JP2002099901A - Method and device for three-dimensional modeling - Google Patents

Method and device for three-dimensional modeling

Info

Publication number
JP2002099901A
JP2002099901A JP2000292325A JP2000292325A JP2002099901A JP 2002099901 A JP2002099901 A JP 2002099901A JP 2000292325 A JP2000292325 A JP 2000292325A JP 2000292325 A JP2000292325 A JP 2000292325A JP 2002099901 A JP2002099901 A JP 2002099901A
Authority
JP
Japan
Prior art keywords
cross
threshold value
test piece
dimensional model
sectional image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000292325A
Other languages
Japanese (ja)
Other versions
JP3700082B2 (en
Inventor
Hiroshi Aono
宏 青野
Hiroyuki Ishii
博行 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000292325A priority Critical patent/JP3700082B2/en
Publication of JP2002099901A publication Critical patent/JP2002099901A/en
Application granted granted Critical
Publication of JP3700082B2 publication Critical patent/JP3700082B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)
  • Image Generation (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for three-dimensional modeling for providing a highly precise model without positional deflection on the surface and providing highly precise data in reuse and processing of the model (data) by CAD or CAE. SOLUTION: Among dimensions L1-Ln between outline both ends found from respective points on a characteristics curve 32 of brightness value in the outline both end parts of a cross sectional image of a test piece 31, made of the same material as a measured object, a brightness value br3 corresponding to a point on the characteristics curve 32, matching an actual dimension L3 between both ends of the test piece 31, is used as threshold for extraction of surface (outline) used in a triangular polygon generating process using a cross- sectional image of the measured object.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被測定物の複数枚
の断面像を用いて3次元モデルを構成する3次元モデル
化方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for forming a three-dimensional model using a plurality of cross-sectional images of an object to be measured.

【0002】[0002]

【従来の技術】従来のこの種の方法には、特開平11−
328442号公報に記載のものがある。すなわちこれ
は、被測定物(三次元物体)の一定方向に沿って間隔を
置いて得られた複数枚の断面像(輪郭をもつ平面像)中
の隣接する2枚の断面像の対向する各4画素の輝度値
(密度)を頂点に与えた六面体(立方体)を得て、その
各頂点の輝度値としきい値との比較結果に基づき三角形
ポリゴンを生成するマーチングキューブ法を用いた補間
面形成処理によって3次元モデルを構成するというもの
である。
2. Description of the Related Art A conventional method of this kind is disclosed in
There is one described in JP-A-328442. In other words, this means that each of two adjacent cross-sectional images in a plurality of cross-sectional images (planar images having contours) obtained at intervals along a certain direction of the measured object (three-dimensional object) is opposed to each other. Interpolation plane formation using a marching cube method for obtaining a hexahedron (cube) in which the luminance values (density) of four pixels are given to vertices and generating a triangular polygon based on a comparison result between the luminance value of each vertex and a threshold value A three-dimensional model is constructed by processing.

【0003】ここで、「マーチングキューブ法」とは、
W.E.Lorensen及びH.E.Cline著
「Marching Cubes:A High Resolution 3D Surface Rec
onstruction Algorithm」(1987年;Computer Grap
hics 21(4);pp163〜169)において提案された手
法をいう。
[0003] Here, the "marching cube method"
W. E. FIG. Lorensen and H.C. E. FIG. "Marching Cubes: A High Resolution 3D Surface Rec" by Cline
onstruction Algorithm "(1987; Computer Grap
hics 21 (4); pp. 163 to 169).

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記従来
技術では、しきい値については何ら配慮されておらず、
次のような問題点があった。すなわち、被測定物の複数
枚のX線CT像等の断面像(断層像)から3次元モデル
を構成する場合においては、断面像の輝度値に対してし
きい値を設定し、両者の比較結果によって被測定物の表
面を得る補間面形成処理が施される。
However, in the above prior art, no consideration is given to the threshold value.
There were the following problems. That is, when a three-dimensional model is constructed from a plurality of cross-sectional images (tomographic images) such as X-ray CT images of the object to be measured, a threshold value is set for the luminance value of the cross-sectional image, and a comparison is made between the two. An interpolation plane forming process for obtaining the surface of the device under test is performed according to the result.

【0005】このとき、上記しきい値の設定(値)によ
っては、被測定物の表面位置が実際の位置とは大きくず
れてしまう。これは、どんなに均質の物体であっても断
面像の輪郭部分においては輝度値の立上がりや立下がり
になまり(傾き)が生じるからである。
At this time, depending on the setting (value) of the threshold value, the surface position of the object to be measured is greatly deviated from the actual position. This is because the luminance value rises or falls (inclines) at the contour of the cross-sectional image even if the object is homogeneous.

【0006】このような表面位置のずれは、表面の様子
を視覚的に観察したい場合、例えば主目的が病巣や病変
の視覚的な観察にある生体診断用の3次元モデルにおい
ては余り問題視されない。しかし、得られた3次元モデ
ル上で寸法測定したい場合等のように、被測定物の表面
位置そのものに精度が要求される場合には、表面位置の
ずれは精度の低下を招き、大きな問題となる。このこと
は、外表面(外面)のみならず、内部の空間構造、例え
ば内部の穴や空洞部の内面(内表面)について、すなわ
ち、被測定物の内外面を問うことなく、被測定物と空気
との境界面全面についていえるもので、従来、この点の
改善が要望されていた。
[0006] Such a displacement of the surface position is hardly considered as a problem when it is desired to visually observe the surface state, for example, in a three-dimensional model for a living body diagnosis whose main purpose is to visually observe a lesion or a lesion. . However, when accuracy is required for the surface position of the object to be measured, such as when it is desired to measure the dimensions on the obtained three-dimensional model, the deviation of the surface position causes a decrease in accuracy, which is a serious problem. Become. This means that not only the outer surface (outer surface), but also the inner space structure, for example, the inner surface (inner surface) of the inner hole or cavity, that is, without questioning the inner and outer surfaces of the object to be measured, This can be said of the entire boundary surface with air, and improvement of this point has conventionally been demanded.

【0007】本発明は、上記のような要望に鑑みてなさ
れたもので、表面(被測定物と空気との境界面全面)の
位置にずれのない、高精度の3次元モデルが得られる3
次元モデル化方法及び装置を提供することを目的とす
る。
The present invention has been made in view of the above-mentioned demands, and provides a high-precision three-dimensional model in which the position of the surface (the entire boundary surface between the object to be measured and air) is not shifted.
It is an object to provide a dimensional modeling method and apparatus.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の発明は、被測定物の一定方向に沿
って間隔を置いて得られた複数枚の断面像中の隣接する
2枚の断面像の対向する各4画素の輝度値を頂点に与え
た六面体を得て、その各頂点の輝度値としきい値との比
較結果に基づき三角形ポリゴンを生成する補間面形成処
理によって3次元モデルを構成する3次元モデル化方法
において、前記しきい値として、前記被測定物と同材質
で寸法が既知のテストピースの断面像の輪郭の両端部分
における輝度値の立上がり、立下がり特性曲線上の各点
から求められる前記輪郭の両端間寸法のうち、前記テス
トピースの両端間の実寸法と一致する当該特性曲線上の
点に対応する輝度値を用いることを特徴とする。
In order to achieve the above object, an object of the present invention is to provide a method for measuring the distance between adjacent ones of a plurality of sectional images obtained at intervals along a certain direction of an object to be measured. A hexahedron in which the vertices are given the luminance values of the four pixels facing each other of the two cross-sectional images is obtained, and an interpolation plane forming process of generating a triangular polygon based on a comparison result between the luminance value of each vertex and a threshold value In the three-dimensional modeling method for constructing a three-dimensional model, the rise and fall characteristics of luminance values at both ends of a contour of a cross-sectional image of a test piece of the same material as the object to be measured and having known dimensions are used as the threshold. A brightness value corresponding to a point on the characteristic curve corresponding to an actual size between both ends of the test piece among dimensions between both ends of the contour obtained from each point on the curve is used.

【0009】また、請求項2に記載の発明は、被測定物
の一定方向に沿って間隔を置いて得られた複数枚の断面
像を取り込む断面像取込み部と、しきい値を設定するし
きい値設定部と、前記断面像取込み部から読み出した複
数枚の断面像中の隣接する2枚の断面像の対向する各4
画素の輝度値を頂点に与えた六面体を得て、その各頂点
の輝度値と前記しきい値設定部に設定されたしきい値と
の比較結果に基づき三角形ポリゴンを生成する補間面形
成処理によって3次元モデルを構成する3次元モデル構
成部とを備えた3次元モデル化装置において、前記しき
い値設定部には、前記被測定物と同材質で寸法が既知の
テストピースの断面像の輪郭の両端部分における輝度値
の立上がり、立下がり特性曲線上の各点から求められる
前記輪郭の両端間寸法のうち、前記テストピースの両端
間の実寸法と一致する当該特性曲線上の点に対応する輝
度値が設定されることを特徴とする。
According to a second aspect of the present invention, there is provided a sectional image capturing section for capturing a plurality of sectional images obtained at intervals along a certain direction of an object to be measured, and a threshold value is set. A threshold value setting unit and four opposed four cross-sectional images of two adjacent cross-sectional images in the plurality of cross-sectional images read from the cross-sectional image capturing unit;
A hexahedron in which the luminance values of the pixels are given to the vertices is obtained, and an interpolation plane forming process of generating a triangular polygon based on a comparison result between the luminance value of each vertex and the threshold value set in the threshold value setting unit is performed. In a three-dimensional modeling apparatus comprising a three-dimensional model forming unit for forming a three-dimensional model, the threshold value setting unit includes a contour of a cross-sectional image of a test piece having the same material and a known size as the object to be measured. Of the dimensions between both ends of the contour obtained from the points on the rising and falling characteristic curves of the luminance values at both end portions, the points corresponding to the points on the characteristic curve that match the actual dimensions between both ends of the test piece. A luminance value is set.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づき説明するが、それに先立ち、まず本発明の概要
について図1〜図3を参照して述べる。本発明は、図1
に示すように、被測定物11の一定方向、図1では中心
軸ax方向に沿って間隔を置いて、通常は一定間隔毎
に、得られた複数枚の断面像CT1,CT2,…CTn
−1,CTnを用い、補間面形成処理によって被測定物
11の3次元モデル12を構成するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. Prior to that, first, the outline of the present invention will be described with reference to FIGS. The present invention is shown in FIG.
As shown in FIG. 1, a plurality of cross-sectional images CT1, CT2,... CTn obtained at regular intervals, usually at regular intervals, in the fixed direction of the DUT 11, in FIG.
The three-dimensional model 12 of the DUT 11 is formed by an interpolation plane forming process using −1 and CTn.

【0011】3次元モデル12を構成するに当たって
は、図2に示すように、上記複数枚の断面像CT1,…
CTn中の隣接する2枚の断面像CTn,CTn−1中
の対向する各4画素、図では断面像CTnの4画素p1
1〜p14及び断面像CTn−1の4画素p21〜p2
4の輝度値を頂点ap1〜ap4,ap5〜ap8に与
えた六面体を得る。そして、その各頂点ap1〜ap8
の輝度値としきい値との比較結果に基づき三角形ポリゴ
ンを生成する補間面形成処理によって前記被測定物11
の3次元モデル(三角形ポリゴンの合成面)12を構成
する。
In constructing the three-dimensional model 12, as shown in FIG. 2, the plurality of cross-sectional images CT1,.
Four opposing pixels in two adjacent cross-sectional images CTn and CTn-1 in CTn, and four pixels p1 in the cross-sectional image CTn in the figure.
1 to p14 and four pixels p21 to p2 of the cross-sectional image CTn-1
A hexahedron in which the vertices ap1 to ap4, ap5 to ap8 are given the luminance value of 4 is obtained. Then, each vertex ap1 to ap8
The DUT 11 is formed by an interpolation surface forming process for generating a triangular polygon based on a result of comparison between the luminance value of the object and the threshold value.
(Combined surface of triangular polygons) 12 is constructed.

【0012】その際、本発明においては、前記しきい値
として、図3に示すように、上記被測定物11と同材質
で寸法が既知のテストピース31の断面像の輪郭の両端
部分における輝度値の立上がり、立下がり特性曲線32
上の各点から求められる上記輪郭の両端間寸法L1〜L
nのうち、上記テストピース31の両端間の実寸法L3
と一致する当該特性曲線32上の点に対応する輝度値b
r3を用いることを特徴とするものである。なお六面体
は、本明細書では立方体又は直方体を指し、図2では立
方体21を例示する。
At this time, in the present invention, as shown in FIG. 3, the brightness at both ends of the contour of the cross-sectional image of the test piece 31 of the same material and the known size as the object to be measured 11 is used as the threshold value. Value rising and falling characteristic curve 32
Dimensions L1 to L between both ends of the contour obtained from the above points
n, the actual dimension L3 between both ends of the test piece 31
Brightness value b corresponding to a point on the characteristic curve 32 that matches
It is characterized by using r3. The hexahedron in this specification refers to a cube or a rectangular parallelepiped, and FIG. 2 illustrates the cube 21 as an example.

【0013】次に、本発明の実施の形態を説明する。図
4は、本発明による3次元モデル化装置の一実施形態
を、モデル化対象となる複数枚のCT像を得るCT装
置、ここではX線CT装置と共に示すブロック図であ
る。この図において、41はX線CT装置、42は3次
元モデル化装置である。X線CT装置41はスキャナ部
41a、処理部41b、操作部41c及びモニタ部41
dを備え、以下に述べるようにして被測定物11の多数
枚の断面像CT1,CT2,…CTn−1,CTn(図
1参照)を得る。
Next, an embodiment of the present invention will be described. FIG. 4 is a block diagram showing an embodiment of a three-dimensional modeling apparatus according to the present invention together with a CT apparatus for obtaining a plurality of CT images to be modeled, here, an X-ray CT apparatus. In this figure, 41 is an X-ray CT apparatus, and 42 is a three-dimensional modeling apparatus. The X-ray CT apparatus 41 includes a scanner unit 41a, a processing unit 41b, an operation unit 41c, and a monitor unit 41.
, CTn-1 and CTn (see FIG. 1) are obtained as described below.

【0014】すなわち、スキャナ部41aは、被測定物
11を一定方向、ここでは矢印イ方向に送りつつスキャ
ンして一定間隔毎の、相互に平行な面の多数のスキャン
データを収集する。処理部41bは、上記スキャンデー
タからCT値を画素値とする断面像を各々生成する。生
成された断面像は、画素値に応じた輝度値を有する画素
の集合、すなわち濃淡画像としてモニタ部41cで表示
され、あるいはX線CT装置41の内部又は外部の記憶
装置(図示せず)に格納される。
That is, the scanner section 41a scans the DUT 11 while feeding it in a fixed direction, here the direction of arrow A, and collects a large number of scan data of planes parallel to each other at fixed intervals. The processing unit 41b generates cross-sectional images each having a CT value as a pixel value from the scan data. The generated cross-sectional image is displayed on the monitor unit 41c as a set of pixels having a luminance value corresponding to the pixel value, that is, a grayscale image, or stored in a storage device (not shown) inside or outside the X-ray CT apparatus 41. Is stored.

【0015】3次元モデル化装置42は、断面像取込み
部42a、しきい値設定部42b、3次元モデル構成部
42c、モデル保存部42d及びモニタ部42eを備え
る。
The three-dimensional modeling device 42 includes a cross-sectional image capturing unit 42a, a threshold setting unit 42b, a three-dimensional model forming unit 42c, a model storing unit 42d, and a monitor unit 42e.

【0016】このうち、断面像取込み部42aは、X線
CT装置41で得られた上記多数枚の断面像(データ)
CT1,…CTnを処理部41b又は上記記憶装置から
取り込む。しきい値設定部42bは、後述補間面形成処
理に用いるしきい値を設定する。3次元モデル構成部4
2cは、被測定物11の上記断面像CT1,…CTnを
用い、補間面形成処理によって被測定物11の3次元モ
デルを構成する。
Among these, the cross-sectional image capturing section 42a is used to store the multiplicity of cross-sectional images (data) obtained by the X-ray CT apparatus 41.
CTn are fetched from the processing unit 41b or the storage device. The threshold value setting unit 42b sets a threshold value used for an interpolation plane forming process described later. 3D model construction unit 4
2c constitutes a three-dimensional model of the DUT 11 by using the above-described cross-sectional images CT1,.

【0017】モデル保存部42dは記憶装置からなり、
3次元モデル構成部42cで得られた3次元モデル(デ
ータ)を保存する。モニタ部42eは、3次元モデル構
成部42cで得られた3次元モデルを表示する。
The model storage section 42d comprises a storage device,
The three-dimensional model (data) obtained by the three-dimensional model forming unit 42c is stored. The monitor unit 42e displays the three-dimensional model obtained by the three-dimensional model forming unit 42c.

【0018】ここで、上記3次元モデル構成部42c
は、3次元モデルを構成するに当たり、図5に示すよう
に、上記多数枚の断面像CT1,…CTn中の隣接する
2枚の断面像、例えば断面像CTn,CTn−1中の対
向する各4画素(合計8画素)p11〜p14,p21
〜p24の輝度値を図6に示すように頂点ap1〜ap
8に与えた直方体61を得る。
Here, the three-dimensional model forming unit 42c
When constructing a three-dimensional model, as shown in FIG. 5, two adjacent cross-sectional images in the multiple cross-sectional images CT1,... CTn, for example, each of the opposed cross-sectional images CTn, CTn-1 4 pixels (total 8 pixels) p11 to p14, p21
As shown in FIG. 6, the vertex values ap1 to ap
The rectangular parallelepiped 61 given to 8 is obtained.

【0019】ここでは、上記直方体61は更に6つの四
面体61a〜61f(図7(a)〜(f)参照)に分割
し、各四面体61a〜61fの各頂点apの輝度値とし
きい値との比較結果に基づき三角形ポリゴンを生成する
前述マーチングキューブ法を応用した補間面形成処理を
行う。
Here, the rectangular parallelepiped 61 is further divided into six tetrahedrons 61a to 61f (see FIGS. 7A to 7F), and the luminance value and the threshold value of each vertex ap of each of the tetrahedrons 61a to 61f are determined. Based on the result of comparison with the above, an interpolation plane forming process applying the aforementioned marching cube method for generating a triangular polygon is performed.

【0020】具体的には、各四面体61a〜61fの各
頂点apの輝度値としきい値とを比較して、以下のよう
に三角形ポリゴンを生成する。いま、四面体61aの各
頂点ap1,ap5,ap7,ap8の輝度値を、しき
い値(求め方は後述する)より小さい場合、しきい値と
等しい場合、又はしきい値より大きい場合に振り分けて
加算したところ、図8に示す結果が得られたものとして
説明する。
More specifically, a triangular polygon is generated as follows by comparing the luminance value of each vertex ap of each of the tetrahedrons 61a to 61f with a threshold value. Now, the brightness values of the vertices ap1, ap5, ap7, and ap8 of the tetrahedron 61a are allocated to a case where the brightness value is smaller than a threshold value (how to obtain it), equal to the threshold value, or larger than the threshold value. It is assumed that the result shown in FIG. 8 is obtained as a result of the addition.

【0021】ここでは、各頂点ap1,ap5,ap
7,ap8の輝度値をしきい値との比較結果で振り分け
る「ケース」として1〜15の15種設定している。図
中、「小」の表記はしきい値より小さい場合(空気)、
「等」の表記はしきい値と等しい場合、「大」の表記は
しきい値より大きい場合(被測定物11)を指す。
「小」、「等」、「大」の各欄に示す各数値は、上記各
頂点ap1,ap5,ap7,ap8の輝度値のしきい
値との比較結果を上記各場合に振り分け、加算した結果
を示す。「生成される面」の欄には各ケース1〜15に
おける三角形ポリゴンの生成の有無及び個数を示す。
Here, each vertex ap1, ap5, ap
Fifteen types 1 to 15 are set as “cases” for distributing the brightness values of 7, ap8 based on the result of comparison with the threshold value. In the figure, the notation of "small" is smaller than the threshold value (air),
The notation “equal” refers to the case where it is equal to the threshold, and the notation “large” refers to the case where it is larger than the threshold (the DUT 11).
Numerical values shown in the columns of “small”, “equal”, and “large” are sorted and added to the comparison results of the brightness values of the vertices ap1, ap5, ap7, and ap8 with the threshold values in the above cases. The results are shown. The column of “surface to be generated” indicates the presence or absence and the number of triangular polygons generated in each of Cases 1 to 15.

【0022】被測定物11の表面(被測定物11と空気
との境界面)が生成されるケースを、「小」(空気)と
「大」(被測定物11)が同時に含むケースであると設
定すると、図示例では、ケース7〜12がそのケース設
定に該当し、同ケース7〜12について三角形ポリゴン
が生成される。ケース13は「小」(空気)と「大」
(被測定物11)を同時に含んでいないが、ここでは三
角形ポリゴンが生成される設定となっている。ケース7
〜13で生成される各三角形ポリゴンの態様を例示すれ
ば、図9(a)〜図9(g)中の91a〜91gに示す
通りである。なお、図9(a)〜図9(g)において、
図7(a)と同一符号は同一部分を示す。
The case where the surface of the DUT 11 (the boundary surface between the DUT 11 and the air) is generated is the case where “small” (air) and “large” (the DUT 11) are simultaneously included. In the illustrated example, cases 7 to 12 correspond to the case setting, and triangular polygons are generated for the cases 7 to 12. Case 13 is "small" (air) and "large"
(Measurement object 11) is not included at the same time, but here, the setting is such that a triangular polygon is generated. Case 7
Examples of the forms of the triangular polygons generated in Steps (a) to (13) are as shown in 91a to 91g in FIGS. 9 (a) to 9 (g). 9 (a) to 9 (g),
7A indicate the same parts.

【0023】以上の処理は、対象画素(図5中、p11
参照)を1つずつずらして全画素について行い、また、
対となる断面像を1枚ずつずらして全断面像について行
い、被測定物11の3次元モデル(三角形ポリゴンの合
成面)12を構成する。
The above processing is performed for the target pixel (p11 in FIG. 5).
) For all pixels by shifting
A three-dimensional model (composite surface of triangular polygons) 12 of the DUT 11 is formed by shifting the paired cross-sectional images one by one for all cross-sectional images.

【0024】その際、上記しきい値として、以下の方法
で得られる輝度値を用いる。図3を併用して説明する
と、まず、上記被測定物11がアルミニウムの構造物で
あるときにはアルミニウム材というように被測定物11
と同材質で、かつ寸法が既知のテストピース31の上記
X線CT装置41による断面像を用意しておく。次に、
そのテストピース31の断面像の輪郭の両端部分におけ
る輝度値の立上がり、立下がり特性曲線(傾き)32上
の各点から求められる上記輪郭の両端間寸法L1〜Ln
と、テストピース31の両端間の実寸法L3とを比較す
る。そして、それらが一致する当該特性曲線(傾き)3
2上の点に対応する輝度値br3を得て、これを上記し
きい値として用いる。このような輝度値br3の取得
は、上記3次元モデル構成部42c内のCPU(図示せ
ず)の演算により行われる。この輝度値(しきい値)b
r3は予めしきい値設定部42bに格納,設定される。
At this time, a luminance value obtained by the following method is used as the threshold value. To be described with reference to FIG. 3, first, when the DUT 11 is an aluminum structure, the DUT 11 is referred to as an aluminum material.
A cross-sectional image of the test piece 31 of the same material and having a known size by the X-ray CT apparatus 41 is prepared. next,
Dimensions L1 to Ln between both ends of the contour obtained from each point on the rising and falling characteristic curves (slope) 32 at the both ends of the contour of the cross-sectional image of the test piece 31
And the actual dimension L3 between both ends of the test piece 31 are compared. Then, the characteristic curve (slope) 3 where they match.
A luminance value br3 corresponding to the point above the second point is obtained, and this is used as the threshold value. The acquisition of such a brightness value br3 is performed by an operation of a CPU (not shown) in the three-dimensional model forming unit 42c. This luminance value (threshold) b
r3 is stored and set in advance in the threshold value setting unit 42b.

【0025】次に、上述3次元モデル化装置42による
モデル化手順について図10を併用して説明する。ま
ず、断面像取込み部42aが、X線CT装置41又は外
部の記憶装置(図示せず)から被測定物11の上記多数
の断面像(データ)CT1,…CTnを取り込む(ステ
ップ1001)。X線CT装置41や上記記憶装置から
断面像取込み部42aへの断面像CT1,…CTnの取
込みは、フロッピー(登録商標)ディスク等の記憶媒体
や通信ネットワークを介して行われる。
Next, a modeling procedure by the three-dimensional modeling device 42 will be described with reference to FIG. First, the cross-sectional image capturing unit 42a captures the multiple cross-sectional images (data) CT1,..., CTn of the DUT 11 from the X-ray CT apparatus 41 or an external storage device (not shown) (step 1001). The cross-sectional images CT1,..., CTn from the X-ray CT apparatus 41 or the storage device to the cross-sectional image capturing unit 42a are captured via a storage medium such as a floppy (registered trademark) disk or a communication network.

【0026】続いて、しきい値(輝度値)br3がしき
い値設定部42bに設定される(ステップ1002)。
このステップ1002と上記ステップ1001とは順序
が逆であってもよい。
Subsequently, a threshold value (luminance value) br3 is set in the threshold value setting section 42b (step 1002).
This step 1002 and the above-mentioned step 1001 may be reversed.

【0027】ステップ1003では、3次元モデル構成
部42cが被測定物11の上記断面像CT1,…CTn
を用い、マーチングキューブ法を応用した補間面形成処
理によって被測定物11の3次元モデル(三角形ポリゴ
ンの合成面)を構成する。補間面形成処理は、しきい値
として、ステップ1002でしきい値設定部42bに設
定されたしきい値(輝度値)br3を用いて行われる。
In step 1003, the three-dimensional model forming section 42c sets the above-mentioned cross-sectional images CT1,.
And a three-dimensional model (composite surface of triangular polygons) of the DUT 11 is formed by an interpolation surface forming process using the marching cube method. The interpolation plane forming process is performed using the threshold value (brightness value) br3 set in the threshold value setting unit 42b in step 1002 as the threshold value.

【0028】構成された3次元モデル(データ)は、S
TL,IGES,STEP等の汎用フォーマットにてモ
デル保存部42dに保存され、また、モニタ部42eで
表示される。
The constructed three-dimensional model (data) is represented by S
The data is stored in the model storage unit 42d in a general-purpose format such as TL, IGES, and STEP, and is displayed on the monitor unit 42e.

【0029】なお上述実施形態では、円柱状のテストピ
ース31の外径寸法に基づいてしきい値br3を得る場
合について述べたが、これのみに限定されることはな
い。例えば、角柱状のテストピースの端面一辺の寸法に
基づいてしきい値を得るようにしてもよい。その他、被
測定物の寸法に基づいてしきい値を得るようにしてもよ
い。
In the above embodiment, the case where the threshold value br3 is obtained based on the outer diameter of the cylindrical test piece 31 has been described. However, the present invention is not limited to this. For example, the threshold value may be obtained based on the size of one side of the end face of the prismatic test piece. Alternatively, the threshold value may be obtained based on the dimensions of the device under test.

【0030】[0030]

【発明の効果】以上述べたように本発明によれば、被測
定物の断面像を用いた三角形ポリゴンを生成する処理で
用いる表面(輪郭)抽出のためのしきい値として、被測
定物と同材質のテストピースの断面像の輪郭両端部分に
おける輝度値の立上がり、立下がり特性曲線上の各点か
ら求められる輪郭両端間寸法のうち、テストピースの両
端間の実寸法と一致する特性曲線上の点に対応する輝度
値を用いるので、すなわち、断面像の画素相互間に実寸
法に合わせて面を作成して行くので、全体として表面
(被測定物と空気との境界面全面)の位置にずれのな
い、高精度の3次元モデルが得られるという効果があ
る。特に、被測定物と空気との境界面全面に位置ずれの
ないことは内部空間構造の内面位置に基づく寸法精度も
高いことを意味する。したがって、被測定物を実際に切
断することなく内部空間構造の寸法を高精度に測定で
き、切断により、被測定物が変形したり、被測定物の測
定後の使用が不能になるという事態を回避できる効果も
得られる。
As described above, according to the present invention, the threshold value for extracting the surface (contour) used in the process of generating a triangular polygon using the cross-sectional image of the measured object, In the characteristic curve that matches the actual dimension between both ends of the test piece, of the dimensions between the both ends of the contour obtained from each point on the characteristic curve of the rise and fall of the luminance value at both ends of the contour of the cross-sectional image of the test piece of the same material Since the brightness value corresponding to the point is used, that is, a surface is created between pixels of the cross-sectional image according to the actual dimensions, the position of the entire surface (the entire boundary surface between the object to be measured and air) is located. There is an effect that a high-precision three-dimensional model without deviation can be obtained. In particular, the absence of displacement on the entire boundary surface between the object to be measured and the air means that the dimensional accuracy based on the inner surface position of the internal space structure is high. Therefore, the dimensions of the internal space structure can be measured with high accuracy without actually cutting the object to be measured, and the cutting may cause the object to be deformed or the object to be measured to be unusable after measurement. There is also an effect that can be avoided.

【0031】また本発明によれば、得られる3次元モデ
ル(データ)の精度が高いので、CAD、CAMあるい
はCAE等による当該モデルの再利用や加工で得られる
データも高精度になるという副次的効果もある。また、
CADデータのない対象物に対しても、そのものの3次
元モデルを得ることで、同モデルを用いてのCAEによ
る信頼性の高い解析が可能になるという効果もある。更
に、本発明により生成される面は、基本的には三角形ポ
リゴンの集合(メッシュ)であるので、同様に三角形メ
ッシュをもとに解析を行うCAEにおいて、比較的簡便
に取り扱えるという副次的効果もある。
According to the present invention, since the accuracy of the obtained three-dimensional model (data) is high, the data obtained by reusing or processing the model by CAD, CAM, CAE or the like also has high accuracy. There is also a positive effect. Also,
Obtaining a three-dimensional model of an object without CAD data also has the effect of enabling highly reliable analysis by CAE using the model. Furthermore, since the surface generated according to the present invention is basically a set (mesh) of triangular polygons, a secondary effect that can be handled relatively easily in CAE, which similarly performs analysis based on a triangular mesh. There is also.

【図面の簡単な説明】[Brief description of the drawings]

【図1】被測定物の3次元モデル化の概略説明図であ
る。
FIG. 1 is a schematic explanatory diagram of three-dimensional modeling of an object to be measured.

【図2】本発明において用いられる三角形ポリゴンを生
成する処理の概略説明図である。
FIG. 2 is a schematic explanatory diagram of a process of generating a triangular polygon used in the present invention.

【図3】同上処理でしきい値として用いられる輝度値の
取得方法の説明図である。
FIG. 3 is an explanatory diagram of a method of acquiring a luminance value used as a threshold value in the above processing.

【図4】本発明による3次元モデル化装置の一実施形態
をX線CT装置と共に示すブロック図である。
FIG. 4 is a block diagram showing an embodiment of a three-dimensional modeling device according to the present invention together with an X-ray CT device.

【図5】同上実施形態での三角形ポリゴンを生成する処
理における最小単位の三角形ポリゴン生成で用いられる
断面像対、画素組の説明図である。
FIG. 5 is an explanatory diagram of a cross-sectional image pair and a pixel set used in generating a minimum unit of a triangular polygon in a process of generating a triangular polygon in the embodiment.

【図6】図5に示す画素組の各輝度値から三角形ポリゴ
ンを生成するための直方体の説明図である。
FIG. 6 is an explanatory diagram of a rectangular parallelepiped for generating a triangular polygon from each luminance value of the pixel set shown in FIG. 5;

【図7】図6に示す直方体を更に分割して得られた6つ
の四面体の説明図である。
FIG. 7 is an explanatory diagram of six tetrahedrons obtained by further dividing the rectangular parallelepiped shown in FIG. 6;

【図8】図7に示す各四面体の各頂点における輝度値を
三角形ポリゴンを生成する処理で用いるしきい値と比較
し、その結果とそれに対応する三角形ポリゴンの生成の
有無及び個数をケース別に示す表図である。
FIG. 8 compares the luminance value at each vertex of each tetrahedron shown in FIG. 7 with a threshold value used in a process of generating a triangular polygon, and determines the result and the presence / absence and number of corresponding triangular polygons for each case. FIG.

【図9】図8において三角形ポリゴンの生成ありとされ
た場合の三角形ポリゴンの態様を例示する図である。
FIG. 9 is a diagram exemplifying a form of a triangular polygon when it is determined that a triangular polygon is generated in FIG. 8;

【図10】図4に示す本発明の3次元モデル化装置によ
るモデル化手順を例示するフローチャートである。
FIG. 10 is a flowchart illustrating a modeling procedure by the three-dimensional modeling device of the present invention shown in FIG. 4;

【符号の説明】[Explanation of symbols]

11 被測定物 12 3次元モデル 21 立方体(六面体) 31 テストピース 32 輝度値の立上がり、立下がり特性曲線 CT1…CTn 断面像 L1〜Ln テストピースの断面像の輪郭の両端間寸法 L3 テストピースの両端間の実寸法 br3 輝度値(しきい値) 42 3次元モデル化装置 42a 断面像取込み部 42b しきい値設定部 42c 3次元モデル構成部 42d モデル保存部 42e モニタ部 DESCRIPTION OF SYMBOLS 11 DUT 12 Dimensional model 21 Cube (Hexahedron) 31 Test piece 32 Rise and fall characteristic curve of a brightness value CT1 ... CTn Cross-sectional image L1-Ln Dimension between both ends of contour of cross-sectional image of test piece L3 Both ends of test piece Actual dimension br3 Brightness value (threshold) 42 3D modeling device 42a Cross-sectional image capturing unit 42b Threshold setting unit 42c 3D model configuration unit 42d Model storage unit 42e Monitor unit

フロントページの続き Fターム(参考) 4C093 CA50 FC12 FF16 FF22 FF35 FF42 FF50 5B057 DA11 DA20 DC16 DC22 5B080 AA14 Continued on the front page F term (reference) 4C093 CA50 FC12 FF16 FF22 FF35 FF42 FF50 5B057 DA11 DA20 DC16 DC22 5B080 AA14

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被測定物の一定方向に沿って間隔を置い
て得られた複数枚の断面像中の隣接する2枚の断面像の
対向する各4画素の輝度値を頂点に与えた六面体を得
て、その各頂点の輝度値としきい値との比較結果に基づ
き三角形ポリゴンを生成する補間面形成処理によって3
次元モデルを構成する3次元モデル化方法において、 前記しきい値として、前記被測定物と同材質で寸法が既
知のテストピースの断面像の輪郭の両端部分における輝
度値の立上がり、立下がり特性曲線上の各点から求めら
れる前記輪郭の両端間寸法のうち、前記テストピースの
両端間の実寸法と一致する当該特性曲線上の点に対応す
る輝度値を用いることを特徴とする3次元モデル化方
法。
1. A hexahedron in which the vertices are provided with the luminance values of four opposing pixels of two adjacent cross-sectional images in a plurality of cross-sectional images obtained at intervals along a certain direction of an object to be measured. Is obtained, and an interpolation plane forming process of generating a triangular polygon based on the comparison result between the luminance value of each vertex and the threshold value is performed.
In the three-dimensional modeling method for constructing a three-dimensional model, as the threshold value, a rising and falling characteristic curve of a luminance value at both ends of a contour of a cross-sectional image of a test piece having the same material as the object to be measured and having a known dimension. A three-dimensional model characterized by using a luminance value corresponding to a point on the characteristic curve which coincides with an actual dimension between both ends of the test piece among dimensions between both ends of the contour obtained from each of the above points. Method.
【請求項2】 被測定物の一定方向に沿って間隔を置い
て得られた複数枚の断面像を取り込む断面像取込み部
と、しきい値を設定するしきい値設定部と、前記断面像
取込み部から読み出した複数枚の断面像中の隣接する2
枚の断面像の対向する各4画素の輝度値を頂点に与えた
六面体を得て、その各頂点の輝度値と前記しきい値設定
部に設定されたしきい値との比較結果に基づき三角形ポ
リゴンを生成する補間面形成処理によって3次元モデル
を構成する3次元モデル構成部とを備えた3次元モデル
化装置において、 前記しきい値設定部には、前記被測定物と同材質で寸法
が既知のテストピースの断面像の輪郭の両端部分におけ
る輝度値の立上がり、立下がり特性曲線上の各点から求
められる前記輪郭の両端間寸法のうち、前記テストピー
スの両端間の実寸法と一致する当該特性曲線上の点に対
応する輝度値が設定されることを特徴とする3次元モデ
ル化装置。
2. A cross-sectional image capturing unit that captures a plurality of cross-sectional images obtained at intervals along a certain direction of an object to be measured, a threshold setting unit that sets a threshold, and the cross-sectional image Adjacent 2 in a plurality of cross-sectional images read from the capturing unit
A hexahedron is obtained in which the vertices are given the luminance values of the four pixels facing each other of the cross-sectional images of the sheet, and a triangle is set based on the comparison result between the luminance value of each vertex and the threshold value set in the threshold value setting unit A three-dimensional model forming unit configured to form a three-dimensional model by an interpolation surface forming process for generating polygons, wherein the threshold value setting unit has a dimension of the same material as the object to be measured. The rising and falling of the luminance values at both ends of the contour of the cross-sectional image of the known test piece coincides with the actual dimension between both ends of the test piece among the dimensions between both ends of the contour obtained from each point on the falling characteristic curve. A three-dimensional modeling device, wherein a luminance value corresponding to a point on the characteristic curve is set.
JP2000292325A 2000-09-26 2000-09-26 Three-dimensional modeling method and apparatus Expired - Fee Related JP3700082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000292325A JP3700082B2 (en) 2000-09-26 2000-09-26 Three-dimensional modeling method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000292325A JP3700082B2 (en) 2000-09-26 2000-09-26 Three-dimensional modeling method and apparatus

Publications (2)

Publication Number Publication Date
JP2002099901A true JP2002099901A (en) 2002-04-05
JP3700082B2 JP3700082B2 (en) 2005-09-28

Family

ID=18775283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000292325A Expired - Fee Related JP3700082B2 (en) 2000-09-26 2000-09-26 Three-dimensional modeling method and apparatus

Country Status (1)

Country Link
JP (1) JP3700082B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351875A (en) * 2004-05-12 2005-12-22 Toyota Motor Corp Casting cavity measuring method
JP2006038625A (en) * 2004-07-27 2006-02-09 Toyota Motor Corp Blow hole measuring method
WO2014133150A1 (en) * 2013-02-28 2014-09-04 学校法人金沢医科大学 Method for building three-dimensional model of organ, and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351875A (en) * 2004-05-12 2005-12-22 Toyota Motor Corp Casting cavity measuring method
JP2006038625A (en) * 2004-07-27 2006-02-09 Toyota Motor Corp Blow hole measuring method
WO2014133150A1 (en) * 2013-02-28 2014-09-04 学校法人金沢医科大学 Method for building three-dimensional model of organ, and program

Also Published As

Publication number Publication date
JP3700082B2 (en) 2005-09-28

Similar Documents

Publication Publication Date Title
Walsh et al. Data processing of point clouds for object detection for structural engineering applications
US6771840B1 (en) Apparatus and method for identifying the points that lie on a surface of interest
US10186080B2 (en) Image processing
Zhang et al. A graph-based optimization algorithm for fragmented image reassembly
US9953110B2 (en) Apparatus and method for interactively extracting shapes from a point cloud
JP2016128810A (en) Method for calibrating depth camera
CN109754459B (en) Method and system for constructing human body three-dimensional model
JP2005308553A (en) Three-dimensional image measuring device and method
JP2011198330A (en) Method and program for collation in three-dimensional registration
JP2016217941A (en) Three-dimensional evaluation device, three-dimensional data measurement system and three-dimensional measurement method
CN114119488A (en) Intelligent size and quality detection method for prefabricated laminated plate facing factory
Yang et al. Investigation of point cloud registration uncertainty for gap measurement of aircraft wing assembly
De Pastre et al. Shape defect analysis from volumetric data-Application to lattice struts in additive manufacturing
CN113971718A (en) Method for performing Boolean operation on three-dimensional point cloud model
JP2007102595A (en) Analysis mesh generation device
JP2002099901A (en) Method and device for three-dimensional modeling
CN115937466B (en) GIS-fused three-dimensional model generation method, system and storage medium
CN112002007A (en) Model obtaining method and device based on air-ground image, equipment and storage medium
JP2002109518A (en) Three-dimensional shape restoring method and system therefor
JP2005525863A5 (en)
CN113592976B (en) Map data processing method and device, household appliance and readable storage medium
KR101808958B1 (en) Method for obtaining shape information of structure and method for measuring deformation of structure
KR20240044495A (en) Inspection support system, inspection support method, and inspection support program
CN113034673B (en) 3D point cloud modeling system and computer readable storage medium
JP6802944B1 (en) Inspection support equipment, inspection support methods and programs

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees