WO2014135727A1 - Novel random terpolymers based on d-lactide, l-lactide and ε-caprolactone - Google Patents

Novel random terpolymers based on d-lactide, l-lactide and ε-caprolactone Download PDF

Info

Publication number
WO2014135727A1
WO2014135727A1 PCT/ES2014/070156 ES2014070156W WO2014135727A1 WO 2014135727 A1 WO2014135727 A1 WO 2014135727A1 ES 2014070156 W ES2014070156 W ES 2014070156W WO 2014135727 A1 WO2014135727 A1 WO 2014135727A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactide
caprolactone
iii
bismuth
comonomers
Prior art date
Application number
PCT/ES2014/070156
Other languages
Spanish (es)
French (fr)
Inventor
Jorge FERNÁNDEZ HERNÁNDEZ
Aitor LARRAÑAGA ESPARTERO
José Ramón SARASUA OIZ
Original Assignee
Universidad Del País Vasco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Del País Vasco filed Critical Universidad Del País Vasco
Publication of WO2014135727A1 publication Critical patent/WO2014135727A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/823Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/043Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/042Polysaccharides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes

Definitions

  • the present invention relates to the chemical synthesis of thermoplastic, bioabsorbable and biocompatible biopolymers for application preferably in the medical field and more especially to random terpolymers based on D-lactide, L-lactide and ⁇ -caprolactone with little or no crystallization capacity during hydrolytic degradation.
  • biodegradable polymers During the last decades the synthesis of biodegradable polymers has been stimulated by the need for new materials for applications in the medical field. These biomaterials are designed to degrade in a controlled manner over a predetermined period of time, decomposing into small non-toxic molecules that can be reabsorbed or excreted by the human organism, and, therefore, do not have to be removed clinically once their function but they must maintain their performance (mechanical properties and biocompatibility) during the time in which they are used.
  • absorbable homopolymers such as polyglycolide (PGA) or polylactides (PLAs)
  • PGA polyglycolide
  • PLAs polylactides
  • applications in the medical field of these thermoplastic elastomers required are included cell therapy for soft tissue reconstruction and use in the surgical field as implants, stents or catheters.
  • the conformation of reliable medical devices requires materials that have stability, durability and predictability of their macroscopic and microscopic properties.
  • materials that have stability, durability and predictability of their macroscopic and microscopic properties.
  • Through better control of the composition and microstructure, as well as molecular weight it is possible to make new thermoplastic materials with custom properties, which improve the properties of commercial absorbable polymers, being able to adapt their mechanical properties and degradation times to needs of specific medical applications.
  • the medical field requires highly flexible resistant biodegradable materials that degrade over a certain period of time and preferably have transition temperatures above 15 ° C.
  • the crystallization capacity of the most commonly used copolymers and terpolymers is still high and due to poor adjustments in the composition and underestimation of their sequence distribution are materials prone to structural changes during storage or hydrolytic degradation.
  • low molecular weight crystalline residues are formed in the degradation process that can remain in the human body for years, once the material has already lost its properties and has fulfilled its function
  • random terpolymers (R greater than 0.9) are synthesized in the present invention by polymerization of L-lactide and D-lactide, to provide consistency and mechanical strength to the material, and ⁇ -caprolactone to provide elastomeric character.
  • These materials show little or no crystallization capacity during storage or degradation thanks to the control of the average lengths of L-lactide or D-lactide and ⁇ -caprolactone. They are thermoplastic materials of different mechanical behaviors that exhibit a homogeneous degradation without the formation of crystalline residues of high hydrolytic resistance and that have a glass transition temperature greater than 15 ° C.
  • the present invention is directed to random terpolymers (R> 0.85) obtainable by mass polymerization (without solvent use) in a single stage of:
  • terpolymers can be synthesized in a single stage by adding the comonomers (I) to (III) at the same time.
  • the catalyst is added once the mixture has been melted and the medium has been inerted.
  • These polymers have a marked random character in the distribution of lactide and caprolactone units (short sequences of L-lactide, D-lactide and ⁇ -caprolactone).
  • sequences of L-lactide or D-lactide and of ⁇ -caprolactone have the ability to crystallize during degradation
  • the materials of the present invention exhibit little or no crystallization capacity during storage or degradation thanks to the control of average lengths of L-lactide or D-lactide and ⁇ -caprolactone.
  • They are thermoplastic materials of different mechanical behaviors that exhibit a homogeneous degradation without the formation of crystalline residues of high hydrolytic resistance and that have a glass transition temperature greater than 15 ° C.
  • the presence of L-lactide and D-lactide contributes to increase the consistency and mechanical strength of the material, and the presence of ⁇ -caprolactone contributes to providing elastomeric character.
  • random terpolymers are obtained by reacting a mixture of comonomers having a molar content of ⁇ -caprolactone between 5 and 30 mol% with respect to the total of comonomers (I), (II) and ( III). For values of less than 5%, the material becomes very susceptible to brittle breakage and its mechanical behavior resembles that of the most common semicrystalline homopolymers.
  • the glass transition temperature will be very low (less than 15 ° -20C) and although their elastomeric character is very high the consistency of these will be insufficient (very low elastic modules, ⁇ 5 MPa) being difficult to work with them at temperatures higher than their glass transition temperature, as is the case with the temperature of the human body (37 ° C).
  • random terpolymers are obtained by reacting a mixture of comonomers having a molar content of a ⁇ -caprolactone molar content between 5 and 25 mol% with respect to the total comonomers (I), (II ) and (III) and preferably having the same amount of L-Lactide and D-Lactide.
  • random terpolymers are obtained by reacting a mixture of comonomers having a molar content of a ⁇ -caprolactone molar content between 5 and 15 mol% with respect to the total comonomers (I), (II ) and (III).
  • Such polymers have exceptional properties for applications in which the stiffness of the terpolymers is important, being an alternative to the rigid biodegradable materials currently used that are very susceptible to brittle breakage (vitreous behavior) and / or have a high crystallization capacity during the degradation resulting in crystalline residues of low molecular weight that, due to their high hydrolytic resistance, can remain in the human body for years, once the material has already lost its properties and has fulfilled its function.
  • the random terpolymers are obtained by reacting a mixture of comonomers having a molar content of a ⁇ -caprolactone molar content between 15 and 30 mol% with respect to the total comonomers (I), (II ) and (III).
  • Such polymers have exceptional properties for applications in which the elastomeric properties of the terpolymers are important, being an alternative to the currently used elastomeric biodegradable materials that have a very low T g , presenting insufficient consistency, and / or have a high capacity of crystallization during degradation.
  • random terpolymers are obtained by reacting a mixture of comonomers having a molar content of L-lactide between 3 and 72%, preferably between 5 and 72% with respect to the total comonomers ( I), (II) and (III) and a D-lactide content between 3 and 72%, preferably between 5 and 72% of the total comonomers (I), (II) and (III).
  • random terpolymers are obtained by reacting a mixture of comonomers having a molar content of ⁇ -caprolactone (II) between 5 and 30% with respect to the total comonomers (I), (II) and (III) an L-lactide content between 3 and 72%, preferably between 5 and 72% of the total comonomers (I), (II) and (III) and a D-lactide content between 3 and 72%, preferably between 5 and 72% of the total comonomers (I), (II) and (III).
  • random terpolymers are obtained by reacting a mixture of comonomers in which the enantiomeric excess of L-lactide or D-lactide is greater than 5%, preferably greater than 7.5% and more preferably greater than 10%.
  • Another aspect of the present invention is the method of synthesis of the random terpolymers described above which consists in reacting the catalyst and the comonomers in a single stage:
  • the polymerization reaction proceeds by ring opening polymerization (ROP) being carried out in bulk at temperatures between 120 and 140 ° C for 2 or 3 days of reaction. Once the reaction is finished, it is necessary to remove impurities from the catalyst, oligomers and monomers that have not reacted. This is done by dissolution-precipitation in chloroform-methanol but there are other alternatives such as the use of other solvent-precipitating pairs or vaporization under pressure.
  • ROP ring opening polymerization
  • the polymerization reaction is carried out in a single stage by adding the comonomers at the same time, while the catalyst is added once the mixture has been melted and the medium has been inerted thus giving rise to random polymer structures (R> 0.85).
  • the polymerization reaction is carried out in a single step in the presence of a catalyst that is selected from the group consisting of bismuth 2-ethylhexanoate, bismuth hexanoate (BiHex 3 ), the triflate of bismuth (Bi (OTf) 3 ), bismuth diphenyl ethoxide (Ph 2 BiOEt), bismuth subsalicylate (BiSS) and bismuth triphenyl (Ph 3 Bi), more preferably from the group consisting of bismuth subsalicylate ( BiSS) and bismuth triphenyl (PH 3 Bi).
  • a catalyst that is selected from the group consisting of bismuth 2-ethylhexanoate, bismuth hexanoate (BiHex 3 ), the triflate of bismuth (Bi (OTf) 3 ), bismuth diphenyl ethoxide (Ph 2 BiOEt), bismuth subsalicylate (BiSS
  • the catalysts are used so that the molar ratio of the total monomers (I), (II) and (III) to the catalyst is between 250: 1 and 10,000: 1, preferably between 750: 1 and 2000 : 1, more preferably between 1000: 1 and 1500: 1 and the reaction is preferably carried out in an inert atmosphere, eg in an N 2 atmosphere.
  • the reaction is carried out at temperatures between 120 and 150 ° C, more preferably between 130 and 140 ° C and the reaction time is between 8 and 96 hours depending on the reaction temperature.
  • the reaction time can be between 48 and 72 hours and when the temperature is 140 ° C the reaction time can be between 32 and 48 hours.
  • Another aspect of the present invention relates to mixtures of one or more of the random terpolymers described above.
  • composite material is understood as those materials that are formed by mixing the terpolymers of the invention and one or more materials to achieve the combination of properties that cannot be obtained in the original materials.
  • Said composite materials are formed by two or more physically distinguishable and mechanically separable components and have several chemically distinct phases, completely insoluble to each other and separated by one inferred.
  • Examples of composite materials are those consisting of terpolymers of the invention with mechanical reinforcement, that is to say they comprise terpolymers of the invention and fibers or particles (inorganic fillers and nano-charges such as glass fibers, carbon fibers or carbon nanotubes; organic fillers).
  • composite materials are those comprising terpolymers of the invention and bioactive fillers such as bioactive inorganic particles (bioglass, hydroxyapatite etc.) or bioactive molecules such as growth factors (set of substances, most of a protein nature) that stimulate the cell proliferation by regulating the cell cycle by initiating mitosis and, in addition, regulating cell survival and stimulating cell migration, cell differentiation and even apoptosis) in order to improve cell activity and growth in the polymer matrix.
  • bioactive inorganic particles bioglass, hydroxyapatite etc.
  • bioactive molecules such as growth factors (set of substances, most of a protein nature) that stimulate the cell proliferation by regulating the cell cycle by initiating mitosis and, in addition, regulating cell survival and stimulating cell migration, cell differentiation and even apoptosis) in order to improve cell activity and growth in the polymer matrix.
  • composite materials are composite materials comprising terpolymers of the invention and antibiotic agents (phosphamycin, gentamicin, etc.) in order to improve the antibacterial activity of the polymer matrix.
  • medical devices or implants such as catheters; the probes; nerve guides (tubular grafts that bridge two ends of a damaged nerve); stents (devices of different designs, usually meshes, that are introduced into the coronary arteries (cases of atherosclerosis), esophagus (cases of esophageal stenosis) etc, and act by pointing at its wall); sutures, fixations, inserts and / or bone substitutes; the capsules for drug release, scaffolds or cell anchors (anchoring matrices of porous three-dimensional structure) comprising the random terpolymers described above.
  • Rigid terpolymers will preferably be used in hard tissues (bone tissues) and the most flexible terpolymers in soft tissues (cardiology, urology, etc.
  • plastics comprising the random terpolymers described above and other biodegradable and biocompatible polymeric materials together with additives for plastics such as flame retardants, antioxidants, foaming, plasticizers, ultraviolet light absorbers, antistatic, antibacterial and other additives for plastics such as those described in the Encyclopedia of Plastics (Volume 3). pp. 1-28.
  • additives for plastics such as flame retardants, antioxidants, foaming, plasticizers, ultraviolet light absorbers, antistatic, antibacterial and other additives for plastics such as those described in the Encyclopedia of Plastics (Volume 3). pp. 1-28.
  • the molar content of the set formed L-lactide and D-lactide influences stiffness, mechanical strength and consistency. If in an L-lactide- ⁇ -caprolactone copolymer we substitute D-lactide for e-caprolactone, the mechanical properties associated with the tension (elastic modulus and tensile stress) are increased and the elongation at break is somewhat reduced. The glass transition temperature of the material is increased. On the other hand, by replacing L-lactide with D-lactide, we managed to break the microstructural order of L-lactide units by limiting their crystallization capacity. The molar content in ⁇ -caprolactone can vary between 5 and 30% depending on the elastomeric properties required.
  • ⁇ -caprolactone When the molar content of ⁇ -caprolactone is between 5 and 15 mol% with respect to total comonomers (I), (II) and (III). Said terpolymers have exceptional properties for applications in which the stiffness of the terpolymers is important while when the molar content of ⁇ -caprolactone is between more than 15 and 30 mol% with respect to the total comonomers (I), (II) and (III) the terpolymers have exceptional properties for applications in which the elastomeric properties of the terpolymers are important, being an alternative to the currently used elastomeric biodegradable materials that have a very low T g , presenting insufficient consistency, and / or have a high crystallization capacity during degradation.
  • the materials of the present invention exhibit little or no crystallization capacity during their degradation thanks to the control of the average lengths of L-lactide or D-lactide and ⁇ -caprolactone. They are thermoplastic materials of different mechanical behaviors that exhibit a homogeneous degradation without the formation of crystalline residues of high hydrolytic resistance.
  • Figure 5 Representation of the neperian logarithm of the molecular weights by weight (Mw) versus the degradation time to obtain the degradation kinetic constants of each poly (lactide / £ -caprolactone) (PLCL) used as an example.
  • Figure 8 Representative stress-strain curves of poly (lactide / £ - caprolactone) (PLCLs) synthesized in Examples 1-4.
  • random terpolymers are understood as the polymers resulting from the ring opening reaction of three monomers in which the distribution of the repeating units derived from said monomers along the polymeric chain has a character markedly random, that is, very close to the Bernouilli statistical distribution and more specifically terpolymers having a value of R, determined as explained below, greater than 0.85, more preferably greater than 0.90 and still more preferably greater than 0.95.
  • a material has an elastomeric character when it shows an elastic behavior, that is, when it is capable of undergoing reversible deformations when it is subject to the action of external forces and to recover the original shape if these external forces They are removed.
  • Materials with an elastomeric character also typically have high values of strain at break, have no yield point (creep stress) and typically have a high elastic recovery.
  • thermoplastic material is understood to be that which, at relatively high temperatures, becomes plastic, deformable or flexible, melts when heated and hardens in a glass transition state when it is allowed to cool sufficiently.
  • Thermopastic materials have a thermodynamic pseudotransition when heated (the glass transition temperature (T g ) being the temperature at which said thermodynamic pseudotransition occurs).
  • Thermoplastic polymers differ from thermosetting polymers or thermofixes in that after heating and molding they can overheat and form other objects, while in the case of thermosets or thermofixes, after initial cooling, their shape does not change when heated but they are combusted before achieving a change of form.
  • enantiomeric excess is understood as the percentage obtained by performing the following arithmetic operation:
  • the consistency of a material at the working temperature of said material is understood as the ability of the material to retain its shape at said temperature without softening so that it maintains its ability to act as a mechanical support.
  • mechanical strength of a material is understood as the mechanical properties associated with the tension and in particular the elastic modulus (or the 2% secant modulus) and the breaking stress.
  • catalyst is understood as those metal compounds and enzymes that make possible the polymerization reactions of the cyclic esters.
  • Particularly suitable as catalysts in the present invention are organic bismuth salts such as bismuth 2-ethylhexanoate, bismuth hexanoate (BiHex 3 ), bismuth triflate (Bi (OTf) 3 ), bismuth diphenyl ethoxide (Ph 2 BiOEt), bismuth subsalicylate (BiSS) and bismuth triphenyl (Ph 3 Bi) and even more preferred bismuth subsalicylate (BiSS) and bismuth triphenyl (Ph 3 Bi).
  • organic bismuth salts such as bismuth 2-ethylhexanoate, bismuth hexanoate (BiHex 3 ), bismuth triflate (Bi (OTf) 3 ), bismuth diphenyl ethoxide (Ph 2 BiOEt), bismuth subs
  • cell anchoring to porous polymeric matrices is understood on the surface of which one or more cells are joined by any means of attachment including covalent, non-ionic bonds, Van der Waals forces.
  • medical implants are understood as any medical device manufactured to replace a missing biological structure, supplant a damaged biological structure, or improve an existing biological structure.
  • Medical implants are man-made devices, unlike transplants, which are biomedical tissues. Examples of medical implants are pacemakers, cochlear implants, drug delivery devices, cannulas and stents. Determination of the average length of Lactide and ⁇ -caprolactone sequences
  • the average lengths of Lactide and ⁇ -caprolactone sequences are calculated from the areas of the signals corresponding to the methine groups of the repeating units derived from the lactides (-CH-) and the average value of the signal areas corresponding to the methylenes of the repeating units derived from ⁇ -caprolactone ( ⁇ and a-CH 2 ) in proton nuclear magnetic resonance spectra ( 1 H-NMR).
  • the signal corresponding to the methine of the repeating units derived from the lactide is found at chemical shifts between 5.0 ppm and 5.3 ppm. Due to the existence of HH couplings there is an overlap of the signals corresponding to the repeat units that derive from the lactide and that are adjacent to other repeat units that derive from the lactide on the one hand and the signals corresponding to the repeat units that derive from the lactide and that are adjacent to units Repeat derived from ⁇ -caprolactone on the other hand. Therefore, the set of both signals is integrated together and the resulting area is designated as A.
  • the signal of the methylene protons in ⁇ is found in the area with chemical shifts around 4.1 ppm being divided into 2 groups: a) the one with the greatest displacement (with an area B) corresponds to the protons of the ⁇ -methylenes of those ⁇ -caprolactone repeat units that have, with the carbonyl end of ⁇ -caprolactone, a lactide repeat unit and b) the one with the lowest displacement (with an area C) corresponds to the protons of ⁇ -methylenes of those ⁇ -caprolactone repeat units that have, ⁇ -caprolactone attached to the carbonyl end, a ⁇ -caprolactone repeat unit.
  • the signal of the protons of the methylenes in ⁇ is found in the zone with displacements around 2.3 being also divided into 2 groups: the one with the greatest displacement (with an area D) corresponds to the protons of the methylenes in ⁇ of those ⁇ -caprolactone repeating units that have, together with the ether end of ⁇ -caprolactone, a repeating unit of lactide and the one with the least displacement (with an area D) corresponds to the protons of the methylenes in ⁇ of those ⁇ -caprolactone repeating units that have a ⁇ -caprolactone repeating unit attached to the ether end of ⁇ -caprolactone.
  • the average length of Lactide and ⁇ -caprolactone (/ ⁇ ) sequences, the average Bernoulli (/ ⁇ ) random-Bemouiii ⁇ sequences and the random character (R) were calculated by applying the following equations:
  • the parameters LA, CL L A, CL C L and CL can be calculated from areas A, B, C, D and E as follows:
  • LA L A is a parameter proportional to the number of lactide repeat units of the copolymer having an adjacent unit of lactide and LA C L is a parameter proportional to the number of repeat units of lactide of the copolymer having an adjacent unit of ⁇ - caprolactone What is determined is the sum of LA L A and
  • CL L A copolymer ⁇ -caprolactone repeat units having an adjacent lactide unit
  • LA C L number of copolymer lactide repeat units having an adjacent ⁇ -caprolactone unit
  • [CL] CL / (LA + CL)
  • the average length of the lactide / L A repeat unit sequences and the average length of the ⁇ -caprolactone / C i_ repeat unit sequences can be calculated.
  • the synthesis is carried out at 140 ° C in a 50mL balloon with magnetic stirring and with a thermocouple for temperature control.
  • 12.50 g of L-lactide, 10.00 g of m-lactide and 2.50 g of ⁇ -caprolactone are weighed and added to the balloon.
  • the mixture is melted and a gentle flow of nitrogen is applied for half an hour to achieve an inert atmosphere in the medium.
  • 0.0430g of bismuth subsalicylate (BiSS) is added and the reaction time is counted.
  • the magnetic stirring is maintained at 100 rpm.
  • the balloon is removed from the oil bath and allowed to cool to room temperature. It is necessary to remove impurities from the catalyst, oligomers and monomers that have not reacted, and, for this reason, dissolve in chloroform and subsequently precipitate in methanol.
  • the synthesis is carried out at 140 ° C in a 50mL balloon with magnetic stirring and with a thermocouple for temperature control. 15.00 g of L-lactide, 6.25 g of m-lactide and 3.75 g of ⁇ -caprolactone are weighed and added to the balloon. The mixture is melted and a gentle flow of nitrogen is applied for half an hour to achieve an inert atmosphere in the medium. After that time, 0.0435g of bismuth subsalicylate (BiSS) is added and the reaction time is counted. The magnetic stirring is maintained at 100 rpm.
  • BiSS bismuth subsalicylate
  • the balloon is removed from the oil bath and allowed to cool to room temperature. It is necessary to remove impurities from the catalyst, oligomers and monomers that have not reacted, and, for this reason, dissolve in chloroform and subsequently precipitate in methanol.
  • the terpolymers of Examples 1 to 4 were analyzed by Differential Scanning Calorimetry (DSC), to obtain information on their thermal transitions related to their structure and morphology, and Size Exclusion Chromatography (SEC-GPC), to obtain their distribution of molecular weights Nuclear Magnetic Resonance Spectroscopy ( 1 H-NMR) was used to confirm the composition and sequence distribution of the polymers obtained.
  • DSC Differential Scanning Calorimetry
  • SEC-GPC Size Exclusion Chromatography
  • 1 H-NMR Nuclear Magnetic Resonance Spectroscopy
  • PBS phosphate buffered solution
  • AH m enthalpy of fusion
  • T m melting temperature
  • molecular weight distribution molecular weight by weight and polydispersity index
  • Tables 1 and 2 provide the results of the characterization using 1 H-RM N (composition and microstructural parameters) and molecular weight measurements of the poly (lactide / £ -caprolactone) (PLCLs) synthesized in Examples 1-4 . As you can see the sequence distribution is random and the random character (R) is approximately 1.
  • the molecular weights of the terpolymers synthesized in Examples 1-4 were measured by size exclusion chromatography (SEC or GPC) in a Waters 1515 equipped with two Styragel columns calibrated with polystyrene standards. Chloroform was used as eluent, the flow being 1 ml / min. From the molecular weight distribution the average molecular weights in number (M n ), in weight (M w ) and the polydispersity index (ratio) were obtained
  • composition of the terpolymers expressed as a percentage of molar content of ⁇ -caprolactone and lactide is obtained from the 1 H-NMR spectrum. Since it is impossible to offer the exact content of L-Lactide and D-Lactide (they are indistinguishable in the NMR spectrum) approximate values are given under the assumption of an equal reactivity of L-Lactide and D-Lactide. Under this assumption and taking into account the L-LA / D-LA ratio of the feed, we can obtain its molar fraction in the polymer because we know the content of caprolactone [CL] and lactide [LA]. Subsequently we obtain approximate values of the sequence lengths of L-LA and D-LA using the following formula
  • the structural parameters / L-LA and ta- LA are approximate values of the average sequence lengths of L-Lactide and D-Lactide obtained under the assumption of an equal reactivity of L-Lact
  • EXAMPLE 5 Thermal analysis during degradation of poly (lactide / £ - caprolactone) (PLCLs) synthesized in examples 1-4
  • the equipment used for scanning differential calorimetry analysis is a DSC Q200 from the calibrated TA Instruments commercial house with Indian and sapphire patterns. A sample between 5 and 9 mg is cooled to -85 ° C and heated to 185 ° C at 20 ° / min. During this first scan, information about the current physical and morphological state of the sample is obtained.
  • the glass transition temperature of the material (T g ), enthalpy relaxation ⁇ (J g "1 ), the enthalpy of fusion ⁇ (J g " 1 ) and the temperature of temperature are obtained from the calorimetric flow vs. temperature curve.
  • crystalline fusion (T m ) of the polymer is obtained. Subsequently, through a second scan, information is obtained on the properties of the polymer, independent of the thermal history.
  • Figure 1 shows the curves of the first differential scanning calorimetry (DSC) scan at different degradation times corresponding to the PLCL 008515 synthesized in Example 1. It can be seen how as the degradation progresses the transition temperature of the material, which is initially of 28.7 ° C, decreases.
  • the PLCL 008515 remains amorphous throughout the study and no fusion is seen by not having crystallizable sequences of L-lactide being the sequences of ⁇ -caprolactone short enough to not be able to crystallize.
  • a small enthalpy relaxation associated with the glass transition temperature can be distinguished.
  • Figure 2 shows the curves of the first sweep differential scanning calorimetry (DSC) at different degradation times corresponding to the PLCL 502525 synthesized in example 2. It can be seen how as the degradation progresses the transition temperature of the material, which initially is of 20.8 ° C, decreases.
  • the PLCL 502525 remains amorphous throughout the study and is not appreciated no fusion associated with the crystallizable sequences of L-lactide and ⁇ -caprolactone since their sequence lengths are short enough.
  • Figure 3 shows the curves of the first scanning differential scanning calorimetry (DSC) at different degradation times corresponding to the PLCL 504010 synthesized in example 3. It can be seen how as the degradation progresses the transition temperature of the material, which is initially of 38.0 ° C, decreases.
  • the PLCL 504010 remains amorphous until day 49 of degradation, in which a small fusion (T m ⁇ 80 ° C) associated with crystallizable sequences of L-lactide is observed, which increases until reaching a value of about 8 J / g on the final day of the study.
  • T m ⁇ 80 ° C small fusion associated with crystallizable sequences of L-lactide
  • Figure 4 shows the curves of the first scan of differential scanning calorimetry (DSC) at different degradation times corresponding to the PLCL 602515 synthesized in Example 4. It can be seen how as the degradation progresses the transition temperature of the material, which is initially of 36, 1 ° C, decreases. PLCL 602515 remains amorphous until day 35 of degradation, in which a small fusion (T m ⁇ 80 ° C) associated with crystallizable L-lactide sequences is observed, which increases until reaching a value of about 18 J / g on the final day of the study. It should be noted the presence of a marked enthalpy relaxation, lower than that of PLCL 504010, associated with the glass transition temperature. The intensity of the peak falls to high degradation times as the glass transition temperature of the material decreases.
  • DSC differential scanning calorimetry
  • Table 3 collects the evolution data during the study of degradation of molecular weights in weight (M w ), polydispersity index (IP) and thermal properties, obtained in two DSC scans, of the poly (lactide / £ - caprolactone) (PLCLs) synthesized in examples 1-4.
  • EXAMPLE 6 Evolution of molecular weights and calculation of degradation kinetics during degradation of poly (lactide / £ -caprolactone) (PLCLs) synthesized in examples 1-4
  • Figure 5 shows the evolution of the Neperian logarithm of the molecular weight by weight (M w ) versus the degradation time of the PLCLs synthesized in Examples 1-4.
  • the Relationship between the Neperian logarithm of molecular weight in weight and time is approximated by the equation:
  • the values of the kinetic constant K Mw were calculated from the slope of the adjustment curve of the molecular weight data versus time in the first 35 days of study for the PLCLs 008515 and 502525 and in the first 49 days for the PLCLs 504010 and 602515, since at higher times surface erosion becomes the dominant mechanism. Based on these results, the order of degradation rate is PLCL 008515> PLCL 502525> PLCL 602515> PLCL 504010. These PLCLs in Examples 1-4 show rapid degradation.
  • the PLCL 008515 has a kinetic constant of 0.066 days "1 and an average life time of 10.5 days.
  • the PLCL 502525 has a kinetic constant of 0.056 days " 1 and an average life time of 12.4 days.
  • the PLCL 504010 has a kinetic constant of 0.030 days "1 and an average life time of 23.1 days.
  • the PLCL 602515 has a kinetic constant of 0.040 days " 1 and an average life time of 17.3 days.
  • EXAMPLE 7 Weight loss and water absorption during degradation of poly (lactide / £ -caprolactone) (PLCLs) synthesized in examples 1-4
  • the weight loss or remaining weight of polymer (% RW) and water absorption (% WA) values were obtained at different degradation times from the wet weights (W w ), measured immediately after taking the samples and remove surface water, wrapping the sample in blotting paper and measuring dry weight (W d ), carried out after subjecting the samples to a drying process overnight followed by drying in a vacuum oven (800-900 bar) at room temperature for 24 hours, taking into account the initial weight of each sample (W 0 ) and using the equations :.
  • Figure 6 shows the evolution of the remaining weight during the degradation of the PLCLs synthesized in Examples 1-4.
  • Figure 7 shows the evolution of water absorption during the degradation of PLCLs synthesized in Examples 1-4.
  • Biomaterials begin to lose mass when they reach a molecular weight by weight limit. At that time the solubility of the oligomers is favored and the water absorption is already very high.
  • the weight loss of the PLCL 008515 and the PLCL 502525 begins on day 35 when their respective M w are 8400 and 1 1800 g / mol.
  • the PLCL 504010 and the PLCL 602515 the weight loss is evident on day 56 of degradation, in which their respective M w are 12000 and 9400 g / mol.
  • the mechanical tests of the non-degraded samples and of the submerged samples for 7, 14 and 21 days belonging to the PLCLs synthesized in Examples 1-4 were carried out in an Instron 5565 unit at a speed of 10 mm min "1 . Tests were carried out with a controlled temperature of 21 ⁇ 2 ° C and a relative humidity of 50 ⁇ 5% according to ISO 527-3 / 1995.
  • the mechanical properties offered correspond to average values of at least 5 specimens. from 150-200 ⁇ films prepared by him method of dissolution-evaporation in chloroform followed by a thermal treatment with rapid cooling.
  • Figure 8 shows the most representative stress-strain curves of the PLCLs synthesized in Examples 1-4.
  • the PLCL 502525 has a clearly elastomeric behavior (2% secant modulus of 5.7 MPa and 994% elongation at break) without the presence of a creep point.
  • the PLCL 008515 has a 2% secant module of 146.5 MPa and an elongation at break of 361%.
  • the PLCLs synthesized in Examples 3 and 4 are more rigid with secant modules of 336.7MPa and 331.3 MPa, respectively.
  • the PLCL 504010 has a more vitreous behavior with an elongation at break of 59%. Instead, the PLCL 602515 deforms up to 230%.
  • Table 4 shows the mechanical properties (2% secant modulus, creep stress, breaking stress, elongation at break and elastic recovery) of the PLCLs synthesized in Examples 1-4 at different degradation times.
  • the PLCL 008515 undergoes a small change in its properties towards a more rigid behavior, related to the small enthalpy relaxation observed in the DSC scan ( Figure 1). Then, as the glass transition temperature of the material decreases and the mobility of the chains increases, the PLCL 008515 gains elastomeric character but suffers a deterioration in its mechanical properties (2% secant modulus and tensile stress) The PLCL 502525 could only be tested prior to the start of the degradation study. After a week submerged at 37 ° C in PBS, it lost consistency and it was impossible to carry out mechanical tests.
  • the PLCL 504010 undergoes a significant change in its properties towards a more rigid behavior, related to the enthalpy relaxation observed in the DSC scan (Figure 3). Elongation at break goes from 59% to 4%. On day 14, mechanical tests could no longer be carried out due to the fragility of the material.
  • the PLCL 602515 undergoes a change in its properties towards a more rigid behavior, related to the enthalpy relaxation observed in the DSC scan ( Figure 4).
  • the mechanical properties 2% secant modulus, tensile strength, elongation at breakage
  • PLCL 502525 became too viscous during degradation and no mechanical tests could be made due to its lack of consistency.
  • the PLCL 504010 became very fragile from day 7 of degradation and mechanical tests could not be carried out at other degradation times.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Polymers & Plastics (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Vascular Medicine (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Materials For Medical Uses (AREA)

Abstract

The invention relates to random terpolymers based on D-lactide, L-lactide and ε-caprolactone with limited or no crystallisation capacity during hydrolytic degradation.

Description

NUEVOS TERPOLÍ MEROS ALEATORIOS A BASE DE D-LACTIDA, L-LACTIDA y ε- CAPROLACTONA  NEW TERPOLÍ RANDOM MEROS BASED ON D-LACTIDA, L-LACTIDA and ε- CAPROLACTONA
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
La presente invención se refiere a la síntesis química de biopolímeros termoplásticos, bioabsorbibles y biocompatibles para su aplicación preferiblemente en el campo de la medicina y más especialmente a terpolímeros aleatorios a base de D-lactida, L-lactida y ε-caprolactona con escasa o nula capacidad de cristalización durante la degradación hidrolítica. The present invention relates to the chemical synthesis of thermoplastic, bioabsorbable and biocompatible biopolymers for application preferably in the medical field and more especially to random terpolymers based on D-lactide, L-lactide and ε-caprolactone with little or no crystallization capacity during hydrolytic degradation.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Durante las últimas décadas la síntesis de polímeros biodegradables se ha visto estimulada por la necesidad de nuevos materiales para aplicaciones en el campo médico. Estos biomateriales se diseñan para degradarse de una manera controlada en un periodo predeterminado de tiempo, descomponiéndose en pequeñas moléculas no tóxicas que pueden ser reabsorbidas o excretadas por el organismo humano, y, por lo tanto, no han de ser retirados clínicamente una vez finalizada su función pero sí que han de mantener sus prestaciones (propiedades mecánicas y biocompatibilidad) durante el tiempo en el cual son usados. During the last decades the synthesis of biodegradable polymers has been stimulated by the need for new materials for applications in the medical field. These biomaterials are designed to degrade in a controlled manner over a predetermined period of time, decomposing into small non-toxic molecules that can be reabsorbed or excreted by the human organism, and, therefore, do not have to be removed clinically once their function but they must maintain their performance (mechanical properties and biocompatibility) during the time in which they are used.
Los homopolímeros absorbibles más estudiados, como la poliglicolida (PGA) o las polilactidas (PLAs), tienen un comportamiento mecánico similar, caracterizado por un alto módulo de Young y valores bajos de elongación a rotura, y presentan tiempos de degradación inapropiados para numerosas aplicaciones clínicas que precisan de materiales biodegradables resistentes de gran flexibilidad que se degraden en un determinado plazo de tiempo. Entre las aplicaciones en el campo médico de estos elastómeros termoplásticos requeridos se incluyen la terapia celular para la reconstrucción de tejidos blandos y el empleo en el ámbito quirúrgico como implantes, stents o catéteres. The most studied absorbable homopolymers, such as polyglycolide (PGA) or polylactides (PLAs), have a similar mechanical behavior, characterized by a high Young's modulus and low elongation at break values, and have inappropriate degradation times for numerous clinical applications that require resistant biodegradable materials of great flexibility that degrade in a certain period of time. Among the applications in the medical field of these thermoplastic elastomers required are included cell therapy for soft tissue reconstruction and use in the surgical field as implants, stents or catheters.
Las mezclas o la síntesis química permiten obtener nuevos materiales biodegradables de propiedades mejoradas. Mediante la polimerización con otros monómeros que den lugar a homopolímeros de baja temperatura de transición vitrea, que sean más resistentes térmicamente o que tengan un mayor carácter hidrófilo, se pueden desarrollar nuevos materiales que mejoran la flexibilidad, la resistencia mecánica y térmica y la velocidad de degradación respecto a los correspondientes homopolímeros. Los copolímeros y terpolímeros de base lactida, glicolida, ε- caprolactona, etilenglicol, trimetilen carbonato o p-dioxanona están recibiendo una mayor atención y ofrecen un amplio rango de propiedades dependiendo de su composición. Mixtures or chemical synthesis allow obtaining new biodegradable materials with improved properties. By polymerization with other monomers that give rise to low-temperature glass transition homopolymers, which are more thermally resistant or having a greater hydrophilic character, new materials can be developed that improve flexibility, mechanical and thermal resistance and the degradation rate with respect to the corresponding homopolymers. Lactide, glycolide, ε-caprolactone, ethylene glycol, trimethylene carbonate or p-dioxanone-based copolymers and terpolymers are receiving increased attention and offer a wide range of properties depending on their composition.
La capacidad de cristalización de los copolímeros y terpolímeros más comúnmente utilizados aún es elevada y debido a ajustes inadecuados en la composición y a la subestimación de su distribución de secuencias son materiales proclives a cambios estructurales durante el almacenamiento o la degradación hidrolítica. En su almacenamiento, algunos de estos biomateriales sufren un proceso de envejecimiento que conlleva reordenamientos supramoleculares hasta alcanzar el equilibrio termodinámico que pueden llegar a afectar al comportamiento mecánico del material al aumentar su rigidez y/o disminuir su alargamiento a la rotura (Fernández J, Etxeberría A, Sarasua JR. Synthesis, structure and properties of poly(L-lactide-co-£- caprolactone) statistical copolymers. Journal of the Mechanical Behavior of Biomedical Materials 2012;9: 100-1 12; [20] Tsuji H, Mizuno A, Ikada Y. Enhanced Crystallization of Poly(L-lactide-co- ε-caprolactone) During Storage at Room Temperature. Journal of Applied Polymer Science 2000;76:947-953) The crystallization capacity of the most commonly used copolymers and terpolymers is still high and due to improper adjustments in the composition and underestimation of their sequence distribution are materials prone to structural changes during storage or hydrolytic degradation. In their storage, some of these biomaterials undergo an aging process that involves supramolecular rearrangements until they reach thermodynamic equilibrium that can affect the mechanical behavior of the material by increasing its stiffness and / or decreasing its elongation at break (Fernández J, Etxeberría A, Sarasua JR. Synthesis, structure and properties of poly (L-lactide-co-£ - caprolactone) statistical copolymers. Journal of the Mechanical Behavior of Biomedical Materials 2012; 9: 100-1 12; [20] Tsuji H, Mizuno A, Ikada Y. Enhanced Crystallization of Poly (L-lactide-co-ε-caprolactone) During Storage at Room Temperature. Journal of Applied Polymer Science 2000; 76: 947-953)
Por otra parte, la mayoría de elastómeros biodegradables disponibles que se degradan preservando su carácter amorfo, presentan temperaturas de transición muy bajas (menores de 15-20°C) dando lugar a materiales con módulos elásticos muy bajos (< 5 MPa). Esto los convierte en materiales difíciles de manipular a temperatura ambiente que exhiben un soporte mecánico insuficiente a 37°C (temperatura del cuerpo humano). En la degradación hidrolítica a 37°C estos cambios en la morfología del polímero son más relevantes y se ven acelerados debido al efecto plastificante de las moléculas de agua que favorece la movilidad de las cadenas poliméricas (Saha SK, Tsuji H. Effects of rapid crystallization on hydrolytic degradation and mechanical properties of poly(L- lactide-co- ε-caprolactone. Reactive & Functional Polymers 2006;66:1362-1372; Saha SK, Tsuji H. Enhanced crystallization of poly(L-lactide-co-£-caprolactone) in the presence of water. Journal of Applied Polymer Science 2009; 112:715-720). La degradación se produce preferentemente en las regiones amorfas del material, siendo las regiones cristalinas más resistentes (Albertsson AC, Eklund M. Influence of molecular structure on the degradation mechanism of degradable polymers: In vitro degradation of poly(trimethylene carbonate), poly(trimethylene carbonate-co- caprolactone) and poly(adipic anhydride). Journal of Applied Polymer Science 1995;57:87-103). Por lo tanto, una alta cristalización inhibe la degradación homogénea del material y contribuye al deterioro de sus propiedades favoreciendo la rotura frágil (Fernández J, Larrañaga A, Etxeberría A, Sarasua JR. Effects of chain microstructures and derived crystallization capability on hydrolytic degradation of poly(L-lactide/£- caprolactone) copolymers. Polymer Degradation and Stability 2013: 98: 481-489). Además, en el proceso de degradación se forman residuos cristalinos de bajo peso molecular que pueden llegar a permanecer en el cuerpo humano durante años, una vez que el material ya ha perdido sus propiedades y ha cumplido su función (Tsuji H, Ikarashi K. In vitro hydrolysis of poly(L-lactide) crystalline residues as extended-chain crystallites. Part I: long-term hydrolysis in phosphate-buffered solution at 37°C. Biomaterials 2004;25:5449-5455). On the other hand, the majority of biodegradable elastomers available that are degraded while preserving their amorphous character, have very low transition temperatures (less than 15-20 ° C) resulting in materials with very low elastic moduli (<5 MPa). This makes them difficult to handle materials at room temperature that exhibit insufficient mechanical support at 37 ° C (human body temperature). In hydrolytic degradation at 37 ° C, these changes in the morphology of the polymer are more relevant and are accelerated due to the plasticizing effect of water molecules that favors the mobility of polymer chains (Saha SK, Tsuji H. Effects of rapid crystallization on hydrolytic degradation and mechanical properties of poly (L-lactide-co-ε-caprolactone. Reactive & Functional Polymers 2006; 66: 1362-1372; Saha SK, Tsuji H. Enhanced crystallization of poly (L-lactide-co- £ - caprolactone) in the presence of water. Journal of Applied Polymer Science 2009; 112: 715-720). Degradation occurs preferentially in the amorphous regions of the material, being the most resistant crystalline regions (Albertsson AC, Eklund M. Influence of molecular structure on the degradation mechanism of degradable polymers: In vitro degradation of poly (trimethylene carbonate), poly (trimethylene carbonate-co-caprolactone) and poly (adipic anhydride) Journal of Applied Polymer Science 1995; 57: 87-103). Therefore, high crystallization inhibits the homogeneous degradation of the material and contributes to the deterioration of its properties, favoring fragile breakage (Fernández J, Larrañaga A, Etxeberría A, Sarasua JR. Effects of chain microstructures and derived crystallization capability on hydrolytic degradation of poly (L-lactide / £ - caprolactone) copolymers Polymer Degradation and Stability 2013: 98: 481-489). In addition, low molecular weight crystalline residues are formed in the degradation process that can remain in the human body for years, once the material has already lost its properties and has fulfilled its function (Tsuji H, Ikarashi K. In vitro hydrolysis of poly (L-lactide) crystalline residues as extended-chain crystallites Part I: long-term hydrolysis in phosphate-buffered solution at 37 ° C. Biomaterials 2004; 25: 5449-5455).
La conformación de dispositivos médicos fiables requiere de materiales que presenten estabilidad, durabilidad y predictabilidad de sus propiedades macroscópicas y microscópicas. Mediante un mejor control de la composición y de la microestructura, así como del peso molecular, es posible confeccionar nuevos materiales termoplásticos con propiedades a medida, que mejoran las propiedades de los polímeros absorbibles comerciales, pudiendo adaptar sus propiedades mecánicas y tiempos de degradación a las necesidades de aplicaciones médicas concretas. The conformation of reliable medical devices requires materials that have stability, durability and predictability of their macroscopic and microscopic properties. Through better control of the composition and microstructure, as well as molecular weight, it is possible to make new thermoplastic materials with custom properties, which improve the properties of commercial absorbable polymers, being able to adapt their mechanical properties and degradation times to needs of specific medical applications.
El campo médico precisa de materiales biodegradables resistentes de gran flexibilidad que se degraden en un determinado plazo de tiempo y que preferiblemente presenten temperaturas de transición superiores a 15°C. Sin embargo, la capacidad de cristalización de los copolímeros y terpolímeros más comúnmente utilizados aún es elevada y debido a malos ajustes en la composición y a la subestimación de su distribución de secuencias son materiales proclives a cambios estructurales durante el almacenamiento o la degradación hidrolítica. Además, en el proceso de degradación se forman residuos cristalinos de bajo peso molecular que pueden llegar a permanecer en el cuerpo humano durante años, una vez que el material ya ha perdido sus propiedades y ha cumplido su función The medical field requires highly flexible resistant biodegradable materials that degrade over a certain period of time and preferably have transition temperatures above 15 ° C. However, the crystallization capacity of the most commonly used copolymers and terpolymers is still high and due to poor adjustments in the composition and underestimation of their sequence distribution are materials prone to structural changes during storage or hydrolytic degradation. In addition, low molecular weight crystalline residues are formed in the degradation process that can remain in the human body for years, once the material has already lost its properties and has fulfilled its function
En respuesta a esta necesidad, en la presente invención se sintetizan terpolímeros de carácter aleatorio (R mayor que 0,9) por polimerización de L-lactida y D-lactida, para aportar consistencia y resistencia mecánica al material, y ε-caprolactona para aportar carácter elastomérico. Estos materiales muestran poca o nula capacidad de cristalización durante su almacenamiento o degradación gracias al control de las longitudes promedio de L-lactida o D-lactida y ε-caprolactona. Se tratan de materiales termoplásticos de diferentes comportamientos mecánicos que presentan una degradación homogénea sin formación de residuos cristalinos de alta resistencia hidrolítica y que tienen una temperatura de transición vitrea superior a 15°C. In response to this need, random terpolymers (R greater than 0.9) are synthesized in the present invention by polymerization of L-lactide and D-lactide, to provide consistency and mechanical strength to the material, and ε-caprolactone to provide elastomeric character. These materials show little or no crystallization capacity during storage or degradation thanks to the control of the average lengths of L-lactide or D-lactide and ε-caprolactone. They are thermoplastic materials of different mechanical behaviors that exhibit a homogeneous degradation without the formation of crystalline residues of high hydrolytic resistance and that have a glass transition temperature greater than 15 ° C.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
Estas y otras características y ventajas de la invención, se pondrán más claramente de manifiesto a partir de la descripción detallada que sigue de formas preferidas de realización, dadas únicamente a título de ejemplos ilustrativo y no limitativos, con referencia a las figuras que se acompañan. These and other features and advantages of the invention will become more clearly apparent from the following detailed description of preferred embodiments, given solely by way of illustrative and non-limiting examples, with reference to the accompanying figures.
EXPOSICIÓN DETALLADA DE LA INVENCIÓN DETAILED EXHIBITION OF THE INVENTION
En uno de sus aspectos la presente invención se dirige a terpolímeros aleatorios (R> 0,85) obtenibles por polimerización en masa (sin uso de disolvente) en una sola etapa de: In one of its aspects the present invention is directed to random terpolymers (R> 0.85) obtainable by mass polymerization (without solvent use) in a single stage of:
a) ε-caprolactona de fórmula (I) a) ε-caprolactone of formula (I)
Figure imgf000005_0001
Figure imgf000005_0001
(I)  (I)
b) L-lactida de fórmula (II)
Figure imgf000006_0001
b) L-lactide of formula (II)
Figure imgf000006_0001
(II)  (II)
ye) D-lactida de fórmula (III) and e) D-lactide of formula (III)
Figure imgf000006_0002
Figure imgf000006_0002
Estos terpolímeros se pueden sintetizar en una sola etapa adicionando los comonómeros (I) a (III) al mismo tiempo. El catalizador es añadido una vez se ha llevado a fusión la mezcla y se ha inertizado el medio. Estos polímeros presentan un marcado carácter aleatorio en la distribución de las unidades de lactida y caprolactona (cortas secuencias de L-lactida, D-lactida y ε-caprolactona). Aunque las secuencias de L-lactida o D-lactida y de ε-caprolactona tienen la capacidad de cristalizar durante la degradación, los materiales de la presente invención exhiben poca o nula capacidad de cristalización durante su almacenamiento o degradación gracias al control de las longitudes promedio de L-lactida o D-lactida y ε-caprolactona. Se tratan de materiales termoplásticos de diferentes comportamientos mecánicos que presentan una degradación homogénea sin formación de residuos cristalinos de alta resistencia hidrolítica y que tienen una temperatura de transición vitrea superior a 15°C.  These terpolymers can be synthesized in a single stage by adding the comonomers (I) to (III) at the same time. The catalyst is added once the mixture has been melted and the medium has been inerted. These polymers have a marked random character in the distribution of lactide and caprolactone units (short sequences of L-lactide, D-lactide and ε-caprolactone). Although the sequences of L-lactide or D-lactide and of ε-caprolactone have the ability to crystallize during degradation, the materials of the present invention exhibit little or no crystallization capacity during storage or degradation thanks to the control of average lengths of L-lactide or D-lactide and ε-caprolactone. They are thermoplastic materials of different mechanical behaviors that exhibit a homogeneous degradation without the formation of crystalline residues of high hydrolytic resistance and that have a glass transition temperature greater than 15 ° C.
En los terpolímeros de la presente invención la presencia de L-lactida y D-lactida, contribuye a aumentar la consistencia y la resistencia mecánica del material, y la presencia de ε-caprolactona contribuye a aportar carácter elastomérico. In the terpolymers of the present invention the presence of L-lactide and D-lactide contributes to increase the consistency and mechanical strength of the material, and the presence of ε-caprolactone contributes to providing elastomeric character.
En una realización de la presente invención los terpolímeros aleatorios se obtienen por reacción de una mezcla de comonómeros que tiene un contenido molar de ε- caprolactona entre un 5 y un 30 mol% respecto al total de comonómeros (I), (II) y (III). Para valores menores de un 5% el material se hace muy susceptible a la rotura frágil y su comportamiento mecánico se asemeja al de los homopolímeros semicristalinos más comunes. Por el contrario, para valores mayores del 30% la temperatura de transición vitrea será muy baja (menor de 15°-20C) y aunque su carácter elastomérico sea muy alto la consistencia de estos será insuficiente (módulos elásticos muy bajos, < 5 MPa) siendo difícil trabajar con ellos a temperaturas superiores a su temperatura de transición vitrea, como es el caso de la temperatura del cuerpo humano (37°C). In one embodiment of the present invention, random terpolymers are obtained by reacting a mixture of comonomers having a molar content of ε-caprolactone between 5 and 30 mol% with respect to the total of comonomers (I), (II) and ( III). For values of less than 5%, the material becomes very susceptible to brittle breakage and its mechanical behavior resembles that of the most common semicrystalline homopolymers. On the contrary, for values greater than 30% the glass transition temperature will be very low (less than 15 ° -20C) and although their elastomeric character is very high the consistency of these will be insufficient (very low elastic modules, <5 MPa) being difficult to work with them at temperatures higher than their glass transition temperature, as is the case with the temperature of the human body (37 ° C).
En otra realización de la presente invención los terpolímeros aleatorios se obtienen por reacción de una mezcla de comonómeros que tiene un contenido molar un contenido molar de ε-caprolactona entre un 5 y un 25 mol% respecto al total de comonómeros (I), (II) y (III) y que preferiblemente tiene la misma cantidad de L-Lactida y de D-Lactida. In another embodiment of the present invention, random terpolymers are obtained by reacting a mixture of comonomers having a molar content of a ε-caprolactone molar content between 5 and 25 mol% with respect to the total comonomers (I), (II ) and (III) and preferably having the same amount of L-Lactide and D-Lactide.
En otra realización de la presente invención los terpolímeros aleatorios se obtienen por reacción de una mezcla de comonómeros que tiene un contenido molar un contenido molar de ε-caprolactona entre un 5 y un 15 mol% respecto al total de comonómeros (I), (II) y (III). Dichos polímeros tienen propiedades excepcionales para aplicaciones en los que la rigidez de los terpolímeros es importante, siendo una alternativa a los materiales biodegradables rígidos utilizados actualmente que son muy susceptibles a rotura frágil (comportamiento vitreo) y/o tienen una alta capacidad de cristalización durante la degradación dando lugar a residuos cristalinos de bajo peso molecular que, debido a su alta resistencia hidrolítica, pueden llegar a permanecer en el cuerpo humano durante años, una vez que el material ya ha perdido sus propiedades y ha cumplido su función. In another embodiment of the present invention, random terpolymers are obtained by reacting a mixture of comonomers having a molar content of a ε-caprolactone molar content between 5 and 15 mol% with respect to the total comonomers (I), (II ) and (III). Such polymers have exceptional properties for applications in which the stiffness of the terpolymers is important, being an alternative to the rigid biodegradable materials currently used that are very susceptible to brittle breakage (vitreous behavior) and / or have a high crystallization capacity during the degradation resulting in crystalline residues of low molecular weight that, due to their high hydrolytic resistance, can remain in the human body for years, once the material has already lost its properties and has fulfilled its function.
En otra realización de la presente invención los terpolímeros aleatorios se obtienen por reacción de una mezcla de comonómeros que tiene un contenido molar un contenido molar de ε-caprolactona entre un 15 y un 30 mol% respecto al total de comonómeros (I), (II) y (III). Dichos polímeros tienen propiedades excepcionales para aplicaciones en los que las propiedades elastoméricas de los terpolímeros son importantes, siendo una alternativa a los materiales biodegradables elastoméricos utilizados actualmente que tienen una Tg muy baja, presentando una consistencia insuficiente, y/o tienen una alta capacidad de cristalización durante la degradación. En otra realización de la presente invención los terpolímeros aleatorios se obtienen por reacción de una mezcla de comonómeros que tiene un contenido molar de L-lactida entre un 3 y un 72%, preferiblemente entre un 5 y un 72% respecto al total de comonómeros (I), (II) y (III) y un contenido de D-lactida entre un 3 y un 72%, preferiblemente entre un 5 y un 72% respecto al total de comonómeros (I), (II) y (III). En otra realización de la presente invención los terpolímeros aleatorios se obtienen por reacción de una mezcla de comonómeros que tiene un contenido molar de ε- caprolactona (II) entre un 5 y un 30% respecto al total de comonómeros (I), (II) y (III) un contenido de L-lactida entre un 3 y un 72%, preferiblemente entre un 5 y un 72% respecto al total de comonómeros (I), (II) y (III) y un contenido de D-lactida entre un 3 y un 72%, preferiblemente entre un 5 y un 72% respecto al total de comonómeros (I), (II) y (III). In another embodiment of the present invention the random terpolymers are obtained by reacting a mixture of comonomers having a molar content of a ε-caprolactone molar content between 15 and 30 mol% with respect to the total comonomers (I), (II ) and (III). Such polymers have exceptional properties for applications in which the elastomeric properties of the terpolymers are important, being an alternative to the currently used elastomeric biodegradable materials that have a very low T g , presenting insufficient consistency, and / or have a high capacity of crystallization during degradation. In another embodiment of the present invention, random terpolymers are obtained by reacting a mixture of comonomers having a molar content of L-lactide between 3 and 72%, preferably between 5 and 72% with respect to the total comonomers ( I), (II) and (III) and a D-lactide content between 3 and 72%, preferably between 5 and 72% of the total comonomers (I), (II) and (III). In another embodiment of the present invention, random terpolymers are obtained by reacting a mixture of comonomers having a molar content of ε-caprolactone (II) between 5 and 30% with respect to the total comonomers (I), (II) and (III) an L-lactide content between 3 and 72%, preferably between 5 and 72% of the total comonomers (I), (II) and (III) and a D-lactide content between 3 and 72%, preferably between 5 and 72% of the total comonomers (I), (II) and (III).
En otra realización de la presente invención los terpolímeros aleatorios se obtienen por reacción de una mezcla de comonómeros en los que el exceso enantiomérico de L- lactida o de D-lactida es mayor que 5%, preferiblemente mayor que 7,5% y más preferiblemente mayor que 10%. In another embodiment of the present invention, random terpolymers are obtained by reacting a mixture of comonomers in which the enantiomeric excess of L-lactide or D-lactide is greater than 5%, preferably greater than 7.5% and more preferably greater than 10%.
Otro aspecto de la presente invención es el método de síntesis de los terpolímeros aleatorios descritos anteriormente que consiste en hacer reaccionar en masa en una sola etapa el catalizador y los comonómeros: Another aspect of the present invention is the method of synthesis of the random terpolymers described above which consists in reacting the catalyst and the comonomers in a single stage:
a) ε-caprolactona de fórmula (I) a) ε-caprolactone of formula (I)
Figure imgf000008_0001
b) L-lactida de fórmula (II)
Figure imgf000008_0002
ye) D-lactida de fórmula (III)
Figure imgf000008_0003
En una realización de la presente invención la reacción de polimerización transcurre por polimerización por apertura de anillo (ROP) realizándose en masa a temperaturas comprendidas entre 120 y 140°C durante 2 o 3 días de reacción. Una vez finalizada la reacción, es necesario eliminar las impurezas del catalizador, los oligómeros y los monómeros que no han reaccionado. Esto se hace por disolución-precipitación en cloroformo-metanol pero existen otras alternativas como puede ser el uso de otros pares disolvente-precipitante o la vaporización a presión
Figure imgf000008_0001
b) L-lactide of formula (II)
Figure imgf000008_0002
and e) D-lactide of formula (III)
Figure imgf000008_0003
In one embodiment of the present invention the polymerization reaction proceeds by ring opening polymerization (ROP) being carried out in bulk at temperatures between 120 and 140 ° C for 2 or 3 days of reaction. Once the reaction is finished, it is necessary to remove impurities from the catalyst, oligomers and monomers that have not reacted. This is done by dissolution-precipitation in chloroform-methanol but there are other alternatives such as the use of other solvent-precipitating pairs or vaporization under pressure.
La reacción de polimerización se lleva a cabo en una sola etapa adicionando los comonómeros al mismo tiempo, mientras que el catalizador es añadido una vez se ha llevado a fusión la mezcla y se ha inertizado el medio dando así lugar a estructuras poliméricas aleatorias (R>0,85). The polymerization reaction is carried out in a single stage by adding the comonomers at the same time, while the catalyst is added once the mixture has been melted and the medium has been inerted thus giving rise to random polymer structures (R> 0.85).
En una realización de la presente invención la reacción de polimerización se lleva a cabo en una sola etapa en presencia de un catalizador que se selecciona del grupo que consiste en 2-etilhexanoato de bismuto, el hexanoato de bismuto (BiHex3), el triflato de bismuto (Bi(OTf)3), el etóxido de difenilo de bismuto (Ph2BiOEt), el subsalicilato de bismuto (BiSS) y el trifenilo de bismuto (Ph3Bi), más preferiblemente del grupo que consiste en subsalicilato de bismuto (BiSS) y trifenilo de bismuto (PH3Bi). In one embodiment of the present invention the polymerization reaction is carried out in a single step in the presence of a catalyst that is selected from the group consisting of bismuth 2-ethylhexanoate, bismuth hexanoate (BiHex 3 ), the triflate of bismuth (Bi (OTf) 3 ), bismuth diphenyl ethoxide (Ph 2 BiOEt), bismuth subsalicylate (BiSS) and bismuth triphenyl (Ph 3 Bi), more preferably from the group consisting of bismuth subsalicylate ( BiSS) and bismuth triphenyl (PH 3 Bi).
En una realización preferida los catalizadores se utilizan de modo que la relación molar del total de monómeros (I), (II) y (III) al catalizador esté comprendida entre entre 250: 1 y 10000: 1 , preferiblemente entre 750:1 y 2000: 1 , más preferiblemente entre 1000: 1 y 1500: 1 y realizándose la reacción preferiblemente en atmosfera inerte, p.ej. en atmosfera de N2. In a preferred embodiment the catalysts are used so that the molar ratio of the total monomers (I), (II) and (III) to the catalyst is between 250: 1 and 10,000: 1, preferably between 750: 1 and 2000 : 1, more preferably between 1000: 1 and 1500: 1 and the reaction is preferably carried out in an inert atmosphere, eg in an N 2 atmosphere.
En una realización más preferida la reacción se lleva a cabo a temperaturas comprendidas entre 120 y 150°C, más preferiblemente entre 130 y 140°C y estando el tiempo de reacción comprendido entre 8 y 96 horas dependiendo de la temperatura de reacción. De este modo cuando la temperatura es de 130°C el tiempo de reacción puede situarse entre 48 y 72 horas y cuando la temperatura es de 140 °C el tiempo de reacción puede situarse entre 32 y 48 horas. Otro aspecto de la presente invención se refiere a las mezclas de uno o más de los terpolímeros aleatorios descritos anteriormente. In a more preferred embodiment the reaction is carried out at temperatures between 120 and 150 ° C, more preferably between 130 and 140 ° C and the reaction time is between 8 and 96 hours depending on the reaction temperature. Thus when the temperature is 130 ° C the reaction time can be between 48 and 72 hours and when the temperature is 140 ° C the reaction time can be between 32 and 48 hours. Another aspect of the present invention relates to mixtures of one or more of the random terpolymers described above.
Otro aspecto de la presente invención se refiere a materiales compuestos que comprenden mezclas de los terpolímeros de la invención. En el contexto de la presente invención se entiende por material compuesto a aquellos materiales que se forman por la mezcla de los terpolímeros de la invención y uno o más materiales para conseguir la combinación de propiedades que no es posible obtener en los materiales originales. Dichos materiales compuestos están formados por dos o más componentes distinguibles físicamente y separables mecánicamente y presentan varias fases químicamente distintas, completamente insolubles entre sí y separadas por una inferíase. Ejemplos de materiales compuestos son los que que consisten en terpolímeros de la invención con refuerzo mecánico es decir que comprenden terpolímeros de la invención y fibras o partículas (cargas y nanocargas inorgánicas como las fibras de vidrio, fibras de carbono o nanotubos de carbono; cargas orgánicas como las fibras de aramida o las fibras de polietileno de alta densidad; y cargas naturales como las fibras de origen vegetal) con objeto de mejorar las propiedades mecánicas de la matriz polimérica. Otro ejemplo de materiales compuestos son los que comprenden terpolímeros de la invención y cargas bioactivas tales como partículas inorgánicas bioactivas (bioglass, hidroxiapatita etc.) o moléculas bioactivas como los factores de crecimiento (conjunto de sustancias, la mayoría de naturaleza proteica, que estimulan la proliferación celular mediante la regulación del ciclo celular iniciando la mitosis y que, además, regulan la supervivencia celular y estimulan la migración celular, la diferenciación celular e incluso la apoptosis) con objeto de mejorar la actividad y el crecimiento celular en la matriz polimérica. Otro ejemplo de materiales compuestos son los materiales compuestos que comprenden terpolímeros de la invención y agentes antibióticos (fosfamicina, gentamicina, etc.) con objeto de mejorar la actividad antibacteriana de la matriz polimérica. Otro aspecto de la presente invención se refiere a dispositivos o implantes médicos tales como los catéteres; las sondas; las guias para nervios (injertos tubulares que unen a modo de puente dos extremos de un nervio dañado); los stents (dispositivos de diferentes diseños, normalmente mallas, que se introducen en las arterias coronarias (casos de ateroesclerosis), ésofago (casos de estenosis de esófago) etc, y actúan apuntalando su pared); las suturas, las fijaciones, insertos y/o sustitutos óseos; las cápsulas para liberación de fármacos, los scaffolds o anclajes celulares (matrices de anclaje de estructura tridimensional porosa) que comprendan los terpolímeros aleatorios descritos anterirormente. Los terpolímeros rígidos se emplearan preferiblemente en téjidos duros (tejidos óseos) y los terpolímeros más flexibles en tejidos blandos (cardiología, urología, aparato digestivo, sistema nervioso, sistema respiratorio... ). Another aspect of the present invention relates to composite materials comprising mixtures of the terpolymers of the invention. In the context of the present invention, composite material is understood as those materials that are formed by mixing the terpolymers of the invention and one or more materials to achieve the combination of properties that cannot be obtained in the original materials. Said composite materials are formed by two or more physically distinguishable and mechanically separable components and have several chemically distinct phases, completely insoluble to each other and separated by one inferred. Examples of composite materials are those consisting of terpolymers of the invention with mechanical reinforcement, that is to say they comprise terpolymers of the invention and fibers or particles (inorganic fillers and nano-charges such as glass fibers, carbon fibers or carbon nanotubes; organic fillers). such as aramid fibers or high density polyethylene fibers; and natural fillers such as fibers of plant origin) in order to improve the mechanical properties of the polymer matrix. Another example of composite materials are those comprising terpolymers of the invention and bioactive fillers such as bioactive inorganic particles (bioglass, hydroxyapatite etc.) or bioactive molecules such as growth factors (set of substances, most of a protein nature) that stimulate the cell proliferation by regulating the cell cycle by initiating mitosis and, in addition, regulating cell survival and stimulating cell migration, cell differentiation and even apoptosis) in order to improve cell activity and growth in the polymer matrix. Another example of composite materials are composite materials comprising terpolymers of the invention and antibiotic agents (phosphamycin, gentamicin, etc.) in order to improve the antibacterial activity of the polymer matrix. Another aspect of the present invention relates to medical devices or implants such as catheters; the probes; nerve guides (tubular grafts that bridge two ends of a damaged nerve); stents (devices of different designs, usually meshes, that are introduced into the coronary arteries (cases of atherosclerosis), esophagus (cases of esophageal stenosis) etc, and act by pointing at its wall); sutures, fixations, inserts and / or bone substitutes; the capsules for drug release, scaffolds or cell anchors (anchoring matrices of porous three-dimensional structure) comprising the random terpolymers described above. Rigid terpolymers will preferably be used in hard tissues (bone tissues) and the most flexible terpolymers in soft tissues (cardiology, urology, digestive system, nervous system, respiratory system ...).
Otro aspecto de la presente invención se refiere a plásticos que comprenden los terpolímeros aleatorios descritos anteriormente y otros materiales poliméricos biodegradables y biocompatibles junto con aditivos para plásticos tales como retardantes a la llama, antioxidantes, espumantes, plastificantes, absorbedores de luz ultravioleta, antiestáticos, antibacterianos y otros aditivos para plásticos tales como los que se describen en la Enciclopedia del Plástico (Tomo 3). pp. 1-28. Another aspect of the present invention relates to plastics comprising the random terpolymers described above and other biodegradable and biocompatible polymeric materials together with additives for plastics such as flame retardants, antioxidants, foaming, plasticizers, ultraviolet light absorbers, antistatic, antibacterial and other additives for plastics such as those described in the Encyclopedia of Plastics (Volume 3). pp. 1-28.
El contenido molar del conjunto formado L-lactida y D-lactida influye en la rigidez, la resistencia mecánica y la consistencia. Si en un copolímero L-lactida- ε-caprolactona sustituimos-e-caprolactona por D-lactida, se aumentan las propiedades mecánicas asociadas a la tensión (módulo elástico y tensión a rotura) y se reduce algo la elongación a rotura. Se aumenta la temperatura de transición vitrea del material. Por otra parte, al sustituir L-lactida por D-lactida logramos romper el ordenamiento microestructural de unidades de L-lactida limitando su capacidad de cristalización. El contenido molar en ε-caprolactona puede variar entre un 5 y un 30% dependiendo de las propiedades elastoméricas requeridas. The molar content of the set formed L-lactide and D-lactide influences stiffness, mechanical strength and consistency. If in an L-lactide-ε-caprolactone copolymer we substitute D-lactide for e-caprolactone, the mechanical properties associated with the tension (elastic modulus and tensile stress) are increased and the elongation at break is somewhat reduced. The glass transition temperature of the material is increased. On the other hand, by replacing L-lactide with D-lactide, we managed to break the microstructural order of L-lactide units by limiting their crystallization capacity. The molar content in ε-caprolactone can vary between 5 and 30% depending on the elastomeric properties required.
Cuando el contenido molar de ε-caprolactona se sitúa entre un 5 y un 15 mol% respecto al total de comonómeros (I), (II) y (III). Dichos terpolímeros tienen propiedades excepcionales para aplicaciones en los que la rigidez de los terpolímeros es importante mientras que cuando el contenido molar de ε-caprolactona está entre un más de 15 y 30 mol% respecto al total de comonómeros (I), (II) y (III) los terpolímeros tienen propiedades excepcionales para aplicaciones en los que las propiedades elastoméricas de los terpolímeros son importantes, siendo una alternativa a los materiales biodegradables elastoméricos utilizados actualmente que tienen una Tg muy baja, presentando una consistencia insuficiente, y/o tienen una alta capacidad de cristalización durante la degradación. Los materiales de la presente invención exhiben poca o nula capacidad de cristalización durante su degradación gracias al control de las longitudes promedio de L-lactida o D-lactida y ε-caprolactona. Se tratan de materiales termoplásticos de diferentes comportamientos mecánicos que presentan una degradación homogénea sin formación de residuos cristalinos de alta resistencia hidrolítica. When the molar content of ε-caprolactone is between 5 and 15 mol% with respect to total comonomers (I), (II) and (III). Said terpolymers have exceptional properties for applications in which the stiffness of the terpolymers is important while when the molar content of ε-caprolactone is between more than 15 and 30 mol% with respect to the total comonomers (I), (II) and (III) the terpolymers have exceptional properties for applications in which the elastomeric properties of the terpolymers are important, being an alternative to the currently used elastomeric biodegradable materials that have a very low T g , presenting insufficient consistency, and / or have a high crystallization capacity during degradation. The materials of the present invention exhibit little or no crystallization capacity during their degradation thanks to the control of the average lengths of L-lactide or D-lactide and ε-caprolactone. They are thermoplastic materials of different mechanical behaviors that exhibit a homogeneous degradation without the formation of crystalline residues of high hydrolytic resistance.
DESCRIPCIÓN DE LAS FIGURAS Figura 1. Curvas del primer barrido de calorimetría diferencial de barrido (DSC) a diferentes tiempos de degradación correspondientes al PLCL 008515 sintetizado en el ejemplo 1. DESCRIPTION OF THE FIGURES Figure 1. Curves of the first sweep of differential scanning calorimetry (DSC) at different degradation times corresponding to PLCL 008515 synthesized in example 1.
Figura 2. Curvas del primer barrido de calorimetría diferencial de barrido (DSC) a diferentes tiempos de degradación correspondientes al PLCL 502525 sintetizado en el ejemplo 2.  Figure 2. Curves of the first differential scanning calorimetry (DSC) scan at different degradation times corresponding to PLCL 502525 synthesized in Example 2.
Figura 3. Curvas del primer barrido de calorimetría diferencial de barrido (DSC) a diferentes tiempos de degradación correspondientes al PLCL 504010 sintetizado en el ejemplo 3.  Figure 3. Curves of the first differential scanning calorimetry (DSC) scan at different degradation times corresponding to PLCL 504010 synthesized in example 3.
Figura 4. Curvas del primer barrido de calorimetría diferencial de barrido (DSC) a diferentes tiempos de degradación correspondientes al PLCL 602515 sintetizado en el ejemplo 4.  Figure 4. Curves of the first differential scanning calorimetry (DSC) scan at different degradation times corresponding to the PLCL 602515 synthesized in Example 4.
Figura 5. Representación del logaritmo neperiano de los pesos moleculares en peso (Mw) frente al tiempo de degradación para la obtención de las constantes cinéticas de degradación de cada poli(lactida/£-caprolactona) (PLCL) empleado a modo de ejemplo.  Figure 5. Representation of the neperian logarithm of the molecular weights by weight (Mw) versus the degradation time to obtain the degradation kinetic constants of each poly (lactide / £ -caprolactone) (PLCL) used as an example.
Figura 6. Evolución del peso remanente durante la degradación de los poli(lactida/£- caprolactona) (PLCLs) sintetizados en los ejemplos 1-4.  Figure 6. Evolution of the remaining weight during the degradation of the poly (lactide / £ -caprolactone) (PLCLs) synthesized in Examples 1-4.
Figura 7. Evolución de la absorción de agua durante la degradación de los poli(lactida/£-caprolactona) (PLCLs) sintetizados en los ejemplos 1-4.  Figure 7. Evolution of water absorption during the degradation of poly (lactide / £ -caprolactone) (PLCLs) synthesized in examples 1-4.
Figura 8. Curvas representativas de tensión-deformación de los poli(lactida/£- caprolactona) (PLCLs) sintetizados en los ejemplos 1-4. Figure 8. Representative stress-strain curves of poly (lactide / £ - caprolactone) (PLCLs) synthesized in Examples 1-4.
Definiciones En el contexto de la presente invención se entiende por terpolímeros aleatorios los polímeros resultantes de la reacción por apertura de anillo de tres monómeros en los que la distribución de las unidades de repetición que derivan de dichos monómeros a lo largo de la cadena polímerica presenta un carácter marcadamente aleatorio es decir muy próximo a la distribución estadística de Bernouilli y más concretamente terpolímeros que presentan un valor de R, determinado tal como se explica más adelante, superior al 0,85, más preferiblemente superior al 0,90 y todavía más preferiblemente superior al 0,95. En el contexto de la presente invención se entiende que un material presenta carácter elastomérico cuando muestra un comportamiento elástico, es decir cuando es capaz de sufrir deformaciones reversibles cuando se encuentra sujeto a la acción de fuerzas exteriores y de recuperar la forma original si estas fuerzas exteriores se eliminan. Los materiales con carácter elástomérico también presentan, típicamente, valores altos de deformación a rotura, no tienen yield point (tensión de fluencia) y típicamente presentan una alta recuperación elástica. Definitions In the context of the present invention, random terpolymers are understood as the polymers resulting from the ring opening reaction of three monomers in which the distribution of the repeating units derived from said monomers along the polymeric chain has a character markedly random, that is, very close to the Bernouilli statistical distribution and more specifically terpolymers having a value of R, determined as explained below, greater than 0.85, more preferably greater than 0.90 and still more preferably greater than 0.95. In the context of the present invention, it is understood that a material has an elastomeric character when it shows an elastic behavior, that is, when it is capable of undergoing reversible deformations when it is subject to the action of external forces and to recover the original shape if these external forces They are removed. Materials with an elastomeric character also typically have high values of strain at break, have no yield point (creep stress) and typically have a high elastic recovery.
En el contexto de la presente invención se entiende por material termoplástico aquel que, a temperaturas relativamente altas, se vuelve plástico, deformable o flexible, se derrite cuando se calienta y se endurece en un estado de transición vitrea cuando se deja enfriar lo suficiente. Los materiales termopásticos presentan una seudotransición termodinámica al ser calentados (siendo la temperatura de transición vitrea (Tg) la temperatura a la que se da dicha seudotransición termodinámica). Los polímeros termoplásticos difieren de los polímeros termoestables o termofijos en que después de calentarse y moldearse pueden recalentarse y formar otros objetos, mientras que en el caso de los termoestables o termofijos, después del enfriamiento inicial su forma no cambia al ser calentados sino que se combustionan antes de lograr un cambio de forma. En el contexto de la presente invención se entiende por exceso enantiomérico al porcentaje que se obtiene al realizar la siguiente operación aritmética: In the context of the present invention thermoplastic material is understood to be that which, at relatively high temperatures, becomes plastic, deformable or flexible, melts when heated and hardens in a glass transition state when it is allowed to cool sufficiently. Thermopastic materials have a thermodynamic pseudotransition when heated (the glass transition temperature (T g ) being the temperature at which said thermodynamic pseudotransition occurs). Thermoplastic polymers differ from thermosetting polymers or thermofixes in that after heating and molding they can overheat and form other objects, while in the case of thermosets or thermofixes, after initial cooling, their shape does not change when heated but they are combusted before achieving a change of form. In the context of the present invention, enantiomeric excess is understood as the percentage obtained by performing the following arithmetic operation:
(% molar de D-lactida) - (% molar de L-lactida) (Molar% of D-lactide) - (Molar% of L-lactide)
EE (%) =  EE (%) =
(% molar de D-lactida) + (% molar de L-lactida) En el contexto de la presente invención se entiende por consistencia de un material a la temperatura de trabajo de dicho material por la capacidad del material de conservar su forma a dicha temperatura sin reblandecerse de modo que mantiene su capacidad para actuar como soporte mecánico. Así por ejemplo si el material se utiliza para formar una sonda que debe emplearse a 37°C, se considerará que es consistente a dicha temperatura cuando mantenga su forma inicial, manteniendo de este modo su luz y un soporte mecánico adecuado. En el contexto de la presente invención se entiende por resistencia mecánica de un material las propiedades mecánicas asociadas a la tensión y en particular el módulo elástico (o el módulo secante al 2%) y la tensión de rotura. (Molar% of D-lactide) + (Molar% of L-lactide) In the context of the present invention, the consistency of a material at the working temperature of said material is understood as the ability of the material to retain its shape at said temperature without softening so that it maintains its ability to act as a mechanical support. Thus, for example, if the material is used to form a probe that must be used at 37 ° C, it will be considered to be consistent at that temperature when maintaining its initial shape, thus maintaining its light and adequate mechanical support. In the context of the present invention, mechanical strength of a material is understood as the mechanical properties associated with the tension and in particular the elastic modulus (or the 2% secant modulus) and the breaking stress.
En el contexto de la presente invención se entiende por catalizador a aquellos compuestos metálicos y enzimas que hacen posibles las reacciones de polimerización de los esteres cíclicos. Son particularmente adecuados como catalizadores en la presente invención las sales orgánicas de bismuto tales como el 2-etilhexanoato de bismuto, el hexanoato de bismuto (BiHex3), el triflato de bismuto (Bi(OTf)3), el etóxido de difenilo de bismuto (Ph2BiOEt), el subsalicilato de bismuto (BiSS) y el trifenilo de bismuto (Ph3Bi) y todavía más preferidos el subsalicilato de bismuto (BiSS) y el trifenilo de bismuto (Ph3Bi). In the context of the present invention, catalyst is understood as those metal compounds and enzymes that make possible the polymerization reactions of the cyclic esters. Particularly suitable as catalysts in the present invention are organic bismuth salts such as bismuth 2-ethylhexanoate, bismuth hexanoate (BiHex 3 ), bismuth triflate (Bi (OTf) 3 ), bismuth diphenyl ethoxide (Ph 2 BiOEt), bismuth subsalicylate (BiSS) and bismuth triphenyl (Ph 3 Bi) and even more preferred bismuth subsalicylate (BiSS) and bismuth triphenyl (Ph 3 Bi).
En el contexto de la presente invención se entiende por anclaje celular a matrices polimerícas porosas en cuya superficie se encuentran unidas una o más células por cualquier medio de unión incluyendo enlaces covalentes, no iónicos, fuerzas de Van der Waals. In the context of the present invention, cell anchoring to porous polymeric matrices is understood on the surface of which one or more cells are joined by any means of attachment including covalent, non-ionic bonds, Van der Waals forces.
En el contexto de la presente invención se entiende por implante médico a todo dispositivo médico fabricado para reemplazar una estructura biológica que falta, suplantar a una estructura biológica dañada, o mejorar una estructura biológica existente. Los implantes médicos son dispositivos fabricados por el hombre, a diferencia de los trasplantes, que son tejidos biomédicos. Ejemplos de implantes médicos son los marcapasos, los implantes cocleares, los dispositivos de administración de fármacos, las cánulas y los stents. Determinación de la longitud promedio de secuencias de Lactida y ε-caprolactona In the context of the present invention, medical implants are understood as any medical device manufactured to replace a missing biological structure, supplant a damaged biological structure, or improve an existing biological structure. Medical implants are man-made devices, unlike transplants, which are biomedical tissues. Examples of medical implants are pacemakers, cochlear implants, drug delivery devices, cannulas and stents. Determination of the average length of Lactide and ε-caprolactone sequences
Para determinar el grado de aleatoriedad de los terpolímeros de la presente invención se cálculan las longitudes promedio de secuencias de Lactida y de ε-caprolactona a partir de las áreas de las señales que corresponden a los grupos metino de las unidades de repetición que derivan de las lactidas (-CH-) y al valor promedio de las áreas de las señales correspondientes a los metilenos de las unidades de repetición que derivan de la ε-caprolactona (ε y a-CH2) en los espectros de resonancia magnética nuclear de protón (1 H-RMN). To determine the degree of randomness of the terpolymers of the present invention, the average lengths of Lactide and ε-caprolactone sequences are calculated from the areas of the signals corresponding to the methine groups of the repeating units derived from the lactides (-CH-) and the average value of the signal areas corresponding to the methylenes of the repeating units derived from ε-caprolactone (ε and a-CH 2 ) in proton nuclear magnetic resonance spectra ( 1 H-NMR).
Los espectros de resonancia magnética nuclear de protón (1 H-RMN).se realizan en un aparato Bruker Avance DPX 300 a 300,16 MHz de frecuencia de resonancia utilizando tubos de muestra de 5 mm O.D. Todos los espectros se registraron a temperatura ambiente en soluciones de 0,7 mL de cloroformo deuterado (CDCI3) utilizando las siguientes condiciones experimentales: Proton nuclear magnetic resonance spectra ( 1 H-NMR) are performed on a Bruker Avance DPX 300 to 300.16 MHz resonance frequency using 5 mm OD sample tubes. All spectra were recorded at room temperature at 0.7 mL solutions of deuterated chloroform (CDCI 3 ) using the following experimental conditions:
10 mg de muestra 10 mg sample
3 s tiempo de adquisición  3 s acquisition time
1 s tiempo de retraso  1 s delay time
Pulso 8,5 S  8,5 S pulse
Anchura espectral 5000 H  Spectral width 5000 H
32 barridos  32 sweeps
Figure imgf000015_0001
Figure imgf000015_0001
Unidad de repetición de Unidad de repetición de ε-caprolactona Lactida  Ε-Caprolactone Lactide repeat unit repeat unit
La señal correspondiente al metino de las unidades de repetición que derivan de las lactida se encuentra a desplazamientos químicos comprendidos entre 5,0 ppm y 5,3 ppm . Debido a la existencia de acoplamientos H-H se produce un solapamiento de las señales correspondientes a las unidades de repetición que derivan de la lactida y que son adyacentes a otras unidades de repetición que derivan de la lactida por una parte y de las señales correspondientes a las unidades de repetición que derivan de la lactida y que son adyacentes a unidades de repetición que derivan de la ε- caprolactona por otra parte. Por ello el conjunto de ambas señales se integra junto y el área resultante se designa como A. The signal corresponding to the methine of the repeating units derived from the lactide is found at chemical shifts between 5.0 ppm and 5.3 ppm. Due to the existence of HH couplings there is an overlap of the signals corresponding to the repeat units that derive from the lactide and that are adjacent to other repeat units that derive from the lactide on the one hand and the signals corresponding to the repeat units that derive from the lactide and that are adjacent to units Repeat derived from ε-caprolactone on the other hand. Therefore, the set of both signals is integrated together and the resulting area is designated as A.
En el caso de las unidades de repetición de ε-caprolactona el desplazamiento químico de los protones de los metilenos en ε y α dependen de la unidad de repetición adyacente en el polímero. In the case of the ε-caprolactone repeating units the chemical displacement of the protons of the methylenes in ε and α depend on the adjacent repeating unit in the polymer.
Así la señal de los protones de los metilenos en α se da encuentra en la zona con desplazamientos químicos alrededor de 4, 1 ppm estando dividida en 2 grupos: a) el de mayor desplazamiento (con un área B) corresponde a los los protones de los metilenos en α de aquellas unidades de repetición de ε-caprolactona que tienen, unida al extremo carbonilo de la ε-caprolactona, una unidad de repetición de lactida y b) el de menor desplazamiento (con un área C) corresponde a los los protones de los metilenos en α de aquellas unidades de repetición de ε-caprolactona que tienen, unida al extremo carbonilo de la ε-caprolactona, una unidad de repetición de ε-caprolactona. Thus the signal of the methylene protons in α is found in the area with chemical shifts around 4.1 ppm being divided into 2 groups: a) the one with the greatest displacement (with an area B) corresponds to the protons of the α-methylenes of those ε-caprolactone repeat units that have, with the carbonyl end of ε-caprolactone, a lactide repeat unit and b) the one with the lowest displacement (with an area C) corresponds to the protons of α-methylenes of those ε-caprolactone repeat units that have, ε-caprolactone attached to the carbonyl end, a ε-caprolactone repeat unit.
De modo parecido la señal de los protones de los metilenos en ε se da encuentra en la zona con desplazamientos alrededor de 2,3 estando dividida también en 2 grupos: el de mayor desplazamiento (con un área D) corresponde a los los protones de los metilenos en ε de aquellas unidades de repetición de ε-caprolactona que tienen, unida al extremo éter de la ε-caprolactona, una unidad de repetición de lactida y el de menor desplazamiento (con un área D) corresponde a los los protones de los metilenos en ε de aquellas unidades de repetición de ε-caprolactona que tienen, unida al extremo éter de la ε-caprolactona, una unidad de repetición de ε-caprolactona. La longitud promedio de secuencias de Lactida y ε-caprolactona (/¡), la longitud promedio de secuencias de Bernoulli (/¡)random-Bemouiii¡ y el carácter aleatorio (R) se calcularon aplicando las siguientes ecuaciones: A partir de las áreas A, B, C, D y E se pueden calcular los parámetros LA, CLLA, CLCL y CL como sigue: Similarly, the signal of the protons of the methylenes in ε is found in the zone with displacements around 2.3 being also divided into 2 groups: the one with the greatest displacement (with an area D) corresponds to the protons of the methylenes in ε of those ε-caprolactone repeating units that have, together with the ether end of ε-caprolactone, a repeating unit of lactide and the one with the least displacement (with an area D) corresponds to the protons of the methylenes in ε of those ε-caprolactone repeating units that have a ε-caprolactone repeating unit attached to the ether end of ε-caprolactone. The average length of Lactide and ε-caprolactone (/ ¡) sequences, the average Bernoulli (/ ¡) random-Bemouiii¡ sequences and the random character (R) were calculated by applying the following equations: The parameters LA, CL L A, CL C L and CL can be calculated from areas A, B, C, D and E as follows:
LA es un parámetro proporcional al número de unidades de repetición de lactida del copolímero y se calcula como LA = (LACL+LALA) = A/2. LA is a parameter proportional to the number of lactide repeat units of the copolymer and is calculated as LA = (LACL + LALA) = A / 2.
LALA es un parámetro proporcional al número de unidades de repetición de lactida del copolímero que tienen una unidad adyacente de lactida y LACL es un parámetro proporcional al número de unidades de repetición de lactida del copolímero que tienen una unidad adyacente de ε-caprolactona. Lo que se determina es la suma de LALA y LA L A is a parameter proportional to the number of lactide repeat units of the copolymer having an adjacent unit of lactide and LA C L is a parameter proportional to the number of repeat units of lactide of the copolymer having an adjacent unit of ε- caprolactone What is determined is the sum of LA L A and
CLLA es un parámetro proporcional al número de unidades de repetición de ε- caprolactona del copolímero que tienen una unidad adyacente de lactida y se calcula como CLLA = (B+D)/4. CL L A is a parameter proportional to the number of repeat units of ε-caprolactone in the copolymer having an adjacent unit of lactide and is calculated as CL LA = (B + D) / 4.
Por definición CLLA (unidades de repetición de ε-caprolactona del copolímero que tienen una unidad adyacente de lactida) y LACL (número de unidades de repetición de lactida del copolímero que tienen una unidad adyacente de ε-caprolactona) tienen el mismo valor, es decir LACL = CLLA-By definition CL L A (copolymer ε-caprolactone repeat units having an adjacent lactide unit) and LA C L (number of copolymer lactide repeat units having an adjacent ε-caprolactone unit) have the same value, that is LA C L = CL L A-
CLCL es un parámetro proporcional al número de unidades de repetición de ε- caprolactona del copolímero que tienen una unida adyacente de ε-caprolactona y se calcula como CLCL = (C+E)/4. CLCL is a parameter proportional to the number of repeat units of ε-caprolactone in the copolymer having an adjacent ε-caprolactone unit and is calculated as CL C L = (C + E) / 4.
CL es un parámetro proporcional al número total de unidades de repetición de ε- caprolac-tona del copolímero y se calcula como CL = CLLA+ CLCL = (B+C+D+E)/4. CL is a parameter proportional to the total number of repeating units of ε-caprolac-tone in the copolymer and is calculated as CL = CL L A + CL C L = (B + C + D + E) / 4.
A partir de los parámetros LA, CLLA, CLCL y CL se calcula la fracción molar de las unidades de repetición de lactida [LA], la fracción molar de las unidades de repetición de ε-caprolactona [CL] y la fración molar de las diadas de ε-caprolactona-lactida (o lactida^-caprolactona) [LA-CL] como sigue: From the parameters LA, CL L A, CL C L and CL the molar fraction of the lactide repeat units [LA], the molar fraction of the ε-caprolactone repeat units [CL] and the fraction are calculated molars of ε-caprolactone-lactide (or lactide ^ -caprolactone) [LA-CL] dyads as follows:
[LA] = LA / (LA +CL) [LA] = LA / (LA + CL)
[CL] = CL / (LA +CL) [LA-CL]= (LACL + CLLA )/( LALA +LACL + LALA +CLCL )=2* CLLA / (LA + CL) [CL] = CL / (LA + CL) [LA-CL] = (LACL + CL LA ) / (LA LA + LA C L + LALA + CL CL ) = 2 * CL LA / (LA + CL)
Finalmente con las fracciones molares anteriormente calculadas se pueden calcular la longitud promedio de las secuencias de unidades de repetición de lactida /LAY la longitud promedio de las secuencias de unidades de repetición de ε-caprolactona /Ci_. Finally, with the molar fractions previously calculated, the average length of the lactide / L A repeat unit sequences and the average length of the ε-caprolactone / C i_ repeat unit sequences can be calculated.
También se pueden calcular las longitud promedio teóricas de las secuencias de unidades de repetición de un polímero totalmente aleatorio o de Bernouilli You can also calculate the theoretical average length of the repeat unit sequences of a fully random polymer or Bernouilli
(/LA ) random-Bernouilh j ; (/CL ) / rraanndaoomm--Bneerrnn oouuii Uttii -y * -, (/ LA) random-Bernouilh j ; (/ CL) / rraanndaoomm - Bneerrnn oouuii Uttii - and * -,
L LJ LLAJ (2) L LJ LL A J (2)
Finalmente se puede calcular el parámetro R que da idea del grado de aleatoriedad del copolímero. Para un copolímero con carácter bloque en que las secuencias son largas el carácter aleatorio (R) tiende a 0 mientras que para distribuciones al azar tipo Bernouilli el carácter aleatorio (R) tiende a 1. hA ^ random-Bernouilli ( cL ) ^ random-Bernouilli [LA CL] (3)  Finally, it is possible to calculate the R parameter that gives an idea of the degree of randomness of the copolymer. For a block copolymer in which the sequences are long, the random character (R) tends to 0 while for random distributions Bernouilli type the random character (R) tends to 1. hA ^ random-Bernouilli (cL) ^ random- Bernouilli [LA CL] (3)
/LA " /CL " 2[LA][CL] / LA " / CL " 2 [LA] [CL]
EJEMPLOS  EXAMPLES
En los ejemplos que siguen los códigos asignados a los copolímeros sintetizados empiezan por la denominación "PLCL" seguida de un número de 6 cifras en el que las 2 primeras cifras representan el porcentaje molar de L-lactida en la mezcla de reacción, la tercera y cuarta cifras representan el porcentaje molar de D, L-lactida en la mezcla de reacción y las dos últimas cifras representan el porcentaje molar de ε- caprolactona en la mezcla de reacción. In the examples that follow the codes assigned to the synthesized copolymers begin with the name "PLCL" followed by a 6-digit number in which the first 2 figures represent the molar percentage of L-lactide in the reaction mixture, the third and fourth figures represent the molar percentage of D, L-lactide in the reaction mixture and the last two figures represent the molar percentage of ε-caprolactone in the reaction mixture.
EJEMPLO COMPARATIVO 1 : Síntesis del PLCL 008515 COMPARATIVE EXAMPLE 1: Synthesis of PLCL 008515
La síntesis se lleva a cabo a 130°C en un balón de 50mL con agitación magnética y con un termopar para el control de la temperatura. Se pesan 21 ,25 g de m-lactida y 3,75g de ε-caprolactona y se añaden al balón. La mezcla se lleva a fusión y durante media hora se aplica un suave flujo de nitrógeno para lograr una atmósfera inerte en el medio. Pasado ese tiempo, se añaden 0,0435g de subsalicilato de bismuto (BiSS) y se empieza a contar el tiempo de reacción. La agitación magnética se mantiene a 100 rpm. Pasadas 72 horas de reacción, se retira el balón del baño de aceite y se deja enfriar a temperatura ambiente. Es necesario eliminar las impurezas del catalizador, los oligómeros y los monómeros que no han reaccionado, y, por esta razón, se disuelve en cloroformo y posteriormente se precipita en metanol. EJEMPLO 2: Síntesis del PLCL 502525 The synthesis is carried out at 130 ° C in a 50mL balloon with magnetic stirring and with a thermocouple for temperature control. 21.25 g of m-lactide and 3.75g of ε-caprolactone are weighed and added to the balloon. The mixture is melted and a gentle flow of nitrogen is applied for half an hour to achieve an inert atmosphere in the means, medium. After that time, 0.0435g of bismuth subsalicylate (BiSS) is added and the reaction time is counted. The magnetic stirring is maintained at 100 rpm. After 72 hours of reaction, the balloon is removed from the oil bath and allowed to cool to room temperature. It is necessary to remove impurities from the catalyst, oligomers and monomers that have not reacted, and, for this reason, dissolve in chloroform and subsequently precipitate in methanol. EXAMPLE 2: Synthesis of PLCL 502525
La síntesis se lleva a cabo a 140°C en un balón de 50mL con agitación magnética y con un termopar para el control de la temperatura. Se pesan 12,50 g de L-lactida, 6,25 g de m-lactida y 6,25g de ε-caprolactona y se añaden al balón. La mezcla se lleva a fusión y durante media hora se aplica un suave flujo de nitrógeno para lograr una atmósfera inerte en el medio. Pasado ese tiempo, se añaden 0,0446g de subsalicilato de bismuto (BiSS) y se empieza a contar el tiempo de reacción. La agitación magnética se mantiene a 100 rpm. Pasadas 48 horas de reacción, se retira el balón del baño de aceite y se deja enfriar a temperatura ambiente. Es necesario eliminar las impurezas del catalizador, los oligómeros y los monómeros que no han reaccionado, y, por esta razón, se disuelve en cloroformo y posteriormente se precipita en metanol. EJEMPLO 3: Síntesis del PLCL 504010 The synthesis is carried out at 140 ° C in a 50mL balloon with magnetic stirring and with a thermocouple for temperature control. 12.50 g of L-lactide, 6.25 g of m-lactide and 6.25 g of ε-caprolactone are weighed and added to the balloon. The mixture is melted and a gentle flow of nitrogen is applied for half an hour to achieve an inert atmosphere in the medium. After that time, 0.0446g of bismuth subsalicylate (BiSS) is added and the reaction time is counted. The magnetic stirring is maintained at 100 rpm. After 48 hours of reaction, the balloon is removed from the oil bath and allowed to cool to room temperature. It is necessary to remove impurities from the catalyst, oligomers and monomers that have not reacted, and, for this reason, dissolve in chloroform and subsequently precipitate in methanol. EXAMPLE 3: Synthesis of PLCL 504010
La síntesis se lleva a cabo a 140°C en un balón de 50mL con agitación magnética y con un termopar para el control de la temperatura. Se pesan 12,50 g de L-lactida, 10,00 g de m-lactida y 2,50g de ε-caprolactona y se añaden al balón. La mezcla se lleva a fusión y durante media hora se aplica un suave flujo de nitrógeno para lograr una atmósfera inerte en el medio. Pasado ese tiempo, se añaden 0,0430g de subsalicilato de bismuto (BiSS) y se empieza a contar el tiempo de reacción. La agitación magnética se mantiene a 100 rpm. Pasadas 48 horas de reacción, se retira el balón del baño de aceite y se deja enfriar a temperatura ambiente. Es necesario eliminar las impurezas del catalizador, los oligómeros y los monómeros que no han reaccionado, y, por esta razón, se disuelve en cloroformo y posteriormente se precipita en metanol. The synthesis is carried out at 140 ° C in a 50mL balloon with magnetic stirring and with a thermocouple for temperature control. 12.50 g of L-lactide, 10.00 g of m-lactide and 2.50 g of ε-caprolactone are weighed and added to the balloon. The mixture is melted and a gentle flow of nitrogen is applied for half an hour to achieve an inert atmosphere in the medium. After that time, 0.0430g of bismuth subsalicylate (BiSS) is added and the reaction time is counted. The magnetic stirring is maintained at 100 rpm. After 48 hours of reaction, the balloon is removed from the oil bath and allowed to cool to room temperature. It is necessary to remove impurities from the catalyst, oligomers and monomers that have not reacted, and, for this reason, dissolve in chloroform and subsequently precipitate in methanol.
EJEMPLO 4: Síntesis del PLCL 602515 EXAMPLE 4: Synthesis of PLCL 602515
La síntesis se lleva a cabo a 140°C en un balón de 50mL con agitación magnética y con un termopar para el control de la temperatura. Se pesan 15,00 g de L-lactida, 6,25 g de m-lactida y 3,75g de ε-caprolactona y se añaden al balón. La mezcla se lleva a fusión y durante media hora se aplica un suave flujo de nitrógeno para lograr una atmósfera inerte en el medio. Pasado ese tiempo, se añaden 0,0435g de subsalicilato de bismuto (BiSS) y se empieza a contar el tiempo de reacción. La agitación magnética se mantiene a 100 rpm. The synthesis is carried out at 140 ° C in a 50mL balloon with magnetic stirring and with a thermocouple for temperature control. 15.00 g of L-lactide, 6.25 g of m-lactide and 3.75 g of ε-caprolactone are weighed and added to the balloon. The mixture is melted and a gentle flow of nitrogen is applied for half an hour to achieve an inert atmosphere in the medium. After that time, 0.0435g of bismuth subsalicylate (BiSS) is added and the reaction time is counted. The magnetic stirring is maintained at 100 rpm.
Pasadas 72 horas de reacción, se retira el balón del baño de aceite y se deja enfriar a temperatura ambiente. Es necesario eliminar las impurezas del catalizador, los oligómeros y los monómeros que no han reaccionado, y, por esta razón, se disuelve en cloroformo y posteriormente se precipita en metanol. After 72 hours of reaction, the balloon is removed from the oil bath and allowed to cool to room temperature. It is necessary to remove impurities from the catalyst, oligomers and monomers that have not reacted, and, for this reason, dissolve in chloroform and subsequently precipitate in methanol.
Los terpolímeros de los ejemplos 1 a 4 se analizaron mediante Calorimetría Diferencial de Barrido (DSC), para obtener información sobre sus transiciones térmicas relacionadas con su estructura y morfología, y Cromatografía de Exclusión por Tamaños (SEC-GPC), para obtener su distribución de pesos moleculares. Se utilizó la espectroscopia de Resonancia Magnética Nuclear (1 H-RMN) para confirmar la composición y la distribución de secuencias de los polímeros obtenidos. The terpolymers of Examples 1 to 4 were analyzed by Differential Scanning Calorimetry (DSC), to obtain information on their thermal transitions related to their structure and morphology, and Size Exclusion Chromatography (SEC-GPC), to obtain their distribution of molecular weights Nuclear Magnetic Resonance Spectroscopy ( 1 H-NMR) was used to confirm the composition and sequence distribution of the polymers obtained.
Asimismo, se llevaron a cabo ensayos mecánicos y de biodegradacion para definir las posibles aplicaciones de estos materiales. Los estudios de biodegradacion son realizados a 37°C (temperatura del organismo humano) en una solución tampón fosfatada (PBS) (pH=7,2), haciendo un seguimiento de los siguientes parámetros: propiedades mecánicas, pérdida de masa, absorción de agua, temperatura de transición vitrea (Tg), entalpia de fusión (AHm), temperatura de fusión (Tm) y distribución de pesos moleculares (peso molecular en peso e índice de polidispersidad). El mencionado estudio de biodegradacion in vitro se efectuó por triplicado con muestras de unos 20mg. Estás se obtuvieron a partir de filmes de 150- 200 μηι de los diferentes materiales preparados por él método de disolución- evaporación en cloroformo seguido de un tratamiento térmico (1 min a 180°C) con enfriamiento rápido. Las muestras de 1x1 cm2 se distribuyeron en tubos Falcon con PBS manteniendo una relación área superficial-volúmen de 0, 1 cm-1 . A diferentes tiempos de degradación se fueron extrayendo del horno de temperatura controlada 3 muestras de cada material. Likewise, mechanical and biodegradation tests were carried out to define the possible applications of these materials. Biodegradation studies are carried out at 37 ° C (temperature of the human organism) in a phosphate buffered solution (PBS) (pH = 7.2), monitoring the following parameters: mechanical properties, mass loss, water absorption , glass transition temperature (T g ), enthalpy of fusion (AH m ), melting temperature (T m ) and molecular weight distribution (molecular weight by weight and polydispersity index). The aforementioned in vitro biodegradation study was carried out by tripled with samples of about 20mg. These were obtained from films of 150-200 μηι of the different materials prepared by the method of dissolution-evaporation in chloroform followed by a heat treatment (1 min at 180 ° C) with rapid cooling. The 1x1 cm 2 samples were distributed in Falcon tubes with PBS maintaining a surface area-volume ratio of 0.1 cm-1. At different degradation times, 3 samples of each material were extracted from the temperature controlled oven.
Las Tablas 1 y 2 aportan los resultados de la caracterización mediante 1 H-RM N (composición y parámetros microestructurales) y de las medidas de pesos moleculares de los poli(lactida/£-caprolactona) (PLCLs) sintetizados en los ejemplos 1 -4. Como se puede ver la distribución de secuencias es aleatoria y el carácter aleatorio (R) es aproximadamente 1 . Los pesos moleculares de los terpolímeros sintetizados en los ejemplos 1 -4 se midieron mediante cromatografía de exclusión de tamaños (SEC o GPC) en un equipo Waters 1515 equipado con dos columnas Styragel calibradas con patrones de poliestireno. Se empleó cloroformo como eluyente siendo el flujo de 1 ml/min. A partir de la distribución de pesos moleculares se obtuvieron los pesos moleculares promedios en número (Mn), en peso (Mw) y el índice de polidispersidad (relaciónTables 1 and 2 provide the results of the characterization using 1 H-RM N (composition and microstructural parameters) and molecular weight measurements of the poly (lactide / £ -caprolactone) (PLCLs) synthesized in Examples 1-4 . As you can see the sequence distribution is random and the random character (R) is approximately 1. The molecular weights of the terpolymers synthesized in Examples 1-4 were measured by size exclusion chromatography (SEC or GPC) in a Waters 1515 equipped with two Styragel columns calibrated with polystyrene standards. Chloroform was used as eluent, the flow being 1 ml / min. From the molecular weight distribution the average molecular weights in number (M n ), in weight (M w ) and the polydispersity index (ratio) were obtained
Mw/Mn)" M w / Mn) "
La composición de los terpolímeros expresada como porcentaje de contenido molar de ε-caprolactona y lactida se obtiene a partir del espectro de 1 H-NMR. Puesto que es imposible ofrecer el contenido exacto de L-Lactida y D-Lactida (son indistinguibles en el espectro de RMN) se dan valores aproximados bajo el supuesto de una reactividad igual de la L-Lactida y la D-Lactida. Bajo dicho supuesto y teniendo en cuenta la relación L-LA/D-LA de la alimentación, podemos obtener su fracción molar en el polímero pues conocemos el contenido en caprolactona [CL] y en lactida [LA]. Posteriormente obtenemos unos valores aproximados de las longitudes de secuencia de L-LA y D-LA empleando la siguiente fórmula The composition of the terpolymers expressed as a percentage of molar content of ε-caprolactone and lactide is obtained from the 1 H-NMR spectrum. Since it is impossible to offer the exact content of L-Lactide and D-Lactide (they are indistinguishable in the NMR spectrum) approximate values are given under the assumption of an equal reactivity of L-Lactide and D-Lactide. Under this assumption and taking into account the L-LA / D-LA ratio of the feed, we can obtain its molar fraction in the polymer because we know the content of caprolactone [CL] and lactide [LA]. Subsequently we obtain approximate values of the sequence lengths of L-LA and D-LA using the following formula
/ = l · / = l / = l · / = l
L LA ((D - LA) + (CL)) R ' D LA ((L - LA) + (CL)) R donde (L-LA) y (D-LA) son las fracciones molares aproximadas de L-LA y D-LA y R el carácter aleatorio ya calculado. L LA ((D - LA) + (CL)) R ' D LA ((L - LA) + (CL)) R where (L-LA) and (D-LA) are the approximate molar fractions of L-LA and D-LA and R the random character already calculated.
TABLA 1  TABLE 1
Figure imgf000022_0001
Figure imgf000022_0001
TABLA 2 TABLE 2
Figure imgf000022_0002
Figure imgf000022_0002
Los parámetros microestructurales /LA y /c. son las longitudes promedio de secuencias de Lactida y ε-caprolactona obtenidas a partir del espectro de 1 H-NMR. Estos valores son comparados con las longitudes de secuencia aleatorias de Bernoulli (/LA=1/[CL] y /CL=1/[LA]), obteniendo el coeficiente de carácter aleatorio (R) que se define a continuación: R= (//./ random-Bernouilli I{¡LA))= {¡CL) random-Bernouilli I{¡CL)) - SÍ R tiende a 0 el ίβφθΙίΐΤΙβ- ro será dibloque (largas secuencias de las unidades estructurales) y si R tiende a 1 el terpolímero será aleatorio (cortas secuencias de las unidades estructurales) y sigue la distribución de secuencias de Bernouilli. Los parámetros estructurales /L-LA y ta-LA Son valores aproximados de las longitudes promedio de secuencia de L-Lactida y D- Lactida obtenidos bajo el supuesto de una reactividad igual de la L-Lactida y la D- Lactida. The microstructural parameters / LA and / c. are the average lengths of Lactide and ε-caprolactone sequences obtained from the 1 H-NMR spectrum. These values are compared with the Bernoulli random sequence lengths (/ L A = 1 / [CL] and / C L = 1 / [LA]), obtaining the random character coefficient (R) defined below: R = (//./ random-Bernouilli I {¡LA)) = {¡CL) random-Bernouilli I {¡CL)) - YES R tends to 0 ί β φθΙίΐΤΙ β - ro will be diblock (long unit sequences structural) and if R tends to 1 the Terpolymer will be random (short sequences of structural units) and follow the Bernouilli sequence distribution. The structural parameters / L-LA and ta- LA are approximate values of the average sequence lengths of L-Lactide and D-Lactide obtained under the assumption of an equal reactivity of L-Lactide and D-Lactide.
EJEMPLO 5: Análisis térmico durante la degradación de los poli(lactida/£- caprolactona) (PLCLs) sintetizados en los ejemplos 1-4 El equipo utilizado para el análisis por calorimetría diferencial de barrido es un DSC Q200 de la casa comercial TA Instruments calibrado con patrones de indio y zafiro. Una muestra de entre 5 y 9 mg se enfría a -85°C y se calienta hasta 185°C a 20°/min. Durante este primer barrido se obtiene información acerca del estado físico y morfológico actual de la muestra. A partir de la curva de flujo calorimétrico vs temperatura se obtiene la temperatura de transición vitrea del material (Tg), la relajación entálpica δ (J g"1), la entalpia de fusión ΔΗΓΤΙ (J g"1) y la temperatura de fusión cristalina (Tm) del polímero. Posteriormente, mediante un segundo barrido se obtiene información de las propiedades del polímero, independientes de la historia térmica. EXAMPLE 5: Thermal analysis during degradation of poly (lactide / £ - caprolactone) (PLCLs) synthesized in examples 1-4 The equipment used for scanning differential calorimetry analysis is a DSC Q200 from the calibrated TA Instruments commercial house with Indian and sapphire patterns. A sample between 5 and 9 mg is cooled to -85 ° C and heated to 185 ° C at 20 ° / min. During this first scan, information about the current physical and morphological state of the sample is obtained. The glass transition temperature of the material (T g ), enthalpy relaxation δ (J g "1 ), the enthalpy of fusion ΔΗΓΤΙ (J g " 1 ) and the temperature of temperature are obtained from the calorimetric flow vs. temperature curve. crystalline fusion (T m ) of the polymer. Subsequently, through a second scan, information is obtained on the properties of the polymer, independent of the thermal history.
La Figura 1 muestra las curvas del primer barrido de calorimetría diferencial de barrido (DSC) a diferentes tiempos de degradación correspondientes al PLCL 008515 sintetizado en el ejemplo 1. Se puede observar cómo según avanza la degradación la temperatura de transición del material, que inicialmente es de 28,7°C, disminuye. El PLCL 008515 se mantiene amorfo a lo largo de todo el estudio y no se aprecia ninguna fusión al no tener secuencias cristalizables de L-lactida siendo las secuencias de ε-caprolactona lo suficientemente cortas para no poder cristalizar. En la primera semana de degradación in vitro si se puede distinguir una pequeña relajación entálpica asociada a la temperatura de transición vitrea. Figure 1 shows the curves of the first differential scanning calorimetry (DSC) scan at different degradation times corresponding to the PLCL 008515 synthesized in Example 1. It can be seen how as the degradation progresses the transition temperature of the material, which is initially of 28.7 ° C, decreases. The PLCL 008515 remains amorphous throughout the study and no fusion is seen by not having crystallizable sequences of L-lactide being the sequences of ε-caprolactone short enough to not be able to crystallize. In the first week of in vitro degradation, a small enthalpy relaxation associated with the glass transition temperature can be distinguished.
La Figura 2 muestra las curvas del primer barrido de calorimetría diferencial de barrido (DSC) a diferentes tiempos de degradación correspondientes al PLCL 502525 sintetizado en el ejemplo 2. Se puede observar cómo según avanza la degradación la temperatura de transición del material, que inicialmente es de 20,8°C, disminuye. El PLCL 502525 se mantiene amorfo a lo largo de todo el estudio y no se aprecia ninguna fusión asociada a las secuencias cristalizables de L-lactida y ε-caprolactona ya que sus longitudes de secuencia son lo suficientemente cortas. Figure 2 shows the curves of the first sweep differential scanning calorimetry (DSC) at different degradation times corresponding to the PLCL 502525 synthesized in example 2. It can be seen how as the degradation progresses the transition temperature of the material, which initially is of 20.8 ° C, decreases. The PLCL 502525 remains amorphous throughout the study and is not appreciated no fusion associated with the crystallizable sequences of L-lactide and ε-caprolactone since their sequence lengths are short enough.
La Figura 3 muestra las curvas del primer barrido de calorimetría diferencial de barrido (DSC) a diferentes tiempos de degradación correspondientes al PLCL 504010 sintetizado en el ejemplo 3. Se puede observar cómo según avanza la degradación la temperatura de transición del material, que inicialmente es de 38,0°C, disminuye. El PLCL 504010 se mantiene amorfo hasta el día 49 de degradación, en el cual se aprecia una pequeña fusión (Tm~80°C) asociada a las secuencias cristalizables de L- lactida que aumenta hasta alcanzar un valor de unos 8 J/g en el día final del estudio. Conviene destacar la presencia de una marcada relajación entálpica asociada a la temperatura de transición vitrea. La intensidad del pico cae a tiempos elevados de degradación según va disminuyendo la temperatura de transición vitrea del material. La Figura 4 muestra las curvas del primer barrido de calorimetría diferencial de barrido (DSC) a diferentes tiempos de degradación correspondientes al PLCL 602515 sintetizado en el ejemplo 4. Se puede observar cómo según avanza la degradación la temperatura de transición del material, que inicialmente es de 36, 1°C, disminuye. El PLCL 602515 se mantiene amorfo hasta el día 35 de degradación, en el cual se aprecia una pequeña fusión (Tm~80°C) asociada a las secuencias cristalizables de L- lactida que aumenta hasta alcanzar un valor de unos 18 J/g en el día final del estudio. Conviene destacar la presencia de una marcada relajación entálpica, menor que la del PLCL 504010, asociada a la temperatura de transición vitrea. La intensidad del pico cae a tiempos elevados de degradación según va disminuyendo la temperatura de transición vitrea del material. Figure 3 shows the curves of the first scanning differential scanning calorimetry (DSC) at different degradation times corresponding to the PLCL 504010 synthesized in example 3. It can be seen how as the degradation progresses the transition temperature of the material, which is initially of 38.0 ° C, decreases. The PLCL 504010 remains amorphous until day 49 of degradation, in which a small fusion (T m ~ 80 ° C) associated with crystallizable sequences of L-lactide is observed, which increases until reaching a value of about 8 J / g on the final day of the study. It should be noted the presence of a marked enthalpy relaxation associated with the glass transition temperature. The intensity of the peak falls to high degradation times as the glass transition temperature of the material decreases. Figure 4 shows the curves of the first scan of differential scanning calorimetry (DSC) at different degradation times corresponding to the PLCL 602515 synthesized in Example 4. It can be seen how as the degradation progresses the transition temperature of the material, which is initially of 36, 1 ° C, decreases. PLCL 602515 remains amorphous until day 35 of degradation, in which a small fusion (T m ~ 80 ° C) associated with crystallizable L-lactide sequences is observed, which increases until reaching a value of about 18 J / g on the final day of the study. It should be noted the presence of a marked enthalpy relaxation, lower than that of PLCL 504010, associated with the glass transition temperature. The intensity of the peak falls to high degradation times as the glass transition temperature of the material decreases.
La Tabla 3 recoge los datos de la evolución durante el estudio de degradación de los pesos moleculares en peso (Mw), índice de polidispersidad (I.P.) y propiedades térmicas, obtenidas en dos barridos de DSC, de los poli(lactida/£-caprolactona) (PLCLs) sintetizados en los ejemplos 1-4. Table 3 collects the evolution data during the study of degradation of molecular weights in weight (M w ), polydispersity index (IP) and thermal properties, obtained in two DSC scans, of the poly (lactide / £ - caprolactone) (PLCLs) synthesized in examples 1-4.
TABLA 3  TABLE 3
1er Barrido 1st Sweep
Barrido tiemp Mw (g mor1) IP Tg1 (°C) δ (J g 1) Tm AHm (J g Tg (°C) Time sweep M w (g mor 1 ) IP T g1 (° C) δ (J g 1 ) T m AH m (J g T g (° C)
Figure imgf000025_0001
Figure imgf000025_0001
56 12,0 ±0,4 * 33,4 1,3 79,0 3,0 24,756 12.0 ± 0.4 * 33.4 1.3 79.0 3.0 24.7
70 9,0 ±0,1 * 35,7 ** ** 70 9.0 ± 0.1 * 35.7 ** **
1,1 22,2 1.1 22.2
84 7,4 ±0,2 * 30,0 - ** ** 17,184 7.4 ± 0.2 * 30.0 - ** ** 17.1
98 6,5 ±0,0 * 30,1 - 80,2 8,0 17,7 98 6.5 ± 0.0 * 30.1 - 80.2 8.0 17.7
0 76,8 ±0,0 1,96 34,3 0,3 - - 36,10 76.8 ± 0.0 1.96 34.3 0.3 - - 36.1
3 68,3 ±0,5 2,01 33,1 0,1 - - 35,43 68.3 ± 0.5 2.01 33.1 0.1 - - 35.4
7 62,6 ±0,8 2,05 34,9 0,8 - - 34,17 62.6 ± 0.8 2.05 34.9 0.8 - - 34.1
14 52,4 ± 1,6 2,06 34,4 1,2 - - 34,814 52.4 ± 1.6 2.06 34.4 1.2 - - 34.8
21 38,8 ± 1,0 2,27 35,7 1,1 - - 35,421 38.8 ± 1.0 2.27 35.7 1.1 - - 35.4
28 27,2 ± 0,6 3,17 31,7 0,6 - - 30,228 27.2 ± 0.6 3.17 31.7 0.6 - - 30.2
35 19,9 ±0,3 3,95 29,1 - 77,6 2,4 30,635 19.9 ± 0.3 3.95 29.1 - 77.6 2.4 30.6
49 11,0 ±0,05 * 32,6 - 81,8 10,6 26,449 11.0 ± 0.05 * 32.6 - 81.8 10.6 26.4
56 9,4 ±0,09 * 26,8 - 81,6 11,4 25,956 9.4 ± 0.09 * 26.8 - 81.6 11.4 25.9
70 8,2 ±0,4 * 23,0 - 81,8 10,5 18,570 8.2 ± 0.4 * 23.0 - 81.8 10.5 18.5
84 6,8 ±0,2 * 22,7 - 84,7 18,6 14,884 6.8 ± 0.2 * 22.7 - 84.7 18.6 14.8
98 6,0±0,0 * 18,0 - 82,7 17,8 10,698 6.0 ± 0.0 * 18.0 - 82.7 17.8 10.6
No medibles debido a la incertidumbre en las medidas del peso molecular promedio en número (Mn) No se pudo medir debido a la presencia de trazas de agua en la muestra para DSC. Not measurable due to uncertainty in the measures of the average molecular weight in number (M n ) It could not be measured due to the presence of traces of water in the sample for DSC.
EJEMPLO 6: Evolución de los pesos moleculares y cálculo de las cinéticas de degradación durante la degradación de los poli(lactida/£-caprolactona) (PLCLs) sintetizados en los ejemplos 1-4 EXAMPLE 6: Evolution of molecular weights and calculation of degradation kinetics during degradation of poly (lactide / £ -caprolactone) (PLCLs) synthesized in examples 1-4
Los pesos moleculares a diferentes tiempos de degradación de los terpolímeros sintetizados en los ejemplos 1-4 y recogidos en la Tabla 3 se midieron mediante cromatografía de exclusión de tamaños (SEC o GPC) en un equipo Waters 1515 equipado con dos columnas Styragel calibradas con patrones de poliestireno. Se puede ver cómo según avanza la degradación el índice de polidispersidad (IP) se hace mayor pues la distribución de pesos moleculares de las cadenas de polímero pasa a ser más ancha. Molecular weights at different degradation times of the terpolymers synthesized in Examples 1-4 and collected in Table 3 were measured by size exclusion chromatography (SEC or GPC) on a Waters 1515 set equipped with two Styragel columns calibrated with standards of polystyrene. It can be seen how as the degradation progresses the polydispersity index (IP) becomes greater as the molecular weight distribution of the polymer chains becomes wider.
La Figura 5 muestra la evolución del logaritmo neperiano del peso molecular en peso (Mw) frente al tiempo de degradación de los PLCLs sintetizados en los ejemplos 1-4. La relación entre el logaritmo neperiano del peso molecular en peso y el tiempo se aproxima mediante la ecuación: Figure 5 shows the evolution of the Neperian logarithm of the molecular weight by weight (M w ) versus the degradation time of the PLCLs synthesized in Examples 1-4. The Relationship between the Neperian logarithm of molecular weight in weight and time is approximated by the equation:
In Mw = In Mw0 - KMw t (3) en la que Mw es el peso molecular medio promediado en peso, Mw0 es el peso molecular medio inicial promediado en peso y KMw es la constante cinética de degradación aparente Por otra parte a partir de KMw puede calcularse el tiempo medio de degradación t1 2 mediante la ecuación:. In M w = In M w0 - K Mw t (3) in which M w is the average molecular weight averaged by weight, M w0 is the initial average molecular weight averaged by weight and K Mw is the apparent degradation kinetic constant By another part from K Mw, the average degradation time t 1 2 can be calculated using the equation :.
t1/2 = ln 2/KMw (4) t 1/2 = ln 2 / K Mw (4)
Los valores de la constante cinética KMw se calcularon a partir de la pendiente de la curva de ajuste de los datos de peso molecular frente a tiempo en los primeros 35 días de estudio para los PLCLs 008515 y 502525 y en los primeros 49 días para los PLCLs 504010 y 602515, ya que a tiempos mayores la erosión superficial pasa a ser el mecanismo dominante. En base a estos resultados el orden de velocidad de degradación es PLCL 008515 > PLCL 502525 > PLCL 602515 > PLCL 504010. Estos PLCLs de los ejemplos 1-4 presentan una rápida degradación. El PLCL 008515 presenta una constante cinética de 0,066 dias"1 y un tiempo de vida medio de 10,5 días. El PLCL 502525 presenta una constante cinética de 0,056 dias"1 y un tiempo de vida medio de 12,4 días. El PLCL 504010 presenta una constante cinética de 0,030 dias"1 y un tiempo de vida medio de 23, 1 días. Finalmente, el PLCL 602515 presenta una constante cinética de 0,040 dias"1 y un tiempo de vida medio de 17,3 días. The values of the kinetic constant K Mw were calculated from the slope of the adjustment curve of the molecular weight data versus time in the first 35 days of study for the PLCLs 008515 and 502525 and in the first 49 days for the PLCLs 504010 and 602515, since at higher times surface erosion becomes the dominant mechanism. Based on these results, the order of degradation rate is PLCL 008515> PLCL 502525> PLCL 602515> PLCL 504010. These PLCLs in Examples 1-4 show rapid degradation. The PLCL 008515 has a kinetic constant of 0.066 days "1 and an average life time of 10.5 days. The PLCL 502525 has a kinetic constant of 0.056 days " 1 and an average life time of 12.4 days. The PLCL 504010 has a kinetic constant of 0.030 days "1 and an average life time of 23.1 days. Finally, the PLCL 602515 has a kinetic constant of 0.040 days " 1 and an average life time of 17.3 days.
EJEMPLO 7: Pérdida de peso y absorción de agua durante la degradación de los poli(lactida/£-caprolactona) (PLCLs) sintetizados en los ejemplos 1-4 EXAMPLE 7: Weight loss and water absorption during degradation of poly (lactide / £ -caprolactone) (PLCLs) synthesized in examples 1-4
Los valores de pérdida de peso o de peso remanente de polímero (%RW) y la absorción de agua (%WA) se obtuvieron a distintos tiempos de degradación a partir de los pesos húmedos (Ww), medidos inmediatamente después de sacar las muestras y quitar el agua superficial, envolviendo la muestra en papel secante y de las medidas de peso seco (Wd), efectuadas después de someter a las muestras a un proceso de secado durante una noche seguido de secado en una estufa de vacío (800-900 bar) a temperatura ambiente durante 24 horas, teniendo en cuenta el peso inicial de cada muestra (W0) y utilizando las ecuaciones:. The weight loss or remaining weight of polymer (% RW) and water absorption (% WA) values were obtained at different degradation times from the wet weights (W w ), measured immediately after taking the samples and remove surface water, wrapping the sample in blotting paper and measuring dry weight (W d ), carried out after subjecting the samples to a drying process overnight followed by drying in a vacuum oven (800-900 bar) at room temperature for 24 hours, taking into account the initial weight of each sample (W 0 ) and using the equations :.
W YV W - W YV d W YV W - W YV d
%WA 100  % WA 100
O) w.  O) w.
% RW 100  % RW 100
La Figura 6 muestra la evolución del peso remanente durante la degradación de los PLCLs sintetizados en los ejemplos 1-4. Figure 6 shows the evolution of the remaining weight during the degradation of the PLCLs synthesized in Examples 1-4.
La Figura 7 muestra la evolución de la absorción de agua durante la degradación de los PLCLs sintetizados en los ejemplos 1-4. Los biomateriales comienzan a perder masa cuando alcanzan un peso molecular en peso límite. En ese momento se favorece la solubilidad de los oligómeros y la absorción de agua es ya muy elevada. La pérdida de peso del PLCL 008515 y del PLCL 502525 comienza en el día 35 cuando sus respectivos Mw son de 8400 y 1 1800 g/mol. En cambio, en los PLCLs de mayor temperatura de transición vitrea, el PLCL 504010 y el PLCL 602515, la pérdida de peso es evidente en el día 56 de degradación, en el cual sus respectivos Mw son de 12000 y 9400 g/mol. Figure 7 shows the evolution of water absorption during the degradation of PLCLs synthesized in Examples 1-4. Biomaterials begin to lose mass when they reach a molecular weight by weight limit. At that time the solubility of the oligomers is favored and the water absorption is already very high. The weight loss of the PLCL 008515 and the PLCL 502525 begins on day 35 when their respective M w are 8400 and 1 1800 g / mol. In contrast, in the higher glass transition temperature PLCLs, the PLCL 504010 and the PLCL 602515, the weight loss is evident on day 56 of degradation, in which their respective M w are 12000 and 9400 g / mol.
Las muestras sufren cambios en su morfología a lo largo de la degradación. Todas ellas, debido a su elevado carácter amorfo, van perdiendo consistencia haciéndose más viscosas. The samples undergo changes in their morphology throughout the degradation. All of them, due to their high amorphous character, lose consistency becoming more viscous.
Ninguno de los materiales da lugar durante su degradación a residuos cristalinos de alta resistencia hidrolítica ni se forman fragmentos blanquecinos de alta fragilidad. Así, en un estado avanzado de degradación los restos tienen un aspecto pastoso gracias a su elevada absorción de agua. EJEMPLO 8: Evolución de las propiedades mecánicas durante la degradación de los poli(lactida/£-caprolactona) (PLCLs) sintetizados en los ejemplos 1-4 None of the materials give rise to crystalline residues of high hydrolytic resistance during their degradation, nor do they form whitish fragments of high fragility. Thus, in an advanced state of degradation the remains have a pasty appearance thanks to their high water absorption. EXAMPLE 8: Evolution of mechanical properties during degradation of poly (lactide / £ -caprolactone) (PLCLs) synthesized in examples 1-4
Los ensayos mecánicos de las muestras no degradadas y de las muestras sumergidas durante 7, 14 y 21 días pertenecientes a los PLCLs sintetizados en los ejemplos 1-4 se realizaron en un equipo Instron 5565 a una velocidad de de 10 mm min"1. Las pruebas se efectuaron con una temperatura controlada de 21 ± 2 °C y una humedad relativa del 50 ± 5 % siguiendo la norma ISO 527-3/1995. Las propiedades mecánicas ofrecidas corresponden a valores medios de al menos 5 probetas. Estás probetas se obtuvieron a partir de filmes de 150-200 μηι preparados por él método de disolución-evaporación en cloroformo seguido de un tratamiento térmico con enfriamiento rápido. The mechanical tests of the non-degraded samples and of the submerged samples for 7, 14 and 21 days belonging to the PLCLs synthesized in Examples 1-4 were carried out in an Instron 5565 unit at a speed of 10 mm min "1 . Tests were carried out with a controlled temperature of 21 ± 2 ° C and a relative humidity of 50 ± 5% according to ISO 527-3 / 1995. The mechanical properties offered correspond to average values of at least 5 specimens. from 150-200 μηι films prepared by him method of dissolution-evaporation in chloroform followed by a thermal treatment with rapid cooling.
La Figura 8 muestra las curvas más representativas de tensión-deformación de los PLCLs sintetizados en los ejemplos 1-4. Como se puede observar el PLCL 502525 tiene un comportamiento claramente elastomérico (módulo secante al 2% de 5,7 MPa y elongación a rotura de 994 %) sin presencia de punto de fluencia. Por el contrario en las curvas de los PLCL 008515, PLCL 504010 y PLCL 602515 sí se aprecia un punto de fluencia. El PLCL 008515 tiene un módulo secante al 2% de 146,5 MPa y una elongación a rotura de 361 %. Los PLCLs sintetizados en los ejemplos 3 y 4 son más rígidos con módulos secantes de 336,7MPa y 331 ,3 MPa, respectivamente. El PLCL 504010 tiene un comportamiento más vitreo con una elongación a rotura del 59%. En cambio, el PLCL 602515 se deforma hasta un 230%. Figure 8 shows the most representative stress-strain curves of the PLCLs synthesized in Examples 1-4. As can be seen, the PLCL 502525 has a clearly elastomeric behavior (2% secant modulus of 5.7 MPa and 994% elongation at break) without the presence of a creep point. On the contrary, in the curves of the PLCL 008515, PLCL 504010 and PLCL 602515 a yield point can be seen. The PLCL 008515 has a 2% secant module of 146.5 MPa and an elongation at break of 361%. The PLCLs synthesized in Examples 3 and 4 are more rigid with secant modules of 336.7MPa and 331.3 MPa, respectively. The PLCL 504010 has a more vitreous behavior with an elongation at break of 59%. Instead, the PLCL 602515 deforms up to 230%.
La Tabla 4 recoge las propiedades mecánicas (módulo secante al 2%, tensión de fluencia, tensión a rotura, elongación a rotura y recuperación elástica) de los PLCLs sintetizados en los ejemplos 1-4 a diferentes tiempos de degradación. Table 4 shows the mechanical properties (2% secant modulus, creep stress, breaking stress, elongation at break and elastic recovery) of the PLCLs synthesized in Examples 1-4 at different degradation times.
En la primera semana de degradación, el PLCL 008515 sufre un pequeño cambio en sus propiedades hacía un comportamiento más rígido, relacionado con la pequeña relajación entálpica observada en el barrido de DSC (Figura 1). A continuación, según disminuye la temperatura de transición vitrea del material y aumenta la movilidad de las cadenas, el PLCL 008515 gana carácter elastomérico pero sufre un deterioro en sus propiedades mecánicas (módulo secante al 2% y tensión a rotura) El PLCL 502525 únicamente pudo ensayarse de forma previa al inicio del estudio de degradación. Tras una semana sumergido a 37°C en PBS, perdió consistencia y fue imposible llevar a cabo ensayos mecánicos. En la primera semana de degradación, el PLCL 504010 sufre un importante cambio en sus propiedades hacía un comportamiento más rígido, relacionado con la relajación entálpica observada en el barrido de DSC (Figura 3). La elongación a rotura pasa de un 59% a un 4%. En el día 14 ya no pudieron llevarse a cabo ensayos mecánicos debido a la fragilidad del material. In the first week of degradation, the PLCL 008515 undergoes a small change in its properties towards a more rigid behavior, related to the small enthalpy relaxation observed in the DSC scan (Figure 1). Then, as the glass transition temperature of the material decreases and the mobility of the chains increases, the PLCL 008515 gains elastomeric character but suffers a deterioration in its mechanical properties (2% secant modulus and tensile stress) The PLCL 502525 could only be tested prior to the start of the degradation study. After a week submerged at 37 ° C in PBS, it lost consistency and it was impossible to carry out mechanical tests. In the first week of degradation, the PLCL 504010 undergoes a significant change in its properties towards a more rigid behavior, related to the enthalpy relaxation observed in the DSC scan (Figure 3). Elongation at break goes from 59% to 4%. On day 14, mechanical tests could no longer be carried out due to the fragility of the material.
En las primeras dos semanas de degradación, el PLCL 602515 sufre un cambio en sus propiedades hacía un comportamiento más rígido, relacionado con la relajación entálpica observada en el barrido de DSC (Figura 4). En el día 21 se aprecia un deterioro en las propiedades mecánicas (módulo secante al 2%, tensión a rotura, elongación a rotura) del PLCL 602515 como consecuencia de su pérdida de peso molecular. In the first two weeks of degradation, the PLCL 602515 undergoes a change in its properties towards a more rigid behavior, related to the enthalpy relaxation observed in the DSC scan (Figure 4). On day 21 there is a deterioration in the mechanical properties (2% secant modulus, tensile strength, elongation at breakage) of PLCL 602515 as a consequence of its loss of molecular weight.
TABLA 4 TABLE 4
Tensión de Tension
fluencia  creep
Módulo o  Module or
Tensión Elongación Recuperación secante Límite  Tension Elongation Drying recovery Limit
Nombre 1 a rotura a rotura elástica al 2% elástico  Name 1 at break to elastic break at 2% elastic
convencional  conventional
al 10% 2 at 10% 2
(MPa) (MPa) (MPa) (%) (%) (MPa) (MPa) (MPa) (%) (%)
Día 146.5 ± 5,38 ± 361 ,2 ± Day 146.5 ± 5.38 ± 361, 2 ±
3,68 ± 0,39 96,4 ± 1 0 8,9 0,56 1 1 , 1  3.68 ± 0.39 96.4 ± 1 0 8.9 0.56 1 1, 1
Día 189.6 ± 7.97 ± 257,7 ±  Day 189.6 ± 7.97 ± 257.7 ±
8,14 ± 0,34 95,4 ± 1 8.14 ± 0.34 95.4 ± 1
PLCL 7 19,4 1 ,00 15,9 PLCL 7 19.4 1, 00 15.9
008515 °ía 169,1 ± 4.98 ± 167,2 ± 008515 ° ia 169.1 ± 4.98 ± 167.2 ±
5,37 ± 0,36 97,8 ± 1 14 1 1 ,2 0,54 14,6  5.37 ± 0.36 97.8 ± 1 14 1 1, 2.54 14.6
Día 32,2 ± 4,0 1 ,27 ± 0, 12 1 ,56 ± 422,0 ± 91 ,0 ± 1 21 0,16 24,0 Day 32.2 ± 4.0 1, 27 ± 0, 12 1, 56 ± 422.0 ± 91, 0 ± 1 21 0.16 24.0
PLCL Día 2,34 ± 993,6 ± PLCL Day 2.34 ± 993.6 ±
5,7 ±0,3 0,44 ± 0,02 94,1 ± 1 502525 0 0,19 33,5  5.7 ± 0.3 0.44 ± 0.02 94.1 ± 1 502525 0 0.19 33.5
Día 336,7 ± 5,06 ±  Day 336.7 ± 5.06 ±
7,41 ±0,80 59,2 ± 7,1 80,9 ± 8 0 39,8 0,42  7.41 ± 0.80 59.2 ± 7.1 80.9 ± 8 0 39.8 0.42
PLCL  PLCL
Día 742,8 ± 23,62 ±  Day 742.8 ± 23.62 ±
504010 - 3,8 ±0,4 - 7 37,3 1,31  504010 - 3.8 ± 0.4 - 7 37.3 1.31
Día 331,3 ± 9,21 ± 229,9 ±  Day 331.3 ± 9.21 ± 229.9 ±
7,91 ±0,89 95,1 ±2 0 41,3 0,55 11,8  7.91 ± 0.89 95.1 ± 2 0 41.3 0.55 11.8
Día 374,1 ± 11,43 ± 234,9 ±  Day 374.1 ± 11.43 ± 234.9 ±
12,12 ± 1,39 86,8 ± 2 12.12 ± 1.39 86.8 ± 2
PLCL 7 30,2 0,48 25,4 PLCL 7 30.2 0.48 25.4
602515 Día 455,4 ± 8,22 ± 134,3 ±  602515 Day 455.4 ± 8.22 ± 134.3 ±
12,87 ± 1,07 96,3 ± 1 14 48,5 0,85 11,2  12.87 ± 1.07 96.3 ± 1 14 48.5 0.85 11.2
Día 225,6 ± 5,71 ±  Day 225.6 ± 5.71 ±
7,97 ± 1,03 38,1 ±4,2 95,3 ±2 21 11,0 0,62  7.97 ± 1.03 38.1 ± 4.2 95.3 ± 2 21 11.0 0.62
1 El PLCL 502525 se volvió demasiado viscoso durante la degradación y no se pudieron hacer ensayos mecánicos debido a su falta de consistencia. El PLCL 504010 se hizo muy frágil a partir del día 7 de degradación y tampoco se pudieron llevar cabo ensayos mecánicos a otros tiempos de degradación. 1 PLCL 502525 became too viscous during degradation and no mechanical tests could be made due to its lack of consistency. The PLCL 504010 became very fragile from day 7 of degradation and mechanical tests could not be carried out at other degradation times.
2 Puesto que el PLCL 008515 a día 21 de degradación y el PLCL 502525 no presentaron fluencia, se dan valores del límite elástico convencional al 10% usando el módulo secante al 2% de deformación. 2 Since the PLCL 008515 on day 21 of degradation and the PLCL 502525 did not show creep, values of the conventional elastic limit at 10% are given using the secant modulus at 2% deformation.

Claims

REIVINDICACIONES
1 . Un procedimiento para la obtención de terpolímeros aleatorios mediante polimerización en masa una sola etapa de: one . A process for obtaining random terpolymers by mass polymerization a single stage of:
a) ε-caprolactona de fórmula (I) a) ε-caprolactone of formula (I)
b) L-lactida de fórmula (II) b) L-lactide of formula (II)
c) D-lactida de fórmula (III) c) D-lactide of formula (III)
Figure imgf000032_0001
Figure imgf000032_0001
entendiéndose por terpolímeros aleatorios aquellos que tienen un valor de R mayor random terpolymers are understood to be those that have a higher R value
TLA - CL1  TLA - CL1
que 0,85 calculándose R mediante la fórmula R =— — siendo [LA] y [CL] that 0.85 calculating R by the formula R = - - being [LA] and [CL]
2[LA][CL]  2 [LA] [CL]
respectivamente las fracciones molares de las unidades de repetición de lactida y de ε- caprolactona y siendo [LA-CL] la fracción molar de las diadas de ε-caprolactona- lactida (o de lactida-e-caprolactona). respectively the molar fractions of the lactide and ε-caprolactone repeat units and [LA-CL] being the molar fraction of the ε-caprolactone-lactide (or lactide-e-caprolactone) dyads.
2. Procedimiento según la reivindicación 1 caracterizado porque la reacción de polimerización se lleva a cabo en una sola etapa en presencia de un catalizador que se selecciona del grupo que consiste en 2-etilhexanoato de bismuto, hexanoato de bismuto (BiHex3), triflato de bismuto (Bi(OTf)3), etóxido de difenilo de bismuto (Ph2BiOEt), subsalicilato de bismuto (BiSS) y trifenilo de bismuto (PH3Bi) que se añade a la mezcla de reacción en estado fundido. 3. Procedimiento según la reivindicación 2 caracterizado porque el catalizador se selecciona del grupo que consiste en subsalicilato de bismuto (BiSS) y trifenilo de bismuto (PH3Bi). 2. Method according to claim 1 characterized in that the polymerization reaction is carried out in a single step in the presence of a catalyst that is selected from the group consisting of bismuth 2-ethylhexanoate, hexanoate bismuth (BiHex 3 ), bismuth triflate (Bi (OTf) 3 ), bismuth diphenyl ethoxide (Ph 2 BiOEt), bismuth subsalicylate (BiSS) and bismuth triphenyl (PH 3 Bi) which is added to the mixture of reaction in molten state. 3. Method according to claim 2 characterized in that the catalyst is selected from the group consisting of bismuth subsalicylate (BiSS) and bismuth triphenyl (PH 3 Bi).
4. Procedimiento según cualquiera de las reivindicaciones anteriores caracterizado por que la relación molar del total de monómeros (I), (II) y (III) al catalizador está comprendida entre 250:1 y 10000:1. 4. Method according to any of the preceding claims characterized in that the molar ratio of the total monomers (I), (II) and (III) to the catalyst is comprised between 250: 1 and 10,000: 1.
5.. Procedimiento según cualquiera de las reivindicaciones anteriores caracterizado porque la mezcla de comonómeros (I) a (III) comprende entre un 5 y un 30 mol%, respecto al total de comonómeros (I), (II) y (III), de ε-caprolactona. Method according to any of the preceding claims, characterized in that the mixture of comonomers (I) to (III) comprises between 5 and 30 mol%, with respect to the total of comonomers (I), (II) and (III), of ε-caprolactone.
6. Procedimiento según cualquiera de las reivindicaciones anteriores caracterizado porque la mezcla de comonómeros (I), (II) y (III) comprende una cantidad de D-lactida entre un 5 mol% y un 72 mol% y una cantidad de L-lactida entre un 5 mol % y un 72 mol% respecto al total de comonómeros (I), (II) y (III). Method according to any one of the preceding claims, characterized in that the mixture of comonomers (I), (II) and (III) comprises an amount of D-lactide between 5 mol% and 72 mol% and an amount of L-lactide. between 5 mol% and 72 mol% with respect to the total of comonomers (I), (II) and (III).
7. Procedimiento según cualquiera de las reivindicaciones anteriores caracterizado por que los terpolímeros aleatorios se obtienen por reacción de una mezcla de comonómeros en los que el exceso enantiomérico de L-lactida o de D-lactida supera el 5 mol%. 7. Method according to any of the preceding claims characterized in that the random terpolymers are obtained by reacting a mixture of comonomers in which the enantiomeric excess of L-lactide or D-lactide exceeds 5 mol%.
8. Procedimiento según cualquiera de las reivindicaciones 1 a 6 caracterizado porque la mezcla de comonómeros (I) a (III) tiene un contenido molar un contenido molar de ε- caprolactona entre un 5 mol% y un 25 mol% respecto al total de comonómeros (I), (II) y (III) y tiene el mismo porcentaje molar de L-Lactida y de D-Lactida Method according to any one of claims 1 to 6, characterized in that the mixture of comonomers (I) to (III) has a molar content of ε-caprolactone molar content between 5 mol% and 25 mol% with respect to the total comonomers (I), (II) and (III) and has the same molar percentage of L-Lactide and D-Lactide
9. Procedimiento según cualquiera de las reivindicaciones anteriores caracterizado porque la reacción de polimerización transcurre por polimerización por apertura de anillo (ROP) realizándose en masa a temperaturas comprendidas entre 120 y 140°C durante 2 o 3 días de reacción. Method according to any of the preceding claims, characterized in that the polymerization reaction takes place by ring opening polymerization (ROP) being carried out in bulk at temperatures between 120 and 140 ° C for 2 or 3 days of reaction.
10. Procedimiento según cualquiera de las reivindicaciones anteriores caracterizado por que se realiza en atmosfera inerte, preferiblemente en atmosfera de N2. Method according to any of the preceding claims characterized in that it is carried out in an inert atmosphere, preferably in an N 2 atmosphere.
. Un terpolímero aleatorio obtenible mediante polimerización en una sola etapa de: ε-caprolactona de fórmula (I) . A random terpolymer obtainable by single stage polymerization of: ε-caprolactone of formula (I)
Figure imgf000034_0001
Figure imgf000034_0001
(I)  (I)
b) L-lactida de fórmula (II)
Figure imgf000034_0002
b) L-lactide of formula (II)
Figure imgf000034_0002
ιο (ll) ιο (ll)
y  Y
c) D-lactida de fórmula (III)
Figure imgf000034_0003
c) D-lactide of formula (III)
Figure imgf000034_0003
(Ni)  (Neither)
entendiéndose por terpolímeros aleatorios aquellos que tienen un valor de R, mayor  understood as random terpolymers those that have a value of R, greater
TLA - CL1  TLA - CL1
15 que 0,85 calculándose R mediante la fórmula R =— — siendo [LA] y [CL]  15 than 0.85 with R being calculated using the formula R = - - where [LA] and [CL]
2[LA][CL]  2 [LA] [CL]
respectivamente las fracciones molares de las unidades de repetición de lactida y de ε- caprolactona y siendo [LA-CL] la fracción molar de las diadas de ε-caprolactona- lactida (o de lactida-e-caprolactona).  respectively the molar fractions of the lactide and ε-caprolactone repeat units and [LA-CL] being the molar fraction of the ε-caprolactone-lactide (or lactide-e-caprolactone) dyads.
20 12. Terpolímero según la reivindicación 1 1 caracterizado porque en el procedimiento de obtención la reacción de polimerización se lleva a cabo en una sola etapa en presencia de un catalizador que se selecciona del grupo que consiste en 2- etilhexanoato de bismuto, hexanoato de bismuto (BiHex3), triflato de bismuto (Bi(OTf)3), etóxido de difenilo de bismuto (Ph2BiOEt), subsalicilato de bismuto (BiSS) y trifenilo de bismuto (PH3Bi). 12. Terpolymer according to claim 1 characterized in that in the process of obtaining the polymerization reaction is carried out in a single step in the presence of a catalyst that is selected from the group consisting of bismuth 2- ethylhexanoate, bismuth hexanoate (BiHex 3 ), bismuth triflate (Bi (OTf) 3 ), bismuth diphenyl ethoxide (Ph 2 BiOEt), bismuth subsalicylate (BiSS) and bismuth triphenyl (PH 3 Bi).
13. Terpolímero según la reivindicación 12 caracterizado porque el catalizador se selecciona del grupo que consiste en subsalicilato de bismuto (BiSS) y trifenilo de bismuto (PH3Bi). 13. Terpolymer according to claim 12 characterized in that the catalyst is selected from the group consisting of bismuth subsalicylate (BiSS) and bismuth triphenyl (PH 3 Bi).
14. Terpolímero según cualquiera de las reivindicaciones 1 1 a 13 caracterizado por que la relación molar del total de monómeros (I), (II) y (III) al catalizador está comprendida entre 250: 1 y 10000:1. 14. Terpolymer according to any of claims 1 to 13, characterized in that the molar ratio of the total monomers (I), (II) and (III) to the catalyst is between 250: 1 and 10,000: 1.
15. Terpolímero según cualquiera de las reivindicaciones 1 1 a 14 caracterizado porque en el procedimiento de obtención la mezcla de comonómeros (I) a (IV) comprende entre un 5 y un 30% molar, respecto al total de comonómeros (I), (II) y (III), de ε- caprolactona. 15. Terpolymer according to any of claims 1 to 14, characterized in that in the process of obtaining the mixture of comonomers (I) to (IV) it comprises between 5 and 30 mol%, with respect to the total of comonomers (I), ( II) and (III), of ε-caprolactone.
16. Terpolímero según cualquiera de las reivindicaciones 1 1 a 15 caracterizado porque en el procedimiento de obtención la mezcla de comonómeros (I), (II) y (III) comprende una cantidad de D-lactida entre un 5 y un 72 y una cantidad de L-lactida entre un 5 y un 72% respecto al total de comonómeros (I), (II) y (III). 16. Terpolymer according to any of claims 1 to 15, characterized in that in the process of obtaining the mixture of comonomers (I), (II) and (III) it comprises an amount of D-lactide between 5 and 72 and an amount of L-lactide between 5 and 72% with respect to total comonomers (I), (II) and (III).
17. Terpolímero según cualquiera de las reivindicaciones 1 1 a 14 caracterizado porque en el procedimiento de obtención se utiliza una mezcla de comonómeros en los que el exceso enantiomérico de L-lactida o de D-lactida supera el 5%. 17. Terpolymer according to any of claims 1 to 14, characterized in that a mixture of comonomers in which the enantiomeric excess of L-lactide or D-lactide exceeds 5% is used in the process of obtaining.
18. Terpolímero según según cualquiera de las reivindicaciones 11 a 16 caracterizado porque la mezcla de comonómeros (I) a (III) tiene un contenido molar un contenido molar de ε-caprolactona entre un 5 y un 25 mol% respecto al total de comonómeros (I), (II) y (III) y tiene el mismo porcentaje molar de L-Lactida y de D-Lactida 18. Terpolymer according to any of claims 11 to 16, characterized in that the mixture of comonomers (I) to (III) has a molar content of a molar content of ε-caprolactone between 5 and 25 mol% with respect to the total comonomers ( I), (II) and (III) and has the same molar percentage of L-Lactide and D-Lactide
19. Terpolímero según cualquiera de las reivindicaciones 1 1 a 18 caracterizado por que en el procedimiento de obtención la reacción de polimerización transcurre por polimerización por apertura de anillo (ROP) realizándose en masa a temperaturas comprendidas entre 120 y 140°C durante 2 o 3 días de reacción. 19. Terpolymer according to any of claims 1 to 18 characterized in that in the process of obtaining the polymerization reaction takes place by ring opening polymerization (ROP) being carried out in bulk at temperatures between 120 and 140 ° C for 2 or 3 reaction days
20. Mezclas de uno o más de los terpolímeros según se definen en cualquiera de las reivindicaciones 9 a 19. 20. Mixtures of one or more of the terpolymers as defined in any of claims 9 to 19.
21. Materiales compuestos que comprenden uno o más terpolímeros según se definen en cualquiera de las reivindicaciones 9 a 19. 21. Composite materials comprising one or more terpolymers as defined in any one of claims 9 to 19.
22. Materiales compuestos según la reivindicación 21 que comprenden además del terpolímero uno o más materiales seleccionados del grupo que consiste en materiales de refuerzo mecánico, materiales capaces de conferir bioactividad, materiales capaces de conferir actividad antibacteriana. 22. Composite materials according to claim 21 which comprise in addition to the terpolymer one or more materials selected from the group consisting of mechanical reinforcement materials, materials capable of conferring bioactivity, materials capable of conferring antibacterial activity.
23. Dispositivos o implantes médicos que comprenden uno o más terpolímeros según se definen en cualquiera de las reivindicaciones 9 a 22. 24. Anclajes celulares que comprenden uno o más terpolímeros según se definen en cualquiera de las reivindicaciones 9 a 22. 23. Medical devices or implants comprising one or more terpolymers as defined in any of claims 9 to 22. 24. Cellular anchors comprising one or more terpolymers as defined in any of claims 9 to 22.
25. Plásticos que comprenden uno o más terpolímeros según se definen en cualquiera de las reivindicaciones 9 a 22 y otros materiales poliméricos biodegradables y biocompatibles. 25. Plastics comprising one or more terpolymers as defined in any of claims 9 to 22 and other biodegradable and biocompatible polymeric materials.
PCT/ES2014/070156 2013-03-04 2014-03-03 Novel random terpolymers based on d-lactide, l-lactide and ε-caprolactone WO2014135727A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201330302A ES2504666B1 (en) 2013-03-04 2013-03-04 NEW RANDOM TERPOLYMERS BASED ON D-LACTIDA, L-LACTIDA and E-CAPROLACTONA
ESP201330302 2013-03-04

Publications (1)

Publication Number Publication Date
WO2014135727A1 true WO2014135727A1 (en) 2014-09-12

Family

ID=51490667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070156 WO2014135727A1 (en) 2013-03-04 2014-03-03 Novel random terpolymers based on d-lactide, l-lactide and ε-caprolactone

Country Status (2)

Country Link
ES (1) ES2504666B1 (en)
WO (1) WO2014135727A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104910355A (en) * 2015-05-21 2015-09-16 常州大学 Bismuth-type catalysts used for producing polyglycolic acid
CN110204697A (en) * 2019-06-25 2019-09-06 苏州大学 The method for preparing L- lactide and 6-caprolactone random copolymer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100093946A1 (en) * 2008-10-11 2010-04-15 Orbusneich Medical, Inc. Bioabsorbable Polymeric Compositions and Medical Devices
US20100291175A1 (en) * 2009-05-14 2010-11-18 Abbott Cardiovascular Systems Inc. Polymers comprising amorphous terpolymers and semicrystalline blocks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100093946A1 (en) * 2008-10-11 2010-04-15 Orbusneich Medical, Inc. Bioabsorbable Polymeric Compositions and Medical Devices
US20100291175A1 (en) * 2009-05-14 2010-11-18 Abbott Cardiovascular Systems Inc. Polymers comprising amorphous terpolymers and semicrystalline blocks

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J. FERNANDEZ ET AL.: "A new generation of poly(lactide/ epsilon-caprolactone) polymeric biomaterials for application in the medical field", JOURNAL OF BIOMEDICAL MATERIALS RESEARCH A, 2013, pages 1 - 12 *
J. FERNANDEZ ET AL.: "Effects of chain microstructures on mechanical behavior and aging of a poly(L-lactide-co -epsilon -caprolactone) biomedical thermoplastic-elastomer", JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, vol. 12, 2012, pages 29 - 38 *
J. FERNANDEZ ET AL.: "Synthesis and characterization of poly(L-lactide/epsilon -caprolactone) statistical copolymers with well resolved chain microstructures", POLYMER, vol. 54, 2013, pages 2621 - 2631 *
M. SRISA-ARD ET AL.: "Synthesis and characterization of a random terpolymer of L-lactide, epsilon-caprolactone and glycolide", POLYMER INTERNATIONAL, vol. 50, 2001, pages 891 - 896 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104910355A (en) * 2015-05-21 2015-09-16 常州大学 Bismuth-type catalysts used for producing polyglycolic acid
CN110204697A (en) * 2019-06-25 2019-09-06 苏州大学 The method for preparing L- lactide and 6-caprolactone random copolymer
CN110204697B (en) * 2019-06-25 2021-11-16 苏州大学 Process for preparing random copolymer of L-lactide and epsilon-caprolactone

Also Published As

Publication number Publication date
ES2504666B1 (en) 2015-09-04
ES2504666A1 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
ES2375637T3 (en) RESTORABLE POLY (ETERES-ESTERS) AND ITS USE FOR THE PRODUCTION OF MEDICAL IMPLANTS.
ES2382034T3 (en) Polyester compositions, preparation procedures for said compositions and products formed therefrom
Xue et al. Biodegradable shape-memory block co-polymers for fast self-expandable stents
ES2305512T3 (en) BIODEGRADABLE COPOLYMERS OF VARIOUS BLOCKS, SEGMENTED AND SEPARATE PHASES
ES2212602T3 (en) BIOMEDICAL POLYURETHANE, ITS PREPARATION AND USE.
ES2628921T3 (en) Segmented absorbable copolymers, semi-crystalline poly (lactide-co-epsilon-caprolactone)
ES2217670T3 (en) COPOLIESTERS WITH A MINIMIZED HYDROLYTIC INSTABILITY AND DERIVED ABSORBABLE CRYSTALLINE COPOLYMERS.
ES2537307T3 (en) Biocompatible block copolymer, degradable
EP3082888B1 (en) Absorbable polymeric blend compositions based on copolymers prepared from mono- and di-functional polymerization initiators, processing methods, and medical devices therefrom
Smola et al. Bioresorbable terpolymers based on L-lactide, glycolide and trimethylene carbonate with shape memory behaviour
Wang et al. Synthesis, characterization and surface modification of low moduli poly (ether carbonate urethane) ureas for soft tissue engineering
Kupka et al. Solvent free synthesis and structural evaluation of polyurethane films based on poly (ethylene glycol) and poly (caprolactone).
SG184102A1 (en) Biodegradable and biocompatible shape memory polymers
Bachtiar et al. Structure-property relationships in 3D-printed poly (l-lactide-co-ε-caprolactone) degradable polymer
ES2504666B1 (en) NEW RANDOM TERPOLYMERS BASED ON D-LACTIDA, L-LACTIDA and E-CAPROLACTONA
ES2809537T3 (en) Anhydrous biocompatible composites
ES2329329B1 (en) THERMOPLASTIC PASTE FOR REPAIR LIVING FABRICS.
JP2008222768A (en) Branched biodegradable polyester and method for producing the same
ES2266775T3 (en) BLOCK COPOLYMERS FOR SURGICAL ARTICLES.
JP6851990B2 (en) A novel foam and film-based absorbent medical device made from a segmented copolymer of semi-crystalline lactide and ε-caprolactone with long-term absorption properties.
PL230303B1 (en) Method for producing bioresorbable and biocompatible thermoplastic elastomers exhibiting shape memory for biomedical applications
Dobrzynski et al. Synthetic biodegradable medical polyesters: poly (trimethylene carbonate)
ES2732707T3 (en) Quickly absorbed semi-crystalline polymer formulation
JP7319466B2 (en) block copolymer
ES2311542T3 (en) GREAT CONSISTENCY ABSORBABLE POLYMER RESIN.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14759814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14759814

Country of ref document: EP

Kind code of ref document: A1