connected in series between the two.
 リアクトル29は、電線を巻いた巻線であるインダクタを利用した静止誘導機器である。第7実施例の場合、リアクトル29は、電源側、ここでは三相交流電力系統30側の交流電圧に合わせて、電源装置501側の交流電圧の位相と振幅を調整するために設けられている。また、リアクトル29は、三相交流電力系統30と電源装置501との間において、電圧及び電流を平滑するフィルタとしても機能している。 The reactor 29 is a stationary induction device that uses an inductor that is a wire wound with an electric wire. In the case of the seventh embodiment, the reactor 29 is provided to adjust the phase and amplitude of the AC voltage on the power supply device 501 side in accordance with the AC voltage on the power supply side, here the three-phase AC power system 30 side. . The reactor 29 also functions as a filter that smoothes the voltage and current between the three-phase AC power system 30 and the power supply device 501.
 尚、第7実施例のU相電源装置1A、V相電源装置1B,W相電源装置1Cにおいても、第1実施例の電源装置1と同様の中央制御装置を備えているが、図16では、図示簡略化のため、その図示を省略している。 The U-phase power supply device 1A, V-phase power supply device 1B, and W-phase power supply device 1C of the seventh embodiment also have a central control device similar to the power supply device 1 of the first embodiment, but in FIG. The illustration is omitted for simplification of illustration.
 三相交流電力系統30と三相交流負荷27との間に電源装置501を設け、第1電力変換装置7A,7B,7Cを介して、三相交流電力系統30から出力された電力を蓄電装置13A~16A,13B~16B,13C~16Cに供給して蓄電装置13A~16A,13B~16B,13C~16Cを充電し、同時に、第2電力変換装置12A,12B,12Cを介して、蓄電装置13A~16A,13B~16B,13C~16Cから出力された電力を三相交流負荷27に供給することにより、三相交流電力系統30と連系しながら、三相交流負荷27に電力を供給することができると共に、三相交流電力系統30からの電力の供給が停止した場合でも、蓄電装置13A~16A,13B~16B,13C~16Cから三相交流負荷27に安定して電力を供給することができる。 A power supply device 501 is provided between the three-phase AC power system 30 and the three-phase AC load 27, and the power output from the three-phase AC power system 30 is stored in the power storage device via the first power converters 7A, 7B, and 7C. The power storage devices 13A to 16A, 13B to 16B, and 13C to 16C are supplied to charge the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C. At the same time, the power storage devices are connected via the second power conversion devices 12A, 12B, and 12C. By supplying the power output from 13A to 16A, 13B to 16B, and 13C to 16C to the three-phase AC load 27, the power is supplied to the three-phase AC load 27 while being connected to the three-phase AC power system 30. In addition, even when the supply of power from the three-phase AC power system 30 is stopped, the three-phase AC load 27 is supplied from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C. It is possible to stably supply power.
 尚、蓄電装置13A~16A,13B~16B,13C~16Cを充電する場合、蓄電装置13A~16A,13B~16B,13C~16Cから三相交流負荷27に電力を供給しないこともある。また、蓄電装置13A~16A,13B~16B,13C~16Cを充電することなく、三相交流負荷27に蓄電装置13A~16A,13B~16B,13C~16Cから電力を供給することもある。さらに、蓄電装置13A~16A,13B~16B,13C~16Cから三相交流電力系統30に電力を供給することもあれば、蓄電装置13A~16A,13B~16B,13C~16Cから三相交流電力系統30と三相交流負荷27の両方に電力を供給することもある。 When charging the power storage devices 13A to 16A, 13B to 16B, 13C to 16C, the power may not be supplied from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C to the three-phase AC load 27. In addition, the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C may be supplied to the three-phase AC load 27 without charging the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C. Further, power is supplied from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C to the three-phase AC power system 30, or from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C. Electric power may be supplied to both the system 30 and the three-phase AC load 27.
 図17を用いて第8実施例を説明する。 The eighth embodiment will be described with reference to FIG.
 第8実施例では、第6実施例の三相電源装置50と同じ構成の三相電源装置502を備え、U相電源装置1Aの電源側接続端子17A,V相電源装置1Bの電源側接続端子17B,W相電源装置1Cの電源側接続端子17Cに発電システム(発電装置)31を、U相電源装置1Aの負荷側接続端子18A,V相電源装置1Bの負荷側接続端子18B,W相電源装置1Cの負荷側接続端子18Cに三相交流負荷27を、それぞれ電気的に接続している。 In the eighth embodiment, a three-phase power supply device 502 having the same configuration as the three-phase power supply device 50 of the sixth embodiment is provided, the power supply side connection terminal 17A of the U phase power supply device 1A, and the power supply side connection terminal of the V phase power supply device 1B. The power generation system (power generation device) 31 is connected to the power supply side connection terminal 17C of the 17B, W phase power supply device 1C, the load side connection terminal 18A of the U phase power supply device 1A, the load side connection terminal 18B of the V phase power supply device 1B, and the W phase power supply. A three-phase AC load 27 is electrically connected to the load side connection terminal 18C of the device 1C.
 U相電源装置1Aの電源側接続端子17A,V相電源装置1Bの電源側接続端子17B,W相電源装置1Cの電源側接続端子17Cの一方側の端子と発電システム31との間にはリアクトル29が電気的に直列に接続されている。 A reactor is connected between the power generation system 31 and the power supply side connection terminal 17A of the U phase power supply device 1A, the power supply side connection terminal 17B of the V phase power supply device 1B, and the power supply side connection terminal 17C of the W phase power supply device 1C. 29 are electrically connected in series.
 第7実施例の場合、リアクトル29は、電源側、ここでは発電システム31側の交流電圧に合わせて、電源装置502側の交流電圧の位相と振幅を調整するために設けられている。また、リアクトル29は、発電システム31と電源装置502との間において、電圧及び電流を平滑するフィルタとしても機能している。 In the case of the seventh embodiment, the reactor 29 is provided to adjust the phase and amplitude of the AC voltage on the power supply device 502 side in accordance with the AC voltage on the power supply side, here the power generation system 31 side. The reactor 29 also functions as a filter that smoothes the voltage and current between the power generation system 31 and the power supply device 502.
 尚、第8実施例のU相電源装置1A、V相電源装置1B,W相電源装置1Cにおいても、第1実施例の電源装置1と同様の中央制御装置を備えているが、図17では、図示簡略化のため、その図示を省略している。 The U-phase power supply device 1A, V-phase power supply device 1B, and W-phase power supply device 1C of the eighth embodiment also have a central controller similar to the power supply device 1 of the first embodiment, but in FIG. The illustration is omitted for simplification of illustration.
 発電システム31と三相交流負荷27との間に電源装置501を設け、第1電力変換装置7A,7B,7Cを介して、発電システム31から出力された電力を蓄電装置13A~16A,13B~16B,13C~16Cに供給して蓄電装置13A~16A,13B~16B,13C~16Cを充電し、同時に、第2電力変換装置12A,12B,12Cを介して、蓄電装置13A~16A,13B~16B,13C~16Cから出力された電力を三相交流負荷27に供給することにより、発電システム31と連系しながら、三相交流負荷27に電力を供給することができると共に、発電システム31からの電力の供給が停止した場合でも、蓄電装置13A~16A,13B~16B,13C~16Cから三相交流負荷27に安定して電力を供給することができる。 A power supply device 501 is provided between the power generation system 31 and the three-phase AC load 27, and the electric power output from the power generation system 31 via the first power conversion devices 7A, 7B, and 7C is stored in the power storage devices 13A to 16A, 13B to 16B, 13C to 16C are supplied to charge the power storage devices 13A to 16A, 13B to 16B, 13C to 16C, and at the same time, the power storage devices 13A to 16A, 13B to By supplying the power output from 16B, 13C to 16C to the three-phase AC load 27, it is possible to supply power to the three-phase AC load 27 while being linked to the power generation system 31, and from the power generation system 31. Even when the supply of power is stopped, power is stably supplied from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C to the three-phase AC load 27. It is possible to feed.
 尚、蓄電装置13A~16A,13B~16B,13C~16Cを充電する場合、蓄電装置13A~16A,13B~16B,13C~16Cから三相交流負荷27に電力を供給しないこともある。また、蓄電装置13A~16A,13B~16B,13C~16Cを充電することなく、三相交流負荷27に蓄電装置13A~16A,13B~16B,13C~16Cから電力を供給することもある。 When charging the power storage devices 13A to 16A, 13B to 16B, 13C to 16C, the power may not be supplied from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C to the three-phase AC load 27. In addition, the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C may be supplied to the three-phase AC load 27 without charging the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C.
 図18を用いて第9実施例を説明する。 A ninth embodiment will be described with reference to FIG.
 第9実施例では、第6実施例の三相電源装置50と同じ構成の三相電源装置503を備え、U相電源装置1Aの電源側接続端子17A,V相電源装置1Bの電源側接続端子17B,W相電源装置1Cの電源側接続端子17Cに直流電力系統35を、U相電源装置1Aの負荷側接続端子18A,V相電源装置1Bの負荷側接続端子18B,W相電源装置1Cの負荷側接続端子18Cに三相交流負荷27を、それぞれ電気的に接続している。 In the ninth embodiment, a three-phase power supply device 503 having the same configuration as the three-phase power supply device 50 of the sixth embodiment is provided, the power supply side connection terminal 17A of the U phase power supply device 1A, and the power supply side connection terminal of the V phase power supply device 1B. The DC power system 35 is connected to the power supply side connection terminal 17C of the 17B, W phase power supply device 1C, the load side connection terminal 18A of the U phase power supply device 1A, the load side connection terminal 18B of the V phase power supply device 1B, and the W phase power supply device 1C. A three-phase AC load 27 is electrically connected to the load side connection terminal 18C.
