WO2014136169A1 - Phase varying device for internal combustion engine - Google Patents

Phase varying device for internal combustion engine Download PDF

Info

Publication number
WO2014136169A1
WO2014136169A1 PCT/JP2013/055800 JP2013055800W WO2014136169A1 WO 2014136169 A1 WO2014136169 A1 WO 2014136169A1 JP 2013055800 W JP2013055800 W JP 2013055800W WO 2014136169 A1 WO2014136169 A1 WO 2014136169A1
Authority
WO
WIPO (PCT)
Prior art keywords
lock plate
rotating body
rotator
driven
self
Prior art date
Application number
PCT/JP2013/055800
Other languages
French (fr)
Japanese (ja)
Inventor
本間 弘一
正昭 新納
真康 永洞
Original Assignee
日鍛バルブ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鍛バルブ株式会社 filed Critical 日鍛バルブ株式会社
Priority to JP2015504013A priority Critical patent/JP6053915B2/en
Priority to PCT/JP2013/055800 priority patent/WO2014136169A1/en
Publication of WO2014136169A1 publication Critical patent/WO2014136169A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • F01L2001/3522Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear with electromagnetic brake

Definitions

  • the present invention relates to a phase variable device that changes the opening / closing timing of a valve, and is provided with a self-locking mechanism that suppresses the influence of cam torque from a camshaft.
  • a method of using a phase variable device that changes the opening / closing timing of an engine valve is adopted as a method of demonstrating the engine performance of an automobile over the entire range from low speed to high speed.
  • engine performance refers to a variety of things including fuel efficiency, engine responsiveness, low emissions, and idling stability.
  • the phase variable device changes the engine speed by changing the phase of the crankshaft and camshaft.
  • the optimum valve opening / closing timing can be selected according to the situation, and the engine performance can be dramatically improved.
  • the timing may be disturbed by the cam torque input to the camshaft from the engine valve side. That is, the camshaft receives from the engine valve the cam torque generated alternately in the advance direction and the retard direction in response to an impact when the engine valve is opened and closed, and the cam torque causes a deviation in the relative phase angle of the camshaft with respect to the drive rotor. As a result, the valve opening / closing timing is disturbed.
  • the phase variable device of Patent Document 1 is provided with a self-locking mechanism that locks the camshaft relative to the drive rotor when the cam torque is generated. Further, Patent Document 2 and Patent Document 3 describe a self-locking mechanism of a system different from that of Patent Document 1.
  • a lock plate pair is configured by a lock plate that receives cam torque in the advance angle direction and a lock plate that receives cam torque in the retard angle direction. By arranging them on the circumference, the self-locking force is prevented from being unbalanced.
  • the inner peripheral surface that can be covered by one lock plate is smaller than 1/6.
  • the invention described in claim 1 is a phase variable device that changes the valve timing of the engine valve by changing the relative phase angle of the camshaft (3a) with respect to the crankshaft of the internal combustion engine.
  • a polygonal column-shaped holding portion (71) comprising a plurality of plate pressing surfaces (71a to 71c) is integrally formed on the outer periphery in a flange shape, and this holding portion (71) and the cylindrical portion (11a) Between the outer circumference A plurality of lock plates (14) which are inscribed in the cylindrical part (11a) and whose pressure receiving part is held by the holding part (71) so as not to be rotatable relative to the driven rotating body (3).
  • the holding portion (71) receiving the cam torque presses the lock plate (14) against the cylindrical portion (11a) of the drive rotator (2) by the self-locking mechanism, and the follower to the drive rotator (2).
  • the lock plate (14) is configured to maintain the relative phase angle of the rotating body (3), the first lock plate (14a, 14c, 14e) receiving the cam torque in the advance direction, and the cam torque in the retard direction.
  • Receiving a second lock plate (14b, 14d, 14f), and one first lock plate (14a%) And one second lock plate (14b%) Wherein a phase changing device with self-locking mechanism, characterized in that the arranged so as to overlap in the axial direction of the driven rotating body (3).
  • a pair of lock plates (141) includes a first lock plate (14a) and a second lock plate (14b) arranged so as to overlap in the axial direction of the driven rotating body (3). And a plurality of the lock plate pairs (141) are arranged in the circumferential direction of the camshaft (3a), and the circumference of the driven rotating body (3) is interposed between the lock plate pairs (141).
  • the distance between the center of rotation and the point of action (PA1) when receiving the cam torque is smaller than the distance of the point of action (PA2) when changing the relative phase angle.
  • the pressure receiving portions of the first lock plate (14a) and the second lock plate (14b) constituting the lock plate pair (141) are provided as one of the driven rotating bodies (3). 4.
  • phase variable mechanism (4) includes a planetary gear mechanism, a control rotating body (31, 33) having components (31d, 33a) of the planetary gear mechanism, and the control An internal gear (31d) provided with braking torque applying means (35, 36) for applying rotational torque to the rotating bodies (31, 33) and the planetary gear mechanism provided on the first control rotating body (31).
  • the braking torque applying means (35, 36) is configured to have a cylindrical first braking torque applying means (35) and an inner diameter of the first braking torque applying means (35). And a second braking torque applying means (36) having a small outer diameter.
  • the first braking torque applying means (35) applies a braking torque to the first control rotor (31), and the second braking torque. 6.
  • the lock plate (14) includes the first lock plate (14a, 14c, 14e) that receives the cam torque in the advance angle direction, and the second lock plate (14) that receives the cam torque in the retard angle direction. 14b, 14d, 14f), and one first lock plate (14a) and one second lock plate (14b) are arranged so as to overlap in the axial direction of the driven rotating body (3). Accordingly, the outer peripheral surface of the lock plate that receives the cam torque in one direction can cover almost the entire periphery of the inner peripheral surface of the cylindrical portion (11a). Therefore, the generated cam torque can be uniformly applied over the entire circumference of the inner peripheral surface, and force imbalance does not occur, and the biting that causes a problem in releasing the self-lock function of the lock plate can be prevented.
  • the outer peripheral surface of the lock plate that receives the cam torque in one direction can cover almost the entire circumference of the inner peripheral surface of the cylindrical portion (11a).
  • the lock plate can be easily moved with respect to the inner peripheral surface.
  • a plurality of lock plate pairs (141) are arranged in the circumferential direction of the camshaft (3a), and the lock plates are arranged.
  • the lock plate 14 has a function of transmitting rotational power and a self-locking function. Since a friction force can be applied to the self-locking mechanism, a self-locking mechanism can be configured with a simple configuration. In addition, the clearance generated due to the manufacturing intersection of parts can be made zero, and rattling can be suppressed.
  • the action point of the force between the lock plate (14) and the driven rotating body (3) about the distance from the rotation center of the driven rotor (3), the distance from the action point (PA1) when receiving the cam torque is smaller than the distance from the action point (PA2) when changing the relative phase angle.
  • the cam torque is received, the influence of the cam torque can be reduced.
  • the self-lock function can be appropriately operated.
  • the rotational torque can be transmitted reliably.
  • the phase variable mechanism (4) includes a planetary gear mechanism and a control rotor (31). , 33) and braking torque applying means (35, 36), and the planetary gear mechanism is a so-called star-type planetary gear mechanism in which the drive rotor (2) is a planet carrier.
  • the phase variable device can be configured to operate in two directions. Thereby, a phase variable mechanism (4) can be made into a simple structure.
  • the friction torque is applied to the first control rotating body (31) by the cylindrical first braking torque applying means (35).
  • the braking torque is applied to the second control rotating body (33) by the second braking torque applying means (36) whose outer diameter is smaller than the inner diameter of the first braking torque applying means (35).
  • the torque generated by the small-diameter second braking torque applying means (36) can be increased by the planetary gear mechanism. Thereby, the torque required for changing the relative phase angle can be obtained with a compact configuration.
  • FIG. 2 is a perspective sectional view of a lock plate portion of the phase variable device in FIG. 1. It is sectional drawing in each section of the phase variable apparatus of FIG. It is sectional drawing in each section of the phase variable apparatus of FIG. It is explanatory drawing of operation
  • a phase varying device for an internal combustion engine is attached to an engine that is an internal combustion engine, and transmits the rotation of the crankshaft to the camshaft so that the intake and exhaust valves open and close in synchronization with the rotation of the crankshaft.
  • This is a device that changes the valve timing of the engine valve by changing the relative phase angle of the camshaft with respect to the crankshaft according to the operating state such as the rotational speed.
  • the second electromagnetic clutch side that constitutes the phase variable mechanism 4 is the front side of the device (in the direction of Fr), and the drive rotor side is the back of the device (in the direction of Re).
  • the clockwise direction when viewed from the front of the apparatus is the advance direction (reference D1 direction)
  • the counterclockwise direction is the retard direction (reference D2 direction).
  • a phase varying device 1 for an automobile engine is arranged with a drive rotator 2 to which rotational motion is transmitted by rotation from a crankshaft, and coaxially with the drive rotator 2. And a follower rotator 3 coupled to the camshaft 3a and a phase variable mechanism 4 for changing the relative phase angle between the two rotators, the drive rotator 2 and the follower rotator 3.
  • the phase variable mechanism 4 is a mechanism for controlling the phase variable device 1 and rotates the driven rotating body 3 relative to the driving rotating body 2 in either the advance angle direction D1 or the retard angle direction D2. .
  • the drive rotor 2 is configured by integrating a sprocket 12 that receives a drive force from a crankshaft and a drive cylinder 11.
  • the sprocket 12 has a gear portion 12 a that receives rotation from the crankshaft on the outer periphery, and a center hole for loosely fitting the driven rotor 3 at the center.
  • the driving cylinder 11 has a cylindrical portion 11 a and a bottom portion 11 b, and the sprocket 12 and the driving cylinder 11 are fixed by six fixing screws 50.
  • the bottom 11b of the drive cylinder 11 has a center hole for loosely fitting the driven rotor 3 in the center as in the case of the sprocket 12, and includes three first circumferential grooves 11c and three first parallels. 11d (see FIG. 5C).
  • the first circumferential groove 11c allows a rotating parallel pin 15 to be described later to pass therethrough and enables the rotating parallel pin 15 to move in the circumferential direction along the groove.
  • a planetary shaft 32a of a planetary gear 32 of a planetary gear mechanism to be described later is fitted.
  • two stoppers 11e are provided on the inner peripheral portion of the center hole provided in the bottom portion 11b (see FIG. 5C).
  • This stopper 11e is for restricting the relative phase angle between the drive rotator 2 and the driven rotator 3 so as not to become larger than expected, and a holding part having a hexagonal cross-sectional shape of the driven rotator 3 described later.
  • the position of the driven rotator 3 with respect to the drive rotator 2 is regulated by the contact of 71.
  • the driven rotor 3 is fixed to the camshaft 3 a so as to be coaxial and non-rotatable with a fixing screw 51.
  • a plurality of cams 3b are provided on the outer periphery of the camshaft 3a, and engine valves are operated by these cams 3b.
  • the driven rotating body 3 is a cylindrical rotating body having a plurality of steps, and has a plurality of cylindrical portions, a holding portion 71, and a front cylindrical portion 13 from the rear side along the central axis L0.
  • a first control rotator 31 and a second control rotator 33 of the phase variable mechanism 4 described later are loosely fitted to the front cylindrical portion 13 and are configured not to be separated from the front cylindrical portion 13 by a retaining member 34.
  • a plurality of disc springs 16 are provided between the cylindrical portion behind the driven rotor 3 and the sprocket 12 of the drive rotor 2. The disc spring 16 may not be used.
  • the holding portion 71 of the driven rotor 3 has a polygonal column shape having a regular polygonal vertical cross section (a cross section perpendicular to the central axis L0) as shown in FIGS. 6 (a) to 6 (c). Hexagonal prism shape. In addition, three of the six surfaces of the hexagonal prism shape become plate pressing surfaces 71a, 71b, 71c. In addition, about the surface which does not become plate press surface 71a, 71b, 71c, it is satisfactory even if it is not a plane but a curved surface.
  • the lock plate 14 has a substantially fan shape when viewed from the front, has an arc shape in which the outer peripheral surface is inscribed in the cylindrical portion 11a, and contacts the plate pressing surface of the holding portion 71 on the opposite side of the outer peripheral surface. It has a pressure receiving part. For this reason, the drive rotator 2 and the lock plate 14 can rotate relatively, but the driven rotator 3 and the lock plate 14 cannot rotate relative to each other.
  • the rotation of the crankshaft is rotated by transmitting the rotational motion from the drive rotator 2 to the driven rotator 3 by the frictional force between the outer periphery of the lock plate 14 and the inner peripheral surface of the cylindrical portion of the drive rotator 2. Is transmitted to the camshaft 3a. Furthermore, by configuring the lock plate 14 as follows, the lock plate 14 maintains the relative phase angle between the drive rotator 2 and the driven rotator 3 so that the lock plate 14 is not affected by the cam torque from the camshaft 3a. A self-locking mechanism that prevents deviation is configured.
  • the lock plate 14 receives first cam negative torque in the advance direction and generates a first lock plate 14 a, 14 c, 14 e.
  • second lock plates 14b, 14d, and 14f that receive a cam positive torque in the retard direction and cause a self-lock function.
  • All of the lock plates 14 have the same shape and are substantially fan-shaped, and the outer peripheral surface thereof is an arc shape inscribed in the cylindrical portion 11a in a front view, and is a plane facing the holding portion 71 on the opposite side of the outer peripheral surface.
  • a pressure receiving part is provided.
  • Each lock plate 14 also has a step in the direction of the axis L0.
  • the thick portion having a constant thickness and a thin portion having a thickness half that of the thick portion, and has an engagement hole penetrating in the direction of the axis L0 in the thin portion.
  • the engaging hole is a long hole that is long in the circumferential direction, and the rotating parallel pin 15 is loosely fitted thereto.
  • the lock plate pair 141 is configured by combining thin portions of the first lock plate 14a and the second lock plate 14b. That is, the first lock plate 14a and the second lock plate 14b constituting the lock plate pair 141 overlap with each other in the axial direction of the phase varying device at the thin portion. Similarly, the first lock plate 14c and the second lock plate 14d, the first lock plate 14e and the second lock plate 14f are similarly formed with the lock plate pair 141, and the three lock plate pairs 141 are arranged in the circumferential direction. .
  • the pressure receiving portions of the two lock plates constituting the lock plate pair 141 are configured to face one plate pressing surface of the driven rotor 3.
  • an urging member 25 that applies a compressive force in the circumferential direction of the driven rotor 3 is provided.
  • the urging member 25 is a coil spring, and is loosely fitted to a guide bar that protrudes in the circumferential direction provided in a thick portion of each lock plate 14 that constitutes the lock plate pair 141.
  • FIG. 8 is an enlarged view of the upper half of the phase variable device of the EE cross section of FIG. 6 (a), and FIG. 9 is an enlarged view of the upper half of the phase variable device of the GG cross section of FIG. 6 (c).
  • the lock plate 14 (shown in FIG. 8 shows the first lock plate 14a, and in FIG. 9 shows the second lock plate 14b) has an end portion on a surface facing the thin-walled holding portion 71 having an engagement hole. R chamfer.
  • the lock plate 14 includes first lock plates 14a, 14c, 14e that receive cam torque in the advance angle direction, and second lock plates 14b, 14d, 14f that receive cam torque in the retard angle direction, and one first lock plate And the second lock plate are arranged so as to overlap with each other in the axial direction of the driven rotating body 3, so that the outer peripheral surface of the lock plate that receives the cam torque in one direction is substantially the same as the inner peripheral surface of the cylindrical portion 11 a.
  • the entire circumference can be covered. That is, the lock plate 14 is constituted by a thick portion and a thin portion, and one of the first lock plates covers about 1/4 of the inner peripheral surface of the cylindrical portion 11a, and there are three cylinders.
  • the input by the cam torque acts equally on the part 11a. Since the generated cam torque can be handled evenly over the circumference, force imbalance does not occur, and biting that causes a problem in releasing the self-lock function of the lock plate 14 can be prevented.
  • the outer peripheral surface of the lock plate 14 that receives the cam torque in one direction can be covered over the entire inner peripheral surface of the cylindrical portion 11a.
  • the lock plate 14 can be easily moved relative to the surface.
  • a plurality of lock plate pairs 141 are arranged in the circumferential direction of the camshaft 3a, and a biasing member 25 that applies force in the circumferential direction of the driven rotor 3 is provided between the lock plate pairs 141. Since a frictional force can be applied to the lock plate 14 having a rotational power transmission and a self-lock function, a self-lock mechanism can be configured with a simple configuration.
  • the phase variable mechanism 4 includes a planetary gear mechanism, two control rotors 31 and 33 having components of the planetary gear mechanism (sun gear 33 a and internal gear 31 d), and It is composed of two braking torque means 35 and 36 which are electromagnetic clutches for applying a rotating torque to the control rotating body.
  • the planetary gear mechanism includes an internal gear 31d provided in the first control rotator 31, a sun gear 33a provided in the second control rotator 33, and planetary gears 32 using the drive rotator 2 as a planet carrier. Constitute.
  • This planetary gear mechanism is a so-called star type in which the carrier portion of the planetary gear 32a is fixed, and the planetary gear 32 does not revolve with respect to the drive rotor 2, but only rotates.
  • the first control rotator 31 includes a flange portion 31a located at the front edge portion and a cylindrical portion 31b extending rearward from the flange portion 31a. And a bottom portion 31c provided behind the cylindrical portion 31b.
  • An internal gear 31d of the planetary drive mechanism is formed inside the cylindrical portion 3b, and the bottom portion 3c has three second circumferential grooves 31e and three second parallel pin holes 31f (FIG. 5B). )reference).
  • the planetary shaft 32a of the planetary gear of the planetary gear mechanism is passed through the second circumferential groove 3e, and the first control rotator 31 is rotatable in the circumferential direction with respect to the planetary shaft 32a.
  • the rotating parallel pin 15 is fitted into the two parallel pin holes 31f, and the rotating parallel pin 15 projects rearward.
  • the second control rotator 33 has a flange portion at the front edge portion, and a sun gear 33a is provided behind the flange portion.
  • the first control rotator 31 and the second control rotator 33 are loosely fitted in the front cylindrical portion 13 of the driven rotator 3, and can be rotated relative to the front cylindrical portion 13, and in the front-rear direction. Is also operable.
  • a first braking torque applying means 35 that is a cylindrical and relatively large-diameter electromagnetic clutch is provided in front of the flange portion 31 a of the first control rotator 31, and a first brake rotator 33 is provided in front of the second control rotator 33.
  • a cylindrical second braking torque applying means 36 that is an electromagnetic clutch and has an outer diameter smaller than the inner diameter of the first braking torque applying means 35 is disposed.
  • the first braking torque applying means 35 and the second braking torque applying means 36 are non-rotatably held by an engine cover or the like (not shown), and surfaces of the both braking torque applying means 35 and 36 that oppose the control rotating bodies 31 and 33. Are located on substantially the same plane.
  • FIG. 7A shows a state in which the relative phase angle between the drive rotator 2 and the driven rotator 3 is 0, and FIG. 7B shows the drive rotator 2 in the direction D1 with respect to the drive rotator 2.
  • FIG. 7C shows a state in which the driven rotor 3 is most moved in the direction D2.
  • the drive rotator 2 and the driven rotator 3 are rotated in the D1 direction by being applied with a driving force from the crankshaft.
  • the first braking torque applying means 35 is operated, the flange portion 31a of the first control rotating body is brought into contact with the first braking torque applying means 35, and a frictional force is applied to the first controlling rotating body 31 to D2.
  • a direction torque is applied and rotated, whereby the three lock plate pairs 141 are operated through the rotating parallel pins 15 fitted to the first control rotating body, and the driven rotating body 3 is operated in the D2 direction.
  • the planetary gear 32 rotates and the sun gear 33a rotates in the direction D1 through the internal gear 31d of the first control rotator.
  • the second control rotator 33 having the sun gear 33a and the second braking torque applying means are provided. It is necessary to set it as the structure which does not contact 36.
  • the braking torque applying means 35 is an electromagnetic clutch, and controls ON / OFF and the energization amount thereof.
  • the second braking torque applying means 36 is operated, the flange portion of the second control rotating body 33 is brought into contact with the second braking torque applying means 36, and a frictional force is applied to the second controlling rotating body 33 to D2.
  • the second control rotor 33 is provided with a sun gear 33a, and the sun gear 33a also rotates in the D2 direction. Accordingly, the internal gear 31d of the star-type planetary gear mechanism rotates in the opposite D1 direction. Therefore, the first control rotator 31 also rotates in the direction D1.
  • the three lock plate pairs 141 are operated through the rotating parallel pins 15 fitted to the first control rotating body 31, and the driven rotating body 3 is moved in the D1 direction.
  • the first control rotating body 31 and the first braking torque applying means 35 are not in contact with each other.
  • the torque generated by the second braking torque applying means 36 is doubled by the speed reduction mechanism of the planetary gear mechanism, and the driven rotation is performed.
  • the body 3 is moved.
  • the phase variable mechanism 4 is composed of a planetary gear mechanism, control rotators 31, 33, and braking torque applying means 35, 36, and the planetary gear mechanism is a so-called star-type having the driving rotator 2 as a planet carrier.
  • a planetary gear mechanism By using a planetary gear mechanism, it is possible to provide a configuration in which the phase variable device is operated in two directions by applying a driving torque in one direction due to friction. Thereby, a phase variable mechanism can be made into a simple structure.
  • a friction torque is applied to the first control rotor 31 by the first braking torque applying means 35 having a relatively large diameter, which is an electromagnetic clutch, and a second outer diameter smaller than the inner diameter of the first braking torque applying means 35. Since the friction torque is applied to the second control rotor 33 by the braking torque applying means 36, the torque generated by the small-diameter second braking torque applying means 36 can be increased by the reduction mechanism of the planetary gear mechanism. . Thereby, the torque required to change the relative phase angle can be achieved with a compact configuration.
  • each pair of lock plates 141 is biased in the circumferential direction by the biasing member 25 that is a compression coil spring, a frictional force is generated between the outer periphery of the lock plate 14 and the inner peripheral surface of the cylindrical portion 11a.
  • the driven rotator 3 rotates at the same rotational speed so that the relative phase angle between the driven rotator 3 and the drive rotator 2 does not shift due to the frictional force. Since the biasing member 25 is biased, the lock plate 14 and the driven rotor 3 come into line contact instead of surface contact.
  • the pressure receiving surface of the lock plate 14a and the plate pressing surface 71a of the holding portion 71 are in contact with each other on a straight line passing through PA1 and parallel to the axis L0, and the pressure receiving surface of the lock plate 14b and the plate pressing surface 71a are PB1. Through the line parallel to the axis L0.
  • FIG. 8 shows a state where the cam negative torque in the advance direction is generated.
  • the torque of CT1 shown in the figure is generated in the driven rotating body 3 that is non-rotatably coupled to the camshaft 3a.
  • the pressure receiving surface of the lock plate 14a and the plate pressing surface 71a of the holding portion 71 are in contact with each other by a straight line passing through the action point PA1.
  • the force F01 is generated in the radial direction (upward in FIG. 8) from the action point PA1, and accordingly, the force F02 is also generated upward in FIG. 8 on the inner peripheral surfaces of the lock plate 14a and the cylindrical portion 11a.
  • This F02 can be decomposed into a force generated in the circumferential direction and a force generated in the radial direction, and the frictional force generated by the force generated in the radial direction is combined with the frictional force by the biasing member 25 and the driving rotary body 2 and the driven rotary body 3.
  • the force generated in the circumferential direction causes a shift in the relative phase angle. Therefore, the shift of the relative phase angle can be prevented by suppressing the force generated in the circumferential direction to less than two frictional forces.
  • the corner of the first lock plate 14a is rounded at the corner that is in contact with the pressure receiving portion, so The line parallel to the axis L0 of the body 3), and the force generated in the circumferential direction by F02 can be reduced.
  • the point of action of the force between the pressure receiving surface of the lock plate 14 and the plate pressing surface 71a facing the pressure receiving surface refers to PA1.
  • FIG. 9 shows a state where the cam positive torque in the retard direction is generated.
  • the torque of CT2 as shown in the figure is generated in the driven rotating body 3, and as in the advanced angle direction, the driven rotating body to the lock plate 14b is moved radially from PB1 (see FIG. F11 force is generated upward in FIG. 9, and thereby F12 force is also generated upward in FIG. 9 on the inner peripheral surfaces of the lock plate 14b and the cylindrical portion 11a.
  • This F12 can also be decomposed into a force generated in the circumferential direction and a force generated in the radial direction, and the shift of the relative phase angle can be prevented by suppressing the force generated in the circumferential direction to less than two frictional forces.
  • the force which produces in the circumferential direction by F12 can be made small by carrying out R chamfering at the corner
  • the point of action of the force between the pressure receiving surface of the lock plate 14 and the plate pressing surface 71a facing the pressure receiving surface is PB1.
  • FIG. 10 illustrates one lock plate pair 141, but the same force is generated for the other lock plate pair 141.
  • FIG. 10 shows a case where the driven rotator 3 changes the relative phase angle in the direction D1 that is the advance direction with respect to the drive rotator 2.
  • the pressing surface 71a changes from contact on a straight line passing through the action point PA1 to contact on a straight line passing through the action point PA2.
  • the force of F21 in FIG. 10 is applied from the pressure receiving surface to the plate pressing surface 71a by the force of F21, and the torque of MT1 is applied to the driven rotating body 3 by this F22. Operates so as to change the relative phase angle in the direction D1 with respect to the drive rotor 2.
  • FIG. 11 shows a case where the driven rotator 3 changes the relative phase angle in the direction D2, which is the retarded direction with respect to the drive rotator 2.
  • a force that opposes the urging force of the urging member 25 is applied, and the pressure receiving surface of the lock plate 14a and the plate of the holding portion 71 are applied.
  • the pressing surface 71a changes from contact on a straight line passing through the action point PB1 to contact on a straight line passing through the action point PB2.
  • the distance from the action point PA1 when receiving cam torque changes the relative phase angle.
  • the influence of the cam torque can be reduced when the cam torque is received compared to the case where the relative phase angle is changed. As a result, the self-lock function can be appropriately operated.
  • the pressure receiving portions of the first lock plate 14a (14c, 14e) and the second lock plate 14b (14d, 14f) constituting the lock plate pair 141 are provided on one plate pressing surface 71a (71b, 71c) of the driven rotor 3.
  • the number of plate pressing surfaces provided on the driven rotor 3 can be reduced, and the manufacturing cost of the phase variable device can be suppressed.
  • two electromagnetic clutches are used, but a spring or the like may be used as the braking torque applying means. Moreover, it is good also as a structure which provides rotation torque directly with the electric motor etc. to the lock plate 14 which comprises a self-locking mechanism, without using a planetary gear mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

Some phase varying devices are provided with a self-locking mechanism that locks a follower rotating body so as not to be rotatable relative to a driver rotating body when cam torque, which is input from the engine valve side, is generated. Conventional self-locking mechanisms have a problem in which a lock plate easily penetrating like a wedge due to an imbalance in self-locking power, thereby hindering the release of the self-locking mechanism. The problem is resolved by a phase varying device with a self-locking mechanism characterized in that one of first lock plates (14a … ) that receive cam torque in the advance direction and one of second lock plates (14b … ) that receive cam torque in the retard direction are disposed so as to overlap a follower rotating body (3) in the axial direction.

Description

内燃機関の位相可変装置Phase variable device for internal combustion engine
 本発明は、弁の開閉タイミングを変化させる位相可変装置であって、カムシャフトからのカムトルクの影響を抑えるセルフロック機構を設けたものに関する。 The present invention relates to a phase variable device that changes the opening / closing timing of a valve, and is provided with a self-locking mechanism that suppresses the influence of cam torque from a camshaft.
 自動車のエンジン性能を低速域から高速域の全般にわたり発揮させる方法としてエンジンバルブの開閉タイミングを変化させる位相可変装置を使用する方式が採用されている。ここでエンジン性能とは燃費を含め、エンジンの応答性、低エミッション、アイドリングの安定等多岐にわたるものを言うが、位相可変装置はクランクシャフトとカムシャフトの位相を変化させることにより、エンジンの回転数等の状況に応じて最適なバルブ開閉タイミングを選択できエンジン性能を飛躍的に高めることができるものである。 A method of using a phase variable device that changes the opening / closing timing of an engine valve is adopted as a method of demonstrating the engine performance of an automobile over the entire range from low speed to high speed. Here, engine performance refers to a variety of things including fuel efficiency, engine responsiveness, low emissions, and idling stability. The phase variable device changes the engine speed by changing the phase of the crankshaft and camshaft. The optimum valve opening / closing timing can be selected according to the situation, and the engine performance can be dramatically improved.
 位相可変装置により最適なバルブ開閉タイミングを選択した場合であっても、エンジンバルブ側からカムシャフトに入力されるカムトルクによりそのタイミングが乱される場合がある。即ちカムシャフトが、エンジンバルブの開閉時の衝撃に伴い、進角方向と遅角方向に交互に発生するカムトルクをエンジンバルブから受け、このカムトルクにより駆動回転体に対するカムシャフトの相対位相角にズレを生じさせることとなり、それによりバルブ開閉タイミングが乱れる。この相対位相角のズレを防止するため特許文献1の位相可変装置には、カムトルクの発生時にカムシャフトを駆動回転体に対して相対回動不能にロックするセルフロック機構が設けられている。また特許文献2及び特許文献3には、特許文献1と異なる方式のセルフロック機構について記載されている。 Even when the optimum valve opening / closing timing is selected by the phase variable device, the timing may be disturbed by the cam torque input to the camshaft from the engine valve side. That is, the camshaft receives from the engine valve the cam torque generated alternately in the advance direction and the retard direction in response to an impact when the engine valve is opened and closed, and the cam torque causes a deviation in the relative phase angle of the camshaft with respect to the drive rotor. As a result, the valve opening / closing timing is disturbed. In order to prevent the deviation of the relative phase angle, the phase variable device of Patent Document 1 is provided with a self-locking mechanism that locks the camshaft relative to the drive rotor when the cam torque is generated. Further, Patent Document 2 and Patent Document 3 describe a self-locking mechanism of a system different from that of Patent Document 1.
国際公開第2011/145175号International Publication No. 2011/145175 国際出願PCT/JP2012/76099International Application PCT / JP2012 / 76099 国際出願PCT/JP2013/50417International Application PCT / JP2013 / 50417
 特許文献1に記載のセルフロック機構においては、円周方向に一対のみのロックプレートが配置され、それぞれのロックプレートが一方向のみのカムトルクに対してセルフロック機能を発揮する構成としている。そのためカムトルクが発生した場合、ロックプレートの一方にのみセルフロック力が生じアンバランスとなるため、駆動円筒体の円筒部の内周面にロックプレートがくさびのように食い込みやすくなる。よってセルフロック機能の解除を阻害するという問題がある。 In the self-locking mechanism described in Patent Document 1, only a pair of lock plates are arranged in the circumferential direction, and each lock plate exhibits a self-lock function with respect to cam torque in only one direction. For this reason, when cam torque is generated, a self-locking force is generated only on one side of the lock plate, resulting in an unbalance. Therefore, the lock plate easily bites into the inner peripheral surface of the cylindrical portion of the drive cylindrical body like a wedge. Therefore, there is a problem of inhibiting the release of the self-lock function.
 また、特許文献2に記載のセルフロック機構では、円周方向に3枚のロックプレートを配置し、そのロックプレートそれぞれに両方向のカムトルクに対してセルフロック機能を発揮できる構成としている。しかし、相対位相角を変化させるため回動トルクを与える軸とロックプレートの間に生じた隙間により3枚のロックプレートに均等にセルフロック力が生じずアンバランスとなり、特許文献1のセルフロック機構と同様の問題が残存する。 In the self-locking mechanism described in Patent Document 2, three lock plates are arranged in the circumferential direction, and each of the lock plates has a configuration capable of exhibiting a self-lock function with respect to cam torque in both directions. However, the self-locking force is not evenly generated in the three lock plates due to the gap generated between the shaft for applying the rotational torque to change the relative phase angle and the lock plate, and the self-lock mechanism of Patent Document 1 is unbalanced. The same problem remains.
 加えて特許文献3に記載のセルフロック機構では、進角方向のカムトルクを受けるロックプレートと、遅角方向のカムトルクを受けるロックプレートとによりロックプレート対を構成し、そのロックプレート対を3対円周上に並べることにより、セルフロック力がアンバランスに生じることを防止している。しかしこの構成においては一枚のロックプレートがカバーできる内周面は、1/6より小さくなる。一枚のロックプレートによりカバーできる内周面が小さくなると、ロックプレートと内周面との接触面積が小さくなり、同じようにロックプレートがくさびのように食い込みやすくなるという問題がある。 In addition, in the self-locking mechanism described in Patent Document 3, a lock plate pair is configured by a lock plate that receives cam torque in the advance angle direction and a lock plate that receives cam torque in the retard angle direction. By arranging them on the circumference, the self-locking force is prevented from being unbalanced. However, in this configuration, the inner peripheral surface that can be covered by one lock plate is smaller than 1/6. When the inner peripheral surface that can be covered by a single lock plate is reduced, the contact area between the lock plate and the inner peripheral surface is reduced, and similarly, there is a problem that the lock plate is easily bite like a wedge.
 よって上記問題を解決するセルフロック機構を備えた位相可変装置を提供することが、本発明が解決するための課題である。
 
Therefore, it is a problem to be solved by the present invention to provide a phase variable device provided with a self-locking mechanism that solves the above problems.
 本発明は、上記課題を解決すべく次のような技術的手段を講じた。
 すなわち、請求項1記載の発明は、内燃機関のクランクシャフトに対するカムシャフト(3a)の相対位相角を変化させることで、機関弁のバルブタイミングを変化させる位相可変装置であって、この位相可変装置には、前記クランクシャフトから回転を伝達される駆動回転体(2)と、この駆動回転体(2)と同軸の前記カムシャフト側の従動回転体(3)と、これらの回転体(2、3)同士の相対位相角を変更し、位相可変装置を制御する位相可変機構(4)と、を備えると共に、前記駆動回転体(2)には円筒部(11a)を備え、前記従動回転体(3)には、外周にフランジ状に複数のプレート押圧面(71a~c)からなる多角柱形状の保持部(71)を一体形成し、この保持部(71)と前記円筒部(11a)との間には、外周面が前記円筒部(11a)に内接し、かつ受圧部が前記保持部(71)によって前記従動回転体(3)に対して相対回動不能に保持される複数のロックプレート(14)を配置し、カムトルクを受けた前記保持部(71)が、前記ロックプレート(14)を前記駆動回転体(2)の円筒部(11a)に押し付けるセルフロック機構によって、前記駆動回転体(2)に対する前記従動回転体(3)の相対位相角を維持する構成とすると共に、前記ロックプレート(14)が、進角方向のカムトルクを受ける第1ロックプレート(14a、14c、14e)と、遅角方向のカムトルクを受ける第2ロックプレート(14b、14d、14f)とからなり、かつ一の第1ロックプレート(14a・・)と一の第2ロックプレート(14b・・)とを、前記従動回転体(3)の軸方向に重複するように配置したことを特徴とするセルフロック機構付位相可変装置である。
The present invention has taken the following technical means to solve the above problems.
That is, the invention described in claim 1 is a phase variable device that changes the valve timing of the engine valve by changing the relative phase angle of the camshaft (3a) with respect to the crankshaft of the internal combustion engine. Includes a drive rotator (2) to which rotation is transmitted from the crankshaft, a driven rotator (3) on the camshaft side coaxial with the drive rotator (2), and these rotators (2, 3) a phase variable mechanism (4) that changes the relative phase angle between the two and controls the phase variable device, and the drive rotator (2) includes a cylindrical portion (11a), and the driven rotator. In (3), a polygonal column-shaped holding portion (71) comprising a plurality of plate pressing surfaces (71a to 71c) is integrally formed on the outer periphery in a flange shape, and this holding portion (71) and the cylindrical portion (11a) Between the outer circumference A plurality of lock plates (14) which are inscribed in the cylindrical part (11a) and whose pressure receiving part is held by the holding part (71) so as not to be rotatable relative to the driven rotating body (3). The holding portion (71) receiving the cam torque presses the lock plate (14) against the cylindrical portion (11a) of the drive rotator (2) by the self-locking mechanism, and the follower to the drive rotator (2). The lock plate (14) is configured to maintain the relative phase angle of the rotating body (3), the first lock plate (14a, 14c, 14e) receiving the cam torque in the advance direction, and the cam torque in the retard direction. Receiving a second lock plate (14b, 14d, 14f), and one first lock plate (14a...) And one second lock plate (14b...) Wherein a phase changing device with self-locking mechanism, characterized in that the arranged so as to overlap in the axial direction of the driven rotating body (3).
 また、請求項2記載の発明は、前記従動回転体(3)の軸方向に重複するように配置した、第1ロックプレート(14a)と第2ロックプレート(14b)とによりロックプレート対(141)を構成し、このロックプレート対(141)を前記カムシャフト(3a)の円周方向に複数配置すると共に、これらロックプレート対(141)の間に、前記従動回転体(3)の円周方向に力を付与する付勢部材(25)を設けたことを特徴とする請求項1に記載の自動車用エンジンの位相可変装置である。 According to the second aspect of the present invention, a pair of lock plates (141) includes a first lock plate (14a) and a second lock plate (14b) arranged so as to overlap in the axial direction of the driven rotating body (3). And a plurality of the lock plate pairs (141) are arranged in the circumferential direction of the camshaft (3a), and the circumference of the driven rotating body (3) is interposed between the lock plate pairs (141). The phase varying device for an automobile engine according to claim 1, further comprising an urging member (25) for applying a force in the direction.
 また、請求項3記載の発明は、ロックプレート(14)の受圧面及びこの受圧面に対向するプレート押圧面(71a、71b、71c)間の力の作用点と、前記従動回転体(3)の回転中心との間の距離について、カムトルクを受ける時の作用点(PA1)との距離が、相対位相角を変更する時の作用点(PA2)との距離よりも小さいことを特徴とする請求項1又は請求項2に記載のセルフロック機構付位相可変装置である。 According to a third aspect of the present invention, there is provided a point of application of force between the pressure receiving surface of the lock plate (14) and the plate pressing surface (71a, 71b, 71c) opposed to the pressure receiving surface, and the driven rotor (3). The distance between the center of rotation and the point of action (PA1) when receiving the cam torque is smaller than the distance of the point of action (PA2) when changing the relative phase angle. A phase varying device with a self-locking mechanism according to claim 1 or claim 2.
 また、請求項4記載の発明は、前記ロックプレート対(141)を構成する第1ロックプレート(14a)及び第2ロックプレート(14b)の受圧部が、前記従動回転体(3)の一のプレート押圧面(71a)に対向することを特徴とする請求項2又は請求項3に記載のセルフロック機構付位相可変装置である。 According to a fourth aspect of the present invention, the pressure receiving portions of the first lock plate (14a) and the second lock plate (14b) constituting the lock plate pair (141) are provided as one of the driven rotating bodies (3). 4. The phase varying device with a self-locking mechanism according to claim 2, wherein the phase varying device faces the plate pressing surface (71 a). 5.
 また、請求項5記載の発明は、前記位相可変機構(4)を、遊星歯車機構と、この遊星歯車機構の構成部材(31d、33a)を有する制御回転体(31、33)と、この制御回転体(31、33)に回動トルクを与える制動トルク付与手段(35、36)とから構成すると共に、前記遊星歯車機構を、第1制御回転体(31)に設けた内歯車(31d)と、第2制御回転体(33)に設けた太陽歯車(33a)と、前記駆動回転体(2)を遊星キャリアとする遊星歯車(32a・・)と、により構成し、前記制動トルク付与手段(35、36)を作動させることで、前記第1制御回転体(31)もしくは第2制御回転体(33)と前記ロックプレート(14)とを一体として回動させ、前記駆動回転体(2)と従動回転体(3)との相対位相角を変更する請求項1から請求項4のいずれか1項に記載のセルフロック機構付位相可変装置である。 The invention according to claim 5 is characterized in that the phase variable mechanism (4) includes a planetary gear mechanism, a control rotating body (31, 33) having components (31d, 33a) of the planetary gear mechanism, and the control An internal gear (31d) provided with braking torque applying means (35, 36) for applying rotational torque to the rotating bodies (31, 33) and the planetary gear mechanism provided on the first control rotating body (31). And a sun gear (33a) provided on the second control rotator (33), and a planetary gear (32a) using the drive rotator (2) as a planet carrier, and the braking torque applying means By operating (35, 36), the first control rotator (31) or the second control rotator (33) and the lock plate (14) are rotated together, and the drive rotator (2 ) And the driven rotor (3) Claims 1 to change the phase angle is a phase variable device with self-locking mechanism according to any one of claims 4.
 また、請求項6記載の発明は、前記制動トルク付与手段(35、36)を、円筒形状の第1制動トルク付与手段(35)と、この第1制動トルク付与手段(35)の内径よりも外径が小さい第2制動トルク付与手段(36)とにより構成し、前記第1制動トルク付与手段(35)により第1制御回転体(31)に制動トルクを付与すると共に、前記第2制動トルク付与手段(36)により第2制御回転体(33)に制動トルクを付与する構成としたことを特徴とする請求項5に記載のセルフロック機構付位相可変装置である。 According to a sixth aspect of the present invention, the braking torque applying means (35, 36) is configured to have a cylindrical first braking torque applying means (35) and an inner diameter of the first braking torque applying means (35). And a second braking torque applying means (36) having a small outer diameter. The first braking torque applying means (35) applies a braking torque to the first control rotor (31), and the second braking torque. 6. The phase varying device with a self-locking mechanism according to claim 5, wherein a braking torque is applied to the second control rotating body (33) by the applying means (36).
 請求項1に記載の発明によれば、ロックプレート(14)が、進角方向のカムトルクを受ける第1ロックプレート(14a、14c、14e)と、遅角方向のカムトルクを受ける第2ロックプレート(14b、14d、14f)とからなり、かつ一の第1ロックプレート(14a)と一の第2ロックプレート(14b)とを、前記従動回転体(3)の軸方向に重複するように配置したことにより、一方向のカムトルクを受けるロックプレートの外周面により、円筒部(11a)の内周面のほぼ全周をカバーすることができる。よって発生したカムトルクを内周面の全周にわたって均等に受け持つことができ、力のアンバランスを生じず、ロックプレートのセルフロック機能の解除に問題を生じるような食い込みを防止できる。 According to the first aspect of the present invention, the lock plate (14) includes the first lock plate (14a, 14c, 14e) that receives the cam torque in the advance angle direction, and the second lock plate (14) that receives the cam torque in the retard angle direction. 14b, 14d, 14f), and one first lock plate (14a) and one second lock plate (14b) are arranged so as to overlap in the axial direction of the driven rotating body (3). Accordingly, the outer peripheral surface of the lock plate that receives the cam torque in one direction can cover almost the entire periphery of the inner peripheral surface of the cylindrical portion (11a). Therefore, the generated cam torque can be uniformly applied over the entire circumference of the inner peripheral surface, and force imbalance does not occur, and the biting that causes a problem in releasing the self-lock function of the lock plate can be prevented.
 また相対位相角を変更する場合も、一方向のカムトルクを受けるロックプレートの外周面により、円筒部(11a)の内周面のほぼ全周をカバーすることができているので、円筒部(11a)の内周面に対しロックプレートを容易に移動できる。 Even when the relative phase angle is changed, the outer peripheral surface of the lock plate that receives the cam torque in one direction can cover almost the entire circumference of the inner peripheral surface of the cylindrical portion (11a). The lock plate can be easily moved with respect to the inner peripheral surface.
 請求項2に記載の発明によれば、請求項1に記載の発明の効果に加えて、ロックプレート対(141)を前記カムシャフト(3a)の円周方向に複数配置すると共に、これらロックプレート対(141)の間に、前記従動回転体(3)の円周方向に力を付与する付勢部材(25)を設けたことにより、回転動力の伝達機能とセルフロック機能を有するロックプレート14に摩擦力を付与できるので、簡易な構成でセルフロック機構を構成できる。また、部品の製造交差により発生するクリアランスをゼロにすることができ、ガタツキを抑えることができる。 According to the invention described in claim 2, in addition to the effects of the invention described in claim 1, a plurality of lock plate pairs (141) are arranged in the circumferential direction of the camshaft (3a), and the lock plates are arranged. By providing an urging member (25) for applying a force in the circumferential direction of the driven rotor (3) between the pair (141), the lock plate 14 has a function of transmitting rotational power and a self-locking function. Since a friction force can be applied to the self-locking mechanism, a self-locking mechanism can be configured with a simple configuration. In addition, the clearance generated due to the manufacturing intersection of parts can be made zero, and rattling can be suppressed.
 請求項3に記載の発明によれば、請求項1又は請求項2のいずれかに記載の発明の効果に加えてロックプレート(14)と従動回転体(3)との力の作用点と、従動回転体(3)の回転中心との距離について、カムトルクを受ける時の作用点(PA1)との距離が、相対位相角を変更するときの作用点(PA2)との距離よりも小さいことにより、カムトルクを受ける場合に、カムトルクの影響を小さくできる。これによりセルフロック機能を適切に働かせることができる。また、相対位相角を変更する時には回転中心から作用点(PA2)までの距離が大きいため、回動トルクを確実に伝達することができる。 According to the invention described in claim 3, in addition to the effect of the invention described in claim 1 or 2, the action point of the force between the lock plate (14) and the driven rotating body (3), About the distance from the rotation center of the driven rotor (3), the distance from the action point (PA1) when receiving the cam torque is smaller than the distance from the action point (PA2) when changing the relative phase angle. When the cam torque is received, the influence of the cam torque can be reduced. As a result, the self-lock function can be appropriately operated. Further, when the relative phase angle is changed, since the distance from the rotation center to the action point (PA2) is large, the rotational torque can be transmitted reliably.
 請求項4に記載の発明によれば、請求項2又は請求項3のいずれかに記載の発明の効果に加えてロックプレート対(141)を構成する第1ロックプレート(14a)及び第2ロックプレート(14b)の受圧部が、従動回転体(3)の一のプレート押圧面(71a)に対向する構成としたことにより、従動回転体(3)に設けるプレート押圧面の個数を少なくすることができ、位相可変装置の製造コストを抑えることができる。 According to the invention described in claim 4, in addition to the effects of the invention described in claim 2 or claim 3, the first lock plate (14a) and the second lock constituting the lock plate pair (141). Since the pressure receiving portion of the plate (14b) is configured to face one plate pressing surface (71a) of the driven rotator (3), the number of plate pressing surfaces provided on the driven rotator (3) is reduced. Therefore, the manufacturing cost of the phase variable device can be suppressed.
 請求項5に記載の発明によれば、請求項1から請求項4のいずれか1項に記載の発明の効果に加えて位相可変機構(4)を、遊星歯車機構と、制御回転体(31、33)と、制動トルク付与手段(35、36)とから構成すると共に、遊星歯車機構を、駆動回転体(2)を遊星キャリアとするいわゆるスター型の遊星歯車機構とすることにより、一方向の回動トルクを与えることで、二方向に位相可変装置を動作させる構成とすることができる。これにより位相可変機構(4)を簡易な構成とすることができる。 According to the invention described in claim 5, in addition to the effect of the invention described in any one of claims 1 to 4, the phase variable mechanism (4) includes a planetary gear mechanism and a control rotor (31). , 33) and braking torque applying means (35, 36), and the planetary gear mechanism is a so-called star-type planetary gear mechanism in which the drive rotor (2) is a planet carrier. By providing the rotational torque of, the phase variable device can be configured to operate in two directions. Thereby, a phase variable mechanism (4) can be made into a simple structure.
 請求項6に記載の発明によれば、請求項5に記載の発明の効果に加えて、円筒形状の第1制動トルク付与手段(35)により第1制御回転体(31)に摩擦トルクを付与すると共に、第1制動トルク付与手段(35)の内径よりも外径が小さい第2制動トルク付与手段(36)により第2制御回転体(33)に制動トルクを付与する構成としたことにより、小径の第2制動トルク付与手段(36)により発生するトルクを遊星歯車機構により大きくすることができる。これにより相対位相角を変更するのに必要なトルクをコンパクトな構成で得ることができる。 According to the invention described in claim 6, in addition to the effect of the invention described in claim 5, the friction torque is applied to the first control rotating body (31) by the cylindrical first braking torque applying means (35). In addition, by adopting a configuration in which the braking torque is applied to the second control rotating body (33) by the second braking torque applying means (36) whose outer diameter is smaller than the inner diameter of the first braking torque applying means (35). The torque generated by the small-diameter second braking torque applying means (36) can be increased by the planetary gear mechanism. Thereby, the torque required for changing the relative phase angle can be obtained with a compact configuration.
本発明の実施形態にかかる位相可変装置の正面図及び側断面図である。It is the front view and side sectional view of a phase variable device concerning an embodiment of the present invention. 図1の位相可変装置を装置前側上方から見た分解斜視図である。It is the disassembled perspective view which looked at the phase variable apparatus of FIG. 1 from the apparatus front side upper direction. 図1の位相可変装置を装置後側上方から見た分解斜視図である。It is the disassembled perspective view which looked at the phase variable apparatus of FIG. 1 from the apparatus rear side upper direction. 図1の位相可変装置のロックプレート部分の斜視断面図である。FIG. 2 is a perspective sectional view of a lock plate portion of the phase variable device in FIG. 1. 図1の位相可変装置の各セクションにおける断面図である。It is sectional drawing in each section of the phase variable apparatus of FIG. 図1の位相可変装置の各セクションにおける断面図である。It is sectional drawing in each section of the phase variable apparatus of FIG. 図1の位相可変装置の位相可変機構の動作の説明図である。It is explanatory drawing of operation | movement of the phase variable mechanism of the phase variable apparatus of FIG. 図1の位相可変装置で進角方向のカムトルクが入力された場合の説明図である。It is explanatory drawing when the cam torque of an advance angle direction is input with the phase variable apparatus of FIG. 図1の位相可変装置で遅角方向のカムトルクが入力された場合の説明図である。It is explanatory drawing when the cam torque of a retard angle direction is input with the phase variable apparatus of FIG. 図1の位相可変装置で進角方向へ相対位相角を変更する場合の説明図である。It is explanatory drawing in the case of changing a relative phase angle to an advance angle direction with the phase variable apparatus of FIG. 図1の位相可変装置で遅角方向へ相対位相角を変更する場合の説明図である。It is explanatory drawing in the case of changing a relative phase angle to a retard angle direction with the phase variable apparatus of FIG.
 上記技術思想に基づいて具体的に構成された実施の形態について以下に図面を参照しつつ説明する。 Embodiments specifically configured based on the above technical idea will be described below with reference to the drawings.
 内燃機関の位相可変装置は、内燃機関であるエンジンにくみつけられ、クランクシャフトの回転に同期して吸排気弁が開閉するように、クランクシャフトの回転をカムシャフトに伝達すると共に、エンジンの負荷や回転数などの運転状態によってクランクシャフトに対するカムシャフトの相対位相角を変化させることで機関弁のバルブタイミングを変更させる装置である。 A phase varying device for an internal combustion engine is attached to an engine that is an internal combustion engine, and transmits the rotation of the crankshaft to the camshaft so that the intake and exhaust valves open and close in synchronization with the rotation of the crankshaft. This is a device that changes the valve timing of the engine valve by changing the relative phase angle of the camshaft with respect to the crankshaft according to the operating state such as the rotational speed.
 本発明にかかる実施形態においては、位相可変機構4を構成する第2電磁クラッチ側を装置前方(符号Fr方向)、駆動回転体側を装置後方(符号Re方向)とし、各図において上下左右と称する。またカムシャフト3a等の中心軸線L0周りについては、装置前方から見て時計回りとなる方向を進角方向(符号D1方向)、反時計回りとなる方向を遅角方向(符号D2方向)とする。 In the embodiment according to the present invention, the second electromagnetic clutch side that constitutes the phase variable mechanism 4 is the front side of the device (in the direction of Fr), and the drive rotor side is the back of the device (in the direction of Re). . As for the camshaft 3a and the like around the central axis L0, the clockwise direction when viewed from the front of the apparatus is the advance direction (reference D1 direction), and the counterclockwise direction is the retard direction (reference D2 direction). .
 本実施形態の自動車用エンジンの位相可変装置1は、図1に示すように、クランクシャフトからの回転によって、回転運動を伝達される駆動回転体2と、この駆動回転体2と同軸に配置されると共にカムシャフト3aと結合する従動回転体3と、駆動回転体2と従動回転体3という二つの回転体同士の相対位相角を変更するための位相可変機構4とを備える。この位相可変機構4は、即ち位相可変装置1を制御するための機構であり、従動回転体3を駆動回転体2に対して進角方向D1又は遅角方向D2の何れかに相対回動させる。 As shown in FIG. 1, a phase varying device 1 for an automobile engine according to the present embodiment is arranged with a drive rotator 2 to which rotational motion is transmitted by rotation from a crankshaft, and coaxially with the drive rotator 2. And a follower rotator 3 coupled to the camshaft 3a and a phase variable mechanism 4 for changing the relative phase angle between the two rotators, the drive rotator 2 and the follower rotator 3. The phase variable mechanism 4 is a mechanism for controlling the phase variable device 1 and rotates the driven rotating body 3 relative to the driving rotating body 2 in either the advance angle direction D1 or the retard angle direction D2. .
 駆動回転体2は、図1から図3に示すように、クランクシャフトから駆動力を受けるスプロケット12と、駆動円筒11とを一体化することによって構成される。スプロケット12は、外周にクランクシャフトからの回転を受ける歯車部12aを有すると共に、中心部には従動回転体3を遊嵌するための中心孔を有する。駆動円筒11は円筒部11aと底部11bとを有し、6本の固定ねじ50によってスプロケット12と駆動円筒11とを固定する。また駆動円筒11の底部11bには、スプロケット12と同じように中心部に従動回転体3を遊嵌するための中心孔を有すると共に、3つの第1円周方向溝11c及び3つの第1平行ピン孔11dとを有する(図5(c)参照)。第1円周方向溝11cは、後述する回動用平行ピン15を通過させ、かつその溝に沿って回動用平行ピン15を円周方向に動作可能にするものであり、平行ピン孔5dには後述する遊星歯車機構の遊星歯車32の遊星軸32aを嵌入する。加えて底部11bに設けた中心孔の内周部には2か所のストッパ11eを設ける(図5(c)参照)。このストッパ11eは駆動回転体2と従動回転体3との間の相対位相角が想定以上に大きくならないように規制するためのものであり、後述する従動回転体3の六角断面形状をした保持部71が接触することで、駆動回転体2に対する従動回転体3の位置を規制する。 As shown in FIGS. 1 to 3, the drive rotor 2 is configured by integrating a sprocket 12 that receives a drive force from a crankshaft and a drive cylinder 11. The sprocket 12 has a gear portion 12 a that receives rotation from the crankshaft on the outer periphery, and a center hole for loosely fitting the driven rotor 3 at the center. The driving cylinder 11 has a cylindrical portion 11 a and a bottom portion 11 b, and the sprocket 12 and the driving cylinder 11 are fixed by six fixing screws 50. Further, the bottom 11b of the drive cylinder 11 has a center hole for loosely fitting the driven rotor 3 in the center as in the case of the sprocket 12, and includes three first circumferential grooves 11c and three first parallels. 11d (see FIG. 5C). The first circumferential groove 11c allows a rotating parallel pin 15 to be described later to pass therethrough and enables the rotating parallel pin 15 to move in the circumferential direction along the groove. A planetary shaft 32a of a planetary gear 32 of a planetary gear mechanism to be described later is fitted. In addition, two stoppers 11e are provided on the inner peripheral portion of the center hole provided in the bottom portion 11b (see FIG. 5C). This stopper 11e is for restricting the relative phase angle between the drive rotator 2 and the driven rotator 3 so as not to become larger than expected, and a holding part having a hexagonal cross-sectional shape of the driven rotator 3 described later. The position of the driven rotator 3 with respect to the drive rotator 2 is regulated by the contact of 71.
 従動回転体3は、図1から図3に示すように、カムシャフト3aに対し固定ネジ51によって同軸かつ相対回動不能に固定する。カムシャフト3aには外周に複数のカム3bが設けられ、これらのカム3bにより機関弁を動作させる。従動回転体3は複数の段差を有する円筒回転体で、中心軸線L0に沿って後側から、複数の円筒部、保持部71、前方円筒部13とを有する。前方円筒部13には、後述する位相可変機構4の第1制御回転体31と第2制御回転体33が遊嵌し、抜け止め部材34により前方円筒部13から離間しないように構成する。従動回転体3の後方にある円筒部と、駆動回転体2のスプロケット12との間には、複数の皿ばね16を設ける。この皿ばね16は使用しない場合もある。 As shown in FIGS. 1 to 3, the driven rotor 3 is fixed to the camshaft 3 a so as to be coaxial and non-rotatable with a fixing screw 51. A plurality of cams 3b are provided on the outer periphery of the camshaft 3a, and engine valves are operated by these cams 3b. The driven rotating body 3 is a cylindrical rotating body having a plurality of steps, and has a plurality of cylindrical portions, a holding portion 71, and a front cylindrical portion 13 from the rear side along the central axis L0. A first control rotator 31 and a second control rotator 33 of the phase variable mechanism 4 described later are loosely fitted to the front cylindrical portion 13 and are configured not to be separated from the front cylindrical portion 13 by a retaining member 34. A plurality of disc springs 16 are provided between the cylindrical portion behind the driven rotor 3 and the sprocket 12 of the drive rotor 2. The disc spring 16 may not be used.
 従動回転体3の保持部71は、図6(a)~(c)に示すように正多角形の垂直断面(中心軸線L0に直交する断面)を有する多角柱形状であり、本実施形態では6角柱形状である。また6角柱形状の6つの面の内3つがプレート押圧面71a、71b、71cとなる。なおプレート押圧面71a、71b、71cとならない面については、平面でなく曲面等であっても問題ない。 The holding portion 71 of the driven rotor 3 has a polygonal column shape having a regular polygonal vertical cross section (a cross section perpendicular to the central axis L0) as shown in FIGS. 6 (a) to 6 (c). Hexagonal prism shape. In addition, three of the six surfaces of the hexagonal prism shape become plate pressing surfaces 71a, 71b, 71c. In addition, about the surface which does not become plate press surface 71a, 71b, 71c, it is satisfactory even if it is not a plane but a curved surface.
 図1から図3、図4、図6に示すように、駆動回転体2を構成する駆動円筒11の円筒部11aの内周面と、従動回転体3の保持部71との間には、複数のロックプレート14を配置する。このロックプレート14は、前面から見て略扇形をしており、外周面が円筒部11aに内接するような弧形状であり、外周面との反対側に保持部71のプレート押圧面と接触する受圧部を有する。このため、駆動回転体2とロックプレート14とは相対的に回動可能であるが、従動回転体3とロックプレート14とは相対回動不能である。そしてロックプレート14の外周部と駆動回転体2の円筒部の内周面との間の摩擦力により、駆動回転体2からの回転運動を従動回転体3に伝動することで、クランクシャフトの回転をカムシャフト3aに伝動する。更に、ロックプレート14を以下のように構成することで、ロックプレート14が、カムシャフト3aからのカムトルクの影響を受けないように駆動回転体2と従動回転体3の相対位相角を保持し、ズレを生じさせないようにするセルフロック機構を構成する。 As shown in FIG. 1 to FIG. 3, FIG. 4, and FIG. 6, between the inner peripheral surface of the cylindrical portion 11 a of the driving cylinder 11 constituting the driving rotating body 2 and the holding portion 71 of the driven rotating body 3, A plurality of lock plates 14 are arranged. The lock plate 14 has a substantially fan shape when viewed from the front, has an arc shape in which the outer peripheral surface is inscribed in the cylindrical portion 11a, and contacts the plate pressing surface of the holding portion 71 on the opposite side of the outer peripheral surface. It has a pressure receiving part. For this reason, the drive rotator 2 and the lock plate 14 can rotate relatively, but the driven rotator 3 and the lock plate 14 cannot rotate relative to each other. The rotation of the crankshaft is rotated by transmitting the rotational motion from the drive rotator 2 to the driven rotator 3 by the frictional force between the outer periphery of the lock plate 14 and the inner peripheral surface of the cylindrical portion of the drive rotator 2. Is transmitted to the camshaft 3a. Furthermore, by configuring the lock plate 14 as follows, the lock plate 14 maintains the relative phase angle between the drive rotator 2 and the driven rotator 3 so that the lock plate 14 is not affected by the cam torque from the camshaft 3a. A self-locking mechanism that prevents deviation is configured.
 本発明の実施形態にかかるロックプレート14は、図1から図4、及び図6に示すように進角方向のカム負トルクを受け、セルフロック機能を生じさせる第1ロックプレート14a、14c、14eと、遅角方向のカム正トルクを受けセルフロック機能を生じさせる第2ロックプレート14b、14d、14fとからなる。いずれのロックプレート14も同形状で略扇形であり、その外周面は、前方視において円筒部11aに内接する弧形状であり、かつこの外周面の反対側に保持部71と対向する平面である受圧部を備える。また、いずれのロックプレート14も、軸心L0方向に段差を有する。即ち一定の厚みを備えた厚肉部と、その厚肉部の1/2の厚さの薄肉部とからなり、薄肉部において軸心L0方向に貫通する係合孔を有する。この係合孔は円周方向に長い長孔であり、回動用平行ピン15が遊嵌される。 As shown in FIGS. 1 to 4 and 6, the lock plate 14 according to the embodiment of the present invention receives first cam negative torque in the advance direction and generates a first lock plate 14 a, 14 c, 14 e. And second lock plates 14b, 14d, and 14f that receive a cam positive torque in the retard direction and cause a self-lock function. All of the lock plates 14 have the same shape and are substantially fan-shaped, and the outer peripheral surface thereof is an arc shape inscribed in the cylindrical portion 11a in a front view, and is a plane facing the holding portion 71 on the opposite side of the outer peripheral surface. A pressure receiving part is provided. Each lock plate 14 also has a step in the direction of the axis L0. That is, it has a thick portion having a constant thickness and a thin portion having a thickness half that of the thick portion, and has an engagement hole penetrating in the direction of the axis L0 in the thin portion. The engaging hole is a long hole that is long in the circumferential direction, and the rotating parallel pin 15 is loosely fitted thereto.
 第1ロックプレート14aと第2ロックプレート14bとの薄肉部同士を組み合わせることでロックプレート対141を構成する。即ちロックプレート対141を構成する第1ロックプレート14aと第2ロックプレート14bとは薄肉部において位相可変装置の軸方向に重複する。また第1ロックプレート14cと第2ロックプレート14d、第1ロックプレート14eと第2ロックプレート14fについても同様にロックプレート対141を形成し、3組のロックプレート対141を円周方向に配置する。そしてロックプレート対141を構成する2つのロックプレートの受圧部が、従動回転体3の一のプレート押圧面に対向する構成とする。 The lock plate pair 141 is configured by combining thin portions of the first lock plate 14a and the second lock plate 14b. That is, the first lock plate 14a and the second lock plate 14b constituting the lock plate pair 141 overlap with each other in the axial direction of the phase varying device at the thin portion. Similarly, the first lock plate 14c and the second lock plate 14d, the first lock plate 14e and the second lock plate 14f are similarly formed with the lock plate pair 141, and the three lock plate pairs 141 are arranged in the circumferential direction. . The pressure receiving portions of the two lock plates constituting the lock plate pair 141 are configured to face one plate pressing surface of the driven rotor 3.
 円周方向に配置したロックプレート対141の間には、従動回転体3の円周方向に圧縮力を付与する付勢部材25を設ける。この付勢部材25はコイルばねであり、ロックプレート対141を構成する各ロックプレート14の厚肉部分に設けた、円周方向に突出する案内バーに遊嵌する。 Between the pair of lock plates 141 arranged in the circumferential direction, an urging member 25 that applies a compressive force in the circumferential direction of the driven rotor 3 is provided. The urging member 25 is a coil spring, and is loosely fitted to a guide bar that protrudes in the circumferential direction provided in a thick portion of each lock plate 14 that constitutes the lock plate pair 141.
 図8には図6(a)のE-E断面の位相可変装置の上半分を拡大した図を、図9には図6(c)のG-G断面の位相可変装置の上半分を拡大した図を示す。ロックプレート14(図8においては第1ロックプレート14aを示し、図9においては第2ロックプレート14bを示す)は、係合孔を有する薄肉部の保持部71との対向面において、その端部をR面取りする。 FIG. 8 is an enlarged view of the upper half of the phase variable device of the EE cross section of FIG. 6 (a), and FIG. 9 is an enlarged view of the upper half of the phase variable device of the GG cross section of FIG. 6 (c). The figure is shown. The lock plate 14 (shown in FIG. 8 shows the first lock plate 14a, and in FIG. 9 shows the second lock plate 14b) has an end portion on a surface facing the thin-walled holding portion 71 having an engagement hole. R chamfer.
 ロックプレート14が、進角方向のカムトルクを受ける第1ロックプレート14a、14c、14eと、遅角方向のカムトルクを受ける第2ロックプレート14b、14d、14fとからなり、かつ一の第1ロックプレートと一の第2ロックプレートとを、前記従動回転体3の軸方向に重複するように配置したことにより、一方向のカムトルクを受けるロックプレートの外周面により、円筒部11aの内周面のほぼ全周をカバーすることができる。即ちロックプレート14を厚肉部と薄肉部とにより構成して、第1ロックプレートの一つで円筒部11aの内周面の1/4前後をカバーし、それが3つあることによって、円筒部11aに均等にカムトルクによる入力が作用する。発生したカムトルクを円周にわたって均等に受け持つことができるので、力のアンバランスを生じず、ロックプレート14のセルフロック機能の解除に問題を生じるような食い込みを防止できる。 The lock plate 14 includes first lock plates 14a, 14c, 14e that receive cam torque in the advance angle direction, and second lock plates 14b, 14d, 14f that receive cam torque in the retard angle direction, and one first lock plate And the second lock plate are arranged so as to overlap with each other in the axial direction of the driven rotating body 3, so that the outer peripheral surface of the lock plate that receives the cam torque in one direction is substantially the same as the inner peripheral surface of the cylindrical portion 11 a. The entire circumference can be covered. That is, the lock plate 14 is constituted by a thick portion and a thin portion, and one of the first lock plates covers about 1/4 of the inner peripheral surface of the cylindrical portion 11a, and there are three cylinders. The input by the cam torque acts equally on the part 11a. Since the generated cam torque can be handled evenly over the circumference, force imbalance does not occur, and biting that causes a problem in releasing the self-lock function of the lock plate 14 can be prevented.
 また相対位相角を変更する場合も、一方向のカムトルクを受けるロックプレート14の外周面により、円筒部11aの内周面の全周にわたってカバーすることができているので、円筒部11aの内周面に対しロックプレート14を容易に移動できる。 Even when the relative phase angle is changed, the outer peripheral surface of the lock plate 14 that receives the cam torque in one direction can be covered over the entire inner peripheral surface of the cylindrical portion 11a. The lock plate 14 can be easily moved relative to the surface.
 ロックプレート対141をカムシャフト3aの円周方向に複数配置すると共に、これらロックプレート対141の間に、従動回転体3の円周方向に力を付与する付勢部材25を設けたことにより、回転動力の伝達とセルフロック機能を有するロックプレート14に摩擦力を付与できるので、簡易な構成でセルフロック機構を構成できる。 A plurality of lock plate pairs 141 are arranged in the circumferential direction of the camshaft 3a, and a biasing member 25 that applies force in the circumferential direction of the driven rotor 3 is provided between the lock plate pairs 141. Since a frictional force can be applied to the lock plate 14 having a rotational power transmission and a self-lock function, a self-lock mechanism can be configured with a simple configuration.
 位相可変機構4は図1から図3に示すように、遊星歯車機構と、この遊星歯車機構の構成部材(太陽歯車33a、内歯車31d)を有する二つの制御回転体31、33と、これらの制御回転体に回動トルクを与える電磁クラッチである二つの制動トルク手段35、36とから構成する。 As shown in FIGS. 1 to 3, the phase variable mechanism 4 includes a planetary gear mechanism, two control rotors 31 and 33 having components of the planetary gear mechanism (sun gear 33 a and internal gear 31 d), and It is composed of two braking torque means 35 and 36 which are electromagnetic clutches for applying a rotating torque to the control rotating body.
 遊星歯車機構は、第1制御回転体31に設けた内歯車31dと、第2制御回転体33に設けた太陽歯車33aと、駆動回転体2を遊星キャリアとする遊星歯車32・・と、により構成する。この遊星歯車機構は、遊星歯車32aのキャリア部分が固定される、いわゆるスター型であり、遊星歯車32は、駆動回転体2に対して公転せず、自転するのみとなる。本実施形態においては、歯数比を、太陽歯車33a:遊星歯車32:内歯車31d=2:1:4とする。 The planetary gear mechanism includes an internal gear 31d provided in the first control rotator 31, a sun gear 33a provided in the second control rotator 33, and planetary gears 32 using the drive rotator 2 as a planet carrier. Constitute. This planetary gear mechanism is a so-called star type in which the carrier portion of the planetary gear 32a is fixed, and the planetary gear 32 does not revolve with respect to the drive rotor 2, but only rotates. In the present embodiment, the gear ratio is set to sun gear 33a: planetary gear 32: internal gear 31d = 2: 1: 4.
 第1制御回転体31は、図1から図3及び図5(a)、(b)に示すように、前縁部に位置するフランジ部31aと、このフランジ部31aから後方に延びる円筒部31bと、円筒部31bの後方に設ける底部31cとから構成する。この円筒部3bの内側に、遊星駆動機構の内歯車31dを形成すると共に、底部3cには3つの第2円周方向溝31eと、3つの第2平行ピン孔31fを有する(図5(b)参照)。第2円周方向溝3eには遊星歯車機構の遊星歯車の遊星軸32aを通過させ、かつ遊星軸32aに対し第一制御回転体31を円周方向に回動可能にするものであり、第2平行ピン孔31fには回動用平行ピン15を嵌入し、回動用平行ピン15は後方に向けて突出する。また、第2制御回転体33は、前縁部にフランジ部を有すると共に、このフランジ部の後方に太陽歯車33aを設ける。これら第1制御回転体31及び第2制御回転体33は、従動回転体3の前方円筒部13に遊嵌し、この前方円筒部13に対して相対的に回転可能であり、また前後方向にも動作可能である。 As shown in FIGS. 1 to 3 and FIGS. 5A and 5B, the first control rotator 31 includes a flange portion 31a located at the front edge portion and a cylindrical portion 31b extending rearward from the flange portion 31a. And a bottom portion 31c provided behind the cylindrical portion 31b. An internal gear 31d of the planetary drive mechanism is formed inside the cylindrical portion 3b, and the bottom portion 3c has three second circumferential grooves 31e and three second parallel pin holes 31f (FIG. 5B). )reference). The planetary shaft 32a of the planetary gear of the planetary gear mechanism is passed through the second circumferential groove 3e, and the first control rotator 31 is rotatable in the circumferential direction with respect to the planetary shaft 32a. The rotating parallel pin 15 is fitted into the two parallel pin holes 31f, and the rotating parallel pin 15 projects rearward. The second control rotator 33 has a flange portion at the front edge portion, and a sun gear 33a is provided behind the flange portion. The first control rotator 31 and the second control rotator 33 are loosely fitted in the front cylindrical portion 13 of the driven rotator 3, and can be rotated relative to the front cylindrical portion 13, and in the front-rear direction. Is also operable.
 第1制御回転体31のフランジ部31aの前方には円筒形状で、比較的大径の電磁クラッチである第1制動トルク付与手段35を設けると共に、第2制御回転体33の前方には、第1制動トルク付与手段35の内径よりも外径が小さい、電磁クラッチである円筒状の第2制動トルク付与手段36を配置する。第1制動トルク付与手段35及び第2制動トルク付与手段36は図示しないエンジンカバー等に回動不能に保持され、両制動トルク付与手段35,36の、各制御回転体31、33に対抗した面は、略同一面上に位置する。 A first braking torque applying means 35 that is a cylindrical and relatively large-diameter electromagnetic clutch is provided in front of the flange portion 31 a of the first control rotator 31, and a first brake rotator 33 is provided in front of the second control rotator 33. A cylindrical second braking torque applying means 36 that is an electromagnetic clutch and has an outer diameter smaller than the inner diameter of the first braking torque applying means 35 is disposed. The first braking torque applying means 35 and the second braking torque applying means 36 are non-rotatably held by an engine cover or the like (not shown), and surfaces of the both braking torque applying means 35 and 36 that oppose the control rotating bodies 31 and 33. Are located on substantially the same plane.
 上記のように構成した位相可変装置の動作について説明する。
 まず位相可変機構4の動作について図7を用いて説明する。図7(a)は、駆動回転体2と従動回転体3との相対位相角が0である状態を表し、図7(b)は駆動回転体2に対して従動回転体3がD1方向へ最も移動している状態を表し、図7(c)は従動回転体3がD2方向へ最も移動している状態を示している。そして駆動回転体2と従動回転体3とは、クランクシャフトからの駆動力を付与されて、D1方向に回転している。
The operation of the phase variable device configured as described above will be described.
First, the operation of the phase variable mechanism 4 will be described with reference to FIG. 7A shows a state in which the relative phase angle between the drive rotator 2 and the driven rotator 3 is 0, and FIG. 7B shows the drive rotator 2 in the direction D1 with respect to the drive rotator 2. FIG. FIG. 7C shows a state in which the driven rotor 3 is most moved in the direction D2. The drive rotator 2 and the driven rotator 3 are rotated in the D1 direction by being applied with a driving force from the crankshaft.
 図7(a)の状態から図7(c)の状態に従動回転体3を動作させるためには、第1制御回転体31をD2方向へ動作させる必要がある。この場合、第1制動トルク付与手段35を作動させ、第1制御回転体のフランジ部31aを第1制動トルク付与手段35に接触させ摩擦力を付与することで、第1制御回転体31へD2方向のトルクを付与し回転させ、それにより第1制御回転体に嵌装した回動用平行ピン15を通じて3つのロックプレート対141を動作させ、従動回転体3をD2方向へ動作させる。この場合第1制御回転体の内歯車31dを通じて、遊星歯車32が自転すると共に、太陽歯車33aがD1方向に回転するので、太陽歯車33aを有する第2制御回転体33と第2制動トルク付与手段36とが接触しない構成とする必要がある。なお制動トルク付与手段35は電磁クラッチでありON・OFFおよびその通電量を制御する。 In order to operate the driven rotator 3 from the state of FIG. 7A to the state of FIG. 7C, it is necessary to operate the first control rotator 31 in the D2 direction. In this case, the first braking torque applying means 35 is operated, the flange portion 31a of the first control rotating body is brought into contact with the first braking torque applying means 35, and a frictional force is applied to the first controlling rotating body 31 to D2. A direction torque is applied and rotated, whereby the three lock plate pairs 141 are operated through the rotating parallel pins 15 fitted to the first control rotating body, and the driven rotating body 3 is operated in the D2 direction. In this case, the planetary gear 32 rotates and the sun gear 33a rotates in the direction D1 through the internal gear 31d of the first control rotator. Therefore, the second control rotator 33 having the sun gear 33a and the second braking torque applying means are provided. It is necessary to set it as the structure which does not contact 36. The braking torque applying means 35 is an electromagnetic clutch, and controls ON / OFF and the energization amount thereof.
 図7(a)の状態から図7(b)の状態に従動回転体3を動作させるためには、第1制御回転体31をD1方向へ動作させる必要がある。この場合、第2制動トルク付与手段36を作動させ、第2制御回転体33のフランジ部を第2制動トルク付与手段36に接触させ摩擦力を付与することで、第2制御回転体33へD2方向のトルクを付与し回転させる。第2制御回転体33には太陽歯車33aが設けてあり、太陽歯車33aもD2方向へ回転するので、これに合わせて、スター型の遊星歯車機構の内歯車31dは逆のD1方向へ回転し、よって第1制御回転体31もD1方向へ回転する。この回転により第1制御回転体31に嵌装した回動用平行ピン15を通じて3つのロックプレート対141を動作させ、従動回転体3をD1方向へ動作させる。この場合第1制御回転体31と第1制動トルク付与手段35とが接触しない構成とする必要がある。また、この場合歯数比が太陽歯車33a:内歯車31d=1:2となっているので、遊星歯車機構の減速機構により第2制動トルク付与手段36により発生したトルクが2倍になり従動回転体3を動作させる。 In order to operate the driven rotating body 3 from the state of FIG. 7A to the state of FIG. 7B, it is necessary to operate the first control rotating body 31 in the D1 direction. In this case, the second braking torque applying means 36 is operated, the flange portion of the second control rotating body 33 is brought into contact with the second braking torque applying means 36, and a frictional force is applied to the second controlling rotating body 33 to D2. Apply direction torque and rotate. The second control rotor 33 is provided with a sun gear 33a, and the sun gear 33a also rotates in the D2 direction. Accordingly, the internal gear 31d of the star-type planetary gear mechanism rotates in the opposite D1 direction. Therefore, the first control rotator 31 also rotates in the direction D1. By this rotation, the three lock plate pairs 141 are operated through the rotating parallel pins 15 fitted to the first control rotating body 31, and the driven rotating body 3 is moved in the D1 direction. In this case, it is necessary that the first control rotating body 31 and the first braking torque applying means 35 are not in contact with each other. In this case, since the gear ratio is sun gear 33a: internal gear 31d = 1: 2, the torque generated by the second braking torque applying means 36 is doubled by the speed reduction mechanism of the planetary gear mechanism, and the driven rotation is performed. The body 3 is moved.
 位相可変機構4を、遊星歯車機構と、制御回転体31、33と、制動トルク付与手段35、36とから構成すると共に、遊星歯車機構を、駆動回転体2を遊星キャリアとするいわゆるスター型の遊星歯車機構とすることにより、摩擦による一方向の駆動トルクを与えることで、二方向に位相可変装置を動作させる構成とすることができる。これにより位相可変機構を簡易な構成とすることができる。 The phase variable mechanism 4 is composed of a planetary gear mechanism, control rotators 31, 33, and braking torque applying means 35, 36, and the planetary gear mechanism is a so-called star-type having the driving rotator 2 as a planet carrier. By using a planetary gear mechanism, it is possible to provide a configuration in which the phase variable device is operated in two directions by applying a driving torque in one direction due to friction. Thereby, a phase variable mechanism can be made into a simple structure.
 電磁クラッチである比較的大径の第1制動トルク付与手段35により第1制御回転体31に摩擦トルクを付与すると共に、この第1制動トルク付与手段35の内径よりも小さい外径を有する第2制動トルク付与手段36により第2制御回転体33に摩擦トルクを付与する構成としたことにより、小径の第2制動トルク付与手段36により発生するトルクを遊星歯車機構の減速機構により大きくすることができる。これにより相対位相角を変更するのに必要なトルクをコンパクトな構成で達成することができる。 A friction torque is applied to the first control rotor 31 by the first braking torque applying means 35 having a relatively large diameter, which is an electromagnetic clutch, and a second outer diameter smaller than the inner diameter of the first braking torque applying means 35. Since the friction torque is applied to the second control rotor 33 by the braking torque applying means 36, the torque generated by the small-diameter second braking torque applying means 36 can be increased by the reduction mechanism of the planetary gear mechanism. . Thereby, the torque required to change the relative phase angle can be achieved with a compact configuration.
 次に図8、図9を用いてカムトルクが入力された場合に、ロックプレートのセルフロック機能がどのように働くかを説明する。なお、説明においては、3組あるロックプレート対141の一つについて説明するが、他のロックプレート対は従動回転体3の軸心を中心に120度回転したものと同じであるので説明を省略する。まず、カムトルクが入力されていない状態を説明する。カムトルクが入力されていない場合、従動回転体3は、駆動回転体2と相対位相角にズレが生じないように同じ回転数で回転する。即ち圧縮コイルばねである付勢部材25により円周方向に各ロックプレート対141が付勢されるので、ロックプレート14の外周と円筒部11aの内周面の間には摩擦力が生じ、この摩擦力により従動回転体3は、駆動回転体2との間の相対位相角にズレが生じないように同じ回転数で回転する。なお付勢部材25により付勢されているため、ロックプレート14と従動回転体3とは、面接触でなく線接触するようになる。ロックプレート14aの受圧面と、保持部71のプレート押圧面71aとは、PA1を通り軸心L0に平行な直線においてにおいて接触し、ロックプレート14bの受圧面と、プレート押圧面71aとは、PB1を通り軸心L0に平行な線において接触している。 Next, how the self-locking function of the lock plate works when cam torque is input will be described with reference to FIGS. In the description, one of the three lock plate pairs 141 will be described. However, the other lock plate pairs are the same as those rotated 120 degrees around the axis of the driven rotor 3, and the description is omitted. To do. First, a state where no cam torque is input will be described. When the cam torque is not input, the driven rotator 3 rotates at the same rotation speed so as not to cause a deviation in relative phase angle with the drive rotator 2. That is, since each pair of lock plates 141 is biased in the circumferential direction by the biasing member 25 that is a compression coil spring, a frictional force is generated between the outer periphery of the lock plate 14 and the inner peripheral surface of the cylindrical portion 11a. The driven rotator 3 rotates at the same rotational speed so that the relative phase angle between the driven rotator 3 and the drive rotator 2 does not shift due to the frictional force. Since the biasing member 25 is biased, the lock plate 14 and the driven rotor 3 come into line contact instead of surface contact. The pressure receiving surface of the lock plate 14a and the plate pressing surface 71a of the holding portion 71 are in contact with each other on a straight line passing through PA1 and parallel to the axis L0, and the pressure receiving surface of the lock plate 14b and the plate pressing surface 71a are PB1. Through the line parallel to the axis L0.
 次にカムトルクが入力された場合を説明する。図8は進角方向のカム負トルクが発生した状態を示す。進角方向のカムトルクが生じると、カムシャフト3aに回動不能に結合されている従動回転体3には図に示すCT1のトルクが生じる。そして、カムトルクが入力されていない状態ではロックプレート14aの受圧面と、保持部71のプレート押圧面71aとは、作用点PA1を通る直線で接触しているので、従動回転体3からロックプレート14aへは、作用点PA1から半径方向(図8において上方)へF01の力が生じ、これによりロックプレート14aと円筒部11aの内周面にも図8において上方にF02の力が生じる。このF02は、円周方向に生じる力と半径方向に生じる力に分解でき、半径方向に生じる力により生じる摩擦力は、付勢部材25による摩擦力と合わせて駆動回転体2と従動回転体3との相対位相角を保持するが、円周方向に生じる力は前記相対位相角にズレを生じさせる。よって円周方向に生じる力を、二つの摩擦力未満に抑えることにより相対位相角のズレを防止できる。本発明の実施形態においては、図8に示すように第一ロックプレート14aの薄肉部において、受圧部に接する角部にR面取りを行うことにより、作用点PA1を受圧部の中心線(従動回転体3の軸心L0と平行な線)に近づけることができ、F02により円周方向に生じる力を小さくすることができる。この場合ロックプレート14の受圧面及びこの受圧面に対向するプレート押圧面71a間の力の作用点とは、PA1を言う。 Next, the case where cam torque is input will be described. FIG. 8 shows a state where the cam negative torque in the advance direction is generated. When the cam torque in the advance direction is generated, the torque of CT1 shown in the figure is generated in the driven rotating body 3 that is non-rotatably coupled to the camshaft 3a. In the state where the cam torque is not input, the pressure receiving surface of the lock plate 14a and the plate pressing surface 71a of the holding portion 71 are in contact with each other by a straight line passing through the action point PA1. The force F01 is generated in the radial direction (upward in FIG. 8) from the action point PA1, and accordingly, the force F02 is also generated upward in FIG. 8 on the inner peripheral surfaces of the lock plate 14a and the cylindrical portion 11a. This F02 can be decomposed into a force generated in the circumferential direction and a force generated in the radial direction, and the frictional force generated by the force generated in the radial direction is combined with the frictional force by the biasing member 25 and the driving rotary body 2 and the driven rotary body 3. The force generated in the circumferential direction causes a shift in the relative phase angle. Therefore, the shift of the relative phase angle can be prevented by suppressing the force generated in the circumferential direction to less than two frictional forces. In the embodiment of the present invention, as shown in FIG. 8, in the thin portion of the first lock plate 14a, the corner of the first lock plate 14a is rounded at the corner that is in contact with the pressure receiving portion, so The line parallel to the axis L0 of the body 3), and the force generated in the circumferential direction by F02 can be reduced. In this case, the point of action of the force between the pressure receiving surface of the lock plate 14 and the plate pressing surface 71a facing the pressure receiving surface refers to PA1.
 図9は遅角方向のカム正トルクが発生した状態を示す。遅角方向のカムトルクが生じると、従動回転体3には図にあるようなCT2のトルクが生じ、進角方向の場合と同様、従動回転体からロックプレート14bへは、PB1から半径方向(図9において上方)へF11の力が生じ、これによりロックプレート14bと円筒部11aの内周面にも図9において上方にF12の力が生じる。このF12についても円周方向に生じる力と半径方向に生じる力に分解でき、円周方向に生じる力を、二つの摩擦力未満に抑えることにより相対位相角のズレを防止できる。そして受圧部に接する角部にR面取りを行うことによりF12により円周方向に生じる力を小さくすることができる。この場合ロックプレート14の受圧面及びこの受圧面に対向するプレート押圧面71a間の力の作用点はPB1を言う。 FIG. 9 shows a state where the cam positive torque in the retard direction is generated. When the cam torque in the retard angle direction is generated, the torque of CT2 as shown in the figure is generated in the driven rotating body 3, and as in the advanced angle direction, the driven rotating body to the lock plate 14b is moved radially from PB1 (see FIG. F11 force is generated upward in FIG. 9, and thereby F12 force is also generated upward in FIG. 9 on the inner peripheral surfaces of the lock plate 14b and the cylindrical portion 11a. This F12 can also be decomposed into a force generated in the circumferential direction and a force generated in the radial direction, and the shift of the relative phase angle can be prevented by suppressing the force generated in the circumferential direction to less than two frictional forces. And the force which produces in the circumferential direction by F12 can be made small by carrying out R chamfering at the corner | angular part which touches a pressure receiving part. In this case, the point of action of the force between the pressure receiving surface of the lock plate 14 and the plate pressing surface 71a facing the pressure receiving surface is PB1.
 次に、駆動回転体2と従動回転体3との相対位相角を変更する場合の力の作用の仕方を図10、図11により説明する。なお図10は、一つのロックプレート対141について説明したものであるが、他のロックプレート対141についても同様の力が発生する。図10は従動回転体3が駆動回転体2に対して進角方向であるD1方向に相対位相角を変更する場合を示す。位相可変機構4より回動用平行ピン15に円周方向にF21の力が加えられると、付勢部材25の付勢力に対抗する力が加えられ、ロックプレート14aの受圧面と保持部71のプレート押圧面71aとは、作用点PA1を通る直線での接触から、作用点PA2を通る直線での接触に変わる。この場合F21の力により、図10において下方向のF22の力が受圧面からプレート押圧面71aに加えられ、このF22により、従動回転体3に対してMT1のトルクが加えられ、従動回転体3が駆動回転体2に対して相対位相角をD1方向へ変化させるように動作する。 Next, how the force acts when changing the relative phase angle between the drive rotator 2 and the driven rotator 3 will be described with reference to FIGS. FIG. 10 illustrates one lock plate pair 141, but the same force is generated for the other lock plate pair 141. FIG. 10 shows a case where the driven rotator 3 changes the relative phase angle in the direction D1 that is the advance direction with respect to the drive rotator 2. When a force F21 is applied in the circumferential direction from the phase variable mechanism 4 to the rotating parallel pin 15, a force that opposes the urging force of the urging member 25 is applied, and the pressure receiving surface of the lock plate 14a and the plate of the holding portion 71 are applied. The pressing surface 71a changes from contact on a straight line passing through the action point PA1 to contact on a straight line passing through the action point PA2. In this case, the force of F21 in FIG. 10 is applied from the pressure receiving surface to the plate pressing surface 71a by the force of F21, and the torque of MT1 is applied to the driven rotating body 3 by this F22. Operates so as to change the relative phase angle in the direction D1 with respect to the drive rotor 2.
 図11は従動回転体3が駆動回転体2に対して遅角方向であるD2方向に相対位相角を変更する場合を示す。位相可変機構4より回動用平行ピン15に円周方向にF31の力が加えられると、付勢部材25の付勢力に対抗する力が加えられ、ロックプレート14aの受圧面と保持部71のプレート押圧面71aとは、作用点PB1を通る直線での接触から、作用点PB2を通る直線での接触に変わる。この場合F31の力により、図11において下方向のF32の力が受圧面からプレート押圧面71aに加えられ、このF32により従動回転体3に対してMT2のトルクが加えられ、従動回転体3が駆動回転体2に対して相対位相角をD2方向へ変化させるように動作する。 FIG. 11 shows a case where the driven rotator 3 changes the relative phase angle in the direction D2, which is the retarded direction with respect to the drive rotator 2. When the force of F31 is applied in the circumferential direction to the rotating parallel pin 15 from the phase variable mechanism 4, a force that opposes the urging force of the urging member 25 is applied, and the pressure receiving surface of the lock plate 14a and the plate of the holding portion 71 are applied. The pressing surface 71a changes from contact on a straight line passing through the action point PB1 to contact on a straight line passing through the action point PB2. In this case, due to the force of F31, the downward force of F32 in FIG. 11 is applied from the pressure receiving surface to the plate pressing surface 71a, and the torque of MT2 is applied to the driven rotating body 3 by this F32, and the driven rotating body 3 is It operates so as to change the relative phase angle in the direction D2 with respect to the drive rotor 2.
 ロックプレート14と従動回転体3との力の作用点と、従動回転体3の回転中心との距離について、カムトルクを受ける時の作用点PA1との距離が、相対位相角を変更するときの作用点PA2との距離よりも小さいことにより、相対位相角を変更する場合に比較してカムトルクを受ける場合に、カムトルクの影響を小さくできる。これによりセルフロック機能を適切に働かせることができる。 Regarding the distance between the action point of force between the lock plate 14 and the driven rotator 3 and the rotation center of the driven rotator 3, the distance from the action point PA1 when receiving cam torque changes the relative phase angle. By being smaller than the distance from the point PA2, the influence of the cam torque can be reduced when the cam torque is received compared to the case where the relative phase angle is changed. As a result, the self-lock function can be appropriately operated.
 ロックプレート対141を構成する第1ロックプレート14a(14c、14e)及び第2ロックプレート14b(14d、14f)の受圧部が、従動回転体3の一のプレート押圧面71a(71b、71c)に対向する構成としたことにより、従動回転体3に設けるプレート押圧面の個数を少なくすることができ、位相可変装置の製造コストを抑えることができる。 The pressure receiving portions of the first lock plate 14a (14c, 14e) and the second lock plate 14b (14d, 14f) constituting the lock plate pair 141 are provided on one plate pressing surface 71a (71b, 71c) of the driven rotor 3. By adopting the opposing configuration, the number of plate pressing surfaces provided on the driven rotor 3 can be reduced, and the manufacturing cost of the phase variable device can be suppressed.
 本実施形態においては2つの電磁クラッチを用いたが、制動トルク付与手段としてばね等を用いてもよい。また、遊星歯車機構を用いず、セルフロック機構を構成するロックプレート14に直接電動モータ等により回動トルクを付与する構成としてもよい。 In this embodiment, two electromagnetic clutches are used, but a spring or the like may be used as the braking torque applying means. Moreover, it is good also as a structure which provides rotation torque directly with the electric motor etc. to the lock plate 14 which comprises a self-locking mechanism, without using a planetary gear mechanism.
1 位相可変装置
2 駆動回転体
3 従動回転体
3a カムシャフト
4 位相可変機構
11a 円筒部
14 ロックプレート
14a、14c、14e 第1ロックプレート
14b、14d、14f 第2ロックプレート
25 付勢部材
31 第1制御回転体
31d 内歯車
32 遊星歯車
33 第2制御回転体
33a 太陽歯車
35 第1制動トルク付与手段
36 第2制動トルク付与手段
71 保持部
71a~71c プレート押圧面
141 ロックプレート対
PA1、PB1 カムトルクを受ける時の作用点
PA2、PB2 相対位相角を変更する時の作用点
DESCRIPTION OF SYMBOLS 1 Phase variable apparatus 2 Drive rotary body 3 Driven rotary body 3a Camshaft 4 Phase variable mechanism 11a Cylindrical part 14 Lock plate 14a, 14c, 14e 1st lock plate 14b, 14d, 14f 2nd lock plate 25 Energizing member 31 1st Control rotating body 31d Internal gear 32 Planetary gear 33 Second control rotating body 33a Sun gear 35 First braking torque applying means 36 Second braking torque applying means 71 Holding portions 71a to 71c Plate pressing surface 141 Lock plate pair PA1, PB1 Action points when receiving PA2, PB2 Action points when changing relative phase angle

Claims (6)

  1.  内燃機関のクランクシャフトに対するカムシャフトの相対位相角を変化させることで、機関弁のバルブタイミングを変化させる位相可変装置であって、
    この位相可変装置には、
    前記クランクシャフトから回転を伝達される駆動回転体と、この駆動回転体と同軸の前記カムシャフト側の従動回転体と、
    これらの回転体同士の相対位相角を変更し、位相可変装置を制御する位相可変機構と、を備えると共に、
    前記駆動回転体には円筒部を備え、
    前記従動回転体には、外周にフランジ状に複数のプレート押圧面からなる多角柱形状の保持部を一体形成し、
    この保持部と前記円筒部との間には、外周面が前記円筒部に内接し、かつ受圧部が前記保持部によって前記従動回転体に対して相対回動不能に保持される複数のロックプレートを配置し、
    カムトルクを受けた前記保持部が、前記ロックプレートを前記駆動回転体の円筒部に押し付けるセルフロック機構によって、前記駆動回転体に対する前記従動回転体の相対位相角を維持する構成とすると共に、
    前記ロックプレートが、進角方向のカムトルクを受ける第1ロックプレートと、遅角方向のカムトルクを受ける第2ロックプレートとからなり、
    かつ一の第1ロックプレートと一の第2ロックプレートとを、前記従動回転体の軸方向に重複するように配置したことを特徴とするセルフロック機構付位相可変装置。
    A phase variable device that changes a valve timing of an engine valve by changing a relative phase angle of a camshaft with respect to a crankshaft of an internal combustion engine,
    In this phase variable device,
    A drive rotator to which rotation is transmitted from the crankshaft; a driven rotator on the camshaft side coaxial with the drive rotator;
    A phase variable mechanism that changes the relative phase angle between these rotating bodies and controls the phase variable device, and
    The drive rotating body includes a cylindrical portion,
    The driven rotator is integrally formed with a polygonal column-shaped holding portion including a plurality of plate pressing surfaces in a flange shape on the outer periphery,
    Between the holding portion and the cylindrical portion, a plurality of lock plates whose outer peripheral surface is inscribed in the cylindrical portion and whose pressure receiving portion is held by the holding portion so as not to be rotatable relative to the driven rotating body. And place
    The holding portion that receives the cam torque is configured to maintain a relative phase angle of the driven rotator with respect to the drive rotator by a self-locking mechanism that presses the lock plate against the cylindrical portion of the drive rotator,
    The lock plate includes a first lock plate that receives cam torque in the advance direction and a second lock plate that receives cam torque in the retard direction,
    A phase varying device with a self-locking mechanism, wherein one first lock plate and one second lock plate are arranged so as to overlap in the axial direction of the driven rotating body.
  2.  前記従動回転体の軸方向に重複するように配置した、第1ロックプレートと第2ロックプレートとによりロックプレート対を構成し、
    このロックプレート対を前記カムシャフトの円周方向に複数配置すると共に、
    これらロックプレート対の間に、前記従動回転体の円周方向に力を付与する付勢部材を設けたことを特徴とする請求項1に記載の自動車用エンジンの位相可変装置。
    A lock plate pair is constituted by a first lock plate and a second lock plate arranged so as to overlap in the axial direction of the driven rotor,
    A plurality of lock plate pairs are arranged in the circumferential direction of the camshaft,
    2. The phase varying device for an automobile engine according to claim 1, wherein a biasing member for applying a force in a circumferential direction of the driven rotor is provided between the pair of lock plates.
  3.  ロックプレートの受圧面及びこの受圧面に対向するプレート押圧面間の力の作用点と、前記従動回転体の回転中心との間の距離について、
    カムトルクを受ける時の作用点との距離が、相対位相角を変更する時の作用点との距離よりも小さいことを特徴とする請求項1又は請求項2に記載のセルフロック機構付位相可変装置。
    About the distance between the pressure receiving surface of the lock plate and the action point of the force between the plate pressing surface facing this pressure receiving surface and the rotation center of the driven rotating body,
    The phase varying device with a self-locking mechanism according to claim 1 or 2, wherein a distance from the operating point when receiving the cam torque is smaller than a distance from the operating point when changing the relative phase angle. .
  4.  前記ロックプレート対を構成する第1ロックプレート及び第2ロックプレートの受圧部が、
    前記従動回転体の一のプレート押圧面に対向することを特徴とする請求項2又は請求項3に記載のセルフロック機構付位相可変装置。
    The pressure receiving portions of the first lock plate and the second lock plate constituting the lock plate pair,
    The phase varying device with a self-locking mechanism according to claim 2 or 3, wherein the phase varying device faces a plate pressing surface of the driven rotating body.
  5.  前記位相可変機構を、
    遊星歯車機構と、
    この遊星歯車機構の構成部材を有する制御回転体と、
    この制御回転体に回動トルクを与える制動トルク付与手段とから構成すると共に、
    前記遊星歯車機構を、
    第1制御回転体に設けた内歯車と、
    第2制御回転体に設けた太陽歯車と、
    前記駆動回転体を遊星キャリアとする遊星歯車と、により構成し、
    前記制動トルク付与手段を作動させることで、前記第1制御回転体もしくは第2制御回転体と前記ロックプレートとを一体として回動させ、
    前記駆動回転体と従動回転体との相対位相角を変更する請求項1から請求項4のいずれか1項に記載のセルフロック機構付位相可変装置。
    The phase variable mechanism is
    A planetary gear mechanism,
    A control rotor having components of the planetary gear mechanism;
    A brake torque applying means for applying a rotation torque to the control rotating body,
    The planetary gear mechanism,
    An internal gear provided on the first control rotor;
    A sun gear provided on the second control rotor;
    A planetary gear having the drive rotor as a planet carrier,
    By operating the braking torque applying means, the first control rotator or the second control rotator and the lock plate are rotated together,
    The phase variable device with a self-locking mechanism according to any one of claims 1 to 4, wherein a relative phase angle between the driving rotating body and the driven rotating body is changed.
  6.  前記制動トルク付与手段を、円筒形状の第1制動トルク付与手段と、この第1制動トルク付与手段の内径よりも外径が小さい第2制動トルク付与手段とにより構成し、
    前記第1制動トルク付与手段により第1制御回転体に制動トルクを付与すると共に、
    前記第2制動トルク付与手段により第2制御回転体に制動トルクを付与する構成としたことを特徴とする請求項5に記載のセルフロック機構付位相可変装置。
    The braking torque applying means includes a cylindrical first braking torque applying means and a second braking torque applying means having an outer diameter smaller than the inner diameter of the first braking torque applying means,
    Applying the braking torque to the first control rotor by the first braking torque applying means;
    6. The phase varying device with a self-locking mechanism according to claim 5, wherein a braking torque is applied to the second control rotating body by the second braking torque applying means.
PCT/JP2013/055800 2013-03-04 2013-03-04 Phase varying device for internal combustion engine WO2014136169A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015504013A JP6053915B2 (en) 2013-03-04 2013-03-04 Phase variable device for internal combustion engine
PCT/JP2013/055800 WO2014136169A1 (en) 2013-03-04 2013-03-04 Phase varying device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/055800 WO2014136169A1 (en) 2013-03-04 2013-03-04 Phase varying device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2014136169A1 true WO2014136169A1 (en) 2014-09-12

Family

ID=51490738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055800 WO2014136169A1 (en) 2013-03-04 2013-03-04 Phase varying device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP6053915B2 (en)
WO (1) WO2014136169A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209746A (en) * 2008-03-03 2009-09-17 Nittan Valve Co Ltd Phase changing device for engine for automobile engine
WO2012049727A1 (en) * 2010-10-12 2012-04-19 日鍛バルブ株式会社 Phase variable device of engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209746A (en) * 2008-03-03 2009-09-17 Nittan Valve Co Ltd Phase changing device for engine for automobile engine
WO2012049727A1 (en) * 2010-10-12 2012-04-19 日鍛バルブ株式会社 Phase variable device of engine

Also Published As

Publication number Publication date
JP6053915B2 (en) 2016-12-27
JPWO2014136169A1 (en) 2017-02-09

Similar Documents

Publication Publication Date Title
US8677963B2 (en) Electrical camshaft phaser with energy recovery
US8418665B2 (en) Variable phase controller for automotive engine
US9810108B2 (en) Engine variable camshaft timing phaser with planetary gear assembly
EP3663546B1 (en) Mechanical cam phasing systems and methods
JP7449310B2 (en) System and method for controlled relative rotational movement
JP5030964B2 (en) Engine valve control device
JP2010001877A (en) Valve timing adjusting device
KR20110137155A (en) Continuous variable valve timing apparatus
JP2015045281A (en) Valve opening/closing timing control device
JP2013536362A (en) Valve train for piston engines
JP6053915B2 (en) Phase variable device for internal combustion engine
JP2007127057A (en) Mounting structure for valve timing adjusting device
JP5260741B2 (en) Engine phase variable device
JP4309440B2 (en) Valve timing control device for internal combustion engine
JPH07279632A (en) Cam shaft phase changing device of internal combustion engine
JP5247871B2 (en) Engine valve control device
WO2014109050A1 (en) Phase shifting device for automotive-vehicle engine
JP2009092078A (en) Valve timing control device for internal combustion engine
JP4389861B2 (en) Variable valve timing device for internal combustion engine
JP3964158B2 (en) Valve timing control device for internal combustion engine
JP3996755B2 (en) Valve timing control device for internal combustion engine
JP2003120227A (en) Valve timing control device for internal combustion engine
JP2008115867A (en) Control device for variable valve timing mechanism
JP2008082343A (en) Valve timing control device for internal combustion engine
WO2013157131A1 (en) Engine variable phase device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877206

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504013

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877206

Country of ref document: EP

Kind code of ref document: A1