WO2014133235A1 - Method for optimizing sensitivity of gyroscope for magnet-gyro guidance device - Google Patents

Method for optimizing sensitivity of gyroscope for magnet-gyro guidance device Download PDF

Info

Publication number
WO2014133235A1
WO2014133235A1 PCT/KR2013/006942 KR2013006942W WO2014133235A1 WO 2014133235 A1 WO2014133235 A1 WO 2014133235A1 KR 2013006942 W KR2013006942 W KR 2013006942W WO 2014133235 A1 WO2014133235 A1 WO 2014133235A1
Authority
WO
WIPO (PCT)
Prior art keywords
gyro
sensitivity
angle
binary string
accumulated
Prior art date
Application number
PCT/KR2013/006942
Other languages
French (fr)
Korean (ko)
Inventor
김성신
배선일
김재용
정경훈
김정민
Original Assignee
(주)아티스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)아티스 filed Critical (주)아티스
Publication of WO2014133235A1 publication Critical patent/WO2014133235A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses

Definitions

  • the present invention relates to a method for optimizing the sensitivity of a gyro for a self-gyro guiding device, in particular, in a system for measuring a gyro mounted on a moving object in order to optimize the sensitivity of a gyro that varies according to the installed position gradient and the performance of a measurement system.
  • the present invention relates to a method for optimizing sensitivity of a gyro for a self-gyro guiding apparatus that optimizes respective sensitivity to rotations in a left direction and a right direction by an optimization technique.
  • MEMS Micro Electro Mechanical System
  • gyro is smaller, lower power, and more expensive than conventional fluid, optical fiber and ring laser gyros.
  • MEMS gyro is mainly used.
  • MEMS-type gyros have significantly less drift, linearity, and angular velocity accuracy than other gyros.
  • a method using an average value of the gyro's angular velocity is used.
  • This method is to calculate the sensitivity by calculating the characteristic curve of the angular velocity measured by the gyro by directly rotating the moving object, and it is necessary to use a high-cost microcontroller unit (MCU) because of the large amount of computation because the characteristic curve has to be calculated. A separate device was needed to measure absolute angles.
  • MCU microcontroller unit
  • the conventional methods have an angular velocity error according to the rotation direction by correcting only the gyro sensitivity in one direction.
  • the present invention has been developed to solve the above problems, a magnetic-gyro guidance device for optimizing the sensitivity of the gyro on the gyro measurement system to include the position of the gyro mounted on the moving object and the characteristics of the measurement system
  • the purpose of the present invention is to provide a method for optimizing sensitivity of the gyro.
  • Gyro sensitivity optimization method for a self-gyro guiding apparatus according to the present invention for achieving the above object
  • f (x) is the mean value of the angle error
  • TD is the set angle
  • x is the output value of the accumulated gyro
  • N is the number of data of the accumulated gyro
  • O or, f d (b m-1 b m- B ... b 1 b 0 ) is the sensitivity and b is the binary string.
  • f (x) is the mean value of the angle error
  • TD is the set angle
  • x is the output value of the accumulated gyro
  • N is the number of data of the accumulated gyro
  • O or, f d (b m-1 b m- B ... b 1 b 0 ) is the sensitivity and b is the binary string.
  • calculating the gyro measurement angle by multiplying (x) the output value of the gyro obtained by rotating the optimal sensitivity and the set angle by the calculated gyro, and the angle error obtained by subtracting the gyro measurement angle from the set angle is set.
  • the threshold value is exceeded, the optimum sensitivity of the gyro in the first direction is calculated again, and when the angle error obtained by subtracting the gyro measurement angle from the set angle is less than or equal to the set threshold, the optimal sensitivity of the gyro is determined. And further setting the final sensitivity to the optimum sensitivity in the direction.
  • f (x) is the mean value of the angle error
  • TD is the set angle
  • x is the output value of the accumulated gyro
  • N is the number of data of the accumulated gyro
  • O or, f d (b m-1 b m- B ... b 1 b 0 ) is the sensitivity and b is the binary string.
  • f (x) is the mean value of the angle error
  • TD is the set angle
  • x is the output value of the accumulated gyro
  • N is the number of data of the accumulated gyro
  • O or, f d (b m-1 b m- B ... b 1 b 0 ) is the sensitivity and b is the binary string.
  • the present invention has the following effects.
  • the gyro's sensitivity can be optimized for right and left rotations, respectively, to measure accurate angular velocities regardless of direction.
  • FIG. 1 is a view showing the configuration of a self-gyro guided unmanned vehicle according to the present invention
  • FIG. 2 is a flowchart illustrating a gyro sensitivity optimization method according to the present invention in order
  • Figure 3 is a flow chart showing in order the eastern call optimization technique according to the present invention.
  • BSS Bisectional Search
  • microcomputer 12 magnetic positioning sensor
  • FIG. 1 is a diagram illustrating a configuration of a self-gyro guided unmanned vehicle according to the present invention.
  • the self-gyro guiding unmanned vehicle 1 is largely composed of a body 2, a wheel 3, and a control system 10, and a control system 10.
  • a microcomputer 11 for controlling and measuring motors and sensors
  • a magnetic positioning sensor 12 for measuring the position of a cylindrical magnet embedded in the floor
  • an encoder 13 for measuring the angular velocity of the wheel
  • an angular velocity of the vehicle body It consists of a gyro 14 for measurement.
  • the self-gyro guiding unmanned vehicle 1 thus constructed is guided by using the angular velocity measured and calculated by the encoder 13 and the gyro 14, and the magnetic positioning sensor 12 embeds the cylindrical magnet embedded in the floor. When measured, it is a way to correct the position and angle of the unmanned vehicle (1).
  • FIG. 2 is a flowchart illustrating a procedure flow of a gyro sensitivity optimization method according to the present invention in order.
  • the present invention first, when the self-gyro guided unmanned vehicle 1 travels to the right (S101), unmanned transport with an encoder 13 installed in the motor of the unmanned vehicle (1) The angle of the difference 1 is calculated (S102), and the output of the gyro 14 is accumulated (S103).
  • the gyro measurement angle is obtained by multiplying (x) the output value of the gyro obtained by rotating the set gyro with the optimum sensitivity of the found gyro, and the angle error obtained by subtracting the gyro measurement angle from the set angle exceeds the set threshold.
  • the optimal sensitivity of the gyro in the right direction is calculated again (S200).
  • the optimum sensitivity of the gyro is finally set to the optimum sensitivity in the right direction.
  • the unmanned vehicle starts to drive on the left side (S108), and the unmanned vehicle (1) is installed by the encoder 13 installed in the motor of the unmanned vehicle (1). While calculating the angle of (S109) accumulates the output of the gyro 14 (S110).
  • the unmanned vehicle 1 When rotation of the calculated unmanned vehicle 1 is completed by the set angle TD (S111), the unmanned vehicle 1 is stopped (112) and based on the accumulated output of the gyro and the set angle ( TD ).
  • the gyro sensitivity ( S l ) of the left direction is found by using the eastern encryption optimization technique (S210).
  • the gyro measurement angle is obtained by multiplying (x) the output value of the gyro obtained by rotating the set gyro with the optimum sensitivity of the found gyro, and the angle error obtained by subtracting the gyro measurement angle from the set angle exceeds the set threshold.
  • the optimal sensitivity of the gyro in the left direction is calculated again (S210).
  • the optimum sensitivity of the gyro is finally set to the optimum sensitivity in the left direction.
  • Figure 3 shows the entire flow chart of the method of calculating the gyro sensitivity (S200, S210) using the eastern call optimization method according to the present invention.
  • the present invention counts the number of executions t (S211) and randomly selects a search position from the global position (S212).
  • the optimal solution is derived by generating neighbor search positions that are opposite to each other in the selected search position through a bisectional search (BSS) step and comparing the calculated objective function value with the generated neighbor value (S300).
  • BSS bisectional search
  • the UDS step (S400) of searching for the surrounding area is performed by increasing and decreasing until the value of the objective function becomes optimal.
  • a local search for an optimal solution is found by using a characteristic in which a real value decreases when a decoding is performed by attaching 0 to a least significant bit (LSB) of a binary string, and a real value increases when a decoding is performed by attaching a 1.
  • LSB least significant bit
  • FIG. 4 shows a flowchart of a BSS step in accordance with the present invention.
  • binary string data other than the search position is initialized (S301) and 2 n neighbor search positions are generated by adding 0 and 1 to the least significant bit of the binary string corresponding to the search position (S302).
  • O (or f d (b m-1 b m-2 ... B 1 b 0 ) is sensitivity and b is a binary string.
  • f (x) represents an average value of the angular error
  • TD represents a set angle
  • x represents an output value of the accumulated gyro
  • N represents the number of accumulated gyro data.
  • FIG. 5 shows a flowchart of the UDS step according to the present invention.
  • the UDS step is to calculate the optimal sensitivity of the gyro in the corresponding direction while fixing the length of the binary string obtained through the BSS step and varying the value according to the search direction.
  • the UDS step S400 has a feature of a wide area search for searching a wide range without changing the length of the string.
  • the UDS step S400 is repeatedly performed until the length of the binary string is fixed and the cost value no longer decreases.
  • the UDS step (S400) first initializes binary string data (S401) and checks whether or not a limit (S402).
  • the step of checking the limit (S402) is to exclude the maximum and minimum that the binary string can represent, and to find a string having all zeros or ones in the series of binary strings and excludes it from the UDS step (S400).
  • the step of confirming the overlapping step (S403) excludes the search position, which has been calculated once, and compares the value of the previous optimal solution with the optimal search position to be searched.
  • the eastern optimization method that proposes the solution of the nonlinear optimization problem finds the local and global optimal solutions using only well-planned computer operations, unlike other optimal methods that find the optimal solution of the objective function using differentials.
  • an optimization technique should be used on the measurement system to reflect the position gradient of the gyro installed in the moving object and the characteristics of the measurement system.
  • the sensitivity optimization method of the gyro using the eastern encryption optimization method expresses the optimal solution in binary, so that the source code is optimized, so that the optimal solution can be searched robustly and quickly even in the low specification microcomputer.
  • the sensitivity of the right direction and the left direction can be searched by the optimization technique, respectively, to realize a high precision gyro system regardless of the direction.
  • the present invention relates to a method for optimizing the sensitivity of a gyro for a self-gyro guiding device, in particular, in a system for measuring a gyro mounted on a moving object in order to optimize the sensitivity of a gyro that varies according to the installed position gradient and the performance of a measurement system.
  • a gyro sensitivity optimization method for the self-gyro guiding device which optimizes the respective sensitivity to rotation in the left direction and the right direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Gyroscopes (AREA)

Abstract

The present invention relates to a method for optimizing the sensitivity of a gyroscope for a magnet-gyro guidance device which guides driving by means of a first encoder and a second encoder for respectively measuring the angular velocity of wheels on both sides with respect to a moving object and a gyroscope for measuring the angular velocity of a vehicle body. The method comprises the steps of: when the moving object is driven in a first direction, if the rotation of the moving object is completed such that the angle of the moving object calculated by the first encoder meets a predefined angle, calculating a binary string of the sensitivity of a gyroscope having the lowest average value of angle errors calculated by using an accumulated output value of the gyroscope, the predefined angle and [formula 11]; and calculating the optimum sensitivity of the gyroscope in the first direction by using [formula 12] while fixing the length of the calculated binary string and varying the value of the binary string according to the search direction. Since the method optimizes the sensitivity of a gyroscope on a measurement system of the gyroscope, it is possible to calculate the accurate sensitivity of the gyroscope including the characteristics of the measurement system and the environment in which the gyroscope is installed.

Description

자기-자이로 유도 장치를 위한 자이로의 민감도 최적화 방법Gyro Sensitivity Optimization Method for Self-Gyro Guidance Devices
본 발명은 자기-자이로 유도 장치를 위한 자이로의 민감도 최적화 방법에 관한 것으로, 특히 설치된 위치 기울기와 계측 시스템의 성능에 따라 변하는 자이로의 민감도를 최적화하기 위해서 이동체에 탑재된 자이로를 계측하는 시스템상에서 동부호화 최적화 기법으로 왼쪽 방향과 오른쪽 방향의 회전에 대한 각각의 민감도를 최적화하는 자기-자이로 유도 장치를 위한 자이로의 민감도 최적화 방법에 관한 것이다.The present invention relates to a method for optimizing the sensitivity of a gyro for a self-gyro guiding device, in particular, in a system for measuring a gyro mounted on a moving object in order to optimize the sensitivity of a gyro that varies according to the installed position gradient and the performance of a measurement system. The present invention relates to a method for optimizing sensitivity of a gyro for a self-gyro guiding apparatus that optimizes respective sensitivity to rotations in a left direction and a right direction by an optimization technique.
일반적으로, MEMS(Micro Electro Mechanical System)형 자이로는 기존의 유체식과 광파이버, 링레이저 방식의 자이로들에 비해 소형 저전력이며 무엇보다 가격이 매우 저렴하다. In general, MEMS (Micro Electro Mechanical System) type gyro is smaller, lower power, and more expensive than conventional fluid, optical fiber and ring laser gyros.
이에, 각속도 값을 계측하는 대부분의 시스템에서는 MEMS형 자이로가 주로 사용된다.Therefore, in most systems measuring angular velocity values, MEMS gyro is mainly used.
하지만, MEMS형 자이로는 다른 방식의 자이로들에 비해 드리프트(drift)와 직선성, 각속도 정밀도가 크게 떨어진다. However, MEMS-type gyros have significantly less drift, linearity, and angular velocity accuracy than other gyros.
그래서, 자이로의 민감도 정밀도를 높이기 위한 많은 종래의 발명들이 이루어졌다. Thus, many conventional inventions have been made to increase the sensitivity precision of the gyro.
종래의 대표적인 MEMS형 자이로의 민감도 보정 발명으로는 자이로의 각속도의 평균값을 이용하는 방법이다.In a sensitivity correction invention of a typical representative MEMS gyro, a method using an average value of the gyro's angular velocity is used.
이는, 특정 시간 동안에 자이로를 일정 각도로 회전 시키고 측정된 회전각을 누적하여 계산된 평균 각속도 값으로 회전 각도에 대응하는 가중치를 선택하는 방법이다.This is a method of selecting a weight corresponding to the rotation angle with the average angular velocity value calculated by rotating the gyro at a certain angle and accumulating the measured rotation angle for a specific time.
하지만, 평균 각속도를 이용하는 방법은 자이로가 탑재된 상황이나 시스템의 영향을 전혀 고려하지 못하기 때문에 탑재되는 시스템에 따라 정밀도가 달라진다.However, since the method using the average angular velocity does not consider the influence of the gyro or the system at all, the precision varies depending on the system to be mounted.
또한, 평균 각속도 값으로 자이로의 민감도를 계산하기 때문에 정확한 민감도 값을 계산할 수 없었다.In addition, since the sensitivity of the gyro is calculated from the average angular velocity value, the exact sensitivity could not be calculated.
이에, 기본 시스템 이외의 별도의 기구물인 회전 장치를 이용하여 자이로의 민감도를 최적화하는 방법이 발명되었다.Thus, a method of optimizing the sensitivity of the gyro by using a rotating device other than the basic system was invented.
하지만, 별도의 기구물을 이용해야함으로 비용이 올라가고 부피가 커지는 문제가 있었다.However, there is a problem that the cost increases and bulky to use a separate device.
그래서, 자이로가 탑재된 이동체를 직접 회전시켜 자이로의 민감도를 보정하는 방법이 발명되었다.Thus, a method of correcting the sensitivity of a gyro by directly rotating a moving body mounted with a gyro has been invented.
이는, 이동체를 직접 회전시켜 자이로로 계측된 각속도의 특성 곡선을 계산하여 민감도를 계산하는 방법으로, 특성 곡선을 계산해야함으로 연산량이 많아 높은 비용의 마이컴(Microcontroller Unit: MCU)을 이용해야하고 이동체의 절대 각도를 계측하기 위해 별도의 장치가 필요했다.This method is to calculate the sensitivity by calculating the characteristic curve of the angular velocity measured by the gyro by directly rotating the moving object, and it is necessary to use a high-cost microcontroller unit (MCU) because of the large amount of computation because the characteristic curve has to be calculated. A separate device was needed to measure absolute angles.
또한, 종래의 방법들은 한 쪽 방향의 자이로 민감도만을 보정함으로 회전 방향에 따른 각속도 오차가 존재하였다. In addition, the conventional methods have an angular velocity error according to the rotation direction by correcting only the gyro sensitivity in one direction.
본 발명은 상기한 문제점을 해결하기 위해 개발된 것으로, 이동체에 탑재된 자이로의 위치 기울기와 계측 시스템의 특성을 포함되도록 자이로의 계측 시스템 상에서 자이로의 민감도를 최적화할 수 있도록 하는 자기-자이로 유도 장치를 위한 자이로의 민감도 최적화 방법을 제공하는데 그 목적이 있다.The present invention has been developed to solve the above problems, a magnetic-gyro guidance device for optimizing the sensitivity of the gyro on the gyro measurement system to include the position of the gyro mounted on the moving object and the characteristics of the measurement system The purpose of the present invention is to provide a method for optimizing sensitivity of the gyro.
또 다른 목적은, 자기-자이로 유도형 무인운반차 이외에 별도의 기구물과 별도의 절대각도 계측 장치 없이 자이로의 민감도를 최적화할 수 있도록 하는 자기-자이로 유도 장치를 위한 자이로의 민감도 최적화 방법을 제공하는데 있다.It is another object of the present invention to provide a gyro sensitivity optimization method for a gyro guiding device that can optimize the sensitivity of a gyro without a separate instrument and an absolute angle measuring device in addition to the self-gyro guideless unmanned vehicle. .
이러한 목적을 달성하기 위한 본 발명에 따른 자기-자이로 유도 장치를 위한 자이로의 민감도 최적화 방법은,Gyro sensitivity optimization method for a self-gyro guiding apparatus according to the present invention for achieving the above object,
이동체에 대한 양측 바퀴의 각속도를 각기 계측하는 제1, 2 엔코더와 차체의 각속도 계측을 위한 자이로로 주행 유도하는 자기-자이로 유도 장치를 위한 자이로의 민감도 최적화 방법에 있어서,In the sensitivity optimization method of the gyro for the first and second encoders for measuring the angular velocity of both wheels relative to the moving body and the self-gyro guidance device for driving the gyro for measuring the angular velocity of the vehicle body,
상기 이동체의 제1 방향 주행시, 상기 제1, 2 엔코더에 의해 산출된 이동체 각도가 설정 각도로 회전이 완료된 경우, 누적된 자이로의 출력 값과 상기 설정 각도 및 하기의 [수학식 1]로 얻어지는 각도 오차의 평균 값이 가장 작은 자이로 민감도의 이진 스트링을 구하는 단계;When the moving body angles calculated by the first and second encoders have completed rotation at the set angle when the moving body is driven in the first direction, the output value of the accumulated gyro, the set angle, and the angle obtained by Equation 1 below Obtaining a binary string of gyro sensitivity having a smallest mean value of the errors;
수학식 1
Figure PCTKR2013006942-appb-M000001
Equation 1
Figure PCTKR2013006942-appb-M000001
Figure PCTKR2013006942-appb-I000001
Figure PCTKR2013006942-appb-I000001
여기서, f(x)는 각도 오차의 평균 값, TD는 설정 각도, x는 누적된 자이로의 출력 값, N은 누적된 자이로의 데이터 개수, O(또는, fd(bm-1bm-2 ···b1b0)는 민감도, b는 이진 스트링. Where f (x) is the mean value of the angle error, TD is the set angle, x is the output value of the accumulated gyro, N is the number of data of the accumulated gyro, O (or, f d (b m-1 b m- B ... b 1 b 0 ) is the sensitivity and b is the binary string.
상기 구해진 이진 스트링의 길이는 고정시키고 탐색 방향에 따라 값을 가변시켜가면서 하기의 [수학식 2]로 상기 제1 방향에서의 자이로의 최적의 민감도를 산출하는 단계를 포함하여 이루어진 것을 특징으로 한다.Comprising a fixed length of the obtained binary string and varying the value according to the search direction to calculate the optimal sensitivity of the gyro in the first direction by the following equation (2).
수학식 2
Figure PCTKR2013006942-appb-M000002
Equation 2
Figure PCTKR2013006942-appb-M000002
Figure PCTKR2013006942-appb-I000002
Figure PCTKR2013006942-appb-I000002
여기서, f(x)는 각도 오차의 평균 값, TD는 설정 각도, x는 누적된 자이로의 출력 값, N은 누적된 자이로의 데이터 개수, O(또는, fd(bm-1bm-2 ···b1b0)는 민감도, b는 이진 스트링. Where f (x) is the mean value of the angle error, TD is the set angle, x is the output value of the accumulated gyro, N is the number of data of the accumulated gyro, O (or, f d (b m-1 b m- B ... b 1 b 0 ) is the sensitivity and b is the binary string.
바람직하게, 상기 산출한 자이로의 최적의 민감도와 설정 각도 회전시켜서 나온 자이로의 출력 값을 승산(×)시켜 자이로 계측 각도를 구하는 단계 및, 상기 설정 각도에서 자이로 계측 각도를 감산시켜 나온 각도 오차가 설정 문턱치를 초과한 경우 상기 제1 방향에서의 자이로의 최적의 민감도를 다시 산출하도록 하고, 상기 설정 각도에서 자이로 계측 각도를 감산시켜 나온 각도 오차가 설정 문턱치 이하인 경우 해당 자이로의 최적의 민감도를 상기 제1 방향에서의 최적의 민감도로 최종 설정하는 단계를 더 포함하여 이루어진 것을 특징으로 한다.Preferably, calculating the gyro measurement angle by multiplying (x) the output value of the gyro obtained by rotating the optimal sensitivity and the set angle by the calculated gyro, and the angle error obtained by subtracting the gyro measurement angle from the set angle is set. When the threshold value is exceeded, the optimum sensitivity of the gyro in the first direction is calculated again, and when the angle error obtained by subtracting the gyro measurement angle from the set angle is less than or equal to the set threshold, the optimal sensitivity of the gyro is determined. And further setting the final sensitivity to the optimum sensitivity in the direction.
그리고, 상기 설정 각도에서 자이로 계측 각도를 감산시켜 나온 각도 오차가 설정 문턱치 미만인 경우,And, when the angle error obtained by subtracting the gyro measurement angle from the set angle is less than the set threshold,
상기 이동체의 제2 방향에서의 최적의 민감도를 산출하되,Calculate an optimum sensitivity in the second direction of the moving body,
상기 산출은,The calculation is,
상기 이동체의 제2 방향 주행시, 상기 제1, 2 엔코더에 의해 산출된 이동체 각도가 설정 각도로 회전이 완료된 경우, 누적된 자이로의 출력 값과 상기 설정 각도 및 하기의 [수학식 3]로 얻어지는 각도 오차의 평균 값이 가장 작은 자이로 민감도의 이진 스트링을 구하는 단계;When the moving body angles calculated by the first and second encoders are completed at the set angle when the moving body is driven in the second direction, the output value of the accumulated gyro, the set angle, and the angle obtained by Equation 3 below Obtaining a binary string of gyro sensitivity having a smallest mean value of the errors;
수학식 3
Figure PCTKR2013006942-appb-M000003
Equation 3
Figure PCTKR2013006942-appb-M000003
Figure PCTKR2013006942-appb-I000003
Figure PCTKR2013006942-appb-I000003
여기서, f(x)는 각도 오차의 평균 값, TD는 설정 각도, x는 누적된 자이로의 출력 값, N은 누적된 자이로의 데이터 개수, O(또는, fd(bm-1bm-2 ···b1b0)는 민감도, b는 이진 스트링. Where f (x) is the mean value of the angle error, TD is the set angle, x is the output value of the accumulated gyro, N is the number of data of the accumulated gyro, O (or, f d (b m-1 b m- B ... b 1 b 0 ) is the sensitivity and b is the binary string.
상기 구해진 이진 스트링의 길이는 고정시키고 탐색 방향에 따라 값을 가변시켜가면서 하기의 [수학식 4]로 상기 제2 방향에서의 자이로의 최적의 민감도를 산출하는 단계를 포함하여 이루어진 것을 특징으로 한다.Calculating the optimal sensitivity of the gyro in the second direction by the following Equation 4 while fixing the length of the obtained binary string and varying the value according to the search direction.
수학식 4
Figure PCTKR2013006942-appb-M000004
Equation 4
Figure PCTKR2013006942-appb-M000004
Figure PCTKR2013006942-appb-I000004
Figure PCTKR2013006942-appb-I000004
여기서, f(x)는 각도 오차의 평균 값, TD는 설정 각도, x는 누적된 자이로의 출력 값, N은 누적된 자이로의 데이터 개수, O(또는, fd(bm-1bm-2 ···b1b0)는 민감도, b는 이진 스트링. Where f (x) is the mean value of the angle error, TD is the set angle, x is the output value of the accumulated gyro, N is the number of data of the accumulated gyro, O (or, f d (b m-1 b m- B ... b 1 b 0 ) is the sensitivity and b is the binary string.
본 발명은 다음과 같은 효과를 갖는다.The present invention has the following effects.
첫 번째로, 자이로의 계측 시스템상에서 자이로의 민감도를 최적화함으로 자이로가 설치된 환경 및 계측 시스템의 특성을 포함하여 정확한 자이로의 민감도를 계산할 수 있다. First, by optimizing the sensitivity of the gyro on the gyro measurement system, accurate sensitivity of the gyro can be calculated, including the environment of the gyro and the characteristics of the measurement system.
두 번째로, 저성능의 마이컴에서도 강인하게 최적화시킬 수 있는 동부호화 최적화 기법을 이용함으로 적은 비용으로 높은 정밀도의 자이로 시스템을 구현할 수 있다. Secondly, it is possible to implement a high-precision gyro system at a low cost by using the eastern encryption optimization technique that can be robustly optimized even in a low-performance microcomputer.
세 번째로, 자이로의 민감도를 오른쪽과 왼쪽 회전 방향에 각각 최적화하여 방향에 상관없이 정확한 각속도를 계측할 수 있다.Third, the gyro's sensitivity can be optimized for right and left rotations, respectively, to measure accurate angular velocities regardless of direction.
도 1은 본 발명에 따른 자기-자이로 유도형 무인운반차의 구성을 도시한 도면1 is a view showing the configuration of a self-gyro guided unmanned vehicle according to the present invention
도 2는 본 발명에 따른 자이로 민감도 최적화 방법을 순서대로 도시한 플로우 챠트2 is a flowchart illustrating a gyro sensitivity optimization method according to the present invention in order
도 3은 본 발명에 따른 동부호화 최적화 기법을 순서대로 도시한 플로우 챠트Figure 3 is a flow chart showing in order the eastern call optimization technique according to the present invention
도 4는 본 발명에 따른 BSS(Bisectional Search) 절차를 순서대로 도시한 플로우 챠트4 is a flowchart illustrating a sequence of Bisectional Search (BSS) procedures according to the present invention.
도 5는 본 발명에 따른 UDS 절차를 순서대로 도시한 플로우 챠트5 is a flow chart showing the UDS procedure in order according to the present invention
* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings
1 : 자기-자이로 유도형 무인운반차 2 : 몸체1: self-gyro guided unmanned vehicle 2: body
3 : 바퀴 10 : 제어시스템3: wheel 10: control system
11 : 마이컴 12 : 자기 위치측정 센서11: microcomputer 12: magnetic positioning sensor
13 : 엔코더 14 : 자이로13: encoder 14: gyro
이하, 첨부된 도면을 참조하여 본 발명을 설명한다.Hereinafter, with reference to the accompanying drawings will be described the present invention.
다만, 이하에서 설명되는 실시 예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 쉽게 실시할 수 있을 정도로 상세하게 설명하기 위한 것에 불과하며, 이로 인해 본 발명의 보호범위가 한정되는 것을 의미하지는 않는다.However, the embodiments described below are merely to describe in detail enough to be able to easily carry out the invention by those skilled in the art to which the present invention pertains, and this is because the scope of protection of the present invention is limited. It does not mean.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.In order to clearly describe the present invention, parts irrelevant to the description are omitted and like reference numerals denote like parts throughout the specification.
명세서 및 청구범위 전체에서, 어떤 부분이 어떤 구성 요소를 포함한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 포함할 수 있는 것을 의미한다.Throughout the specification and claims, when a part includes a certain component, it means that it may include other components, not to exclude other components unless specifically stated otherwise.
도 1은 본 발명에 따른 자기-자이로 유도형 무인운반차의 구성을 도시한 도면이다.1 is a diagram illustrating a configuration of a self-gyro guided unmanned vehicle according to the present invention.
도 1에 도시된 바와 같이, 본 발명에 따른 자기-자이로 유도형 무인운반차(1)는 크게, 몸체(2)와 바퀴(3), 제어시스템(10)으로 구성되고, 제어시스템(10)은 다시 모터들과 센서들을 제어 및 계측하는 마이컴(11)과 바닥에 매설된 원통형 자석의 위치를 계측하는 자기 위치측정 센서(12), 바퀴의 각속도를 계측하는 엔코더(13) 및, 차체의 각속도 계측을 위한 자이로(14)로 구성된다.As shown in FIG. 1, the self-gyro guiding unmanned vehicle 1 according to the present invention is largely composed of a body 2, a wheel 3, and a control system 10, and a control system 10. Is again a microcomputer 11 for controlling and measuring motors and sensors, a magnetic positioning sensor 12 for measuring the position of a cylindrical magnet embedded in the floor, an encoder 13 for measuring the angular velocity of the wheel, and an angular velocity of the vehicle body. It consists of a gyro 14 for measurement.
이렇게 구성된 자기-자이로 유도형 무인운반차(1)는 엔코더(13)와 자이로(14)로 계측 및 계산된 각속도를 이용하여 유도되다가, 자기 위치측정 센서(12)가 바닥에 매설된 원통형 자석을 계측하면 이를 통해 무인운반차(1)의 위치와 각도를 보정하는 방식이다.The self-gyro guiding unmanned vehicle 1 thus constructed is guided by using the angular velocity measured and calculated by the encoder 13 and the gyro 14, and the magnetic positioning sensor 12 embeds the cylindrical magnet embedded in the floor. When measured, it is a way to correct the position and angle of the unmanned vehicle (1).
이는, 원통형 자석을 바닥에 드문드문 매설하면 되기 때문에 다른 유도 방식들에 비해 설치 및 유지보수가 매우 쉽다는 장점이 있다.This has the advantage of being very easy to install and maintain compared to other induction methods because the sparse buried cylindrical magnet on the floor.
하지만, 자이로의 성능이 좋지 않으면 원통형 자석 간의 거리가 좁아지게 되어 원통형 자석을 바닥에 많이 설치해야함으로 자기-자이로 유도 방식 자체가 무의미하게 된다. However, if the performance of the gyro is not good, the distance between the cylindrical magnets becomes narrow, so that many cylindrical magnets need to be installed on the floor, so the self-gyro induction method itself is meaningless.
이에, 다른 방식의 자이로들에 비해 드리프트와 직선성, 각속도 정밀도가 크게 떨어지는 MEMS형 자이로의 민감도 보정이 매우 중요하다.Therefore, sensitivity correction of the MEMS type gyro, which has much lower drift, linearity, and angular velocity accuracy than other gyros, is very important.
도 2는 본 발명에 따른 자이로의 민감도 최적화 방법의 절차 흐름을 순서대로 도시한 도면이다.2 is a flowchart illustrating a procedure flow of a gyro sensitivity optimization method according to the present invention in order.
도 2에 도시된 바와 같이, 본 발명은 먼저, 자기-자이로 유도형 무인운반차(1)가 오른쪽으로 주행하면(S101), 무인운반차(1)의 모터에 설치된 엔코더(13)로 무인운반차(1)의 각도를 계산하고(S102), 자이로(14)의 출력을 누적시킨다(S103).As shown in Figure 2, the present invention, first, when the self-gyro guided unmanned vehicle 1 travels to the right (S101), unmanned transport with an encoder 13 installed in the motor of the unmanned vehicle (1) The angle of the difference 1 is calculated (S102), and the output of the gyro 14 is accumulated (S103).
다음, 계산된 무인운반차(1)의 각도가 설정 각도(TD)로 회전이 완료되면(S104), 무인운반차(1)는 정지하고(105) 누적된 자이로의 출력과 설정각도(TD)를 토대로 동부호화 최적화 기법을 이용하여 오른쪽 방향의 자이로 민감도(S r )을 찾는다(S200).Next, when the calculated angle of the unmanned vehicle 1 is completed to rotate the set angle ( TD ) (S104), the unmanned vehicle (1) is stopped (105) and the output of the accumulated gyro and the set angle ( TD ) The gyro sensitivity ( S r ) in the right direction is found by using the eastern encryption optimization technique (S200).
그리고, 찾아진 자이로의 민감도(S r )로 각도 오차(E sr )를 계산하고(S106) 문턱치(T)를 초과하면(S107) 다시 동부호화 최적화 기법으로 오른쪽 방향의 자이로 민감도(S r )을 찾는다(S200).Then, calculate the angular error ( E sr ) by the sensitivity of the found gyro ( S r ) (S106) and if the threshold ( T ) is exceeded (S107), the gyro sensitivity ( S r ) of the right direction is again determined by the eastern encryption optimization technique. Find (S200).
즉, 찾아진 자이로의 최적의 민감도와 설정 각도 회전시켜서 나온 자이로의 출력 값을 승산(×)시켜 자이로 계측 각도를 구한 다음, 상기 설정 각도에서 자이로 계측 각도를 감산시켜 나온 각도 오차가 설정 문턱치를 초과한 경우 오른쪽 방향에서의 자이로의 최적의 민감도를 다시 산출하도록 한다(S200). That is, the gyro measurement angle is obtained by multiplying (x) the output value of the gyro obtained by rotating the set gyro with the optimum sensitivity of the found gyro, and the angle error obtained by subtracting the gyro measurement angle from the set angle exceeds the set threshold. In one case, the optimal sensitivity of the gyro in the right direction is calculated again (S200).
반면, 상기 설정 각도에서 자이로 계측 각도를 감산시켜 나온 각도 오차가 설정 문턱치 이하인 경우에는 해당 자이로의 최적의 민감도를 오른쪽 방향에서의 최적의 민감도로 최종 설정한다.On the other hand, when the angle error obtained by subtracting the gyro measurement angle from the set angle is less than the set threshold, the optimum sensitivity of the gyro is finally set to the optimum sensitivity in the right direction.
다음, 각도 오차(E sr )가 문턱치(T) 이하이면(S107) 무인운반차는 왼쪽 주행을 시작(S108)하고, 무인운반차(1)의 모터에 설치된 엔코더(13)로 무인운반차(1)의 각도를 계산하면서(S109) 자이로(14)의 출력을 누적시킨다(S110).Next, when the angle error E sr is equal to or less than the threshold T (S107), the unmanned vehicle starts to drive on the left side (S108), and the unmanned vehicle (1) is installed by the encoder 13 installed in the motor of the unmanned vehicle (1). While calculating the angle of (S109) accumulates the output of the gyro 14 (S110).
계산된 무인운반차(1)의 각도가 설정 각도(TD)로 회전이 완료되면(S111), 무인운반차(1)는 정지하고(112) 누적된 자이로의 출력과 설정각도(TD)를 토대로 동부호화 최적화 기법을 이용하여 왼쪽 방향의 자이로 민감도(S l )을 찾는다(S210).When rotation of the calculated unmanned vehicle 1 is completed by the set angle TD (S111), the unmanned vehicle 1 is stopped (112) and based on the accumulated output of the gyro and the set angle ( TD ). The gyro sensitivity ( S l ) of the left direction is found by using the eastern encryption optimization technique (S210).
그리고, 찾아진 자이로의 민감도(S l )로 각도 오차(E sl )를 계산하고(S113) 문턱치(T)를 초과하면(S114) 다시 동부호화 최적화 기법으로 왼쪽 방향의 자이로 민감도(S r )을 찾는다(S210).Then, calculate the angular error ( E sl ) by the sensitivity of the found gyro ( S l ) (S113) and if exceeding the threshold ( T ) (S114) again, the gyro sensitivity ( S r ) of the left direction by the eastern encryption optimization technique. Find (S210).
즉, 찾아진 자이로의 최적의 민감도와 설정 각도 회전시켜서 나온 자이로의 출력 값을 승산(×)시켜 자이로 계측 각도를 구한 다음, 상기 설정 각도에서 자이로 계측 각도를 감산시켜 나온 각도 오차가 설정 문턱치를 초과한 경우 왼쪽 방향에서의 자이로의 최적의 민감도를 다시 산출하도록 한다(S210). That is, the gyro measurement angle is obtained by multiplying (x) the output value of the gyro obtained by rotating the set gyro with the optimum sensitivity of the found gyro, and the angle error obtained by subtracting the gyro measurement angle from the set angle exceeds the set threshold. In one case, the optimal sensitivity of the gyro in the left direction is calculated again (S210).
반면, 상기 설정 각도에서 자이로 계측 각도를 감산시켜 나온 각도 오차가 설정 문턱치 이하인 경우에는 해당 자이로의 최적의 민감도를 왼쪽 방향에서의 최적의 민감도로 최종 설정한다.On the other hand, if the angle error obtained by subtracting the gyro measurement angle from the set angle is less than the set threshold, the optimum sensitivity of the gyro is finally set to the optimum sensitivity in the left direction.
만약, 각도오차(E sr )가 문턱치(T) 이하이면(S114) 자이로의 민감도 최적화는 끝이 나게 된다.If the angular error E sr is less than or equal to the threshold T (S114), the optimization of the sensitivity of the gyro ends.
도 3은 본 발명에 따른 동부호화 최적화 기법을 이용한 자이로의 민감도 사산출(S200, S210) 방법의 전체 흐름도를 보여준다.Figure 3 shows the entire flow chart of the method of calculating the gyro sensitivity (S200, S210) using the eastern call optimization method according to the present invention.
먼저, 본 발명은 자이로의 민감도 최적화를 시작하게 되면 수행횟수(t)를 카운트하고(S211) 전역위치에서 무작위로 탐색 위치를 선택하게 된다(S212).First, when the sensitivity optimization of the gyro starts, the present invention counts the number of executions t (S211) and randomly selects a search position from the global position (S212).
다음, 선택된 시작 위치가 히스토리에 중첩되는지를 확인하고(S213), 중첩이라면 다시 전역위치에서 무작위로 새로운 탐색 시작 위치를 선택하게 된다(S212).Next, it is checked whether the selected starting position overlaps the history (S213), and if overlapping, a new search starting position is randomly selected from the global position again (S212).
만약, 중첩이 되지 않는다면 BSS(bisectional search) 단계를 통해 선택된 탐색 위치에서 서로 상반된 이웃 탐색 위치들을 생성하고 생성된 이웃의 값으로 계산된 목적 함수 값을 비교하여 최적 해를 도출한다(S300).If there is no overlap, the optimal solution is derived by generating neighbor search positions that are opposite to each other in the selected search position through a bisectional search (BSS) step and comparing the calculated objective function value with the generated neighbor value (S300).
다음, 최적해가 도출되면 목적 함수의 값이 최적이 될 때까지 증가 및 감소를 수행하여 주변 지역을 탐색하는 UDS 단계(S400)를 거치게 된다.Next, when the optimal solution is derived, the UDS step (S400) of searching for the surrounding area is performed by increasing and decreasing until the value of the objective function becomes optimal.
UDS 단계(S400)가 끝나면 수행횟수(t)가 반복횟수(n) 만큼 수행되었는지를 확인하고(S214) 반복횟수(n)만큼 수행횟수(t)가 되지 않았다면 히스토리에 탐색 시작 위치를 추가하고(S215) 다시 처음부터 반복 수행하게 된다.After the UDS step (S400), check whether the number of executions ( t ) has been performed by the number of repetitions ( n ) (S214). If the number of executions ( t ) has not been performed by the number of repetitions ( n ), add a search start position to the history ( S215) is repeated again from the beginning.
만약, 수행횟수(t)가 반복횟수(n)만큼 수행되었다면 자이로의 민감도 탐색이 완료된다.If the number of executions t is performed by the number of repetitions n , the sensitivity search of the gyro is completed.
BSS 단계(S300)는 이진 스트링의 최하위비트(least significant bit: LSB)에 0을 붙여 복호화하면 실수 값이 감소하고, 1을 붙여 복호화하면 실수 값이 증가하는 특성을 이용하여 최적 해를 찾는 지역 탐색 기법에 해당한다.In the BSS step S300, a local search for an optimal solution is found by using a characteristic in which a real value decreases when a decoding is performed by attaching 0 to a least significant bit (LSB) of a binary string, and a real value increases when a decoding is performed by attaching a 1. Corresponds to the technique.
도 4는 본 발명에 따른 BSS 단계의 흐름도를 보여준다.4 shows a flowchart of a BSS step in accordance with the present invention.
먼저, 탐색 위치 이외의 이진 스트링 데이터를 초기화 하고(S301) 탐색 위치에 해당하는 이진 스트링의 최하위비트에 0과 1을 추가하여 2 n 개의 이웃 탐색 위치를 생성한다(S302).First, binary string data other than the search position is initialized (S301) and 2 n neighbor search positions are generated by adding 0 and 1 to the least significant bit of the binary string corresponding to the search position (S302).
그리고 생성된 이웃 탐색 위치에 해당하는 이진 스트링을 만들기 위해 [수학식 5과 같이 복호화(deconding)를 수행한다(S303).In order to create a binary string corresponding to the generated neighbor search position, decoding is performed as shown in Equation 5 (S303).
수학식 5
Figure PCTKR2013006942-appb-M000005
Equation 5
Figure PCTKR2013006942-appb-M000005
여기서, O(또는, fd(bm-1bm-2 ···b1b0)는 민감도, b는 이진 스트링이다.Here, O (or f d (b m-1 b m-2 ... B 1 b 0 ) is sensitivity and b is a binary string.
다음, 복호화된 값(O)을 [수학식 6]와 같은 목적 함수에 대입하여 비용 함수(cost function)을 계산한다(S304).Next, a cost function is calculated by substituting the decoded value O into an objective function as shown in Equation 6 (S304).
수학식 6
Figure PCTKR2013006942-appb-M000006
Equation 6
Figure PCTKR2013006942-appb-M000006
여기서, f(x)는 각도 오차의 평균 값, TD는 설정 각도, x는 누적된 자이로의 출력 값, N은 누적된 자이로의 데이터 개수를 나타낸다.Here, f (x) represents an average value of the angular error, TD represents a set angle, x represents an output value of the accumulated gyro, and N represents the number of accumulated gyro data.
다음, 비용 함수를 통해 계산된 비용 값들은 서로 비교되어(S305), 최종적으로 가장 작은 값을 최적 해로 선택하게 된다(S306).Next, the cost values calculated through the cost function are compared with each other (S305), and finally the smallest value is selected as the optimal solution (S306).
그래서, 각도 오차의 평균 값이 가장 작은 자이로 민감도의 이진 스트링을 구하게 된다.Thus, a binary string of gyro sensitivity having the smallest mean value of the angular error is obtained.
도 5는 본 발명에 따른 UDS 단계의 흐름도를 보여준다.5 shows a flowchart of the UDS step according to the present invention.
상기 UDS 단계는 상기 BSS 단계를 통해 구해진 이진 스트링의 길이는 고정시키고, 탐색 방향에 따라 값을 가변시켜가면서 해당 방향에서의 자이로의 최적의 민감도를 산출하는 것이다.The UDS step is to calculate the optimal sensitivity of the gyro in the corresponding direction while fixing the length of the binary string obtained through the BSS step and varying the value according to the search direction.
구체적으로는 다음과 같다.Specifically, it is as follows.
먼저, BSS 단계(S300)는 스트링의 길이를 변화시켜 최적 해를 찾는 집중 탐색이라면, UDS 단계(S400)는 스트링의 길이를 변화시키지 않고 넓은 범위를 탐색하는 광역 탐색의 특성을 갖는다. First, if the BSS step S300 is a concentrated search for finding an optimal solution by changing the length of the string, the UDS step S400 has a feature of a wide area search for searching a wide range without changing the length of the string.
UDS 단계(S400)는 BSS 단계(S300)와 달리, 이진 스트링의 길이가 고정되어 있으며 더 이상 비용 값이 줄어들지 않을 때까지 반복 수행된다.Unlike the BSS step S300, the UDS step S400 is repeatedly performed until the length of the binary string is fixed and the cost value no longer decreases.
UDS 단계(S400)는 먼저 이진 스트링 데이터를 초기화 하고(S401) 한계(limit)되었는지를 확인한다(S402). The UDS step (S400) first initializes binary string data (S401) and checks whether or not a limit (S402).
한계의 확인 단계(S402)는 이진 스트링이 표현할 수 있는 최대와 최소를 제외시키는 작업으로 일련의 이진 스트링에서 행 전체가 모두 0 혹은 1인 스트링을 찾아서 UDS 단계(S400)에서 제외시키는 것이다.The step of checking the limit (S402) is to exclude the maximum and minimum that the binary string can represent, and to find a string having all zeros or ones in the series of binary strings and excludes it from the UDS step (S400).
만약, 한계 위치에 탐색 위치가 있다면(S402) UDS 단계(S400)는 종료되고 그렇지 않다면(S402) 중첩(overlap)되었는지를 확인한다(S403).If there is a search position at the limit position (S402), the UDS step S400 is terminated, otherwise (S402) it is checked whether the overlap (S403).
중첩의 확인 단계(S403)는 한 번 계산 되었던 탐색 위치를 탐색에서 제외하는 것으로 이전 최적해와 탐색해야하는 최적 탐색 위치의 값을 비교한다. The step of confirming the overlapping step (S403) excludes the search position, which has been calculated once, and compares the value of the previous optimal solution with the optimal search position to be searched.
만약, 탐색 위치가 중첩되었다면(S403) UDS 단계(S400)는 종료되고 그렇지 않다면(S403) 상기 [수학식 5]을 통해 복호화를 수행한다(S404). If the search positions overlap (S403), the UDS step S400 is terminated, otherwise (S403), decoding is performed through Equation 5 (S404).
그리고, 복호화된 값을 [수학식 6]에 넣어 비용 값(O t )을 계산한다(S405).Then, the decoded value is put into Equation 6 to calculate the cost value O t (S405).
만약, 계산된 비용 값(O t )이 이전에 계산된 비용 값(O t-1 )보다 크다면(S408) 현재 탐색 위치의 이진 스트링의 길이를 고정하여 다른 탐색 위치를 선택하게 하고(S409), 한계의 확인 단계(S402)로 다시 돌아가게 된다.If the calculated cost value ( O t ) is greater than the previously calculated cost value ( O t-1 ) (S408), the length of the binary string of the current search position is fixed to select another search position (S409). , The process returns to the step of checking the limit (S402).
만약, 계산된 비용 값(O t )이 이전에 계산된 비용 값(O t-1 )보다 작다면(S408) UDS 단계(S400)은 완료되게 된다.If the calculated cost value O t is smaller than the previously calculated cost value O t-1 (S408), the UDS step S400 is completed.
이상과 같이, 비선형 최적화 문제의 해결 방법을 제시하는 동부호화 최적화 기법은 미분을 사용하여 목적 함수의 최적해를 찾는 다른 최적기법들과는 달리, 잘 계획된 컴퓨터 연산만을 이용하여 지역 및 전역 최적해를 찾아준다.As described above, the eastern optimization method that proposes the solution of the nonlinear optimization problem finds the local and global optimal solutions using only well-planned computer operations, unlike other optimal methods that find the optimal solution of the objective function using differentials.
자이로의 민감도 값을 최적으로 탐색하기 위해서는 이동체에 설치된 자이로의 위치 기울기와 계측 시스템의 특성을 반영하기 위해 계측 시스템 위에서 최적화 기법을 사용해야한다.In order to optimally detect the gyro sensitivity value, an optimization technique should be used on the measurement system to reflect the position gradient of the gyro installed in the moving object and the characteristics of the measurement system.
하지만, 기존의 최적화 방법들은 고차 미분 연산을 수행해야함으로 연산 오차가 커지고 높은 비용의 마이컴을 이용해야한다. However, the existing optimization methods have to perform higher-order differential calculations, resulting in large computational errors and high cost of microcomputers.
이에, 동부호화 최적화 기법을 이용한 자이로의 민감도 최적화 방법은 최적해를 이진수로 표현함으로 소스코드가 최적화되어 낮은 사양의 마이컴에서도 강인하고 빠르게 최적해의 탐색이 가능하다.Therefore, the sensitivity optimization method of the gyro using the eastern encryption optimization method expresses the optimal solution in binary, so that the source code is optimized, so that the optimal solution can be searched robustly and quickly even in the low specification microcomputer.
이는, 비용을 줄일 뿐만 아니라 시스템을 강인하게 설계할 수 있으며 이동체에 설치된 자이로의 특성을 모두 반영하여 최적화된 자이로의 민감도를 탐색할 수 있다.This not only reduces costs, but also makes it possible to design the system robustly and to explore the sensitivity of the optimized gyro reflecting all the characteristics of the gyro installed in the moving object.
또한, 오른쪽 방향과 왼쪽 방향의 민감도를 최적화 기법으로 각각 탐색하여 방향에 상관없이 높은 정밀도의 자이로 시스템을 구현할 수 있다.In addition, the sensitivity of the right direction and the left direction can be searched by the optimization technique, respectively, to realize a high precision gyro system regardless of the direction.
이상에서의 설명에서와 같이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 본 발명이 구현되어 있음을 이해할 수 있을 것이다.It will be understood that the present invention is implemented in a modified form without departing from the essential features of the present invention as described above.
그러므로 명시된 실시 예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 하고, 본 발명의 범위는 전술한 설명이 아니라 특허청구 범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.Therefore, the described embodiments should be considered in descriptive sense only and not for purposes of limitation, and the scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the equivalent scope are included in the present invention. It should be interpreted.
본 발명은 자기-자이로 유도 장치를 위한 자이로의 민감도 최적화 방법에 관한 것으로, 특히 설치된 위치 기울기와 계측 시스템의 성능에 따라 변하는 자이로의 민감도를 최적화하기 위해서 이동체에 탑재된 자이로를 계측하는 시스템상에서 동부호화 최적화 기법으로 왼쪽 방향과 오른쪽 방향의 회전에 대한 각각의 민감도를 최적화하는 자기-자이로 유도 장치를 위한 자이로의 민감도 최적화 방법에 사용된다.The present invention relates to a method for optimizing the sensitivity of a gyro for a self-gyro guiding device, in particular, in a system for measuring a gyro mounted on a moving object in order to optimize the sensitivity of a gyro that varies according to the installed position gradient and the performance of a measurement system. As an optimization technique, it is used in the gyro sensitivity optimization method for the self-gyro guiding device which optimizes the respective sensitivity to rotation in the left direction and the right direction.

Claims (3)

  1. 이동체에 대한 양측 바퀴의 각속도를 각기 계측하는 제1, 2 엔코더와 차체의 각속도 계측을 위한 자이로로 주행 유도하는 자기-자이로 유도 장치를 위한 자이로의 민감도 최적화 방법에 있어서,In the sensitivity optimization method of the gyro for the first and second encoders for measuring the angular velocity of both wheels relative to the moving body and the self-gyro guidance device for driving the gyro for measuring the angular velocity of the vehicle body,
    상기 이동체의 제1 방향 주행시, 상기 제1, 2 엔코더에 의해 산출된 이동체 각도가 설정 각도로 회전이 완료된 경우, 누적된 자이로의 출력 값과 상기 설정 각도 및 하기의 [수학식 7]로 얻어지는 각도 오차의 평균 값이 가장 작은 자이로 민감도의 이진 스트링을 구하는 단계;When the moving body angles calculated by the first and second encoders have completed rotation at the set angle when the moving body is driven in the first direction, the output value of the accumulated gyro, the set angle, and the angle obtained by Equation 7 below Obtaining a binary string of gyro sensitivity having a smallest mean value of the errors;
    [수학식 7][Equation 7]
    Figure PCTKR2013006942-appb-I000005
    Figure PCTKR2013006942-appb-I000005
    Figure PCTKR2013006942-appb-I000006
    Figure PCTKR2013006942-appb-I000006
    여기서, f(x)는 각도 오차의 평균 값, TD는 설정 각도, x는 누적된 자이로의 출력 값, N은 누적된 자이로의 데이터 개수, O(또는, fd(bm-1bm-2 ···b1b0)는 민감도, b는 이진 스트링. Where f (x) is the mean value of the angle error, TD is the set angle, x is the output value of the accumulated gyro, N is the number of data of the accumulated gyro, O (or, f d (b m-1 b m- B ... b 1 b 0 ) is the sensitivity and b is the binary string.
    상기 구해진 이진 스트링의 길이는 고정시키고 탐색 방향에 따라 값을 가변시켜가면서 하기의 [수학식 8]로, 상기 제1 방향에서의 자이로의 최적의 민감도를 산출하는 단계를 포함하여 이루어진 자기-자이로 유도 장치를 위한 자이로의 민감도 최적화 방법.Deriving the length of the obtained binary string and varying the value according to the search direction, the following equation [8], self-gyro derived comprising the step of calculating the optimal sensitivity of the gyro in the first direction How to optimize gyro sensitivity for your device.
    [수학식 8][Equation 8]
    Figure PCTKR2013006942-appb-I000007
    Figure PCTKR2013006942-appb-I000007
    Figure PCTKR2013006942-appb-I000008
    Figure PCTKR2013006942-appb-I000008
    여기서, f(x)는 각도 오차의 평균 값, TD는 설정 각도, x는 누적된 자이로의 출력 값, N은 누적된 자이로의 데이터 개수, O(또는, fd(bm-1bm-2 ···b1b0)는 민감도, b는 이진 스트링.Where f (x) is the mean value of the angle error, TD is the set angle, x is the output value of the accumulated gyro, N is the number of data of the accumulated gyro, O (or, f d (b m-1 b m- B ... b 1 b 0 ) is the sensitivity and b is the binary string.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 산출한 자이로의 최적의 민감도와 설정 각도 회전시켜서 나온 자이로의 출력 값을 승산(×)시켜 자이로 계측 각도를 구하는 단계; 및Obtaining a gyro measurement angle by multiplying (x) the output value of the gyro obtained by rotating the optimal sensitivity and the set angle of the calculated gyro; And
    상기 설정 각도에서 자이로 계측 각도를 감산시켜 나온 각도 오차가 설정 문턱치를 초과한 경우 상기 제1 방향에서의 자이로의 최적의 민감도를 다시 산출하도록 하고, 상기 설정 각도에서 자이로 계측 각도를 감산시켜 나온 각도 오차가 설정 문턱치 이하인 경우 해당 자이로의 최적의 민감도를 상기 제1 방향에서의 최적의 민감도로 최종 설정하는 단계를 더 포함하여 이루어진 것을 특징으로 하는 자기-자이로 유도 장치를 위한 자이로의 민감도 최적화 방법.When the angle error obtained by subtracting the gyro measurement angle from the set angle exceeds the set threshold, the optimum sensitivity of the gyro in the first direction is calculated again, and the angle error obtained by subtracting the gyro measurement angle from the set angle Is finally set to an optimal sensitivity of the corresponding gyro to an optimal sensitivity in the first direction, when the value is less than or equal to a predetermined threshold.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 설정 각도에서 자이로 계측 각도를 감산시켜 나온 각도 오차가 설정 문턱치 미만인 경우,If the angle error obtained by subtracting the gyro measurement angle from the set angle is less than the set threshold,
    상기 이동체의 제2 방향에서의 최적의 민감도를 산출하되,Calculate an optimum sensitivity in the second direction of the moving body,
    상기 산출은The calculation is
    상기 이동체의 제2 방향 주행시, 상기 제1, 2 엔코더에 의해 산출된 이동체 각도가 설정 각도로 회전이 완료된 경우, 누적된 자이로의 출력 값과 상기 설정 각도 및 하기의 [수학식 9]로 얻어지는 각도 오차의 평균 값이 가장 작은 자이로 민감도의 이진 스트링을 구하는 단계;When the moving body angle calculated by the first and second encoders is completed at the set angle when the moving body is driven in the second direction, the output value of the accumulated gyro, the set angle, and the angle obtained by Equation 9 below Obtaining a binary string of gyro sensitivity having a smallest mean value of the errors;
    [수학식 9][Equation 9]
    Figure PCTKR2013006942-appb-I000009
    Figure PCTKR2013006942-appb-I000009
    Figure PCTKR2013006942-appb-I000010
    Figure PCTKR2013006942-appb-I000010
    여기서, f(x)는 각도 오차의 평균 값, TD는 설정 각도, x는 누적된 자이로의 출력 값, N은 누적된 자이로의 데이터 개수, O(또는, fd(bm-1bm-2 ···b1b0)는 민감도, b는 이진 스트링. Where f (x) is the mean value of the angle error, TD is the set angle, x is the output value of the accumulated gyro, N is the number of data of the accumulated gyro, O (or, f d (b m-1 b m- B ... b 1 b 0 ) is the sensitivity and b is the binary string.
    상기 구해진 이진 스트링의 길이는 고정시키고 탐색 방향에 따라 값을 가변시켜가면서 하기의 [수학식 10]로, 상기 제2 방향에서의 자이로의 최적의 민감도를 산출하는 단계를 포함하여 이루어진 것을 특징으로 하는 자기-자이로 유도 장치를 위한 자이로의 민감도 최적화 방법. Calculating the optimal sensitivity of the gyro in the second direction by the following Equation 10 while fixing the length of the obtained binary string and varying the value according to the search direction. Gyro Sensitivity Optimization Method for Self-Gyro Guidance Devices.
    [수학식 10][Equation 10]
    Figure PCTKR2013006942-appb-I000011
    Figure PCTKR2013006942-appb-I000011
    Figure PCTKR2013006942-appb-I000012
    Figure PCTKR2013006942-appb-I000012
    여기서, f(x)는 각도 오차의 평균 값, TD는 설정 각도, x는 누적된 자이로의 출력 값, N은 누적된 자이로의 데이터 개수, O(또는, fd(bm-1bm-2 ···b1b0)는 민감도, b는 이진 스트링.Where f (x) is the mean value of the angle error, TD is the set angle, x is the output value of the accumulated gyro, N is the number of data of the accumulated gyro, O (or, f d (b m-1 b m- B ... b 1 b 0 ) is the sensitivity and b is the binary string.
PCT/KR2013/006942 2013-02-26 2013-08-01 Method for optimizing sensitivity of gyroscope for magnet-gyro guidance device WO2014133235A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130020722A KR101393063B1 (en) 2013-02-26 2013-02-26 Sensitivity optimization method of gyroscope for magnet-gyro guidance
KR10-2013-0020722 2013-02-26

Publications (1)

Publication Number Publication Date
WO2014133235A1 true WO2014133235A1 (en) 2014-09-04

Family

ID=50893529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006942 WO2014133235A1 (en) 2013-02-26 2013-08-01 Method for optimizing sensitivity of gyroscope for magnet-gyro guidance device

Country Status (2)

Country Link
KR (1) KR101393063B1 (en)
WO (1) WO2014133235A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112378419A (en) * 2020-10-30 2021-02-19 哈尔滨理工大学 Magnetoelectric encoder-based dual-axis gyroscope calibration and decoupling method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116592863B (en) * 2023-05-06 2023-10-20 苏州如涵科技有限公司 Gyroscope module precision measurement and optimization method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06259134A (en) * 1993-03-10 1994-09-16 Murata Mach Ltd Steering device for automated guided vehicle
JP3334074B2 (en) * 1998-03-25 2002-10-15 住友重機械工業株式会社 Moving object position measurement device
JP2011227017A (en) * 2010-04-23 2011-11-10 Univ Of Tokyo Device and method for attitude estimation of moving body using inertial sensor, magnetic sensor, and speed meter
KR20120105616A (en) * 2011-03-16 2012-09-26 (주)프라이전트 Indoor tracking device and method for ugv using inertial sensor
KR20120107432A (en) * 2011-03-21 2012-10-02 엘아이지넥스원 주식회사 High precision ins module using analog mems sensor and operating method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002023847A (en) 2000-07-07 2002-01-25 Nippon Sharyo Seizo Kaisha Ltd Guiding device for automated guided vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06259134A (en) * 1993-03-10 1994-09-16 Murata Mach Ltd Steering device for automated guided vehicle
JP3334074B2 (en) * 1998-03-25 2002-10-15 住友重機械工業株式会社 Moving object position measurement device
JP2011227017A (en) * 2010-04-23 2011-11-10 Univ Of Tokyo Device and method for attitude estimation of moving body using inertial sensor, magnetic sensor, and speed meter
KR20120105616A (en) * 2011-03-16 2012-09-26 (주)프라이전트 Indoor tracking device and method for ugv using inertial sensor
KR20120107432A (en) * 2011-03-21 2012-10-02 엘아이지넥스원 주식회사 High precision ins module using analog mems sensor and operating method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112378419A (en) * 2020-10-30 2021-02-19 哈尔滨理工大学 Magnetoelectric encoder-based dual-axis gyroscope calibration and decoupling method

Also Published As

Publication number Publication date
KR101393063B1 (en) 2014-05-09

Similar Documents

Publication Publication Date Title
WO2017007089A1 (en) Method and device for relocating mobile robot in indoor environment
Rohac et al. Calibration of low-cost triaxial inertial sensors
WO2014133235A1 (en) Method for optimizing sensitivity of gyroscope for magnet-gyro guidance device
CN101639364B (en) Calibration method of high-precision optical fiber gyro component used for ship
Pirník et al. Integration of inertial sensor data into control of the mobile platform
GB2310042A (en) Casing joint locator and counter
WO2019112158A1 (en) Sensor error correction apparatus using joint sensor and correction method
WO2021158062A1 (en) Position recognition method and position recognition system for vehicle
WO2019127254A1 (en) Vehicle positioning method, device and storage medium
WO2015199479A1 (en) Device for recognizing posture of moving object and system for providing additional location-based service
WO2016010288A1 (en) Method for calibrating odometry error of car-type mobile robot using heading angle error
Zhang et al. Error analysis and test study of fiber optic gyroscope north-finder
WO2022092359A1 (en) Gps navigation system for blind person using rfid and electronic compass
WO2018174563A1 (en) Multi-turn absolute encoder, method for detecting rotation number by multi-turn absolute encoder, and computer recording medium recording same
JP2005061985A (en) System for measuring underground displacement
WO2014092283A1 (en) Analogue magnetic locating apparatus and location measurement method
US20080172150A1 (en) Moving apparatus and method of self-direction testing and self-direction correction thereof
WO2020013601A1 (en) Fbg-based torsion sensor device
WO2013172564A1 (en) Digital opto-electric pulse application method for correcting bit error of vernier-type optical encoder
WO2012124987A2 (en) System and terminal for providing environment-friendly route
CN208969510U (en) A kind of submersible six-freedom motion real-time measurement apparatus
CN109470232B (en) Angular impact overload resisting method for optical fiber gyroscope
US9664537B2 (en) System and assembly structure for aligning an encoder
WO2024034911A1 (en) Electronic device, system, and method for controlling robot
WO2024096281A1 (en) User terminal, managing server and operating method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876176

Country of ref document: EP

Kind code of ref document: A1