 U相電源装置1Aの電源側接続端子17A,V相電源装置1Bの電源側接続端子17B,W相電源装置1Cの電源側接続端子17Cの一方側の端子は接続点33に電気的に接続され、直流電力系統35の正極側に電気的に接続されている。U相電源装置1Aの電源側接続端子17A,V相電源装置1Bの電源側接続端子17B,W相電源装置1Cの電源側接続端子17Cの他方側の端子は接続点34に電気的に接続され、直流電力系統35の負極側に電気的に接続されている。 The power supply side connection terminal 17A of the U phase power supply device 1A, the power supply side connection terminal 17B of the V phase power supply device 1B, and the power supply side connection terminal 17C of the W phase power supply device 1C are electrically connected to the connection point 33. The DC power system 35 is electrically connected to the positive electrode side. The power supply side connection terminal 17A of the U phase power supply device 1A, the power supply side connection terminal 17B of the V phase power supply device 1B, and the other side terminal of the power supply side connection terminal 17C of the W phase power supply device 1C are electrically connected to the connection point 34. The DC power system 35 is electrically connected to the negative electrode side.
 第1小型変換装置4A,4B,4Cの交流側接続端子33A,33B,33Cの他方側の端子は電源側接続端子24A,24B,24Cの一方側の端子に電気的に接続されている。第1小型変換装置5A,5B,5Cの交流側接続端子33A,33B,33Cの一方側の端子は電源側接続端子24A,24B,24Cの他方側の端子に電気的に接続されている。電源側接続端子24A,24B,24Cには発電システム31が電気的に接続されている。これにより、第1小型変換装置4A,4B,4Cと第1小型変換装置5A,5B,5Cは発電システム31を介して電気的に接続されている。電源側接続端子24A,24B,24Cの一方側の端子と発電システム31との間にはリアクトル19が電気的に直列に接続されている。 The terminals on the other side of the AC side connection terminals 33A, 33B, 33C of the first small conversion devices 4A, 4B, 4C are electrically connected to terminals on one side of the power source side connection terminals 24A, 24B, 24C. One side terminals of the AC side connection terminals 33A, 33B, 33C of the first small conversion devices 5A, 5B, 5C are electrically connected to the other side terminals of the power source side connection terminals 24A, 24B, 24C. The power generation system 31 is electrically connected to the power supply side connection terminals 24A, 24B, and 24C. Accordingly, the first small conversion devices 4A, 4B, 4C and the first small conversion devices 5A, 5B, 5C are electrically connected via the power generation system 31. A reactor 19 is electrically connected in series between one of the power supply side connection terminals 24 </ b> A, 24 </ b> B, and 24 </ b> C and the power generation system 31.
 第8実施例の場合、リアクトル29は、電源側、ここでは発電システム31側の交流電圧に合わせて、電源装置503側の交流電圧の位相と振幅を調整するために設けられている。また、リアクトル29は、発電システム31と電源装置503との間において、電圧及び電流を平滑するフィルタとしても機能している。 In the case of the eighth embodiment, the reactor 29 is provided to adjust the phase and amplitude of the AC voltage on the power supply device 503 side in accordance with the AC voltage on the power supply side, here the power generation system 31 side. The reactor 29 also functions as a filter that smoothes the voltage and current between the power generation system 31 and the power supply device 503.
 尚、第9実施例のU相電源装置1A、V相電源装置1B,W相電源装置1Cにおいても、第1実施例の電源装置1と同様の中央制御装置を備えているが、図18では、図示簡略化のため、その図示を省略している。 The U-phase power supply device 1A, V-phase power supply device 1B, and W-phase power supply device 1C of the ninth embodiment also have a central control device similar to the power supply device 1 of the first embodiment, but in FIG. The illustration is omitted for simplification of illustration.
 直流電力系統35と三相交流負荷27との間に電源装置503を設け、第1電力変換装置7A,7B,7Cを介して、直流電力系統35或いは発電システム31若しくはその両方から出力された電力を蓄電装置13A~16A,13B~16B,13C~16Cに供給して蓄電装置13A~16A,13B~16B,13C~16Cを充電し、同時に、第2電力変換装置12A,12B,12Cを介して、蓄電装置13A~16A,13B~16B,13C~16Cから出力された電力を三相交流負荷27に供給することにより、直流電力系統35と連系しながら、三相交流負荷27に電力を供給することができると共に、直流電力系統35或いは発電システム31若しくはその両方からの電力の供給が停止した場合でも、蓄電装置13A~16A,13B~16B,13C~16Cから三相交流負荷27に安定して電力を供給することができる。 A power supply device 503 is provided between the DC power system 35 and the three-phase AC load 27, and the power output from the DC power system 35 and / or the power generation system 31 via the first power converters 7A, 7B, and 7C. Is supplied to the power storage devices 13A to 16A, 13B to 16B, 13C to 16C to charge the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C, and at the same time through the second power conversion devices 12A, 12B, and 12C. By supplying the power output from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C to the three-phase AC load 27, the power is supplied to the three-phase AC load 27 while being connected to the DC power system 35. Even when the supply of power from the DC power system 35 and / or the power generation system 31 is stopped, the power storage device 13A 16A, 13B ~ 16B, stably from @ 13 C ~ 16C into a three-phase AC load 27 may supply power.
 尚、蓄電装置13A~16A,13B~16B,13C~16Cを充電する場合、蓄電装置13A~16A,13B~16B,13C~16Cから三相交流負荷27に電力を供給しないこともある。また、蓄電装置13A~16A,13B~16B,13C~16Cを充電することなく、三相交流負荷27に蓄電装置13A~16A,13B~16B,13C~16Cから電力を供給することもある。さらに、蓄電装置13A~16A,13B~16B,13C~16Cから直流電力系統35に電力を供給することもあれば、蓄電装置13A~16A,13B~16B,13C~16Cから直流電力系統35と三相交流負荷27の両方に電力を供給することもある。 When charging the power storage devices 13A to 16A, 13B to 16B, 13C to 16C, the power may not be supplied from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C to the three-phase AC load 27. In addition, the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C may be supplied to the three-phase AC load 27 without charging the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C. Further, power may be supplied from the power storage devices 13A to 16A, 13B to 16B, 13C to 16C to the DC power system 35, or the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C may be connected to the DC power system 35. Electric power may be supplied to both of the phase AC loads 27.
 図19を用いて第10実施例を説明する。 The tenth embodiment will be described with reference to FIG.
 第10実施例では、第6実施例の三相電源装置50と同じ構成の三相電源装置504を備え、U相電源装置1Aの電源側接続端子17A,V相電源装置1Bの電源側接続端子17B,W相電源装置1Cの電源側接続端子17Cに直流電源36を、U相電源装置1Aの負荷側接続端子18A,V相電源装置1Bの負荷側接続端子18B,W相電源装置1Cの負荷側接続端子18Cに三相交流電力系統30を、それぞれ電気的に接続している。 In the tenth embodiment, a three-phase power supply device 504 having the same configuration as the three-phase power supply device 50 of the sixth embodiment is provided, the power supply side connection terminal 17A of the U phase power supply device 1A, and the power supply side connection terminal of the V phase power supply device 1B. 17B, a DC power supply 36 is connected to the power supply side connection terminal 17C of the W phase power supply device 1C, a load side connection terminal 18A of the U phase power supply device 1A, a load side connection terminal 18B of the V phase power supply device 1B, and a load of the W phase power supply device 1C. The three-phase AC power system 30 is electrically connected to the side connection terminals 18C.
 U相電源装置1Aの電源側接続端子17A,V相電源装置1Bの電源側接続端子17B,W相電源装置1Cの電源側接続端子17Cの一方側の端子は接続点33に電気的に接続され、直流電源36の正極側に電気的に接続されている。U相電源装置1Aの電源側接続端子17A,V相電源装置1Bの電源側接続端子17B,W相電源装置1Cの電源側接続端子17Cの他方側の端子は接続点34に電気的に接続され、直流電源36の負極側に電気的に接続されている。 The power supply side connection terminal 17A of the U phase power supply device 1A, the power supply side connection terminal 17B of the V phase power supply device 1B, and the power supply side connection terminal 17C of the W phase power supply device 1C are electrically connected to the connection point 33. The DC power source 36 is electrically connected to the positive electrode side. The power supply side connection terminal 17A of the U phase power supply device 1A, the power supply side connection terminal 17B of the V phase power supply device 1B, and the other side terminal of the power supply side connection terminal 17C of the W phase power supply device 1C are electrically connected to the connection point 34. The DC power source 36 is electrically connected to the negative electrode side.
 尚、第10実施例のU相電源装置1A、V相電源装置1B,W相電源装置1Cにおいても、第1実施例の電源装置1と同様の中央制御装置を備えているが、図19では、図示簡略化のため、その図示を省略している。 The U-phase power supply device 1A, V-phase power supply device 1B, and W-phase power supply device 1C of the tenth embodiment also have a central control device similar to the power supply device 1 of the first embodiment, but in FIG. The illustration is omitted for simplification of illustration.
 直流電源36と三相交流電力系統30との間に三相電源装置504を設け、第1電力変換装置7A,7B,7Cを介して、直流電源36から出力された電力を蓄電装置13A~16A,13B~16B,13C~16Cに供給して蓄電装置13A~16A,13B~16B,13C~16Cを充電し、同時に、第2電力変換装置12A,12B,12Cを介して、蓄電装置13A~16A,13B~16B,13C~16Cから出力された電力を三相交流電力系統30に供給することにより、直流電源36と連系しながら、三相交流電力系統30に電力を供給することができると共に、直流電源36からの電力の供給が停止した場合でも、蓄電装置13A~16A,13B~16B,13C~16Cから三相交流電力系統30に安定して電力を供給することができる。 A three-phase power supply device 504 is provided between the DC power supply 36 and the three-phase AC power system 30, and the power output from the DC power supply 36 is stored in the power storage devices 13A to 16A via the first power conversion devices 7A, 7B, and 7C. , 13B to 16B, 13C to 16C to charge the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C, and at the same time, the power storage devices 13A to 16A via the second power conversion devices 12A, 12B, and 12C. , 13B to 16B, and 13C to 16C are supplied to the three-phase AC power system 30 to supply power to the three-phase AC power system 30 while being connected to the DC power source 36. Even when the supply of power from the DC power supply 36 is stopped, the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C can stably supply power to the three-phase AC power system 30. It can be supplied.
 尚、蓄電装置13A~16A,13B~16B,13C~16Cを充電する場合、蓄電装置13A~16A,13B~16B,13C~16Cから三相交流電力系統30に電力を供給しないこともある。また、蓄電装置13A~16A,13B~16B,13C~16Cを充電することなく、三相交流電力系統30に蓄電装置13A~16A,13B~16B,13C~16Cから電力を供給することもある。 また、第1電力変換装置7A,7B,7Cを、直流と交流を変換する装置(コンバータ)として機能させたが、直流電力を直流電力に変換する装置、例えばDC-DCコンバータとして機能させ、直流電源36から出力された直流電力を、第1電力変換装置7A,7B,7Cの第1小型変換装置3A~6A,3B~6B,3C~6Cによって、蓄電装置13A~16A,13B~16B,13C~16Cのそれぞれに対する直流電力に分割して蓄電装置13A~16A,13B~16B,13C~16Cのそれぞれに供給し、蓄電装置13A~16A,13B~16B,13C~16Cのそれぞれを充電することもできる。 When charging the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C, the power may not be supplied from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C to the three-phase AC power system 30. In addition, power may be supplied from the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C to the three-phase AC power system 30 without charging the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C. The first power converters 7A, 7B, and 7C function as a device (converter) that converts direct current and alternating current. However, the first power conversion devices 7A, 7B, and 7C function as a device that converts direct current power into direct current power, for example, a DC-DC converter. The direct-current power output from the power source 36 is stored in the power storage devices 13A to 16A, 13B to 16B, and 13C by the first small-sized conversion devices 3A to 6A, 3B to 6B, and 3C to 6C of the first power conversion devices 7A, 7B, and 7C. Or divided into DC power for each of the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C, and charged to each of the power storage devices 13A to 16A, 13B to 16B, and 13C to 16C. it can.
 さらに、図20に示すように、U相電源装置1Aの電源側接続端子17A,V相電源装置1Bの電源側接続端子17B,W相電源装置1Cの電源側接続端子17Cの一方側の端子が電気的に接続される接続点33と直流電源36の正極側との間にリアクトル21を設け、両者間に電気的に直列に接続するようにしてもよい。 リアクトル21は、電源側、ここでは交流電源と見立てることができる直流電源36側の交流電圧に合わせて、電源装置504側の交流電圧の位相と振幅を調整するために設けられている。また、リアクトル21は、直流電源36と電源装置504との間において、電圧及び電流を平滑するフィルタとしても機能している。尚、直流電源36を交流電源として見立てることができる理由は第4実施例で述べた通りである。 Further, as shown in FIG. 20, the terminals on one side of the power supply side connection terminal 17A of the U phase power supply apparatus 1A, the power supply side connection terminal 17B of the V phase power supply apparatus 1B, and the power supply side connection terminal 17C of the W phase power supply apparatus 1C are The reactor 21 may be provided between the connection point 33 that is electrically connected and the positive electrode side of the DC power supply 36, and may be electrically connected in series between the two. The reactor 21 is provided to adjust the phase and amplitude of the AC voltage on the power supply device 504 side in accordance with the AC voltage on the DC power source 36 side, which can be regarded as an AC power source here. The reactor 21 also functions as a filter that smoothes the voltage and current between the DC power supply 36 and the power supply device 504. The reason why the DC power supply 36 can be regarded as an AC power supply is as described in the fourth embodiment.

Claims (13)

  1.  直流電力と交流電力との電力変換が可能な第1の電力変換ユニットを複数有し、この複数の第1の電力変換ユニットの交流側接続端子が電気的に直列に接続された第1の電力変換装置と、
     直流電力と交流電力との電力変換が可能な第2の電力変換ユニットを複数有し、この複数の第2の電力変換ユニットの交流側接続端子が電気的に直列に接続された第2の電力変換装置と、
     複数の蓄電装置と、を有し、
     前記第1の電力変換装置を構成する複数の第1の電力変換ユニットの個数と、前記第2の電力変換装置を構成する複数の第2の電力変換ユニットの個数と、前記複数の蓄電装置の個数は同じであり、
     前記複数の蓄電装置は、それぞれ、前記第1の電力変換装置を構成する複数の第1の電力変換ユニットのいずれか一つと、前記第2の電力変換装置を構成する複数の第2の電力変換ユニットのいずれか一つとに対して共通に設けられ、対応する第1及び第2の電力変換ユニットの直流側接続端子に電気的に接続されている、
    ことを特徴とする電源装置。
    First power having a plurality of first power conversion units capable of power conversion between DC power and AC power, the AC side connection terminals of the plurality of first power conversion units being electrically connected in series. A conversion device;
    Second power having a plurality of second power conversion units capable of power conversion between DC power and AC power, the AC side connection terminals of the plurality of second power conversion units being electrically connected in series. A conversion device;
    A plurality of power storage devices,
    The number of first power conversion units constituting the first power conversion device, the number of second power conversion units constituting the second power conversion device, and the number of power storage devices The number is the same,
    Each of the plurality of power storage devices includes one of a plurality of first power conversion units constituting the first power conversion device and a plurality of second power conversions constituting the second power conversion device. Provided in common with any one of the units, and electrically connected to the DC side connection terminals of the corresponding first and second power conversion units,
    A power supply device characterized by that.
  2.  請求項1に記載の電源装置において、
     さらに、前記複数の蓄電装置の充電状態に基づいて、前記複数の蓄電装置のそれぞれに電気的に接続された前記第1及び第2の電力変換ユニットのどちらか一方或いはその両方の、対応する蓄電装置との間の電力量を制御する制御装置を有する、
    ことを特徴とする電源装置。
    The power supply device according to claim 1,
    Further, based on the state of charge of the plurality of power storage devices, the corresponding power storage of one or both of the first and second power conversion units electrically connected to each of the plurality of power storage devices Having a control device for controlling the amount of power to and from the device;
    A power supply device characterized by that.
  3.  請求項2に記載の電源装置において、
     前記制御装置は、
     前記複数の蓄電装置のうち、充電状態が相対的に小さい蓄電装置がある場合には、当該蓄電装置に電気的に接続された第1及び第2の電力変換ユニットのうちのどちらか一方或いはその両方の当該蓄電装置との間の電力量を制御すると共に、
     当該電力変換ユニットが当該蓄電装置に対して電力を供給している場合には、当該蓄電装置に供給する電力量を他の電力変換ユニットよりも大きくし、当該蓄電装置から電力の供給を受けている場合には、当該蓄電装置からの電力量を他の電力変換ユニットよりも小さくする、
    ことを特徴とする電源装置。
    The power supply device according to claim 2,
    The controller is
    When there is a power storage device with a relatively small charge state among the plurality of power storage devices, either one of the first and second power conversion units electrically connected to the power storage device or its While controlling the amount of power between both power storage devices,
    When the power conversion unit supplies power to the power storage device, the amount of power supplied to the power storage device is made larger than that of the other power conversion units, and power is supplied from the power storage device. If so, make the amount of power from the power storage device smaller than other power conversion units,
    A power supply device characterized by that.
  4.  請求項2に記載の電源装置において、
     前記制御装置は、
     前記複数の蓄電装置のうち、充電状態が相対的に大きい蓄電装置がある場合には、当該蓄電装置に電気的に接続された第1及び第2の電力変換ユニットのうちのどちらか一方或いはその両方の当該蓄電装置との間の電力量を制御すると共に、
     当該電力変換ユニットが当該蓄電装置に対して電力を供給している場合には、当該蓄電装置に供給する電力量を他の電力変換ユニットよりも小さくし、当該蓄電装置から電力の供給を受けている場合には、当該蓄電装置からの電力量を他の電力変換ユニットよりも大きくする、
    ことを特徴とする電源装置。
    The power supply device according to claim 2,
    The controller is
    If there is a power storage device with a relatively large charge state among the plurality of power storage devices, either one of the first and second power conversion units electrically connected to the power storage device or its While controlling the amount of power between both power storage devices,
    When the power conversion unit supplies power to the power storage device, the amount of power supplied to the power storage device is made smaller than that of other power conversion units, and power is supplied from the power storage device. If so, make the amount of power from the power storage device larger than other power conversion units,
    A power supply device characterized by that.
  5.  請求項1乃至4のいずれかに記載の電源装置において、
     さらに、リアクトルを有し、
     前記第1及び第2の電力変換装置のうちのいずれか一方を、電源が電気的に接続される側とした場合、前記電源が電気的に接続される電力変換装置の交流側接続端子には前記リアクトルの一端側が電気的に接続されており、
     前記リアクトルの他端側は前記電源が電気的に接続される、
    ことを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 4,
    In addition, it has a reactor,
    When any one of the first and second power conversion devices is a side to which a power supply is electrically connected, the AC side connection terminal of the power conversion device to which the power supply is electrically connected is provided. One end of the reactor is electrically connected;
    The other end side of the reactor is electrically connected to the power source.
    A power supply device characterized by that.
  6.  請求項5に記載の電源装置において、
     前記リアクトルの他端側には、前記電源として、交流電力系統或いは発電装置が電気的に接続される、
    ことを特徴とする電源装置。
    The power supply device according to claim 5,
    An AC power system or a power generation device is electrically connected to the other end of the reactor as the power source.
    A power supply device characterized by that.
  7.  請求項1乃至4のいずれかに記載の電源装置において、
     前記第1及び第2の電力変換装置のうちのいずれか一方を、電源が電気的に接続される側とした場合、前記電源が電気的に接続される電力変換装置の交流側接続端子には、前記電源として、直流電力系統が電気的に接続される、
    ことを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 4,
    When any one of the first and second power conversion devices is a side to which a power supply is electrically connected, the AC side connection terminal of the power conversion device to which the power supply is electrically connected is provided. The DC power system is electrically connected as the power source.
    A power supply device characterized by that.
  8.  請求項7に記載の電源装置において、
     さらに、リアクトルを有し、
     前記電源が電気的に接続される電力変換装置を構成する複数の電力変換ユニットの交流側接続端子の電気的な直列接続には、前記リアクトルを介して発電装置が電気的に直列に接続されている、
    ことを特徴とする電源装置。
    The power supply device according to claim 7,
    In addition, it has a reactor,
    In the electrical series connection of the AC side connection terminals of a plurality of power conversion units constituting a power conversion device to which the power supply is electrically connected, a power generation device is electrically connected in series via the reactor. Yes,
    A power supply device characterized by that.
  9.  請求項1乃至4のいずれかに記載の電源装置において、
     前記第1及び第2の電力変換装置を複数有しており、
     前記複数の蓄電装置を一組の蓄電ユニットとして、前記蓄電ユニットを複数有しており、
     前記第1の電力変換装置の一つと、前記第2の電力変換装置の一つと、前記蓄電ユニットの一つとを一組の電源ユニットとして、この電源ユニットを複数有している、
    ことを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 4,
    A plurality of the first and second power converters;
    The plurality of power storage devices as a set of power storage units, and having a plurality of power storage units,
    One of the first power conversion devices, one of the second power conversion devices, and one of the power storage units are used as a set of power supply units, and a plurality of power supply units are provided.
    A power supply device characterized by that.
  10.  請求項9に記載の電源装置において、
     さらに、リアクトルを有し、
     前記複数の蓄電ユニットのそれぞれの前記第1及び第2の電力変換装置のうちのいずれか一方を、電源が電気的に接続される側とした場合、前記電源が電気的に接続される電力変換装置の交流側接続端子の一方側の端子はお互いに電気的に接続されて中性点を構成しており、他方側の端子には、それぞれ、前記リアクトルの一端側が電気的に接続されており、
     前記リアクトルの他端側は前記電源が電気的に接続されるようになっている、
    ことを特徴とする電源装置。
    The power supply device according to claim 9, wherein
    In addition, it has a reactor,
    When any one of the first and second power conversion devices of each of the plurality of power storage units is a side to which a power source is electrically connected, power conversion to which the power source is electrically connected One terminal of the AC side connection terminal of the device is electrically connected to each other to form a neutral point, and one end side of the reactor is electrically connected to the other terminal, respectively. ,
    The other end side of the reactor is configured to be electrically connected to the power source.
    A power supply device characterized by that.
  11.  請求項10に記載の電源装置において、
     前記リアクトルの他端側には、前記電源として、三相交流電力系統或いは発電装置が電気的に接続される、
    ことを特徴とする電源装置。
    The power supply device according to claim 10, wherein
    A three-phase AC power system or a power generation device is electrically connected to the other end of the reactor as the power source.
    A power supply device characterized by that.
  12.  請求項9に記載の電源装置において、
     前記複数の蓄電ユニットのそれぞれの前記第1及び第2の電力変換装置のうちのいずれか一方を、電源が電気的に接続される側とした場合、前記電源が電気的に接続される電力変換装置の交流側接続端子には、前記電源として、直流電力系統が電気的に接続される、
    ことを特徴とする電源装置。
    The power supply device according to claim 9, wherein
    When any one of the first and second power conversion devices of each of the plurality of power storage units is a side to which a power source is electrically connected, power conversion to which the power source is electrically connected A DC power system is electrically connected to the AC side connection terminal of the device as the power source,
    A power supply device characterized by that.
  13.  請求項12に記載の電源装置において、
     さらに、リアクトルを有し、
     前記電源が電気的に接続される電力変換装置のそれぞれを構成する複数の電力変換ユニットの交流側接続端子の電気的な直列接続には、前記リアクトルを介して発電装置が電気的に直列に接続されている、
    ことを特徴とする電源装置。
    The power supply device according to claim 12,
    In addition, it has a reactor,
    For the electrical series connection of the AC side connection terminals of a plurality of power conversion units constituting each of the power conversion devices to which the power supply is electrically connected, the power generation device is electrically connected in series via the reactor. Being
    A power supply device characterized by that.
PCT/JP2013/056382 2013-03-08 2013-03-08 Power supply apparatus WO2014136248A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/056382 WO2014136248A1 (en) 2013-03-08 2013-03-08 Power supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/056382 WO2014136248A1 (en) 2013-03-08 2013-03-08 Power supply apparatus

Publications (1)

Publication Number Publication Date
WO2014136248A1 true WO2014136248A1 (en) 2014-09-12

Family

ID=51490806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056382 WO2014136248A1 (en) 2013-03-08 2013-03-08 Power supply apparatus

Country Status (1)

Country Link
WO (1) WO2014136248A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE543496C2 (en) * 2018-12-21 2021-03-09 Abb Power Grids Switzerland Ag Power supporting arrangement for an ac network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005045856A (en) * 2003-07-22 2005-02-17 Toshiba Corp Uninterruptible power system
JP2006320103A (en) * 2005-05-12 2006-11-24 Fuji Electric Systems Co Ltd Controller of series multiplex power conversion device
JP2012196013A (en) * 2011-03-15 2012-10-11 Meidensha Corp Multilevel power converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005045856A (en) * 2003-07-22 2005-02-17 Toshiba Corp Uninterruptible power system
JP2006320103A (en) * 2005-05-12 2006-11-24 Fuji Electric Systems Co Ltd Controller of series multiplex power conversion device
JP2012196013A (en) * 2011-03-15 2012-10-11 Meidensha Corp Multilevel power converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE543496C2 (en) * 2018-12-21 2021-03-09 Abb Power Grids Switzerland Ag Power supporting arrangement for an ac network

Similar Documents

Publication Publication Date Title
US10886754B2 (en) Electric energy storage and a battery management system used therein
US9998033B2 (en) Stacked voltage source inverter with separate DC sources
US10998830B2 (en) Power conversion device and three-phase power conversion device
CN106030955B (en) Energy storage system including modular multilevel converter
US8385097B2 (en) Method for controlling a voltage source converter and a voltage converting apparatus
US20150357940A1 (en) Bi-directional energy converter with multiple dc sources
RU2524363C2 (en) Static frequency converter and submodule of static frequency converter for charging or discharging of energy accumulator
US9362771B2 (en) System and method for controlling an energy storage device
JP6929385B2 (en) Hybrid energy storage system
KR102308628B1 (en) Hybrid Power Conversion System and Method for Determining Maximum Efficiency Using the Same
US20130003423A1 (en) Multi-input bidirectional dc-dc converter with high voltage conversion ratio
KR101665436B1 (en) SOC Balancing Control of a Battery Charge and Discharge System Based on a Cascade H-bridge Multi-level Converter
CN114846716A (en) Controlling the on-time of an energy module of an energy store
JP4445040B1 (en) Power supply system
US11303132B2 (en) Converter comprising at least one converter module with three bridge branches, operating method, and use of such a converter
US20160334822A1 (en) Power router and method for controlling same, computer-readable medium, and power network system
WO2014136248A1 (en) Power supply apparatus
CN103296900B (en) Direct voltage capture device for energy storage device and method for generating direct voltage by energy storage device
JP6722295B2 (en) Power conversion system, power supply system, and power conversion device
US10468884B2 (en) Device and method for controlling a load flow in an alternating-voltage network
KR101592227B1 (en) Circuit for controlling dc bus imbalance of energy storage system
WO2014102998A1 (en) Power conversion apparatus
JP2015053817A (en) Power conversion device
WO2014141396A1 (en) Power source device
JP2015228778A (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP