WO2014133150A1 - Method for building three-dimensional model of organ, and program - Google Patents

Method for building three-dimensional model of organ, and program Download PDF

Info

Publication number
WO2014133150A1
WO2014133150A1 PCT/JP2014/055119 JP2014055119W WO2014133150A1 WO 2014133150 A1 WO2014133150 A1 WO 2014133150A1 JP 2014055119 W JP2014055119 W JP 2014055119W WO 2014133150 A1 WO2014133150 A1 WO 2014133150A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
link target
points
distance
processing procedure
Prior art date
Application number
PCT/JP2014/055119
Other languages
French (fr)
Japanese (ja)
Inventor
利明 秋田
鈴木 亨
雅宏 瀬戸
昌 山部
Original Assignee
学校法人金沢医科大学
学校法人金沢工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人金沢医科大学, 学校法人金沢工業大学 filed Critical 学校法人金沢医科大学
Publication of WO2014133150A1 publication Critical patent/WO2014133150A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/467Arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B6/469Arrangements for interfacing with the operator or the patient characterised by special input means for selecting a region of interest [ROI]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • A61B5/0044Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/503Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical

Definitions

  • the present invention relates to a method for constructing a three-dimensional model from a tomographic image of an organ such as a heart imaged by a tomography apparatus such as MRI (Magnetic Resonance Imaging) or CT (Computed Tomography).
  • MRI Magnetic Resonance Imaging
  • CT Computer Purted Tomography
  • a 3D model of the heart to be analyzed is required.
  • the 3D model of the heart is constructed in a short time. It is important to.
  • Non-Patent Documents 1, 2, and 3 Several techniques for constructing a three-dimensional model from a tomographic image of an organ imaged by a tomography apparatus have already been proposed (see, for example, Non-Patent Documents 1, 2, and 3).
  • the shape of the heart is extracted semi-automatically from the MRI image.
  • the shape of the heart lumen is extracted automatically.
  • several markers are manually placed in each of the MRI images for a plurality of layers (slices), and the finite element model is deformed and fitted.
  • Non-Patent Document 2 MRI images are also used. Specifically, the parameters of the finite element model are fitted by manually placing markers on the MRI image. In this technique, only the left ventricle is targeted for extraction.
  • CT images are used. Specifically, the heart shape is extracted from the CT image completely automatically. This technique is realized by utilizing the high image accuracy of CT.
  • points distributed on each of a plurality of two-dimensional planes are connected by lines between adjacent two-dimensional planes, and are constituted by those lines.
  • a method of generating a polygon and generating a three-dimensional model is used.
  • one simple method is to select the two closest points based on the distance from the point and link (link) ) Can be considered.
  • One aspect of the method for constructing a three-dimensional model of an organ of the present invention is a boundary line indicating an outer surface of an organ or an inner surface of an organ specified on a two-dimensional cross-sectional image of each layer obtained by imaging an organ over a plurality of layers with a tomography apparatus.
  • the distance from each point on the boundary line different from the boundary line including the reference point to the reference point, with each point as a reference point Calculate For each of the third processing procedure and the two points that are subject to calculation of the distance in the third processing procedure, an angle formed by the tangential directions corresponding to the two points is obtained, and the angle becomes large.
  • a fourth coefficient for correcting the distance is obtained by obtaining a coefficient whose value after correction becomes larger than the value before correction and multiplying the coefficient by the distance between two points corresponding to the coefficient. And selecting the shortest distance from a plurality of corrected distances corresponding to one reference point based on the corrected distance corrected by the fourth processing procedure, and the reference.
  • a sixth processing procedure set as a starting point and a plurality of pairs of link target points where a link corresponding to one side of a triangular polygon is set from the two boundary lines where the starting point is set by the sixth processing procedure
  • a pair of the starting points is selected as a pair of link target points, and thereafter, each of the points that are advanced from the selected link target point by one point around the predetermined direction to the next.
  • the point as a candidate point, one of the pair of link target points previously selected and the candidate point on the boundary line different from the one link target point are used as the next pair of link targets.
  • a seventh processing procedure that repeats the processing to be selected is executed by a computer to construct a three-dimensional model of the organ.
  • (A) is selected next.
  • the seventh processing procedure is terminated, and (B) the pair of link targets previously selected in cases other than (A)
  • the one link target point and the candidate point adjacent to the other link target point are used as the next pair of link target points.
  • one of the pair of link target points previously selected is one link target point
  • the distance between the candidate point next to the other link target point and the distance between the other link target point and the candidate point next to the one link target point, taking into account the distance between the layers Calculation is performed in three-dimensional space conversion, and two points forming the shorter distance among the two calculated distances are selected as the next pair of link target points.
  • a plurality of points that are vertices of a triangular polygon are set on the boundary line indicating the outer surface of the organ or the inner surface of the organ.
  • the boundary line used in the first processing procedure is obtained by imaging a plurality of layers of an organ in advance with a tomography apparatus and is identified on the two-dimensional cross-sectional image, but is identified by any technique. It doesn't matter.
  • the boundary line itself may be manually specified on the two-dimensional cross-sectional image and the data provided, or a point on the boundary line may be manually specified on the two-dimensional cross-sectional image and based on the data
  • a boundary line may be estimated.
  • an estimation method for example, a method of connecting the points specified on the boundary line by a cubic spline curve and adopting the curve as the boundary line can be considered.
  • the data after generating the cubic spline curve, the data may be provided, or data indicating points on the boundary line is provided, and based on the data, the first processing procedure is performed.
  • a cubic spline curve may be generated.
  • a plurality of points that are vertices of triangular polygons are set on the boundary line.
  • the number of points set here is not particularly limited, but the larger the number, the smoother the surface shape of the model finally obtained.
  • the distance between adjacent points can be set arbitrarily. For example, it may be set at an equal interval, or the point is set at a position where the center angle is equal to the center set near the center of the boundary line. Alternatively, it may be set at unequal intervals if necessary.
  • link target points selected here are points (points at both ends of one side) forming one side of the triangular polygon in the finally obtained three-dimensional model. Note that such link target points only need to be stored as data indicating that, for example, whether to draw and display a three-dimensional model based on the stored data, or to use for purposes other than such display It is arbitrary.
  • the distance obtained in the third processing procedure is corrected in the fourth processing procedure using the tangential direction obtained in the second processing procedure.
  • the link target is not simply selected because the distance between the points is short, but there is no difference in the tangential direction as an important condition. After that, the link target is selected.
  • the fourth processing procedure corrects the point-to-point distance as the tangential direction is greatly different, thereby making it difficult to set a link between the points when determining the link target. .
  • a specific correction method is not limited as long as such correction can be made.
  • the link target may be selected by the above-mentioned method, but the organ is bifurcated. There may be places. In that case, two annular boundaries may be formed in one layer. In such a case, conventionally, manual adjustment (manual link target selection or polygon creation) has to be relied upon, which has been an obstacle to automating the creation of a three-dimensional model.
  • the outer surface of the organ or the inner surface of the organ is bifurcated, so that one layer has a single boundary line L and the next layer has two boundaries.
  • the respective centroids G1 and G2 are calculated for the two boundary lines U1 and U2, and a straight line connecting the two centroids G1 and G2 and the two boundary lines U1, U2 and , Intersection points A and B are obtained, and a plurality of points set on the single boundary line L are evaluated as to which of the two boundary lines U1 and U2 is closer, and a boundary point that becomes a boundary at which the two points switch C and D are obtained, the midpoint M1 of the line segment AB connecting the intersections A and B and the midpoint M2 of the line segment CD connecting the boundary points C and D are obtained, and the length D1 of the line segment AB and the line segment CD are calculated.
  • the length D2 is obtained, and the line segment M1-M2 connecting the midpoints M1, M2 is set to the internal ratio of D1: D2.
  • a dividing point E is obtained, a single boundary line L is divided into two parts at boundary points C and D, and one of the divided parts close to the boundary line U1, a line segment CE and a line
  • the boundary line L1 is constituted by the segment ED
  • the boundary line L2 is constituted by the other part close to the boundary line U2, the line segment CE and the line segment ED, and on the boundary lines U1, U2, L1, and L2,
  • a plurality of points as vertices of a triangular polygon are set, and in the second processing procedure to the seventh processing procedure, the boundary lines U1 and L1 and the boundary lines U2 and L2 are targeted. Select the link target point.
  • the link target selection process is performed.
  • a link target can be selected between each of the two boundary lines U1 and U2.
  • the points on the line segment CE and the line segment ED are located on the two boundary lines U1 and U2, respectively. Paired with the set point is set as a link target, so that a triangular polygon can be appropriately arranged even at a branching point.
  • the image is not taken at the position on the opposite side of the layer that is the secondmost from the end with the layer at the farthest end sandwiched, but the most of the organ. There is an end (the extreme end of the outer surface or the extreme end of the lumen). Therefore, when it is desired to appropriately model the end of the organ in the three-dimensional model, it is preferable to employ the following configuration.
  • one end point that is the apex of the triangular polygon is set at a position opposite to the second layer from the end across the layer at the end of the plurality of layers.
  • the program for constructing a 3D model of an organ of the present invention is a program for causing a computer to execute the 3D model construction method as described above. Therefore, the operation and effect as described for the above-described three-dimensional model construction method are exhibited.
  • this three-dimensional model construction program also preferably has a processing procedure corresponding to the bifurcated portion of the organ and a processing procedure corresponding to the extreme end of the organ.
  • Such a program can be provided by being recorded on various recording media that can be read by a computer, or can be provided in a state of being installed in a computer.
  • FIG. 1A is an explanatory diagram showing a configuration of the entire system that executes a 3D model construction process of an organ
  • FIG. 1B is a flowchart of each process that constitutes the 3D model construction process.
  • FIG. 2A is an explanatory diagram illustrating a boundary line drawn on a tomographic image of an organ
  • FIGS. 2B and 2C are explanatory diagrams illustrating a procedure for selecting a link target from points set on the boundary line.
  • FIG. 3A is an explanatory diagram showing a three-dimensional model configured by the three-dimensional model construction process of the present invention
  • FIG. 3B is an explanatory diagram showing a three-dimensional model in which a link target is selected without correcting the distance between points.
  • Explanatory drawing which shows the method of three-dimensionalization in the forked part of an organ.
  • Explanatory drawing which shows the method of three-dimensionalization in the extreme end part of an organ.
  • the image processing workstation 1 includes a control unit 11 having a known CPU, ROM, RAM, and the like, and a storage unit 12 in which various software such as an OS (Operating System) and an application program such as a 3D model construction program are stored. And a display unit 13 for displaying various types of information, and an operation unit 14 configured by a touch panel, other pointing devices, a keyboard, or the like.
  • the tomography apparatus 2 is a nuclear magnetic resonance diagnostic apparatus or a multi-row detector type CT diagnostic apparatus.
  • the nuclear magnetic resonance diagnostic apparatus is an apparatus for taking a tomographic image of a human body using nuclear magnetic resonance.
  • the multi-row detector CT diagnostic apparatus is an apparatus for taking a tomographic image of a human body using X-rays.
  • Tomographic image data (MRI imaging data or CT contrast data) imaged by the tomography apparatus 2 is transmitted to the image processing workstation 1.
  • the image processing workstation 1 performs boundary line extraction processing and three-dimensional polygon processing as described below based on the transmitted tomographic image data.
  • an MRI (CT) tomographic image is taken (S1), followed by preprocessing of the image (S2), and further, the boundary line of the organ is extracted. Performed (S3).
  • CT MRI
  • S1 a tomographic image of an organ is captured over a plurality of layers at positions spaced in one direction. Thereby, tomographic image data for a plurality of layers is generated, and the plurality of tomographic image data is transmitted to the image processing workstation 1.
  • image preprocessing is executed.
  • image processing for increasing the contrast (brightness / darkness difference) of the image, image processing for emphasizing the edge, and the like are performed, which makes it easier for the operator to recognize the boundary line of the outer surface or inner surface of the organ.
  • an organ boundary line is extracted.
  • the image processing workstation 1 displays the tomographic image that has been preprocessed in S2 on the display unit 13 and receives an operation on the operation unit 14.
  • FIG. 2A shows a display example in which a tomographic image of the heart, a plurality of points specifying boundary points on the tomographic image, and a cubic spline curve passing through the plurality of points are displayed on the display unit 13 in an overlapping manner.
  • the operator can adjust the shape of the spline curve by observing the displayed spline curve and specifying the point that seems to be necessary, so that the shape of the spline curve can be adjusted to the shape of the boundary line to be extracted. Can be brought closer. Note that the spline curve generation processing is performed on all of the tomographic images of a plurality of layers photographed by the tomography apparatus 2.
  • the image processing workstation 1 executes a three-dimensional polygon processing based on the obtained spline curve data.
  • the vertices of the triangular polygon are set on the boundary line, and the sides of the triangular polygon are set between the vertices (S11).
  • a boundary line is additionally set in the bifurcated portion, a vertex of the triangular polygon is set on the boundary line, and a side of the triangular polygon is set between the vertices (S12).
  • an extreme end point is additionally set next to the extreme end layer, and a triangular polygon side is set between vertices on the boundary line between the extreme end point and the extreme end layer (S13).
  • the processes of S11 to S13 may be performed in any order.
  • the three-dimensional model of the organ obtained by the above processing can be used for various purposes.
  • the present invention can be used not only for displaying a three-dimensional shape as an image on a computer, but also for forming a three-dimensional object that actually reproduces the three-dimensional shape using a so-called 3D printer. It can also be used to analyze the three-dimensional shape of an organ and design a medical instrument for application to the organ.
  • the tangential direction of the boundary line on the two-dimensional cross-sectional image at each point set in the procedure # 1 is obtained (procedure # 2).
  • the tangential direction obtained in this procedure # 2 is stored in association with each point so that it can be used later.
  • a pair of layers at adjacent positions is sequentially selected from a plurality of layers while shifting one layer at a time, and the boundary lines of each layer are projected on the same plane and set on both projected boundary lines. For each point, using each point as a reference point, the distance from each point on the boundary line different from the boundary line including the reference point to the reference point is calculated (procedure # 3).
  • step # 4 For each of the two points whose distances are to be calculated in step # 3, an angle formed by the tangential directions corresponding to each of the two points is obtained. A coefficient having a large value after correction is obtained, and the distance is corrected by multiplying the coefficient by the distance between two points corresponding to the coefficient (procedure # 4).
  • the shortest distance is selected from a plurality of corrected distances corresponding to one reference point, and the distance from the reference point becomes the shortest distance.
  • the point is set to the shortest point corresponding to the reference point (procedure # 5). That is, in procedure # 5, the shortest point is set one by one in association with each point on the boundary line.
  • the shortest point with respect to the point p1 is the point p2
  • the shortest point with respect to the point p2 may be the point p3 when the point p2 is used as a reference. Therefore, the relationship between these reference points and the shortest points is stored for all points on the boundary line.
  • step # 6 select a pair of adjacent layers by shifting one layer at a time from multiple layers, and each point set on the boundary line in one layer each time the two layers are selected.
  • the reference point and the shortest point with the shortest distance to the shortest point corresponding to the reference point are set as starting points (step # 6). That is, in procedure # 6, there is a relationship between the reference point and the shortest point, and the distance becomes the shortest and two points are selected and used as the starting point.
  • a plurality of pairs of link target points on which links corresponding to one side of the triangular polygon are set are selected from the two boundary lines where the starting points are set in step # 6 (step # 7). . That is, first, as shown in FIG. 2B, k11 and k21 as the pair of starting points are selected as a pair of link target points. Thereafter, the respective points k12 and k22 that are advanced by one point around the predetermined direction (for example, around the direction indicated by the one-dot chain line arrow in FIG. 2B) from the selected link target point are used as candidate points.
  • Which of k12 and k22 is to be selected is determined by the method described later. For example, in the example shown in FIG. 2B, when the points k12 and k21 are selected as the next pair of link target points. As shown in FIG. 2C, at a position advanced from the selected link target points k12, k21 by one point around the predetermined direction (in the case of this embodiment, around the direction indicated by the one-dot chain line arrow in FIG. 2C).
  • Each point k13, k22 is set as a new candidate point, and one of the pair of link target points k12, k21 selected previously and a candidate point (k12 of k12) on a different boundary line from the one link target point K22 in the case, and k13) in the case of k21 are selected as the next pair of link target points. If this process is repeated, the space between the two boundary lines is divided into a plurality of triangular areas by line segments connecting the link target points, so the boundary lines are filled with triangular polygons corresponding to the triangular areas. Thus, the three-dimensional modeling of the area between the boundary lines can be achieved.
  • a pair of link target points is formulated according to the following conditions (A) to (D).
  • the link target point makes a round on one boundary line and returns to the starting point, all candidate points remaining on the other boundary line are paired with the starting point on one boundary line as the link target point.
  • the other link target point is advanced to the shortest point corresponding to one link target point among the pair of link target points previously selected. If one link target point has already been advanced to the shortest point corresponding to the other link target point, the one link target point and the candidate point next to the other link target point are The next pair of link target points is selected. That is, when selecting link target points, a pair of link target points is selected in consideration of the relationship with the shortest point corresponding to each point.
  • the distance obtained in procedure # 3 is corrected in procedure # 4 using the tangential direction obtained in advance in procedure # 2.
  • the link target is selected in consideration of the determination based on the corrected distance. Therefore, unlike the technology in which the link target is selected simply because the distance between the points in the three-dimensional space is short, the link target is selected after considering that there is no difference in the tangential direction as an important condition.
  • the link target is selected after considering that there is no difference in the tangential direction as an important condition.
  • the boundary lines at adjacent positions have similar shapes in the tangent direction.
  • points whose tangent slopes are relatively close are selected as link targets, and as a result, the triangular polygons generated there form a natural curved surface in appearance.
  • relatively close points are selected as link targets based only on the distance in the three-dimensional space, for example, on the boundary line in the region A3 as in the regions A3 and A4 illustrated in FIG. 3B, for example. All the points are paired with points in the limited area A4, and as a result, an unnatural curved surface that looks like a part of a cone in appearance may be formed locally. Therefore, selecting a link target point by the above-described method does not generate an unnatural triangular polygon on the finally obtained three-dimensional model, and constructs a more natural three-dimensional model. be able to.
  • a single boundary line L is divided into two parts at boundary points C and D, and one of the divided parts close to the boundary line U1 and a line segment CE.
  • the boundary line L1 is configured by the line segment ED
  • the boundary line L2 is configured by the other part near the boundary line U2, the line segment CE, and the line segment ED.
  • the link target point is set by such a method, since the single boundary line L is divided into the two boundary lines L1 and L2 in the bifurcated portion of the organ, the link target selection process is performed. A link target can be selected between each of the two boundary lines U1 and U2. Moreover, since the two boundary lines L1 and L2 share the line segment CE and the line segment ED, the points on the line segment CE and the line segment ED are located on the two boundary lines U1 and U2, respectively. Paired with the set point is set as a link target, so that a triangular polygon can be appropriately arranged even at a branching point.
  • FIG. 5B illustrates the state seen from the direction in which the x and z coordinates can be seen, but the state seen from the direction in which the y and z coordinates are visible is obtained by replacing x in FIG. The same.
  • the smaller one of these two distances dz2x and dz2y is defined as a distance dz2, and in a three-dimensional space, a point P that is equidistant from the x coordinate xMin1, xMax1, and equidistant from the y coordinate yMin1, yMax1, and from the point P
  • a pair of each point on the boundary line L and the end point R can be selected as a link target point, and a triangular polygon can be appropriately arranged even at the shortest point.
  • the coefficient c is multiplied by the distance between the two points corresponding to the coefficient c.
  • the expression itself is not limited to the above expression as long as the coefficient c capable of equivalent correction can be obtained.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Pulmonology (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Processing Or Creating Images (AREA)

