WO2014135760A1 - Dispositif sans contact de caracterisation d'un signal electrique - Google Patents

Dispositif sans contact de caracterisation d'un signal electrique Download PDF

Info

Publication number
WO2014135760A1
WO2014135760A1 PCT/FR2014/050400 FR2014050400W WO2014135760A1 WO 2014135760 A1 WO2014135760 A1 WO 2014135760A1 FR 2014050400 W FR2014050400 W FR 2014050400W WO 2014135760 A1 WO2014135760 A1 WO 2014135760A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical
voltage
circuit
signal
characterizing
Prior art date
Application number
PCT/FR2014/050400
Other languages
English (en)
Inventor
Dorian TOURIN-LEBRET
Thibault TOLEDANO
Original Assignee
Smart Impulse
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smart Impulse filed Critical Smart Impulse
Priority to EP14713180.9A priority Critical patent/EP2965095A1/fr
Priority to CA2903609A priority patent/CA2903609A1/fr
Priority to US14/771,601 priority patent/US20160003871A1/en
Publication of WO2014135760A1 publication Critical patent/WO2014135760A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/04Voltage dividers
    • G01R15/06Voltage dividers having reactive components, e.g. capacitive transformer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/142Arrangements for simultaneous measurements of several parameters employing techniques covered by groups G01R15/14 - G01R15/26
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/04Measuring peak values or amplitude or envelope of ac or of pulses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/06Arrangements for measuring electric power or power factor by measuring current and voltage

Definitions

  • the present invention relates to the characterization of the electrical signal flowing in a conductor, for various applications, and in particular for the characterization of the electrical consumption of a building.
  • the invention relates to the field of non-contact sensors for carrying out such characterizations, on a conductor which remains energized and which is not interrupted, even at the time of installation of the sensor.
  • the aim of the invention is to determine the relative proportion of each type of equipment among the total consumption, with a single measurement point, with algorithms using current measurements taken. in a single point of an electrical installation, regardless of its distribution architecture. In doing so, they do not provide information on the location of equipment in operation, because the signal picked up does not differ according to the path traveled by the energy.
  • Such a meter can be used individually to measure the consumption of a sub-network of an electrical installation.
  • the invention particularly relates to non-contact electrical sensors interacting with a conductor by electromagnetic induction.
  • Inductive sensors constituted by an induction loop which can be placed around an electrical conductor, and providing a signal representative of the electric current, by application of the Maxwell effect, are known in the state of the art.
  • the US patent application US201 1074382 discloses a non-contact current sensor having the advantage of calculating the electrical energy consumed by means of a measurement of voltage made by contact with the electrical conductor or conductors studied.
  • the device is powered by converting the energy captured by the galvanic connection with the live conductor.
  • the international patent application WO201 133548 presents a method for measuring the voltage of a contactless conductor by exploiting the electric field radiated by the live conductor, the amplitude of the voltage of the conductor studied being deduced from the amplitude of the voltage at the terminals of the pair of armatures forming a capacitor with known properties.
  • This solution makes it possible to measure the voltage of a conductor using a custom-made device.
  • US patent application US20120074929 discloses an energy meter measuring the non-contact current and the contact voltage, and then transmitting the measured data by a wireless communication mode. This solution makes it possible to measure the power consumption of an installation and transmit the information remotely, the wiring being limited to the connection to the electrical network.
  • the European patent application EP1684080 discloses a current sensor adapted to busbars, having the particularity of finding its power source by sensing the energy conveyed by the magnetic field radiated by the busbar on which it is placed.
  • This solution autonomously provides current measurement and wireless information transmission, but requires custom mechanical design and multiple magnetic components to ensure its operation.
  • a flexible printed circuit having multiple layers including a voltage sensing layer, a winding and a grounding layer.
  • the winding surrounds around a conductor when the flexible printed circuit is wrapped around the conductor.
  • the winding generates a voltage that can be integrated to determine a current in the conductor.
  • the voltage sensing layer is as close to the conductor as possible.
  • the voltage sensing layer forms a capacitor with the conductor.
  • International Patent Application WO02097454 discloses a three-phase voltage detector with active cancellation of crosstalk.
  • the active cancellation of the crosstalk is performed using a capacitive voltage divider for each phase of the system.
  • a voltage measurement is obtained for the desired phase and for each additional phase of the system.
  • a product is calculated by multiplying the voltage measurement of each additional phases by a corresponding predetermined constant, and then subtracting said product from the voltage measurement of the desired phase.
  • the proposed invention sets out to define a system for exploiting the signals supplied by current transformers to measure the consumption of the studied electrical network without requiring additional wiring and not requiring connection to a potential reference.
  • the invention relates, in its most general sense, to a non-contact device for characterizing the electrical signal passing through an electrical conductor, comprising an inductive electromagnetic coupling means capable of surrounding said characterized conductor. it further comprises means for short-circuiting the output of said inductive coupling means, said output being connected to an electronic circuit for measuring the potential difference with respect to a floating mass to deliver a signal representative of the voltage between the segment of said conductor passing through the device, and a fixed potential reference.
  • the device is devoid of connection means to a potential reference, and in particular does not require a ground connection.
  • the inductive electromagnetic coupling means is constituted by a ferrite toroid surrounding a conductor whose character is sought to characterize the electrical signal.
  • This torus is itself surrounded by a coil whose two ends constitute the outputs connected to the electrical circuit.
  • the torus may consist of two connectable parts to facilitate the establishment around a conductor without it being necessary to cut the latter to set up the torus.
  • said electrical circuit comprises signal conditioning means measured between the short-circuit output and the floating ground, for amplifying the signal and adapting the impedance as a function of the means for measuring the potential difference.
  • the device further comprises a power storage circuit powered by the output of said inductive coupling means when it is not in a state of short circuit.
  • the device further comprises additional inductive coupling means for supplying an energy storage circuit.
  • said energy storage means comprises two energy reserves in series connected to said inductive coupling means, only one of said reserves delivering a supply voltage of the device.
  • the device further comprises an electric circuit for delivering a signal representative of the current flowing in said conductor, connected to the output of said inductive coupling means.
  • the device comprises an analog multiplexer delivering a first signal for the measurement of current, a second signal for the measurement of voltage and a third signal for supplying the device.
  • it comprises a plurality of inductive coupling means connected to said analog multiplexer.
  • the device further comprises a wireless transmission means powered by said energy storage means.
  • the invention also relates to a system comprising a plurality of non-contact devices further comprising a circuit for analyzing the information delivered by each of said devices, for locating on an electrical network the electrical charges inducing the variations of said information.
  • the system according to the invention furthermore comprises a general consumption sensor measuring the current and voltage variations of a general mains supply comprising said devices and said electric charges, said consumption sensor also providing individual consumption information.
  • the system further comprising a circuit for analyzing the correlations between the information provided by said general consumption sensor and said devices, and providing localized information of the network load consumption.
  • Figure 1 shows the overall block diagram of the device.
  • FIG. 2 shows an example of a process implemented to measure electrical quantities and transmit information.
  • Figure 3 shows an example of a non-exhaustive electronic scheme of the system as described in this invention.
  • Figure 4 presents examples of characterization of localized apparent powers estimated from the measurements of the device.
  • FIG. 5 presents examples of localized apparent power characterizations estimated from a device for measuring the general consumption of the studied network.
  • the present invention aims to measure the power consumption of an electrical sub-network in a non-intrusive manner, that is to say without requiring any cut-off or additional wiring.
  • the essence of the invention lies in the ability of the system to extract its power from the current transformer or transformers used to perform the current measurement and its ability to measure the voltage with the same sensor.
  • Figure 1 shows the overall block diagram of the device.
  • the measurement of the electrical consumption of a plurality of equipment connected to a sub-network requires the measurement of several quantities, at least the forms of wave of the current supplying the loads and the voltage presented at their terminals. These two quantities make it possible to calculate the instantaneous active power absorbed by said plurality of devices and, by integration, the active energy consumed over a period of time.
  • the simple measurement of the current flowing in a cable is therefore not sufficient to determine the energy consumption accurately, because it presupposes the choice of the effective value of the voltage and the power factor.
  • the present invention exploits an intensity transformer (1) as a voltage sensor, in order to limit the number of sensors required to measure the power consumption.
  • a current transformer whose constitution will be detailed later, is mounted so that its secondary circuit is in short circuit. From the outside, the current transformer is thus reduced to a single conductor, such as an antenna.
  • the winding of the secondary circuit, placed near the primary conductor interacts with the electrostatic field radiated by the live conductor and in turn undergoes a variation of its electrical potential which can be measured by measuring voltage between the secondary of the current transformer shorted and a potential reference.
  • the position of the conductor relative to the secondary circuit of the current transformer is known.
  • a capacitive sensor is implemented.
  • a cable undergoing an alternating voltage with respect to a fixed potential radiates an electric field quasi-independent of the current flowing therethrough.
  • a capacitor is an electronic component whose voltage at its terminals is proportional to the intensity of the electric field in which it is immersed.
  • the capacitor Since the electric field radiated by said cable is largely dependent on the distance separating the receiver from said cable, the amplitude of the voltage can not be faithfully measured by this means.
  • the capacitor whatever its distance from the cable, the capacitor has at its terminals a voltage whose waveform is close to that of the voltage existing between said cable and the ground, and whose zero crossings are faithfully reproduced.
  • the phase difference between the waveform of the voltage and the waveform of the current can be determined by calculating the phase difference between the two fundamentals of the two waveforms involved.
  • a phase reference of the zero crossing of the signal provided by the capacitor placed near the cable taking into account a possible constant bias, makes it possible to calculate the phase shift and, consequently, the active power absorbed by the loads connected downstream of this cable, the only possible error residing in the rms value of the voltage.
  • the device for this measurement is composed of a capacitor, a connecting cable and a comparator.
  • the capacitor can be of several types, the best results being obtained with ceramic capacitors of low value, less than 100 pF, or flat electrodes vis-à-vis placed on either side of a dielectric support.
  • the connection cable which must be as short as possible and have sufficient shielding so as not to disturb, connects the two terminals of said capacitor to the inputs of an electronic comparator whose output signal has two distinct values depending on whether the capacitor is polarized in one direction or the other.
  • the digital signal from the comparator is supplied to a microcontroller for further processing.
  • the number of capacitive sensors used may vary. Either a capacitive sensor is used in pairs with each current sensor. Either a single capacitive sensor is used with a single current sensor, the others current sensors being positioned on cables whose voltage is known. This is the case on all the cables of a single-phase installation, or on the three phases of a three-phase network. In the latter case, the phase shifts are spaced 120 °. Current sensors
  • One or more current transformers (1) are employed for non-intrusively and isolated measurement of the waveform of the electrical current flowing in a cable. These sensors, based on the principle of converting the magnetic flux generated by the displacement of electrical charges in a conductor called the primary circuit into an electric current of proportional amplitude flowing in a winding called secondary circuit, are widely used in the industry for the measurement of alternating currents.
  • these transformers have a material with good properties for channeling the magnetic flux and directing it to the secondary winding.
  • This material may be ferrite.
  • said material forms a ring around the primary circuit.
  • said material forming a ring around the primary circuit, is separated into two parts to allow its positioning around the primary circuit without requiring cutting and therefore opening of the primary circuit. This is an advantage of non-intrusiveness.
  • the current flowing in the secondary circuit is proportional to the current flowing in the primary circuit, the proportionality factor being the ratio of the number of turns made by the primary circuit by relative to the number of turns made by the secondary circuit.
  • Such a transformer is then closed on a known load, for example a resistor, and the emerging voltage at the terminals of this load represents an image of the current flowing in the secondary circuit and, consequently, the current flowing in the primary circuit.
  • a known load for example a resistor
  • the secondary circuits of the current transformers are equipped with protections limiting the overvoltages that can appear between their terminals.
  • An analog to digital converter (5) is used to convert the analog signals of the voltage across the shunt resistor.
  • An electronic conditioning circuit may be implemented to adapt the levels of the analog signal to suit the input ranges of the analog-to-digital converter.
  • a multiplexing stage (3) of the measurement channels is provided by switching switches based on transistors. This multiplexing can be single channel if there is no synchronism constraint between channels, or multipath otherwise.
  • Microcontroller A microcontroller (8) centralizes the converted analog measurements and the signals indicating the amplitude or sign of the voltages. This device performs the calculations desired by the user and stores the results in a local memory.
  • Wireless communication
  • the communication system is provided by a radio communication stage (10) for transmitting remotely and without hardware support the collected data.
  • a radio communication stage 10 for transmitting remotely and without hardware support the collected data.
  • EnOcean EnOcean
  • WMbus WMbus
  • 6I0WPAN 6I0WPAN
  • the communication device is at least one transmitter (10), comprising an antenna (1 1) and a suitable electronic circuit.
  • An antenna is any metal structure capable of radiating an electromagnetic field.
  • the communication device is a transceiver and changes its behavior according to the data received.
  • a light indicator (13) is used to indicate to the user the phase of transmission and reception of data.
  • a reserve of energy based on accumulator battery or batteries is not sufficient.
  • a method of capturing the energy carried by the magnetic field radiated by the primary circuit is used.
  • Each current transformer delivers to the secondary circuit a power that can be of the order of a few tens of milliwatts. This power is dissipated as heat when the current sensor is loaded on an ohmic shunt.
  • the objective of this process is to extract, store and restore this energy. It consists of one or more of the current transformers used to measure the current, possibly their protection against overvoltages, a voltage multiplier circuit, storage devices, a load balancer circuit and a voltage regulator.
  • each current transformer is rectified by a pair of diodes, preferably of the Schottky type, and will alternately charge two groups of storage devices (4).
  • the voltage available between the terminals of these storage devices is a DC voltage whose value is a multiple of the peak voltage delivered by the current transformers, where appropriate protected against overvoltages.
  • these storage devices are capacitors of aluminum type of high value.
  • the DC voltage available at the terminals of the storage devices is directed towards one or more DC-DC converters (9) whose role is to adapt the voltage level according to the needs of the other components implemented.
  • the DC voltage available at the terminals of the storage devices is too great and is not compatible with the input range of inexpensive DC-DC converters.
  • the advantage of reaching a high voltage across the storage devices is to lead to storage of a large load, the latter being proportional to the square of the voltage.
  • the voltage supplied to the DC-DC converter is thus taken at the terminals of only one of the two storage groups, so its level will be lower.
  • a load balancer circuit is employed to ensure that the voltage supplied to the DC-DC converter does not exceed its upper limit while preserving the storage devices of excessive individual voltage that can lead to their destruction. It is also used to maximize the input voltage of the DC-DC converter and thus optimize its efficiency.
  • Said load balancer circuit if it is implemented, is composed of controllable switches that can be made on the basis of transistors, act on the discharge of one of the two storage groups in the second, the latter being connected to the converter of voltage.
  • the switches are controlled to direct the loads from one storage group to another depending on the voltage present at the input of the converter.
  • the current transformers are disconnected from the storage devices during these charge rebalancing phases.
  • the voltage regulator has a very high efficiency and has the ability to deactivate according to an order from another component.
  • the microcontroller reads the values of the output and input voltages of the voltage regulator via analog-to-digital converters in order to deploy a suitable power management strategy.
  • Figure 3 shows an example of a non-exhaustive electronic scheme of the system as described in this invention.
  • three current transformer type current sensors (1) are connected to an electronic circuit board, said electronic circuit board being of dimensions compatible with its positioning on the basis of one of the current sensors. These current sensors are protected against overvoltages by clamp diodes.
  • a multiplexer (5) based on transistor switches and logic gates, provides the redirection of the signals from the three current sensors, according to the commands transmitted by a microcontroller.
  • the signals are directed to an energy storage device made based on two Schottky diodes (2) by current transformer ensuring the rectification and four identical capacitors (3) for storage. Said capacitors may be associated either in series during the charging phases, or in parallel during the discharge phases. A switching voltage regulator with high efficiency is implemented across the capacitors to provide a regulated supply voltage to the components of the board.
  • the signals are directed to a shunt resistor (6) whose voltage at its terminals is connected to one of the analog-digital converters of the microcontroller (7).
  • the output of one of the current sensors is short-circuited and its voltage with respect to a floating mass is measured by an analog-digital converter of the microcontroller (7).
  • the microcontroller controls the multiplexer and the storage device according to the following steps.
  • the three sensors are connected simultaneously to the storage capacitors in series in order to increase the voltage across their terminals.
  • the microcontroller makes regular measurements of the voltage level. at the terminals of the capacitors. As soon as this voltage exceeds a predefined threshold, corresponding to the storage of the energy necessary to perform the operations to be performed, the microcontroller triggers the voltage measurement on the first measurement channel.
  • all the measurement channels can be used for voltage measurement purposes.
  • the capacitors are positioned in parallel in order to deliver the maximum energy and an acceptable voltage for the DC-DC converter.
  • the signals of the current sensors are then directed to a shunt resistor for measuring the current of the primary conductor under study for a predetermined number of periods.
  • the measured data is transmitted by the radio transmitter and a light indicator (10) is briefly lit to show the success of the operation.
  • the current sensors are reconnected at the input of the storage device to ensure its recharging for a new measurement and transmission sequence.
  • FIG. 4 presents examples of characterization of the localized apparent powers estimated from the measurements of the device.
  • FIG. 5 presents examples of localized apparent power characterizations estimated from a device for measuring the general consumption of the studied network.
  • the system described herein can operate coupled with a signal decomposition device characteristic of the electrical consumption of a building in an individual consumption for each type of load.
  • said method provides an estimate of the individual consumption of each type of load present on the network whose consumption it measures.
  • the purpose of the method described here is to use the apparent powers and phase shifts between voltage and intensity measured by said system and the device for measuring the general consumption of the network, as well as external data obtained by a study of the behavior of the charges according to their type, such as the ratio of the cumulants of the power and the average of the power consumed according to the type of load, the ratio of the cumulants of the derivative of the power and the average of the power, and the Fourier transform of the measured power, as described below.
  • Said method has at its disposal a phase shift information between voltage and intensity associated with a type of load. This phase shift remains constant for a given load, and the same regardless of the location of the load on the network.
  • the method seeks to find a distribution of the consumption of the loads on the network satisfying the measurements of apparent powers and phase shifts provided by the plurality of said system and the device for measuring the general consumption of the network, broken down into types of charges.
  • the search for a feasible solution of such a problem is a classic of the scientific literature, and can be realized for example by an initialization of a problem of the simplex, seeking to equalize the active and reactive parts of the powers, on the plurality of said system and for each load of the studied network.
  • the method carries out a search for a feasible solution that satisfies the preceding conditions and that minimizes the sum of the absolute values of the derivatives of consumption by type of load located on the network.
  • This type of problem is a problem of convex optimization with linear constraints, a classic of literature and which can be solved by several methods, like the method of interior points.
  • the method carries out a search for a feasible solution satisfying the preceding conditions of equality between active and reactive power, and satisfying conditions on the statistical properties of one or more multidimensional cumulants of the active and reactive powers measured by the plurality of said system and the device for measuring the general network consumption, broken down into type of loads.
  • the statistical properties of the cumulants of a type of load are derived from upstream studies on the distribution of cumulative values of active and reactive powers, in proportion to the value of these active and reactive powers. As a result, these cumulants, divided by the mean of the apparent power, take values only in a limited range of possible values.
  • the method carries out a search for a feasible solution satisfying the above conditions, not on certain cumulants of the active and reactive powers, but on certain cumulants of the derivatives of the active and reactive powers.
  • these derivatives are signal characterizations which do not have a complex dependence on smoothing of the signal by a sliding average and have better linearity characteristics even in the presence of correlated signals.
  • said system provides the fourier transform of the measured consumption.
  • the method seeks a feasible solution satisfying the above conditions, embellished with conditions on the series of quartering measures returned by said system and by the device for measuring the general consumption of the network.
  • Each type of charge having a fourrier series decomposition of its single consumption, and the fourrier series decomposition of a signal being a linear transformation, this addition of information makes it possible to constrain the system very largely without complicating the problem. to solve, by equalizing the sum of the fourrier transforms estimated with those measured by said system on the one hand and with those measured for each type of load by the device for measuring the general consumption of the network.
  • the method performs one of the above methods not on the returned measurements but on the measured smoothed signals, for example using a sliding average, and resampled, in order to have several measurements returned. by each of said systems on each time step used.
  • the method performs one of the above methods, not on the returned measurements, but on the returned measurements from which the outliers are extracted.
  • This filtering makes it possible to improve the accuracy of all the methods based on a statistical analysis of the measurements.
  • the method performs one of the preceding methods by solving the problems of finding a workable solution or finding an optimal solution using heuristics such as the Markov Chain Monte Carlo method, which allows find an estimate of the apparent powers associated with a probability, as this estimate respects the different conditions and minimizes the function to be minimized.
  • heuristics such as the Markov Chain Monte Carlo method

Abstract

La présente invention concerne un système et un dispositif sans contact pour caractériser le signal électrique transitant dans un conducteur électrique (12), comportant un moyen de couplage électromagnétique inductif (1) apte à entourer ledit conducteur. Le dispositif comporte en outre des moyens (3) pour mettre en court- circuit la sortie dudit moyen de couplage inductif, ladite sortie étant reliée à un circuit électronique (3, 8) de mesure de la différence de potentiel par rapport à une masse flottante pour délivrer un signal représentatif de la tension entre le segment dudit conducteur traversant le dispositif, et une référence de potentiel fixe.

Description

DISPOSITIF SANS CONTACT DE CARACTERISATION D'UN SIGNAL
ELECTRIQUE
Domaine de l'invention
La présente invention concerne la caractérisation du signal électrique circulant dans un conducteur, pour des applications diverses, et notamment pour la caractérisation de la consommation électrique d'un bâtiment.
Plus particulièrement, l'invention concerne le domaine des capteurs sans contact pour la réalisation de telles caractérisations, sur un conducteur qui reste sous tension et qui n'est pas interrompu, même au moment de la mise en place du capteur.
Pour des applications de caractérisation de la consommation électrique d'un bâtiment, l'invention vise à déterminer la proportion relative de chaque type d'équipement parmi la consommation totale, avec un seul point de mesure, avec des algorithmes exploitant des mesures de courant effectuées en un seul et unique point d'une installation électrique, indépendamment de son architecture de distribution. Ce faisant, ils ne fournissent pas d'informations sur la localisation des équipements en cours de fonctionnement, car le signal capté ne diffère pas en fonction du chemin parcouru par l'énergie.
Afin de fournir une information complémentaire de consommation par zone, la breveté a développé un compteur électrique possédant les avantages suivants :
• Faible coût
• Non-intrusif
• Hybride : mesure du courant et du facteur de puissance · Communicant
De manière plus générale, un tel compteur peut être utilisé de manière individuelle pour mesurer la consommation d'un sous-réseau d'une installation électrique. L'invention concerne particulièrement des capteurs électriques sans contact interagissant avec un conducteur par induction électromagnétique.
Etat de la technique
On connaît dans l'état de la technique des capteurs inductifs constitués par une boucle d'induction pouvant être placées autour d'un conducteur électrique, et fournissant un signal représentatif du courant électrique, par application de l'effet Maxwell.
On connaît en particulier des systèmes capables de s'interconnecter à des capteurs de courant pour déterminer la consommation transitant dans le câble sur lequel ils sont placés.
La demande de brevet américain US201 1074382 présente un capteur de courant sans contact présentant l'avantage de calculer l'énergie électrique consommée grâce à une mesure de tension réalisée par contact avec le ou les conducteurs électriques étudiés. L'alimentation du dispositif est réalisée par conversion de l'énergie captée par la connexion galvanique avec le conducteur sous tension.
Cette solution permet de connaître la consommation électrique précise, sans hypothèse sur la tension, mais nécessite un câblage fastidieux.
La demande de brevet internationale WO201 133548 présente un procédé de mesure de la tension d'un conducteur sans contact en exploitant le champ électrique rayonné par le conducteur sous tension, l'amplitude de la tension du conducteur étudié étant déduite de l'amplitude de la tension aux bornes du couple d'armatures formant un condensateur aux propriétés connues.
Cette solution permet de mesurer la tension d'un conducteur utilisant un dispositif sur mesure.
La demande de brevet américain US20120074929 présente un compteur d'énergie mesurant le courant sans contact et la tension par contact, puis transmettant les données mesurées par un mode de communication sans fil. Cette solution permet de mesurer la consommation électrique d'une installation et de transmettre l'information à distance, le câblage se limitant au raccordement au réseau électrique.
La demande de brevet européen EP1684080 présente un capteur de courant adapté aux jeux de barres, présentant la particularité de trouver sa source d'alimentation en captant l'énergie véhiculée par le champ magnétique rayonné par la barre conductrice sur lequel il est posé.
Cette solution assure, de manière autonome, une mesure de courant et la transmission d'informations sans fil, mais nécessite une conception mécanique sur mesure et de multiples composants magnétiques pour assurer son fonctionnement.
On connaît également la demande de brevet US2005275397 décrivant des systèmes et méthodes pour contrôler la puissance dans un conducteur. Un circuit imprimé souple comportant de multiples couches dont une couche de détection de tension, un bobinage et une couche de mise à la terre. Le bobinage entour autour un conducteur lorsque le circuit imprimé souple est enroulé autour du conducteur. Le bobinage engendre une tension qui peut être intégrée pour déterminer un courant dans le conducteur. Lorsque le circuit imprimé souple est enroulé autour du conducteur, la couche de détection de tension est au plus près du conducteur. La couche de détection de tension forme un condensateur avec le conducteur. En utilisant un diviseur de tension capacitif réglable, la tension du conducteur peut être déterminée à partir d'un signal de tension reçu de la couche de détection de tension. La demande de brevet internationale WO02097454 décrit un détecteur de tension triphasée à annulation active de la diaphonie. L'annulation active de la diaphonie est réalisée à l'aide d'un diviseur capacitif de tension pour chacune des phases du système. On obtient une mesure de la tension pour la phase désirée et pour chaque phase additionnelle du système. On calcule pour chacune des phases additionnelles un produit en multipliant la mesure de tension de chacune des phases additionnelles par une constante prédéterminée correspondante, puis on soustrait ledit produit de la mesure de tension de la phase désirée.
On connaît aussi le brevet est allemand DD130693 concernant un transformateur comportant des moyens de mise en court-circuit de la sortie. Inconvénients de l'art antérieur
Les solutions de l'art antérieur présentant des moyens de mesure non intrusifs fournissent une information représentative du courant, mais pas de la tension, sauf à associer deux capteurs complémentaires, comme proposé dans la solution décrite dans la demande de brevet US2005/0275397. La mesure sans contact de la tension de manière conjointe, pour caractériser un signal, nécessite une conception très particulière à base de condensateurs, pour fournir une information relative à l'amplitude très approximative.
Par ailleurs, toutes les solutions décrites dans l'art antérieur nécessitent une référence de potentiel absolue, impliquant un raccordement physique à la terre. Ces capteurs de l'art antérieur ne sont donc pas des capteurs « sans contact » et ne fournissent des informations pertinentes que lorsqu'ils sont reliés électriquement à la terre ou à un référentiel de potentiel stable. Cela n'est pas toujours possible, ou du moins aisé, car l'implantation du capteur ne permet pas toujours de trouver un point électrique constituant un tel référentiel stable. Cela implique que si l'installateur du capteur utilise comme masse un référentiel de potentiel qui n'est pas réellement stable, les données fournies par les capteurs de l'art antérieur sont erronées.
Les documents de l'art antérieur cités ci-dessous et notamment la demande WO2992/097454, sont destinés à la caractérisation du signal électrique dans des lignes de très haute tension. Pour de telles applications, il existe toujours un point de masse à proximité permettant de fournir un référentiel de potentiel absolu.
Solution apportée par l'invention L'invention proposée s'attache à définir un système permettant d'exploiter les signaux fournis par des transformateurs de courant pour mesurer la consommation du réseau électrique étudié sans nécessiter de câblage supplémentaire et ne nécessitant pas de raccordement à une référence de potentiel. Afin de remédier aux inconvénients de l'art antérieur, l'invention concerne selon son acception la plus générale un dispositif sans contact pour caractériser le signal électrique transitant dans un conducteur électrique, comportant un moyen de couplage électromagnétique inductif apte à entourer ledit conducteur caractérisé en ce qu'il comporte en outre des moyens pour mettre en court-circuit la sortie dudit moyen de couplage inductif, ladite sortie étant reliée à un circuit électronique de mesure de la différence de potentiel par rapport à une masse flottante pour délivrer un signal représentatif de la tension entre le segment dudit conducteur traversant le dispositif, et une référence de potentiel fixe.
Le dispositif est dépourvu de moyens de raccordement à une référence de potentiel, et en particulier ne nécessite pas de raccordement à la terre.
Le moyen de couplage électromagnétique inductif est constitué par un tore en ferrite entourant un conducteur dont on cherche à caractériser le signal électrique. Ce tore est lui-même entouré par une bobine dont les deux extrémités constituent les sorties reliées au circuit électrique. Le tore peut être constitué de deux parties raccordables afin de faciliter la mise en place autour d'un conducteur sans qu'il ne soit nécessaire de couper ce dernier pour mettre en place le tore.
Avantageusement, ledit circuit électrique comprend des moyens de conditionnement du signal mesuré entre la sortie en court-circuit et la masse flottante, pour amplifier le signal et adapter l'impédance en fonction du moyen de mesure de la différence de potentiel.
Avantageusement, le dispositif comporte en outre un circuit de stockage d'énergie alimenté par la sortie dudit moyen de couplage inductif lorsqu'il n'est pas en état de court-circuit. Selon une variante, le dispositif comporte en outre un moyen de couplage inductif additionnel pour alimenter un circuit de stockage d'énergie.
De préférence ledit moyen de stockage d'énergie comprend deux réserves d'énergie en série reliées audit moyen de couplage inductif, l'une seulement desdites réserves délivrant une tension d'alimentation du dispositif.
Selon une variante, le dispositif comporte en outre un circuit électrique pour délivrer un signal représentatif du courant circulant dans ledit conducteur, relié à la sortie dudit moyen de couplage inductif.
Selon une autre variante, le dispositif comporte un multiplexeur analogique délivrant un premier signal pour la mesure de courant, un second signal pour la mesure de tension et un troisième signal pour l'alimentation du dispositif.
Selon une autre variante, il comporte une pluralité de moyens de couplage inductif reliés audit multiplexeur analogique.
Selon une autre variante, le dispositif comporte en outre un moyen de transmission sans fil alimenté par ledit moyen de stockage d'énergie.
L'invention concerne également un système comprenant une pluralité de dispositifs sans contact comportant en outre un circuit d'analyse des informations délivrés par chacun desdits dispositifs, pour localiser sur un réseau électrique les charges électriques induisant les variations desdites informations. Avantageusement, le système selon l'invention comporte en outre un capteur de consommation générale mesurant les variations de courant et de tension d'une alimentation générale du réseau comprenant lesdits dispositifs et lesdites charges électriques, ledit capteur de consommation fournissant également une information de consommation individuelle de chaque type de charge, le système comportant en outre un circuit pour analyser les corrélations entre les informations fournies par ledit capteur de consommation générale et lesdits dispositifs, et fournir une information localisée de la consommation des charges du réseau.
Description des figures L'invention sera mieux comprise à la lecture de la description qui suit, concernant un exemple non limitatif de réalisation se référant aux dessins annexés où :
• La figure 1 présente le schéma synoptique global du dispositif.
· La figure 2 présente un exemple de processus mis en œuvre pour mesurer les grandeurs électriques et transmettre les informations.
• La figure 3 présente un exemple de schéma électronique non exhaustif du système tel que décrit dans cette invention.
• La figure 4 présente des exemples de caractérisation des puissances apparentes localisées estimées à partir des mesures du dispositif.
• La figure 5 présente des exemples de caractérisation des puissances apparentes localisées estimées à partir d'un dispositif de mesure de la consommation générale du réseau étudié.
Description technique La présente invention vise à mesurer la consommation électrique d'un sous-réseau électrique de manière non-intrusive, c'est-à-dire sans nécessiter ni de coupure, ni de câblage supplémentaire. L'essentiel de l'invention réside dans la capacité du système à extraire son alimentation depuis le ou les transformateurs de courant employés pour effectuer la mesure de courant ainsi que son aptitude à mesurer la tension avec le même capteur.
La figure 1 présente le schéma synoptique global du dispositif.
Le capteur de tension
Sur un réseau électrique alimenté par une tension alternative, comme c'est le cas en France, la mesure de la consommation électrique d'une pluralité d'équipements connectés à un sous-réseau nécessite la mesure de plusieurs grandeurs, a minima les formes d'onde du courant alimentant les charges et de la tension présentée à leurs bornes. Ces deux grandeurs permettent de calculer la puissance active instantanée absorbée par ladite pluralité d'équipements et, par intégration, l'énergie active consommée sur une période de temps. La simple mesure du courant circulant dans un câble ne suffit donc pas à déterminer avec précision la consommation d'énergie, car elle présuppose le choix de la valeur efficace de la tension et du facteur de puissance.
D'ordinaire, la mesure de la tension observée entre deux conducteurs électriques nécessite un contact direct avec ce conducteur, soit à l'aide de sondes reliées à une impédance de très forte valeur, soit à l'aide d'un transformateur de tension assurant l'isolation galvanique.
La présente invention exploite un transformateur d'intensité (1 ) en tant que capteur de tension, ce afin de limiter le nombre de capteurs nécessaires à la mesure de la consommation électrique. Un transformateur de courant, dont la constitution sera détaillée par la suite, est monté de telle sorte que son circuit secondaire se trouve en court-circuit. Vu de l'extérieur, le transformateur de courant est ainsi réduit à un conducteur unique, tel une antenne. Le bobinage du circuit secondaire, placé à proximité du conducteur primaire, interagit avec le champ électrostatique rayonné par le conducteur sous tension et subit à son tour une variation de son potentiel électrique qui peut être mesurée par mesure de tension entre le secondaire du transformateur de courant mis en court-circuit et une référence de potentiel.
Il a été démontré que, pour un positionnement connu du conducteur vis-à-vis du bobinage représentant le circuit secondaire d'un transformateur d'intensité, la tension efficace et la tension crête-crête du signal issu du circuit secondaire mis en court-circuit est purement proportionnel à l'amplitude de la tension appliquée au conducteur étudié.
Dans une variante, la position du conducteur par rapport au circuit secondaire du transformateur d'intensité est connue.
Dans une variante, supposant que seule l'information du déphasage entre la forme d'onde du courant et la forme d'onde de la tension est nécessaire, un capteur capacitif est mis en œuvre. Un câble subissant une tension alternative par rapport à un potentiel fixe rayonne un champ électrique quasi-indépendant du courant qui y circule. Or, un condensateur est un composant électronique dont la tension à ses bornes est proportionnelle à l'intensité du champ électrique dans lequel il est plongé.
Le champ électrique rayonné par ledit câble étant largement dépendant de la distance qui sépare le récepteur dudit câble, l'amplitude de la tension ne peut être fidèlement mesurée par ce biais. En revanche, quel que soit son éloignement par rapport au câble, le condensateur présente à ses bornes une tension dont la forme d'onde est proche de celle de la tension existant entre ledit câble et la terre, et dont les passages par zéro sont fidèlement reproduits.
Or, le déphasage entre la forme d'onde de la tension et la forme d'onde du courant peut être déterminé en calculant la différence de phase entre les deux fondamentaux des deux formes d'onde en jeu. La considération comme référence de phase du passage par zéro du signal fourni par le condensateur placé proche du câble, en prenant en compte un éventuel biais constant, rend possible le calcul du déphasage et, par conséquent, de la puissance active absorbée par les charges connectées en aval de ce câble, la seule erreur possible résidant dans la valeur efficace de la tension.
Le dispositif permettant cette mesure est composé d'un condensateur, d'un câble de raccordement et d'un comparateur. Le condensateur peut être de plusieurs natures, les meilleurs résultats étant obtenus avec des condensateurs céramiques de faible valeur, inférieure à 100 pF, ou des électrodes planes en vis-à-vis posées de part et d'autres d'un support diélectrique. Le câble de raccordement, qui doit être le plus court possible et posséder un blindage suffisant pour ne pas subir de perturbations, relie les deux bornes dudit condensateur aux entrées d'un comparateur électronique dont le signal de sortie a deux valeurs distinctes suivant que le condensateur est polarisé dans un sens ou dans l'autre.
Le signal numérique issu du comparateur est fourni à un microcontrôleur pour traitement ultérieur.
Selon la variante, le nombre de capteurs capacitifs utilisés peut varier. Soit un capteur capacitif est utilisé en couple avec chaque capteur de courant. Soit un seul capteur capacitif est utilisé avec un seul capteur de courant, les autres capteurs de courant étant positionnés sur des câbles dont la tension est connue. Cela est le cas sur tous les câbles d'une installation monophasée, ou sur les trois phases d'un réseau triphasé. Dans ce dernier cas, les déphasages sont espacés de 120°. Les capteurs de courant
Un ou plusieurs transformateurs de courant (1 ) sont employés pour mesurer de manière non-intrusive et isolée la forme d'onde du courant électrique transitant dans un câble. Ces capteurs, basés sur le principe de conversion du flux magnétique généré par le déplacement de charges électriques dans un conducteur appelé circuit primaire en un courant électrique d'amplitude proportionnelle circulant dans un bobinage appelé circuit secondaire, sont très employés dans l'industrie pour la mesure de courants alternatifs.
Dans une variante, ces transformateurs possèdent un matériau aux bonnes propriétés permettant de canaliser le flux magnétique et de le diriger vers le bobinage secondaire. Ce matériau peut être de la ferrite.
Dans une variante, ledit matériau forme un anneau autour du circuit primaire.
Dans une variante, ledit matériau, formant un anneau autour du circuit primaire, est séparé en deux parties afin de permettre son positionnement autour du circuit primaire sans nécessiter de sectionnement et donc d'ouverture du circuit primaire. Cela constitue un avantage de non-intrusivité.
De manière générale, et dans le cas d'un bon dimensionnement du transformateur, le courant circulant dans le circuit secondaire est proportionnel au courant circulant dans le circuit primaire, le facteur de proportionnalité étant le rapport du nombre de spires effectuées par le circuit primaire par rapport au nombre de spires effectuées par le circuit secondaire.
L'usage général d'un tel transformateur est de l'employer en tant que capteur de courant. Le circuit secondaire est alors fermé sur une charge connue, par exemple un résistor, et la tension naissant aux bornes de cette charge représente une image du courant circulant dans le circuit secondaire et, par conséquent, du courant circulant dans le circuit primaire.
Ces capteurs de courant présentent l'avantage d'être passifs, c'est- à-dire qu'ils ne nécessitent pas de source d'alimentation pour délivrer leur signal de sortie. Ce n'est pas le cas des capteurs par effet Hall, par exemple.
Dans une variante, les circuits secondaires des transformateurs de courant sont équipés de protections limitant les surtensions pouvant apparaître entre leurs bornes.
Mesure de courant Dans le système décrit ici, l'acquisition des valeurs du courant transitant dans le circuit primaire est effectuée en chargeant le circuit secondaire d'un ou plusieurs transformateurs de courant par un résistor dont la valeur de résistance est connue. Ce résistor peut porter le nom de shunt.
Un convertisseur analogique-numérique (5) est utilisé pour convertir les signaux analogiques de la tension aux bornes de la résistance de shunt.
Un circuit électronique de conditionnement peut être mis en œuvre pour adapter les niveaux du signal analogique afin qu'il convienne aux plages d'entrée du convertisseur analogique-numérique.
Dans le cas de l'utilisation de plusieurs capteurs de courant, comme il est commun pour l'étude de réseaux triphasés, un étage de multiplexage (3) des canaux de mesure est assuré en commutant des interrupteurs à base de transistors. Ce multiplexage peut être monovoie s'il n'y a pas de contrainte de synchronisme entre voies, ou multivoie sinon.
Microcontrôleur Un microcontrôleur (8) centralise les mesures analogiques converties et les signaux indiquant l'amplitude ou le signe des tensions. Ce dispositif effectue les calculs souhaités par l'utilisateur et stocke les résultats dans une mémoire locale. Communication sans fil
La communication du système est assurée par un étage de communication radio (10) permettant de transmettre à distance et sans support matériel les données récoltées. De manière non limitative, une ou plusieurs des technologies suivantes peuvent être intégrées : EnOcean, WMbus, 6I0WPAN.
Le dispositif de communication est a minima un émetteur (10), comportant une antenne (1 1 ) et un circuit électronique adapté. On considère comme antenne toute structure métallique capable de rayonner un champ électromagnétique. Dans une variante, le dispositif de communication est un émetteur- récepteur et fait évoluer son comportement en fonction des données reçues.
Dans une variante, un indicateur lumineux (13) est employé pour indiquer à l'utilisateur la phase d'émission et de réception de données.
Auto-alimentation Le système décrit ici a pour objet de ne pas être connecté électriquement et adopte donc un système d'alimentation autonome.
Pour assurer le faible coût de revient et la longévité du système, une réserve d'énergie à base de batterie d'accumulateurs ou de piles n'est pas suffisante. Un procédé de captation de l'énergie véhiculée par le champ magnétique rayonné par le circuit primaire est utilisé. Chaque transformateur de courant délivre au circuit secondaire une puissance qui peut être de l'ordre de quelques dizaines de milliwatts. Cette puissance est dissipée sous forme de chaleur lorsque le capteur de courant est chargé sur un shunt ohmique. L'objectif de ce procédé est d'extraire, de stocker et de restituer cette énergie. Il est composé d'un ou plusieurs des transformateurs de courant exploités pour effectuer la mesure de courant, éventuellement de leurs protections contre les surtensions, d'un circuit multiplicateur de tension, de dispositifs de stockage, d'un circuit équilibreur de charge et d'un régulateur de tension.
Le courant généré par chaque transformateur de courant est rectifié par un couple de diodes, de préférence de type Schottky, et va charger alternativement deux groupes de dispositifs de stockage (4). La tension disponible entre les bornes de ces dispositifs de stockage est une tension continue dont la valeur est un multiple de la tension de crête délivrée par les transformateurs de courant, le cas échéant protégés contre les surtensions.
Dans une variante, ces dispositifs de stockage sont des condensateurs de type aluminium de forte valeur.
Dans une variante, la tension continue disponible aux bornes des dispositifs de stockage est dirigée vers un ou plusieurs convertisseurs continu- continu (9) dont le rôle est d'adapter le niveau de tension en fonction des besoins des autres composants implémentés.
Dans une variante, la tension continue disponible aux bornes des dispositifs de stockage est trop importante et n'est pas compatible avec la gamme d'entrée des convertisseurs continu-continu peu coûteux. L'intérêt d'atteindre une tension élevée aux bornes des dispositifs de stockage est de mener à un stockage d'une charge importante, cette dernière étant proportionnelle au carré de la tension. La tension fournie au convertisseur continu-continu est ainsi prélevée aux bornes d'un seul des deux groupes de stockage, son niveau sera donc inférieur. Un circuit équilibreur de charge est employé pour faire en sorte que la tension fournie au convertisseur continu-continu ne dépasse pas sa limite supérieure tout en préservant les dispositifs de stockage d'une tension individuelle trop importante pouvant mener à leur destruction. Il est également employé pour maximiser la tension d'entrée du convertisseur continu-continu et ainsi optimiser son rendement.
Ledit circuit équilibreur de charge, s'il est implémenté, est composé d'interrupteurs pilotables qui peuvent être réalisés à base de transistors, agissent sur la décharge d'un des deux groupes de stockage dans le second, ce dernier étant connecté au convertisseur de tension. Les interrupteurs sont pilotés pour diriger les charges d'un groupe de stockage à l'autre en fonction de la tension présente en entrée du convertisseur. Afin de garantir la stabilité du système, les transformateurs de courant sont déconnectés des dispositifs de stockage pendant ces phases de rééquilibrage de charges. Dans une variante, le régulateur de tension possède un très haut rendement et a la capacité de se désactiver selon un ordre issu d'un autre composant.
Dans une variante, le microcontrôleur lit les valeurs des tensions de sortie et d'entrée du régulateur de tension par le biais de convertisseurs analogique- numérique afin de déployer une stratégie adaptée de gestion de l'alimentation.
Exemple de mise en œuyre
La figure 3 présente un exemple de schéma électronique non exhaustif du système tel que décrit dans cette invention.
Dans un mode de réalisation, trois capteurs de courant (1 ) de type transformateur d'intensité sont raccordés à une platine électronique, ladite platine électronique étant de dimensions compatibles avec son positionnement sur la base de l'un des capteurs de courant. Ces capteurs de courant sont protégés contre les surtensions par des diodes de clamp.
Un multiplexeur (5), réalisé à base d'interrupteurs à transistors et de portes logiques, assure la redirection des signaux issus des trois capteurs de courant, selon les ordres transmis par un microcontrôleur.
Dans un premier cas, les signaux sont dirigés vers un dispositif de stockage de l'énergie réalisé à base de deux diodes Schottky (2) par transformateur de courant assurant la rectification et de quatre condensateurs identiques (3) assurant le stockage. Lesdits condensateurs peuvent être associés soit en série pendant les phases de charge, soit en parallèle pendant les phases de décharge. Un régulateur de tension à découpage et à haut rendement est implémenté aux bornes des condensateurs pour assurer une tension d'alimentation régulée aux composants de la platine. Dans un deuxième cas, les signaux sont dirigés vers une résistance de shunt (6) dont la tension à ses bornes est reliée à l'un des convertisseurs analogique-numérique du microcontrôleur (7).
Dans un troisième cas, la sortie d'un des capteurs de courant est mise en court-circuit et sa tension par rapport à une masse flottante est mesurée par un convertisseur analogique-numérique du microcontrôleur (7).
Le microcontrôleur assure le contrôle du multiplexeur et du dispositif de stockage selon les étapes suivantes.
D'abord, les trois capteurs sont reliés simultanément aux condensateurs de stockage en série afin de faire croître la tension à leurs bornes.
Dès qu'il est alimenté par le convertisseur continu-continu, c'est-à- dire dès que la tension aux bornes des condensateurs est supérieure à la tension d'entrée minimale du convertisseur, le microcontrôleur effectue des mesures régulières du niveau de tension aux bornes des condensateurs. Dès que cette tension dépasse un seuil prédéfini, correspondant au stockage de l'énergie nécessaire à effectuer les opérations à suivre, le microcontrôleur déclenche la mesure de tension sur la première voie de mesure.
Dans une variante, l'ensemble des voies de mesure peuvent être exploitées à des fins de mesure de tension. Puis, dans un second temps, les condensateurs sont positionnés en parallèle afin de délivrer le maximum d'énergie et une tension acceptable pour le convertisseur continu-continu.
Les signaux des capteurs de courant sont alors dirigés vers une résistance de shunt pour assurer la mesure du courant du conducteur primaire étudié, pendant un nombre de période prédéterminé.
Enfin, les données mesurées sont émises par le transmetteur radio et un indicateur lumineux (10) est brièvement allumé afin de manifester le succès de l'opération. Les capteurs de courant sont reconnectés en entrée du dispositif de stockage pour assurer sa recharge pour une nouvelle séquence de mesure et de transmission.
Procédé de localisation de la consommation des charges du réseau La figure 4 présente des exemples de caractérisation des puissances apparentes localisées estimées à partir des mesures du dispositif.
La figure 5 présente des exemples de caractérisation des puissances apparentes localisées estimées à partir d'un dispositif de mesure de la consommation générale du réseau étudié. Le système décrit ici peut fonctionner couplé à un dispositif de décomposition du signal caractéristique de la consommation électrique d'un bâtiment en une consommation individuelle pour chaque type de charge.
Auquel cas ledit procédé fournit une estimation de la consommation individuelle de chaque type de charge présent sur le réseau dont il mesure la consommation.
Le procédé décrit ici a pour objet d'utiliser les puissances apparentes et les déphasages entre tension et intensité mesurés par ledit système et le dispositif de mesure de la consommation générale du réseau, ainsi que des données externes obtenues par une étude du comportement des charges selon leur type, telles que le rapport des cumulants de la puissance et de la moyenne de la puissance consommée selon le type de charge, le rapport des cumulants de la dérivée de la puissance et de la moyenne de la puissance, et la transformée de Fourrier de la puissance mesurée, comme décrit ci-après.
Il est impossible ici de faire des hypothèses sur l'indépendance statistique ou sur l'absence de corrélation entre des mesures fournies par une pluralité dudit système, ou entre des consommations individuelles de chaque type de charge sur le réseau. Il également impossible de faire l'hypothèse de synchronicité des mesures fournies par une pluralité dudit système.
Ce faisant, il est impossible d'utiliser ici des algorithmes classiques de décomposition des sources, qui reposent principalement sur une indépendance statistique entre sources, et subsidiairement sur le caractère synchrone des mesures.
Ledit procédé a à sa disposition une information de déphasage entre tension et intensité associé à un type de charge. Ce déphasage reste constant pour une charge donnée, et identique quelle que soit la localisation de la charge sur le réseau.
Le procédé cherche à trouver une répartition de la consommation des charges sur le réseau satisfaisant les mesures de puissances apparentes et de déphasages fournies par la pluralité dudit système et le dispositif de mesure de la consommation générale du réseau, décomposée en types de charges. La recherche de solution réalisable d'un tel problème est un classique de la littérature scientifique, et peut être réalisé par exemple par une initialisation d'un problème du simplex, en cherchant à égaliser les parties actives et réactives des puissances, sur la pluralité dudit système et pour chaque charge du réseau étudié. Dans une variante, le procédé procède à une recherche d'une solution réalisable satisfaisant les conditions précédentes et qui minimise la somme des valeurs absolues des dérivés des consommations par type de charge localisées sur le réseau. Ce type de problème est un problème d'optimisation convexe avec contraintes linéaires, un classique de la littérature et qui peut être résolu par plusieurs méthodes, comme la méthode des points intérieurs.
Dans une variante, le procédé procède à une recherche de solution réalisable satisfaisant les conditions précédentes d'égalité entre puissance active et réactive, et satisfaisant des conditions sur les propriétés statistiques de un ou plusieurs cumulants multidimensionnels des puissances actives et réactives mesurées par la pluralité dudit système et le dispositif de mesure de la consommation générale du réseau, décomposée en type de charges. Les propriétés statistiques sur les cumulants d'un type de charge sont issues d'études en amont sur la répartition des valeurs des cumulants des puissances actives et réactives, au prorata de la valeur de ces puissances actives et réactives. Il en résulte que ces cumulants, divisés par la moyenne de la puissance apparente, ne prennent des valeurs que dans un intervalle restreint de valeurs possibles. Les cumulants étant linéaires nous pouvons chercher des solutions réalisables dont les puissances apparentes estimées multipliées par des valeurs de cumulants envisageables peuvent expliquer les cumulants des puissances actives et réactives mesurés. La recherche de ces solutions est un classique de la littérature et peut-être obtenue par une initialisation du problème du simplex. Cet ajout permet de contraindre d'avantage le système et de trouver une estimation plus fine des consommations localisées des charges du réseau.
Dans une variante, le procédé procède à une recherche de solution réalisable satisfaisant les conditions ci-dessus non pas sur certains cumulants des puissances actives et réactives, mais sur certains cumulants des dérivées des puissances actives et réactives. De plus ces dérivées sont des caractérisations du signal qui ne présentent pas de dépendance complexe au lissage du signal par une moyenne glissante et ont de meilleures caractéristiques de linéarité même en présence de signaux corrélés.
Dans une variante, ledit système fournit la transformée de fourrier de la consommation mesurée. Le procédé recherche alors une solution réalisable satisfaisant les conditions ci-dessus, agrémentées de conditions sur les séries de fourriers des mesures renvoyées par ledit système et par le dispositif de mesure de la consommation général du réseau. Chaque type de charges ayant une décomposition en série de fourrier de sa consommation unique, et la décomposition en série de fourrier d'un signal étant une transformation linéaire, cet ajout d'information permet de contraindre très largement le système sans pour autant complexifier le problème à résoudre, en égalisant la somme des transformée de fourrier estimées avec celles mesurées par ledit système d'une part et avec celles mesurées pour chaque type de charge par le dispositif de mesure de la consommation général du réseau. Dans une variante, le procédé réalise l'une des méthodes précédentes non pas sur les mesures retournées mais sur les signaux mesurés lissées, par exemple à l'aide d'une moyenne glissante, et ré-échantillonné, afin d'avoir plusieurs mesures retournées par chacun desdits systèmes sur chaque pas de temps utilisé.
Dans une variante, le procédé réalise l'une des méthodes précédentes non pas sur les mesures retournées, mais sur les mesures retournées dont sont extraites les valeurs aberrantes. Ce filtrage permet d'améliorer la précision de l'ensemble des méthodes reposant sur une analyse statistique des mesures. Il existe de nombreuses méthodes connues et publiques d'extraction des valeurs aberrantes, nous pouvons par exemple ne pas prendre en compte les quantiles extrême d'une série de mesures.
Dans une variante, le procédé réalise l'une des méthodes précédentes en résolvant les problèmes de recherche d'une solution réalisable ou de recherche d'une solution optimale à l'aide d'heuristique comme la méthode Markov Chain Monte Carlo, qui permet de trouver une estimation des puissances apparentes associée à une probabilité, selon que cette estimation respecte les différentes conditions et minimise la fonction à minimiser.

Claims

Revendications
1 - Dispositif sans contact pour caractériser le signal électrique transitant dans un conducteur électrique, comportant un moyen de couplage électromagnétique inductif apte à entourer ledit conducteur caractérisé en ce qu'il comporte en outre des moyens pour mettre en court-circuit la sortie dudit moyen de couplage inductif, ladite sortie étant reliée à un circuit électronique de mesure de la différence de potentiel par rapport à une masse flottante pour délivrer un signal représentatif de la tension entre le segment dudit conducteur traversant le dispositif, et une référence de potentiel fixe. 2 - Dispositif sans contact pour caractériser le signal électrique transitant dans un conducteur électrique selon la revendication 1 caractérisé en ce que ledit circuit électrique comprend des moyens de conditionnement du signal mesuré entre la sortie en court-circuit et la masse flottante, pour amplifier le signal et adapter l'impédance en fonction du moyen de mesure de la différence de potentiel. 3 - Dispositif sans contact pour caractériser le signal électrique transitant dans un conducteur électrique selon la revendication 1 ou 2 caractérisé en ce qu'il comporte en outre un circuit de stockage d'énergie alimenté par la sortie dudit moyen de couplage inductif lorsqu'il n'est pas en état de court-circuit.
4 - Dispositif sans contact pour caractériser le signal électrique transitant dans un conducteur électrique selon l'une quelconque des revendications précédentes caractérisé en ce qu'il comporte en outre un moyen de couplage inductif additionnel pour alimenter un circuit de stockage d'énergie.
5 - Dispositif sans contact pour caractériser le signal électrique transitant dans un conducteur électrique selon la revendication 3 ou 4 caractérisé en ce que ledit moyen de stockage d'énergie comprend deux réserves d'énergie en série reliées audit moyen de couplage inductif, l'une seulement desdites réserves délivrant une tension d'alimentation du dispositif.
6 - Dispositif sans contact pour caractériser le signal électrique transitant dans un conducteur électrique selon l'une quelconque des revendications précédentes caractérisé en ce qu'il comporte en outre un circuit électrique pour délivrer un signal représentatif du courant circulant dans ledit conducteur, relié à la sortie dudit moyen de couplage inductif.
7 - Dispositif sans contact pour caractériser le signal électrique transitant dans un conducteur électrique selon l'une quelconque des revendications précédentes caractérisé en ce qu'il comporte un multiplexeur analogique délivrant un premier signal pour la mesure de courant, un second signal pour la mesure de tension et un troisième signal pour l'alimentation du dispositif.
8 - Dispositif sans contact pour caractériser le signal électrique transitant dans un conducteur électrique selon la revendication précédente caractérisé en ce qu'il comporte une pluralité de moyens de couplage inductif reliés audit multiplexeur analogique.
9 - Dispositif sans contact pour caractériser le signal électrique transitant dans un conducteur électrique selon l'une quelconque des revendications précédentes caractérisé en ce qu'il comporte en outre un moyen de transmission sans fil alimenté par ledit moyen de stockage d'énergie.
10 - Système comprenant une pluralité de dispositifs sans contact selon l'une au moins des revendications précédentes caractérisé en ce qu'il comporte en outre un circuit d'analyse des informations délivrés par chacun desdits dispositifs, pour localiser sur un réseau électrique les charges électriques induisant les variations desdites informations.
1 1 - Système selon la revendication précédente caractérisé en ce qu'il comporte en outre un capteur de consommation générale mesurant les variations de courant et de tension d'une alimentation générale du réseau comprenant lesdits dispositifs et lesdites charges électriques, ledit capteur de consommation fournissant également une information de consommation individuelle de chaque type de charge, le système comportant en outre un circuit pour analyser les corrélations entre les informations fournies par ledit capteur de consommation générale et lesdits dispositifs, et fournir une information localisée de la consommation des charges du réseau.
PCT/FR2014/050400 2013-03-05 2014-02-25 Dispositif sans contact de caracterisation d'un signal electrique WO2014135760A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14713180.9A EP2965095A1 (fr) 2013-03-05 2014-02-25 Dispositif sans contact de caracterisation d'un signal electrique
CA2903609A CA2903609A1 (fr) 2013-03-05 2014-02-25 Dispositif sans contact de caracterisation d'un signal electrique
US14/771,601 US20160003871A1 (en) 2013-03-05 2014-02-25 Contactless Device for Characterising An Electric Signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1351934 2013-03-05
FR1351934A FR3003035B1 (fr) 2013-03-05 2013-03-05 Dispositif sans contact de caracterisation d'un signal electrique

Publications (1)

Publication Number Publication Date
WO2014135760A1 true WO2014135760A1 (fr) 2014-09-12

Family

ID=48613839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/050400 WO2014135760A1 (fr) 2013-03-05 2014-02-25 Dispositif sans contact de caracterisation d'un signal electrique

Country Status (5)

Country Link
US (1) US20160003871A1 (fr)
EP (1) EP2965095A1 (fr)
CA (1) CA2903609A1 (fr)
FR (1) FR3003035B1 (fr)
WO (1) WO2014135760A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3153869A1 (fr) * 2015-10-08 2017-04-12 Everspring Industry Co., Ltd. Dispositif et procédé pour mesurer la consommation d'énergie, dispositif sans contact et procédé de mesure de l'état d'une alimentation en énergie

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014222803B3 (de) * 2014-11-07 2016-03-10 Ifm Electronic Gmbh Verfahren zum berührungslosen Abgriff von Kommunikationssignalen
EP3428659A1 (fr) * 2017-07-12 2019-01-16 LEM Intellectual Property SA Transducteur de tension sans contact
JP6809419B2 (ja) * 2017-09-08 2021-01-06 三菱電機株式会社 電流電圧計測装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD130693A1 (de) 1977-04-14 1978-04-19 Frank Schmidt Schaltungsanordnung zur hochspannungsanzeige fuer eine schaltanlage
WO2002097454A1 (fr) 2001-05-31 2002-12-05 Mcgraw-Edison Company Detecteur de tension triphasee a annulation active de la diaphonie
US20050275397A1 (en) 2004-06-15 2005-12-15 Power Measurement, Ltd. Non-intrusive power monitor
EP1684080A1 (fr) 2005-01-19 2006-07-26 Eaton Corporation Detecteur de courant autonome avec un dispositif de communication sans fil
WO2011033548A1 (fr) 2009-09-21 2011-03-24 Alberto Bauer Capteur de tension capacitif
US20110074382A1 (en) 2009-09-25 2011-03-31 University Of Washington Whole structure contactless power consumption sensing
US20120074929A1 (en) 2010-09-27 2012-03-29 Darold Wobschall Inductive Current Sensor
WO2012168629A1 (fr) * 2011-06-08 2012-12-13 Smart Impulse Procede d'analyse de la consommation d'electricite d'un site equipe d'une pluralite d'equipements electriques

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4286214A (en) * 1979-05-07 1981-08-25 General Electric Company Current sensor for phase inversion-modulation of AC signals
US4831327A (en) * 1987-05-01 1989-05-16 Hydro-Quebec Self-powered electrical measuring system isolated from electrical perturbances
US7622910B2 (en) * 2006-10-06 2009-11-24 Honeywell International Inc. Method and apparatus for AC integrated current sensor
US7843188B2 (en) * 2008-05-20 2010-11-30 The Boeing Company Remote sensor network powered inductively from data lines
GB2481778B (en) * 2009-04-16 2014-02-05 Panoramic Power Ltd Apparatus and methods thereof for power consumption measurement at circuit breaker points
GB201105400D0 (en) * 2011-03-30 2011-05-11 Power Electronic Measurements Ltd Apparatus for current measurement
DE102011079455B4 (de) * 2011-07-20 2013-10-31 Bender Gmbh & Co. Kg Verfahren und Vorrichtung zur induktiven Einprägung einer Messsignalspannung in ein Stromversorgungsnetz

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD130693A1 (de) 1977-04-14 1978-04-19 Frank Schmidt Schaltungsanordnung zur hochspannungsanzeige fuer eine schaltanlage
WO2002097454A1 (fr) 2001-05-31 2002-12-05 Mcgraw-Edison Company Detecteur de tension triphasee a annulation active de la diaphonie
US20050275397A1 (en) 2004-06-15 2005-12-15 Power Measurement, Ltd. Non-intrusive power monitor
EP1684080A1 (fr) 2005-01-19 2006-07-26 Eaton Corporation Detecteur de courant autonome avec un dispositif de communication sans fil
WO2011033548A1 (fr) 2009-09-21 2011-03-24 Alberto Bauer Capteur de tension capacitif
US20110074382A1 (en) 2009-09-25 2011-03-31 University Of Washington Whole structure contactless power consumption sensing
US20120074929A1 (en) 2010-09-27 2012-03-29 Darold Wobschall Inductive Current Sensor
WO2012168629A1 (fr) * 2011-06-08 2012-12-13 Smart Impulse Procede d'analyse de la consommation d'electricite d'un site equipe d'une pluralite d'equipements electriques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2965095A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3153869A1 (fr) * 2015-10-08 2017-04-12 Everspring Industry Co., Ltd. Dispositif et procédé pour mesurer la consommation d'énergie, dispositif sans contact et procédé de mesure de l'état d'une alimentation en énergie

Also Published As

Publication number Publication date
FR3003035A1 (fr) 2014-09-12
EP2965095A1 (fr) 2016-01-13
FR3003035B1 (fr) 2016-10-21
CA2903609A1 (fr) 2014-09-12
US20160003871A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
EP3108569B1 (fr) Dispositif de conversion d'energie radiofrequence en courant continu (antenne rredresseuse) et capteur correspondant
EP2965095A1 (fr) Dispositif sans contact de caracterisation d'un signal electrique
EP2022161B1 (fr) Convertisseur d'onde électromagnétique en tension continue
FR3028691B1 (fr) Procede et module d'adaptation automatique d'impedance, en particulier pour une chaine d'emission ou reception radiofrequence
WO2012171919A1 (fr) Systeme de batteries d'accumulateurs a supervision simplifiee
FR2989529A1 (fr) Procede et banc de charge par couplage magnetique
WO2013113617A1 (fr) Systeme de communication dans une batterie electrique
EP3651328B1 (fr) Systeme electrique et methode de protection d'un convertisseur dc/dc
EP0592337B2 (fr) Déclencheur électronique comportant une protection terre
EP3588719A1 (fr) Methode de protection d'un convertisseur dc/dc
AU2017204821A1 (en) Apparatus, systems and methods for generating voltage excitation waveforms
EP2769453B1 (fr) Alimentation continue basse tension pour dispositifs électroniques de communication
EP2747277B1 (fr) Dispositif de démodulation
FR3021816A1 (fr) Chargeur de batterie pour vehicule automobile electrique a moyens de compensation passive variables et procede de commande d'un tel chargeur
EP0868006B1 (fr) Dispositif pour compenser l'atténuation des signaux de télécommande centraliseé et des harmoniques sur un réseau electrique
FR2988241A1 (fr) Systeme de communication sans fil a plusieurs recepteurs multiplexes.
FR2999829A1 (fr) Equipement electrique adapte a etre connecte a un compteur d'energie electrique
EP4015901A1 (fr) Module d'alimentation électrique pour installation d'éclairage public, lampadaire comprenant un tel module d'alimentation et installation d'éclairage public comprenant au moins un tel lampadaire
FR2686701A1 (fr) Dispositif de mesure de grandeurs electriques.
FR3105430A1 (fr) Dispositif de detection d'une defaillance dans un reseau electrique, reseau electrique ou equipement comprenant un tel dispositif et procede de detection d’une defaillance
FR2969764A1 (fr) Appareil pour la mesure de l'intensite d'un champ electromagnetique
FR3040840A1 (fr) Systeme de demarrage progressif d'un moteur electrique
FR3047856A1 (fr) Alimentation a decoupage
EP2736177A1 (fr) Système de communication à courant porteur en ligne utilisant un transformateur basse tension/moyenne tension d'un réseau de distribution électrique
FR2731078A1 (fr) Circuit d'adaptation pour un appareil de mesure de champs electriques et appareil de mesure de champs electriques equipe d'un tel circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14713180

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014713180

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14771601

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2903609

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE