WO2014134977A1 - 固态光源散热金属壳和光源引擎及其制造方法和模具 - Google Patents
固态光源散热金属壳和光源引擎及其制造方法和模具 Download PDFInfo
- Publication number
- WO2014134977A1 WO2014134977A1 PCT/CN2014/070650 CN2014070650W WO2014134977A1 WO 2014134977 A1 WO2014134977 A1 WO 2014134977A1 CN 2014070650 W CN2014070650 W CN 2014070650W WO 2014134977 A1 WO2014134977 A1 WO 2014134977A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal
- shell
- light source
- solid
- state light
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/70—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/70—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
- F21V29/74—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
- F21V29/78—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with helically or spirally arranged fins or blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21K—NON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
- F21K9/00—Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
- F21K9/20—Light sources comprising attachment means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21K—NON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
- F21K9/00—Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
- F21K9/60—Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
- F21K9/68—Details of reflectors forming part of the light source
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/70—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
- F21V29/74—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
Definitions
- Solid-state light source heat dissipation metal shell and light source engine manufacturing method thereof and mold
- the present invention belongs to the field of solid-state light source heat dissipation and illumination technology, and particularly relates to a solid-state light source radiator and a light source engine that utilize natural convection heat dissipation and utilize a casing structural member as a heat sink.
- LED Solid State Light Source
- the cost of an LED illuminator can be divided into three parts: an LED source, a power source and a structural member, the structural member includes a heat sink, and the cost of the structural member is primarily from the heat sink.
- the cost of structural components will be the main cost of LED lighting, so reducing the cost of structural components (heat sinks) will become the focus of LED popularization. .
- Natural convection cooling is the best choice for LED lighting.
- those skilled in the art generally do not know that the driving force of the natural convection flow of the driving air is: the buoyancy generated by the air being heated and the specific gravity is decreased, the buoyancy is vertically upward, and is very weak, thereby ensuring the smooth flow of air, especially from the bottom.
- the convection on the flow is the most critical in the natural convection heat dissipation.
- the current LED lighting lamp has the use of the housing structural member as the heat sink, but due to the above problems, the product is designed without any attention or special attention to ensure the smooth flow of air, for example: there is no convection ventilation window on the casing. Even if there is a convection ventilation window, but the opening is not enough; if the axis installation angle of the lamp is different, it will affect the problem of smooth flow of natural convection. Therefore, the heat dissipation performance of the lamp is poor, and the surface of the lamp housing is not fully utilized as a heat dissipation surface, and the heat sink is additionally required, resulting in a low cost of the structural material of the lamp.
- the present invention proposes a heat sink for a solid-state light source (LED illumination lamp) for the purpose of reducing the cost of the structural member and improving the heat dissipation performance.
- a heat sink for a solid-state light source (LED illumination lamp) for the purpose of reducing the cost of the structural member and improving the heat dissipation performance.
- the cost of structural parts has also been significantly reduced.
- the invention also proposes a light source engine for reducing glare. In combination with the heat dissipating metal shell of the invention, the designed LED lamp not only effectively reduces glare, but also has low overall cost.
- the heat dissipation metal shell comprises a metal sidewall and a metal front shell, or a metal sidewall and a metal back shell, or a metal sidewall and a metal front shell and a metal back shell
- the heat dissipating metal shell is provided with a contact heat transfer surface which is in direct or indirect contact with the heat conducting plate or the heat conducting core of the solid state light source, and some or all of the heat generated by the solid state light source is transmitted to the surface of the heat dissipating metal shell through the contact heat transfer surface.
- the heat dissipating metal shell is formed by stamping processing of the metal sheet, and the metal side wall is formed by stretching the metal back shell, or the metal front shell, or the metal back shell and the metal front shell;
- the metal sidewall is provided with a louver structure or a staggered structure venting window, the slit line of the window adopts a structure along the tensile direction of the metal sidewall, and the metal sidewall has a permeability of not less than 0.20;
- the middle portion of the metal back shell is provided with a contact heat transfer surface directly or indirectly in contact with the heat conducting plate or the heat conducting core of the solid state light source;
- the metal front shell is provided with direct or indirect Contact heat transfer surface in contact with the heat conducting plate or the heat conducting core of the solid state light source.
- Solid state light sources are generally equipped with a heat conducting plate or a heat conducting core.
- the contact heat transfer surface of the present invention refers to a contact surface specially designed to ensure heat conduction and heat transfer, so the contact surface is large enough and the contact is tight, such as pressing, over-tightening, adding thermal adhesive or Welding and other measures.
- the heat generated by the solid-state light source is transferred to the entire heat-dissipating metal shell through direct or indirect contact heat transfer, and the shell of the structural member is directly utilized as a heat sink, and the structural member has sufficient material. Utilization reduces material costs.
- the heat-dissipating metal shell is made of sheet metal (preferably aluminum) by stamping process. The raw material is strip, and the multi-station continuous mold can produce a complete part with one stroke. The efficiency is very high, and the processing cost is high. Far less than hot die casting, aluminum extrusion and other processes.
- the wall thickness of the heat-dissipating metal shell can be reduced to less than 0.3 mm, and the wall thickness of the hot-die-casting process is as much as 2 mm, and the wall thickness of the aluminum extrusion process is less than 0.5 mm, so that the present invention is particularly proposed.
- the material cost is further reduced.
- the metal sidewall is stretched from the metal plate of the metal back shell, that is, the metal sidewall and the metal back shell are integrated, the manufacturing efficiency is high, the cost is low, and the heat is smoothly transmitted to the metal sidewall.
- the ventilation window is opened on the metal sidewall, and the permeability of the ventilation window is sufficiently large to make the natural convection air flow as smooth as possible.
- the sufficiently large sidewall permeability of the present invention is not less than 0.2, the side Wall penetration is defined as the effective ventilation area of the venting window on the metal sidewall divided by the area of the sidewall, as will be defined in detail later in the present invention.
- the metal side wall has a large enough ventilation window to ensure that when the lamp is horizontally horizontal, that is, the metal side wall is horizontally oriented, and the natural convection upward flowing air can traverse the heat dissipation metal case, which is favorable for convection heat dissipation.
- the ventilating window adopts the louver type or staggered structure, which can realize the processing of the vent window without waste, the material utilization rate is high, and the heat dissipation area of the side wall is also high; the direction of the slit line of the vent window should follow the metal sidewall
- the stretching direction is the same as the axis of the heat-dissipating metal shell, so that the heat conduction distance of the heat in the metal sidewall is as short as possible, which is advantageous for reducing the thermal resistance of the heat conduction in the metal sidewall.
- the present invention also provides a method for manufacturing a heat dissipating metal shell, the main feature is: a louvered or staggered structure vent window on a metal sidewall is formed by axial motion of the forming convex tooth, pushing The extruded metal shell wall is deformed inward (with bending deformation, straightening deformation, etc.), and forms an inner folded rib to form a vent (a louver or a staggered structure).
- the forming mold of the louvered or staggered structure vent window on the metal side wall includes a concave mold and a convex mold, and the concave mold has formed convex teeth, all of which
- the forming convex tooth is fixed integrally with the female die (that is, the forming convex tooth is fixed to the main body of the die or is a one-piece member and is not movable), and the punch has a forming groove corresponding to the forming convex tooth, and the forming groove extends to the The upper end of the punch forms an opening, and the forming convex tooth can be axially inserted into the forming groove.
- the punch has a face cutting edge of the end cutting line, and the side wall of the punch has a side cutting edge of the side cutting line, and the end cutting edge is connected with the side edge of the side wall.
- the present invention provides a solid state light source engine including a heat dissipating metal shell and a heat conducting core, and a solid state light source, direct and indirect contact heat transfer between the metal front and rear shells and the heat conducting core The face is stretched into a sleeve or a flanged structure.
- FIG. 1, FIG. 2 and FIG. 5 are respectively schematic cross-sectional views of three solid-state light source engines of the present invention, showing the structural characteristics of the substrate of the light-emitting metal shell of the present invention: the metal sidewall 2 is from the metal front shell 4 Or the metal back shell 9, or the metal front shell 4 and the metal back shell 9 are stretched from the metal sheet, and the ventilation window 3 is opened.
- FIG. 3 is a schematic cross-sectional view of a staggered structure venting window, where b is the width of the slit 16 and c is the width of the sheet 15b, and e is the width of the sheet 15a.
- FIG. 4 is a schematic cross-sectional view of a louvered window vent window, where f is the pitch of the two-part slit, b The width of the slit 16 is divided.
- FIG. 6, FIG. 7, and FIG. 8 are schematic cross-sectional views of three solid-state light source engines of the present invention, respectively.
- Fig. 9, Fig. 10, Fig. 11 are schematic diagrams showing the characteristics of three sub-cuts in a radial configuration. If the cut line
- Figure 12 is a perspective exploded view of a heat dissipating metal casing of the present invention.
- Figure 13 is a perspective cross-sectional view of a heat dissipating metal shell of the present invention.
- Figure 14 is a perspective cross-sectional view of a solid state light source engine of the present invention.
- FIG. 15 is a schematic cross-sectional view of a mold of a conventional processing method of a staggered structure vent window.
- FIG. 16 is a schematic cross-sectional view showing a mold of a general processing method of a louver structure vent window.
- Figure 17 is a perspective view of a heat dissipating metal casing of the present invention showing the structural features of a louvered venting window of the present invention on a metal sidewall.
- Fig. 18 is a partial enlarged view of a portion S of Fig. 17.
- FIG. 19 is a schematic view showing the structure of a mold for opening a louvered window on a metal side wall of the present invention.
- Figure 20 is a schematic view showing the forming process of the inner ribs on the side wall of the present invention.
- Figure 21 is a perspective view of a heat dissipating metal shell of the present invention.
- FIG. 22 is a partial enlarged view of a portion T of FIG. 21.
- FIG. 23 is a perspective view of a heat-dissipating metal back shell of the present invention.
- Figures 24 through 27 are schematic cross-sectional views of four solid-state light source engines of the present invention, respectively, which employ a technical solution for reducing glare.
- FIG. 28 and FIG. 29 are diagrams for determining the side wall of the heat dissipation metal shell and the metal back shell and the metal front shell boundary point.
- the metal sidewall 2 of the heat dissipation metal shell 1 is formed integrally with the metal front shell 4, that is, the same metal plate is fabricated, and the heat dissipation metal shell 1 is provided with a heat sink 8 There is no metal back shell in the figure, the metal side wall 2 is provided with a staggered structure ventilation window 3, and the ventilation window 5 opened on the metal front shell 4 adopts a louver structure.
- the solid state light source 6 is disposed on the heat conducting plate 7, and the heat conducting plate 7 is directly in close contact with the middle portion of the metal front shell 4.
- the contact surface between the middle portion of the metal front shell 4 and the heat conducting plate 7 is a contact heat transfer surface, where direct contact heat transfer is performed. surface.
- the heat generated by the solid-state light source 6 is transmitted to the metal front case 4 through the heat conducting plate 7, and part of the heat is dissipated from the surface of the heat dissipating metal case 1 and partially dissipated by the heat sink 8.
- the heat dissipating metal shell 1 has only the metal side wall 2 and the metal back shell 9, and the metal side wall 2 and the metal back shell 9 are made of the same metal sheet, and the metal back shell 9 is in the middle.
- a contact heat transfer surface is provided in direct contact with the heat conducting plate 7, and all the heat generated by the solid state light source 6 is transmitted to the surfaces of the metal back shell 9 and the metal side wall 2 to be dissipated.
- the metal rear case 9 has a staggered structure venting window 10, and the metal side wall 2 has a louvered structure venting window 3.
- the solid state light source 6 is disposed within the heat sink metal shell and is provided with a light source cover 11.
- the solid-state light source 6 When the solid-state light source 6 is vertically illuminating downward, that is, the light source engine is erected, the natural convection heat-dissipating air enters the casing from the vent window 3 of the metal sidewall 2, and is discharged from the venting window 10, and the convection air is convected smoothly and can effectively flow through
- the inner and outer surfaces of the entire heat-dissipating metal shell contribute to improved heat dissipation performance.
- the natural convection cooling air can also penetrate the heat dissipation metal shell, and the inner and outer surfaces of the entire heat dissipation metal shell are fully utilized for heat dissipation.
- FIG. 3 shows the characteristic structure of the staggered structure vent window, the continuous metal plate surface of length L is slit-punched into a segment of the sheet 15a and the sheet 15b, and the sheet 15a is 15b.
- the column arrangement, the ends of the sheet 15b to be punched out should also be connected to the original metal plate and must not be cut.
- the air flow line 17 in the figure shows that air passes through the slit 16 from one side to the other.
- FIG. 4 shows the characteristic structure of the louvered structure vent window, the continuous metal plate of length L is punched into 5 segments 15 with a spacing f, and the ends of the page 15 should also be with the original metal plate. Connected, not cut, air line 17 indicates that air passes through the slit 16 from one side to the other.
- the heat-dissipating metal case includes a metal front case 4 and a metal back case 9, and the metal side wall 2 has two sections, which are respectively from the metal front case 4 and the metal back case 9.
- the metal plate is stretched, and the ventilating windows of the metal front shell 4 and the metal back shell 9 and the metal side wall 2 are louvered.
- the heat radiating metal shell is provided with a rib fin 13 extending from the cylindrical surface of the heat conducting column 12, and the two ends of the heat conducting column 12 are respectively in close contact with the middle portions of the metal front shell 4 and the metal back shell 9, and the contact surface is in contact with
- the heat transfer surface the heat generated by the solid-state light source 6 is transmitted to the metal front shell 4 through the contact heat transfer surface of the heat conducting plate 7 and the metal front shell 4, and some heat is transferred to the heat conducting column 12, and then some heat is transferred to the metal back shell.
- the metal side wall 2 is stretched from the metal plate of the metal back shell 9; the metal back shell 9 is forward in the middle direction (the invention defines the solid state light source to illuminate in the forward direction) , and vice versa), and the ventilating window 901 having a louver structure on the stretching wall may also adopt a staggered structure ventilation window; the metal front shell 4 adopts a rearward stretching structure, which may constitute a solid state light source 6
- the light source cover not only has the function of dissipating heat, but also has the functions of protecting the solid-state light source 6 and distributing light.
- a heat dissipating metal shell 1 in which heat dissipating fins 13 are provided.
- the metal back shell 9 adopts a forward stretch structure, and the stretched wall is provided with a ventilation window 901, and the metal front shell 4 is also stretched toward the rear wall.
- a ventilation window 401 and the ventilation windows 901 and 401 in the figure are louvered structures, and a staggered structure can also be adopted.
- the venting window 401 on the stretching wall and the slit line of the venting window 901 should be constructed in a direction along the stretching direction of the stretching wall (also in the axial direction of the heat-dissipating metal shell) for the purpose of heat conduction.
- the wall of the shell of the heat-dissipating metal shell is provided with a ventilation window, and the heat-dissipating metal shell is horizontally placed horizontally or vertically, and the natural convection upward flowing air can smoothly pass through the heat-dissipating metal shell, which is favorable for convection heat dissipation.
- the side wall of the heat dissipation metal shell is provided with a ventilation window
- the metal front shell also has a ventilation window, the effective ventilation area of the side wall ventilation window and the effective ventilation area of the metal front shell ventilation window and the ideal ventilation area of the rear shell
- the ratio should be no less than 0.2 to ensure that the convection is unobstructed when standing up and down.
- the solid-state light source 6 is disposed on the front end surface of the heat-conducting core 18, and the metal front shell 4 and the metal back shell 9 are formed with a flanged structure, and the metal front shell 4 is turned over.
- the edge 19b and the flange 19a of the metal back shell 9 are placed over the cylindrical surface of the heat conducting core 18, and the contact surface between the flange 19a, 19b and the heat conducting core 18 is the contact heat transfer surface.
- the heat dissipating metal shell 1 is provided with a heat sink, and the heat sink is a sleeve structure.
- the so-called sleeve structure is that the rib root of the rib is a flanged structure. As shown in the figure, the flange 19c of the rib 13 is placed over On the flange 19b of the metal front case, the heat transferred to the rib 13 is introduced from the flange 19c.
- the middle portion of the metal back shell 9 is formed by a sleeve structure, and the sleeve 14 is formed by stretching a metal sheet of the metal back shell 9 and inserted into the heat conducting core 18,
- the contact surface between the sleeve 14 and the heat conducting core 18 is the contact heat transfer surface.
- the metal front shell can also be used to achieve contact heat transfer with the heat conducting core.
- the contact heat transfer surface is a stretch-formed cylindrical surface, with the difference that: the sleeve structure may be a blind hole, as shown in Figure 8, the sleeve 14, and The flanged structure must be an opening.
- a fastening connection structure should be adopted between the edge or the side wall extension of the metal side wall and the edge of the metal front shell or the front shell extension, respectively, and the fastening connection can be welded.
- the fastening connection not only plays a role in improving the structural strength, but also has a heat conduction effect, so that the heat can be effectively Conducting from the metal front shell to the metal sidewall enhances heat dissipation and the contact area is large enough.
- the fastening connection between the edge of the metal side wall 2 and the edge of the metal front case 4 is an interference fit structure as shown in part A of the figure.
- the so-called interference fit connection is such that the outer diameter of the edge of the metal front case 4 is slightly larger than the inner diameter of the edge of the metal side wall 2, and the metal side wall 2 is forcibly placed on the metal front case 4.
- the fastening connection between the metal side wall 2 shown in Figs. 7 and 8 and the edge of the metal front case 4 is a snap-fit connection structure, as shown in part B of Fig. 7 and part C of Fig. 8, in Fig. 8.
- the structure also adds an interference fit structure.
- slit line of the structural venting window should adopt a structure having a radiation shape, and Figs. 9, 10, and 11 respectively show three kinds of slit lines 20 in a radial shape, and the slit line 20 in Fig. 9 is an arc, Fig. 10 and Fig. 10 The cut line 20 in the middle is a straight line.
- the heat dissipating metal case of the present invention shown in FIG. 12 includes a metal front case 4 and a metal back case 9, and the metal side wall 2 is formed by stretching a metal material of the metal back case 9, and the metal back case 9 is oriented.
- the front tensile structure, and the ventilating window 901 having a louver structure on the stretching wall;
- the metal front shell 4 adopts a rearward stretching structure, and has a louvered front ventilation window on the stretching wall 401.
- the figure shows: the slit line of the ventilation window on the stretched wall of the metal front shell 4 and the metal back shell 9 follows the stretching direction of the tensile wall, and is the same as the axial direction of the heat sink metal shell;
- the slit line of the vent window 3 follows the direction in which the metal sidewall is stretched, and is the same as the axial direction of the heat sink metal shell, and the vent window 3 has a louver structure.
- the metal front shell 4 and the metal back shell 9 are formed with a flanged structure, flanges 19a and 19b, and a front shell extension 402 and a metal side of the metal front shell 4.
- An interference fit connection and a snap-fit connection structure are adopted between the side wall extensions 201 of the wall 2, as shown in part D of the figure, the outer edge of the side wall extension 201 is machined into a C or U-shaped cross section, front The outer edge of the shell extension 402 wraps around the outer edge of the sidewall extension 201.
- the outer edge of the side wall extension 201 is processed into a C-shaped cross section, and is provided with an inner reinforcing ring 22 (increased structural strength), as shown in part F of the figure.
- the metal front and rear shells are preferably made of thin aluminum sheets and have low strength, such a structure with enhanced structural strength should be selected.
- FIGS. 13 and 14 there is a common feature that the front section of the metal side wall 9 has a larger dimension (diameter) than the rear section, and is formed in a continuous annular step structure having a section bent at an excessive position in the front and rear sections. As shown in Fig. E, such a structure has the effect of improving the structural strength of the metal side wall, and is therefore referred to as a bent annular rib structure.
- FIG. 15 and FIG. 16 are schematic views showing a conventional louver type and staggered structure forming process, having an upper mold 101 and a lower mold 102.
- the upper mold 101 has convex teeth 103, and the convex teeth 103 are opposed to the metal.
- the motion of the plate 104 is vertical (or nearly vertical) as indicated by arrow 105.
- the side wall of the lamp housing is generally barrel-shaped. If the above method is used for opening the ventilation window on the side wall (the ventilation window on the metal side wall 2 shown in Figs. 13 and 14), the production efficiency is low.
- the moving direction of the convex teeth 103 is inconsistent with the moving direction of the punching head (also the axial direction of the casing), and should also be vertical, and each convex tooth 103 must be relatively moved respectively, and cannot be An integral part shown in Figs. 15 and 16 has such a complicated mold structure that it is impossible to manufacture a practical and reliable mold.
- the present invention proposes the following scheme.
- the ventilating window 3 on the metal side wall 2 is a louvered structure.
- the outer edge end face 817 belongs to the metal front shell portion 4, which is a tapered surface, that is, an angle with the axis 827 of the heat dissipating metal shell 1 is an acute angle.
- the outer edge end face 817 has a toothed opening 818 (formed by forming the convex tooth axially and formed by the louver structure).
- the edge of the tooth opening 818 is cut by the end face cutting line 820 and the end face.
- the end cutting line 820 is connected to the side wall cutting line 822, and the inner folding rib 824 is formed by the forming convex tooth inward (inside the casing) before the original (not before the venting port is processed), so that The inner folding cutting line 821 is separated from the side wall cutting line 822 to form a vent 823.
- the boundary between the inner folding rib 824 and the outer edge end surface 817 is a corner, that is, the end surface inner corner 819, and the other end of the inner folding rib 824 (Fig.
- the lower end is connected to the lower end piece 825 with a chamfer between them, called the lower end inner corner 826.
- the sidewall cut line 822 and the axis 827 should be on the same plane.
- the mold shown in Fig. 19 shows a basic structural feature of a metal sidewall louvered vent window stamping forming die of the present invention: the female die 828 is an upper die, and the forming of the inner folded rib is formed.
- the convex teeth 829 are on the inner wall of the concave mold 828, and all the forming convex teeth 829 and the concave mold 828 are shown as a one-piece structure, and can also be designed to be inlaid and fixed into an integral structure, and all the forming convex teeth 829 can not be fixed. Relative movement.
- the outer circumference of the punch 834 is provided with a forming groove 835 corresponding to the forming convex tooth 829.
- the forming groove 835 extends straight to the upper end of the punch 834 to form an opening, and the forming convex tooth 829 can be axially convex.
- the direction of the axis 827 of the central axis of the die 834, indicated by arrow 830) is inserted into the shaped groove 834.
- the convex tooth front end surface 831 of the forming convex tooth 829 is designed to be at an acute angle (oblique angle) with the axis 827.
- the design purpose is as follows: When the forming convex tooth 829 pushes the metal shell wall inward, it is smoother, as shown in FIG. The convex tooth front end surface 831 moves axially downward (arrow 838).
- the direction of the force of the convex tooth front end surface 831 acting on the metal shell wall 840 is arrow 839, resulting in inward
- the metal shell wall 840 is easily pushed inwardly to form the inner fold rib 824.
- the deformation of the inner rib 824 during the forming process has two bending deformations, which are then straightened, and the forming convex tooth 829 has a surface that is relatively slidably rubbed against the inner rib 824 (ie, For the sliding surface 833), the convex tooth front end surface 831 is also a sliding friction surface.
- the angle between the front end surface 831 of the convex tooth and the axis 827 is generally 20° -70°, preferably 40° -50°, and when the angle a between the outer end surface 817 and the axis is designed, it should be a ⁇ b , a should be less than 90 °, take between 30 ° -70 °.
- the convex tooth front end surface 831 has a convex tooth edge 832
- the convex mold 834 has a corresponding end surface cutting edge 837 and a side wall cutting edge 836, which means that the mold shown in Fig. 19 can be realized, a single
- the die station completes the cutting process of the end face cutting line 820 and the side wall cutting line 822 on the heat dissipation metal shell 1, and the step of the forming convex teeth 829 axially pushing the metal shell wall to form the inner folded ribs 824.
- the cutting process of the end cutting line 820 and the side wall cutting line 822, and the forming of the inner folding rib 824 The order can also be divided into two stations. As can be seen from Figure 19, the sidewall cutting edge 836 and the axis 827 should be in the same plane for axial advancement of the forming male teeth 829.
- the mold of the present invention is simple and easy to manufacture, and all the formed convex teeth can be combined with the concave mold as an integral part, (strength) is reliable, and the stamping process is adopted to design a multi-station continuous mold. With feeding material, it can realize efficient and automatic production and effectively reduce processing cost.
- a metal front shell 4 and a metal back shell 9 the metal side wall 2 and the metal back shell 9 are processed from the same metal sheet.
- the metal back shell 9 has a louvered window venting window 10.
- the metal side wall 2 has two sections of different diameters, each of which has a staggered structure of the venting window 3 and two outer end faces 817.
- the edge of the tooth opening 818 on the outer edge end face 817 is composed of two end face cutting lines 820 and one end face inner corner 819, and each end face cutting line 820 is connected with a side wall cutting line 822.
- the upper end of the inner folded rib 824 is an end inner corner 819, and the lower end is a lower inner inner corner 826.
- the metal back shell 9 and the metal side wall 2 of the present invention shown in Fig. 23 have a square cross section (may also be elliptical, polygonal, even triangular in cross section, etc.).
- the ventilation window 10 on the metal back shell 9 adopts a louver structure, and the slit line is an arc.
- the figure shows that the venting window 3 on the metal side wall 2 adopts a staggered structure, and only the lower half of the metal wall 2 is provided with a venting window 3, and the upper half is smaller in size than the lower half, and is formed with steps and outer portions.
- the edge end face 817 is located at the step, and the outer edge end face 17 should be part of the metal side wall 2.
- the light emitted from the LED bead has a very high luminous flux density and causes glare problems.
- the invention provides a technical solution with simple structure, high luminous efficiency of the lamp and effectively solving the glare problem: the solid-state light source is equipped with a reflector, and more than half of the light emitted from the solid-state light source is irradiated onto the reflective surface of the reflector, and then from the reflector. Reflects the light source engine. If the reflective surface of the reflector is large enough, the luminous flux density can be effectively reduced and the glare problem can be solved. There are three specific options:
- the solid-state light source 6 is a single lamp bead, and a light distribution lens 25 is disposed in the front. After the light emitted from the solid-state light source 6 passes through the light distribution lens 25, more than half of the light is irradiated to the reflector. 26, then reflected outside the light source engine (reflector 26), as shown by the dashed line 27 of the light.
- the reflector 26 in the figure is formed by drawing the metal front case 4 rearward.
- a wick reflector 29 is disposed in front of the solid-state light source 6, and the wick reflector 29 reflects more than half of the light from the solid-state light source 6 onto the reflector 26, and then toward the light source engine. (Reflector) External reflection, as indicated by the dashed line 27 of the light.
- the reflector 26 in the figure is formed by stretching the metal front case 4 rearward.
- the solid state light source 6 is provided with a wick cover 32 and a wick reflector 29, and the wick cover 32 is provided with a side wall facing the reflector 26, and the side wall adopts an astigmatism structure or a astigmatism material.
- the light that is incident on the side wall of the wick cover 32, whether directly from the solid-state light source 6 or reflected by the wick reflector 29, passes through the astigmatism structure or the astigmatism material on the sidewall of the wick cover, and diffuses and illuminates.
- the reflector 26 is again reflected off the reflector 26, as indicated by the dashed line 27 of the light.
- a wick cover 32 is disposed, and the light source bead 35 is provided with a concentrating cup 36, and the condensing cup 36 functions to reduce the irradiation range angle of the light source bead 35. , the light is concentrated forward, so that the size of the wick reflector 29 can be reduced, more light is reflected by the wick reflector 29 onto the reflector 26, which is beneficial to reduce the glare intensity; the wick cover 32 functions to protect the wick cover 32 solid-state light sources, wick reflectors 29 and other devices, such as to prevent damage from harmful gases such as dust and moisture.
- a finned rib 13 is disposed in the heat dissipating metal case, and the flange of the rib 13 is directly sleeved on the heat conducting core 18, and a louvered window 23 is opened on the side of the rib 13;
- the fastening connection between the front shell 4 and the metal side wall 2 adopts a snap-fit connection structure, as shown in part G of the figure, similar to FIG. 13, but the edge of the metal side wall encloses the edge of the metal front shell. Edge, and also has a light-transmitting lampshade 24.
- the outer peripheral circumference of the rib 13 in the heat dissipation metal case adopts a flanged structure, and the outer edge flange 28 is formed not only to improve the mechanical strength of the rib 13 but also the inner wall of the metal side wall 2.
- the mechanical strength of the metal sidewall 2 is enhanced by the contact. It is shown that the metal side wall 2 does not have a ventilation window at the contact with the outer edge flange 28, and the contact surface between the outer edge flange 28 and the metal side wall 2 can become a contact heat transfer surface. It is beneficial to improve the heat dissipation performance, and can achieve 10% heat dissipation improvement by computer simulation analysis.
- the rib 13 shown in the drawing is a sleeve structure, and the rim flange structure is also suitable for the laminated structure rib.
- the figure also shows that a panel 30 is provided, generally for decorative purposes, such as the panel on the downlight now, the fastening connection between the edge of the metal side wall 2 and the edge of the metal front shell 4 is made by pressing the peripheral attachment.
- the peripheral accessory is on panel 30, as shown in section H of the figure.
- the metal front shell 4 is stretched rearward to form a cavity, and the solid-state light source 6 equipped with the reflector 26 can be disposed in the cavity, so that the whole The light source engine is compact and tidy.
- the reflector 26 in the figure adopts a flanged structure, and constitutes a contact heat transfer surface between the reflector 26 and the heat conductive core 18.
- the reflector 26 is used for heat dissipation, and the reflector 26 should be made of a metal material, preferably an aluminum plate. production.
- the metal front shell 4 not only has a venting window 31, but also a venting window 401 on the stretching wall.
- the venting window 31 should be a louvered or staggered structure, and the slit line of the window should be radiated.
- FIG. 26 also shows that a flange hole 34 is formed in the metal plate wall of the metal back shell 9, and the flange hole 34 can be used for fixing the connection between the light source engine and the peripheral device, such as a screw hole.
- the flanged structure is used to increase the strength.
- the panel 30 is also shown as a front housing extension 402, and the side wall extension 201 extends to the back of the panel 30 to form a rear reinforcing panel 33 of the panel 30.
- the panel 30 can also be designed to be formed by the side wall extension 201;
- the part N in the figure shows the fastening connection between the edge of the metal front shell and the edge of the metal side wall, which should belong to the snap-fit connection structure;
- the part K in the figure shows that the annular reinforcing rib on the metal side wall 2 is adopted.
- a cross-section is a concave structure, which is convex outward or concave inward.
- a rear outer casing 39 is provided behind the metal rear casing 9, and the rear outer casing 39 is formed by stamping using a metal plate (preferably an aluminum plate); the outer edge of the rear outer casing 39 is stretched 38. It is made by stretching the metal sheet of the rear outer casing 39, and can also open the louver or staggered ventilation window on the outer edge stretching wall 38; the rear outer casing 39 has a louver structure (it can also be used wrongly)
- the venting window 40 of the column structure, the tangential line of the window should be in a radial shape; the middle of the rear casing adopts a forward stretching structure, and a louvered structure is formed on the stretching wall (a staggered type can also be used)
- the ventilation window 41 of the structure, the slit line of the window should follow the stretching direction; the rear outer casing 39 adopts the flange structure to realize the contact heat transfer with the heat conducting core 18, and the direct contact heat transfer can also be designed.
- the figure also shows that the fastening connection between the side wall extension 201 and the front shell extension 402 uses a peripheral attachment clamping connection structure, the outer reinforcement ring 37 in the figure is the peripheral attachment, the outer reinforcement ring 37 Not only does the clamping of the side wall extension 201 and the front shell extension 402 to achieve a fastening connection, but also to improve the structural strength, it is called an outer reinforcement ring.
- the solid-state light source is disposed on the heat-conducting core, the heat-conducting core adopts a cylindrical structure, and the middle portion of the heat-dissipating metal shell (metal front shell, metal back shell) adopts a sleeve or a flange structure, and the sleeve or the flange and the heat-conducting core are provided with Direct or indirect contact with the heat transfer surface, such structural advantages are: By using the interference fit between the heat conducting core and the sleeve or the flanged hole, it is easy to ensure that the contact heat transfer surface is in close contact, and the contact heat transfer heat can be effectively controlled. It is easy to manufacture, easy to implement, and easy to achieve mechanical automation assembly.
- the metal front case 4 and the metal rear case 9 have a flanged structure in the middle case, and the flange is directly fitted over the heat transfer core 18.
- the power supply lead or plug 21 of the solid-state light source 6 passes through the heat conducting core 18 and projects rearwardly, and has a compact structure.
- the effective ventilation area of the louver vent window in the present invention is defined as: Referring to FIG. 4, the effective effect of the single slit is effective.
- the venting area is equal to the width b of the slit 16 multiplied by the length of the split slit 16, and the sum of the effective venting areas of all the slits is the effective venting area of the entire louvered window.
- the effective ventilation area of the staggered vent window in the present invention is defined as: Referring to Fig. 3, when the width b of the slit 16 is less than or equal to the width c of the half sheet 15b, the single sheet 15b is effective.
- the ventilation area is equal to 2b times the length of the minute slit 16, and the sum of the effective ventilation areas formed by all the sheets 15b is the effective ventilation area of the entire staggered ventilation window; when the width b of the divided slit 16 is larger than the half of the sheet 15b In the case of the width c, if the width 15 of the leaf 15b is less than or equal to the width e of the leaf 15a, the effective ventilation area of the single sheet 15b is equal to the length of c times the length of the slit 16 and the sum of the effective ventilation areas of all the sheets 15b.
- the effective ventilation area of the entire staggered ventilation window if c is greater than e, the effective ventilation area of the single sheet 15a is equal to e times the length of the minute slit 16 calculated by the sheet 15a, and effective ventilation of all the sheets 15a The sum of the areas is the effective ventilation area of the entire staggered venting window.
- the maximum theoretical permeability of the staggered vent window is 0.5.
- the present invention proposes that the sidewall permeability should be 0.2, which is 40% of the maximum theoretical value, indicating that it has reached a sufficient size.
- the metal sidewall permeability of the present invention is defined as the effective ventilation area of the metal sidewall ventilation window divided by the area of the metal sidewall, and the effective ventilation area of the louvered and staggered ventilation window is calculated as above [0071] Definition of [0072] calculation; area calculation of metal side wall: When the metal side wall 2 is connected to the metal front case 4 and the metal rear case 5 by a circular arc, the cut is made when the angle between the tangent line and the axis is 40°. Point, as shown by point P and point Q in Fig. 28, the boundary point between the metal sidewall 2 and the metal back shell 9 and the metal front shell 4 is determined, and the outer surface area in h in Fig.
- the theoretical limit of the permeability of the louvered window is 1.0, but due to considerations such as heat conduction, wall thickness, strength and processing, the practically achievable permeability is very low, as shown in Figure 12
- the opening of the venting window 3 of the metal shell, the metal side wall 2 is very high, but the side wall permeability is also only 0.4.
- the difference in heat dissipation between the sidewall penetration rate of 0.2 and 0.4 can reach 50%, and the difference in heat dissipation performance between the sidewall permeability of less than 0.1 and 0.4 can be doubled.
- the heat dissipation performance of 0.2 is nearly double that of the sidewall penetration rate of 0 (no ventilation window).
- the present invention proposes that the sidewall permeability of not less than 0.2 is based on experimental and theoretical analysis.
- the sidewall permeability should be as small as 0.3, because from the processing point of view, the sidewall permeability of 0.3 is easy to achieve and the heat dissipation performance is also high.
- the ventilation window of the metal back shell, the rear shell, the sleeve type and the laminated ribs should also be large enough, and the permeability should be at least 0.2 to ensure the smooth flow of convective cooling air. When, the permeability should reach 0.3 or more.
- the permeability of the metal back shell of the present invention is defined as the effective venting area of all venting windows on the metal back shell divided by the projected area of the metal back shell in the axial direction.
- the effective ventilation area calculation for the louvered and staggered venting windows is calculated as defined in [0071] [0072] above.
- the calculation of the projected area of the metal back shell in the axial direction is as follows: Figure 28 is calculated by subtracting the area of the diameter d from the area of the diameter D; in Fig. 29, if the angle ⁇ is greater than 40°, the diameter d is subtracted from the area of the diameter D1.
- the efficiency of ribs is defined as: the amount of heat dissipated by the actual heat dissipation of the ribs divided by the assumption that there is no thermal resistance in the ribs (ie, the heat transfer coefficient of the fin material is infinite). According to the experimentally obtained parameters, the numerical simulation analysis of the computer is used to obtain the influence of the wall thickness on the rib efficiency when the heat-dissipating metal shell of the present invention is made of aluminum.
- the wall thickness is increased by 5.5%, the wall thickness is increased by 5.5%, the wall thickness is increased by 5.5%, the wall thickness is increased by 1.5%.
- the rib efficiency is 68%, the wall thickness is increased to 0.8mm, which is increased by 33%, but the rib efficiency is increased by 7%.
- the wall thickness is increased to 1. 0mm, which is increased by 67%, but the rib efficiency is increased by 13%. %; metal sidewall diameter is 100mm, wall thickness is 6.0mm, rib efficiency is 74%, wall thickness is increased by 33% by 0.8mm, but rib efficiency is increased by 5.5%, wall thickness Adding to 1. Omm, increasing by 67%, but the rib efficiency is increased by 9.5%; the metal sidewall diameter is 90mm, the wall thickness is 0.5mm, the rib efficiency is 76%, and the wall thickness is increased by 0.7% by 0.7mm.
- the rib efficiency increased by 6.5%, the wall thickness increased to 0.9mm, an increase of 80%, but the rib efficiency increased by 9%; the metal sidewall diameter was 80mm, and the wall thickness was 0.5mm, the rib efficiency was 78%.
- the rib efficiency is 77%, the wall thickness is increased by 50% by 0.6mm, but the rib efficiency is increased by 7%, the wall thickness is increased to 0.7mm, which is increased by 75%, but the rib efficiency is increased by 10%.
- metal sidewall diameter is 60mm
- wall thickness is 0.4mm
- rib efficiency is 80%
- wall thickness is increased by 25% by 0.5mm
- rib efficiency is increased by 3.5%
- wall thickness is added to 0.6mm, increase 50%, but the rib efficiency increased by 6.5%;
- the thickness of the heat sink metal shell is selected as follows:
- D represents the diameter of the metal side wall, and ⁇ represents the wall thickness of the heat dissipating metal case.
- 180mm ⁇ D > 150mm take ⁇ ⁇ 1.5mm, preferably ⁇ ⁇ 1.25mm; when 150mm ⁇ D > 130mm, take ⁇ ⁇ 1.3mm, preferably ⁇ ⁇ 1.1mm; when 130mm ⁇ D > 115mm
- S ⁇ 1.15mm it is best to take ⁇ ⁇ 0.95mm; when 115mm ⁇ D > 100mm, take ⁇ ⁇ 1.0mm, preferably ⁇ ⁇ 0.85mm;
- 90mm take ⁇ ⁇ 0.95mm ⁇ ⁇ 0.8mm;
- 90mm ⁇ D > 80mm take ⁇ ⁇ 0.9mm, preferably ⁇ ⁇ 0.75mm; when 80mm ⁇ D > 70mm, take ⁇ ⁇ 0.85mm, preferably ⁇ ⁇ 0.7mm; when 70mm ⁇ D > 60mm, take ⁇ ⁇ 0.8mm, preferably
- Figures 1, 2, 5 to 8, and 24 to 27 are schematic views, and the wall thickness of the heat dissipating metal case and the rib thickness of the rib 13 should not be actual thicknesses.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optics & Photonics (AREA)
- Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
Abstract
一种固态光散热金属壳(1)和光源引擎,利用壳体作为散热片,采用金属板材加工,优化散热金属壳壁厚,金属侧壁(2)从金属后壳(9)或和金属前壳(4)的金属板材拉伸而成,并开有百叶窗式或错列式结构的通气窗口(3),保证自然对流空气流动畅通;配有反光罩(26),从固态光源(6)发出的光大部分是从反光罩(26)反射出,解决眩光问题。还提出散热金属壳(1)的制造方法和模具。
Description
固态光源散热金属壳和光源引擎及其制造方法和模具 技术领域
[ 0001 ] 本发明属于固态光源散热及照明技术领域, 特别涉及到采用自然对流散热, 利用 外壳结构件作为散热片的固态光源散热器和光源引擎。
技术背景
[ 0002 ] LED (固态光源) 由于节能环保, 被认为是人类下一代照明用光源, 但阻碍 LED 照明灯普及的关键障碍是: 造价太高。 LED照明灯的成本可分成三部分: LED光源、 电源 和结构件, 结构件包括有散热器, 并且结构件的成本主要来自散热器。 随着 LED光源价格 步步下降, 结构件的成本将是 LED照明灯的主要成本, 因而降低结构件 (散热器) 成本将 成为实现 LED普及的重点。。
[ 0003 ] 造成当前的 LED照明灯结构件成本高的原因是: 结构设计和散热技术问题,关键 的问题是缺乏正确的 《传热学》 原理和传热技术, 突出表现在: 1、 不清楚提高对流散热是 关键; 2、不了解对流散热的基本原理是: 散热片表面将热量传给附近的空气(将空气加热), 空气携带着热量(表现为空气温度升高)流动离开散热片, 空气流经散热片的量流越大, 带 走的热量也越大, 因而保证空气流经散热片时, 流动畅通是对流散热的基本要求。
[ 0004 ] 自然对流散热是 LED照明灯最佳选择。但本领域的技术人员普遍不知道:驱动空 气自然对流流动的动力是: 空气受热升温, 比重下降而产生的浮力, 浮力是垂直向上的, 并 且非常弱,因而保证空气流动畅通,特别是自下而上的对流畅通,在自然对流散热中最关键。
[ 0005 ] 当前 LED照明灯具有利用壳体结构件作为散热片,但由于上述问题,产品设计时, 没有注意或特别注意保证空气流动畅通问题, 比如: 在壳罩上没有开对流通气窗口, 既使开 有对流通气窗口, 但开口不够充分; 没有考虑到灯具的轴线安装角度不同时, 会影响自然对 流向上流动畅通的问题。 因而灯具的散热性能差, 灯具壳体的表面没有充分利用为散热面, 需另外多增加散热片, 导致灯具的结构材料的成本不低。
发明内容
[ 0006 ] 本发明是以降低结构件的成本、 提高散热性能为目的, 提出一种固态光源 (LED 照明灯) 的散热器。 充分利用灯具结构 (壳体)作为散热片, 节省了材料成本; 利用冲压工 艺制造壳体, 降低了加工成本; 结构设计上充分考虑到保证自然对流空气流动畅通, 不仅显 著提高了散热性能, 灯具结构件的成本还得到显著下降。本发明还提出了降低眩光的光源引 擎, 结合本发明的散热金属壳, 设计出的 LED灯不仅眩光得到有效降低, 整体成本也低。
[ 0007 ] 本发明的固态光源散热金属壳技术方案是: 散热金属壳包括有金属侧壁和金属前 壳、 或金属侧壁和金属后壳、 或金属侧壁和金属前壳以及金属后壳, 散热金属壳设置有与固 态光源的导热板或导热芯直接或间接接触的接触传热面,部分或全部由固态光源产生的热量 通过该接触传热面传到散热金属壳的表面散出。本发明的特征有: 散热金属壳采用金属板材 经有冲压加工制成, 金属侧壁是从金属后壳、 或金属前壳、 或金属后壳与金属前壳的金属板 材拉伸而成的; 金属侧壁上开有百页窗式结构或错列式结构的通气窗口, 该窗口的切口线采 用了顺着金属侧壁的拉伸方向的结构, 金属侧壁的通透率不小于 0.20; 金属后壳的中部设置 有直接或间接与固态光源的导热板或导热芯接触的接触传热面;金属前壳设置有直接或间接
与固态光源的导热板或导热芯接触的接触传热面。 固态光源一般配有导热板或导热芯。
[ 0008 ] 本发明所述的接触传热面是指特意为确保导热传热的接触面, 因而该接触面要足 够大, 接触要紧密, 比如采用压紧、 过盈紧配合、 加入导热胶或焊接等措施。
[ 0009 ] 本发明提出的散热器中, 固态光源产生的热量通过直接或间接的接触传热, 传到 整个散热金属壳, 结构件的壳体直接被利用为散热片, 结构件的材料得充分利用, 降低了材 料成本。 散热金属壳采用金属板材(最好是铝材)采用冲压加工工艺制成, 原料为带材, 采 用多工位连续模具, 一个冲程就可以生产出一个完整的部件, 效率非常之高, 加工成本远低 于热压铸, 铝挤出等工艺。 采用冲压加工工艺, 散热金属壳的壁厚可降到 0.3mm 以下, 而 热压铸工艺的壁厚要 2mm之多, 铝挤出工艺的壁厚小于 0.5mm就困难了, 因而本发明特别 提出的采用冲压工艺, 材料成本又进一步降低。 金属侧壁从金属后壳的金属板拉伸而成的, 即金属侧壁与金属后壳一体结构,制造效率高,成本低,又能保证热量顺利传导到金属侧壁。
[ 0010 ] 在金属侧壁上开通气窗口, 并通气窗口的通透率要足够大, 尽可能使自然对流空 气流动畅通, 本发明提出的足够大的侧壁通透率为不小于 0.2, 侧壁通透率定义为金属侧壁 上的通气窗口的有效通风面积除以侧壁的面积, 本发明以后将有详细的定义。金属侧壁开有 足够大的通气窗口, 保证当灯具水平横置时, 即金属侧壁呈水平走向, 自然对流向上流动的 空气能横穿过散热金属壳, 这有利于对流散热。
[ 0011 ] 通气窗口采用百叶窗式或错列式结构, 可实现通气窗口加工无废料, 材料利用率 高, 侧壁的散热面积也就高; 通气窗口的切口线的走向应顺着金属侧壁的拉伸方向, 与散热 金属壳轴线相同, 是为了使热量在金属侧壁内的导热距离尽可能短, 有利于降低金属侧壁内 的导热热阻。
[ 0012 ] 本发明还提出了一种散热金属壳的制造方法, 主要特征是: 金属侧壁上的百页窗 式或错列式结构通气窗口的成形方法为, 成形凸齿轴向运动, 推挤金属壳壁向内变形(有弯 曲变形, 有拉直变形等), 构成内折肋片, 形成通气口 (百页窗或错列式结构)。
[ 0013 ] 实现以上方法的模具的基本特征有: 金属侧壁上的百页窗式或错列式结构通气窗 口的成形模具包括有凹模和凸模,凹模内有成形凸齿,所有的成形凸齿与凹模固定为整体(即 成形凸齿与凹模主体固定或为一整体件, 不可相对运动), 凸模上有与成形凸齿对应的成形 沟槽, 成形沟槽一直延伸到凸模上端, 形成开口, 成形凸齿可轴向插入成形沟槽。 凸模上有 端面裁切线的端面刃口, 凸模的侧壁上有侧裁切线的侧壁刃口, 端面刃口与侧壁刃口相连。
[ 0014 ] 利用上述的散热金属壳, 本发明提出了一种固态光源引擎, 包括有散热金属壳和 导热芯, 以及固态光源, 金属前后壳与导热芯的之间的直接和间接的接触传热面采用了拉伸 成的套筒或翻边结构。
附图说明
[ 0015 ] 以下结合附图以及具体实施方案对本发明进一步说明:
[ 0016 ] 图 1、 图 2、 图 5分别是三种本发明固态光源引擎的特征剖面示意图, 示出了本发 明光源散热金属壳的基板结构特征: 金属侧壁 2是从金属前壳 4、 或金属后壳 9、 或金属前 壳 4以及金属后壳 9的金属板材拉伸而成的, 并开有通气窗口 3。
[ 0017 ] 图 3是一种错列式结构通气窗口的特征剖面示意图, 其中 b是为分切口 16的宽, c为页片 15b的宽, e为页片 15a的宽。
[ 0018 ] 图 4是一种百页窗式结构通气窗口的特征剖面的示意图, f为两分切口的间距, b
为分切口 16的宽。
[ 0019 ] 图 6、 图 7、 图 8分别是三种本发明固态光源引擎的特征剖面示意图。
[ 0020 ] 图 9、 图 10、 图 11分别为三种呈辐射形结构的分切口的特征示意图。如果切口线
22不在同一平面上, 则图 9〜11应理解为投影或俯视示意图。
[ 0021 ] 图 12是一种本发明散热金属壳的立体剖视爆炸图。
[ 0022 ] 图 13是一种本发明散热金属壳立体剖视图。
[ 0023 ] 图 14是一种本发明固态光源引擎立体剖视图。
[ 0024 ] 图 15是一种错列式结构通气窗口的通常加工方法的模具特征剖面示意图。
[ 0025 ] 图 16是一种百页窗式结构通气窗口的通常加工方法的模具特征剖面示意图。
[ 0026 ] 图 17是一种本发明散热金属壳立体视图,示出了金属侧壁上的一种本发明的百页 窗式通气窗口的结构特征。
[ 0027 ] 图 18是图 17中 S局部的局部放大视图。
[ 0028 ] 图 19是一种本发明的金属侧壁上开百页窗式通气窗口的模具特征结构示意图。
[ 0029 ] 图 20是表示一种本发明侧壁上的内折肋片成形过程特征示意图。
[ 0030 ] 图 21—种本发明散热金属壳立体视图。
[ 0031 ] 图 22是图 21中 T局部的局部放大视图。
[ 0032 ] 图 23是一种本发明散热金属后壳立体视图。
[ 0033 ] 图 24至 27分别是四种本发明固态光源引擎特征剖面示意图, 该四种光源引擎采 用了降低眩光的技术方案。
[ 0034 ] 图 28、 图 29是用于确定散热金属壳的侧壁和金属后壳以及金属前壳分界点的示
[ 0035 ] 图中: 101-上模, 102-下模, 103-凸齿, 104-金属板, 105-箭头。 1-散热金属壳, 2-金属侧壁, 201-侧壁延伸段, 3-通气窗口, 4-金属前壳, 401-通气窗口, 402-前壳延伸段, 5-通气窗口, 6-固态光源, 7-导热板, 8-散热片, 9-金属后壳, 901-通气窗口, 10-通气窗口, 11-光源罩, 12-导热柱, 13-肋片, 14-套筒, 15a、 15b、 15-页片, 16-分切口, 17-气流线, 18-导热芯, 19a、 19b、 19c-翻片, 20-切口线, 21-电源引线或接插头, 22-内加强环, 23-通 气窗口, 24-透光灯罩, 25-配光透镜, 26-反光罩, 27-表示光线的虚线, 28-外缘翻边, 29- 灯芯反光器, 30-面板, 31-通气窗口, 32-灯芯罩, 33-后加强板, 34-翻边孔, 35-光源灯珠, 36-聚光杯, 37-外加强环, 38-外缘拉伸壁, 39-后外壳, 40-通气窗口, 41-通气窗口。
817-外缘端面, 818-齿口, 819-端面内折角, 820-端面裁切线, 821-内折裁切线, 822-侧壁裁 切线, 823-通气口, 824-内折肋片, 825-下端连片, 826-下端内折角, 827-轴线, 828-凹模, 829-成形凸齿, 830-箭头, 831-凸齿前端面, 832-凸齿刃口, 833-滑擦面, 834-凸模, 835-成 形沟槽, 836-侧壁刃口, 837-端面刃口, 838-箭头, 839-箭头, 840-金属壳壁。
具体实施方式
[ 0036 ] 图 1所示的本发明固态光源引擎, 散热金属壳 1的金属侧壁 2是和金属前壳 4为 一体结构, 即为同一金属板制造, 散热金属壳 1内设置有散热片 8, 图中没有金属后壳, 金 属侧壁 2开有错列式结构的通气窗口 3,金属前壳 4上所开的通气窗口 5采用百叶窗式结构,
固态光源 6设置在导热板 7上, 导热板 7直接紧贴在金属前壳 4中部, 金属前壳 4中部与导 热板 7之间的接触面就是接触传热面, 此处为直接接触传热面。 固态光源 6产生的热量通过 导热板 7传到金属前壳 4, 部分热量由散热金属壳 1表面散出, 部分由散热片 8散出。
[ 0037 ] 图 2所示的本发明固态光源引擎中,散热金属壳 1只有金属侧壁 2和金属后壳 9, 金属侧壁 2和金属后壳 9为同一金属板制造,金属后壳 9中部设置有与导热板 7直接接触的 接触传热面, 固态光源 6产生的全部热量传到金属后壳 9和金属侧壁 2表面散出。金属后壳 9上开有错列式结构通气窗口 10, 金属侧壁 2开有百叶窗式结构通气窗口 3。 固态光源 6设 置在散热金属壳内, 并配有光源罩 11。 当固态光源 6垂直向下照射时, 即光源引擎竖立设 置, 自然对流散热空气从金属侧壁 2的通气窗口 3进入壳内, 再从通气窗口 10排出, 散热 空气对流畅通, 并能有效流经整个散热金属壳的内外表面, 有利于散热性能提高。 当光源引 擎水平横置时, 自然对流散热空气也能贯穿散热金属壳, 整个散热金属壳的内外表面被充分 利用于散热。
[ 0038 ] 图 3示出了错列式结构通气窗口的特征结构, 长为 L的连续的金属板面被分切冲 压成一段段的页片 15a和页片 15b, 页片 15a页片 15b错列排列, 被冲切出的页片 15b的两 端还应与原金属板相连, 不得被切断, 图中的气流线 17示出空气通过分切口 16从一面横穿 到另一面。
[ 0039 ] 图 4示出了百叶窗式结构通气窗口的特征结构, 长为 L的连续金属板被冲切成间 距为 f 的 5段页片 15, 页片 15的两端还应与原金属板相连, 不得被切断, 气流线 17表示 出空气通过分切口 16从一面贯穿到另一面。
[ 0040 ] 图 5所示的本发明固态光源引擎, 散热金属壳包括有金属前壳 4和金属后壳 9, 金属侧壁 2为两段, 分别是从金属前壳 4以及金属后壳 9的金属板材拉伸而成的, 金属前壳 4和金属后壳 9以及金属侧壁 2上所开的通气窗口采用百页窗式结构。 散热金属壳内设置有 肋片 13从导热柱 12柱面伸出的太阳花式散热片, 导热柱 12两端分别与金属前壳 4和金属 后壳 9的中部紧贴, 此接触面为接触传热面, 固态光源 6产生的热量经导热板 7与金属前壳 4的接触传热面传到金属前壳 4, 有部分热量再传到导热柱 12, 再有部分热量传到金属后壳 9。
[ 0041 ] 图 6所示的本发明固态光源引擎中,金属侧壁 2由金属后壳 9的金属板材拉伸而成; 金属后壳 9中部向前(本发明定义固态光源照射的方向为前方, 反之为后方)拉伸, 并在拉 伸壁上开有百叶窗式结构的通气窗口 901, 也可采用错列式结构通气窗口; 金属前壳 4采用 向后拉伸结构, 可构成固态光源 6的光源罩, 不仅有散热作用, 还具有保护固态光源 6以及 配光等作用。 图中还示出散热金属壳 1内设有散热肋片 13。
[ 0042 ] 图 7所示的本发明固态光源引擎中, 金属后壳 9采用了向前拉伸结构, 并拉伸壁 上开有通气窗口 901, 金属前壳 4向后拉伸壁上也开有通气窗口 401, 图中的通气窗口 901 和 401为百页窗式结构, 也可采用错列式结构。拉伸壁上的通气窗口 401和通气窗口 901的 切口线应采用顺着拉伸壁的拉伸方向 (也是散热金属壳的轴线方向)结构, 目的是为了导热 顺利。散热金属壳的四周壳 1壁都开有通气窗口,散热金属壳无论水平横置,还是上下竖立, 自然对流向上流动的空气都能顺利地穿过散热金属壳, 这有利于对流散热。 当散热金属壳的 侧壁上开有通气窗口, 金属前壳也开有通气窗口时、侧壁通气窗口的有效通气面积与金属前 壳通气窗口的有效通气面积之和与后壳理想通气面积之比应不小于 0.2,以保证上下竖立时, 对流畅通。
[ 0043 ] 图 7所示的本发明固态光源引擎中, 固态光源 6设置在导热芯 18的前端面上,金 属前壳 4和金属后壳 9中部采用了翻边结构, 金属前壳 4的翻边 19b和金属后壳 9的翻边 19a套在导热芯 18的柱面上, 翻边 19a、 19b与导热芯 18之间的接触面就是接触传热面。在 散热金属壳 1设置有散热片, 该散热片采用的是套片结构, 所谓套片结构就是肋片的肋根采 用翻边结构, 如图中所示, 肋片 13的翻边 19c套在金属前壳的翻边 19b上, 传入肋片 13的 热量就是从该翻边 19c传入的。
[ 0044 ] 图 8所示的本发明固态光源引擎中, 金属后壳 9的中部采用套筒结构, 套筒 14 是金属后壳 9的金属板材拉伸而成的, 并且插入导热芯 18内, 套筒 14与导热芯 18之间的 接触面就是接触传热面。 金属前壳也可采用套筒结构实现与导热芯之间的接触传热。
[ 0045 ] 套筒结构和翻边结构的相同的特征是: 接触传热面是拉伸成形的圆柱面, 而区别 在于: 套筒结构可以是盲孔, 如图 8所示套筒 14, 而翻边结构必须是开口。
[ 0046 ] 为了提高散热金属壳的结构强度, 金属侧壁的边缘或侧壁延伸段分别与金属前壳 的边缘或前壳延伸段之间应采用紧固连接结构, 该紧固连接可采用焊接、 或粘贴、 或咬扣连 接、或过盈紧配连接、或外设附件压紧或夹紧连接,该紧固连接不仅起着提高结构强度作用, 还应有热传导作用, 使热量能有效地从金属前壳传导到金属侧壁上, 提高散热作用, 因而接 触面积要足够大。 图 6中示出, 金属侧壁 2的边缘与金属前壳 4的边缘之间的紧固连接采用 过盈紧配的结构, 如图中局部 A所示。 所谓过盈紧配连接就金属前壳 4的边缘外径稍大于 金属侧壁 2的边缘内径, 强行将金属侧壁 2套在金属前壳 4上。 图 7和图 8所示的金属侧壁 2与金属前壳 4的边缘之间的紧固连接采用咬扣连接结构, 如图 7中局部 B和图 8中局部 C 所示, 图 8中的结构还可增加过盈紧配结构。
[ 0047 ] 对于图 6和图 7所示的光源引擎, 当轴线竖立时(如图所示), 向上流动的自然对 流空气就不能贯穿内部的散热片, 不能有效流经整个肋片表面, 散热性能将严重恶化, 因而 在套片式和叠片式散热片中的肋片上也应开有错列式或百页窗式结构的通气窗口。
[ 0048 ] 为了有利于开有百页窗式或错列式结构通气窗口的金属前壳、 金属后壳、 套片式 和叠片式肋片内的导热传热,构成百叶窗式和错列式结构通气窗口的切口线应采用呈辐射形 状的结构, 图 9、 10、 11分别示出了三种呈辐射形状的切口线 20, 图 9中的切口线 20为弧 线, 图 10和图 10中的切口线 20为直线。
[ 0049 ] 图 12所示的本发明散热金属壳, 包括有金属前壳 4和金属后壳 9, 金属侧壁 2为 金属后壳 9的金属材料拉伸而成, 金属后壳 9采用了向前拉伸结构, 并在拉伸壁上开有百页 窗式结构的通气窗口 901 ; 金属前壳 4采用了向后拉伸结构, 并在拉伸壁上开有百页窗式前 通气窗口 401。 图中示出: 金属前壳 4和金属后壳 9中部的拉伸壁上的通气窗口的切口线顺 着拉伸壁的拉伸方向, 与散热金属壳的轴线方向相同; 金属侧壁 2上的通气窗口 3的切口线 顺着金属侧壁的拉伸方向, 与散热金属壳的轴线方向相同, 通气窗口 3采用百页窗结构。
[ 0050 ] 图 13所示的本发明散热金属壳中,金属前壳 4和金属后壳 9中部采用了翻边结构, 翻边 19a和 19b; 金属前壳 4的前壳延伸段 402与金属侧壁 2的侧壁延伸段 201之间采用了 过盈紧配连接和咬扣连接结构,如图中局部 D所示,侧壁延伸段 201的外缘加工成截面为 C 或 U形结构, 前壳延伸段 402的外缘包裹着侧壁延伸段 201的外缘。
[ 0051 ] 图 14所示的本发明固态光源引擎中, 侧壁延伸段 201的外缘加工成截面为 C形, 并设置有内加强环 22 (提高结构强度), 如图中局部 F所示, 由于金属前后壳首选薄铝板加 工, 强度低, 因而应选用这样的强化结构强度的结构。
[ 0052 ] 图 13和 14中, 有一共同的特征, 金属侧壁 9的前段的尺寸 (直径) 大于后段, 在前段和后段过度处, 构成有截面为弯折的连续的环形台阶结构, 如图局部 E所示, 这样的 结构有提高金属侧壁的结构强度作用, 因而称为截面为弯折的环形加强筋结构。
[ 0053 ] 图 15、 图 16是通常的百页窗式和错列式结构的加工成形方法示意图, 有上模 101 和下模 102, 上模 101上有凸齿 103, 凸齿 103相对于金属板 104的运动为垂直 (或接近垂 直), 如箭头 105所示。 由灯具壳体侧壁一般为桶形, 如果采用以上方法用于侧壁上开通气 窗口 (如图 13、 14所示的金属侧壁 2上的通气窗口), 生产效率低。 如果要实现采用冲压工 艺一次成形, 凸齿 103的运动方向与冲床机头运动方向 (也是壳体的轴线方向)不一致, 而 且还应是垂直, 每个凸齿 103必须分别相对运动, 不能是如图 15、 16所示的一个整体部件, 这样的模具结构非常复杂, 有可能无法制造出实用可靠的模具。 为解决该问题, 本发明提出 以下方案。
[ 0054 ] 图 17所示本发明散热金属壳 1中, 金属侧壁 2上的通气窗口 3为百页窗式结构。 在金属侧壁 2与金属前壳 4交界处有外援端面 817, 外缘端面 817属于金属前壳 4部分, 为 锥面, 即与散热金属壳 1的轴线 827的夹角为锐角。 外缘端面 817上有齿口 818 (由成形凸 齿轴向冲压, 加工百页窗式结构形成的), 从图 18可更清楚看出, 齿口 818的边缘由端面裁 切线 820和端面折角 819组成, 端面裁切线 820与侧壁裁切线 822相连, 内折肋片 824是原 (还未加工有通气口之前)金属壳壁被成形凸齿向内 (壳内)推挤形成的, 使得内折裁切线 821与侧壁裁切线 822分离, 构成通气口 823, 内折肋片 824与外缘端面 817的交界处为折 角, 即端面内折角 819, 内折肋片 824的另一端 (图中下端) 连着的是下端连片 825, 之间 为折角, 称为下端内折角 826。 从图 17可以看出, 侧壁裁切线 822与轴线 827应在同一平 面上。
[ 0055 ] 图 19所示的模具示出了一种本发明的金属侧壁百页窗式通气窗口冲压成形模具 的基本结构特征:凹模 828为上模,推挤内折肋片成形的成形凸齿 829在凹模 828内腔壁上, 图中示出所有的成形凸齿 829与凹模 828为一个整体式结构,也可设计成镶嵌固定成一体结 构, 所有的成形凸齿 829固定不能相对移动。 凸模 834的外周圈上开有与成形凸齿 829相对 应的成形沟槽 835, 成形沟槽 835—直延伸到凸模 834的上端, 形成开口, 成形凸齿 829可 轴向 (图中凸模 834的中心轴的轴线 827的方向, 箭头 830所示) 插入成形沟槽 834。 成形 凸齿 829的凸齿前端面 831设计成与轴线 827成锐角 (斜角), 这样的设计目的有: 成形凸 齿 829向内推挤金属壳壁时, 更顺利, 如图 20所示, 凸齿前端面 831轴向向下 (箭头 838 ) 运动, 由于有斜角 b (b〈90° ), 凸齿前端面 831作用在金属壳壁 840上的力的方向为箭头 839, 产生向内变形的力, 金属壳壁 840就容易被向内推挤构成内折肋片 824。 从图 20中可 以看出, 内折肋片 824成形过程中的变形有两次弯曲变形, 再被拉直, 在成形凸齿 829上有 与内折肋片 824相对滑动摩擦的面 (即称为滑擦面 833), 凸齿前端面 831也是一个滑动摩 擦面。 凸齿前端面 831与轴线 827的夹角选取范围一般为 20° -70° , 最好选取 40° -50° 之间, 同时设计外缘端面 817与轴线的夹角 a时, 应 a ^ b, a应小于 90° , 取 30° -70° 之 间。
[ 0056 ] 图 19中示出凸齿前端面 831有凸齿刃口 832, 凸模 834上有对应的端面刃口 837 和侧壁刃口 836, 这说明图 19所示的模具可以实现, 单个模具工位完成了散热金属壳 1上 的端面裁切线 820与侧壁裁切线 822的裁切工序,和成形凸齿 829轴向推挤金属壳壁形成内 折肋片 824的工序。端面裁切线 820和侧壁裁切线 822的裁切工序, 与内折肋片 824成形工
序也可以分成两工位完成。 从图 19可以看出, 侧壁刃口 836与轴线 827应在同一平面上, 才可实现成形凸齿 829轴向推进。
[ 0057 ] 从以上模具特征结构来分析, 本发明的模具简单易制造, 所有的成形凸齿可与凹 模合为一整体部件, (强度) 可靠, 采用冲压工艺, 设计成多工位连续模, 带料送料, 可实 现高效的自动化生产, 有效降低加工成本。
[ 0058 ] 图 21所示的本发明散热金属 1中, 有金属前壳 4和金属后壳 9, 金属侧壁 2与金 属后壳 9为同一金属板加工而成。金属后壳 9上开有百页窗式结构通气窗口 10。金属侧壁 2 分有直径不一样的两段, 两段上都有错列式结构的通气窗口 3, 并且有两个外缘端面 817。 如图 22所示, 外缘端面 817上的齿口 818的边缘由两个端面裁切线 820和一个端面内折角 819组成, 每个端面裁切线 820对应连有侧壁裁切线 822。 内折肋片 824上端是端面内折角 819, 下端是下端内折角 826。
[ 0059 ] 图 23所示的本发明金属后壳 9与金属侧壁 2, 为方形截面(还可以是椭圆、 多边 形、 甚至三角形截面等)。 金属后壳 9上的通气窗口 10采用百页窗结构, 切口线为弧线。 图 中示出: 金属侧壁 2上的通气窗口 3采用错列式结构, 并且只有金属壁 2的下半段开有通气 窗口 3, 上半段的尺寸小于下半段, 构成有台阶、 外缘端面 817就位于该台阶处, 此时外缘 端面 17应属金属侧壁 2 的部分。
[ 0060 ] 从 LED灯珠发出的光, 光通量密度非常高, 产生有眩光问题。本发明提出了结构 简单, 灯具光效高, 能有效解决眩光问题的技术方案: 固态光源配有反光罩, 从固态光源发 出的光有一半以上照射到反光罩的反光面上, 再从反光罩反射出光源引擎。反光罩的反光面 要足够大, 则光通量密度就能有效降低, 眩光问题也就得到解决。 具体有三种方案:
[ 0061 ] 方案一、 如图 24所示, 固态光源 6是单颗灯珠, 前方设置有配光透镜 25, 从固 态光源 6射出的光经配光透镜 25后, 有一半以上照射到反光罩 26上, 再朝光源引擎(反光 罩 26) 外反射, 如图中表示光线的虚线 27所示。 图中的反光罩 26是由金属前壳 4向后拉 伸构成。
[ 0062 ] 方案二、 如图 25所示, 在固态光源 6前方设置有灯芯反光器 29, 该灯芯反光器 29将一半以上来自固态光源 6发出的光反射到反光罩 26上, 再朝光源引擎 (反光罩) 外反 射, 如图中表示光线的虚线 27所示。 图中的反光罩 26是由金属前壳 4向后拉伸构成。
[ 0063 ] 方案三、 如图 26所示, 固态光源 6前设置有灯芯罩 32和灯芯反光器 29, 灯芯罩 32设置有面向反光罩 26的侧壁, 该侧壁采用了散光结构或散光材料, 照射到灯芯罩 32的 侧壁上的光, 无论是直接来自固态光源 6, 还是经灯芯反光器 29反射来的, 经过灯芯罩侧 壁上的散光结构或散光材料后, 产生漫散射, 照射到反光罩 26上, 再反射出反光罩 26, 如 图中表示光线的虚线 27所示。
[ 0064 ] 图 27所示的本发明固态光源引擎中, 设置有灯芯罩 32, 以及光源灯珠 35配有聚 光杯 36, 聚光杯 36的作用是减小光源灯珠 35的照射范围角, 使光线集中向前, 这样就可 以减小灯芯反光器 29的尺寸, 更多的光被灯芯反光器 29反射到反光罩 26上, 有利于降低 眩光强度; 灯芯罩 32的作用有保护灯芯罩 32内的固态光源, 灯芯反光器 29等器件, 比如 防止尘埃, 湿气等有害气体的损伤。
[ 0065 ] 图 24中,散热金属壳内设置有套片式肋片 13,肋片 13的翻边直接套在导热芯 18 上, 肋片 13边上开有百页窗式通气窗口 23 ; 金属前壳 4与金属侧壁 2之间的紧固连接采用 咬扣连接结构, 如图中局部 G所示, 与图 13类似, 但是金属侧壁边缘包裹着金属前壳的边
缘, 并且还设有透光灯罩 24.
[ 0066 ] 图 25中, 散热金属壳内的肋片 13的外缘周圈采用了翻边结构, 构成的外缘翻边 28不仅提高了肋片 13的机械强度, 与金属侧壁 2的内壁相接触, 又加强了金属侧壁 2的机 械强度。 图中示出, 金属侧壁 2上与外缘翻边 28相接触处没有开设通气窗口, 外缘翻边 28 与金属侧壁 2之间接触面就可成为接触传热面, 这样的结构, 有利于提高散热性能, 经计算 机模拟分析可得能够有 10%之多的散热提高。 图中所示的肋片 13为套片结构, 外缘翻边结 构同样适用于叠片结构肋片。 图中还示出设置有面板 30, 一般为装饰作用, 如现在筒灯上 的面板,金属侧壁 2的边缘与金属前壳 4的边缘之间的紧固连接采用外设附件压紧连接结构, 外设附件就在面板 30上, 如图中局部 H所示。
[ 0067 ] 图 26所示的本发明固态光源引擎中, 金属前壳 4向后拉伸, 构成以凹腔, 配有反 光罩 26的固态光源 6就可设置在该凹腔中, 可使整个光源引擎紧凑整洁。 图中的反光罩 26 采用了翻边结构, 构成有反光罩 26与导热芯 18之间的接触传热面, 反光罩 26又被利用于 散热, 反光罩 26应采用金属材料, 最好采用铝板制成。 金属前壳 4不仅开有通气窗口 31, 拉伸壁上也开有通气窗口 401, 通气窗口 31应采用百页窗式或错列式结构, 窗口的切口线 应呈辐射形状。
[ 0068 ] 图 26还示出: 在金属后壳 9金属板壁上加工有翻边孔 34, 该翻边孔 34可以用来 承担光源引擎与外设装置的连接固定用的孔, 比如螺孔, 采用翻边结构是为提高强度。 图中 还示出: 面板 30为前壳延伸段 402构成, 侧壁延伸段 201延伸至面板 30背后, 构成面板 30的后加强板 33, 面板 30也可设计成由侧壁延伸段 201构成; 图中局部 N示出了金属前 壳的边缘与金属侧壁的边缘之间的紧固连接结构, 应属于咬扣连接结构; 图中局部 K示出, 金属侧壁 2上的环形加强筋采用了一种截面为凹形结构, 图中是向外凸, 也可反向向内凹。
[ 0069 ] 图 27中, 在金属后壳 9的后面设置有后外壳 39, 后外壳 39应采用金属板材(最 好选用铝板) 经有冲压加工制成; 后外壳 39的外缘拉伸壁 38是从后外壳 39的金属板材拉 伸制成的, 还可以在外缘拉伸壁 38开百页窗式或错列式通气窗口; 后外壳 39上开有百页窗 式结构 (也可采用错列式结构) 的通气窗口 40, 该窗口的切线应呈辐射形状; 后外壳中部 采用了向前拉伸结构, 并在该拉伸壁上开有百页窗式结构(也可采用错列式结构) 的通气窗 口 41, 该窗口的切口线应顺着拉伸方向; 后外壳 39采用翻边结构实现与导热芯 18之间的 接触传热, 图中为直接接触传热, 也可设计成间接接触传热。 增设后外壳 39的目的就是增 加散热面积。 为保证空气对流畅通, 通气窗 40和 41的通透率应足够大。 图中还示出, 侧壁 延伸段 201和前壳延伸段 402之间的紧固连接采用了外设附件夹紧连接结构,图中的外加强 环 37就是该外设附件,外加强环 37不仅起到将侧壁延伸段 201和前壳延伸段 402夹紧实现 紧固连接作用, 还起到提高结构强度, 故称外加强环。
[ 0070 ] 固态光源设置在导热芯上, 导热芯采用圆柱结构, 散热金属壳 (金属前壳、 金属 后壳)的中部采用套筒或翻边结构,该套筒或翻边与导热芯设置有直接或间接的接触传热面, 这样的结构优点有: 通过采用导热芯与套筒或翻边孔之间的过盈紧配合, 容易保证接触传热 面紧密接触, 能有效控制接触传热热阻, 并且制造简单, 容易实现机械自动化组装, 效率高。 图 24至 27中示出, 金属前壳 4和金属后壳 9中部壳采用翻边结构, 翻边直接套在导热芯 18上。 图 14和图 25〜27中示出, 固态光源 6的电源导线或接插头 21穿过导热芯 18, 向后 伸出, 结构紧凑简洁。
[ 0071 ] 本发明中百页窗通气窗口的有效通风面积定义为: 参考图 4, 单个分切口的有效
通风面积等于分切口 16的宽 b乘以分切口 16的长度,所有的分切口的有效通风面积之和就 是整个百页窗式通风窗口的有效通风面积。
[ 0072 ] 本发明中错列式通气窗口的有效通风面积定义为: 参考图 3, 当分切口 16的宽 b 小于或等于二分之一页片 15b的宽 c时, 单个页片 15b构成的有效通风面积等于 2b乘以分 切口 16的长度, 所有页片 15b构成的有效通风面积之和就是整个错列式通风窗口的有效通 风面积; 当分切口 16的宽 b大于二分之一页片 15 b的宽 c时, 如果页叶 15b宽 c小于或等 于页叶 15a宽 e, 单个页片 15b构成的有效通风面积等于 c乘以分切口 16的长度,所有页片 15b构成的有效通风面积之和就是整个错列式通气窗口的有效通风面积; 如果 c大于 e时, 则按页片 15a计算, 单个页片 15a的有效通风面积等于 e乘以分切口 16的长度, 所有页片 15a的有效通风面积之和就是整个错列式通气窗口的有效通风面积。 依据以上定义, 错列式 通气窗口的通透率最大理论值是 0.5, 本发明提出侧壁通透率应达到 0.2, 为最大理论值的 40%, 说明已达到足够大。
[ 0073 ] 本发明金属侧壁通透率定义为金属侧壁通气窗口的有效通风面积除以金属侧壁的 面积, 百页窗式和错列式通气窗口的有效通风面积计算按以上 [ 0071 ] [ 0072 ]的定义计算; 金属侧壁的面积计算: 当金属侧壁 2与金属前壳 4以及金属后壳 5为圆弧连接时, 则以圆弧 切线与轴线夹角为 40°时的切点, 如图 28中的点 P和点 Q, 确定金属侧壁 2和金属后壳 9 以及金属前壳 4的分界点, 如图 28中的 h内的外表面积就是侧壁的面积; 如果金属侧壁 2 和金属前壳 4以及金属后壳 9是斜面连接时,如图 29所示, 当斜面与轴线的夹角 β大于 40° 时, 侧壁的面积按 h2内的外表面积计算, 当斜面与轴线的夹角 β小于或等于 40°时, 侧壁的 面积按 hi内的外表面积计算。
[ 0074 ] 百页窗式通气窗口的通透率的理论极限为 1.0, 但由于考虑到导热, 壁厚, 强度以 及加工等因素, 实际能实现的通透率很低, 图 12所示的散热金属壳, 金属侧壁 2的通气窗 口 3的开孔率非常之高, 但侧壁通透率也只有 0.4。 经实验和理论分析, 侧壁通透率 0.2与 0.4之间的散热性能的差别能达到 50%,侧壁通透率不到 0.1与 0.4之间的散热性能的差别能 达到一倍, 侧壁通透率 0.2的散热性能比侧壁通透率为 0 (无通气窗口) 提高了近一倍。 本 发明提出侧壁通透率不小于 0.2就是基于实验和理论分析。 实际设计产品时, 侧壁通透率最 小应达到 0.3, 因为从加工方面来考虑, 0.3的侧壁通透率容易实现, 散热性能也很高。
[ 0075 ] 金属后壳、 后外壳、 套片式以及叠片式肋片上所开的通气窗口同样也应足够大, 通透率至少也要达到 0.2, 以保证对流散热空气流动畅通, 实际设计产品时, 通透率应达到 0.3以上。
[ 0076 ] 本发明金属后壳的通透率定义为, 金属后壳上的所有通气窗口的有效通气面积除 以金属后壳在轴向方的投影面积。 百页窗式和错列式通气窗口的有效通气面积计算按上述 [ 0071] [ 0072]所定义计算。 金属后壳在轴向方的投影面积计算定义: 图 28按直径 D的面积 再扣除直径 d的面积计算; 图 29中, 如果 β角大于 40°, 则按直径 D1的面积再扣除直径 d 的面积计算; 如果 β角小于或等于 40°, 侧按直径 D2的面积再扣除直径 d的面积计算。 后 外壳、 套片式以及叠片式肋片的通透率的定义和计算与后壳通透率一致。
[ 0077 ] 采用冲压工艺, 加工制造成本得到显著降低, 金属板材的原料成本所占的比例就 上升到显著位置, 因而降低金属板材用量, 即减小金属板材厚度, 则可有效降低散热金属壳 的成本, 但减小散热金属壳的壁厚, 存在散热量减小的因素。 壁厚对散热量的影响为曲线关 系, 当壁厚到一定值时, 壁厚增加一半, 散热量增加可能不到 5%。 采用 《传热学》 中常用
的肋效率概念来分析壁厚对散热量的影响, 确定散热金属壳壁厚的合理值。
[ 0078 ] 肋效率的定义是: 肋片实际散热量除以假设肋片内无导热热阻 (即肋片材料的导 热系数无穷大) 时的散热量。 依据实验得到的参数, 应用计算机数值模拟分析, 得出以下本 发明的散热金属壳采用铝材时, 壁厚对肋效率的影响。
[ 0079 ] 金属侧壁直径为 180mm, 壁厚为 1.0mm时, 肋效率为 64%, 壁厚加到 1.2mm增 加了 20%,但肋效率才增加了 5.5%,壁厚加到 1. 5mm,增加了 50%,但肋效率才增加了 12%; 金属侧壁直径为 150mm, 壁厚为 0.8mm时, 肋效率为 68%, 壁厚加到 1.0mm, 增加了 25%, 但肋效率才增加了 6%, 壁厚加到 1. 3mm, 增加了 62%, 但肋效率才增加了 12%; 金属侧 壁直径为 130mm, 壁厚为 0.7mm时, 肋效率为 70%, 壁厚加到 0.9mm增加了 28%, 但肋效 率才增加了 6.5%, 壁厚加到 1.15mm, 增加了 64%, 但肋效率才增加了 12.5%; 金属侧壁直 径为 115mm, 壁厚为 0.6mm时, 肋效率为 68%, 壁厚加到 0.8mm, 增加了 33%, 但肋效率 才增加了 7%, 壁厚加到 1. 0mm, 增加了 67%, 但肋效率才增加了 13%; 金属侧壁直径为 100mm, 壁厚为 6.0mm时, 肋效率为 74%, 壁厚加到 0.8mm增加了 33%, 但肋效率才增加 了 5.5%, 壁厚加到 1. Omm, 增加了 67%, 但肋效率才增加了 9.5%; 金属侧壁直径为 90mm, 壁厚为 0.5mm时, 肋效率为 76%, 壁厚加到 0.7mm增加 40 %, 但肋效率才增加了 6.5%, 壁厚加到 0.9mm,增加了 80%,但肋效率才增加了 9%;金属侧壁直径为 80mm,壁厚为 0.5mm 时,肋效率为 78%,壁厚加到 0.6mm增加了 40%,但肋效率才增加了 6.5%,壁厚加到 0.8mm, 增加了 60%, 但肋效率才增加了 9%; 金属侧壁直径为 70mm, 壁厚为 0.4mm时, 肋效率为 77%,壁厚加到 0.6mm增加了 50%,但肋效率才增加了 7%,壁厚加到 0.7mm, 增加了 75%, 但肋效率才增加了 10%; 金属侧壁直径为 60mm, 壁厚为 0.4mm时, 肋效率为 80%, 壁厚 加到 0.5mm增加了 25%, 但肋效率才增加了 3.5%, 壁厚加到 0.6mm, 增加了 50%, 但肋效 率才增加了 6.5%;
[ 0080 ] 依据以上结果, 并且考虑到其他因素, 比如: 结构强度、 材料成本与加工成本比 值, 整体尺寸大小的影响, 分析得出实际设计产品时, 散热金属壳的壁厚选定如下:
[ 0081 ] D表示金属侧壁的直径, δ表示散热金属壳的壁厚。 当 180mm^ D > 150mm时, 取 δ≤ 1.5mm, 最好取 δ < 1.25mm; 当 150mm^ D > 130mm时, 取 δ≤ 1.3mm, 最好取 δ < 1.1mm; 当 130mm^ D > 115mm时, S≤1.15mm, 最好取 δ < 0.95mm; 当 115mm^ D > 100mm时,取 δ≤ 1.0mm,最好取 δ < 0.85mm;当 lOOmm^ D > 90mm时,取 δ≤ 0.95mm, 最好取 δ < 0.8mm; 当 90mm^ D > 80mm时, 取 δ≤ 0.9mm, 最好取 δ < 0.75mm; 当 80mm ≥D > 70mm时,取 δ≤ 0.85mm,最好取 δ < 0.7mm;当 70mm^ D > 60mm时,取 δ≤ 0.8mm, 最好取 δ < 0.65mm; 当 D≤60mm时, 取 δ≤ 0.7mm, 最好取 δ < 0.6mm。
[ 0082 ] 当金属侧壁的直径不均匀时, 取最大与最小的平均值(平均直径); 当金属侧壁的 横截面不是圆形, 取面积相等的当量直径, 比如, 金属侧壁横截面是边长为 E的正方形, 其 当量直径 D=2E/^=1.128E; 当壁厚不均匀时, 取壁厚的平均值 (平均壁厚)。
[ 0083 ] 图 1、 2、 5至 8、 24至 27为示意图, 图中所示散热金属壳的壁厚以及肋片 13的 肋片厚不应是实际的厚度。
Claims
WO 2014/134977 +π ι ^ -+÷ +、 PCT/CN2014/070650
权 利 要 求 书 、 一种固态光源散热金属壳, 包括有金属侧壁 (2)和金属前壳 (4)、 或金属侧壁 (2)和金 属后壳 (9)、 或金属侧壁 (2) 和金属前壳 (4) 以及金属后壳 (9), 散热金属壳 (1) 设 置有与固态光源 (6) 直接或间接接触的接触传热面, 部分或全部由半导体光源产生的热 量通过该接触传热面传到散热金属壳(1) 的表面散出, 其特征在于: 散热金属壳(1)采 用金属板材制成; 金属侧壁 (2) 是从金属后壳 (9)、 或金属前壳 (4)、 或金属后壳 (9) 与金属前壳(4) 的金属板材拉伸而成的; 金属侧壁(2)上开有百页窗式结构或错列式结 构的通气窗口 (3), 该窗口的切口线采用了顺着金属侧壁的拉伸方向的结构。
、 根据权利要求 1所述的固态光源散热金属壳, 其特征在于: 金属侧壁 (1) 上的通气窗口
(3) 采用了成形凸齿 (829) 轴向推挤成形的百页窗式或错列式结构, 该结构的特征有: 在金属侧壁 (2) 上、 或金属侧壁 (2) 与金属前壳 (4) 或金属后壳 (9) 交界处附近 的外缘端面 (817) 上有齿口 (818), 齿口 (818) 的边缘由端面裁切线 (820) 和端面内 折角 (819) 组成; 端面裁切线 (820) 与侧壁裁切线 (822)相连; 内折肋片 (824) 与外 缘端面 (817) 的交界处为折角, 构成端面内折角 (819), 内折肋片 (824) 的另一端连着 的是下端连片 (825), 之间为折角 (825)。
、 根据权利要求 1或 2所述的固态光源散热金属壳, 其特征在于: 金属侧壁 (2) 的通透率 不小于 0.20。
、 根据权利要求 3所述的固态光源散热金属壳, 其特征在于:
当 180mm^D > 150mm时, S≤1.5mm;
当 150mm^D > 130mm时, S≤1.3mm;
当 130mm^D > 115mm时, 取8≤1.15111】11;
当 115mm^D > 100mm时, S≤1.0mm;
当 lOOmm^D >90mm时, 取8≤0.95111】11;
当 90mm^D > 80mm时, S≤0.9mm;
当 80mm^D >70mm时, S≤0.85mm;
当 70mm^D>60mm时, S≤0.8mm;
当0≤60111111时, S≤0.7mm;
其中, D表示金属侧壁 (9) 的当量直径, δ表示散热金属壳的平均壁厚。
、 根据权利要求 2或 4所述的固态光源散热金属壳, 其特征在于: 散热金属壳 (1) 有金属 后壳(9) 时, 金属后壳(9)采用了向前拉伸结构, 并在拉伸壁上开有百页窗式结构或错 列式结构的通气窗口 (901), 该窗口的切口线采用了顺着拉伸方向的结构。
、 根据权利要求 2或 4所述的固态光源散热金属壳, 其特征在于: 散热金属壳 (1) 有金属 前壳(4) 时, 金属前壳(4)采用了向后拉伸结构, 并在拉伸壁上开有百页窗式结构或错 列式结构的通气窗口 (401), 该窗口的切口线采用了顺着拉伸方向的结构。
、 根据权利要求 2或 4所述的固态光源散热金属壳, 其特征在于: 散热金属壳 (1) 有金属 后壳 (9) 时, 金属后壳 (9) 上开有百页窗式结构或错列式结构的通气窗口 (10), 切口 线 (20) 采用了呈辐射形状的结构。
、 根据权利要求 7所述的固态光源散热金属壳, 其特征在于: 金属后壳 (9) 上的通透率不 小于 0.20。
、 根据权利要求 2或 4所述的固态光源散热金属壳, 其特征在于: 散热金属壳 (1) 有金属
前壳 (4) 时, 金属前壳(4) 上开有百页窗式结构或错列式结构的通气窗口 (5), 切口线 (20) 采用了呈辐射形状的结构。
、 根据权利要求 2或 4所述的固态光源散热金属壳, 其特征在于: 散热金属壳(1 )有金属 前壳(4)和金属后壳(9)时, 金属侧壁(2)的边缘或侧壁延伸段(201 )与金属前壳(4) 的边缘或前壳延伸段 (402) 之间采用了紧固连接结构。
、 根据权利要求 10所述的固态光源散热金属壳, 其特征在于: 在金属侧壁 (2) 的边缘或 侧壁延伸段 (201 ) 与金属前壳 (4) 的边缘或前壳延伸段 (402) 之间的紧固连接处设置 有内加强环 (22) 或外加强环 (37)。
、 根据权利要求 10所述的固态光源散热金属壳, 其特征在于: 设置有面板 (30), 侧壁延 伸段 (201 ) 延伸至面板 (30) 背后。
、 根据权利要求 10所述的固态光源散热金属壳, 其特征在于: 金属后壳 (9) 的后面设置 有后外壳(39), 后外壳(39)有外缘拉伸壁(38); 后外壳(39)采用金属板材加工制成, 外缘拉伸壁 (38) 是从后外壳(39) 的金属板材拉伸制成; 后外壳 (39) 开有百页窗式结 构或错列式结构的通气窗口 (40), 该窗口的切口线 (20) 采用了呈辐射形状结构; 后外 壳 (39) 中设置有直接或间接与固态光源 (6) 的导热板 (7) 或导热芯 (18)接触的接触 传热面。
、 根据权利要求 10所述的固态光源散热金属壳, 其特征在于: 在金属侧壁 (2) 上的金属 壁板上加工成形有采用了截面为弯折或凹形的环形加强筋结构。
、 根据权利要求 2或 4所述的固态光源散热金属壳, 其特征在于: 散热金属壳内设置有套 片结构或叠片结构的散热片, 肋片 (13 ) 上开有百页窗式结构或错列式结构的通气窗口
(23), 该窗口的切口线 (20) 采用了呈辐射形状结构; 肋片 (13) 的外缘采用了翻边结 构。
、 根据权利要求 15所述的固态光源散热金属壳, 其特征在于: 套片式或叠片式肋片 (13) 的通透率不小于 0.20。
、 一种固态光源引擎, 包括有散热金属壳 (1 ) 和导热芯 (18 ), 以及固态光源 (6), 固态 光源(6)设置在导热芯(12)上, 散热金属壳(1 )包括有金属侧壁(2)和金属后壳(9)、 或金属侧壁 (2) 和金属前壳 (4) 以及金属后壳 (9), 散热金属壳 (1 ) 设置有与导热芯
( 18)直接或间接接触的接触传热面, 其特征在于: 散热金属壳(1 )采用金属板材制成, 金属侧壁 (2) 是从金属后壳 (9)、 或金属前壳 (4)、 或金属后壳 (9) 和金属前壳 (4) 的金属板材拉伸而成的;金属侧壁(2)上开有百页窗式结构或错列式结构的通气窗口(3), 该窗口的切口线采用了顺着金属侧壁拉伸方向的结构,金属侧壁(2)的通透率不小于 0.20; 金属后壳 (9) 或、 和金属前壳 (4) 采用了套筒或翻边结构, 该套筒 (14) 或翻边 (19) 与导热芯 (18) 设置有直接或间接的接触传热面。
、 根据权利要求 17所述的固态光源引擎, 其特征在于: 固态光源 (6) 配有反光罩 (26); 在固态光源(6)前设置有配光透镜(25), 从固态光源(6)发出的光经配光透镜(25) 后, 有一半以上照射到反光罩 (26) 上, 再朝光源引擎外反射、 或
在固态光源 (6)前方设置有灯芯反光器(29), 该灯芯反光器(29)将一半以上来自 固态光源 (6) 发出的光反射到反光罩 (26) 上, 再朝光源引擎外反射、 或
固态光源(6)前设置有灯芯罩(32), 灯芯罩(32)设置有面向反光罩(26) 的侧壁, 该侧壁采用了散光结构或散光材料。
、 根据权利要求 17或 18所述的固态光源引擎, 其特征在于: 金属前壳(4)上开有百页窗 式结构或错列式结构的通气窗口 (31 ), 该窗口的切口线 (20) 采用了呈辐射形状结构; 金属前壳 (4) 向后拉伸壁上开有百页窗式结构或错列式结构的通气窗口 (401 ), 该窗口 的切口线采用了顺着拉伸方向结构; 在金属前壳 (4) 向后拉伸构成的凹腔中设置有固态 光源 (6) 的反光罩 (26)。
、 一种制造根据权利要求 2所述的固态光源散热金属壳(1 ) 的方法, 其特征在于: 金属侧 壁 (2) 上的百页窗式或错列式结构通气窗口 (3) 的成形方法采用了, 成形凸齿 (829) 轴向运动, 推挤金属壳壁 (840) 向内变形, 构成内折肋片 (824), 形成通气口 (823)。 、 根据权利要求 20所述的固态光源散热金属壳 (1 ) 制造方法, 其特征在于: 端面裁切线 ( 820) 和侧壁裁切线 (822) 工序, 与成形凸齿 (829) 轴向推挤工序合在同一个模具工 位。
、一种用于制造根据权利要求 2所述的固态光源散热金属壳(1 )的模具,包括有凹模(828) 和凸模 (834), 其特征在于: 凹模 (828) 内有成形凸齿 (829), 所有的成形凸齿 (829) 在凹模 (828) 内腔壁上, 并且与凹模 (828) 固定为整体, 不可相对运动, 凸模 (834) 上有与成形凸齿 (829)对应的成形沟槽(835), 成形沟槽 (835) —直延伸到凸模 (834) 的上端, 形成开口, 成形凸齿 (829) 可轴向插入成形沟槽 (835)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/772,134 US10139097B2 (en) | 2013-03-04 | 2014-01-15 | Solid-state light source heat dissipation metal shell and light source engine, the manufacturing methods thereof, and mold |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310086769.5A CN103292284B (zh) | 2013-03-04 | 2013-03-04 | 半导体光源散热器与光源引擎 |
CN201310086769.5 | 2013-03-04 | ||
CN201310134635.6 | 2013-04-02 | ||
CN201310134635.6A CN103542389A (zh) | 2013-04-02 | 2013-04-02 | 固态光源散热器与光源引擎 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014134977A1 true WO2014134977A1 (zh) | 2014-09-12 |
Family
ID=51490611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/070650 WO2014134977A1 (zh) | 2013-03-04 | 2014-01-15 | 固态光源散热金属壳和光源引擎及其制造方法和模具 |
Country Status (2)
Country | Link |
---|---|
US (1) | US10139097B2 (zh) |
WO (1) | WO2014134977A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180054978A1 (en) * | 2016-08-30 | 2018-03-01 | GE Lighting Solutions, LLC | Luminaire including a heat dissipation structure |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9625122B2 (en) | 2014-01-28 | 2017-04-18 | The L.D. Kichler Co. | Path light and unitary gasket-reflector |
KR102453554B1 (ko) * | 2021-12-23 | 2022-10-14 | 주식회사 혁진테크 | 매립형 원형 등박스 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202158505U (zh) * | 2011-08-02 | 2012-03-07 | 秦彪 | 一种固态照明灯 |
CN102734649A (zh) * | 2011-04-08 | 2012-10-17 | 宁波亿能电子有限公司 | 一种高效陶瓷红外辐射散热led灯 |
US20130010480A1 (en) * | 2011-07-08 | 2013-01-10 | Switch Bulb Company, Inc. | Partitioned heatsink for improved cooling of an led bulb |
CN203190375U (zh) * | 2013-03-05 | 2013-09-11 | 秦彪 | 一种半导体光源散热器与半导体光源引擎 |
CN103292284A (zh) * | 2013-03-04 | 2013-09-11 | 秦彪 | 半导体光源散热器与光源引擎 |
CN203190378U (zh) * | 2013-03-05 | 2013-09-11 | 秦彪 | 一种led光源散热器与led光源引擎 |
CN203364068U (zh) * | 2013-04-03 | 2013-12-25 | 秦彪 | 一种固态光源散热器与光源引擎 |
CN203454057U (zh) * | 2013-08-08 | 2014-02-26 | 秦彪 | 一种固态照明散热器与固态照明灯 |
CN203454052U (zh) * | 2013-04-03 | 2014-02-26 | 秦彪 | 一种照明用的固态光源散热器与光源引擎 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7144140B2 (en) * | 2005-02-25 | 2006-12-05 | Tsung-Ting Sun | Heat dissipating apparatus for lighting utility |
US7663229B2 (en) * | 2006-07-12 | 2010-02-16 | Hong Kong Applied Science And Technology Research Institute Co., Ltd. | Lighting device |
US7549774B2 (en) * | 2007-04-24 | 2009-06-23 | Hong Kuan Technology Co., Ltd. | LED lamp with plural radially arranged heat sinks |
CN101368719B (zh) * | 2007-08-13 | 2011-07-06 | 太一节能系统股份有限公司 | 发光二极管灯具 |
US8444299B2 (en) * | 2007-09-25 | 2013-05-21 | Enertron, Inc. | Dimmable LED bulb with heatsink having perforated ridges |
TWM334272U (en) * | 2007-12-04 | 2008-06-11 | Cooler Master Co Ltd | An LED lighting device |
JP4945433B2 (ja) * | 2007-12-28 | 2012-06-06 | シャープ株式会社 | 照明装置 |
US20100295436A1 (en) * | 2009-05-19 | 2010-11-25 | Alex Horng | Lamp |
TWM372923U (en) * | 2009-08-14 | 2010-01-21 | Risun Expanse Corp | Lamp structure |
EP2397753B1 (en) * | 2010-06-15 | 2013-05-29 | Kitagawa Holdings, LLC | Led lamp and a heat sink thereof having a wound heat pipe |
US8803452B2 (en) * | 2010-10-08 | 2014-08-12 | Soraa, Inc. | High intensity light source |
-
2014
- 2014-01-15 WO PCT/CN2014/070650 patent/WO2014134977A1/zh active Application Filing
- 2014-01-15 US US14/772,134 patent/US10139097B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102734649A (zh) * | 2011-04-08 | 2012-10-17 | 宁波亿能电子有限公司 | 一种高效陶瓷红外辐射散热led灯 |
US20130010480A1 (en) * | 2011-07-08 | 2013-01-10 | Switch Bulb Company, Inc. | Partitioned heatsink for improved cooling of an led bulb |
CN202158505U (zh) * | 2011-08-02 | 2012-03-07 | 秦彪 | 一种固态照明灯 |
CN103292284A (zh) * | 2013-03-04 | 2013-09-11 | 秦彪 | 半导体光源散热器与光源引擎 |
CN203190375U (zh) * | 2013-03-05 | 2013-09-11 | 秦彪 | 一种半导体光源散热器与半导体光源引擎 |
CN203190378U (zh) * | 2013-03-05 | 2013-09-11 | 秦彪 | 一种led光源散热器与led光源引擎 |
CN203364068U (zh) * | 2013-04-03 | 2013-12-25 | 秦彪 | 一种固态光源散热器与光源引擎 |
CN203454052U (zh) * | 2013-04-03 | 2014-02-26 | 秦彪 | 一种照明用的固态光源散热器与光源引擎 |
CN203454057U (zh) * | 2013-08-08 | 2014-02-26 | 秦彪 | 一种固态照明散热器与固态照明灯 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180054978A1 (en) * | 2016-08-30 | 2018-03-01 | GE Lighting Solutions, LLC | Luminaire including a heat dissipation structure |
US11134618B2 (en) * | 2016-08-30 | 2021-10-05 | Current Lighting Solutions, Llc | Luminaire including a heat dissipation structure |
Also Published As
Publication number | Publication date |
---|---|
US20160010841A1 (en) | 2016-01-14 |
US10139097B2 (en) | 2018-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014134977A1 (zh) | 固态光源散热金属壳和光源引擎及其制造方法和模具 | |
WO2014201918A1 (zh) | 灯具散热器及led工矿灯 | |
CN108591963A (zh) | 一种大功率led汽车前照灯高效的散热装置 | |
CN117308060A (zh) | 固态光源散热金属壳及其制造方法和模具 | |
WO2012088807A1 (zh) | Led照明灯及其灯具 | |
CN203454057U (zh) | 一种固态照明散热器与固态照明灯 | |
WO2014063488A1 (zh) | 灯具散热器及led节能灯 | |
CN103292284B (zh) | 半导体光源散热器与光源引擎 | |
CN203454052U (zh) | 一种照明用的固态光源散热器与光源引擎 | |
CN203364068U (zh) | 一种固态光源散热器与光源引擎 | |
CN203190375U (zh) | 一种半导体光源散热器与半导体光源引擎 | |
CN211260387U (zh) | 一种led聚光灯 | |
CN203190378U (zh) | 一种led光源散热器与led光源引擎 | |
WO2010015114A1 (en) | A heat-dissipating reflector for lighting device | |
CN203363776U (zh) | 一种板形固态照明灯及其灯具 | |
CN204328960U (zh) | 一种改进的散热器及装配该散热器的led工矿灯 | |
CN208997778U (zh) | 一种led筒灯及其灯具构件 | |
CN216600130U (zh) | 一种散热装置 | |
CN201836819U (zh) | Led路灯外壳 | |
WO2014198221A1 (zh) | 板形固态照明灯 | |
CN209893347U (zh) | 一种便于散热的led灯用底盘 | |
CN103672807A (zh) | 固态照明散热器与固态照明灯 | |
CN219640201U (zh) | 一种增强散热的led灯泡 | |
CN205402270U (zh) | 一种led照明灯及其灯具构件 | |
CN203771352U (zh) | 一种led散热器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14760325 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14772134 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14760325 Country of ref document: EP Kind code of ref document: A1 |