Abstract

The present invention is a method for building a three-dimensional model of an organ, employing any of the following. If a subsequently selected pair of points to be linked both return to a starting point, a seventh procedure is terminated. Depending on the case, candidate points adjacent to one point to be linked and another point to be linked are selected as the next pair of points to be linked. The distance from the one point to be linked to a candidate point adjacent to the other point to be linked and the distance from the other point to be linked to a candidate point adjacent to the one point to be linked are calculated by three-dimensional space conversion, taking into consideration the distance between layers. The two points having the shorter distance therebetween among the two calculated distances are selected as the next pair of points to be linked.

Description

臓器の三次元モデル構築方法、及びプログラムMethod and program for organ 3D model construction 関連出願の相互参照Cross-reference of related applications
 本国際出願は、2013年2月28日に日本国特許庁に出願された日本国特許出願第2013-039593号に基づく優先権を主張するものであり、日本国特許出願第2013-039593号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2013-039593 filed with the Japan Patent Office on February 28, 2013, and Japanese Patent Application No. 2013-039593 The entire contents are incorporated into this international application.
 本発明は、MRI(Magnetic Resonance Imaging)やCT(Computed Tomography)などの断層撮影装置によって撮像された、心臓などの臓器の断層画像から三次元モデルを構築する方法に関する。 The present invention relates to a method for constructing a three-dimensional model from a tomographic image of an organ such as a heart imaged by a tomography apparatus such as MRI (Magnetic Resonance Imaging) or CT (Computed Tomography).
 近年、コンピューターシミュレーションを用いた人体臓器の力学シミュレーションが注目されている。また、臓器疾患の治療に用いられる治療具に関して、患者個人の臓器形状や症状に合わせて設計する必要があり、臓器の解析モデルを用いたコンピューターシミュレーションが有効である。 In recent years, dynamic simulation of human organs using computer simulation has attracted attention. In addition, it is necessary to design a treatment tool used for the treatment of an organ disease according to the shape and symptoms of an individual patient, and computer simulation using an organ analysis model is effective.
 例えば、現在研究開発が進められている拡張型心筋症治療用の心臓形態矯正ネットを設計する際には、患者個体の心臓に合わせてネット各部の形状を設計する必要があり、コンピューターによる心臓の力学シミュレーションが必要不可欠である。 For example, when designing a heart shape correction net for dilated cardiomyopathy currently under research and development, it is necessary to design the shape of each part of the net in accordance with the heart of the individual patient. Dynamic simulation is indispensable.
 このような心臓のコンピューターシミュレーションを実施するには、解析対象となる心臓の三次元モデルが必要であり、実際に設計にコンピューターシミュレーションを使用する際には、心臓の三次元モデルを短時間で構築することが重要である。 In order to carry out such a computer simulation of the heart, a 3D model of the heart to be analyzed is required. When a computer simulation is actually used in the design, the 3D model of the heart is constructed in a short time. It is important to.
 断層撮影装置によって撮像された臓器の断層画像から三次元モデルを構築する技術は、既にいくつか提案されている(例えば、非特許文献1,2,3参照。)。例えば、非特許文献1に記載の技術においては、MRI画像から半自動で心臓の形状を抽出している。非特許文献1に記載の技術の場合、心臓の内腔の形状は全自動で抽出される。心臓の外側の形状に関しては、複数層(複数スライス)分のMRI画像それぞれにおいて数点のマーカーが手動で配置され、有限要素モデルを変形してフィッティングしている。 Several techniques for constructing a three-dimensional model from a tomographic image of an organ imaged by a tomography apparatus have already been proposed (see, for example, Non-Patent Documents 1, 2, and 3). For example, in the technique described in Non-Patent Document 1, the shape of the heart is extracted semi-automatically from the MRI image. In the case of the technique described in Non-Patent Document 1, the shape of the heart lumen is extracted automatically. Regarding the shape of the outside of the heart, several markers are manually placed in each of the MRI images for a plurality of layers (slices), and the finite element model is deformed and fitted.
 非特許文献2に記載の技術においてもMRI画像を利用している。具体的には、MRI画像上において手動でマーカーを配置して有限要素モデルのパラメータをフィッティングしている。なお、この技術の場合、左心室のみを抽出の対象にしている。 In the technique described in Non-Patent Document 2, MRI images are also used. Specifically, the parameters of the finite element model are fitted by manually placing markers on the MRI image. In this technique, only the left ventricle is targeted for extraction.
 非特許文献3に記載の技術においてはCT画像を利用している。具体的には、CT画像から完全に全自動で心臓形状を抽出している。この技術は、CTの画像精度の高さを利用して実現された技術である。 In the technique described in Non-Patent Document 3, CT images are used. Specifically, the heart shape is extracted from the CT image completely automatically. This technique is realized by utilizing the high image accuracy of CT.
 ところで、上述のような複数の断層画像から三次元モデルを構築する際には、複数の二次元平面それぞれに分布する点を、隣り合う二次元平面間において線で結び、それらの線によって構成されるポリゴンを生成、三次元モデル化する、という手法が用いられる。ある点と他の2点とを線で結んで三角ポリゴンを生成する場合、単純な一手法としては、ある点からの距離に基づいて、最も近い位置にある2点を選択して線(リンク)で結ぶという手法が考えられる。 By the way, when constructing a three-dimensional model from a plurality of tomographic images as described above, points distributed on each of a plurality of two-dimensional planes are connected by lines between adjacent two-dimensional planes, and are constituted by those lines. A method of generating a polygon and generating a three-dimensional model is used. When creating a triangular polygon by connecting a point and two other points with a line, one simple method is to select the two closest points based on the distance from the point and link (link) ) Can be considered.
 しかし、このような単純な手法によって、上述のような複数の断層画像から三次元モデルを構築すると、例えば、臓器断面に表れる境界線(外面や内面の位置に相当する線)の方向が急変するエッジ部分などにおいて、不自然なリンクが設定されることがある。そのため、このような不自然なリンクが設定されると、最終的に得られる三次元モデルの形状が不自然なものになってしまう、という問題があった。 However, when a three-dimensional model is constructed from a plurality of tomographic images as described above by such a simple method, for example, the direction of a boundary line (a line corresponding to the position of the outer surface or inner surface) that appears in an organ cross section suddenly changes. An unnatural link may be set in an edge portion or the like. Therefore, when such an unnatural link is set, there is a problem that the shape of the finally obtained three-dimensional model becomes unnatural.
 このような不自然さを解消するには、従来は、最終的な三次元モデルの形状を手動で調整するなどの作業が必要である。そのため、この部分の自動化が困難で、モデル作成に時間を要する一因になっていた。 In order to eliminate such unnaturalness, conventionally, it is necessary to manually adjust the shape of the final three-dimensional model. For this reason, it is difficult to automate this part, which is a cause of the time required for model creation.
 手動調整に頼らなくても、最終的に得られる三次元モデルの形状をより自然な形状とすることが可能な臓器の三次元モデル構築方法を提供することが望ましい。 It is desirable to provide a method for constructing a 3D model of an organ that can make the shape of the finally obtained 3D model more natural without relying on manual adjustment.
 一局面の本発明の臓器の三次元モデル構築方法は、断層撮影装置で臓器を複数層にわたって撮影することによって得られる各層の二次元断面画像上において特定される臓器外面又は臓器内面を示す境界線に基づいて、当該境界線上に、三角ポリゴンの頂点とされる複数の点を設定する第一の処理手順と、前記第一の処理手順において設定された各点における前記二次元断面画像上での前記境界線の接線方向を求める第二の処理手順と、前記複数層の中から、隣り合う位置にある層のペアを一層分ずつずらしながら順に選んで、各層の前記境界線を同一平面上に投影し、投影された双方の境界線上に設定された各点について、当該各点を基準点として、当該基準点が含まれる境界線とは別の境界線上の各点から前記基準点までの距離を算出する第三の処理手順と、前記第三の処理手順において前記距離の算出対象とされた二点ごとに、当該二点それぞれに対応する前記接線方向が互いになす角度を求め、当該角度が大となる場合ほど補正前の値に対して補正後の値が大となる係数を求めて、当該係数を当該係数に対応する二点間の前記距離に対して乗ずることにより、前記距離を補正する第四の処理手順と、前記第四の処理手順によって補正された補正後の前記距離に基づいて、一つの前記基準点に対応する複数の前記補正後の距離の中から最短の距離を選び、前記基準点との距離が前記最短の距離となる点を、前記基準点に対応する最短点に設定する第五の処理手順と、前記複数層の中から、隣り合う位置にある層のペアを一層分ずつずらしながら順に選定し、当該二つの層を選定するごとに、一方の層にある前記境界線上に設定された各点を前記基準点とした場合の当該基準点に対応する最短点までの距離が最短となる前記基準点と前記最短点を、それぞれ起点に設定する第六の処理手順と、前記第六の処理手順によって前記起点が設定された二つの前記境界線上から、三角ポリゴンの一辺に相当するリンクが設定される複数対のリンク対象点を選定してゆく手順であり、一対の前記起点については一対の前記リンク対象点として選定し、以降は、選定した前記リンク対象点から所定方向回りで隣へ一点分だけ進んだ位置にある各点を候補点として、先に選定された一対の前記リンク対象点のいずれか一方と、当該一方の前記リンク対象点とは異なる前記境界線上にある前記候補点とを、次の一対のリンク対象点として選定する処理を繰り返す第七の処理手順とを含む処理をコンピューターに実行させることによって、臓器の三次元モデルを構築する方法であり、前記第七の処理手順においては、(A)次に選定される前記一対のリンク対象点が、双方とも前記起点に戻る場合は、前記第七の処理手順を終了し、(B)前記(A)以外の場合で、先に選定された一対の前記リンク対象点のうち、一方のリンク対象点が既に前記起点に戻っている場合は、当該一方のリンク対象点と他方のリンク対象点の隣にある前記候補点とを、次の一対のリンク対象点として選定し、(C)前記(A),(B)以外の場合で、先に選定された一対の前記リンク対象点のうち、一方のリンク対象点に対応する前記最短点まで、他方のリンク対象点が進められておらず、かつ、前記他方のリンク対象点に対応する前記最短点まで、既に前記一方のリンク対象点が進められていた場合は、当該一方のリンク対象点と他方のリンク対象点の隣にある前記候補点とを、次の一対のリンク対象点として選定し、(D)前記(A),(B),(C)以外の場合は、先に選定された一対の前記リンク対象点のうち、一方のリンク対象点と他方のリンク対象点の隣にある前記候補点との距離と、前記他方のリンク対象点と前記一方のリンク対象点の隣にある前記候補点との距離とを、層間の距離を加味した三次元空間換算で計算し、当該計算された二つの距離のうち、短い方の距離をなす二点を、次の一対のリンク対象点として選定する。 One aspect of the method for constructing a three-dimensional model of an organ of the present invention is a boundary line indicating an outer surface of an organ or an inner surface of an organ specified on a two-dimensional cross-sectional image of each layer obtained by imaging an organ over a plurality of layers with a tomography apparatus. Based on the first processing procedure for setting a plurality of points to be vertices of a triangular polygon on the boundary line, and on the two-dimensional cross-sectional image at each point set in the first processing procedure A second processing procedure for obtaining a tangential direction of the boundary line, and sequentially selecting a pair of adjacent layers from the plurality of layers while shifting one layer at a time, so that the boundary line of each layer is on the same plane For each point projected and set on both projected boundary lines, the distance from each point on the boundary line different from the boundary line including the reference point to the reference point, with each point as a reference point Calculate For each of the third processing procedure and the two points that are subject to calculation of the distance in the third processing procedure, an angle formed by the tangential directions corresponding to the two points is obtained, and the angle becomes large. A fourth coefficient for correcting the distance is obtained by obtaining a coefficient whose value after correction becomes larger than the value before correction and multiplying the coefficient by the distance between two points corresponding to the coefficient. And selecting the shortest distance from a plurality of corrected distances corresponding to one reference point based on the corrected distance corrected by the fourth processing procedure, and the reference A fifth processing procedure for setting a point at which the distance to a point is the shortest distance as a shortest point corresponding to the reference point, and a pair of layers adjacent to each other among the plurality of layers. Select the two layers in sequence by shifting them one by one. Each time, the reference point and the shortest point at which the distance to the shortest point corresponding to the reference point is the shortest when each point set on the boundary line in one layer is the reference point, A sixth processing procedure set as a starting point and a plurality of pairs of link target points where a link corresponding to one side of a triangular polygon is set from the two boundary lines where the starting point is set by the sixth processing procedure A pair of the starting points is selected as a pair of link target points, and thereafter, each of the points that are advanced from the selected link target point by one point around the predetermined direction to the next. Using the point as a candidate point, one of the pair of link target points previously selected and the candidate point on the boundary line different from the one link target point are used as the next pair of link targets. As a point And a seventh processing procedure that repeats the processing to be selected is executed by a computer to construct a three-dimensional model of the organ. In the seventh processing procedure, (A) is selected next. When the pair of link target points both return to the starting point, the seventh processing procedure is terminated, and (B) the pair of link targets previously selected in cases other than (A) When one link target point has already returned to the starting point among the points, the one link target point and the candidate point adjacent to the other link target point are used as the next pair of link target points. (C) In cases other than (A) and (B) above, the other link target up to the shortest point corresponding to one link target point among the pair of link target points previously selected The point has not been advanced and before When the one link target point has already been advanced to the shortest point corresponding to the other link target point, the one link target point and the candidate point next to the other link target point are It is selected as the next pair of link target points. (D) In cases other than (A), (B), and (C), one of the pair of link target points previously selected is one link target point And the distance between the candidate point next to the other link target point and the distance between the other link target point and the candidate point next to the one link target point, taking into account the distance between the layers Calculation is performed in three-dimensional space conversion, and two points forming the shorter distance among the two calculated distances are selected as the next pair of link target points.
 このように構成される一局面の本発明において、第一の処理手順では、臓器外面又は臓器内面を示す境界線上に、三角ポリゴンの頂点とされる複数の点を設定する。第一の処理手順において利用される境界線は、あらかじめ断層撮影装置で臓器を複数層にわたって撮影し、その二次元断面画像上において特定されているものであるが、どのような手法で特定されるかは問わない。 In one aspect of the present invention configured as described above, in the first processing procedure, a plurality of points that are vertices of a triangular polygon are set on the boundary line indicating the outer surface of the organ or the inner surface of the organ. The boundary line used in the first processing procedure is obtained by imaging a plurality of layers of an organ in advance with a tomography apparatus and is identified on the two-dimensional cross-sectional image, but is identified by any technique. It doesn't matter.
 例えば、境界線そのものが二次元断面画像上において手動で特定されて、そのデータが提供されてもよいし、境界線上の点が二次元断面画像上において手動で特定されて、そのデータに基づいて境界線が推定されてもよい。そのような推定の手法としては、例えば、境界線上で特定された点間を三次スプライン曲線によって結ぶことにより、その曲線を境界線として採用する、といった手法を考え得る。なお、この場合、三次スプライン曲線を生成してから、そのデータが提供されてもよいし、境界線上の点を示すデータが提供されて、そのデータに基づいて、第一の処理手順の中で三次スプライン曲線を生成してもよい。 For example, the boundary line itself may be manually specified on the two-dimensional cross-sectional image and the data provided, or a point on the boundary line may be manually specified on the two-dimensional cross-sectional image and based on the data A boundary line may be estimated. As such an estimation method, for example, a method of connecting the points specified on the boundary line by a cubic spline curve and adopting the curve as the boundary line can be considered. In this case, after generating the cubic spline curve, the data may be provided, or data indicating points on the boundary line is provided, and based on the data, the first processing procedure is performed. A cubic spline curve may be generated.
 こうして得られる境界線データに基づき、第一の処理手順では、その境界線上に三角ポリゴンの頂点とされる複数の点を設定する。ここで設定される点の数は特に限定されないが、より多いほど最終的に得られるモデルの表面形状がより平滑なものとなる。また、隣り合う点間の距離も任意に設定でき、例えば等間隔としてもよいし、境界線の中央付近に設定された中心に対し、その中心角が等角度となるような位置に点を設定してもよいし、その他、必要があれば不均等な間隔で設定されてもよい。 Based on the boundary line data obtained in this way, in the first processing procedure, a plurality of points that are vertices of triangular polygons are set on the boundary line. The number of points set here is not particularly limited, but the larger the number, the smoother the surface shape of the model finally obtained. Also, the distance between adjacent points can be set arbitrarily. For example, it may be set at an equal interval, or the point is set at a position where the center angle is equal to the center set near the center of the boundary line. Alternatively, it may be set at unequal intervals if necessary.
 そして、このような複数の点が設定されたら、第二の処理手順~第七の処理手順によって所定の条件を満たす一対の点間をリンク対象点として選定する。ここで選定されるリンク対象点は、最終的に得られる三次元モデルにおいて、三角ポリゴンの一辺をなす点(一辺の両端にある点)である。なお、このようなリンク対象点は、その旨を示すデータとして保存されればよく、例えば、保存されたデータに基づく三次元モデルの描画及び表示を行うのか、そのような表示以外の用途に用いるのかは任意である。 When a plurality of such points are set, a pair of points satisfying a predetermined condition is selected as a link target point by the second processing procedure to the seventh processing procedure. The link target points selected here are points (points at both ends of one side) forming one side of the triangular polygon in the finally obtained three-dimensional model. Note that such link target points only need to be stored as data indicating that, for example, whether to draw and display a three-dimensional model based on the stored data, or to use for purposes other than such display It is arbitrary.
 第二の処理手順~第七の処理手順においては、特に、第二の処理手順において求めた接線方向を用いて、第三の処理手順で求めた距離を、第四の処理手順において補正を行う点に特徴がある。このような補正を行った上で以降の処理手順を実行すると、単に点間距離が近いことを理由にリンク対象が選定されるのではなく、接線方向に差がないことも重要な条件として加味された上でリンク対象が選定される。 In the second processing procedure to the seventh processing procedure, in particular, the distance obtained in the third processing procedure is corrected in the fourth processing procedure using the tangential direction obtained in the second processing procedure. There is a feature in the point. When the subsequent processing procedure is executed after such correction, the link target is not simply selected because the distance between the points is short, but there is no difference in the tangential direction as an important condition. After that, the link target is selected.
 そのため、隣接する層の境界線間で、類似の接線方向を有する部分では、その部分にある点間にリンクが設定されやすくなる一方、接線方向が大きく異なる部分では、その部分にある点間に不自然なリンクが設定されなくなる。その結果、最終的に得られる三次元モデル上においても不自然な形状の三角ポリゴンが生成されず、より自然な三次元モデルを構築することができる。 For this reason, in the portion having a similar tangent direction between the boundary lines of adjacent layers, a link is likely to be set between points in the portion, while in a portion where the tangential direction is greatly different, between the points in the portion. Unnatural links are not set. As a result, an unnatural triangular polygon is not generated on the finally obtained three-dimensional model, and a more natural three-dimensional model can be constructed.
 以下、本発明において採用すると好ましい構成の一例について説明する。第一に、上記第四の処理手順は、接線方向が大きく異なる場合ほど、点間距離を大きく補正し、これにより、リンク対象の判定時に、その点間にリンクが設定されにくくする役割を果たす。 Hereinafter, an example of a configuration that is preferably adopted in the present invention will be described. First, the fourth processing procedure corrects the point-to-point distance as the tangential direction is greatly different, thereby making it difficult to set a link between the points when determining the link target. .
 したがって、このような主旨の補正ができれば、具体的な補正手法は問わない。ただし、好ましい一例を挙げることはできる。すなわち、前記第四の処理手順は、前記接線方向が互いになす角度Δθを求めたら、数式:c=1/(cos(Δθ))2に基づいて、前記角度Δθが大となる場合ほど補正前の値に対して補正後の値が大となる係数cを求めて、当該係数cを当該係数cに対応する二点間の前記距離に対して乗ずることにより、前記距離を補正する手順であることが好ましい。このように構成された三次元モデル構築方法によれば、第四の処理手順において、期待する通りの補正を行うことができる。 Therefore, a specific correction method is not limited as long as such correction can be made. However, a preferable example can be given. That is, in the fourth processing procedure, when the angle Δθ formed by the tangential directions is obtained, based on the formula: c = 1 / (cos (Δθ)) 2, as the angle Δθ becomes larger, the correction becomes smaller. This is a procedure for correcting the distance by obtaining a coefficient c having a large corrected value with respect to the value of, and multiplying the coefficient c by the distance between two points corresponding to the coefficient c. It is preferable. According to the three-dimensional model construction method configured as described above, correction as expected can be performed in the fourth processing procedure.
 第二に、隣り合う層の各境界線が双方とも単一の環状境界線である場合には、上述のような手法でリンク対象を選定すればよいが、臓器には二股に分岐している箇所が存在する場合がある。その場合、一方の層では、二つの環状境界線が形成されることがある。このような場合、従来は手動での調整(手動でのリンク対象選定ないしポリゴン作成)に頼らざるを得ず、三次元モデルの作成を自動化する上での障害となっていた。 Secondly, when both borders of adjacent layers are single annular borders, the link target may be selected by the above-mentioned method, but the organ is bifurcated. There may be places. In that case, two annular boundaries may be formed in one layer. In such a case, conventionally, manual adjustment (manual link target selection or polygon creation) has to be relied upon, which has been an obstacle to automating the creation of a three-dimensional model.
 このような障害を取り除くための対策としては、以下のような構成を採用することが好ましい。すなわち、前記第一の処理手順において、前記臓器外面又は臓器内面が二股に分岐していることに起因して、一方の層には単一の境界線L、その隣の層には二つの境界線U1,U2が存在する場合には、前記二つの境界線U1,U2について、それぞれの重心G1,G2を計算し、それら二つの重心G1,G2を結ぶ直線と二つの境界線U1,U2との交点A,Bを求め、前記単一の境界線L上に設定される複数の点について、前記二つの境界線U1,U2のどちらに近いのかを評価し、それが切り替わる境界となる境界点C,Dを求め、交点A,Bを結ぶ線分ABの中点M1と、境界点C,Dを結ぶ線分CDの中点M2を求め、線分ABの長さD1と線分CDの長さD2を求め、中点M1,M2を結ぶ線分M1-M2をD1:D2の内分比で分ける点Eを求め、単一の境界線Lを境界点C,Dで二つの部分に分割して、当該分割された部分のうち、前記境界線U1に近い一方の部分と線分CE及び線分EDによって境界線L1を構成するとともに、前記境界線U2に近いもう一方の部分と線分CE及び線分EDによって境界線L2を構成し、前記境界線U1,U2,L1,L2上に、三角ポリゴンの頂点とされる複数の点を設定し、前記第二の処理手順~前記第七の処理手順では、前記境界線U1,L1間、及び前記境界線U2,L2間を対象に、前記リンク対象点の選定を行う。 It is preferable to adopt the following configuration as a measure for removing such obstacles. That is, in the first treatment procedure, the outer surface of the organ or the inner surface of the organ is bifurcated, so that one layer has a single boundary line L and the next layer has two boundaries. When the lines U1 and U2 exist, the respective centroids G1 and G2 are calculated for the two boundary lines U1 and U2, and a straight line connecting the two centroids G1 and G2 and the two boundary lines U1, U2 and , Intersection points A and B are obtained, and a plurality of points set on the single boundary line L are evaluated as to which of the two boundary lines U1 and U2 is closer, and a boundary point that becomes a boundary at which the two points switch C and D are obtained, the midpoint M1 of the line segment AB connecting the intersections A and B and the midpoint M2 of the line segment CD connecting the boundary points C and D are obtained, and the length D1 of the line segment AB and the line segment CD are calculated. The length D2 is obtained, and the line segment M1-M2 connecting the midpoints M1, M2 is set to the internal ratio of D1: D2. A dividing point E is obtained, a single boundary line L is divided into two parts at boundary points C and D, and one of the divided parts close to the boundary line U1, a line segment CE and a line The boundary line L1 is constituted by the segment ED, and the boundary line L2 is constituted by the other part close to the boundary line U2, the line segment CE and the line segment ED, and on the boundary lines U1, U2, L1, and L2, A plurality of points as vertices of a triangular polygon are set, and in the second processing procedure to the seventh processing procedure, the boundary lines U1 and L1 and the boundary lines U2 and L2 are targeted. Select the link target point.
 このように構成された三次元モデル構築方法によれば、臓器の二股部分においては、単一の境界線Lを二つの境界線L1,L2に分けてから、リンク対象の選定処理を行うので、二つの境界線U1,U2それぞれとの間でリンク対象を選定できる。しかも、二つの境界線L1,L2は、線分CE及び線分EDの部分を共用しているので、線分CE及び線分ED上の点は、二つの境界線U1,U2それぞれの上に設定された点と対にしてリンク対象とされ、これにより、二股に分岐する箇所においても適切に三角ポリゴンを配置することができる。 According to the three-dimensional model construction method configured as described above, since the single boundary line L is divided into the two boundary lines L1 and L2 in the bifurcated portion of the organ, the link target selection process is performed. A link target can be selected between each of the two boundary lines U1 and U2. Moreover, since the two boundary lines L1 and L2 share the line segment CE and the line segment ED, the points on the line segment CE and the line segment ED are located on the two boundary lines U1 and U2, respectively. Paired with the set point is set as a link target, so that a triangular polygon can be appropriately arranged even at a branching point.
 第三に、複数層の断層画像を撮影した場合、最も端にある層を挟んで、端から二番目にある層とは反対側となる位置には、撮影はされていないものの、臓器の最端部(外面の最端部又は内腔の最端部)が存在する。したがって、三次元モデルにおいて臓器の最端部も適切にモデル化したい場合は、次のような構成を採用することが好ましい。 Third, when multiple layers of tomographic images are taken, the image is not taken at the position on the opposite side of the layer that is the secondmost from the end with the layer at the farthest end sandwiched, but the most of the organ. There is an end (the extreme end of the outer surface or the extreme end of the lumen). Therefore, when it is desired to appropriately model the end of the organ in the three-dimensional model, it is preferable to employ the following configuration.
 すなわち、さらに、前記複数層のうち、最も端にある層を挟んで、端から二番目にある層とは反対側となる位置に、三角ポリゴンの頂点とされる一つの最端点を設定して、当該最端点と前記最も端にある層の前記境界線上にある各点との対をリンク対象点として選定する端部処理手順を含み、前記端部処理手順においては、前記複数層それぞれに平行で互いに直交する二方向をx方向及びy方向、前記複数層それぞれに直交する方向をz方向として、前記最も端にある層の前記境界線のx方向の分布範囲両端のx座標xMin1,xMax1と、y方向の分布範囲両端のy座標yMin1,yMax1とを求め、前記端から二番目にある層の前記境界線のx方向の分布範囲両端のx座標xMin2,xMax2と、y方向の分布範囲両端のy座標yMin2,yMax2とを求め、x方向の両端位置における二つの前記境界線のずれdx1=xMin1-xMin2,dx2=xMax2-xMax1と、y方向の両端位置における二つの前記境界線のずれdy1=yMin1-yMin2,dy2=yMax2-yMax1とを求め、前記x座標xMin1,xMax1の間をdx1:dx2の比で内分する点のx座標xMokと、前記y座標yMin1,yMax1の間をdy1:dy2の比で内分する点のy座標yMokとを求め、前記最も端にある層と前記端から二番目にある層との間の距離dz1と、前記x座標xMin1,xMax1,xMin2,xMax2とに基づき、前記最も端にある層からの距離dz2xが、(xMax1-xMin1):(xMax2-xMin2)=dz2x:(dz1+dz2x)なる関係を満たす距離dz2xを求め、前記最も端にある層と前記端から二番目にある層との間の距離dz1と、前記y座標yMin1,yMax1,yMin2,yMax2とに基づき、前記最も端にある層からの距離dz2yが、(yMax1-yMin1):(yMax2-yMin2)=dz2y:(dz1+dz2y)なる関係を満たす距離dz2yを求め、二つの前記距離dz2x,dz2yのうち、小さい方を距離dz2として、三次元空間において、前記x座標xMin1,xMax1から等距離、かつ前記y座標yMin1,yMax1から等距離にある点Pと、当該点Pからz方向へは距離dz2だけ離間し、かつ前記x座標xMok、前記y座標yMokとなるの点Qとを結ぶ線分PQをPR:RQ=2:1に内分する点Rを求めて、当該点Rを前記最端点とする。このように構成された三次元モデル構築方法によれば、臓器の最端部についても適切に三次元モデル化を図ることができる。 That is, one end point that is the apex of the triangular polygon is set at a position opposite to the second layer from the end across the layer at the end of the plurality of layers. , Including an edge processing procedure for selecting a pair of the extreme end point and each point on the boundary line of the outermost layer as a link target point, and the edge processing procedure is parallel to each of the plurality of layers. X coordinates xMin1, xMax1 at both ends of the distribution range in the x direction of the boundary line of the outermost layer, where x direction and y direction are two directions orthogonal to each other and z direction is a direction orthogonal to each of the plurality of layers. , Y coordinates yMin1, yMax1 at both ends of the distribution range in the y direction, and x coordinates xMin2, xMax2 at both ends of the distribution range in the x direction of the boundary line of the layer second from the end, and both ends of the distribution range in the y direction of The coordinates yMin2 and yMax2 are obtained, and two boundary line shifts dx1 = xMin1-xMin2, dx2 = xMax2-xMax1 at both end positions in the x direction, and two boundary line shifts dy1 = yMin1 at both end positions in the y direction. -YMin2, dy2 = yMax2-yMax1 is obtained, and the x-coordinate xMok of the point that internally divides between the x-coordinates xMin1, xMax1 by the ratio of dx1: dx2, and the y-coordinate xMin1, yMax1 between dy1: dy2 The y coordinate yMok of the point to be internally divided by the ratio is obtained, and based on the distance dz1 between the layer at the end and the layer second from the end, and the x coordinate xMin1, xMax1, xMin2, xMax2 , The distance dz2x from the outermost layer is (xMax1-xMin1): (xMax2- Min2) = dz2x: A distance dz2x satisfying a relationship of (dz1 + dz2x) is obtained, and a distance dz1 between the layer located at the end and the layer located second from the end, and the y coordinates yMin1, yMax1, yMin2, yMax2 Based on the above, a distance dz2y satisfying the relationship of (yMax1-yMin1) :( yMax2-yMin2) = dz2y: (dz1 + dz2y) is obtained from the distance dz2y from the outermost layer, and two distances dz2x, dz2y Among them, the smaller one is a distance dz2, and in a three-dimensional space, a point P that is equidistant from the x coordinates xMin1, xMax1 and equidistant from the y coordinates yMin1, yMax1, and a distance dz2 from the point P in the z direction. And the point Q of the x coordinate xMok and the y coordinate yMok A point R that internally divides the line segment PQ connecting the two lines into PR: RQ = 2: 1 is obtained, and the point R is set as the end point. According to the three-dimensional model construction method configured as described above, it is possible to appropriately form a three-dimensional model even at the extreme end of the organ.
 一局面の本発明の臓器の三次元モデル構築用プログラムは、コンピューターに上述した通りの三次元モデル構築方法を実行させるプログラムである。したがって、上述した三次元モデル構築方法について述べた通りの作用、効果を奏する。なお、この三次元モデル構築用プログラムにおいても、上述した臓器の二股部分に対応する処理手順、臓器の最端部に対応する処理手順を有することが好ましい。このようなプログラムは、コンピューターによる読み取りが可能な各種記録媒体に記録して提供することができ、また、コンピューターにインストールした状態で提供することができる。 The program for constructing a 3D model of an organ of the present invention according to one aspect is a program for causing a computer to execute the 3D model construction method as described above. Therefore, the operation and effect as described for the above-described three-dimensional model construction method are exhibited. Note that this three-dimensional model construction program also preferably has a processing procedure corresponding to the bifurcated portion of the organ and a processing procedure corresponding to the extreme end of the organ. Such a program can be provided by being recorded on various recording media that can be read by a computer, or can be provided in a state of being installed in a computer.
図1Aは臓器の三次元モデル構築処理を実行するシステム全体の構成を示す説明図、図1Bは三次元モデル構築処理を構成する各処理のフローチャート。FIG. 1A is an explanatory diagram showing a configuration of the entire system that executes a 3D model construction process of an organ, and FIG. 1B is a flowchart of each process that constitutes the 3D model construction process. 図2Aは臓器の断層画像上に描かれた境界線を示す説明図、図2B,図2Cは境界線上に設定された点からリンク対象を選定する手順を示す説明図。FIG. 2A is an explanatory diagram illustrating a boundary line drawn on a tomographic image of an organ, and FIGS. 2B and 2C are explanatory diagrams illustrating a procedure for selecting a link target from points set on the boundary line. 図3Aは本発明の三次元モデル構築処理によって構成された三次元モデルを示す説明図、図3Bは点間距離を補正することなくリンク対象を選定した三次元モデルを示す説明図。FIG. 3A is an explanatory diagram showing a three-dimensional model configured by the three-dimensional model construction process of the present invention, and FIG. 3B is an explanatory diagram showing a three-dimensional model in which a link target is selected without correcting the distance between points. 臓器の二股部分における三次元化の手法を示す説明図。Explanatory drawing which shows the method of three-dimensionalization in the forked part of an organ. 臓器の最端部における三次元化の手法を示す説明図。Explanatory drawing which shows the method of three-dimensionalization in the extreme end part of an organ.
1…画像処理ワークステーション、2…断層撮影装置、11…制御部、12…記憶部、13…表示部、14…操作部。 DESCRIPTION OF SYMBOLS 1 ... Image processing workstation, 2 ... Tomography apparatus, 11 ... Control part, 12 ... Memory | storage part, 13 ... Display part, 14 ... Operation part.
 次に、本発明の実施形態について一例を挙げて説明する。
  [システムの構成]
 以下に説明する実施形態では、図1Aに示すように、画像処理ワークステーション1(本発明でいうコンピューターの一例に相当。)と、断層撮影装置2とを備える設備を利用して、臓器の三次元モデルを構築する。画像処理ワークステーション1は、周知のCPU,ROM,RAMなどを備える制御部11と、OS(Operating System)や三次元モデル構築用プログラムなどのアプリケーションプログラムなど、種々のソフトウェアが格納された記憶部12と、各種情報を表示する表示部13と、タッチパネルやその他のポインティングデバイスあるいはキーボードなどによって構成される操作部14とを備えている。
Next, an embodiment of the present invention will be described with an example.
[System configuration]
In the embodiment described below, as shown in FIG. 1A, using an equipment including an image processing workstation 1 (corresponding to an example of a computer referred to in the present invention) and a tomography apparatus 2, the tertiary of the organ Build the original model. The image processing workstation 1 includes a control unit 11 having a known CPU, ROM, RAM, and the like, and a storage unit 12 in which various software such as an OS (Operating System) and an application program such as a 3D model construction program are stored. And a display unit 13 for displaying various types of information, and an operation unit 14 configured by a touch panel, other pointing devices, a keyboard, or the like.
 断層撮影装置2は、核磁気共鳴診断装置又は多列検出器型CT診断装置である。核磁気共鳴診断装置は、周知のように、核磁気共鳴を利用して人体の断層画像を撮影するための装置である。多列検出器型CT診断装置は、周知のように、X線を利用して人体の断層画像を撮影するための装置である。断層撮影装置2において撮影された断層画像データ(MRI撮影データあるいはCT造影データ)は、画像処理ワークステーション1へと伝送される。そして、画像処理ワークステーション1においては、伝送されてきた断層画像データに基づいて、以下に説明するような境界線抽出処理や三次元ポリゴン処理が行われる。 The tomography apparatus 2 is a nuclear magnetic resonance diagnostic apparatus or a multi-row detector type CT diagnostic apparatus. As is well known, the nuclear magnetic resonance diagnostic apparatus is an apparatus for taking a tomographic image of a human body using nuclear magnetic resonance. As is well known, the multi-row detector CT diagnostic apparatus is an apparatus for taking a tomographic image of a human body using X-rays. Tomographic image data (MRI imaging data or CT contrast data) imaged by the tomography apparatus 2 is transmitted to the image processing workstation 1. The image processing workstation 1 performs boundary line extraction processing and three-dimensional polygon processing as described below based on the transmitted tomographic image data.
 境界線抽出処理では、図1Bに示すように、最初にMRI(CT)断層画像の撮影を行い(S1)、続いて画像の前処理を実行し(S2)、更に臓器の境界線の抽出が行われる(S3)。これらのうち、MRI(CT)断層画像の撮影は、断層撮影装置2において実行される。S1では、一方向に間隔を空けた位置で複数層にわたって臓器の断層画像が撮影される。これにより、複数層分の断層画像データが生成され、それら複数の断層画像データが画像処理ワークステーション1へと伝送される。 In the boundary line extraction process, as shown in FIG. 1B, first, an MRI (CT) tomographic image is taken (S1), followed by preprocessing of the image (S2), and further, the boundary line of the organ is extracted. Performed (S3). Among these, MRI (CT) tomographic imaging is performed by the tomographic apparatus 2. In S1, a tomographic image of an organ is captured over a plurality of layers at positions spaced in one direction. Thereby, tomographic image data for a plurality of layers is generated, and the plurality of tomographic image data is transmitted to the image processing workstation 1.
 そして、画像処理ワークステーション1においては、画像の前処理が実行される。この画像の前処理では、画像のコントラスト(明暗差)を増大させる画像処理や、エッジを強調する画像処理などが施され、これにより、臓器外面又は内面の境界線を作業者が認識しやすくなる。続いて、画像処理ワークステーション1では、臓器の境界線の抽出が行われる。本実施形態の場合、画像処理ワークステーション1は、S2で前処理が施された断層画像を表示部13に表示し、操作部14での操作を受け付ける状態になる。 In the image processing workstation 1, image preprocessing is executed. In this image preprocessing, image processing for increasing the contrast (brightness / darkness difference) of the image, image processing for emphasizing the edge, and the like are performed, which makes it easier for the operator to recognize the boundary line of the outer surface or inner surface of the organ. . Subsequently, in the image processing workstation 1, an organ boundary line is extracted. In the case of the present embodiment, the image processing workstation 1 displays the tomographic image that has been preprocessed in S2 on the display unit 13 and receives an operation on the operation unit 14.
 この状態において、作業者は、ポインティングデバイスを操作して、表示部13に表示された断層画像上で、抽出したい境界線上の点を何点か指定する。ここで、三点以上の点が指定されると、画像処理ワークステーション1は、指定された各点を通る三次スプライン曲線を生成し、そのスプライン曲線を表示部13に表示されている断層画像に重ねて表示する。図2Aには、心臓の断層画像と、その断層画像上の境界点を指定する複数の点と、それら複数の点を通る三次スプライン曲線を、重ねて表示部13に表示した表示例を示す。 In this state, the operator operates the pointing device to specify some points on the boundary line to be extracted on the tomographic image displayed on the display unit 13. Here, when three or more points are designated, the image processing workstation 1 generates a cubic spline curve passing through each designated point, and the spline curve is displayed on the tomographic image displayed on the display unit 13. Overlapping display. FIG. 2A shows a display example in which a tomographic image of the heart, a plurality of points specifying boundary points on the tomographic image, and a cubic spline curve passing through the plurality of points are displayed on the display unit 13 in an overlapping manner.
 作業者は表示されているスプライン曲線を見ながら、更に必要と思われる点を指定することで、スプライン曲線の形状を調節することができ、これにより、抽出したい境界線の形状にスプライン曲線の形状を近づけることができる。なお、このスプライン曲線の生成処理は、断層撮影装置2において撮影された複数層分の断層画像全てに対して実施される。 The operator can adjust the shape of the spline curve by observing the displayed spline curve and specifying the point that seems to be necessary, so that the shape of the spline curve can be adjusted to the shape of the boundary line to be extracted. Can be brought closer. Note that the spline curve generation processing is performed on all of the tomographic images of a plurality of layers photographed by the tomography apparatus 2.
 こうして所期の形状のスプライン曲線を得ることができたら、画像処理ワークステーション1は、得られたスプライン曲線データに基づいて三次元ポリゴン化処理を実行する。三次元ポリゴン化処理では、臓器の二股部分以外の箇所では、境界線上に三角ポリゴンの頂点を設定し、頂点間に三角ポリゴンの辺を設定する(S11)。また、臓器の二股部分では、二股部分に境界線を追加設定し、境界線上に三角ポリゴンの頂点を設定し、頂点間に三角ポリゴンの辺を設定する(S12)。また、臓器の最端部では、最端層の隣に最端点を追加設定し、最端点と最端層の境界線上の頂点間に三角ポリゴンの辺を設定する(S13)。 If the spline curve having the desired shape can be obtained in this way, the image processing workstation 1 executes a three-dimensional polygon processing based on the obtained spline curve data. In the three-dimensional polygon processing, at points other than the bifurcated part of the organ, the vertices of the triangular polygon are set on the boundary line, and the sides of the triangular polygon are set between the vertices (S11). Further, in the bifurcated portion of the organ, a boundary line is additionally set in the bifurcated portion, a vertex of the triangular polygon is set on the boundary line, and a side of the triangular polygon is set between the vertices (S12). At the extreme end of the organ, an extreme end point is additionally set next to the extreme end layer, and a triangular polygon side is set between vertices on the boundary line between the extreme end point and the extreme end layer (S13).
 これらS11~S13の処理は、どのような順序で行われてもよい。また、以上のような処理によって得られた臓器の三次元モデルは、様々な用途での利用が可能である。例えば、コンピューター上で三次元形状を画像として表示する用途はもちろんのこと、いわゆる3Dプリンターと呼ばれる装置によって実際に三次元形状を再現した立体物を成形する用途にも利用できる。また、臓器の三次元形状を解析し、臓器に適用するための医療器具の設計に役立てることもできる。 The processes of S11 to S13 may be performed in any order. In addition, the three-dimensional model of the organ obtained by the above processing can be used for various purposes. For example, the present invention can be used not only for displaying a three-dimensional shape as an image on a computer, but also for forming a three-dimensional object that actually reproduces the three-dimensional shape using a so-called 3D printer. It can also be used to analyze the three-dimensional shape of an organ and design a medical instrument for application to the organ.
  [S11の詳細]
 次に、上述のS11において実行される処理手順について詳述する。S11においては、以下に説明する手順#1~#7に従って、隣り合う位置にある境界線上に三角ポリゴンの頂点となる点を設定するとともに、所定の手順に従って選定される頂点間に三角ポリゴンの辺となるリンクを設定する。まず、S3において得られた境界線(スプライン曲線)上に、三角ポリゴンの頂点とされる複数の点を設定する(手順#1)。ここで設定される点は、S3で利用者が指定した点そのものを含んでいても含んでいなくてもかまわないが、いずれにしても上述のスプライン曲線上において、ポリゴンの生成に必要な数(任意の数であるが、一例を挙げれば100点程度)の点が設定される。
[Details of S11]
Next, the processing procedure executed in S11 will be described in detail. In S11, according to the procedures # 1 to # 7 described below, points that become the vertices of the triangular polygon are set on the boundary lines at the adjacent positions, and the sides of the triangular polygon are selected between the vertices selected according to the predetermined procedure. Set the link that becomes. First, a plurality of points that are vertices of a triangular polygon are set on the boundary line (spline curve) obtained in S3 (procedure # 1). The points set here may or may not include the point specified by the user in S3, but in any case, the number necessary for generating the polygon on the above-mentioned spline curve. (It is an arbitrary number, but if it gives an example, about 100 points) are set.
 次に、手順#1において設定された各点における二次元断面画像上での境界線の接線方向を求める(手順#2)。この手順#2で求めた接線方向は、後から利用できるように各点に対応付けて記憶しておく。続いて、複数層の中から、隣り合う位置にある層のペアを一層分ずつずらしながら順に選んで、各層の境界線を同一平面上に投影し、投影された双方の境界線上に設定された各点について、その各点を基準点として、その基準点が含まれる境界線とは別の境界線上の各点から基準点までの距離を算出する(手順#3)。 Next, the tangential direction of the boundary line on the two-dimensional cross-sectional image at each point set in the procedure # 1 is obtained (procedure # 2). The tangential direction obtained in this procedure # 2 is stored in association with each point so that it can be used later. Subsequently, a pair of layers at adjacent positions is sequentially selected from a plurality of layers while shifting one layer at a time, and the boundary lines of each layer are projected on the same plane and set on both projected boundary lines. For each point, using each point as a reference point, the distance from each point on the boundary line different from the boundary line including the reference point to the reference point is calculated (procedure # 3).
 次に、手順#3において距離の算出対象とされた二点ごとに、その二点それぞれに対応する接線方向が互いになす角度を求め、その角度が大となる場合ほど補正前の値に対して補正後の値が大となる係数を求めて、その係数をその係数に対応する二点間の距離に対して乗ずることにより、距離を補正する(手順#4)。本実施形態において、手順#4では、接線方向が互いになす角度Δθを求めたら、数式:c=1/(cos(Δθ))2に基づいて、角度Δθが大となる場合ほど補正前の値に対して補正後の値が大となる係数cを求める。そして、その係数cをその係数cに対応する二点間の距離に対して乗ずることにより、距離を補正する。 Next, for each of the two points whose distances are to be calculated in step # 3, an angle formed by the tangential directions corresponding to each of the two points is obtained. A coefficient having a large value after correction is obtained, and the distance is corrected by multiplying the coefficient by the distance between two points corresponding to the coefficient (procedure # 4). In this embodiment, in step # 4, when the angle Δθ formed by the tangential directions is obtained, the value before correction is increased as the angle Δθ becomes larger based on the formula: c = 1 / (cos (Δθ)) 2. The coefficient c for which the value after correction becomes large is obtained. Then, the distance is corrected by multiplying the coefficient c by the distance between the two points corresponding to the coefficient c.
 そして、手順#4によって補正された補正後の距離に基づいて、一つの基準点に対応する複数の補正後の距離の中から最短の距離を選び、基準点との距離が最短の距離となる点を、基準点に対応する最短点に設定する(手順#5)。つまり、手順#5では、境界線上の各点に対応付けて、一つずつ最短点が設定されることになる。なお、ある点p1を基準にすると、点p1に対する最短点が点p2になる場合でも、点p2を基準にすると、点p2に対する最短点は点p3になることがある。したがって、これら基準点と最短点の関係は、境界線上の全ての点について最短点を記憶しておく。 Then, based on the corrected distance corrected in step # 4, the shortest distance is selected from a plurality of corrected distances corresponding to one reference point, and the distance from the reference point becomes the shortest distance. The point is set to the shortest point corresponding to the reference point (procedure # 5). That is, in procedure # 5, the shortest point is set one by one in association with each point on the boundary line. When the point p1 is used as a reference, even when the shortest point with respect to the point p1 is the point p2, the shortest point with respect to the point p2 may be the point p3 when the point p2 is used as a reference. Therefore, the relationship between these reference points and the shortest points is stored for all points on the boundary line.
 次に、複数層の中から、隣り合う位置にある層のペアを一層分ずつずらしながら順に選定し、その二つの層を選定するごとに、一方の層にある境界線上に設定された各点を基準点とした場合のその基準点に対応する最短点までの距離が最短となる基準点と最短点を、それぞれ起点に設定する(手順#6)。すなわち、手順#6では、互いに基準点と最短点の関係にあり、かつその距離が最短となり二点が選定されて起点とされる。 Next, select a pair of adjacent layers by shifting one layer at a time from multiple layers, and each point set on the boundary line in one layer each time the two layers are selected. The reference point and the shortest point with the shortest distance to the shortest point corresponding to the reference point are set as starting points (step # 6). That is, in procedure # 6, there is a relationship between the reference point and the shortest point, and the distance becomes the shortest and two points are selected and used as the starting point.
 そして、手順#6によって起点が設定された二つの境界線上から、以下の手法で、三角ポリゴンの一辺に相当するリンクが設定される複数対のリンク対象点を選定してゆく(手順#7)。すなわち、まず、図2Bに示すように、上記一対の起点となるk11,k21については一対のリンク対象点として選定する。以降は、選定したリンク対象点から所定方向回り(例えば図2B中に一点鎖線の矢印で示す方向回り)で隣へ一点分だけ進んだ位置にある各点k12,k22を候補点として、先に選定された一対のリンク対象点k11,k21のいずれか一方と、その一方のリンク対象点とは異なる境界線上にある候補点(k11の場合はk22、k21の場合はk12)とを、次の一対のリンク対象点として選定する処理を繰り返す。 Then, a plurality of pairs of link target points on which links corresponding to one side of the triangular polygon are set are selected from the two boundary lines where the starting points are set in step # 6 (step # 7). . That is, first, as shown in FIG. 2B, k11 and k21 as the pair of starting points are selected as a pair of link target points. Thereafter, the respective points k12 and k22 that are advanced by one point around the predetermined direction (for example, around the direction indicated by the one-dot chain line arrow in FIG. 2B) from the selected link target point are used as candidate points. Either one of the selected pair of link target points k11 and k21 and a candidate point (k22 in the case of k11, k12 in the case of k21) on a boundary line different from the one link target point are The process of selecting as a pair of link target points is repeated.
 k12,k22のうち、いずれを選定するかは後述する手法で決めることになるが、例えば、図2Bに示す例において、点k12、k21の方を次の一対のリンク対象点として選定した場合は、図2Cに示すように、選定したリンク対象点k12,k21から所定方向回り(本実施形態の場合、図2C中に一点鎖線の矢印で示す方向回り)で隣へ一点分だけ進んだ位置にある各点k13,k22を新たな候補点とし、先に選定された一対のリンク対象点k12,k21のいずれか一方と、その一方のリンク対象点とは異なる境界線上にある候補点(k12の場合はk22、k21の場合はk13)とを、次の一対のリンク対象点として選定する。このような処理を繰り返せば、二つの境界線間は、リンク対象点を結ぶ線分によって複数の三角形の領域に区画されるので、この三角形の領域に対応する三角形ポリゴンで境界線間を埋めることにより、境界線間の領域の三次元モデル化を図ることができる。 Which of k12 and k22 is to be selected is determined by the method described later. For example, in the example shown in FIG. 2B, when the points k12 and k21 are selected as the next pair of link target points. As shown in FIG. 2C, at a position advanced from the selected link target points k12, k21 by one point around the predetermined direction (in the case of this embodiment, around the direction indicated by the one-dot chain line arrow in FIG. 2C). Each point k13, k22 is set as a new candidate point, and one of the pair of link target points k12, k21 selected previously and a candidate point (k12 of k12) on a different boundary line from the one link target point K22 in the case, and k13) in the case of k21 are selected as the next pair of link target points. If this process is repeated, the space between the two boundary lines is divided into a plurality of triangular areas by line segments connecting the link target points, so the boundary lines are filled with triangular polygons corresponding to the triangular areas. Thus, the three-dimensional modeling of the area between the boundary lines can be achieved.
 ところで、この手順#7においては、以下の条件(A)~(D)に従って、対になるリンク対象点を策定してゆく。
(A)次に選定される一対のリンク対象点が、双方とも起点に戻る場合は、手順#7を終了する。つまり、二つの境界線間が全て三角形の領域に区画されたら、処理を終える。
(B)(A)以外の場合で、先に選定された一対のリンク対象点のうち、一方のリンク対象点が既に起点に戻っている場合は、その一方のリンク対象点と他方のリンク対象点の隣にある候補点とを、次の一対のリンク対象点として選定する。つまり、一方の境界線上でリンク対象点が一巡して起点まで戻れば、他方の境界線上に残る候補点は、全て一方の境界線上の起点と一対にしてリンク対象点とされる。
(C)(A),(B)以外の場合で、先に選定された一対のリンク対象点のうち、一方のリンク対象点に対応する最短点まで、他方のリンク対象点が進められておらず、かつ、他方のリンク対象点に対応する最短点まで、既に一方のリンク対象点が進められていた場合は、その一方のリンク対象点と他方のリンク対象点の隣にある候補点とを、次の一対のリンク対象点として選定する。つまり、リンク対象点を選定する際には、事前に求めておいて各点に対応する最短点との関係も考慮して、リンク対象点の対を選定する。
(D)(A),(B),(C)以外の場合は、先に選定された一対のリンク対象点のうち、一方のリンク対象点と他方のリンク対象点の隣にある候補点との距離と、他方のリンク対象点と一方のリンク対象点の隣にある候補点との距離とを、層間の距離を加味した三次元空間換算で計算し、その計算された二つの距離のうち、短い方の距離をなす二点を、次の一対のリンク対象点として選定する。つまり、(A),(B),(C)以外の場合にのみ、初めて三次元空間内の点間距離に留意して、一般的な手法でリンク対象点の対を選定する。
By the way, in this procedure # 7, a pair of link target points is formulated according to the following conditions (A) to (D).
(A) If both of the pair of link target points to be selected next return to the starting point, the procedure # 7 is terminated. That is, when all the two boundary lines are divided into triangular regions, the processing is finished.
(B) In cases other than (A), when one link target point has already returned to the starting point among the pair of link target points previously selected, the one link target point and the other link target point Candidate points next to the points are selected as the next pair of link target points. That is, if the link target point makes a round on one boundary line and returns to the starting point, all candidate points remaining on the other boundary line are paired with the starting point on one boundary line as the link target point.
(C) In cases other than (A) and (B), the other link target point is advanced to the shortest point corresponding to one link target point among the pair of link target points previously selected. If one link target point has already been advanced to the shortest point corresponding to the other link target point, the one link target point and the candidate point next to the other link target point are The next pair of link target points is selected. That is, when selecting link target points, a pair of link target points is selected in consideration of the relationship with the shortest point corresponding to each point.
(D) In cases other than (A), (B), and (C), among the pair of link target points selected previously, a candidate point adjacent to one link target point and the other link target point And the distance between the other link target point and the candidate point next to the one link target point are calculated in terms of a three-dimensional space that takes into account the distance between the layers. The two points forming the shorter distance are selected as the next pair of link target points. That is, only in cases other than (A), (B), and (C), a pair of link target points is selected by a general method while paying attention to the distance between points in the three-dimensional space for the first time.
 このように、上記のようなリンク対象を選定する手順(手順#7)においては、あらかじめ手順#2において求めた接線方向を用いて、手順#3で求めた距離を、手順#4において補正し、その補正後の距離に基づく判断も加味してリンク対象を選定している。したがって、単に三次元空間内における点間距離が近いことを理由にリンク対象が選定される技術とは異なり、接線方向に差がないことも重要な条件として加味された上でリンク対象が選定される。その結果、隣接する層の境界線間において、類似の接線方向を有する部分では、その部分にある点間にリンクが設定されやすくなる一方、接線方向が大きく異なる部分では、その部分にある点間に不自然なリンクが設定されなくなる。 Thus, in the procedure for selecting the link target as described above (procedure # 7), the distance obtained in procedure # 3 is corrected in procedure # 4 using the tangential direction obtained in advance in procedure # 2. The link target is selected in consideration of the determination based on the corrected distance. Therefore, unlike the technology in which the link target is selected simply because the distance between the points in the three-dimensional space is short, the link target is selected after considering that there is no difference in the tangential direction as an important condition. The As a result, in the portion having a similar tangent direction between the boundary lines of adjacent layers, a link is likely to be set between the points in that portion, while in the portion having a greatly different tangent direction, the point between the points in that portion Unnatural links are no longer set in
 具体的な事例を例示すると、例えば、図3Aに例示する領域A1,A2において、隣り合う位置にある境界線は、それらの接線方向が類似する形状になっている。このような場合には、接線の傾きが比較的近い点同士がリンク対象として選ばれ、その結果、そこに生成される三角ポリゴンは、外観上、自然な曲面をなすものとなる。この点、単に三次元空間内における距離のみに基づいて比較的近い点同士がリンク対象として選ばれると、例えば、図3Bに例示する領域A3,A4のように、領域A3内にある境界線上の点全てが、限られた領域A4内にある点と対にされ、その結果、外観上、円錐の一部に見えるような不自然な曲面が局所ごとに形成される場合がある。したがって、上述のような手法で、リンク対象点を選定する方が、最終的に得られる三次元モデル上においても不自然な形状の三角ポリゴンが生成されず、より自然な三次元モデルを構築することができる。 For example, for example, in the regions A1 and A2 illustrated in FIG. 3A, the boundary lines at adjacent positions have similar shapes in the tangent direction. In such a case, points whose tangent slopes are relatively close are selected as link targets, and as a result, the triangular polygons generated there form a natural curved surface in appearance. When relatively close points are selected as link targets based only on the distance in the three-dimensional space, for example, on the boundary line in the region A3 as in the regions A3 and A4 illustrated in FIG. 3B, for example. All the points are paired with points in the limited area A4, and as a result, an unnatural curved surface that looks like a part of a cone in appearance may be formed locally. Therefore, selecting a link target point by the above-described method does not generate an unnatural triangular polygon on the finally obtained three-dimensional model, and constructs a more natural three-dimensional model. be able to.
  [S12の詳細]
 臓器に二股に分岐している箇所が存在する場合、一方の層では、二つの環状境界線が形成されることがある。このような場合には、上述の手順#1相当の段階で、以下のような手順でリンク対象点の対が選定される。まず、図4Aに示すように、隣り合う二層のうち、一方の層には単一の境界線L、その隣の層には二つの境界線U1,U2が存在する場合、二つの境界線U1,U2について、それぞれの重心G1,G2を計算する。そして、それら二つの重心G1,G2を結ぶ直線と二つの境界線U1,U2との交点A,Bを求める。
[Details of S12]
When an organ has a bifurcated portion, two annular boundary lines may be formed in one layer. In such a case, a pair of link target points is selected by the following procedure at a stage corresponding to the above-described procedure # 1. First, as shown in FIG. 4A, if two layers adjacent to each other have a single boundary line L in one layer and two boundary lines U1 and U2 in the adjacent layer, the two boundary lines For U1 and U2, the respective centroids G1 and G2 are calculated. Then, intersections A and B between the straight line connecting the two centroids G1 and G2 and the two boundary lines U1 and U2 are obtained.
 また、単一の境界線L上に設定される複数の点について、二つの境界線U1,U2のどちらに近いのかを評価し、それが切り替わる境界となる境界点C,Dを求める。そして、図4Bに示すように、交点A,Bを結ぶ線分ABの中点M1と、境界点C,Dを結ぶ線分CDの中点M2を求める。続いて、線分ABの長さD1と線分CDの長さD2を求め、中点M1,M2を結ぶ線分M1-M2をD1:D2の内分比で分ける点Eを求める。 Also, with respect to a plurality of points set on a single boundary line L, it is evaluated which of the two boundary lines U1 and U2 is closer to each other, and boundary points C and D serving as boundaries at which the two points are switched are obtained. Then, as shown in FIG. 4B, the midpoint M1 of the line segment AB connecting the intersections A and B and the midpoint M2 of the line segment CD connecting the boundary points C and D are obtained. Subsequently, the length D1 of the line segment AB and the length D2 of the line segment CD are obtained, and a point E is obtained by dividing the line segment M1-M2 connecting the midpoints M1, M2 by the internal ratio of D1: D2.
 そして、図4Cに示すように、単一の境界線Lを境界点C,Dで二つの部分に分割して、その分割された部分のうち、境界線U1に近い一方の部分と線分CE及び線分EDによって境界線L1を構成し、境界線U2に近いもう一方の部分と線分CE及び線分EDによって境界線L2を構成する。こうして単一の境界線Lを二つの境界線L1,L2に分けたら、後は、境界線U1,U2,L1,L2上に、三角ポリゴンの頂点とされる複数の点を設定し、手順#2~手順#7相当の手順で、境界線U1,L1間、及び境界線U2,L2間を対象に、リンク対象点の選定を行う。 Then, as shown in FIG. 4C, a single boundary line L is divided into two parts at boundary points C and D, and one of the divided parts close to the boundary line U1 and a line segment CE. The boundary line L1 is configured by the line segment ED, and the boundary line L2 is configured by the other part near the boundary line U2, the line segment CE, and the line segment ED. After dividing the single boundary line L into two boundary lines L1 and L2, a plurality of points which are the vertices of the triangular polygon are set on the boundary lines U1, U2, L1 and L2, and the procedure # 2 to procedure # 7, a link target point is selected between the boundary lines U1 and L1 and between the boundary lines U2 and L2.
 このような手法でリンク対象点を設定すれば、臓器の二股部分においては、単一の境界線Lを二つの境界線L1,L2に分けてから、リンク対象の選定処理が行われるので、二つの境界線U1,U2それぞれとの間でリンク対象を選定できる。しかも、二つの境界線L1,L2は、線分CE及び線分EDの部分を共用しているので、線分CE及び線分ED上の点は、二つの境界線U1,U2それぞれの上に設定された点と対にしてリンク対象とされ、これにより、二股に分岐する箇所においても適切に三角ポリゴンを配置することができる。 If the link target point is set by such a method, since the single boundary line L is divided into the two boundary lines L1 and L2 in the bifurcated portion of the organ, the link target selection process is performed. A link target can be selected between each of the two boundary lines U1 and U2. Moreover, since the two boundary lines L1 and L2 share the line segment CE and the line segment ED, the points on the line segment CE and the line segment ED are located on the two boundary lines U1 and U2, respectively. Paired with the set point is set as a link target, so that a triangular polygon can be appropriately arranged even at a branching point.
  [S13の詳細]
 図5Aに示すように、臓器の最端部に三角ポリゴンを配置したい場合は、次のような手順を採用する。すなわち、複数層それぞれに平行で互いに直交する二方向をx方向及びy方向、複数層それぞれに直交する方向をz方向として、最も端にある層の境界線Lのx方向の分布範囲両端のx座標xMin1,xMax1と、y方向の分布範囲両端のy座標yMin1,yMax1とを求める(図5B参照。)。
[Details of S13]
As shown in FIG. 5A, when it is desired to place a triangular polygon at the extreme end of the organ, the following procedure is adopted. That is, the x direction and the y direction are two directions parallel to each of the layers and orthogonal to each other, and the direction perpendicular to each of the layers is the z direction. The coordinates xMin1, xMax1 and the y coordinates yMin1, yMax1 at both ends of the distribution range in the y direction are obtained (see FIG. 5B).
 また、端から二番目にある層の境界線のx方向の分布範囲両端のx座標xMin2,xMax2と、y方向の分布範囲両端のy座標yMin2,yMax2とを求める。図5Bには、x,z座標が見える方向から見た状態を図示するが、y,z座標が見える方向から見た状態は図5Bにおけるxをyに置き換えたものなので図示を省略する(以下同様。)。 Also, x coordinates xMin2, xMax2 at both ends of the distribution range in the x direction of the boundary line of the second layer from the end, and y coordinates yMin2, yMax2 at both ends of the distribution range in the y direction are obtained. FIG. 5B illustrates the state seen from the direction in which the x and z coordinates can be seen, but the state seen from the direction in which the y and z coordinates are visible is obtained by replacing x in FIG. The same.)
 次に、x方向の両端位置における二つの境界線のずれdx1=xMin1-xMin2,dx2=xMax2-xMax1と、y方向の両端位置における二つの境界線のずれdy1=yMin1-yMin2,dy2=yMax2-yMax1とを求める。続いて、x座標xMin1,xMax1の間をdx1:dx2の比で内分する点のx座標xMokと、y座標yMin1,yMax1の間をdy1:dy2の比で内分する点のy座標yMokとを求める。 Next, two boundary line deviations dx1 = xMin1-xMin2, dx2 = xMax2-xMax1 at both end positions in the x direction and two boundary line deviations dy1 = yMin1-yMin2, dy2 = yMax2− at both end positions in the y direction. Obtain yMax1. Subsequently, the x coordinate xMok of the point that internally divides the x coordinate xMin1, xMax1 by the ratio of dx1: dx2, and the y coordinate yMok of the point that internally divides the y coordinate yMin1, yMax1 by the ratio of dy1: dy2. Ask for.
 そして、最も端にある層と端から二番目にある層との間の距離dz1と、x座標xMin1,xMax1,xMin2,xMax2とに基づき、最も端にある層からの距離dz2xが、(xMax1-xMin1):(xMax2-xMin2)=dz2x:(dz1+dz2x)なる関係を満たす距離dz2xを求める。また、最も端にある層と端から二番目にある層との間の距離dz1と、y座標yMin1,yMax1,yMin2,yMax2とに基づき、最も端にある層からの距離dz2yが、(yMax1-yMin1):(yMax2-yMin2)=dz2y:(dz1+dz2y)なる関係を満たす距離dz2yを求める。 Then, based on the distance dz1 between the outermost layer and the second layer from the end, and the x coordinates xMin1, xMax1, xMin2, xMax2, the distance dz2x from the outermost layer is (xMax1- The distance dz2x that satisfies the relationship xMin1) :( xMax2-xMin2) = dz2x: (dz1 + dz2x) is obtained. Further, based on the distance dz1 between the layer at the endmost and the layer at the second end from the end and the y coordinates yMin1, yMax1, yMin2, yMax2, the distance dz2y from the layer at the end is (yMax1- The distance dz2y satisfying the relationship yMin1) :( yMax2-yMin2) = dz2y: (dz1 + dz2y) is obtained.
 これら二つの距離dz2x,dz2yのうち、小さい方を距離dz2として、三次元空間において、x座標xMin1,xMax1から等距離、かつy座標yMin1,yMax1から等距離にある点Pと、その点Pからz方向へは距離dz2だけ離間し、かつx座標xMok、y座標yMokとなるの点Qとを結ぶ線分PQをPR:RQ=2:1に内分する点Rを求めて、その点Rを最端点とする。これにより、最端点Rが決まるので、境界線L上にある各点と最端点Rとの対を、リンク対象点として選定し、最短箇所においても適切に三角ポリゴンを配置することができる。 The smaller one of these two distances dz2x and dz2y is defined as a distance dz2, and in a three-dimensional space, a point P that is equidistant from the x coordinate xMin1, xMax1, and equidistant from the y coordinate yMin1, yMax1, and from the point P A point R is obtained by dividing a line segment PQ that is separated by a distance dz2 in the z direction and connects the point Q that is the x coordinate xMok and the y coordinate yMok into PR: RQ = 2: 1. Is the extreme end point. Thus, since the end point R is determined, a pair of each point on the boundary line L and the end point R can be selected as a link target point, and a triangular polygon can be appropriately arranged even at the shortest point.
  [その他の実施形態]
 以上、本発明の実施形態について説明したが、本発明は上記の具体的な一実施形態に限定されず、この他にも種々の形態で実施することができる。
[Other Embodiments]
As mentioned above, although embodiment of this invention was described, this invention is not limited to said specific one Embodiment, In addition, it can implement with a various form.
 例えば、上記実施形態で、上記手順#4では、接線方向が大きく異なる場合ほど、点間距離を大きく補正するため、数式:c=1/(cos(Δθ))2に基づいて係数cを求めて、その係数cをその係数cに対応する二点間の距離に対して乗ずる旨を説明したが、同等の補正ができる係数cを求めることができれば、数式そのものは上記数式に限定されない。 For example, in the above-described embodiment, in step # 4, the coefficient c is obtained based on the mathematical formula: c = 1 / (cos (Δθ)) 2 in order to correct the point-to-point distance as the tangential direction is significantly different. In the above description, the coefficient c is multiplied by the distance between the two points corresponding to the coefficient c. However, the expression itself is not limited to the above expression as long as the coefficient c capable of equivalent correction can be obtained.

Claims (5)

  1.  断層撮影装置で臓器を複数層にわたって撮影することによって得られる各層の二次元断面画像上において特定される臓器外面又は臓器内面を示す境界線に基づいて、当該境界線上に、三角ポリゴンの頂点とされる複数の点を設定する第一の処理手順と、
     前記第一の処理手順において設定された各点における前記二次元断面画像上での前記境界線の接線方向を求める第二の処理手順と、
     前記複数層の中から、隣り合う位置にある層のペアを一層分ずつずらしながら順に選んで、各層の前記境界線を同一平面上に投影し、投影された双方の境界線上に設定された各点について、当該各点を基準点として、当該基準点が含まれる境界線とは別の境界線上の各点から前記基準点までの距離を算出する第三の処理手順と、
     前記第三の処理手順において前記距離の算出対象とされた二点ごとに、当該二点それぞれに対応する前記接線方向が互いになす角度を求め、当該角度が大となる場合ほど補正前の値に対して補正後の値が大となる係数を求めて、当該係数を当該係数に対応する二点間の前記距離に対して乗ずることにより、前記距離を補正する第四の処理手順と、
     前記第四の処理手順によって補正された補正後の前記距離に基づいて、一つの前記基準点に対応する複数の前記補正後の距離の中から最短の距離を選び、前記基準点との距離が前記最短の距離となる点を、前記基準点に対応する最短点に設定する第五の処理手順と、
     前記複数層の中から、隣り合う位置にある層のペアを一層分ずつずらしながら順に選定し、当該二つの層を選定するごとに、一方の層にある前記境界線上に設定された各点を前記基準点とした場合の当該基準点に対応する最短点までの距離が最短となる前記基準点と前記最短点を、それぞれ起点に設定する第六の処理手順と、
     前記第六の処理手順によって前記起点が設定された二つの前記境界線上から、三角ポリゴンの一辺に相当するリンクが設定される複数対のリンク対象点を選定してゆく手順であり、一対の前記起点については一対の前記リンク対象点として選定し、以降は、選定した前記リンク対象点から所定方向回りで隣へ一点分だけ進んだ位置にある各点を候補点として、先に選定された一対の前記リンク対象点のいずれか一方と、当該一方の前記リンク対象点とは異なる前記境界線上にある前記候補点とを、次の一対のリンク対象点として選定する処理を繰り返す第七の処理手順と
     を含む処理をコンピューターに実行させることによって、臓器の三次元モデルを構築する方法であり、
     前記第七の処理手順においては、
     (A)次に選定される前記一対のリンク対象点が、双方とも前記起点に戻る場合は、前記第七の処理手順を終了し、
     (B)前記(A)以外の場合で、先に選定された一対の前記リンク対象点のうち、一方のリンク対象点が既に前記起点に戻っている場合は、当該一方のリンク対象点と他方のリンク対象点の隣にある前記候補点とを、次の一対のリンク対象点として選定し、
     (C)前記(A),(B)以外の場合で、先に選定された一対の前記リンク対象点のうち、一方のリンク対象点に対応する前記最短点まで、他方のリンク対象点が進められておらず、かつ、前記他方のリンク対象点に対応する前記最短点まで、既に前記一方のリンク対象点が進められていた場合は、当該一方のリンク対象点と他方のリンク対象点の隣にある前記候補点とを、次の一対のリンク対象点として選定し、
     (D)前記(A),(B),(C)以外の場合は、先に選定された一対の前記リンク対象点のうち、一方のリンク対象点と他方のリンク対象点の隣にある前記候補点との距離と、前記他方のリンク対象点と前記一方のリンク対象点の隣にある前記候補点との距離とを、層間の距離を加味した三次元空間換算で計算し、当該計算された二つの距離のうち、短い方の距離をなす二点を、次の一対のリンク対象点として選定する
     臓器の三次元モデル構築方法。
    Based on the boundary line indicating the outer surface of the organ or the inner surface of the organ specified on the two-dimensional cross-sectional image of each layer obtained by imaging the organ over a plurality of layers with the tomography apparatus, the vertex of the triangular polygon is set on the boundary line. A first processing procedure for setting a plurality of points,
    A second processing procedure for obtaining a tangential direction of the boundary line on the two-dimensional cross-sectional image at each point set in the first processing procedure;
    From among the plurality of layers, a pair of layers at adjacent positions are sequentially selected while being shifted one layer at a time, and the boundary lines of each layer are projected on the same plane, and each of the layers set on both projected boundary lines is selected. A third processing procedure for calculating a distance from each point on a boundary line different from the boundary line including the reference point to the reference point, with each point as a reference point;
    For each of the two points that are subject to calculation of the distance in the third processing procedure, an angle formed by the tangential directions corresponding to the two points is determined. The larger the angle, the more the value before correction. A fourth processing procedure for correcting the distance by obtaining a coefficient with a large value after correction and multiplying the coefficient by the distance between two points corresponding to the coefficient;
    Based on the corrected distance corrected by the fourth processing procedure, the shortest distance is selected from a plurality of corrected distances corresponding to one reference point, and the distance to the reference point is A fifth processing procedure for setting the shortest distance to the shortest point corresponding to the reference point;
    Each of the points set on the boundary line in one layer is selected from the plurality of layers by sequentially selecting a pair of adjacent layers while shifting one layer at a time. A sixth processing procedure for setting the reference point and the shortest point at which the distance to the shortest point corresponding to the reference point as the reference point is the shortest as a starting point, respectively;
    A procedure of selecting a plurality of pairs of link target points where a link corresponding to one side of a triangular polygon is selected from the two boundary lines where the starting point is set by the sixth processing procedure, The starting point is selected as a pair of link target points, and thereafter, each point at a position advanced by one point around the predetermined direction from the selected link target point as a candidate point is selected as a pair of points previously selected. A seventh processing procedure of repeating the process of selecting any one of the link target points and the candidate point on the boundary different from the one link target point as the next pair of link target points A method for constructing a three-dimensional model of an organ by causing a computer to execute processing including and
    In the seventh processing procedure,
    (A) When both of the pair of link target points to be selected next return to the starting point, the seventh processing procedure is terminated,
    (B) In a case other than (A) above, when one link target point has already returned to the starting point among the pair of link target points previously selected, the one link target point and the other The candidate point next to the link target point is selected as the next pair of link target points,
    (C) In cases other than (A) and (B), the other link target point advances to the shortest point corresponding to one link target point among the pair of link target points previously selected. If the one link target point has already been advanced to the shortest point corresponding to the other link target point, the one link target point is adjacent to the other link target point. The candidate points in are selected as the next pair of link target points,
    (D) In cases other than (A), (B), and (C), among the previously selected pair of link target points, the link target point and the other link target point are adjacent to each other. The distance between the candidate point and the distance between the other link target point and the candidate point adjacent to the one link target point are calculated in terms of a three-dimensional space considering the distance between layers, and the calculation is performed. A method for constructing a three-dimensional model of an organ, in which two points that are shorter of the two distances are selected as the next pair of link target points.
  2.  前記第四の処理手順は、前記接線方向が互いになす角度Δθを求めたら、数式:c=1/(cos(Δθ))2に基づいて、前記角度Δθが大となる場合ほど補正前の値に対して補正後の値が大となる係数cを求めて、当該係数cを当該係数cに対応する二点間の前記距離に対して乗ずることにより、前記距離を補正する手順である
     請求項1に記載の臓器の三次元モデル構築方法。
    In the fourth processing procedure, when the angle Δθ formed by the tangential directions is obtained, based on the formula: c = 1 / (cos (Δθ)) 2, the value before correction increases as the angle Δθ increases. The coefficient c having a large value after correction is obtained, and the distance is corrected by multiplying the coefficient c by the distance between two points corresponding to the coefficient c. 2. A method for constructing a three-dimensional model of an organ according to 1.
  3.  前記第一の処理手順において、
     前記臓器外面又は臓器内面が二股に分岐していることに起因して、一方の層には単一の境界線L、その隣の層には二つの境界線U1,U2が存在する場合には、
     前記二つの境界線U1,U2について、それぞれの重心G1,G2を計算し、それら二つの重心G1,G2を結ぶ直線と二つの境界線U1,U2との交点A,Bを求め、
     前記単一の境界線L上に設定される複数の点について、前記二つの境界線U1,U2のどちらに近いのかを評価し、それが切り替わる境界となる境界点C,Dを求め、
     交点A,Bを結ぶ線分ABの中点M1と、境界点C,Dを結ぶ線分CDの中点M2を求め、
     線分ABの長さD1と線分CDの長さD2を求め、
     中点M1,M2を結ぶ線分M1-M2をD1:D2の内分比で分ける点Eを求め、
     単一の境界線Lを境界点C,Dで二つの部分に分割して、当該分割された部分のうち、前記境界線U1に近い一方の部分と線分CE及び線分EDによって境界線L1を構成するとともに、前記境界線U2に近いもう一方の部分と線分CE及び線分EDによって境界線L2を構成し、
     前記境界線U1,U2,L1,L2上に、三角ポリゴンの頂点とされる複数の点を設定し、
     前記第二の処理手順~前記第七の処理手順では、前記境界線U1,L1間、及び前記境界線U2,L2間を対象に、前記リンク対象点の選定を行う
     請求項1又は請求項2に記載の臓器の三次元モデル構築方法。
    In the first processing procedure,
    When the outer surface of the organ or the inner surface of the organ is bifurcated, there is a single boundary line L in one layer and two boundary lines U1 and U2 in the adjacent layer. ,
    For each of the two boundary lines U1 and U2, the respective centroids G1 and G2 are calculated, and intersections A and B between the two boundary lines U1 and U2 and a straight line connecting the two centroids G1 and G2 are obtained.
    For a plurality of points set on the single boundary line L, it is evaluated which of the two boundary lines U1 and U2 is closer to each other, and boundary points C and D serving as boundaries at which they are switched are obtained.
    Find the midpoint M1 of the line segment AB connecting the intersections A and B and the midpoint M2 of the line segment CD connecting the boundary points C and D;
    Find the length D1 of the line segment AB and the length D2 of the line segment CD,
    A point E is obtained by dividing the line segment M1-M2 connecting the midpoints M1, M2 by the internal ratio of D1: D2.
    A single boundary line L is divided into two parts at boundary points C and D, and one of the divided parts, which is close to the boundary line U1, and a boundary line L1 by a line segment CE and a line segment ED. , And the boundary line L2 is configured by the other part close to the boundary line U2 and the line segment CE and the line segment ED,
    On the boundary lines U1, U2, L1, and L2, a plurality of points that are the vertices of a triangular polygon are set,
    3. The link target point is selected between the boundary lines U1 and L1 and between the boundary lines U2 and L2 in the second processing procedure to the seventh processing procedure. 3. A method for constructing a three-dimensional model of an organ described in 1.
  4.  さらに、前記複数層のうち、最も端にある層を挟んで、端から二番目にある層とは反対側となる位置に、三角ポリゴンの頂点とされる一つの最端点を設定して、当該最端点と前記最も端にある層の前記境界線上にある各点との対をリンク対象点として選定する端部処理手順
     を含み、
     前記端部処理手順においては、
     前記複数層それぞれに平行で互いに直交する二方向をx方向及びy方向、前記複数層それぞれに直交する方向をz方向として、
     前記最も端にある層の前記境界線のx方向の分布範囲両端のx座標xMin1,xMax1と、y方向の分布範囲両端のy座標yMin1,yMax1とを求め、
     前記端から二番目にある層の前記境界線のx方向の分布範囲両端のx座標xMin2,xMax2と、y方向の分布範囲両端のy座標yMin2,yMax2とを求め、
     x方向の両端位置における二つの前記境界線のずれdx1=xMin1-xMin2,dx2=xMax2-xMax1と、y方向の両端位置における二つの前記境界線のずれdy1=yMin1-yMin2,dy2=yMax2-yMax1とを求め、
     前記x座標xMin1,xMax1の間をdx1:dx2の比で内分する点のx座標xMokと、前記y座標yMin1,yMax1の間をdy1:dy2の比で内分する点のy座標yMokとを求め、
     前記最も端にある層と前記端から二番目にある層との間の距離dz1と、前記x座標xMin1,xMax1,xMin2,xMax2とに基づき、前記最も端にある層からの距離dz2xが、(xMax1-xMin1):(xMax2-xMin2)=dz2x:(dz1+dz2x)なる関係を満たす距離dz2xを求め、
     前記最も端にある層と前記端から二番目にある層との間の距離dz1と、前記y座標yMin1,yMax1,yMin2,yMax2とに基づき、前記最も端にある層からの距離dz2yが、(yMax1-yMin1):(yMax2-yMin2)=dz2y:(dz1+dz2y)なる関係を満たす距離dz2yを求め、
     二つの前記距離dz2x,dz2yのうち、小さい方を距離dz2として、
     三次元空間において、前記x座標xMin1,xMax1から等距離、かつ前記y座標yMin1,yMax1から等距離にある点Pと、当該点Pからz方向へは距離dz2だけ離間し、かつ前記x座標xMok、前記y座標yMokとなるの点Qとを結ぶ線分PQをPR:RQ=2:1に内分する点Rを求めて、当該点Rを前記最端点とする
     請求項1~請求項3のいずれか一項に記載の臓器の三次元モデル構築方法。
    Further, among the plurality of layers, one end point that is the vertex of the triangular polygon is set at a position opposite to the layer that is second from the end across the layer at the end, An edge processing procedure for selecting a pair of an extreme end point and each point on the boundary line of the extreme end layer as a link target point; and
    In the end processing procedure,
    Two directions parallel to each of the plurality of layers and orthogonal to each other are defined as an x direction and a y direction, and a direction orthogonal to each of the plurality of layers is defined as a z direction.
    X coordinates xMin1, xMax1 at both ends of the distribution range in the x direction of the boundary line of the extreme end layer, and y coordinates yMin1, yMax1 at both ends of the distribution range in the y direction are obtained,
    X coordinate xMin2, xMax2 at both ends of the distribution range in the x direction of the boundary line of the second layer from the end, and y coordinates yMin2, yMax2 at both ends of the distribution range in the y direction are obtained,
    Two boundary line deviations dx1 = xMin1-xMin2, dx2 = xMax2-xMax1 at both end positions in the x direction, and two boundary line deviations dy1 = yMin1-yMin2, dy2 = yMax2-yMax1 at both end positions in the y direction. And
    An x coordinate xMok of a point that internally divides the x coordinate xMin1, xMax1 by a ratio of dx1: dx2, and a y coordinate yMok of a point that internally divides the y coordinate yMin1, yMax1 by a ratio of dy1: dy2. Seeking
    Based on the distance dz1 between the outermost layer and the second layer from the end, and the x coordinates xMin1, xMax1, xMin2, xMax2, the distance dz2x from the outermost layer is ( xMax1-xMin1) :( xMax2-xMin2) = dz2x: A distance dz2x satisfying the relationship of (dz1 + dz2x) is obtained,
    Based on the distance dz1 between the outermost layer and the second layer from the end and the y coordinates yMin1, yMax1, yMin2, yMax2, the distance dz2y from the outermost layer is ( yMax1-yMin1): (yMax2-yMin2) = dz2y: a distance dz2y that satisfies the relationship (dz1 + dz2y) is obtained,
    The smaller one of the two distances dz2x and dz2y is defined as a distance dz2.
    In a three-dimensional space, a point P that is equidistant from the x-coordinates xMin1, xMax1 and equidistant from the y-coordinates yMin1, yMax1, and a distance dz2 from the point P in the z-direction, and the x-coordinate xMok A point R that internally divides a line segment PQ connecting the y coordinate yMok with the point Q into PR: RQ = 2: 1 is obtained, and the point R is set as the extreme end point. The method for constructing a three-dimensional model of an organ according to any one of the above.
  5.  断層撮影装置で臓器を複数層にわたって撮影することによって得られる各層の二次元断面画像上において特定される臓器外面又は臓器内面を示す境界線に基づいて、当該境界線上に、三角ポリゴンの頂点とされる複数の点を設定する第一の処理手順と、
     前記第一の処理手順において設定された各点における前記二次元断面画像上での前記境界線の接線方向を求める第二の処理手順と、
     前記複数層の中から、隣り合う位置にある層のペアを一層分ずつずらしながら順に選んで、各層の前記境界線を同一平面上に投影し、投影された双方の境界線上に設定された各点について、当該各点を基準点として、当該基準点が含まれる境界線とは別の境界線上の各点から前記基準点までの距離を算出する第三の処理手順と、
     前記第三の処理手順において前記距離の算出対象とされた二点ごとに、当該二点それぞれに対応する前記接線方向が互いになす角度を求め、当該角度が大となる場合ほど補正前の値に対して補正後の値が大となる係数を求めて、当該係数を当該係数に対応する二点間の前記距離に対して乗ずることにより、前記距離を補正する第四の処理手順と、
     前記第四の処理手順によって補正された補正後の前記距離に基づいて、一つの前記基準点に対応する複数の前記補正後の距離の中から最短の距離を選び、前記基準点との距離が前記最短の距離となる点を、前記基準点に対応する最短点に設定する第五の処理手順と、
     前記複数層の中から、隣り合う位置にある層のペアを一層分ずつずらしながら順に選定し、当該二つの層を選定するごとに、一方の層にある前記境界線上に設定された各点を前記基準点とした場合の当該基準点に対応する最短点までの距離が最短となる前記基準点と前記最短点を、それぞれ起点に設定する第六の処理手順と、
     前記第六の処理手順によって前記起点が設定された二つの前記境界線上から、三角ポリゴンの一辺に相当するリンクが設定される複数対のリンク対象点を選定してゆく手順であり、一対の前記起点については一対の前記リンク対象点として選定し、以降は、選定した前記リンク対象点から所定方向回りで隣へ一点分だけ進んだ位置にある各点を候補点として、先に選定された一対の前記リンク対象点のいずれか一方と、当該一方の前記リンク対象点とは異なる前記境界線上にある前記候補点とを、次の一対のリンク対象点として選定する処理を繰り返す第七の処理手順と
     を含む処理をコンピューターに実行させることによって、当該コンピューターに臓器の三次元モデルを構築させるプログラムであり、
     前記第七の処理手順においては、
     (A)次に選定される前記一対のリンク対象点が、双方とも前記起点に戻る場合は、前記第七の処理手順を終了し、
     (B)前記(A)以外の場合で、先に選定された一対の前記リンク対象点のうち、一方のリンク対象点が既に前記起点に戻っている場合は、当該一方のリンク対象点と他方のリンク対象点の隣にある前記候補点とを、次の一対のリンク対象点として選定し、
     (C)前記(A),(B)以外の場合で、先に選定された一対の前記リンク対象点のうち、一方のリンク対象点に対応する前記最短点まで、他方のリンク対象点が進められておらず、かつ、前記他方のリンク対象点に対応する前記最短点まで、既に前記一方のリンク対象点が進められていた場合は、当該一方のリンク対象点と他方のリンク対象点の隣にある前記候補点とを、次の一対のリンク対象点として選定し、
     (D)前記(A),(B),(C)以外の場合は、先に選定された一対の前記リンク対象点のうち、一方のリンク対象点と他方のリンク対象点の隣にある前記候補点との距離と、前記他方のリンク対象点と前記一方のリンク対象点の隣にある前記候補点との距離とを、層間の距離を加味した三次元空間換算で計算し、当該計算された二つの距離のうち、短い方の距離をなす二点を、次の一対のリンク対象点として選定する
     臓器の三次元モデル構築用のプログラム。
    Based on the boundary line indicating the outer surface of the organ or the inner surface of the organ specified on the two-dimensional cross-sectional image of each layer obtained by imaging the organ over a plurality of layers with the tomography apparatus, the vertex of the triangular polygon is set on the boundary line. A first processing procedure for setting a plurality of points,
    A second processing procedure for obtaining a tangential direction of the boundary line on the two-dimensional cross-sectional image at each point set in the first processing procedure;
    From among the plurality of layers, a pair of layers at adjacent positions are sequentially selected while being shifted one layer at a time, and the boundary lines of each layer are projected on the same plane, and each of the layers set on both projected boundary lines is selected. A third processing procedure for calculating a distance from each point on a boundary line different from the boundary line including the reference point to the reference point, with each point as a reference point;
    For each of the two points that are subject to calculation of the distance in the third processing procedure, an angle formed by the tangential directions corresponding to the two points is determined. The larger the angle, the more the value before correction. A fourth processing procedure for correcting the distance by obtaining a coefficient with a large value after correction and multiplying the coefficient by the distance between two points corresponding to the coefficient;
    Based on the corrected distance corrected by the fourth processing procedure, the shortest distance is selected from a plurality of corrected distances corresponding to one reference point, and the distance to the reference point is A fifth processing procedure for setting the shortest distance to the shortest point corresponding to the reference point;
    Each of the points set on the boundary line in one layer is selected from the plurality of layers by sequentially selecting a pair of adjacent layers while shifting one layer at a time. A sixth processing procedure for setting the reference point and the shortest point at which the distance to the shortest point corresponding to the reference point as the reference point is the shortest as a starting point, respectively;
    A procedure of selecting a plurality of pairs of link target points where a link corresponding to one side of a triangular polygon is selected from the two boundary lines where the starting point is set by the sixth processing procedure, The starting point is selected as a pair of link target points, and thereafter, each point at a position advanced by one point around the predetermined direction from the selected link target point as a candidate point is selected as a pair of points previously selected. A seventh processing procedure of repeating the process of selecting any one of the link target points and the candidate point on the boundary different from the one link target point as the next pair of link target points A program that causes a computer to construct a three-dimensional model of an organ by causing a computer to execute a process including and
    In the seventh processing procedure,
    (A) When both of the pair of link target points to be selected next return to the starting point, the seventh processing procedure is terminated,
    (B) In a case other than (A) above, when one link target point has already returned to the starting point among the pair of link target points previously selected, the one link target point and the other The candidate point next to the link target point is selected as the next pair of link target points,
    (C) In cases other than (A) and (B), the other link target point advances to the shortest point corresponding to one link target point among the pair of link target points previously selected. If the one link target point has already been advanced to the shortest point corresponding to the other link target point, the one link target point is adjacent to the other link target point. The candidate points in are selected as the next pair of link target points,
    (D) In cases other than (A), (B), and (C), among the previously selected pair of link target points, the link target point and the other link target point are adjacent to each other. The distance between the candidate point and the distance between the other link target point and the candidate point adjacent to the one link target point are calculated in terms of a three-dimensional space considering the distance between layers, and the calculation is performed. A program for constructing a three-dimensional model of an organ that selects two points of the shorter distance as the next pair of link target points.
PCT/JP2014/055119 2013-02-28 2014-02-28 Method for building three-dimensional model of organ, and program WO2014133150A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-039593 2013-02-28
JP2013039593A JP2014166235A (en) 2013-02-28 2013-02-28 Construction method and program for three-dimensional model of organ

Publications (1)

Publication Number Publication Date
WO2014133150A1 true WO2014133150A1 (en) 2014-09-04

Family

ID=51428408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055119 WO2014133150A1 (en) 2013-02-28 2014-02-28 Method for building three-dimensional model of organ, and program

Country Status (2)

Country Link
JP (1) JP2014166235A (en)
WO (1) WO2014133150A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7237511B2 (en) * 2018-10-05 2023-03-13 キヤノンメディカルシステムズ株式会社 Radiation therapy support device and interference check program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04183446A (en) * 1990-11-19 1992-06-30 Res Dev Corp Of Japan Operation arrangement aided with image synthesis
JPH0647022A (en) * 1992-07-31 1994-02-22 Shimadzu Corp Stereoscopic model preparing method
JP2000023984A (en) * 1998-03-30 2000-01-25 Tomtec Imaging Syst Gmbh Method and device for collecting ultrasonic image
US6028907A (en) * 1998-05-15 2000-02-22 International Business Machines Corporation System and method for three-dimensional geometric modeling by extracting and merging two-dimensional contours from CT slice data and CT scout data
JP2002099901A (en) * 2000-09-26 2002-04-05 Toyota Motor Corp Method and device for three-dimensional modeling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04183446A (en) * 1990-11-19 1992-06-30 Res Dev Corp Of Japan Operation arrangement aided with image synthesis
JPH0647022A (en) * 1992-07-31 1994-02-22 Shimadzu Corp Stereoscopic model preparing method
JP2000023984A (en) * 1998-03-30 2000-01-25 Tomtec Imaging Syst Gmbh Method and device for collecting ultrasonic image
US6028907A (en) * 1998-05-15 2000-02-22 International Business Machines Corporation System and method for three-dimensional geometric modeling by extracting and merging two-dimensional contours from CT slice data and CT scout data
JP2002099901A (en) * 2000-09-26 2002-04-05 Toyota Motor Corp Method and device for three-dimensional modeling

Also Published As

Publication number Publication date
JP2014166235A (en) 2014-09-11

Similar Documents

Publication Publication Date Title
WO2021213124A1 (en) Blood flow feature prediction method and apparatus, computer device, and storage medium
Kreiser et al. A survey of flattening‐based medical visualization techniques
JP5660432B2 (en) Area data editing device, area data editing method, program, and recording medium
EP1588325B1 (en) Image processing method for automatic adaptation of 3-d deformable model onto a subtantially tubular surface of a 3-d object
RU2711140C2 (en) Editing medical images
WO2014196069A1 (en) Image processing device and image processing method
US10891787B2 (en) Apparatus and method for creating biological model
US9514280B2 (en) Method and apparatus for creating model of patient specified target organ based on blood vessel structure
Samavati et al. A hybrid biomechanical intensity based deformable image registration of lung 4DCT
JP7349158B2 (en) Machine learning devices, estimation devices, programs and trained models
US9836891B2 (en) Shape data generation method and apparatus
Marino et al. Planar visualization of treelike structures
EP2476102B1 (en) Improvements to curved planar reformation
JP6049272B2 (en) Mesh generating apparatus, method and program
Wong et al. Probabilistic vessel axis tracing and its application to vessel segmentation with stream surfaces and minimum cost paths
CN107077718B (en) Reformatting while taking into account anatomy of object to be examined
JP5487264B2 (en) Biological data model creation method and apparatus
JP5721225B2 (en) Shape data generation method, program, and apparatus
WO2014133150A1 (en) Method for building three-dimensional model of organ, and program
JP5695566B2 (en) Automated CPR generation defined by anatomical structures
JP5943267B2 (en) Personal model data generation method, generation program, and generation system
WO2022163513A1 (en) Learned model generation method, machine learning system, program, and medical image processing device
US20190172577A1 (en) Dissection process estimation device and dissection process navigation system
CN112884879B (en) Method for providing a two-dimensional unfolded image of at least one tubular structure
US10885643B2 (en) Image processing apparatus, image processing method, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14756316

Country of ref document: EP

Kind code of ref document: A1