WO2014133102A1 - Biocompatible polymer as antithrombogenic material, cyclic carbonate useful as precursor thereof, and method for producing same - Google Patents

Biocompatible polymer as antithrombogenic material, cyclic carbonate useful as precursor thereof, and method for producing same Download PDF

Info

Publication number
WO2014133102A1
WO2014133102A1 PCT/JP2014/054948 JP2014054948W WO2014133102A1 WO 2014133102 A1 WO2014133102 A1 WO 2014133102A1 JP 2014054948 W JP2014054948 W JP 2014054948W WO 2014133102 A1 WO2014133102 A1 WO 2014133102A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
compound
ether
bond
Prior art date
Application number
PCT/JP2014/054948
Other languages
French (fr)
Japanese (ja)
Inventor
賢 田中
和樹 福島
千香子 佐藤
彩乃 佐々木
裕人 井上
Original Assignee
国立大学法人山形大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013037994A external-priority patent/JP6226357B2/en
Priority claimed from JP2013111270A external-priority patent/JP6320688B2/en
Application filed by 国立大学法人山形大学 filed Critical 国立大学法人山形大学
Publication of WO2014133102A1 publication Critical patent/WO2014133102A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L33/00Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
    • A61L33/06Use of macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L17/00Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
    • A61L17/005Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters containing a biologically active substance, e.g. a medicament or a biocide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/38General preparatory processes using other monomers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/42Anti-thrombotic agents, anticoagulants, anti-platelet agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable

Definitions

  • the present invention mainly relates to a biocompatible polymer as an antithrombotic material, a cyclic carbonate useful as an intermediate thereof, and a method for producing the same. More specifically, when it is placed in a living body or comes into contact with a substance derived from a living body, blood compatibility such as an anti-coagulant action and a target biological substance can be selectively adsorbed.
  • the present invention relates to a cyclic carbonate having a functional group such as a carboxyl group in the molecule, a derivative thereof, a method for producing the same, etc.
  • biocompatible materials include 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer, polyethylene glycol (PEG), poly (2-methoxyethyl acrylate) (PMEA), polyalkoxyalkyl (meth) acrylamide, etc. Is known and has been put to practical use in various applications.
  • MPC 2-methacryloyloxyethyl phosphorylcholine
  • PEG polyethylene glycol
  • PMEA poly (2-methoxyethyl acrylate
  • meth polyalkoxyalkyl
  • the surface of medical devices is prevented from being recognized as a foreign substance, and the coagulation system, complement system, platelets Activation of the system and the like is suppressed.
  • the MPC polymer is a kind of betaine that maintains electrical neutrality in a living environment, and binds a phospholipid polar group covering a living cell membrane to a polymerizable group such as a vinyl group via an ester bond. And a polymer produced by polymerizing the polymerizable group, and has a structure in which a phospholipid polar group is provided as a side chain with respect to the alkyl chain (main chain).
  • Polyethylene glycol (PEG) has a structure having an ether structure (C 2 H 4 —O) as a repeating unit, and is known to exhibit very excellent biocompatibility.
  • PEG poly (2-methoxyethyl acrylate)
  • PMEA poly (2-methoxyethyl acrylate)
  • Polyalkoxyalkyl (meth) acrylamide has an ether structure at the end of the side chain and has a structure with (meth) acrylamide as a repeating unit, and due to its moderate hydrophilicity, the activity of coagulation system, complement system and platelet system It has been found that it is possible to suppress oxidization and to express excellent blood affinity.
  • MPC polymer having side chain containing phospholipid polar group on main chain PEG composed of ether structure, PMEA which is polymer having side chain composed mainly of ether structure, and ether structure and amide bond
  • polymer materials having hydrophilic groups such as ether structures and amide bonds such as polyalkoxyalkyl (meth) acrylamide having a high molecular weight, have a high biocompatibility despite having a completely different structure from substances constituting the living body. The reason for showing is not necessarily clear.
  • recent research has revealed that these polymers can contain water molecules in a state called “intermediate water” observed in biological materials (see, for example, Non-Patent Document 1).
  • a substance exhibiting biocompatibility can contain “intermediate water” regardless of whether it is a biologically derived substance or an artificial synthetic product. It has been experimentally shown that non-specific adsorption of proteins in living tissue is prevented by the presence of water molecules in a state called as being on the surface of the substance, and as a result, bioaffinity is expressed. In order for a given substance to contain “intermediate water”, it is not always necessary for the substance to have a structure suitable for containing “intermediate water” like PEG. It has been revealed that “intermediate water” can also be contained by providing a structure suitable for containing “water” as a side chain.
  • Intermediate water contained in a biocompatible substance is typically characterized by the release and absorption of unique latent heat that is seen in the temperature rise process after supercooling.
  • latent heat release is observed near ⁇ 40 ° C.
  • latent heat is below freezing above ⁇ 10 ° C.
  • Absorption and absorption of specific latent heat is observed, such as the absorption of.
  • Various verifications have revealed that the release and absorption of these latent heats is caused by the fact that a certain proportion of water molecules contained in the substance cause ordering and disordering.
  • a molecule is defined as intermediate water.
  • Intermediate water is presumed to be weakly constrained by specific effects from the molecules that make up the substance, but it has been shown that it is also contained in biological materials such as phospholipids in biological tissues. It is thought to be related to prevention of non-specific adsorption of proteins.
  • the substance such as PEG, PMEA, polyalkoxyalkyl (meth) alkylamide, etc. can contain intermediate water. It is thought to be related to the expression of affinity.
  • biodegradable polymers having biodegradability that has been decomposed and disappeared by the action of hydrolysis or enzymatic degradation has been known so far.
  • Biodegradable polymers are generally used for the purpose of reducing the burden on the natural environment by being destroyed by action from the natural world after being discarded.
  • the use of biodegradable polymers in medical devices such as surgical sutures, stents, and catheters that are indwelled in the body eliminates the need for procedures such as thread removal after the treatment is completed. It has become common to add a function to release the release.
  • biodegradable polymers used for medical devices placed in the body in addition to the property of degrading in a predetermined period, substances generated by decomposition are not toxic to the living body and are discharged from the body by metabolism. It is common to be designed.
  • a biodegradable polymer and drug mixed layer having a predetermined structure is provided on the surface of an in-vivo indwelling object.
  • a technique is described in which a drug is gradually released as the biodegradable polymer is decomposed.
  • Patent Document 2 discloses a biodegradable polymer used for catheters and the like, and does not generate carboxylic acid when decomposed in vivo, thereby reducing the risk of inflammation due to local pH reduction. And polymers that are considered biocompatible are described.
  • the biodegradable polymer used in the medical device as described above there are limited prior examples in consideration of the affinity (biological affinity) to the living body when it exists as a polymer. That is, while being used in a medical device, it is a polymer showing biocompatibility that does not cause a foreign body reaction to blood or tissue in the living body, and is biodegraded and metabolized within a predetermined period. Few polymers have been provided so far.
  • Patent Document 3 describes a polymer in which a phospholipid component exhibiting blood affinity, non-thrombogenicity, and the like is introduced to a biodegradable polymer by a covalent bond, so that both biodegradability and blood affinity are compatible. Attempts have been made, but the manifestation of this property has not been confirmed.
  • Biodegradable polymers and the like can be prepared by ring-opening polymerization (ROP) using a cyclic carbonate or the like useful as an intermediate.
  • ROP ring-opening polymerization
  • cyclic carbonate or the like useful as an intermediate.
  • ROP ring-opening polymerization
  • it is essential to easily and inexpensively produce cyclic monomers having various functional groups.
  • some cyclic esters having functional groups have been reported, the introduction site of functional groups is limited due to steric bulk and ring distortion, and it is difficult to produce specific cyclic esters at low cost. Its usefulness is limited because of its low stability and poor reaction yield.
  • the group R of the cyclic carbonate MTC-XR (X represents O, NH, S or the like) obtained from the diol compound bis-MPA having a carboxyl group is bonded via a carboxyl group.
  • Various functional groups R that can be reacted can be applied.
  • Such 6-membered cyclic carbonate easily gives an aliphatic polycarbonate by ring-opening polymerization, and since it exhibits biodegradability, its application to medical materials such as drug carriers and cell culture substrates has been widely studied.
  • cyclic carbonate MTC-XR As a method for producing the cyclic carbonate MTC-XR, it has been conventionally known that it can be produced by a plurality of production methods as in the above scheme.
  • bis-MPA or the like is used as a starting material, and a cyclic carbonate is typically produced by cyclizing the diol moiety by a cyclization reaction in an aprotic organic solvent.
  • bis-MPA containing a carboxyl group is used as a starting material for synthesizing a cyclic carbonate mainly from the point of introducing an appropriate side chain into a polymer obtained by ring-opening polymerization of a cyclic carbonate.
  • a substitution reaction of a carboxyl group with a reactive reagent is performed.
  • the cyclization reaction needs to be performed in an aprotic organic solvent or the like, whereas bis-MPA has a high polarity and thus has low solubility in an organic solvent.
  • an operation for increasing the solubility in an organic solvent is performed by previously performing some substitution reaction on the carboxyl group.
  • a reactive reagent such as a substituted alcohol or amine
  • Production method A in Scheme 1 is reported in Non-Patent Document 2 and the like, and after protecting the carboxyl group as a benzyl ester, cyclization reaction is performed in an organic solvent, and then the carboxyl group is deprotected and deprotected.
  • a reactive functional group is introduced by a nucleophilic acyl substitution reaction of an alcohol or amine with respect to the carboxyl group regenerated by the above.
  • nucleophiles a wide range of nucleophiles can be used, but the number of steps is large. That is, the benzyl ester of the carboxyl group is chemically stable, and in order to perform deprotection by a hydrogenolysis method or the like, an intermediate must be isolated. It has the problem of decreasing.
  • Production method B is reported in Non-Patent Document 3, etc., in which the reaction of introducing a reactive functional group into a carboxyl group is preceded, followed by a cyclization reaction.
  • the self-condensation reaction of bis-MPA is suppressed in the initial stage reaction.
  • it is limited to the case of using alcohol or amine having a low boiling point and chemically stable from the viewpoint of purification and isolation, which requires heating at a high temperature.
  • the reaction conditions and reaction substrates are greatly limited, and there are significant drawbacks in designing molecules having various functions.
  • Production method C has been reported in Non-Patent Documents 4 and 5, etc., and is a method of protecting the diol site in advance and then modifying the carboxyl group with a reactive functional group, followed by deprotection of the diol site and cyclization reaction. .
  • production method C there is no concern of self-condensation in the reaction of introducing a reactive functional group into a carboxyl group by protecting the diol site, and the range of nucleophiles that can be used is expanded compared with production method B.
  • the group R introduced into the carboxyl group is required to have resistance to the deprotection reaction or cyclization reaction of the diol moiety performed under subsequent acidic conditions.
  • Patent Document 4 and Non-Patent Document 6 have proposed that cyclization reaction and carboxyl group protection be performed in one step using bispentafluorophenyl carbonate (PFC) as shown in Scheme 2 below. Yes.
  • PFC bispentafluorophenyl carbonate
  • bis-MPA and PFC are reacted in a predetermined environment to cyclize the diol moiety of bis-MPA and to make the pentafluorophenyl ester substituent function as an active ester to protect and activate the carboxyl group.
  • the pentafluorophenyl ester substituent functions as a leaving group and can undergo a substitution reaction with an alcohol or amine under mild conditions.
  • the various steps related to the protection / deprotection of the diol moiety and the carboxyl group in the step of synthesizing various cyclic carbonates using bis-MPA as a starting material as shown in Scheme 1 can be omitted. It is possible to carry out the cyclization reaction of the diol site while protecting the carboxyl group in a single step. Although the number of steps can be greatly reduced while maintaining the diversity of nucleophiles that can be introduced in the same manner as in production method A, PFC is expensive and has a problem in availability. Moreover, when removal of the by-produced pentafluorophenol is insufficient, it is disadvantageous to influence the subsequent polymerization reaction.
  • the possibility of a material having biocompatibility that does not cause a foreign body reaction to blood or tissue in the living body when the polymer is present in the living body is not necessarily a biodegradable polymer. It has not been revealed so far. For this reason, for example, in a stent placed in a blood vessel, it is also common to prevent restenosis by mixing an antithrombotic drug such as heparin with a biodegradable polymer provided on the stent surface. It has become.
  • an object of the present invention is to provide a polymer that exhibits biocompatibility and exhibits good biodegradability. It is another object of the present invention to provide a novel compound used as a monomer in the production of the polymer, a method for producing the compound, and a method for producing a polymer using the compound. It is another object of the present invention to provide a medical device using the polymer.
  • the present invention uses a novel method for synthesizing a cyclic carbonate having a carboxyl group or a derivative thereof simply and efficiently using a diol compound having a carboxyl group as a starting material for the compound used as the monomer, and the method. It is an object of the present invention to provide an intermediate compound of the polymer produced.
  • a biocompatible polymer composition comprising a structure containing at least one ether group in the side chain and a main chain comprising a biodegradable polymer skeleton.
  • the biodegradable polymer skeleton has the formula: (I) -C B -A- (I) (Where C B is selected from unit structures having a carbonate bond, an ester bond, an amide bond, a urethane bond or a urea bond; A is a C 1-8 alkylene group in which a hydrogen atom is replaced by at least one group —Y; Y is represented by the formula: -LZ (wherein Z is a structure having at least one chain ether, cyclic ether or acetal structure, L is a linker between the main chain and Z, an alkylene group, Selected from unit structures having an ether bond, a thioether bond, an ester bond, an amide bond, a urethane bond or a
  • the linker L is a group shown below: Or a bioaffinity as described in (2) or (3) above, which is selected from the group having a 1,2,3-triazole group at the binding part of Z and Z Polymer composition.
  • Z is the following formula (II): [Wherein, l is an integer of 1 to 30, U is a hydrogen atom or a linear or branched alkyl group having 5 or less carbon atoms, or the following formula (III): (Wherein l ′ is an integer of 1 to 5)] Or Z is a group represented by the following formula (IV): (Wherein l ′′ is an integer of 1 to 5), or Z is the following formula (V): (In the formula, M ′ is a hydrogen atom or a linear or branched alkyl group having 3 or less carbon atoms, and E and E ′ are each independently —O— or —CH 2 —.
  • the biocompatible polymer composition according to any one of the above (2) to (4) which is a group represented by: (6)
  • a method for producing a biocompatible polymer composition comprising a step of ring-opening polymerization of the monomer compound represented by the general formula (VII) described in (7) above.
  • a biocompatible polymer composition produced by ring-opening polymerization of the monomer compound described in (7) above.
  • a medical device comprising the biocompatible polymer composition according to any one of (1) to (6), (9) and (10) above.
  • the diol compound having a carboxyl group is subjected to a cyclization reaction in the presence of an organic solvent while protecting the carboxyl group with an organic base.
  • the present inventors have found that cyclic carbonates can be efficiently synthesized without using expensive reagents while omitting the protection and deprotection reactions. That is, in one aspect of the present invention, a diol compound having a carboxyl group is converted to a compound represented by the formula (VIII): R 1 — (C ⁇ O) —R 2 [wherein R in the presence of an organic base and an organic solvent.
  • R 1 and R 2 are each independently a halogen atom, an imidazolium group, or —OR 3 (wherein R 3 is a lower alkyl group optionally substituted with a halogen atom, or a halogen atom, an alkoxycarbonyl group, a nitro group, or And an aryl group optionally substituted with at least one substituent selected from the group consisting of a cyano group, an alkoxy group, an alkyl group, and a haloalkyl group.
  • a method for producing a cyclic carbonate is provided.
  • the diol compound having a carboxyl group Prior to the cyclization reaction, the diol compound having a carboxyl group is preferably dissolved in an organic solvent in the presence of an organic base. This is because the organic base in the reaction mixture is converted into a carboxyl group in the diol compound. It is considered that this is because, by forming a non-covalent interaction with the compound, for example, forming a complex, the dissolution of the diol compound in an organic solvent is promoted, and it also serves as a protecting group for the carboxyl group. Therefore, the organic base used in the method of the present invention is not particularly limited as long as it can interact with the carboxyl group in the diol compound in the organic solvent, and various organic bases are appropriately selected according to the polarity of the organic solvent to be used. be able to.
  • the present invention it is possible to provide a polymer material that exhibits biocompatibility such as antithrombogenicity to a living body and exhibits good biodegradability. Furthermore, according to the present invention, it is possible to simply achieve the synthesis of a cyclic carbonate having a carboxyl group or the like using a diol compound as a starting material while omitting the protection / deprotection reaction of the carboxyl group in the conventional method. Most surprisingly, a series of reactions can be performed continuously or semi-continuously, and the synthesis of various cyclic carbonate derivatives can be performed without complication.
  • 2 is a 1 H-NMR spectrum of MPA-ME shown in Example 1.
  • 2 is a 1 H-NMR spectrum of MTC-ME shown in Example 2.
  • 2 is a 1 H-NMR spectrum of P (MTC-ME) shown in Example 3.
  • 2 is a 1 H-NMR spectrum of PTMC shown in Comparative Example 1.
  • 1 is a 1 H-NMR spectrum (400 MHz, acetone-d 6 ) of an intermediate (MTC-TEA) obtained in Example 4.
  • 1 is a 1 H-NMR spectrum (400 MHz, acetone-d 6 ) of MTC-OH obtained in Example 4.
  • 1 is a 1 H-NMR spectrum (400 MHz, acetone-d 6 ) of MTC-Cl obtained in Example 5.
  • Example 1 is a 1 H-NMR spectrum (400 MHz, acetone-d 6 ) of MTC-THF obtained in Example 6.
  • 1 is a 1 H-NMR spectrum (500 MHz, acetone-d 6 ) of MTC-OH (Comparative Example 2).
  • 10 is a graph showing the results of DSC measurement in Example 8.
  • 2 is a graph showing the number of HUVECs adhered on each polymer substrate cultured in Example 11 and its change with time. It is a graph which shows the adhesion number of HT-1080 after 1 hour culture
  • FIG. 10 is a graph showing the platelet adhesion number in Example 13.
  • alkyl group refers to a monovalent saturated hydrocarbon group including a linear or branched carbon chain having a skeleton of carbon atoms.
  • alkylene group refers to a divalent hydrocarbon group composed of a linear carbon chain.
  • alkylene oxide chain refers to a structure in which a carbon atom other than the end of the alkylene group is replaced with an ether bond.
  • lower alkyl group or “lower alkylene group” refers to the above alkyl or alkylene group having 1 to 6 carbon atoms.
  • alkenyl refers to a monovalent saturated hydrocarbon group containing a straight or branched carbon chain having one or more carbon-carbon double bonds in the skeleton of carbon atoms.
  • the number of carbon atoms in the alkenyl is not particularly limited, but is preferably 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, and most preferably 2 to 6 carbon atoms.
  • Examples of alkenyl include, but are not limited to, ethenyl (vinyl), propenyl, butenyl, 2-methylpropenyl, pentenyl, hexenyl and the like.
  • alkynyl refers to a monovalent saturated hydrocarbon group containing a straight or branched carbon chain having one or more carbon-carbon triple bonds in the skeleton of carbon atoms.
  • the number of carbon atoms in the alkynyl is not particularly limited, but preferably 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, and most preferably 2 to 6 carbon atoms.
  • Examples of alkynyl include, but are not limited to, ethynyl, propynyl, butynyl, 2-methylpropynyl, pentynyl, hexynyl and the like.
  • alkoxy refers to a monovalent saturated hydrocarbon group in which the above alkyl group is bonded to an oxygen atom and is bonded to another molecular structure through the oxygen atom.
  • the number of carbon atoms in alkoxy is not particularly limited, but is preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and most preferably 1 to 6 carbon atoms.
  • Examples of alkoxy include, but are not limited to, methoxy, ethoxy, propoxy, i-propoxy, n-butoxy, i-butoxy, tert-butoxy, pentoxy, hexoxy and the like.
  • alicyclic alkyl refers to a monovalent aliphatic cyclic hydrocarbon group in which a carbon skeleton forms a ring.
  • the alicyclic alkyl is expressed by the number of carbon atoms forming the ring.
  • C 3-8 alicyclic alkyl means that the number of carbon atoms forming the ring is 3 to 8. Show.
  • alicyclic alkyl examples include cyclopropyl (C 3 H 5 ), cyclobutyl (C 4 H 7 ), cyclopentyl (C 5 H 9 ), cyclohexyl (C 6 H 11 ), cycloheptyl (C 7 H 13 ), Including but not limited to cyclooctyl (C 8 H 15 ) and the like.
  • chain ether or “alkylene oxide” can be used interchangeably, and a structure in which one —CH 2 — moiety other than the terminal in the alkyl group is replaced with an ether bond (—O—). Indicates.
  • cyclic ether refers to a structure in which one —CH 2 — moiety of the alicyclic alkyl is replaced with an ether bond.
  • aryl group refers to an aromatic substituent containing one ring or two or three condensed rings.
  • Aryl groups preferably contain 6 to 18 carbon atoms and include phenyl, naphthyl, anthracenyl, phenanthrenyl, fluorenyl and indanyl.
  • the term “monomer” or “monomer” refers to a low molecular weight molecule that can be used interchangeably and can be a component of the basic structure of a polymer.
  • the monomer usually has a functional group serving as a reaction point of the polymerization reaction, such as a carbon-carbon double bond or an ester bond.
  • polymer or “polymer” can be used interchangeably and refer to molecules having a structure composed of repeating monomer units, which can be obtained from a monomer having a low molecular weight.
  • polymer refers to a macromolecule formed by covalently bonding a large number of atoms, such as a protein, a nucleic acid and the like, in addition to a polymer.
  • the term “average degree of polymerization” refers to the average number of monomer units contained in one polymer molecule. That is, in the polymer composition, polymer molecules having different lengths are dispersed within a certain range.
  • the “number average molecular weight” means the average molecular weight per molecule in the polymer composition
  • the “weight average molecular weight” means the molecular weight calculated by weighting the weight.
  • the ratio between the number average molecular weight and the weight average molecular weight is referred to as the degree of dispersion, which is a measure of the molecular weight distribution of the polymer composition. The closer the degree of dispersion is to 1, the closer the average degree of polymerization in the polymer composition and the more polymer chains of the same length.
  • biocompatible material refers to a material that is difficult to be recognized as a foreign substance when it comes into contact with a biological substance because it can contain intermediate water. Biocompatible materials exhibit activity that induces or does not induce specific protein adsorption or cell adhesion, for example, if the material does not have biological activity such as complement activity, thrombus activity, tissue invasiveness, etc. Contains materials.
  • blood compatible material refers to a material that does not cause blood coagulation mainly due to adhesion or activation of platelets.
  • biodegradable polymer refers to a polymer that can be chemically decomposed by an action such as hydrolysis, enzymatic decomposition, or microbial decomposition.
  • biodegradable polymers include chemically synthesized polymers such as polylactic acid, polyesters such as polycaprolactone, polycarbonates, and the like, polymers derived from living organisms such as polypeptides, polysaccharides, celluloses, and combinations thereof. Can be mentioned.
  • side chain refers to a branched structure bonded to a polymer main chain.
  • one embodiment of the present invention is a biocompatible polymer composition
  • a biocompatible polymer composition comprising a structure containing at least one ether group in the side chain and a main chain composed of a biodegradable polymer skeleton.
  • the “biocompatible polymer composition” refers to a polymer composition having a structure particularly suitable for suppressing blood coagulation and preventing the formation of thrombus, such as medical materials in such applications. Can be used for
  • One embodiment of the present invention is a biocompatible polymer composition having a repeating unit represented by the following formula (I). -C B -A- (I)
  • C B is an ether bond, a thioether bond, an ester bond, an amide bond, selected from a unit structure having a urethane bond or a urea bond, or a combination thereof, as a non-limiting example, the following Examples of unit structures listed in Scheme 3 include:
  • A is a C 1-8 alkylene group in which a hydrogen atom is substituted by at least one group —Y.
  • A is optionally substituted at least one carbon atom other than the carbon atom adjacent to C B in the C 1-8 alkylene group with a heteroatom selected from N, O or S, and / or C
  • the hydrogen atom in the 1-8 alkylene group may be substituted with a lower alkyl group.
  • the group Y is a group represented by the formula: -LZ, and L is a linker between the main chain and Z, and is an alkylene group, an ether bond, a thioether bond, an ester bond, an amide bond, or a urethane bond.
  • Z is not particularly limited as long as it is a molecular chain having at least one chain ether such as polyethylene glycol, cyclic ether, or acetal structure, that is, at least one ether group. Each of these may be different in each repeating unit.
  • the polymer according to the present invention among the biodegradable polymers known conventionally, as shown similar to that of the aliphatic polyester-based or polyamide-based, the alkylene group represented by A or the like as a main chain in the C B It includes a repeating unit bonded by a carbonate bond, an ester bond, a urethane bond, a urea bond, an amide bond, or the like.
  • a side chain containing an ether structure is introduced to a carbon atom contained in the alkylene group or the like by a predetermined bonding mode.
  • the degree of polymerization of the polymer according to the present invention is not particularly limited, but the average molecular weight of the polymer also changes depending on the degree of polymerization, and the operability when used as a material changes depending on the molecular weight. From such a point, the average molecular weight of the polymer according to the present invention is preferably in the range of 2000 to 1000000, more preferably in the range of 5000 to 800000, and most preferably in the range of 8000 to 500000.
  • the molecular weight distribution of the polymer according to the present invention is not particularly limited, but is preferably in the range of 1.0 to 10, more preferably in the range of 1.0 to 8, and preferably in the range of 1.05 to 5.0. The range is most preferable.
  • each of C B and A of formula (I) may be different in each repeating unit.
  • Such a polymer can be synthesized by performing a polymerization reaction using two or more kinds of monomer molecules as a raw material of the polymer.
  • the structural portion Z is not particularly limited as long as it is a molecular chain having at least one chain ether such as polyethylene glycol, a cyclic ether or an acetal structure, that is, at least one ether group.
  • the structural moiety Z can be represented by the following formula (II).
  • the repeating number (l) is an integer of 1 to 30, and U is a hydrogen atom or a linear or branched alkyl group having 5 or less carbon atoms.
  • the repetition represented by the formula (II) corresponds to a chain ether, and when the number of repetitions (l) is large, there is a tendency that the solubility of the side chain in water tends to be high.
  • the structure represented by the formula (II) depends on the density or the like introduced into the polymer, typically, l is 20 or less, and preferably 10 or less.
  • l is 20 or less, and preferably 10 or less.
  • the structure represented by the formula (II) is introduced into the polymer at a high density, even if l is 5 or less in order to ensure the water resistance of the polymer, the polymer contains intermediate water in a sufficient ratio. can do.
  • l is 1, 2, 3 or so, a polymer capable of adsorbing predetermined cells while suppressing platelet adhesion while ensuring sufficient water resistance and reducing the content of intermediate water. can do.
  • the repetition represented by the formula (II) corresponds to ethylene glycol (—C 2 H 4 —O—), but is not limited to this in the present invention, and propylene is used to improve the water resistance of the polymer. It is also possible to use a structure corresponding to glycol (—C 3 H 6 —O—).
  • the structure U provided at the end of the chain ether the water resistance of the polymer is improved by using the alkyl group having a large carbon number, while the intermediate water contained by the decrease in the carbon number is increased.
  • methyl (carbon number 1) is preferred as U.
  • U may be a group that can be represented by the following formula (III).
  • l ′ can be an integer of 1 to 5, but when l ′ is 1 (that is, a 3-membered ring), the ring is opened in water and becomes unstable.
  • L ′ is preferably 2, 3, 4 or 5.
  • the structural portion Z can be represented by the following formula (IV).
  • the structure represented by the formula (IV) corresponds to a cyclic ether, and by introducing such a structure into the side chain, it becomes possible to contain intermediate water.
  • l ′′ can be an integer of 1 to 5, but when l ′′ is 1 (that is, a 3-membered ring), the ring opens in water and becomes unstable.
  • L ′′ are preferably 2, 3, 4 or 5.
  • the structural portion Z can be represented by the following formula (V).
  • M ′ is a hydrogen atom or a linear or branched alkyl group having 3 or less carbon atoms, preferably methyl.
  • E and E ′ are independently of each other —O— or —CH 2 —, and at least one of them may be —O—, but preferably has an acetal structure in which both are —O—.
  • Q ′ and Q ′′ each independently represent a hydrogen atom, linear or branched alkyl having 6 or less carbon atoms, alkenyl or alkynyl, C 3-8 alicyclic alkyl or benzyl, 'And Q "together form an alkylene group having 2 to 5 carbon atoms, and are preferably a hydrogen atom or an alkyl having 6 or less carbon atoms in order to keep the proportion of the intermediate water that can be contained to a desirable level.
  • Q and Q ′ are both a hydrogen atom or methyl.
  • the structural part Z as described above has at least one ether group (—O—), and thus can exhibit high molecular mobility as seen in, for example, polyethylene glycol. It is considered that intermediate water can be contained as a polymer by having such a structure in the side chain. And by adjusting the number of ether groups contained in the structural part Z, the bulkiness of the structural part Z itself, etc., the amount of intermediate water that can be contained in the resulting polymer is adjusted to adjust the degree of antithrombogenicity. be able to.
  • the linker L is a part that plays a role of linking the main chain and the structural part Z, and is typically an ether group, an ester group, an amide group, an amino group, a urethane group, a urea group, an alkylene group. Divalent functional groups such as groups can be used. It is known that the structural part Z can generally have high molecular mobility by having an ether structure as described above. By having such a structure in the side chain part, It is considered that intermediate water can be contained as a polymer. For this reason, as the linker L that connects the main chain and the structural portion Z, it is desirable to select and use various types of structures that do not inhibit molecular mobility according to the individual structure of the structural portion Z.
  • each part of the polymer does not become hydrophobic, and in particular, it is desirable that adsorption of biological substances such as proteins hardly occurs.
  • the hydrophobic structure is not excessively large and does not include a functional group having a strong polarity.
  • the specific structure of the linker L that is desirably used depends on the structure of the structural part Z to be used, but in general, the ether group, ester group, amide group, amino group, urethane group, urea group, alkylene group are generally used.
  • a unit structure as exemplified in Scheme 3 above can be given.
  • a reaction called a click reaction in forming a bond between the linker L and the structural part Z, for example, a reaction called a click reaction (see, for example, Angew. Chem. Int. Ed., 2001, 40, 2004-2021) can be used.
  • a linker having a 1,2,3-triazole structure derived from azide and alkylene can also be introduced.
  • the linker L and the structural moiety exemplified above are reacted by reacting an azide with a group such as the ethenyl group (—C ⁇ C—) introduced at the end of the linker L exemplified above. It is possible to obtain a structure in which Z is bonded via a 1,2,3-triazole ring. These structures can be used as the linker L as well.
  • the linker L when a functional group containing an N—H bond such as an amide group, amino group, urethane group, or urea group is used as the linker L, this Although the linker portion is preferable in that it exhibits hydrophilicity, there is a tendency that proteins existing in the living body are easily adsorbed to the polymer, and therefore, a biological substance in the body may be attached depending on the use. In addition, when an alkylene group such as methylene or ethylene is used, hydrophobicity is exhibited, and the proportion of intermediate water that can be contained in the polymer tends to decrease.
  • an alkylene group such as methylene or ethylene
  • the starting material for synthesis generally has an alcohol on both the main chain side and the side chain side, so that an additional by-product is generated in the reaction of introducing a protective group, making separation difficult. And the yield is expected to decrease. For this reason, it is particularly preferable to use an ester group as the linker L from the viewpoint of ease of production and biocompatibility.
  • the side chain having the above-described structure is not necessarily present for all the repeating units of the main chain.
  • a compound in which a structural portion Z is introduced in advance as a monomer compound used in the polymerization is mainly used. It is preferable that side chains including the structural portion Z exist for all the repeating units of the chain polymer. It is also possible to introduce two structural parts Z via a linker into one carbon atom constituting the main chain contained in the part A in the above formula (I).
  • C B carbonyl bonds or the like
  • C B carbonyl bonds or the like
  • the moiety represented by “C B ” in the above formula (I) is a carbonate bond, an ester bond, a urethane bond, a urea bond, an amide bond, etc., all of which are oxygen atoms at at least one of the carbonyl carbon and the adjacent positions. It is comprised by the group in which an atom or a nitrogen atom exists.
  • binding mode which is used as a binding moiety C B can be appropriately determined based applications polymers are used, such as in particular the period required for biodegradation. If the binding moiety C B using a urethane bond or an amide bond can be obtained with low polymer of biodegradation rate of a relatively body.
  • the alkylene group “A” is a C 1-8 alkylene group in which a hydrogen atom is substituted with at least one group —Y and optionally a lower alkyl group, and optionally adjacent to C B. At least one carbon other than the carbon to be substituted may be replaced with a heteroatom selected from N, O or S.
  • the alkylene group A can have at least one carbon atom and can be biodegradable with up to about 8 carbon chains. From the viewpoint of sex.
  • an alkylene oxide chain corresponding to a structure in which at least one of carbon atoms other than those located at both ends is substituted with an ether group can be used.
  • an alkylene oxide chain having an ether group introduced in the main chain it is possible to improve mechanical strength such as impact resistance as a polymer as compared with the case of using an alkyl chain, and It also becomes possible to impart hydrophilicity to the chain.
  • an ether related to the inclusion of intermediate water in any carbon atom contained in the alkylene group or the like with respect to the main chain composed of an alkylene group or the like bonded to each other by the bonding portion C B by the side chain by introducing a structure or the like, while maintaining biodegradability due to the binding moiety C B it may be a polymer that can contain intermediate water.
  • the biodegradable polymer skeleton has the following formula (VI): (Where X and X ′ are independently of each other —O—, —NH— or —CH 2 —, but at least one is not —CH 2 —; M is a hydrogen atom, a linear or branched alkyl group having 3 or less carbon atoms, or a group -LZ; m and m ′ are each independently an integer of 0 to 5, provided that when X and X ′ are both —O—, at least one of m and m ′ is not 0, and m and m ′ The sum of 'is 7 or less; Y is a structural moiety represented by the group -LZ (wherein L and Z are as defined above);
  • M is preferably an alkyl group, and most preferably a methyl group.
  • the values of m and m ′ are determined by the selection of the monomer raw material compound. From the viewpoint of monomer preparation, the sum of m and m ′ is preferably in the range of 1 to 4, and m and m ′. Are most preferably 1.
  • the main chain can be a copolymer of a biodegradable polymer and a non-biodegradable polymer.
  • a non-biodegradable polymer a polymer known to those skilled in the art can be appropriately used according to the required physical properties. Examples thereof include polymethyl methacrylate (PMMA), polyethyl methacrylate (PEMA), and polyvinyl. Examples include, but are not limited to, pyrrolidone (PVP), polyurethane, polyester, polyolefin, polystyrene, polyvinyl chloride, polyvinyl ether, polyvinylidene fluoride, polyfluoroalkene, nylon, and silicone.
  • PMMA polymethyl methacrylate
  • PEMA polyethyl methacrylate
  • PVAm polyvinyl
  • examples include, but are not limited to, pyrrolidone (PVP), polyurethane, polyester, polyolefin, polystyrene, polyvinyl chloride, poly
  • the non-biodegradable polymer skeleton may form a block copolymer with the biodegradable polymer skeleton, or may randomly copolymerize with a monomer unit that forms the biodegradable polymer. Moreover, in order to obtain desired physical properties, a copolymer with a plurality of non-biodegradable polymers may be formed.
  • the biocompatible polymer according to the present invention can be produced, for example, by ring-opening polymerization of a monomer having a cyclic structure into which a portion to be a side chain of a polymer obtained by polymerization is introduced in advance as follows.
  • the general formula (VII), X adjacent the carbonyl carbon, as X ' by selecting from CH 2, O, N, as the binding moiety C B contained in the main chain of the polymer after polymerization, carbonate Any of a bond (O / O), an ester bond (CH 2 / O), a urethane bond (O / N), an amide bond (CH 2 / N), and a urea bond (N / N) is selected.
  • the alkylene m as m ', an integer including zero independently of one another (carbonate bond, in the case of the urea bond, either is not 0) by selecting, bound by a binding moiety C B
  • the length of the base A is determined.
  • the structural part Z is combined with the carbon atom through the appropriate linker L, and the side chain part which has an ether structure is provided in the polymer side chain part after superposition
  • M in the above general formula (VII)
  • a structural part Z can be bonded through a linker L in the same manner as hydrogen, an alkyl group, or “Y”.
  • the biocompatible polymer according to the present invention can be produced by ring-opening the cyclic monomer obtained as described above at any of the bonds adjacent to the carbonyl carbon and polymerizing each other. .
  • the cyclic monomer including one portion Y including the structural portion Z has been described.
  • the present invention is not limited to this, and one or two structural portions Z are also provided for appropriate carbon atoms contained in m and m ′.
  • a portion Y including Further, by substituting appropriate carbon atoms contained in m and m ′ (when O and N are selected as X and X ′, excluding carbon atoms adjacent to O and N) with oxygen, An ether structure can be introduced into the main chain portion of the polymer after polymerization. It is also possible to substitute the carbon atom of the alkylene group A with a heteroatom such as N or S.
  • X and X ' are both oxygen atoms to form a cyclic carbonate, m and m' are both 1, M is a methyl group,
  • a polymer in which the ether structure and a methyl group are provided as side chains with respect to the central carbon atom of the group can be obtained.
  • the monomer compound used as described above for example, 5-methyl-5- (2-methoxyethyl) oxycarbonyl-1,3-dioxan-2-one, 5-methyl-5- (2-ethoxyethyl) oxycarbonyl-1,3-dioxane-2-one, 5-methyl-5- (2-tetrahydrofuranylmethyl) oxycarbonyl-1,3-dioxane-2-one, 5-methyl-5- (3-tetrahydrofuranylmethyl) oxycarbonyl-1,3-dioxane-2-one, 5-methyl-5- (3-tetrahydropyranylmethyl) oxycarbonyl-1,3-dioxan-2-one 5-methyl-5- [2- (2-methoxyethoxy) ethyl] oxycarbonyl-1,3- Dioxane-2-one, 5-methyl-5- (2-epoxyoxyethyl) oxycarbonyl-1,3-dioxane
  • a method for producing a biocompatible polymer according to the present invention by polymerizing a bond in which biodegradability such as a carbonate bond and a structure including a predetermined ether group are introduced has been described.
  • the present invention is not limited to this, and a polymer having a bond expected to be biodegradable is introduced into the present invention by introducing a structure containing a predetermined ether group with respect to a predetermined carbon atom forming the main chain.
  • a biocompatible polymer may be produced.
  • the biocompatible polymer composition of the present invention it is not always necessary that a structure containing an ether group is bonded as a side chain over all the repeating units of the main chain polymer, but the ease of synthesis and the characteristics of the polymer can be easily predicted. From this viewpoint, it is also preferable to polymerize a single type of monomer having a structure containing an ether group introduced therein to form a polymer. In addition, for example, by using a monomer in which a plurality of carbonyl carbons forming a carbonate bond or the like in a polymer are introduced into a cyclic part of a cyclic monomer to be used, and a structure containing an ether group is introduced into an appropriate carbon forming a cyclic part. It is also possible to produce a polymer in which the distribution of side chains having a structure containing an ether group introduced between bonds that are expected to be biodegradable, such as carbonate bonds, is not the same in adjacent repeating units.
  • the main chain portion can contain either a biodegradable polymer or a non-biodegradable polymer.
  • a polymer having such a structure can be obtained, for example, by copolymerization of a biodegradable polymer and a non-biodegradable polymer.
  • a compound of the general formula (VII) in which the linker moiety L is an ester bond is prepared as a carboxylic acid having a diol structure, such as 2,2-bis (methylol) propionic acid, as the step (a). It can be obtained by reacting an alcohol having a structure containing an ether group, such as 2-methoxyethanol, to form a bis (hydroxy) ester, and then reacting triphosgene as step (b).
  • the step of synthesizing the bis (hydroxy) ester is performed by heating in a solvent, for example, in the presence of an ion exchange resin.
  • a solvent for example, the type of the solvent is not particularly limited as long as it does not inhibit the reaction and dissolves the raw material, but the alcohol having the structural part Z as the raw material is liquid and sufficiently dissolves the diol Can also be used as a solvent.
  • the reaction temperature can range from room temperature to the boiling point of the solvent, but is preferably from room temperature to 100 ° C., and most preferably from 50 to 90 ° C. in order to improve the yield. While the reaction time varies depending on the raw material compound and the heating temperature, it is in the range of 1 to 100 hours, preferably 10 to 50 hours.
  • the linker part L has a structure other than an ester
  • selection of a raw material compound for example, when L is an amide, an alcohol having a structural part Z is an amine, and L is an ether group (—O—)
  • the diol derivative is synthesized by appropriately changing the carboxylic acid having a diol structure to a halide.
  • the reaction conditions used in this case are known to those skilled in the art.
  • the step of forming the cyclic carbonate is carried out, for example, by allowing triphosgene to act on the obtained diol derivative in a suitable solvent in the presence of a base.
  • the solvent used is not particularly limited, and examples thereof include halogen solvents such as dichloromethane and chloroform, ether solvents such as diethyl ether, tetrahydrofuran and 1,4-dioxane, aromatic solvents such as benzene and toluene, and ethyl acetate. However, it is not limited to these.
  • the base is used to decompose triphosgene to generate phosgene in the reaction system. Examples of the base used include, but are not limited to, triethylamine, diisopropylethylamine, pyridine and the like.
  • the lactone represented by the general formula (VII) is synthesized by a method including (a) a reaction for introducing a structure containing an ether group and (b) a lactonization reaction.
  • the reaction for introducing a structure containing an ether group is as described above in the synthesis of carbonate.
  • the lactonization reaction may be, for example, an intramolecular condensation of hydroxycarboxylic acid, a condensation reaction such as iodolactone formation or Staudinger ketene cycloaddition reaction, an oxidation reaction using a peracid such as Baeyer-Villiger oxidation of a cyclic ketone, or
  • the reaction can be performed using a reaction known to those skilled in the art, such as oxidation of cyclized lactol.
  • An oxidation reaction using a peracid is preferred because of its versatility for the synthesis of various monomer compounds.
  • the lactone represented by the general formula (VII) can be synthesized according to Scheme 5 as shown below.
  • the raw material compounds are commercially available or can be obtained by synthetic methods known to those skilled in the art. (Wherein M, m, m ′ and Z are as defined above)
  • one of the aspects of the present invention is that, in addition to the knowledge for the preparation of the cyclic compound as described above, particularly the cyclic carbonate, the carboxyl group is protected with an organic base against a diol compound having a carboxyl group.
  • a carbonic acid source for cyclization reaction is allowed to act on the diol portion of the diol compound in the presence of an organic solvent, thereby producing a cyclic carbonate having a carboxyl group protected by an organic base.
  • an organic base that protects the carboxyl group is easily eliminated to generate a carboxylic acid.
  • the diol compound that is a part of the complex can be stably present in the organic solvent.
  • the carbonic acid source “— (C ⁇ O) —” for cyclizing the diol moiety to the diol compound stably existing in the organic solvent as described above, the carboxyl group portion is not affected.
  • the diol moiety is thought to be cyclized.
  • the selection of the structure of the carbonic acid source used for the cyclization reaction is explained below.
  • an appropriate carbon source can be used according to the diol compound to be used.
  • an organic base particularly as a protecting group for protecting the carboxyl group by using an organic base particularly as a protecting group for protecting the carboxyl group, the solubility of the diol compound in an organic solvent can be increased, and deprotection after the cyclization reaction can be easily performed. The cyclization reaction and the deprotection of the carboxyl group can be performed efficiently.
  • a protecting group for protecting the carboxyl group can be appropriately selected independently of the compound used as the carbonic acid source in the cyclization reaction, depending on the structure of the functional group introduced into the carbonyl group in the cyclic carbonate to be synthesized, etc. It is possible to use protective groups.
  • the compound used as the carbonic acid source for producing the cyclic carbonate is not particularly limited as long as it reacts with the diol moiety of the diol compound and cyclizes.
  • a compound represented by the following formula (VIII) in addition to using carbon monoxide (CO) or carbon dioxide (CO 2 ), it is also possible to use a compound represented by the following formula (VIII).
  • R 1 and R 2 may be any one that can be liberated from the carbonyl carbon under appropriate conditions, and is a halogen atom containing fluorine, chlorine, bromine, or an imidazolium group , —OR 3 , wherein R 3 is an alkyl group having 6 or less carbon atoms or a halogen substituent thereof, an aryl group such as benzene or naphthalene, or an aryl group substituted with one or more substituents (Here, examples of the substituent include a halogen atom containing fluorine, chlorine and bromine, an alkoxycarbonyl group, a nitro group, a cyano group, an alkoxy group, an alkyl group, and a haloalkyl group).
  • R 1 and R 2 may be the same or different.
  • R 1 and R 2 are liberated during the production of carbonate, it is preferable that R 1 and R 2 after liberation do not exhibit undesired effects in a series of reaction systems.
  • examples of the compound represented by the formula (VIII) include, but are not limited to, aliphatic carbonate diesters such as dimethyl carbonate, diethyl carbonate and dibutyl carbonate, aromatic carbonate diesters such as diphenyl carbonate and dinaphthyl carbonate, methyl carbonate Examples thereof include mixed carbonic acid diesters such as phenyl, phosgene, triphosgene (bis (trichloromethyl carbonate)), carbonyldiimidazole (CDI) and the like.
  • Dimethyl carbonate, diphenyl carbonate or triphosgene is preferable in terms of ease of acquisition or handling, safety, and the like.
  • the bond strength with the carbonyl carbon and the like change, and in particular the temperature at which R 1 and R 2 are liberated from the carbonyl carbon. It is possible to change.
  • R 1 and R 2 that form a strong bond with carbonyl carbon
  • the release of carbonyl carbon should be promoted using an appropriate catalyst or the like. Is also preferable.
  • a hydrocarbon group having a relatively large molecular weight as R 1 and R 2 , the solubility in an organic solvent used as a reaction field for the cyclization reaction of the diol compound is improved, and a cyclic carbonate at a high density is obtained. This is preferable in that it can be synthesized.
  • the amount of the compound used as the carbon source in the cyclization reaction of the diol compound is preferably equimolar or more, more preferably equimolar or more and 2 mol or less per diol molecule. This is the amount that the carbonyl unit acts on.
  • an organic solvent is typically selected as the reaction field for the cyclization reaction in which the diol moiety of the diol compound is cyclized with carbonyl carbon. In order to allow the cyclization reaction to proceed well, In particular, an aprotic organic solvent is preferably used.
  • the mixing procedure with an organic base, an organic solvent, or the like is not particularly limited.
  • the method for producing a cyclic carbonate of the present invention comprises a first step of dissolving a diol compound having a carboxyl group in an organic solvent in the presence of an organic base, and the organic solvent.
  • the form containing the said 2nd process with which the said diol compound and the compound which is a carbonic acid source are made to react is mentioned.
  • the diol compound having a carboxyl group can be represented by the formula (IX).
  • R 4 is a part that determines the presence or configuration of the side chain of the polycarbonate obtained by polymerization of the cyclic carbonate to be synthesized and its configuration, and R 4 is appropriately determined according to the properties expected in the polycarbonate . That is, when a side chain is not provided at a corresponding position in the polycarbonate, R 4 is a hydrogen atom, and when a side chain is provided, a functional group or the like corresponding to the side chain is introduced as R 4 .
  • R 4 is a hydrogen atom or a lower alkyl group, and a C 1-3 alkyl group is particularly preferred as the lower alkyl group. Most preferably, it is methyl.
  • M and m ′ in the formula (IX) determine the number of cyclic parts of the cyclic carbonate to be synthesized. From the viewpoint of ease of the cyclization reaction and stability of the cyclic carbonate to be synthesized, m and m ′ The sum of 'is preferably about 1 to 7 or less. Further, the sum is preferably in the range of 1 to 3 so that the cyclic carbonate can be selectively produced.
  • m and m ′ may be an integer of 0 to 5 independently of each other, but if the difference between m and m ′ is large, the cyclization reaction tends to be difficult, and the ring
  • the difference between m and m ′ is 2 or less from the viewpoint of the easiness of the conversion reaction. From the viewpoint of the formation of cyclic carbonate, it is most preferable that m and m ′ are both 1.
  • the term organic base means an organic compound that acts as a proton acceptor, and includes, for example, a compound having an atom such as nitrogen or phosphorus, an ion exchange resin, and the like as a proton accepting site.
  • Such an organic base forms a complex with an ionic bond by extracting a proton from the carboxyl group with respect to the diol compound having a carboxyl group, thereby increasing the solubility of the diol compound in an organic solvent, and at the diol site. The function of protecting the carboxyl group during the cyclization reaction is expected.
  • the organic base used in the present invention is not particularly limited as long as it can capture a proton generated from a carboxyl group, but from the viewpoint of increasing the solubility in an organic solvent, the organic base having an alkyl substituent Are preferably used.
  • the organic base having an alkyl substituent are preferably used.
  • a strong organic base that remains basic after formation of a complex (salt) with a carboxylic acid is used, the polymerization of the cyclized monomer tends to be promoted. It is desirable to select and use an organic base according to the above.
  • a reaction reagent when allowed to act on a diol compound having a carboxyl group, it is necessary to consider the competition of the reaction between the carboxyl group moiety and the diol moiety, but generally organic bases are unlikely to react with the diol moiety. Suitable for protecting carboxyl groups.
  • tertiary amines such as triethylamine are preferably used because there is no hydrogen on nitrogen and the possibility of participating in the cyclization reaction of the diol site is particularly low.
  • triethylamine is preferably used from the viewpoint that the excess organic base after complex formation with the diol compound can be removed by drying under reduced pressure.
  • organic bases used in the present invention include, but are not limited to, tertiary alkylamines such as trimethylamine, triethylamine, N, N-diisopropylethylamine, 1,4-diazabicyclo [2,2,2] octane (DABCO ), Cyclic amines such as methylmorpholine, aromatic amines such as pyridine and imidazole, nitrogen-containing compounds such as amidine and guanidine, compounds containing phosphorus atoms such as phosphazene, oniums such as oxonium, imidazolium, ammonium, sulfonium and phosphonium Examples thereof include ionic hydroxides and anion exchange resins. A tertiary amine such as triethylamine is preferable.
  • the organic base used in the present invention is expected to trap the groups R 1 and R 2 eliminated from the compound of formula (VIII), which is a carbonic acid source.
  • Onium hydroxide is a substance composed of an onium cation and a hydroxide anion.
  • onium hydroxide 1,3-dimethylimidazolium hydroxide, 1-ethyl-3-methylimidazolium hydroxide, 1-butyl-3-methylimidazolium hydroxide, 1-hexyl-3-methylimidazolium hydroxy 1-octyl-3-methylimidazolium hydroxide, 1-allyl-3-ethylimidazolium hydroxide, 1-allyl-3-butylimidazolium hydroxide, 1,3-diallylimidazolium hydroxide, 1-allyl-3-ethylimidazolium hydroxide, 1-allyl-3-butylimidazolium hydroxide, 1,3-diallylimidazolium hydroxide, Imidazolium hydroxides such as ethyl-2,3-dimethylimidazolium hydroxide, 1-butyl-3-methylimid
  • the mixing operation of the organic base and the diol compound is not particularly limited as long as the complex formation reaction proceeds smoothly, and is appropriately determined according to the type of organic base and diol compound used.
  • the amount of the organic base typically used in the present invention is preferably equal to or more than the equivalent of the carboxyl group of the diol compound to be added, and in particular 2 to 5 times equivalent of organic in order to stably protect the carboxyl group. It is preferable to use a base.
  • the complex formation between the organic base and the diol compound may be performed by mixing both in an appropriate organic solvent. When a diol compound having low solubility in the organic solvent is used, the diol dispersed in the organic solvent by an appropriate method is used.
  • organic base it is preferable to allow an organic base to act on the compound. Complex formation between the organic base and the diol compound is confirmed by appropriate means such that the diol compound existing as a dispersed phase in the organic solvent dissolves in the organic solvent due to the presence of the organic base to form a uniform solution.
  • the mixing of the organic base and the diol compound can be performed in an appropriate temperature environment such as room temperature, but it is also preferable to perform it in a cooling environment from the viewpoint of preventing various side reactions. If the excess organic base present after the complex formation does not undesirably affect the subsequent cyclization reaction of the diol compound, the organic base and the diol compound are mixed to form a complex in the organic solvent.
  • a carbonic acid source for causing a cyclization reaction of the diol compound may be added to produce a cyclic carbonate. In that case, it is preferable to form a complex of the organic base and the diol compound in an organic solvent suitable for the cyclization reaction of the diol compound.
  • the complex formation reaction and the cyclization reaction are performed in the same reaction field, it is not always necessary to cause the cyclization reaction after all the complex formation is completed. For example, a diol compound supplied from another phase may be complexed. And the cyclization reaction for the formed complex can proceed simultaneously.
  • an organic solvent is generally desirable as a reaction field for the cyclization reaction in which the diol portion of the diol compound is cyclized with carbonyl carbon, but in order to suppress the participation in the cyclization reaction and increase the yield,
  • an aprotic organic solvent is preferably used. That is, the organic solvent used in the present invention can be used without particular limitation as long as it does not inhibit the reaction of the present invention.
  • halogen solvents such as dichloromethane and chloroform, diethyl ether, tetrahydrofuran, 1, Examples thereof include, but are not limited to, ether solvents such as 4-dioxane, aromatic solvents such as benzene and toluene, acetonitrile, ethyl acetate, and the like. Preferred are dichloromethane and tetrahydrofuran.
  • the cyclization reaction between the diol compound and the compound of the formula (VIII) is appropriately selected according to the type of the compound of the formula (VIII) or the solvent used, but not more than the boiling point of the solvent used.
  • the temperature is, for example, 100 ° C. or lower, and can also be performed at room temperature or lower.
  • One embodiment of the present invention is a method for producing the above cyclic carbonate, further comprising the step of treating the cyclic carbonate obtained by the above method with an acid to recover the carboxylic acid of the cyclic carbonate.
  • the acid used in the step include inorganic acids such as hydrochloric acid and sulfuric acid, organic carboxylic acids such as trifluoroacetic acid, methanesulfonic acid, and paratoluenesulfonic acid, organic sulfonic acids, and organic phosphonic acids, cation exchange resins, although it is not limited to these as long as it reacts more strongly than the carboxylic acid with the basic compound in the complex such as a solid acid and regenerates the carboxyl group, it preferably forms a complex with the basic compound to form a precipitated substance.
  • the implementation method includes the addition of the complex cyclic carbonate to a tube containing a cation exchange resin or a solid acid. A method of passing a solution can also be used.
  • the manufacturing method of the cyclic carbonate in one embodiment of this invention is represented by the following scheme 6. (Wherein R 4 is a hydrogen atom or a lower alkyl group, and m and m ′ are each independently an integer of 0 to 5, provided that at least one of them is not 0, and m and The sum of m ′ is 7 or less)
  • the carboxylic acid derivative of the cyclic carbonate obtained by the above method is reacted with a halogenating agent (for example, PX 3 , PX 5 , SOX 2 or NCX) to form a carboxylic acid of the cyclic carbonate.
  • a halogenating agent for example, PX 3 , PX 5 , SOX 2 or NCX
  • the manufacturing method of the said cyclic carbonate further including the process of producing
  • the halogenating agent is selected from thionyl chloride, phosphorus pentachloride, oxalyl chloride, phosphorus tribromide and cyanuric fluoride, most preferably thionyl chloride.
  • the amount of thionyl chloride preferably used as the halogenating agent is, for example, 1 equivalent or more and 5 equivalents or less.
  • the carboxylic acid halide of the cyclic carbonate obtained by the above method is reacted with an alcohol or amine containing a structural moiety having at least one ether group, represented by the group R.
  • the method for producing a cyclic carbonate further comprises a step of synthesizing a carboxylic acid derivative of the cyclic carbonate.
  • the structural part having at least one ether group is preferably a structure having at least one chain ether, cyclic ether or acetal structure, and the structural part is used to convert the cyclic carbonate obtained by the method of the present invention into a polycarbonate material.
  • the physical properties imparted to the polycarbonate can be arbitrarily designed.
  • the structural portion can be represented by the following formula (II).
  • the structural portion R having at least one ether group may have a structure represented by the following formula (V). (In the above formula (V), M ′, E and E ′, Q ′ and Q ′′ and k and k ′ are as defined above)
  • the above method comprises a reaction vessel for performing a cyclization reaction, an ion exchange column packed with an ion exchange resin, and a reaction vessel for performing esterification or amidation from halogenation to form an intermediate.
  • a reaction vessel for performing a cyclization reaction an ion exchange column packed with an ion exchange resin
  • a reaction vessel for performing esterification or amidation from halogenation to form an intermediate can also be carried out in a continuous process without isolation and purification. Moreover, it can carry out by the one pot synthesis method with a single reaction vessel.
  • a method for producing a cyclic carbonate in one embodiment of the present invention having a 6-membered ring structure can be represented by Scheme 7 shown below.
  • a cyclic carbonate derivative (MTC-XR) can be obtained efficiently.
  • a carboxylic acid having a diol structure such as 2,2-bis ( For methylol) propionic acid, a 1: 1 complex with a basic organic compound is formed and solubilized in an organic solvent, and as a second step, it is reacted with a carbonic acid source such as triphosgene to form a cyclic carbonate.
  • a carbonic acid source such as triphosgene
  • the carboxylic acid obtained in the third step is reacted with a halogenating agent (for example, PX ′ 3 , PX ′ 5 , SOX ′ 2 or NCX ′, where X ′ is a halogen atom) to produce an acyl halide.
  • a halogenating agent for example, PX ′ 3 , PX ′ 5 , SOX ′ 2 or NCX ′, where X ′ is a halogen atom
  • the complex obtained in the first step may not be isolated, and an excess of the basic organic compound can be used to capture the elimination component of the carbonic acid source used in the cyclic carbonation in the second step. In this case, the first and second steps can be one continuous step.
  • a fourth step may be performed on the complex cyclic carbonate to esterify with an alcohol having a structural portion represented by the group R.
  • O) MTC-XR using S-) as a linker is synthesized.
  • the reaction conditions used in this case are known to those skilled in the art.
  • one embodiment in the present invention is represented by the following formula (X): (Wherein R 4 is a hydrogen atom or a lower alkyl group, and m and m ′ are each independently an integer of 0 to 5, provided that at least one of m and m ′ is not 0; And the sum of m and m ′ is 7 or less).
  • the structural portion represented by the group R introduced into the carbonate by the method of the present invention is preferably a structural portion having at least one ether group as described above, and MTC-XR synthesized by the method of such an embodiment.
  • a compound in which a cyclic carbonate moiety and a structural moiety having at least one ether group are linked by an ester bond (—C ( ⁇ O) O—) can be obtained.
  • a preferred group of compounds obtained by the method of the present invention is represented by the following formula (XII): (Where m, m ′ and R 4 are as defined above, l is an integer from 0 to 30, where When l is not 0, U is lower alkyl or a cyclic ether group having 3 to 7 ring members, When l is 0, U is: (In the formula, M ′ is a hydrogen atom or a linear or branched alkyl group having 3 or less carbon atoms, and E and E ′ are each independently a direct bond, —O— or —CH 2.
  • the compound obtained by the method of the present invention has the following formula (XI): (Wherein m, m ′, R 4 , M ′, E and E ′, Q ′ and Q ′′, and k and k ′ are as defined above).
  • compounds of formula (XI) include, but are not limited to, the following compounds: 5-methyl-5- (2-tetrahydrofuranylmethyl) oxycarbonyl-1,3-dioxane-2-one, 5-methyl-5- (3-tetrahydrofuranylmethyl) oxycarbonyl-1,3-dioxane-2-one, 5-methyl-5- (3-tetrahydropyranylmethyl) oxycarbonyl-1,3-dioxane-2-one 4-methyl-4- (2-tetrahydrofuranylmethyl) oxycarbonyl-1,3-dioxane-2- on, 4-methyl-4- (3-tetrahydrofuranylmethyl) oxycarbonyl-1,3-dioxane-2-one, and 4-methyl-4- (3-tetrahydropyranylmethyl) oxycarbonyl-1,3-dioxane- 2-on, Etc.
  • One embodiment of the present invention is a method for producing an antithrombotic polymer comprising a step of ring-opening polymerization of a compound represented by the general formula (VII).
  • various polycarbonates can be produced by ring-opening polymerization of a cyclic carbonate obtained by the method of the present invention, for example, a cyclic carbonate represented by the formula (XI).
  • the ring-opening polymerization of the compound represented by the general formula (VII) is carried out by a method known to those skilled in the art.
  • a cationic polymerization reaction such as boron trifluoride ether complex, titanium tetrachloride or aluminum chloride, a protonic acid such as hydrochloric acid or methanesulfonic acid, or an alkyl cation generator such as methyl iodide as an initiator.
  • Anionic ring-opening polymerization can be performed using an alkali metal, a metal hydride, a metal alkoxide, an organometallic compound, or the like as an initiator.
  • both cationic polymerization and anionic polymerization can be used in both cases where the compound is a lactone.
  • an initiator that generates a counter anion having a large nucleophilicity, such as an alkyl halide, in order to suppress by-production of the polyether accompanying decarboxylation.
  • tin octylate which is believed to proceed through a coordinated insertion mechanism and is approved for use by the US Food and Drug Administration (FDA), is currently the most commonly used ring-opening polymerization of cyclic monomers.
  • the ring-opening polymerization of the compound represented by the general formula (VII) is, for example, a polymerization initiator such as 1-pyrenebutanol, lauryl alcohol, decanol or stearyl alcohol in a solvent such as dichloromethane, chloroform, diethyl ether, tetrahydrofuran or toluene.
  • a polymerization initiator such as 1-pyrenebutanol, lauryl alcohol, decanol or stearyl alcohol in a solvent such as dichloromethane, chloroform, diethyl ether, tetrahydrofuran or toluene.
  • a cyclic amine polymerization initiator such as 1,8-diazabicyclo [5,4,0] undec-7-ene (DBU), dimethylaminopyridine (DMAP) or triethylenediamine (DABCO)
  • DBU 1,8-diazabicyclo [5,4,0] undec-7-ene
  • DMAP dimethylaminopyridine
  • DABCO triethylenediamine
  • a bifunctional group is carried out by reacting at room temperature under a nitrogen atmosphere using an organic molecular catalyst such as a thiourea compound such as 1- (3,5-bis (trifluoromethyl) phenyl) -3-cyclohexyl-2-thiourea.
  • the reaction system is preferably performed in a nitrogen atmosphere from which oxygen and water are removed from the viewpoint of suppressing side reactions.
  • the reaction temperature can be selected in the range of room temperature to the boiling point of the solvent. From the viewpoint of controlling the reaction, the temperature is preferably in the range of room temperature to 50 ° C., and most preferably at room temperature.
  • the reaction time varies depending on the raw material compound of general formula (VII), the reaction temperature, and the presence or absence of a catalyst. For example, when using a catalyst at room temperature, the reaction time is 1 minute to 12 hours, preferably 30 Min to 6 hours, more preferably 1 to 3 hours.
  • the completion of the reaction can be judged by whether or not the compound of the general formula (VII), which is a monomer, is present in the reaction system, and can be confirmed by a method such as 1 H-NMR or TLC.
  • the polymerization reaction can be terminated by adding a reaction terminator.
  • the reaction terminator include acetic acid, hydrochloric acid, sulfuric acid, benzoic acid and the like, but the type is not particularly limited.
  • the ring-opening polymerization reaction can be carried out in a solution phase by dissolving it in a solvent that dissolves the cyclic carbonate as a monomer.
  • the polymerization reaction may be carried out in a suspension state, and further, bulk polymerization or Polymerization can also be performed in a state where a solid monomer is melted.
  • the solvent for performing the solution polymerization is not particularly limited as long as the monomer can be dissolved and the solvent itself does not cause a reaction such as polymerization.
  • a polycarbonate having a structural part having at least one ether group in the main chain having a carbonate bond as a repeating unit is derived from the biodegradability derived from the main chain polycarbonate and the structure having at least one ether group in the side chain. It is a polymer having characteristics such as blood compatibility and biocompatibility, and exhibits excellent biocompatibility when used as a medical material. Accordingly, such polycarbonates obtained by the above methods, including those of the present invention, are referred to herein as “biocompatible polycarbonates”.
  • the biocompatible polycarbonate obtained by the above method including the method of the present invention can typically be represented by the following formula.
  • n represents the degree of polymerization, preferably in the range of 2 to 2000).
  • the values of m and m ′ are determined by the selection of the monomer raw material compound. From the viewpoint of monomer preparation, the sum of m and m ′ is preferably in the range of 1 to 4, and m and m ′. Are most preferably 1.
  • the structural portion R 5 having at least one ether group is a molecular chain having at least one chain ether such as polyethylene glycol, cyclic ether or acetal structure, that is, at least one ether group. If there is no particular limitation. Since the structural portion R 5 has at least one ether group (—O—), it is possible to exhibit high molecular mobility as seen in, for example, polyethylene glycol. It is considered that intermediate water can be contained as a polymer by having it in the side chain. Then, the ether groups contained in the structural moiety R 5 numbers, by adjusting the bulkiness or the like structural parts R 5 itself, the degree amount is regulated antithrombotic of the resulting polymer capable intermediate water content Can be adjusted.
  • the method for producing the biocompatible polycarbonate is not limited to the ring-opening polymerization of the cyclic carbonate obtained by the method of the present invention.
  • the polycarbonate polymer is synthesized first, and a predetermined carbon atom of the main chain is determined with respect to a predetermined carbon atom.
  • a biocompatible polycarbonate may be produced by introducing a structure containing an ether group.
  • this biocompatible polycarbonate composition it is not always necessary that a structure containing an ether group is bonded as a side chain over all the repeating units of the main chain polymer, but it is easy to synthesize and to make it easy to predict the characteristics of the polymer. From the above, it is also preferable to polymerize a single kind of monomer into which a structure containing an ether group is introduced to form a polymer.
  • a biocompatible polymer composition produced by ring-opening polymerization of a monomer compound represented by the general formula (VII) is also an object of the present invention.
  • the biocompatible polymer composition produced according to the present invention may contain, for example, a radical scavenger, a peroxide decomposer, an antioxidant, and an ultraviolet absorber as long as it does not depart from the spirit of the present invention.
  • additives such as a heat stabilizer, a plasticizer, a flame retardant, and an antistatic agent can be added and used.
  • it can be used by mixing with polymers other than the polymer of this invention.
  • Such a composition comprising the biocompatible polymer composition of the present invention is also an object of the present invention.
  • the various biocompatible polymer compositions produced according to the present invention can be used alone by being dissolved in an appropriate organic solvent, or used by mixing with other polymer compounds depending on the purpose of use. Etc., and can be used as various compositions.
  • the medical device of this invention should just have the bioaffinity polymer composition of this invention in at least one part of the surface used in contact with the structure
  • One aspect of the present invention is a biocompatible polymer of the present invention for suppressing a foreign body reaction to blood or tissue until it is decomposed when used in contact with tissue or blood in vivo. It is a composition.
  • the biocompatible polymer composition of the present invention can be preferably used for medical applications.
  • the biocompatible polymer composition of the present invention can be used in an appropriate mixing ratio depending on the intended use.
  • a composition having the characteristics of the present invention can be obtained.
  • the ratio of the biocompatible polymer composition of the present invention to 50 to 70% by weight, it is possible to obtain a composition having various characteristics while utilizing the features of the present invention. .
  • One aspect of the present invention is a medical device comprising the biocompatible polymer composition of the present invention.
  • the biocompatible polycarbonate composition can be applied to at least a part of the surface of a medical device used in contact with tissue or blood in a living body to obtain a medical device containing the biocompatible polycarbonate. That is, it can be used as a surface treatment agent for the surface of a base material constituting a medical device, and can also be used as a material constituting at least a part of members of the medical device.
  • the “medical device” includes an implantable device such as a prosthesis and a device such as a catheter that may temporarily come into contact with living tissue, and is not limited to a device that is handled in a living body.
  • the medical device of the present invention is a device used for medical applications having the polymer composition of the present invention on at least a part of its surface.
  • the surface of the medical device referred to in the present invention refers to, for example, the surface of the material constituting the medical device that contacts blood when the medical device is used, the surface portion of the hole in the material, and the like.
  • “used in contact with tissue or blood in a living body” is used, for example, in contact with the tissue or blood in a state where it is placed in the living body or in a state where the tissue in the living body is exposed.
  • the form and the form used in contact with blood which is an in vivo component taken out of the body in the extracorporeal circulation medical material are included.
  • “used for medical use” includes the above-mentioned “used in contact with in vivo tissues and blood” or intended use.
  • the material and shape of the base material constituting the medical device are not particularly limited, and may be any of, for example, a porous body, fiber, nonwoven fabric, particle, film, sheet, tube, hollow fiber, and powder.
  • the materials include natural polymers such as Kinishiki and hemp, nylon, polyester, polyacrylonitrile, polyolefin, halogenated polyolefin, polyurethane, polyamide, polycarbonate, polysulfone, polyethersulfone, poly (meth) acrylate, and ethylene-vinyl alcohol. Examples thereof include synthetic polymers such as polymers, butadiene-acrylonitrile copolymers, and mixtures thereof.
  • metals, ceramics, composite materials thereof, and the like can be exemplified, and they may be composed of a plurality of base materials.
  • the present invention is applied to at least a part of the surface in contact with blood, preferably almost the entire surface in contact with blood. Desirably, a biocompatible polymer composition is provided.
  • the biocompatible polymer composition of the present invention can be used as a material constituting a whole medical device used in contact with a tissue or blood in a living body or a material constituting a surface portion thereof, and can be used as an implantable prosthesis.
  • therapeutic instruments extracorporeal circulation type artificial organs, surgical sutures, and catheters (circulatory catheters such as angiographic catheters, guide wires, PTCA catheters, gastrointestinal catheters, gastrointestinal catheters, esophageal tubes, etc.)
  • a biocompatible polymer according to the present invention wherein at least a part of the surface in contact with blood of a medical device such as a catheter, tube, urinary catheter, urinary catheter, etc. It is desirable to be composed of a composition.
  • the biodegradability of the biocompatible polymer composition according to the present invention can be used particularly preferably for a medical device placed in the body during treatment.
  • the biocompatible polymer composition of the present invention comprises a hemostatic agent, a biological tissue adhesive, a tissue regeneration repair material, a drug sustained release carrier, a hybrid artificial organ such as an artificial pancreas and an artificial liver, an artificial blood vessel, and an embolization material. It may also be used as a matrix material for a scaffold for cell engineering.
  • These medical devices may be further provided with surface lubricity because they can be easily inserted into blood vessels and tissues and do not damage the tissues.
  • surface lubricity a method in which a water-soluble polymer is insolubilized to form a water-absorbing gel layer on the material surface is excellent. According to this method, a material surface having both biocompatibility and surface lubricity can be provided.
  • the biocompatible polymer composition of the present invention itself is a material excellent in biocompatibility, but since it can further carry various physiologically active substances, not only blood filters but also blood storage containers and blood circuits It can be used for various medical devices such as indwelling needles, catheters, guide wires, stents, oxygenators, dialysis machines, and endoscopes.
  • the biocompatible polymer composition of the present invention may be coated on at least a part of the substrate surface constituting the blood filter.
  • the polymer compound of the present invention may be coated on at least a part of the blood bag and the surface of the tube communicating with the blood bag in contact with the blood.
  • blood in an extracorporeal circulation blood circuit composed of an instrument side blood circuit unit composed of a tube, an arterial filter, a centrifugal pump, a hemoconcentrator, a cardio pregear, etc., and an operative field side blood circuit unit composed of a tube, catheter, soccer, etc. At least a part of the surface in contact with the surface may be coated with the biocompatible polymer composition of the present invention.
  • an inner needle having a sharp needle tip at a distal end, an inner needle hub installed on the proximal end side of the inner needle, a hollow outer needle into which the inner needle can be inserted, and a proximal end side of the outer needle
  • An indwelling needle assembly comprising: an outer needle hub installed on the inner needle; a protector mounted on the inner needle and movable in the axial direction of the inner needle; and a connecting means for connecting the outer needle hub and the protector. At least a portion of the three-dimensional, blood-contacting surface may be coated with the biocompatible polymer composition of the present invention.
  • the surface of the long tube that contacts the blood of the catheter composed of the adapter connected to the proximal end (hand side) may be coated with the biocompatible polymer composition of the present invention.
  • the surface of the guide wire that comes into contact with blood may be coated with the biocompatible polymer composition of the present invention.
  • stents of various shapes such as hollow tubular bodies made of metal materials or polymer materials with pores on the side, metal material wires or polymer material fibers knitted into a cylindrical shape, etc. At least a portion of the surface that contacts blood may be coated with the biocompatible polymer composition of the present invention.
  • a large number of porous hollow fiber membranes for gas exchange are housed in a housing, blood flows on the outer surface side of the hollow fiber membrane, and oxygen-containing gas flows inside the hollow fiber membrane.
  • the lung may be an artificial lung in which the outer surface or outer layer of the hollow fiber membrane is coated with the biocompatible polymer composition of the present invention.
  • a dialysate circuit including at least one dialysate container filled with dialysate and at least one drainage container for collecting dialysate, and starting from the dialysate container, or The end point may be a dialyzer having a liquid feeding means for feeding dialysate, and at least a part of the surface in contact with the blood may be coated with the biocompatible polymer composition of the present invention.
  • a coating method As a method for holding the composition containing the biocompatible polymer composition of the present invention on the surface of a medical device or the like, a coating method, a graft polymerization by radiation, electron beam or ultraviolet ray, a chemical reaction with a functional group of a base material is used.
  • Well-known methods such as a method of introducing by using, may be mentioned.
  • the coating method is particularly preferable in practical use because the manufacturing operation is easy.
  • coating methods, spraying methods, dipping methods and the like as coating methods, and any of them can be applied without any particular limitation.
  • the film thickness is preferably 0.1 ⁇ m to 1 mm.
  • the coating solution is prepared by dissolving the composition containing the biocompatible polymer composition of the present invention in an appropriate solvent. After dipping the member, it can be carried out by a simple operation such as removing excess solution and then air-drying.
  • heat may be applied after coating to further improve the adhesion with the biocompatible polymer composition of the present invention. it can.
  • crosslinking the surface As a method for crosslinking, a crosslinkable monomer may be introduced as a comonomer component. Moreover, you may bridge
  • polyethylene glycol diacrylate In addition to compounds having a plurality of vinyl groups or allyl groups in one molecule such as methylene bisacrylamide, trimethylolpropane diacrylate, triallyl isocyanate, trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, etc. And polyethylene glycol diacrylate.
  • the introduction rate of the compound having a functional group is high, and further, by introducing a polyethylene glycol chain to make it hydrophilic, as described above This is preferable because nonspecific adsorption of cells and proteins other than the intended purpose is suppressed.
  • the molecular weight of the polyethylene glycol chain is preferably 100 to 10,000, more preferably 500 to 6,000.
  • the biocompatible polycarbonate composition includes a hemostatic agent, an adhesive for living tissue, a repair material for tissue regeneration, a carrier for a drug sustained release system, a hybrid artificial organ such as an artificial pancreas and an artificial liver, an artificial blood vessel, an embolizing material, It is particularly preferable to use it as a matrix material for a scaffold for cell engineering. That is, for a certain period of time in a desired place in the living body, it exhibits appropriate blood cell adhesion while exhibiting blood compatibility such as antithrombotic properties and preventing undesirable biological reactions such as blood coagulation. It can be used for various purposes by adhesion of various cells existing in the living body.
  • cancer cells can be cultured in a state closer to the environment in the living body, it can be used as a culture substrate used for screening for anticancer agents, and the development of anticancer agents is expected to be promoted.
  • biocompatible polycarbonate has biodegradability shows an advantageous effect even in applications for adsorbing cancer cells in vivo.
  • cancer cells adsorbed in vivo reach a certain size, they are recognized by the innate immune system, but it is advantageous for the in vivo immune system that the polymer itself is easily decomposed when preyed on by immune cells. It is. Therefore, it is considered that the biocompatible polycarbonate having both blood compatibility and cell adhesion can be used for new applications as a cancer diagnosis and treatment device.
  • stem cells there are various cells in the body. If undifferentiated stem cells can be adsorbed, they will be present in the body when used for repairing or repairing tissues damaged by accidents or diseases. These stem cells can be concentrated at the site of injury and would be extremely advantageous for tissue regeneration.
  • various carbonate compounds can be synthesized simply and efficiently by the method of the present invention. Further, when a composition containing a biocompatible polycarbonate composition obtained by a method including the method of the present invention is introduced into at least a part of a surface of a medical device that comes into contact with blood, a coagulation system, a complement system, and a platelet system It is possible to suppress undesirable biological reactions such as activation, and to impart excellent biocompatibility. On the other hand, the biocompatible polycarbonate composition has biodegradability and exhibits appropriate cell adhesion in the living body and has an affinity with the living body, thereby reducing the burden on the living body and the environment. It is considered possible.
  • Example 1 Synthesis of 2-methoxyethyl 2,2-bis (methylol) propionate (MPA-ME) 2,2-bis (methylol) propionic acid (bis-MPA; 30.0 g, 0.224 mol), ion exchange resin Ameryst-15 (6.00 g) was added to 2-methoxyethanol (150 mL, 1.91 mol). ) And heated and stirred at 90 ° C. for 45 hours. Thereafter, the ion exchange resin was filtered off from the reaction solution, and the obtained filtrate was concentrated and dried under reduced pressure to give 2-methoxyethyl 2,2-bis (methylol) propionate (MPA-) as a pale yellow oily substance.
  • MPA-ME 2-methoxyethyl 2,2-bis (methylol) propionate
  • FIG. 5 shows a 1 H-NMR spectrum obtained for the solute synthesized in the same manner as described above and contained in the solution after removing the precipitate (triethylamine hydrochloride). From the 1 H-NMR spectrum, it was identified that MTC-TEA was produced by the above operation. Next, in order to separate and remove the organic base from MTC-TEA dissolved in tetrahydrofuran, an ion exchange resin Ameryst-15 (registered trademark) (550 mg) was added to the solution, and the mixture was stirred at room temperature for 5 hours. The ion exchange resin was filtered off. The obtained filtrate was concentrated and dried under reduced pressure to obtain a pale yellow solid (245 mg).
  • FIG. 6 shows the 1 H-NMR spectrum obtained for the pale yellow solid.
  • FIG. 9 shows a 1 H-NMR spectrum of 5-carboxyl-5-methyl-1,3-dioxane-2-one (MTC-OH) synthesized by a known method (Comparative Example 1). . Both spectra agreed well, and the pale yellow solid obtained by the above operation was considered to be MTC-OH. The yield of MTC-OH obtained by the above operation was 76.4%.
  • Example 5 Synthesis of MTC-Cl MTC-TEA (2.60 g, 10 mmol) synthesized by the method described in Example 4 was dissolved in 50 mL of methylene chloride, and oxalic chloride (1.05 mL, 1.05 mL, 12 mmol) in methylene chloride (20 mL) was added dropwise over 15 minutes. Thereafter, the solution was stirred at room temperature for 1 hour and concentrated on a rotary evaporator. To the concentrate was added 50 mL of tetrahydrofuran, the insoluble material was filtered off, and the filtrate was concentrated to give a pale yellow solid (1.711 g).
  • FIG. 7 shows the 1 H-NMR spectrum of the pale yellow solid obtained above. From the spectrum, the pale yellow solid obtained above was presumed to be MTC-Cl, and the yield was calculated to be 96.1%.
  • Example 6 Synthesis of MTC-THF MTC-Cl (1.403 g, 7.86 mmol) synthesized by the procedure described in Example 5 was dissolved in 20 mL of tetrahydrofuran and cooled to 0 ° C. or lower in an ice bath, and tetrahydrofurfuryl alcohol (0. A solution of 725 g, 7.1 mmol) and triethylamine (1.51 mL, 10.8 mmol) in tetrahydrofuran (10 mL) was added dropwise over 10 minutes. Thereafter, the solution was stirred at room temperature for 3 hours, the insoluble material was filtered off, and then concentrated on a rotary evaporator.
  • FIG. 8 shows a 1 H-NMR spectrum of the oily substance. From the spectrum, the oily substance obtained above was inferred to be MTC-THF, and the yield was calculated to be 34.7%.
  • Example 7 Direct synthesis of MTC-THF from MTC-TEA MTC-TEA (2.08 g, 7.95 mmol) synthesized by the method described in Example 4 was dissolved in 40 mL of methylene chloride, and oxalic chloride (0. 83 mL, 9.54 mmol) in methylene chloride (15 mL) was added dropwise over 15 minutes. Thereafter, the solution was stirred at room temperature for 3 hours, and then hydrogen chloride gas by-produced under a nitrogen stream was removed. The solution was cooled again to 0 ° C.
  • Example 8 DSC measurement of P (TMC-ME) DSC measurement was performed on P (TMC-ME) in a dry state and in a state containing 5% water. Measurement was performed using a DSC apparatus (SII Nano Technologies, Inc., “EXSTAR X-DSC7000”) under conditions of a nitrogen flow rate of 50 mL / min and 5.0 ° C./min. The temperature program was (i) cooling from 30 ° C. to ⁇ 100 ° C., (ii) holding at ⁇ 100 ° C. for 5 minutes, and (iii) heating from ⁇ 100 ° C. to 30 ° C.
  • FIG. 10 shows the results of DSC measurement of P (TMC-ME) in a dry state and a state containing 5% water. From the figure of (b) showing the results of DSC measurement of P (TMC-ME) containing 5% water, the behavior associated with low-temperature melting of water around -5 ° C, and low-temperature crystallization of water around -15 ° C It was revealed that the antithrombotic polymer of the present invention retains intermediate water, that is, has biocompatibility and can function as a biocompatible polymer.
  • Example 9 Water static contact angle measurement (droplet method) PET (MTC-ME) and PTMC adjusted to concentrations of 1.0, 0.5, 0.2, and 0.1 w / v% on a PET substrate (diameter 14 mm, thickness 125 ⁇ m) pre-cleaned with methanol An acetone solution (40 ⁇ L) was applied by spin coating (spin conditions: 500 rpm 5 s, 2000 rpm 10 s, SLOPE 5 s, 4000 rpm 5 s, SLOPE 4 s, 25 ° C.). The second application was performed 10 minutes after the first spin coating. After vacuum drying for 24 hours, the contact angle with water was measured for each of the three points of the center, left end, and right end of each polymer-coated substrate. 2 ⁇ L of water droplet was used for each measurement.
  • Example 10 Measurement of static contact angle of water (underwater bubble method)
  • the same polymer-coated substrate as in Example 9 was immersed in a water tank containing Milli-Q water with the coated surface facing downward.
  • the polymer-coated substrate on which bubbles (2 ⁇ L) were immersed was adhered to the center, the left end, and the right end, and the contact angle between the coating surface and the bubbles was measured using the ⁇ / 2 method.
  • the results of contact angle measurement of Examples 9 and 10 are shown in Table 1.
  • the contact angle of the polymer obtained in Example 3 showed a small value compared to the case where PET was used as a control, indicating that the surface of the polymer obtained in Example 3 was more hydrophilic. .
  • the contact angle of the polymer obtained in Comparative Example 1 showed a larger value than when PET was used, indicating that the polymer surface was more hydrophobic.
  • Example 11 Human Vascular Endothelial Cell (HUVEC) Culture
  • the prepared polymer-coated substrate was placed in a 6-well plate and UV sterilized for 30 minutes in a clean bench. After the substrate was washed with 500 ⁇ L of a phosphate buffered saline (PBS) solution, 500 ⁇ L of 20% FBS DMEM / F-12 (HUVEC medium) was added and incubated at 37 ° C. overnight.
  • a 10 cm dish in which HUVEC (P5) was cultured was washed with 2 mL of PBS solution, 2 mL of trypsin / ethylenediaminetetraacetate ion (EDTA) enzyme solution was added, and the cells were collected after incubation at 37 ° C.
  • PBS phosphate buffered saline
  • EDTA trypsin / ethylenediaminetetraacetate ion
  • the result is shown in FIG.
  • the substrate coated with PMPC which has a phospholipid polar group in the side chain and was used as a control sample showing blood compatibility, is coated with P (MTC-ME), whereas vascular endothelial cells are hardly adhered. It can be seen that vascular endothelial cells adhere to the same substrate as PET and PMEA for about one day after culturing. The decrease in the number of cells on P (MTC-ME) or PTMC-coated substrate after 3 days of culture is considered to be due to the biodegradability of these polymers.
  • Example 12 Culture of human fibrosarcoma cells (HT-1080) A polymer-coated substrate was prepared in the same manner as described above and preconditioned (60 minutes, up to 37 ° C). A 10 cm dish in which HT-1080 was cultured was washed with 2 mL of PBS solution, 3 mL of trypsin / EDTA enzyme solution was added, and the cells were collected after incubation at 37 ° C. for 2 minutes. The solution was centrifuged at 1300 rpm for 5 minutes, the supernatant was removed, the number of cells was counted with a microscope, the medium was added, and the seeding density was adjusted to 1.0 ⁇ 10 4 cells / cm 2 .
  • Example 13 Platelet adhesion test A spin-coated substrate coated with a 0.2 w / v% acetone solution of P (MTC-ME) was cut into 8 mm squares and fixed to a sample table for a scanning electron microscope (SEM). Human blood was centrifuged at 1500 rpm for 5 minutes, and the supernatant was collected as platelet rich plasma (PRP). The remaining blood was further centrifuged at 4000 rpm for 10 minutes, and the supernatant was collected as platelet poor plasma (PPP).
  • SEM scanning electron microscope
  • PBS phosphate buffered saline
  • the platelet adhesion number was measured by SEM.
  • the measurement results are three types of adhesion forms of platelets adhering to the surface of each substrate, that is, type I: small degree of activation, circular adhesion form similar to that in blood, type II: medium degree of activation
  • type III classified into the extended adhesive form with a high degree of activation
  • PET was evaluated as a control.
  • Fig. 13 shows the measurement results of the platelet adhesion number. From this result, it became clear that the antithrombotic polymer of the present invention can suppress the number of adhesion of platelets to be small and exhibits good biocompatibility and antithrombogenicity as compared with PTMC of the comparative example.
  • Example 14 Enzymatic degradation test Two types of polymers, P (MTC-ME) and PTMC, were used. 30 mg of polymer and 1 mL of lipase solution were added to a 1.5 mL tube and allowed to stand at 37 ° C. The lipase solution was changed every 2 days. After 9 days, the lipase solution was withdrawn from the tube and the remaining polymer sample was rinsed 3 times with milliQ water. Thereafter, the weight loss was determined from the polymer weight after 24 hours of vacuum drying at room temperature. The weight loss rates after 9 days of enzyme treatment were P (MTC-ME): 6.4% and PTMC: 1.7%, respectively. From this result, it was revealed that the antithrombotic polymer of the present invention has excellent biodegradability by an enzyme as compared with the PTMC of the comparative example.
  • Example 4 Comparison of Example 4 and Comparative Example 2 revealed that the target product can be obtained by the method of the present invention more easily and in a higher yield than the conventional method.
  • a polycarbonate material having physical properties such as biocompatibility can be prepared.
  • the material can selectively adsorb tissues in the living body and has biodegradability. It was shown to be a useful material as a material.
  • the polymer composition of the present invention can be used as an antithrombotic material to which substances that cause blood coagulation and the like hardly adhere.
  • the polymer composition of the present invention can be used, for example, as a surface treatment agent for medical devices such as artificial blood vessels or medical devices that may come into contact with or be placed in the living body, such as stents. .
  • the medical device using the polymer composition of the present invention also has biodegradability, it can be decomposed as a highly functional medical material or smart biomaterial that does not give a load to the living body and the environment, for example, after tissue regeneration.
  • -It can be used as an artificial substitute to be absorbed or as an implantable cell culture scaffold material.
  • cyclic carbonate compounds having various functional groups can be easily obtained by the method of the present invention.
  • the method of the present invention can be used to obtain various polycarbonate materials, and is particularly useful in producing a polycarbonate that can be used as a biocompatible material and a medical device using the polycarbonate.

Abstract

Provided is a biocompatible polymer composition comprising a structure having at least one side chain ether group and a main chain formed from a biodegradable polymer skeleton, as well as an intermediate compound for producing the polymer composition, and a method for producing the same. The intermediate compound is produced by exposing a diol compound having carboxyl groups to a carbon source for cyclization of the diol moiety of the diol compound in the presence of an organic solvent while protecting the carboxyl groups using an organic base, and then a biocompatible polymer is produced by ring-opening polymerization of the intermediate compound. A medical device having superior antithrombogenicity can be provided by using this polymer composition.

Description

抗血栓性材料としての生体親和性ポリマー及びその中間体として有用な環状カーボネート並びにその製造方法Biocompatible polymer as antithrombotic material, cyclic carbonate useful as an intermediate thereof, and production method thereof
 本発明は、主に抗血栓性材料としての生体親和性ポリマー及びその中間体として有用な環状カーボネート並びにその製造方法に関する。より詳細には、生体内に留置され、又は、生体に由来する物質に接触した際に、抗血液凝固作用等の血液適合性や、目的とする生体物質を選択的に吸着可能とできるような機能を有し、かつ生体内又は生体外で化学的に分解することができる機能を有する、医療用材料として使用するためのポリマー、そのポリマーを合成するための新規化合物及び当該化合物を用いたポリマーの製造方法、ならびにそのポリマーを含む組成物及び当該組成物を用いた医療用機器に関する。さらに本発明は、上記ポリマー等の中間体として有用であり、分子内にカルボキシル基のような官能基を有する環状カーボネート及びその誘導体並びにその製造方法等に関する。 The present invention mainly relates to a biocompatible polymer as an antithrombotic material, a cyclic carbonate useful as an intermediate thereof, and a method for producing the same. More specifically, when it is placed in a living body or comes into contact with a substance derived from a living body, blood compatibility such as an anti-coagulant action and a target biological substance can be selectively adsorbed. A polymer for use as a medical material having a function and capable of being chemically decomposed in vivo or in vitro, a novel compound for synthesizing the polymer, and a polymer using the compound And a composition containing the polymer and a medical device using the composition. Furthermore, the present invention relates to a cyclic carbonate having a functional group such as a carboxyl group in the molecule, a derivative thereof, a method for producing the same, etc.
 一般に、医療用材料表面等に血液等の生体成分が接触すると、材料表面が異物として認識され、材料表面への生体組織中のタンパク質の非特異的吸着、変性、多層吸着等が生起し、この結果として凝固系、補体系、血小板系等の活性化が起こる。このため、生体との接触界面である医療用機器表面が異物として認識されることを防止するために、医療用機器表面に生体親和性を付与することが望まれる。具体的には、人工肺装置、透析装置、血液保存バッグ、血小板保存バッグ、血液回路、人工心臓、留置針、カテーテル、ガイドワイヤー、ステント、人工血管、内視鏡等の医療用機器では、血液等の生体物質に接触する部位が優れた生体親和性を有することが望まれる。 In general, when a biological component such as blood comes into contact with the surface of a medical material, the surface of the material is recognized as a foreign substance, and nonspecific adsorption, denaturation, multilayer adsorption, etc. of proteins in the biological tissue occur on the material surface. As a result, activation of the coagulation system, complement system, platelet system, etc. occurs. For this reason, in order to prevent the medical device surface which is a contact interface with the living body from being recognized as a foreign substance, it is desired to impart biocompatibility to the medical device surface. Specifically, in medical devices such as artificial lung devices, dialysis devices, blood storage bags, platelet storage bags, blood circuits, artificial hearts, indwelling needles, catheters, guide wires, stents, artificial blood vessels, endoscopes, blood It is desired that a portion that contacts a biological material such as has excellent biocompatibility.
 医療用機器表面に生体適合性を付与する手段として、従来から生体親和性を示す材料を人工的に合成し、これを各種医療用機器の表面に適用して使用することで生体に対する負荷を低減する試みがなされている。このような生体親和性材料としては、これまでに2-メタクリロイルオキシエチルホスホリルコリン(MPC)ポリマー、ポリエチレングリコール(PEG)、ポリ(2-メトキシエチルアクリレート)(PMEA)、ポリアルコキシアルキル(メタ)アクリルアミド等が知られており、各種の用途で実用化がなされている。これらの生体親和性材料を医療用材料表面等の血液等の生体成分が接触する部位に使用することで、医療用機器表面が異物として認識されることが防止され、凝固系、補体系、血小板系等の活性化が抑制される。 As a means of imparting biocompatibility to the surface of medical devices, conventional materials have been artificially synthesized and applied to the surface of various medical devices to reduce the burden on the living body. Attempts have been made. Examples of such biocompatible materials include 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer, polyethylene glycol (PEG), poly (2-methoxyethyl acrylate) (PMEA), polyalkoxyalkyl (meth) acrylamide, etc. Is known and has been put to practical use in various applications. By using these biocompatible materials at sites where blood or other biological components such as the surface of medical materials come into contact, the surface of medical devices is prevented from being recognized as a foreign substance, and the coagulation system, complement system, platelets Activation of the system and the like is suppressed.
 上記MPCポリマーは、生体環境下で電気的な中性を保つベタインの一種であり、生体の細胞膜を被っているリン脂質極性基をビニル基等の重合性基に対してエステル結合を介して結合させ、更にその重合性基を重合させることで製造されるポリマーであり、アルキル鎖(主鎖)に対してリン脂質極性基が側鎖として設けられた構造を有している。
 ポリエチレングリコール(PEG)は、エーテル構造である(C-O)を繰返し単位とする構造を有し、非常に優れた生体適合性を示すことが知られている。しかし、PEG自体は水溶性であるため、医療用材料として使用する場合には耐水溶性を付与する目的で、他のポリマーとのブロック共重合体やグラフト共重合体にして使用する等の必要がある。一方、ポリ(2-メトキシエチルアクリレート)(PMEA)等は、PEGの構成単位であるエーテル構造を主な構成とする基をビニル基等に結合したモノマーを重合させて、アルキル鎖(主鎖)に対してエーテル構造を主な構成とする側鎖として設けた構造を有している。このような構造を採ることにより、PEGが示す生体親和性を維持しつつ、アルキル鎖により耐水溶性を付与することが可能であることが明らかになっている。
 ポリアルコキシアルキル(メタ)アクリルアミドは、側鎖の末端にエーテル構造を有する、(メタ)アクリルアミドを繰り返し単位とする構造を有し、その適度な親水性により、凝固系、補体系、血小板系の活性化を抑制することが可能であり、優れた血液親和性を発現することが見出されている。
The MPC polymer is a kind of betaine that maintains electrical neutrality in a living environment, and binds a phospholipid polar group covering a living cell membrane to a polymerizable group such as a vinyl group via an ester bond. And a polymer produced by polymerizing the polymerizable group, and has a structure in which a phospholipid polar group is provided as a side chain with respect to the alkyl chain (main chain).
Polyethylene glycol (PEG) has a structure having an ether structure (C 2 H 4 —O) as a repeating unit, and is known to exhibit very excellent biocompatibility. However, since PEG itself is water-soluble, it needs to be used as a block copolymer or graft copolymer with another polymer for the purpose of imparting water resistance when used as a medical material. is there. On the other hand, poly (2-methoxyethyl acrylate) (PMEA) and the like are obtained by polymerizing a monomer in which a group mainly composed of an ether structure, which is a structural unit of PEG, is bonded to a vinyl group or the like to form an alkyl chain (main chain). On the other hand, it has a structure provided as a side chain having an ether structure as a main component. It has been clarified that by adopting such a structure, water resistance can be imparted by an alkyl chain while maintaining the biocompatibility exhibited by PEG.
Polyalkoxyalkyl (meth) acrylamide has an ether structure at the end of the side chain and has a structure with (meth) acrylamide as a repeating unit, and due to its moderate hydrophilicity, the activity of coagulation system, complement system and platelet system It has been found that it is possible to suppress oxidization and to express excellent blood affinity.
 主鎖に対してリン脂質極性基を含む側鎖を有するMPCポリマーをはじめ、エーテル構造からなるPEGや、主にエーテル構造から構成される側鎖を有するポリマーであるPMEA、並びにエーテル構造及びアミド結合を有するポリアルコキシアルキル(メタ)アクリルアミド等のような、エーテル構造、アミド結合等の親水性基を有するポリマー材料が、生体を構成する物質と全く異なる構造を有するにも関わらず高い生体親和性を示す理由は必ずしも明らかとされていない。一方、最近の研究により、これらのポリマーには、生体物質において観察される「中間水」と呼ばれる状態の水分子が含有可能であることが明らかにされている(例えば、非特許文献1を参照されたい)。つまり、上記文献にも記載されるように、生体由来物質であるか人工的な合成物であるかによらず、生体親和性を示す物質は「中間水」を含有可能であり、この中間水と呼ばれる状態の水分子が物質の表面に存在することにより生体組織中のタンパク質の非特異吸着が防止され、その結果として生体親和性を発現することが実験的に明らかにされてきている。そして、所定の物質が「中間水」を含有するためには、必ずしもPEGのように物質全体が「中間水」の含有に適した構造を有する必要はなく、アルキル鎖等を主鎖として「中間水」の含有に適した構造を側鎖として設けることによっても、「中間水」を含有可能であることが明らかになっている。 Including MPC polymer having side chain containing phospholipid polar group on main chain, PEG composed of ether structure, PMEA which is polymer having side chain composed mainly of ether structure, and ether structure and amide bond Even though polymer materials having hydrophilic groups such as ether structures and amide bonds, such as polyalkoxyalkyl (meth) acrylamide having a high molecular weight, have a high biocompatibility despite having a completely different structure from substances constituting the living body. The reason for showing is not necessarily clear. On the other hand, recent research has revealed that these polymers can contain water molecules in a state called “intermediate water” observed in biological materials (see, for example, Non-Patent Document 1). I want to be) That is, as described in the above document, a substance exhibiting biocompatibility can contain “intermediate water” regardless of whether it is a biologically derived substance or an artificial synthetic product. It has been experimentally shown that non-specific adsorption of proteins in living tissue is prevented by the presence of water molecules in a state called as being on the surface of the substance, and as a result, bioaffinity is expressed. In order for a given substance to contain “intermediate water”, it is not always necessary for the substance to have a structure suitable for containing “intermediate water” like PEG. It has been revealed that “intermediate water” can also be contained by providing a structure suitable for containing “water” as a side chain.
 生体親和性物質に含有される中間水は、典型的には、過冷却後の昇温過程で見られる特異な潜熱の放出や吸収によって特徴付けられる。つまり、中間水を含有する物質においては、-100℃程度に冷却した後に室温付近まで徐々に加熱する過程で、-40℃付近において潜熱の放出が観察されたり、-10℃以上の氷点下において潜熱の吸収が観察される等、特異的な潜熱の放出や吸収が観察される。様々な検証により、これらの潜熱の放出・吸収は物質に含まれる水分子の一定割合が規則化・不規則化を生じることに起因することが明らかになっており、このような挙動を示す水分子が中間水と定義されている。中間水は、物質を構成する分子からの特定の影響により弱く拘束された水分子であると推察されるが、リン脂質等の生体物質にも含まれることが明らかになっており、生体組織中のタンパク質の非特異吸着等の防止と関連するものと考えられている。そして、生体に含まれるリン脂質極性基を側鎖として設けたPMCポリマーの他、上記PEG、PMEA、ポリアルコキシアルキル(メタ)アルキルアミド等の物質においても中間水を含有可能であることが、生体親和性の発現に関係しているものと考えられている。 Intermediate water contained in a biocompatible substance is typically characterized by the release and absorption of unique latent heat that is seen in the temperature rise process after supercooling. In other words, for substances containing intermediate water, in the process of gradually heating to near room temperature after cooling to about −100 ° C., latent heat release is observed near −40 ° C., and latent heat is below freezing above −10 ° C. Absorption and absorption of specific latent heat is observed, such as the absorption of. Various verifications have revealed that the release and absorption of these latent heats is caused by the fact that a certain proportion of water molecules contained in the substance cause ordering and disordering. A molecule is defined as intermediate water. Intermediate water is presumed to be weakly constrained by specific effects from the molecules that make up the substance, but it has been shown that it is also contained in biological materials such as phospholipids in biological tissues. It is thought to be related to prevention of non-specific adsorption of proteins. In addition to the PMC polymer provided with a phospholipid polar group contained in the living body as a side chain, the substance such as PEG, PMEA, polyalkoxyalkyl (meth) alkylamide, etc. can contain intermediate water. It is thought to be related to the expression of affinity.
 一方、これまでに加水分解や酵素分解等の作用により分解して消失する生分解性を有する生分解性ポリマーの存在が知られている。生分解性ポリマーは、一般には廃棄された後に自然界からの作用によって分解されることによって自然環境への負担を低下する目的で使用される。これに対し、近年では特に体内に留置される手術用縫合糸やステント、カテーテルのような医療用機器に生分解性ポリマーを使用することによって、治療完了後に抜糸等の処置を不要としたり、薬剤を徐放したりする機能を付加することが一般的となっている。
 体内に留置される医療用機器に使用される生分解性ポリマーにおいては、所定期間で分解する特性以外に、分解により生じる物質が生体に対して毒性を示さずに代謝により体外に排出されるように設計されることが一般的である。このような生分解性ポリマーが使用される医療用機器の例として、例えば、特許文献1には、所定の構造を有する生分解性ポリマーと薬剤の混合層を生体内留置物の表面に設けることで、当該生分解性ポリマーの分解に伴って薬剤を徐放する技術が記載されている。また、特許文献2には、カテーテル等に使用される生分解性ポリマーであって、生体内で分解した際にカルボン酸を生成しないことにより、局所的なpH減少による炎症などのリスクが少ない点で生体適合性を示すと考えられるポリマーが記載されている。
 しかしながら、上記のような医療用機器に使用される生分解性ポリマーにおいて、ポリマーとして存在する際の生体に対する親和性(生体親和性)を考慮した先行例は限られている。つまり、医療用機器に使用される間は、生体内の血液や組織に対して異物反応を生じさせない生体親和性を示すポリマーであって、且つ、所定の期間で生分解を生じて代謝されるようなポリマーは、これまでにほとんど提供されていない。例えば、特許文献3には、血液親和性や非血栓形成性等を示すリン脂質成分を生分解性ポリマーに対して共有結合により導入したポリマーが記載され、生分解性と血液親和性の両立が試みられているが、当該特性の発現は確認されていない。
On the other hand, the existence of biodegradable polymers having biodegradability that has been decomposed and disappeared by the action of hydrolysis or enzymatic degradation has been known so far. Biodegradable polymers are generally used for the purpose of reducing the burden on the natural environment by being destroyed by action from the natural world after being discarded. On the other hand, in recent years, the use of biodegradable polymers in medical devices such as surgical sutures, stents, and catheters that are indwelled in the body eliminates the need for procedures such as thread removal after the treatment is completed. It has become common to add a function to release the release.
In biodegradable polymers used for medical devices placed in the body, in addition to the property of degrading in a predetermined period, substances generated by decomposition are not toxic to the living body and are discharged from the body by metabolism. It is common to be designed. As an example of a medical device in which such a biodegradable polymer is used, for example, in Patent Document 1, a biodegradable polymer and drug mixed layer having a predetermined structure is provided on the surface of an in-vivo indwelling object. Thus, a technique is described in which a drug is gradually released as the biodegradable polymer is decomposed. Patent Document 2 discloses a biodegradable polymer used for catheters and the like, and does not generate carboxylic acid when decomposed in vivo, thereby reducing the risk of inflammation due to local pH reduction. And polymers that are considered biocompatible are described.
However, in the biodegradable polymer used in the medical device as described above, there are limited prior examples in consideration of the affinity (biological affinity) to the living body when it exists as a polymer. That is, while being used in a medical device, it is a polymer showing biocompatibility that does not cause a foreign body reaction to blood or tissue in the living body, and is biodegraded and metabolized within a predetermined period. Few polymers have been provided so far. For example, Patent Document 3 describes a polymer in which a phospholipid component exhibiting blood affinity, non-thrombogenicity, and the like is introduced to a biodegradable polymer by a covalent bond, so that both biodegradability and blood affinity are compatible. Attempts have been made, but the manifestation of this property has not been confirmed.
 生分解性ポリマー等は、中間体として有用な環状カーボネート等を使用した、開環重合(ROP)によって調製されうる。合成されたポリマーの用途を拡大するためには、多様な官能基を有する環状モノマーを簡単にかつ安価に製造することが必須である。官能基を有する環状エステルがいくつか報告されているものの、立体的な嵩高さや環のひずみから官能基の導入部位が限定されること、特定の環状エステルは安価に製造することが難しく、またモノマーの安定性が低く反応収率が悪いことなどのために、その有用性が限定されている。これに対し、1,3-ジオールを出発物質とする官能基化された環状カーボネートの合成方法に関する多くの報告がある。 Biodegradable polymers and the like can be prepared by ring-opening polymerization (ROP) using a cyclic carbonate or the like useful as an intermediate. In order to expand the application of the synthesized polymer, it is essential to easily and inexpensively produce cyclic monomers having various functional groups. Although some cyclic esters having functional groups have been reported, the introduction site of functional groups is limited due to steric bulk and ring distortion, and it is difficult to produce specific cyclic esters at low cost. Its usefulness is limited because of its low stability and poor reaction yield. On the other hand, there have been many reports on methods for synthesizing functionalized cyclic carbonates starting from 1,3-diol.
 例えば、下記スキーム1に示すように、カルボキシル基を有するジオール化合物bis-MPAから得られる環状カーボネートMTC-XR(Xは、O、NH又はS等を表す)の基Rには、カルボキシル基を介して反応することができる様々な官能基Rを適用することができる。このような6員環状カーボネートは開環重合によって容易に脂肪族ポリカーボネートを与え、それが生分解性を示すことから薬剤キャリアや細胞培養基板等、医療材料への応用が幅広く研究されている。特に、構造-(C=O)X-をリンカーとしてカーボネートに結合している官能基Rによって、例えば、薬剤担持能、細胞認識能、選択的細胞接着能、抗血栓性等の機能が付加された生分解性ポリマーは、高機能医療材料、スマートバイオマテリアルとして近年注目されている。 For example, as shown in Scheme 1 below, the group R of the cyclic carbonate MTC-XR (X represents O, NH, S or the like) obtained from the diol compound bis-MPA having a carboxyl group is bonded via a carboxyl group. Various functional groups R that can be reacted can be applied. Such 6-membered cyclic carbonate easily gives an aliphatic polycarbonate by ring-opening polymerization, and since it exhibits biodegradability, its application to medical materials such as drug carriers and cell culture substrates has been widely studied. In particular, functions such as drug loading ability, cell recognition ability, selective cell adhesion ability, and antithrombogenicity are added by the functional group R bonded to the carbonate using the structure — (C═O) X— as a linker. Recently, biodegradable polymers have attracted attention as highly functional medical materials and smart biomaterials.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記環状カーボネートMTC-XRの製造方法として、従来より上記スキームのように複数の製法によって製造可能であることが知られている。上記スキームでは、いずれもbis-MPA等を出発原料として使用し、典型的には非プロトン性有機溶媒中で、そのジオール部位を環化反応により環状化することで、環状カーボネートが製造される。また、主に環状カーボネートを開環重合して得られるポリマーに適宜の側鎖を導入する点から、環状カーボネートを合成する出発原料としてカルボキシル基を含むbis-MPA等が使用され、上記環化反応と前後して、反応性試薬によるカルボキシル基の置換反応が行われる。
 上記のような環状カーボネートの合成においては、環化反応を非プロトン性有機溶媒等の中で行う必要があるのに対し、bis-MPAは極性が高いために有機溶媒への溶解性が低いという問題を有し、典型的には予めカルボキシル基に対して何らかの置換反応を行うことで、有機溶媒への溶解性を高める操作が行われる。一方、当該カルボキシル基との置換反応は、一般に反応性試薬である置換アルコールやアミンとの間でのエステル化又はアミド化を経由するため、その際にジオール部位への影響を考慮する必要がある。特にカルボキシル基をエステル化する場合、ジオール部位とのエステル化反応の競争を考慮する必要がある。そのため、bis-MPA等を出発原料とする環状カーボネートの合成においては、ジオール部位及びカルボキシル基に対する保護・脱保護段階を適切に経由する必要があり、従来より上記のような様々な合成経路が提案されている。
As a method for producing the cyclic carbonate MTC-XR, it has been conventionally known that it can be produced by a plurality of production methods as in the above scheme. In any of the above schemes, bis-MPA or the like is used as a starting material, and a cyclic carbonate is typically produced by cyclizing the diol moiety by a cyclization reaction in an aprotic organic solvent. In addition, bis-MPA containing a carboxyl group is used as a starting material for synthesizing a cyclic carbonate mainly from the point of introducing an appropriate side chain into a polymer obtained by ring-opening polymerization of a cyclic carbonate. Before and after, a substitution reaction of a carboxyl group with a reactive reagent is performed.
In the synthesis of the cyclic carbonate as described above, the cyclization reaction needs to be performed in an aprotic organic solvent or the like, whereas bis-MPA has a high polarity and thus has low solubility in an organic solvent. There is a problem, and typically, an operation for increasing the solubility in an organic solvent is performed by previously performing some substitution reaction on the carboxyl group. On the other hand, since the substitution reaction with the carboxyl group generally undergoes esterification or amidation with a reactive reagent, such as a substituted alcohol or amine, it is necessary to consider the influence on the diol moiety at that time. . In particular, when esterifying a carboxyl group, it is necessary to consider the competition of the esterification reaction with the diol moiety. Therefore, in the synthesis of cyclic carbonates starting from bis-MPA, etc., it is necessary to appropriately pass through the protection and deprotection steps for the diol moiety and carboxyl group, and various synthetic routes as described above have been proposed in the past. Has been.
 スキーム1における製法Aは、非特許文献2等にて報告されており、カルボキシル基をベンジルエステルとして保護した後、有機溶媒中で環化反応を行い、その後、カルボキシル基の脱保護と、脱保護によって再生したカルボキシル基に対するアルコール又はアミンの求核アシル置換反応によって反応性官能基を導入するものである。製法Aは、広範囲の求核試薬が使用可能であるが、工程数が多い。すなわち、カルボキシル基のベンジルエステルは化学的に安定であり、水素化分解法などにより脱保護を行うためには中間体を単離しなければならず、そのため工程数の増加により全体としての収率が低下するという課題を有している。
 製法Bは非特許文献3等にて報告されており、カルボキシル基への反応性官能基の導入反応を先行させ、その後環化反応を行うものである。求核剤を大過剰に使用することで初段階の反応においてbis-MPAの自己縮合反応を抑制している。ただし、高温での加熱が必要で、精製・単離の観点から低沸点かつ化学的に安定なアルコールやアミンを使用する場合に限定される。また、その他にも反応条件や反応基質に大きな制限がかかり、様々な機能を有する分子を設計するうえでは大きな欠点を有している。
 製法Cは非特許文献4及び5等で報告されており、予めジオール部位を保護した後にカルボキシル基を反応性官能基で修飾し、その後にジオール部位の脱保護、環化反応と続く手法である。製法Cによれば、ジオール部位の保護によってカルボキシル基への反応性官能基の導入反応において自己縮合の懸念がなく、製法Bと比較して使用できる求核試薬の範囲が拡大する。その一方で、製法Bと同様に、カルボキシル基に導入される基Rには、その後の酸性条件で行われるジオール部位の脱保護反応や環化反応に対する耐性が必要とされる。
Production method A in Scheme 1 is reported in Non-Patent Document 2 and the like, and after protecting the carboxyl group as a benzyl ester, cyclization reaction is performed in an organic solvent, and then the carboxyl group is deprotected and deprotected. A reactive functional group is introduced by a nucleophilic acyl substitution reaction of an alcohol or amine with respect to the carboxyl group regenerated by the above. In production method A, a wide range of nucleophiles can be used, but the number of steps is large. That is, the benzyl ester of the carboxyl group is chemically stable, and in order to perform deprotection by a hydrogenolysis method or the like, an intermediate must be isolated. It has the problem of decreasing.
Production method B is reported in Non-Patent Document 3, etc., in which the reaction of introducing a reactive functional group into a carboxyl group is preceded, followed by a cyclization reaction. By using a large excess of the nucleophile, the self-condensation reaction of bis-MPA is suppressed in the initial stage reaction. However, it is limited to the case of using alcohol or amine having a low boiling point and chemically stable from the viewpoint of purification and isolation, which requires heating at a high temperature. In addition, the reaction conditions and reaction substrates are greatly limited, and there are significant drawbacks in designing molecules having various functions.
Production method C has been reported in Non-Patent Documents 4 and 5, etc., and is a method of protecting the diol site in advance and then modifying the carboxyl group with a reactive functional group, followed by deprotection of the diol site and cyclization reaction. . According to production method C, there is no concern of self-condensation in the reaction of introducing a reactive functional group into a carboxyl group by protecting the diol site, and the range of nucleophiles that can be used is expanded compared with production method B. On the other hand, as in production method B, the group R introduced into the carboxyl group is required to have resistance to the deprotection reaction or cyclization reaction of the diol moiety performed under subsequent acidic conditions.
 最近、特許文献4や非特許文献6にて、下記スキーム2に示すように、ビスペンタフルオロフェニルカーボネート(PFC)を用いて環化反応とカルボキシル基の保護を1段階で行うことが提案されている。つまり、bis-MPAとPFCを所定環境下で反応させ、bis-MPAのジオール部位を環化すると共に、ペンタフルオロフェニルエステル置換基を活性エステルとして機能させ、カルボキシル基の保護と活性化を図ることが提案されている。そして、当該ペンタフルオロフェニルエステル置換基は脱離基として機能し、温和な条件でのアルコールやアミンとの置換反応が可能であることが報告されている。 Recently, Patent Document 4 and Non-Patent Document 6 have proposed that cyclization reaction and carboxyl group protection be performed in one step using bispentafluorophenyl carbonate (PFC) as shown in Scheme 2 below. Yes. In other words, bis-MPA and PFC are reacted in a predetermined environment to cyclize the diol moiety of bis-MPA and to make the pentafluorophenyl ester substituent function as an active ester to protect and activate the carboxyl group. Has been proposed. It has been reported that the pentafluorophenyl ester substituent functions as a leaving group and can undergo a substitution reaction with an alcohol or amine under mild conditions.
 当該手法によれば、スキーム1で示されるような、bis-MPAを出発原料として各種の環状カーボネートを合成する工程における、ジオール部位とカルボキシル基との保護・脱保護に関係する各種工程が省略可能であり、単一の工程でカルボキシル基を保護しつつ、ジオール部位の環化反応を行うことが可能となる。
 製法Aと同様に導入できる求核試薬の多様性を維持しつつ工程数の大幅な低減が達成されているが、PFCは高価で入手性に問題がある。また、副生するペンタフルオロフェノールの除去が不十分な場合、その後の重合反応に影響することも不利となる。
According to this method, the various steps related to the protection / deprotection of the diol moiety and the carboxyl group in the step of synthesizing various cyclic carbonates using bis-MPA as a starting material as shown in Scheme 1 can be omitted. It is possible to carry out the cyclization reaction of the diol site while protecting the carboxyl group in a single step.
Although the number of steps can be greatly reduced while maintaining the diversity of nucleophiles that can be introduced in the same manner as in production method A, PFC is expensive and has a problem in availability. Moreover, when removal of the by-produced pentafluorophenol is insufficient, it is disadvantageous to influence the subsequent polymerization reaction.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
特開第2009-61021号公報JP 2009-61021 A 特開第2012-232909号公報JP 2012-232909 A 特開第2012-46761号公報JP 2012-46761 A 米国特許公開公報第2010305281号US Patent Publication No. 2010305281
 以上のように、生分解性ポリマーに対して、当該ポリマーが生体内に存在する際に生体内の血液や組織に対して異物反応を生じさせない生体親和性が付与された材料の可能性は必ずしも現在までに明らかにされていない。このため、例えば、血管内に留置されるステントにおいては、ステント表面に設けられる生分解性ポリマーに対してヘパリン等の抗血栓性の薬剤を混合することで、再狭窄を防止することも一般的となっている。
 一方、従来のカルボキシル基を有するジオール化合物を出発原料とするカルボキシル基を有する環状カーボネートの合成方法においては、出発原料が有する有機溶媒への溶解性が低いことや、出発原料に含まれる官能基間で競合する各種反応を制御するための保護・脱保護に関係する各種工程が必要であり低コスト化が困難であった。また、上記スキーム2に記載の方法によれば、工程の簡略化が可能である点で優れる一方で、反応に使用されるビスペンタフルオロフェニルカーボネート(PFC)は高価で入手性に問題があり、コスト低減の点で問題が残る。また、副生するペンタフルオロフェノールの除去が不十分な場合には、合成した環状カーボネートの重合反応にも影響する問題があった。
 上記問題を解決するために、本発明は生体親和性を示すと共に、良好な生分解性を示すポリマーを提供することを課題とする。また、上記ポリマーの製造においてモノマーとして用いる新規の化合物とその製造方法、及びそれを用いたポリマーの製造方法を提供することを課題とする。更に、当該ポリマーを用いた医療用機器を提供することを課題とする。特に、本発明は上記モノマーとして用いる化合物について、カルボキシル基を有するジオール化合物を出発原料として、単純でかつ効率的にカルボキシル基又はその誘導体を有する環状カーボネートを合成する新規な方法及び当該方法を用いて製造された上記ポリマーの中間体化合物を提供することを課題とする。
As described above, the possibility of a material having biocompatibility that does not cause a foreign body reaction to blood or tissue in the living body when the polymer is present in the living body is not necessarily a biodegradable polymer. It has not been revealed so far. For this reason, for example, in a stent placed in a blood vessel, it is also common to prevent restenosis by mixing an antithrombotic drug such as heparin with a biodegradable polymer provided on the stent surface. It has become.
On the other hand, in the conventional method for synthesizing a cyclic carbonate having a carboxyl group using a diol compound having a carboxyl group as a starting material, the solubility of the starting material in an organic solvent is low and the functional groups contained in the starting material Therefore, it is difficult to reduce the cost because various steps related to protection / deprotection are required to control various reactions competing with each other. Further, according to the method described in the above scheme 2, while being excellent in that the process can be simplified, bispentafluorophenyl carbonate (PFC) used for the reaction is expensive and has a problem in availability, Problems remain in terms of cost reduction. In addition, when removal of by-product pentafluorophenol is insufficient, there is a problem that affects the polymerization reaction of the synthesized cyclic carbonate.
In order to solve the above problems, an object of the present invention is to provide a polymer that exhibits biocompatibility and exhibits good biodegradability. It is another object of the present invention to provide a novel compound used as a monomer in the production of the polymer, a method for producing the compound, and a method for producing a polymer using the compound. It is another object of the present invention to provide a medical device using the polymer. In particular, the present invention uses a novel method for synthesizing a cyclic carbonate having a carboxyl group or a derivative thereof simply and efficiently using a diol compound having a carboxyl group as a starting material for the compound used as the monomer, and the method. It is an object of the present invention to provide an intermediate compound of the polymer produced.
 上記課題を解決するために、本発明は、以下の特徴を有する。
(1)側鎖にエーテル基を少なくとも一つ含む構造と、生分解性ポリマー骨格からなる主鎖とを含む、生体親和性ポリマー組成物。
(2)前記生分解性ポリマー骨格が、式:(I)
   -C-A-      (I)
(式中、
 Cは、カーボネート結合、エステル結合、アミド結合、ウレタン結合又はウレア結合を有する単位構造から選択され;
 Aは、少なくとも一つの基-Yによって水素原子が置換されているC1-8アルキレン基であり;
 Yは、式:-L-Z(式中、Zは、鎖状エーテル、環状エーテル又はアセタール構造を少なくとも一つ有する構造であり、Lは、主鎖とZとのリンカーであり、アルキレン基、エーテル結合、チオエーテル結合、エステル結合、アミド結合、ウレタン結合もしくはウレア結合又はそれらの組み合わせを有する単位構造から選択される)で示される基である)
で示される繰り返し単位を含む、上記(1)に記載の生体親和性ポリマー組成物。
(3)前記Aが、C1-8アルキレン基中のCに隣接する炭素原子以外の少なくとも一つの炭素原子がN、O又はSから選択されるヘテロ原子で置き換えられているか、及び/又はC1-8アルキレン基中の水素原子が低級アルキル基で置換されている基である、上記(2)に記載の生体親和性ポリマー組成物。
(4)前記リンカーLが、以下に示される基:
Figure JPOXMLDOC01-appb-C000012
から選択されるか、又は上記の基とZとの結合部分に1,2,3-トリアゾール基を有している基から選択される、上記(2)又は(3)に記載の生体親和性ポリマー組成物。
(5)Zが、下記式(II):
Figure JPOXMLDOC01-appb-C000013
[式中、lは、1~30の整数であり、Uは、水素原子又は炭素数5以下の直鎖もしくは分岐鎖状のアルキル基であるか、又は下記式(III):
Figure JPOXMLDOC01-appb-C000014
(式中、l’は、1~5の整数である)で示される基である]
で示される基であるか、あるいは、Zは、下記式(IV):
Figure JPOXMLDOC01-appb-C000015
(式中、l”は、1~5の整数である)で示される基であるか、あるいは、Zは、下記式(V):
Figure JPOXMLDOC01-appb-C000016
(式中、M’は、水素原子又は炭素数3以下の直鎖状もしくは分岐鎖状のアルキル基であり、E及びE’は、互いに独立して、-O-又は-CH-であり、ただし、少なくとも一方は-O-であり、Q’及びQ”は、互いに独立して、水素原子、炭素数6以下の直鎖状もしくは分岐鎖状のアルキル、アルケニルもしくはアルキニル、C3-8脂環式アルキル又はベンジルを表すか、あるいはQ’及びQ”は、一緒になって炭素数2~5のアルキレン基を形成し、k及びk’は、互いに独立して、0~2の整数である)
で示される基である、上記(2)~(4)のいずれか一に記載の生体親和性ポリマー組成物。
(6)前記主鎖が、生分解性ポリマーと非生分解性ポリマーとの共重合体である、上記(1)~(5)のいずれか一に記載の生体親和性ポリマー組成物。
(7)下記一般式(VII):
Figure JPOXMLDOC01-appb-C000017
(式中、
 X及びX’は、互いに独立して-O-、-NH-又は-CH-であり、ただし、少なくとも一方は-CH-ではなく;
 Yは、基-L-Zで示される構造部分であり(ここで、L及びZは、請求項2で定義されたとおりである);
 Mは、水素原子、炭素数3以下の直鎖状もしくは分岐鎖状のアルキル基又は基-L-Zであり;
 m及びm’は、互いに独立して、0~5の整数であり、ただし、X及びX’が共に-O-のとき、m及びm’の少なくとも一方は0ではなく、また、m及びm’の和は、7以下であり;
 これらの各々は、各繰り返し単位において異なっていてもよく、
で表される、モノマー化合物。
(8)上記(7)に記載の一般式(VII)で示されるモノマー化合物を開環重合する工程を含む、生体親和性ポリマー組成物の製造方法。
(9)上記(7)に記載のモノマー化合物の開環重合によって製造される生体親和性ポリマー組成物。
(10)生体内組織や血液に接して使用されたときに、分解されるまでの間、血液や組織に対して異物反応を抑制するための、上記(1)~(6)のいずれか一に記載の生体親和性ポリマー組成物。
(11)上記(1)~(6)、(9)及び(10)のいずれか一に記載の生体親和性ポリマー組成物を含む、医療用機器。
In order to solve the above problems, the present invention has the following features.
(1) A biocompatible polymer composition comprising a structure containing at least one ether group in the side chain and a main chain comprising a biodegradable polymer skeleton.
(2) The biodegradable polymer skeleton has the formula: (I)
-C B -A- (I)
(Where
C B is selected from unit structures having a carbonate bond, an ester bond, an amide bond, a urethane bond or a urea bond;
A is a C 1-8 alkylene group in which a hydrogen atom is replaced by at least one group —Y;
Y is represented by the formula: -LZ (wherein Z is a structure having at least one chain ether, cyclic ether or acetal structure, L is a linker between the main chain and Z, an alkylene group, Selected from unit structures having an ether bond, a thioether bond, an ester bond, an amide bond, a urethane bond or a urea bond, or a combination thereof))
The biocompatible polymer composition according to the above (1), comprising a repeating unit represented by:
(3) A is substituted with at least one carbon atom other than the carbon atom adjacent to C B in the C 1-8 alkylene group with a heteroatom selected from N, O or S, and / or The biocompatible polymer composition according to (2) above, wherein the hydrogen atom in the C 1-8 alkylene group is a group substituted with a lower alkyl group.
(4) The linker L is a group shown below:
Figure JPOXMLDOC01-appb-C000012
Or a bioaffinity as described in (2) or (3) above, which is selected from the group having a 1,2,3-triazole group at the binding part of Z and Z Polymer composition.
(5) Z is the following formula (II):
Figure JPOXMLDOC01-appb-C000013
[Wherein, l is an integer of 1 to 30, U is a hydrogen atom or a linear or branched alkyl group having 5 or less carbon atoms, or the following formula (III):
Figure JPOXMLDOC01-appb-C000014
(Wherein l ′ is an integer of 1 to 5)]
Or Z is a group represented by the following formula (IV):
Figure JPOXMLDOC01-appb-C000015
(Wherein l ″ is an integer of 1 to 5), or Z is the following formula (V):
Figure JPOXMLDOC01-appb-C000016
(In the formula, M ′ is a hydrogen atom or a linear or branched alkyl group having 3 or less carbon atoms, and E and E ′ are each independently —O— or —CH 2 —. Provided that at least one is —O— and Q ′ and Q ″ each independently represent a hydrogen atom, a linear or branched alkyl having 6 or less carbon atoms, alkenyl or alkynyl, C 3-8 Represents alicyclic alkyl or benzyl, or Q ′ and Q ″ together form an alkylene group having 2 to 5 carbon atoms, and k and k ′ are each independently an integer of 0 to 2 Is)
The biocompatible polymer composition according to any one of the above (2) to (4), which is a group represented by:
(6) The biocompatible polymer composition according to any one of (1) to (5), wherein the main chain is a copolymer of a biodegradable polymer and a non-biodegradable polymer.
(7) The following general formula (VII):
Figure JPOXMLDOC01-appb-C000017
(Where
X and X ′ are independently of each other —O—, —NH— or —CH 2 —, but at least one is not —CH 2 —;
Y is a structural moiety represented by the group -LZ (wherein L and Z are as defined in claim 2);
M is a hydrogen atom, a linear or branched alkyl group having 3 or less carbon atoms, or a group -LZ;
m and m ′ are each independently an integer of 0 to 5, provided that when X and X ′ are both —O—, at least one of m and m ′ is not 0, and m and m ′ The sum of 'is 7 or less;
Each of these may be different in each repeating unit,
The monomer compound represented by these.
(8) A method for producing a biocompatible polymer composition, comprising a step of ring-opening polymerization of the monomer compound represented by the general formula (VII) described in (7) above.
(9) A biocompatible polymer composition produced by ring-opening polymerization of the monomer compound described in (7) above.
(10) Any one of the above (1) to (6) for suppressing a foreign body reaction to blood or tissue until it is decomposed when used in contact with tissue or blood in a living body The biocompatible polymer composition described in 1.
(11) A medical device comprising the biocompatible polymer composition according to any one of (1) to (6), (9) and (10) above.
 加えて、予想に反して、驚くべきことに、カルボキシル基を有するジオール化合物に対して、当該カルボキシル基を有機塩基により保護しつつ、有機溶媒の存在下で環化反応を行うことで、カルボキシル基の保護・脱保護反応を省略しつつ、高価な試薬を用いなくても効率的に環状カーボネートを合成しうることを見いだした。すなわち、本発明の1つの視点において、カルボキシル基を有するジオール化合物を、有機塩基、及び有機溶媒の存在下で、式(VIII):R-(C=O)-R[式中、R及びRは、互いに独立してハロゲン原子、イミダゾリウム基、若しくは-OR(ここでRは、場合によりハロゲン原子で置換された低級アルキル基、又はハロゲン原子、アルコキシカルボニル基、ニトロ基、シアノ基、アルコキシ基、アルキル基、及びハロアルキル基からなる群より選択される少なくとも1つの置換基で場合により置換されたアリール基である)である]で表される化合物と反応させることを含む、環状カーボネートの製造方法が提供される。 In addition, contrary to expectation, surprisingly, the diol compound having a carboxyl group is subjected to a cyclization reaction in the presence of an organic solvent while protecting the carboxyl group with an organic base. The present inventors have found that cyclic carbonates can be efficiently synthesized without using expensive reagents while omitting the protection and deprotection reactions. That is, in one aspect of the present invention, a diol compound having a carboxyl group is converted to a compound represented by the formula (VIII): R 1 — (C═O) —R 2 [wherein R in the presence of an organic base and an organic solvent. 1 and R 2 are each independently a halogen atom, an imidazolium group, or —OR 3 (wherein R 3 is a lower alkyl group optionally substituted with a halogen atom, or a halogen atom, an alkoxycarbonyl group, a nitro group, or And an aryl group optionally substituted with at least one substituent selected from the group consisting of a cyano group, an alkoxy group, an alkyl group, and a haloalkyl group. A method for producing a cyclic carbonate is provided.
 前記カルボキシル基を有するジオール化合物は、環化反応に先立って、有機塩基の存在下で有機溶媒に溶解していることが好ましく、これは、反応混合物中の有機塩基が、ジオール化合物中のカルボキシル基との非共有結合性の相互作用、例えば錯体を形成することにより、前記ジオール化合物の有機溶媒への溶解を促進するとともに、カルボキシル基の保護基としての役割も果たしているためであると考えられる。したがって、本発明の方法に用いる有機塩基は、ジオール化合物中のカルボキシル基と有機溶媒中で相互作用をなし得るものであればよく、用いる有機溶媒の極性に応じて、種々のものを適宜選択することができる。 Prior to the cyclization reaction, the diol compound having a carboxyl group is preferably dissolved in an organic solvent in the presence of an organic base. This is because the organic base in the reaction mixture is converted into a carboxyl group in the diol compound. It is considered that this is because, by forming a non-covalent interaction with the compound, for example, forming a complex, the dissolution of the diol compound in an organic solvent is promoted, and it also serves as a protecting group for the carboxyl group. Therefore, the organic base used in the method of the present invention is not particularly limited as long as it can interact with the carboxyl group in the diol compound in the organic solvent, and various organic bases are appropriately selected according to the polarity of the organic solvent to be used. be able to.
 本発明によれば、生体に対して抗血栓性等の生体親和性を示すと共に、良好な生分解性を示すポリマー材料が提供可能となる。更に本発明によれば、従来法におけるカルボキシル基の保護・脱保護反応を省略しつつ、ジオール化合物を出発原料としてカルボキシル基等を有する環状カーボネートの合成を簡略に達成することを可能にする。最も驚くべきことは、一連の反応を連続的又は半連続的に行うことができ、種々の環状カーボネート誘導体の合成を複雑化することなく行うことができることである。 According to the present invention, it is possible to provide a polymer material that exhibits biocompatibility such as antithrombogenicity to a living body and exhibits good biodegradability. Furthermore, according to the present invention, it is possible to simply achieve the synthesis of a cyclic carbonate having a carboxyl group or the like using a diol compound as a starting material while omitting the protection / deprotection reaction of the carboxyl group in the conventional method. Most surprisingly, a series of reactions can be performed continuously or semi-continuously, and the synthesis of various cyclic carbonate derivatives can be performed without complication.
実施例1で示されるMPA-MEのH-NMRスペクトルである。2 is a 1 H-NMR spectrum of MPA-ME shown in Example 1. 実施例2で示されるMTC-MEのH-NMRスペクトルである。2 is a 1 H-NMR spectrum of MTC-ME shown in Example 2. 実施例3で示されるP(MTC-ME)のH-NMRスペクトルである。2 is a 1 H-NMR spectrum of P (MTC-ME) shown in Example 3. 比較例1で示されるPTMCのH-NMRスペクトルである。2 is a 1 H-NMR spectrum of PTMC shown in Comparative Example 1. 実施例4で得られた中間体(MTC-TEA)のH-NMRスペクトル(400MHz、アセトン-d)である。 1 is a 1 H-NMR spectrum (400 MHz, acetone-d 6 ) of an intermediate (MTC-TEA) obtained in Example 4. 実施例4で得られたMTC-OHのH-NMRスペクトル(400MHz、アセトン-d)である。 1 is a 1 H-NMR spectrum (400 MHz, acetone-d 6 ) of MTC-OH obtained in Example 4. 実施例5で得られたMTC-ClのH-NMRスペクトル(400MHz、アセトン-d)である。 1 is a 1 H-NMR spectrum (400 MHz, acetone-d 6 ) of MTC-Cl obtained in Example 5. 実施例6で得られたMTC-THFのH-NMRスペクトル(400MHz、アセトン-d)である。 1 is a 1 H-NMR spectrum (400 MHz, acetone-d 6 ) of MTC-THF obtained in Example 6. MTC-OH(比較例2)のH-NMRスペクトル(500MHz、アセトン-d)である。 1 is a 1 H-NMR spectrum (500 MHz, acetone-d 6 ) of MTC-OH (Comparative Example 2). 実施例8における、DSC測定の結果を示すグラフである。10 is a graph showing the results of DSC measurement in Example 8. 実施例11で培養した各ポリマー基板上におけるHUVECの接着数とその経時変化を示すグラフである。2 is a graph showing the number of HUVECs adhered on each polymer substrate cultured in Example 11 and its change with time. 実施例12で培養した各ポリマー基板上における培養1時間後のHT-1080の接着数を示すグラフである。It is a graph which shows the adhesion number of HT-1080 after 1 hour culture | cultivation on each polymer substrate cultured in Example 12. FIG. 実施例13における、血小板粘着数を示すグラフである。10 is a graph showing the platelet adhesion number in Example 13.
用語の定義
 本発明において、以下の用語は、単独で現れるか又は組み合わせて現れるかにかかわらず、それぞれについて説明される内容を示すものとして使用される。
Definition of Terms In the present invention, the following terms are used to indicate the contents described for each, whether they appear alone or in combination.
 本明細書において、用語「アルキル基」は、炭素原子による骨格を有する直鎖又は分岐鎖状の炭素鎖を含む、1価の飽和炭化水素基を示す。また、用語「アルキレン基」は、直鎖状の炭素鎖からなる2価の炭化水素基を示す。用語「アルキレンオキシド鎖」は、アルキレン基の末端以外の炭素原子をエーテル結合で置換した構造を示す。「低級アルキル基」又は「低級アルキレン基」は、炭素数が1~6の範囲である、上記アルキル又はアルキレン基を示す。 In this specification, the term “alkyl group” refers to a monovalent saturated hydrocarbon group including a linear or branched carbon chain having a skeleton of carbon atoms. The term “alkylene group” refers to a divalent hydrocarbon group composed of a linear carbon chain. The term “alkylene oxide chain” refers to a structure in which a carbon atom other than the end of the alkylene group is replaced with an ether bond. The “lower alkyl group” or “lower alkylene group” refers to the above alkyl or alkylene group having 1 to 6 carbon atoms.
 用語「アルケニル」は、炭素原子による骨格中に一つ以上の炭素-炭素二重結合を有する直鎖又は分岐鎖状の炭素鎖を含む、1価の飽和炭化水素基を示す。アルケニルの炭素原子の数は特に制限されないが、炭素原子数2~20が好ましく、炭素原子数2~10がより好ましく、炭素原子数2~6が最も好ましい。アルケニルの例は、エテニル(ビニル)、プロペニル、ブテニル、2-メチルプロペニル、ペンテニル、ヘキセニル等を含むが、これらに限定されない。また、用語「アルキニル」は、炭素原子による骨格中に一つ以上の炭素-炭素三重結合を有する直鎖又は分岐鎖状の炭素鎖を含む、1価の飽和炭化水素基を示す。アルキニルの炭素原子の数は特に制限されないが、炭素原子数2~20が好ましく、炭素原子数2~10がより好ましく、炭素原子数2~6が最も好ましい。アルキニルの例は、エチニル、プロピニル、ブチニル、2-メチルプロピニル、ペンチニル、ヘキシニル等を含むが、これらに限定されない。 The term “alkenyl” refers to a monovalent saturated hydrocarbon group containing a straight or branched carbon chain having one or more carbon-carbon double bonds in the skeleton of carbon atoms. The number of carbon atoms in the alkenyl is not particularly limited, but is preferably 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, and most preferably 2 to 6 carbon atoms. Examples of alkenyl include, but are not limited to, ethenyl (vinyl), propenyl, butenyl, 2-methylpropenyl, pentenyl, hexenyl and the like. The term “alkynyl” refers to a monovalent saturated hydrocarbon group containing a straight or branched carbon chain having one or more carbon-carbon triple bonds in the skeleton of carbon atoms. The number of carbon atoms in the alkynyl is not particularly limited, but preferably 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, and most preferably 2 to 6 carbon atoms. Examples of alkynyl include, but are not limited to, ethynyl, propynyl, butynyl, 2-methylpropynyl, pentynyl, hexynyl and the like.
 本明細書において、用語「アルコキシ」は、上記のアルキル基が酸素原子に結合した構造で、酸素原子で他の分子構造に結合している、1価の飽和炭化水素基を示す。アルコキシの炭素原子の数は特に制限されないが、炭素原子数1~20が好ましく、炭素原子数1~10がより好ましく、炭素原子数1~6が最も好ましい。アルコキシの例は、メトキシ、エトキシ、プロポキシ、i-プロポキシ、n-ブトキシ、i-ブトキシ、tert-ブトキシ、ペントキシ、ヘキソキシ等を含むが、これらに限定されない。 In this specification, the term “alkoxy” refers to a monovalent saturated hydrocarbon group in which the above alkyl group is bonded to an oxygen atom and is bonded to another molecular structure through the oxygen atom. The number of carbon atoms in alkoxy is not particularly limited, but is preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and most preferably 1 to 6 carbon atoms. Examples of alkoxy include, but are not limited to, methoxy, ethoxy, propoxy, i-propoxy, n-butoxy, i-butoxy, tert-butoxy, pentoxy, hexoxy and the like.
 用語「脂環式アルキル」とは、炭素による骨格が環を形成する、1価の脂肪族環状炭化水素基を示す。脂環式アルキルは、環を形成する炭素原子の数により表現され、例えば「C3-8脂環式アルキル」というときは、環を形成する炭素原子の数が3~8個であることを示す。脂環式アルキルの例は、シクロプロピル(C)、シクロブチル(C)、シクロペンチル(C)、シクロヘキシル(C11)、シクロヘプチル(C13)、シクロオクチル(C15)等を含むが、これらに限定されない。 The term “alicyclic alkyl” refers to a monovalent aliphatic cyclic hydrocarbon group in which a carbon skeleton forms a ring. The alicyclic alkyl is expressed by the number of carbon atoms forming the ring. For example, “C 3-8 alicyclic alkyl” means that the number of carbon atoms forming the ring is 3 to 8. Show. Examples of alicyclic alkyl are cyclopropyl (C 3 H 5 ), cyclobutyl (C 4 H 7 ), cyclopentyl (C 5 H 9 ), cyclohexyl (C 6 H 11 ), cycloheptyl (C 7 H 13 ), Including but not limited to cyclooctyl (C 8 H 15 ) and the like.
 用語「鎖状エーテル」又は「アルキレンオキシド」は、互換的に使用することができ、前記アルキル基中の末端以外の一つの-CH-部分がエーテル結合(-O-)で置き換えられた構造を示す。また、用語「環状エーテル」は、前記脂環式アルキルの一つの-CH-部分が、エーテル結合で置き換えられた構造を示す。 The terms “chain ether” or “alkylene oxide” can be used interchangeably, and a structure in which one —CH 2 — moiety other than the terminal in the alkyl group is replaced with an ether bond (—O—). Indicates. The term “cyclic ether” refers to a structure in which one —CH 2 — moiety of the alicyclic alkyl is replaced with an ether bond.
 用語「アリール基」とは、1個の環又は2個若しくは3個の縮合した環を含む芳香族置換基を示す。アリール基は6~18個の炭素原子を含むものが好ましく、フェニル、ナフチル、アントラセニル、フェナントレニル、フルオレニルおよびインダニルが挙げられる。 The term “aryl group” refers to an aromatic substituent containing one ring or two or three condensed rings. Aryl groups preferably contain 6 to 18 carbon atoms and include phenyl, naphthyl, anthracenyl, phenanthrenyl, fluorenyl and indanyl.
 用語「モノマー」又は「単量体」は、互換的に使用することができ、高分子の基本構造の構成要素となりうる、低分子量の分子をいう。モノマーは通常、例えば炭素-炭素二重結合、エステル結合のような、重合反応の反応点となる官能基を有する。 The term “monomer” or “monomer” refers to a low molecular weight molecule that can be used interchangeably and can be a component of the basic structure of a polymer. The monomer usually has a functional group serving as a reaction point of the polymerization reaction, such as a carbon-carbon double bond or an ester bond.
 用語「ポリマー」又は「重合体」は、互換的に使用することができ、分子量の小さいモノマーから得ることができる、モノマー単位の繰り返しで構成された構造を有する分子をいう。用語「高分子」は、ポリマーのほか、例えばタンパク質、核酸等のような多数の原子が共有結合してなる巨大分子をいう。 The terms “polymer” or “polymer” can be used interchangeably and refer to molecules having a structure composed of repeating monomer units, which can be obtained from a monomer having a low molecular weight. The term “polymer” refers to a macromolecule formed by covalently bonding a large number of atoms, such as a protein, a nucleic acid and the like, in addition to a polymer.
 ポリマーにおいて用語「平均重合度」は、1個のポリマー分子中に含まれるモノマー単位の平均数をいう。すなわち、ポリマー組成物中には、異なる長さのポリマー分子がある程度の範囲で分散して存在している。 In the polymer, the term “average degree of polymerization” refers to the average number of monomer units contained in one polymer molecule. That is, in the polymer composition, polymer molecules having different lengths are dispersed within a certain range.
 ポリマーの重合度に関して「数平均分子量」とは、ポリマー組成物中の分子1個あたりの分子量の平均をいい、「重量平均分子量」とは、重量に重みをつけて計算した分子量をいう。また、数平均分子量と重量平均分子量の比を分散度といい、ポリマー組成物の分子量分布の尺度となる。分散度が1に近いほど、ポリマー組成物中の平均重合度が近くなり、同じ程度の長さのポリマー鎖を多く含むことになる。 Regarding the degree of polymerization of the polymer, the “number average molecular weight” means the average molecular weight per molecule in the polymer composition, and the “weight average molecular weight” means the molecular weight calculated by weighting the weight. Further, the ratio between the number average molecular weight and the weight average molecular weight is referred to as the degree of dispersion, which is a measure of the molecular weight distribution of the polymer composition. The closer the degree of dispersion is to 1, the closer the average degree of polymerization in the polymer composition and the more polymer chains of the same length.
 本発明において、用語「生体親和性材料」とは、中間水を含有可能であることにより、生体物質と接触した際に異物として認識されにくい材料をいう。生体親和性材料には、例えば補体活性、血栓活性、組織侵襲性等の生体に対する活性を有しない材料であれば、特定のタンパク質吸着や細胞粘着を誘導し、あるいは誘導しないような活性を示す材料を含む。本発明において用語「血液適合性材料」とは、主に血小板の付着や活性化に起因する血液凝固を惹起しない材料をいう。 In the present invention, the term “biocompatible material” refers to a material that is difficult to be recognized as a foreign substance when it comes into contact with a biological substance because it can contain intermediate water. Biocompatible materials exhibit activity that induces or does not induce specific protein adsorption or cell adhesion, for example, if the material does not have biological activity such as complement activity, thrombus activity, tissue invasiveness, etc. Contains materials. In the present invention, the term “blood compatible material” refers to a material that does not cause blood coagulation mainly due to adhesion or activation of platelets.
 本発明において、「生分解性ポリマー」とは、加水分解、酵素分解、微生物分解等の作用により化学的に分解することが可能なポリマーをいう。生分解性ポリマーの例としては、ポリ乳酸、ポリカプロラクトン等のポリエステルやポリカーボネート等のような化学合成ポリマー、ポリペプチド、多糖類、セルロース等のような生体由来のポリマー、及びこれらの組み合わせによるポリマーが挙げられる。 In the present invention, the “biodegradable polymer” refers to a polymer that can be chemically decomposed by an action such as hydrolysis, enzymatic decomposition, or microbial decomposition. Examples of biodegradable polymers include chemically synthesized polymers such as polylactic acid, polyesters such as polycaprolactone, polycarbonates, and the like, polymers derived from living organisms such as polypeptides, polysaccharides, celluloses, and combinations thereof. Can be mentioned.
 本発明において「側鎖」とは、ポリマー主鎖に結合した枝分かれ構造を示す。 In the present invention, “side chain” refers to a branched structure bonded to a polymer main chain.
 したがって、本発明の一つの態様は、側鎖にエーテル基を少なくとも一つ含む構造と、生分解性ポリマー骨格からなる主鎖とを含む、生体親和性ポリマー組成物である。本明細書において、「生体親和性ポリマー組成物」とは、血液凝固を抑制して血栓の形成を防止するために特に適した構造を有するポリマー組成物をいい、そのような用途における医療材料等に使用することができる。 Therefore, one embodiment of the present invention is a biocompatible polymer composition comprising a structure containing at least one ether group in the side chain and a main chain composed of a biodegradable polymer skeleton. In the present specification, the “biocompatible polymer composition” refers to a polymer composition having a structure particularly suitable for suppressing blood coagulation and preventing the formation of thrombus, such as medical materials in such applications. Can be used for
 本発明の一つの態様は、下記式(I)に示す繰り返し単位を有する生体親和性ポリマー組成物である。
   -C-A-      (I)
 上記式(I)において、Cは、エーテル結合、チオエーテル結合、エステル結合、アミド結合、ウレタン結合もしくはウレア結合又はそれらの組み合わせを有する単位構造から選択され、非限定的な具体例として、以下のスキーム3に掲げる単位構造が挙げられる:
Figure JPOXMLDOC01-appb-C000018
One embodiment of the present invention is a biocompatible polymer composition having a repeating unit represented by the following formula (I).
-C B -A- (I)
In the above formula (I), C B is an ether bond, a thioether bond, an ester bond, an amide bond, selected from a unit structure having a urethane bond or a urea bond, or a combination thereof, as a non-limiting example, the following Examples of unit structures listed in Scheme 3 include:
Figure JPOXMLDOC01-appb-C000018
 上記式(I)において、Aは、少なくとも一つの基-Yによって水素原子が置換されているC1-8アルキレン基である。Aは、場合により、C1-8アルキレン基中のCに隣接する炭素原子以外の少なくとも一つの炭素原子がN、O又はSから選択されるヘテロ原子で置き換えられているか、及び/又はC1-8アルキレン基中の水素原子が低級アルキル基で置換されている基であってもよい。上記の基Yは、式:-L-Zで示される基であり、Lは、主鎖とZとのリンカーであって、アルキレン基、エーテル結合、チオエーテル結合、エステル結合、アミド結合、ウレタン結合もしくはウレア結合又はそれらの組み合わせを有する単位構造から選択される。また、Zは、ポリエチレングリコール等の鎖状エーテル、環状エーテル又はアセタール構造を少なくとも一つ、すなわち少なくとも一つエーテル基を有するような分子鎖であれば特に制限されない。これらの各々は、各繰り返し単位において異なっていてもよい。 In the above formula (I), A is a C 1-8 alkylene group in which a hydrogen atom is substituted by at least one group —Y. A is optionally substituted at least one carbon atom other than the carbon atom adjacent to C B in the C 1-8 alkylene group with a heteroatom selected from N, O or S, and / or C The hydrogen atom in the 1-8 alkylene group may be substituted with a lower alkyl group. The group Y is a group represented by the formula: -LZ, and L is a linker between the main chain and Z, and is an alkylene group, an ether bond, a thioether bond, an ester bond, an amide bond, or a urethane bond. Alternatively, it is selected from unit structures having a urea bond or a combination thereof. Z is not particularly limited as long as it is a molecular chain having at least one chain ether such as polyethylene glycol, cyclic ether, or acetal structure, that is, at least one ether group. Each of these may be different in each repeating unit.
 つまり、本発明に係るポリマーは、従来知られる生分解性ポリマーの内、脂肪族ポリエステル系やポリアミド系のものと同様に、主鎖として上記Aで示されるアルキレン基等を上記Cで示されるカーボネート結合、エステル結合、ウレタン結合、ウレア結合、アミド結合等で結合した繰り返し単位を含むことを特徴とする。また、当該アルキレン基等に含まれる炭素原子に対して所定の結合様式によりエーテル構造を含む側鎖が導入されていることを特徴とする。
 上記エーテル構造を含む側鎖がアルキル鎖を主鎖とするポリマーに導入された際に、当該ポリマーが生体親和性を示すことは従来から知られている。これに対し、本発明においては、当該エーテル構造を含む側鎖を、カーボネート結合等によりアルキレン基等が結合された生分解性が期待される主鎖に対して導入することにより、生分解性を失うこと無しに生体親和性を付与可能であることを見出したことに基づくものである。
That is, the polymer according to the present invention, among the biodegradable polymers known conventionally, as shown similar to that of the aliphatic polyester-based or polyamide-based, the alkylene group represented by A or the like as a main chain in the C B It includes a repeating unit bonded by a carbonate bond, an ester bond, a urethane bond, a urea bond, an amide bond, or the like. In addition, a side chain containing an ether structure is introduced to a carbon atom contained in the alkylene group or the like by a predetermined bonding mode.
It has been conventionally known that when a side chain containing an ether structure is introduced into a polymer having an alkyl chain as a main chain, the polymer exhibits biocompatibility. On the other hand, in the present invention, by introducing a side chain containing the ether structure into a main chain that is expected to be biodegradable having an alkylene group or the like bonded thereto by a carbonate bond or the like, biodegradability is achieved. This is based on the finding that biocompatibility can be imparted without loss.
 本発明に係るポリマーの重合度は特に制限されないが、重合度に応じてポリマーの平均分子量も変化し、分子量に応じて材料として使用するときの操作性等が変化する。このような点から本発明に係るポリマーの平均分子量は、2000~1000000の範囲であることが好ましく、5000~800000の範囲であることがより好ましく、8000~500000の範囲であることが最も好ましい。本発明に係るポリマーの分子量分布は、特に制限されないが、1.0~10の範囲であることが好ましく、1.0~8の範囲であることがより好ましく、1.05~5.0の範囲であることが最も好ましい。また、本発明に係るポリマーにおいては、式(I)で示されるC及びAの各々の構造は各繰り返し単位において異なっていてもよい。そのようなポリマーは、ポリマーの原料となるモノマー分子を二種類以上用いて重合反応を行うことで、合成することができる。 The degree of polymerization of the polymer according to the present invention is not particularly limited, but the average molecular weight of the polymer also changes depending on the degree of polymerization, and the operability when used as a material changes depending on the molecular weight. From such a point, the average molecular weight of the polymer according to the present invention is preferably in the range of 2000 to 1000000, more preferably in the range of 5000 to 800000, and most preferably in the range of 8000 to 500000. The molecular weight distribution of the polymer according to the present invention is not particularly limited, but is preferably in the range of 1.0 to 10, more preferably in the range of 1.0 to 8, and preferably in the range of 1.05 to 5.0. The range is most preferable. In the polymer according to the present invention, the structure of each of C B and A of formula (I) may be different in each repeating unit. Such a polymer can be synthesized by performing a polymerization reaction using two or more kinds of monomer molecules as a raw material of the polymer.
 上記式(I)において構造部分Zは、ポリエチレングリコール等の鎖状エーテル、環状エーテル又はアセタール構造を少なくとも一つ、すなわち少なくとも一つエーテル基を有するような分子鎖であれば特に制限されない。
 本発明の一つの態様においては、構造部分Zは、下記式(II)で示すことができる。
Figure JPOXMLDOC01-appb-C000019
 式(II)中、繰り返し数(l)は、1~30の整数であり、Uは、水素原子又は炭素数5以下の直鎖もしくは分岐鎖状のアルキル基である。式(II)で示される繰り返しは鎖状エーテルに相当し、繰り返し数(l)が大きい場合には側鎖の水への溶解度が高くなる傾向が見られ、その結果としてポリマー全体が水溶性を有することになる。このため、式(II)で示される構造がポリマーに導入される密度等にも依存するが、典型的にはlは20以下であり、また10以下とされることが好ましい。また、特に式(II)で示される構造がポリマーに高い密度で導入される場合には、ポリマーの耐水溶性を確保するためにlを5以下としても、ポリマーは十分な割合で中間水を含有することができる。更に、lを1、2、3程度にすることで、充分な耐水性を確保すると共に中間水の含有割合を低下させて、血小板粘着は抑制しつつも所定の細胞等を吸着可能なポリマーとすることができる。また、式(II)で示される繰り返しはエチレングリコール(-C-O-)に対応するものであるが、本発明ではこれに限定されず、ポリマーの耐水溶性を向上する点でプロピレングリコール(-C-O-)に対応する構造を用いることも可能である。
 鎖状エーテルの末端に設けられる構造Uにおいては、アルキル基の炭素数が大きいものを用いることでポリマーの耐水溶性が向上される一方で、炭素数が減少することで含有される中間水が増加する傾向にあり、典型的にはUとしてメチル(炭素数1)が好ましい。
 又、Uは、下記式(III)で示すことができる基であってもよい。
Figure JPOXMLDOC01-appb-C000020
 式(III)中、l’は、1~5の整数とすることができるが、l’が1のとき(すなわち、3員環のとき)には水中で開環して不安定となるため、l’は2、3、4又は5のいずれかとすることが好ましい。
 また、本発明の他の具体的な態様においては、構造部分Zは、下記式(IV)で示すことができる。
Figure JPOXMLDOC01-appb-C000021
 式(IV)で示される構造は環状エーテルに相当するものであり、このような構造を側鎖に導入することで中間水の含有が可能となる。式(IV)中、l”は、1~5の整数とすることができるが、l”が1のとき(すなわち、3員環のとき)には水中で開環して不安定となるため、l”は2、3、4又は5のいずれかとすることが好ましい。
 また、本発明の他の態様においては、構造部分Zは、下記式(V)で示すことができる。
Figure JPOXMLDOC01-appb-C000022
 式(V)中、M’は、水素原子、炭素数3以下の直鎖状もしくは分岐鎖状のアルキル基であり、好ましくは、メチルである。E及びE’は、互いに独立して、-O-又は-CH-であり、ただし、少なくとも一方は-O-であってよいが、ともに-O-であるアセタール構造をとることが好ましい。Q’及びQ”は、互いに独立して、水素原子、炭素数6以下の直鎖状もしくは分岐鎖状のアルキル、アルケニルもしくはアルキニル、C3-8脂環式アルキル又はベンジルを表すか、あるいはQ’及びQ”は、一緒になって炭素数2~5のアルキレン基を形成するが、含有可能な中間水の割合を好ましい程度に保つため、好ましくは水素原子又は炭素数6以下のアルキルであり、最も好ましくは、Q及びQ’は、共に水素原子又はメチルである。k及びk’は、互いに独立して、0~2の整数であるが、原料の入手容易性等から、k=1、k’=0である場合が好ましい。
 以上のような構造部分Zは、少なくとも一つのエーテル基(-O-)を有していることにより、例えばポリエチレングリコールに見られるような高い分子運動性を示すことが可能であって、このような構造を側鎖中に有することでポリマーとして中間水を含有可能になると考えられる。そして、構造部分Zに含まれるエーテル基の数、構造部分Z自体の嵩高さ等を調節することにより、得られるポリマーが含有可能な中間水の量が調節されて抗血栓性の程度を調節することができる。
In the above formula (I), the structural portion Z is not particularly limited as long as it is a molecular chain having at least one chain ether such as polyethylene glycol, a cyclic ether or an acetal structure, that is, at least one ether group.
In one embodiment of the present invention, the structural moiety Z can be represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000019
In the formula (II), the repeating number (l) is an integer of 1 to 30, and U is a hydrogen atom or a linear or branched alkyl group having 5 or less carbon atoms. The repetition represented by the formula (II) corresponds to a chain ether, and when the number of repetitions (l) is large, there is a tendency that the solubility of the side chain in water tends to be high. Will have. For this reason, although the structure represented by the formula (II) depends on the density or the like introduced into the polymer, typically, l is 20 or less, and preferably 10 or less. In particular, when the structure represented by the formula (II) is introduced into the polymer at a high density, even if l is 5 or less in order to ensure the water resistance of the polymer, the polymer contains intermediate water in a sufficient ratio. can do. Further, by setting l to 1, 2, 3 or so, a polymer capable of adsorbing predetermined cells while suppressing platelet adhesion while ensuring sufficient water resistance and reducing the content of intermediate water. can do. Further, the repetition represented by the formula (II) corresponds to ethylene glycol (—C 2 H 4 —O—), but is not limited to this in the present invention, and propylene is used to improve the water resistance of the polymer. It is also possible to use a structure corresponding to glycol (—C 3 H 6 —O—).
In the structure U provided at the end of the chain ether, the water resistance of the polymer is improved by using the alkyl group having a large carbon number, while the intermediate water contained by the decrease in the carbon number is increased. Typically, methyl (carbon number 1) is preferred as U.
U may be a group that can be represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000020
In the formula (III), l ′ can be an integer of 1 to 5, but when l ′ is 1 (that is, a 3-membered ring), the ring is opened in water and becomes unstable. , L ′ is preferably 2, 3, 4 or 5.
In another specific embodiment of the present invention, the structural portion Z can be represented by the following formula (IV).
Figure JPOXMLDOC01-appb-C000021
The structure represented by the formula (IV) corresponds to a cyclic ether, and by introducing such a structure into the side chain, it becomes possible to contain intermediate water. In formula (IV), l ″ can be an integer of 1 to 5, but when l ″ is 1 (that is, a 3-membered ring), the ring opens in water and becomes unstable. , L ″ are preferably 2, 3, 4 or 5.
In another aspect of the present invention, the structural portion Z can be represented by the following formula (V).
Figure JPOXMLDOC01-appb-C000022
In the formula (V), M ′ is a hydrogen atom or a linear or branched alkyl group having 3 or less carbon atoms, preferably methyl. E and E ′ are independently of each other —O— or —CH 2 —, and at least one of them may be —O—, but preferably has an acetal structure in which both are —O—. Q ′ and Q ″ each independently represent a hydrogen atom, linear or branched alkyl having 6 or less carbon atoms, alkenyl or alkynyl, C 3-8 alicyclic alkyl or benzyl, 'And Q "together form an alkylene group having 2 to 5 carbon atoms, and are preferably a hydrogen atom or an alkyl having 6 or less carbon atoms in order to keep the proportion of the intermediate water that can be contained to a desirable level. Most preferably, Q and Q ′ are both a hydrogen atom or methyl. k and k ′ are each independently an integer of 0 to 2, but from the viewpoint of availability of raw materials, it is preferable that k = 1 and k ′ = 0.
The structural part Z as described above has at least one ether group (—O—), and thus can exhibit high molecular mobility as seen in, for example, polyethylene glycol. It is considered that intermediate water can be contained as a polymer by having such a structure in the side chain. And by adjusting the number of ether groups contained in the structural part Z, the bulkiness of the structural part Z itself, etc., the amount of intermediate water that can be contained in the resulting polymer is adjusted to adjust the degree of antithrombogenicity. be able to.
 上記式(I)において、リンカーLは、主鎖と構造部分Zを連結する役割を果たす部分であり、典型的にはエーテル基、エステル基、アミド基、アミノ基、ウレタン基、ウレア基、アルキレン基等の、二価の官能基を用いることができる。上記構造部分Zは、上記のようにエーテル構造を有していることにより、一般的に高い分子運動性を有しうることが知られており、このような構造を側鎖部分に有することによって、ポリマーとして中間水を含有可能となると考えられている。このため、主鎖と構造部分Zを連結するリンカーLとしては、構造部分Zの個別の構造に応じて、分子運動性を阻害しない構造のものを種々選択して用いることが望ましい。また、ポリマーとして中間水を良好に含有して生体親和性を発揮するためには、ポリマーの各部が疎水性とならないことが望ましいと共に、特にタンパク質等の生体物質の吸着が生じ難いことが望まれる。このため、リンカーLの構造としては、疎水的な構造が過度に大きくならず、また極性が強い官能基が含まれないことが望ましい。また、モノマー分子を合成する際に構造部分Zを導入する反応を容易に行える構造のリンカーとすることが望ましい。
 望ましく使用されるリンカーLの具体的構造は、使用する構造部分Zの構造にも依存するが、一般的には上記エーテル基、エステル基、アミド基、アミノ基、ウレタン基、ウレア基、アルキレン基等の他、上記スキーム3に例示したような単位構造が挙げられる。また、リンカーLと構造部分Zとの結合を形成するにあたって、例えばクリック反応と呼ばれる反応(例えばAngew. Chem. Int. Ed., 2001, 40, 2004-2021を参照されたい)を用いて、例えばアジドとアルキレンから誘導した1,2,3-トリアゾール構造を有するリンカーを導入することもできる。例示的な合成方法としては、先に例示したリンカーLの末端にエテニル基(-C≡C-)を導入したような基と、アジドを反応させることで、先に例示したリンカーLと構造部分Zとが1,2,3-トリアゾール環を介して結合したような構造を得ることができる。これらの構造を同様にリンカーLとして用いることができる。
In the above formula (I), the linker L is a part that plays a role of linking the main chain and the structural part Z, and is typically an ether group, an ester group, an amide group, an amino group, a urethane group, a urea group, an alkylene group. Divalent functional groups such as groups can be used. It is known that the structural part Z can generally have high molecular mobility by having an ether structure as described above. By having such a structure in the side chain part, It is considered that intermediate water can be contained as a polymer. For this reason, as the linker L that connects the main chain and the structural portion Z, it is desirable to select and use various types of structures that do not inhibit molecular mobility according to the individual structure of the structural portion Z. In addition, in order to satisfactorily contain intermediate water as a polymer and exhibit biocompatibility, it is desirable that each part of the polymer does not become hydrophobic, and in particular, it is desirable that adsorption of biological substances such as proteins hardly occurs. . For this reason, as the structure of the linker L, it is desirable that the hydrophobic structure is not excessively large and does not include a functional group having a strong polarity. Moreover, it is desirable to use a linker having a structure that can easily carry out the reaction of introducing the structural moiety Z when the monomer molecule is synthesized.
The specific structure of the linker L that is desirably used depends on the structure of the structural part Z to be used, but in general, the ether group, ester group, amide group, amino group, urethane group, urea group, alkylene group are generally used. In addition to the above, a unit structure as exemplified in Scheme 3 above can be given. In forming a bond between the linker L and the structural part Z, for example, a reaction called a click reaction (see, for example, Angew. Chem. Int. Ed., 2001, 40, 2004-2021) can be used. A linker having a 1,2,3-triazole structure derived from azide and alkylene can also be introduced. As an exemplary synthesis method, the linker L and the structural moiety exemplified above are reacted by reacting an azide with a group such as the ethenyl group (—C≡C—) introduced at the end of the linker L exemplified above. It is possible to obtain a structure in which Z is bonded via a 1,2,3-triazole ring. These structures can be used as the linker L as well.
 上記で示したリンカーとして使用される二価の官能基の内で、アミド基、アミノ基、ウレタン基、ウレア基等のN-H結合を含む官能基をリンカーLとして用いた場合には、このリンカー部分が親水性を示す点で好ましいが、ポリマーに対して生体内に存在するタンパク質が吸着し易くなる傾向が見られるため、その用途によっては体内の生体物質が付着する場合が考えられる。また、メチレンやエチレンなどのアルキレン基を用いた際には疎水性が発現し、ポリマーが含有可能な中間水の割合が低下する傾向が見られる。一方、エーテル基をリンカーとする場合には、一般に合成の際の出発物質が主鎖側と側鎖側ともにアルコールを持つため、保護基を導入する反応で余計な副生物が生じて分離が困難になり、収率が低下することが予想される。このため、製造の容易さや生体親和性の観点からはリンカーLとしてエステル基を用いることが特に好ましい。 Among the divalent functional groups used as the linker shown above, when a functional group containing an N—H bond such as an amide group, amino group, urethane group, or urea group is used as the linker L, this Although the linker portion is preferable in that it exhibits hydrophilicity, there is a tendency that proteins existing in the living body are easily adsorbed to the polymer, and therefore, a biological substance in the body may be attached depending on the use. In addition, when an alkylene group such as methylene or ethylene is used, hydrophobicity is exhibited, and the proportion of intermediate water that can be contained in the polymer tends to decrease. On the other hand, when an ether group is used as a linker, the starting material for synthesis generally has an alcohol on both the main chain side and the side chain side, so that an additional by-product is generated in the reaction of introducing a protective group, making separation difficult. And the yield is expected to decrease. For this reason, it is particularly preferable to use an ester group as the linker L from the viewpoint of ease of production and biocompatibility.
 本発明に係るポリマーにおいて、上記説明した構造の側鎖は、主鎖の繰り返し単位全てについて存在している必要は必ずしもない。一方、合成の簡便さや、抗血栓性の程度をポリマーの構造から予測しやすくする観点から、一般的には重合の際に用いるモノマー化合物として予め構造部分Zを導入した化合物を使用して、主鎖ポリマーの繰り返し単位全てについて構造部分Zを含む側鎖が存在するようにすることが好ましい。
 また、上記式(I)におけるAの部分に含まれる主鎖を成す一つの炭素原子にリンカーを介して2つの構造部分Zを導入することも可能である。また、更に、重合の際に用いるモノマーにおいて、一つ又は複数のカルボニル結合等(C)となる部分と、一つ以上の構造部分Zを導入することで、重合によって得られるポリマーにおいて、各カルボニル結合等(C)の間に存在する構造部分Zの数を任意に調整することも可能である。
 上記式(I)において「C」で示される部分は、カーボネート結合、エステル結合、ウレタン結合、ウレア結合、アミド結合等であって、いずれもカルボニル炭素と、それに隣接する位置の少なくとも一方に酸素原子又は窒素原子が存在する基によって構成されるものである。このような構造をポリマーの主鎖に比較的高い密度で導入することにより、従来知られる脂肪族ポリエステル系やポリアミド系の生分解性ポリマーと同様に、この部分が生体内で加水分解等を生じることによって生分解性が発現するものと考えられる。
 本発明に係るポリマーにおいて、結合部分Cとして使用される結合様式は、ポリマーが使用される用途、特に生分解に要する期間などに基づいて適宜決定することができる。結合部分Cとしてウレタン結合やアミド結合を用いた場合には、比較的体内での生分解速度の低いポリマーを得ることができる。一方、これらの結合様式を用いた場合には、生分解の際にアミン(NH)やカルボン酸が生成物として生じることで用途が限定されることが予想される。また、エステル結合は、比較的高い生分解速度を示すことが期待されるが、アミド結合と同様にカルボン酸が生分解の際の生成物として生じることが予想される。これに対して、結合部分Cとしてカーボネート結合を用いた場合には、ウレタン結合やアミド結合と比較して高い生分解速度を示すことが期待されると共に、生分解によって二酸化炭素とアルコールになることが期待される点で、好ましく用いることができる。
In the polymer according to the present invention, the side chain having the above-described structure is not necessarily present for all the repeating units of the main chain. On the other hand, from the viewpoint of ease of synthesis and easy prediction of the degree of antithrombogenicity from the structure of the polymer, generally, a compound in which a structural portion Z is introduced in advance as a monomer compound used in the polymerization is mainly used. It is preferable that side chains including the structural portion Z exist for all the repeating units of the chain polymer.
It is also possible to introduce two structural parts Z via a linker into one carbon atom constituting the main chain contained in the part A in the above formula (I). Further, in the monomer used in the polymerization, in the polymer obtained by polymerization by introducing one or a plurality of carbonyl bonds or the like (C B ) and one or more structural portions Z, It is also possible to arbitrarily adjust the number of structural parts Z existing between carbonyl bonds or the like (C B ).
The moiety represented by “C B ” in the above formula (I) is a carbonate bond, an ester bond, a urethane bond, a urea bond, an amide bond, etc., all of which are oxygen atoms at at least one of the carbonyl carbon and the adjacent positions. It is comprised by the group in which an atom or a nitrogen atom exists. By introducing such a structure into the main chain of the polymer at a relatively high density, as in the case of conventionally known aliphatic polyester and polyamide biodegradable polymers, this part undergoes hydrolysis in vivo. It is thought that biodegradability is expressed.
In the polymer according to the present invention, binding mode, which is used as a binding moiety C B can be appropriately determined based applications polymers are used, such as in particular the period required for biodegradation. If the binding moiety C B using a urethane bond or an amide bond can be obtained with low polymer of biodegradation rate of a relatively body. On the other hand, when these bonding modes are used, it is expected that amine (NH 2 ) or carboxylic acid is generated as a product during biodegradation, thereby limiting the application. In addition, the ester bond is expected to exhibit a relatively high biodegradation rate, but it is expected that a carboxylic acid is generated as a product during biodegradation in the same manner as the amide bond. On the other hand, when a carbonate bond is used as the binding portion C B , it is expected to show a higher biodegradation rate than a urethane bond or an amide bond, and carbon dioxide and alcohol are obtained by biodegradation. It can be preferably used because it is expected.
 上記式(I)において、アルキレン基部「A」は少なくとも一つの基-Yと、場合により低級アルキル基によって水素原子が置換されているC1-8アルキレン基であり、場合により、Cに隣接する炭素以外の少なくとも一つの炭素がN、O又はSから選択されるヘテロ原子で置き換えられていてもよい。結合部分Cの選択とも関連して、当該アルキレン基部Aは少なくとも一つの炭素原子を有するものとすることが可能であり、また最大で8個程度の炭素鎖からなるものであることが生分解性の点から好ましい。また、炭素数が3以上のアルキレン基において、両端に位置する以外の炭素原子の少なくとも一つをエーテル基で置換した構造に相当するアルキレンオキシド鎖を使用することができる。このように、エーテル基が導入されたアルキレンオキシド鎖を主鎖に含ませることにより、アルキル鎖を用いる場合に比較してポリマーとして耐衝撃性などの機械的強度を向上させることができると共に、主鎖に対しても親水性を付与することが可能となる。
 また、上記のように、上記結合部分Cにより相互に結合されるアルキレン基等により構成される主鎖に対し、当該アルキレン基等に含まれる任意の炭素原子に中間水の含有に関連するエーテル構造等を導入して側鎖とすることにより、結合部分Cに起因する生分解性を保持しつつ、中間水を含有可能なポリマーとすることが可能である。
In the above formula (I), the alkylene group “A” is a C 1-8 alkylene group in which a hydrogen atom is substituted with at least one group —Y and optionally a lower alkyl group, and optionally adjacent to C B. At least one carbon other than the carbon to be substituted may be replaced with a heteroatom selected from N, O or S. In connection with the selection of the linking moiety C B , the alkylene group A can have at least one carbon atom and can be biodegradable with up to about 8 carbon chains. From the viewpoint of sex. Further, in an alkylene group having 3 or more carbon atoms, an alkylene oxide chain corresponding to a structure in which at least one of carbon atoms other than those located at both ends is substituted with an ether group can be used. Thus, by including an alkylene oxide chain having an ether group introduced in the main chain, it is possible to improve mechanical strength such as impact resistance as a polymer as compared with the case of using an alkyl chain, and It also becomes possible to impart hydrophilicity to the chain.
In addition, as described above, an ether related to the inclusion of intermediate water in any carbon atom contained in the alkylene group or the like with respect to the main chain composed of an alkylene group or the like bonded to each other by the bonding portion C B by the side chain by introducing a structure or the like, while maintaining biodegradability due to the binding moiety C B, it may be a polymer that can contain intermediate water.
 本発明の好ましい一つの具体的な態様は、前記式(I)において、Cが、エステル結合(-C(=O)O-)又はカーボネート結合(-OC(=O)O-)である繰り返し単位からなる生体親和性ポリマー組成物である。更に具体的には、前記生分解性ポリマー骨格が、下記式(VI):
Figure JPOXMLDOC01-appb-C000023
(式中、
 X及びX’は、互いに独立して-O-、-NH-又は-CH-であり、ただし、少なくとも一方は-CH-ではなく;
 Mは、水素原子、炭素数3以下の直鎖状もしくは分岐鎖状のアルキル基又は基-L-Zであり;
 m及びm’は、互いに独立して、0~5の整数であり、ただし、X及びX’が共に-O-のとき、m及びm’の少なくとも一方は0ではなく、また、m及びm’の和は、7以下であり;
 Yは、基-L-Zで示される構造部分であり(ここで、L及びZは、上記定義のとおりである);
 これらの各々は、各繰り返し単位において異なっていてもよく、
 nは、重合度を表し、好ましくは2~2000の範囲である
生体親和性ポリマー組成物である。
One preferred specific embodiment of the present invention, in the formula (I), is C B, is an ester bond (-C (= O) O-), or carbonate bond (-OC (= O) O-) A biocompatible polymer composition comprising repeating units. More specifically, the biodegradable polymer skeleton has the following formula (VI):
Figure JPOXMLDOC01-appb-C000023
(Where
X and X ′ are independently of each other —O—, —NH— or —CH 2 —, but at least one is not —CH 2 —;
M is a hydrogen atom, a linear or branched alkyl group having 3 or less carbon atoms, or a group -LZ;
m and m ′ are each independently an integer of 0 to 5, provided that when X and X ′ are both —O—, at least one of m and m ′ is not 0, and m and m ′ The sum of 'is 7 or less;
Y is a structural moiety represented by the group -LZ (wherein L and Z are as defined above);
Each of these may be different in each repeating unit,
n represents the degree of polymerization and is preferably a biocompatible polymer composition in the range of 2 to 2000.
 また、Mは、アルキル基であることが好ましく、メチル基が最も好ましい。
 mとm’の値は、モノマーの原料化合物の選択によって決定されるが、モノマーの調製の点から、mとm’の和が、1~4の範囲にあることが好ましく、mとm’が、共に1であることが最も好ましい。
M is preferably an alkyl group, and most preferably a methyl group.
The values of m and m ′ are determined by the selection of the monomer raw material compound. From the viewpoint of monomer preparation, the sum of m and m ′ is preferably in the range of 1 to 4, and m and m ′. Are most preferably 1.
 本発明の一つの態様として、前記主鎖を、生分解性ポリマーと非生分解性ポリマーとの共重合体とすることができる。非生分解性ポリマーとしては、必要とする物性に応じて当業者に公知のポリマーを適宜用いることができ、その例としては、ポリメタクリル酸メチル(PMMA)、ポリメタクリル酸エチル(PEMA)、ポリビニルピロリドン(PVP)、ポリウレタン、ポリエステル、ポリオレフィン、ポリスチレン、ポリ塩化ビニル、ポリビニルエーテル、ポリフッ化ビニリデン、ポリフルオロアルケン、ナイロン、シリコーン等が挙げられるが、これらに限定されない。非生分解性ポリマー骨格は、生分解性ポリマー骨格とブロック共重合体を形成していてもよく、生分解性ポリマーを形成するモノマー単位とランダム共重合していてもよい。また、所望の物性を得るために、複数の非生分解性ポリマーとの共重合体を形成していてもよい。 As one aspect of the present invention, the main chain can be a copolymer of a biodegradable polymer and a non-biodegradable polymer. As the non-biodegradable polymer, a polymer known to those skilled in the art can be appropriately used according to the required physical properties. Examples thereof include polymethyl methacrylate (PMMA), polyethyl methacrylate (PEMA), and polyvinyl. Examples include, but are not limited to, pyrrolidone (PVP), polyurethane, polyester, polyolefin, polystyrene, polyvinyl chloride, polyvinyl ether, polyvinylidene fluoride, polyfluoroalkene, nylon, and silicone. The non-biodegradable polymer skeleton may form a block copolymer with the biodegradable polymer skeleton, or may randomly copolymerize with a monomer unit that forms the biodegradable polymer. Moreover, in order to obtain desired physical properties, a copolymer with a plurality of non-biodegradable polymers may be formed.
 本発明に係る生体親和性ポリマーは、例えば以下のように、重合して得られるポリマーの側鎖となる部分を予め導入した環状構造を有するモノマーを開環重合することにより製造することができる。
Figure JPOXMLDOC01-appb-C000024
 例えば、上記一般式(VII)において、カルボニル炭素に隣接するX、X’として、CH、O、Nから選択することで、重合後のポリマーの主鎖に含まれる結合部分Cとして、カーボネート結合(O/O)、エステル結合(CH/O)、ウレタン結合(O/N)、アミド結合(CH/N)、ウレア結合(N/N)のいずれかが選択される。
 また、m、m’として、互いに独立して0を含む整数(カーボネート結合、ウレア結合の場合には、いずれか一方は0でない)を選択することで、結合部分Cとにより結合されるアルキレン基部Aの長さが決定される。そして、上記一般式(VII)の「Y」として、炭素原子に適宜のリンカーLを介して構造部分Zを結合させることで、重合後のポリマーの側鎖部分にエーテル構造を有する側鎖を設けることができる。上記一般式(VII)の「M」として、水素、アルキル基、又は、上記「Y」と同様にリンカーLを介して構造部分Zを結合させることができる。
 上記のようにして得られる環状モノマーを、典型的にはカルボニル炭素に隣接する結合のいずれかで開環して相互に重合することで、本発明に係る生体親和性ポリマーを製造することができる。
 上記では、構造部分Zを含む部分Yを一つ含む環状モノマーについて説明したが、これに限定されず、m、m’に含まれる適宜の炭素原子に対しても一つ又は二つの構造部分Zを含む部分Yを設けることも可能である。また、m、m’に含まれる適宜の炭素原子(X、X’としてO、Nが選択される場合には、当該O、Nに隣接する炭素原子は除く)を酸素で置換することにより、重合後のポリマーの主鎖部分にエーテル構造を導入することができる。また、N,S等のヘテロ原子により、アルキレン基部Aの炭素原子を置換することも可能である。
The biocompatible polymer according to the present invention can be produced, for example, by ring-opening polymerization of a monomer having a cyclic structure into which a portion to be a side chain of a polymer obtained by polymerization is introduced in advance as follows.
Figure JPOXMLDOC01-appb-C000024
For example, the general formula (VII), X adjacent the carbonyl carbon, as X ', by selecting from CH 2, O, N, as the binding moiety C B contained in the main chain of the polymer after polymerization, carbonate Any of a bond (O / O), an ester bond (CH 2 / O), a urethane bond (O / N), an amide bond (CH 2 / N), and a urea bond (N / N) is selected.
Further, the alkylene m, as m ', an integer including zero independently of one another (carbonate bond, in the case of the urea bond, either is not 0) by selecting, bound by a binding moiety C B The length of the base A is determined. And as "Y" of the said general formula (VII), the structural part Z is combined with the carbon atom through the appropriate linker L, and the side chain part which has an ether structure is provided in the polymer side chain part after superposition | polymerization be able to. As “M” in the above general formula (VII), a structural part Z can be bonded through a linker L in the same manner as hydrogen, an alkyl group, or “Y”.
The biocompatible polymer according to the present invention can be produced by ring-opening the cyclic monomer obtained as described above at any of the bonds adjacent to the carbonyl carbon and polymerizing each other. .
In the above description, the cyclic monomer including one portion Y including the structural portion Z has been described. However, the present invention is not limited to this, and one or two structural portions Z are also provided for appropriate carbon atoms contained in m and m ′. It is also possible to provide a portion Y including Further, by substituting appropriate carbon atoms contained in m and m ′ (when O and N are selected as X and X ′, excluding carbon atoms adjacent to O and N) with oxygen, An ether structure can be introduced into the main chain portion of the polymer after polymerization. It is also possible to substitute the carbon atom of the alkylene group A with a heteroatom such as N or S.
 例えば、一般式(VII)において、
 X、X’を共に酸素原子として環状カーボネートとし、m及びm’が共に1であり、Mが、メチル基であり、
 Yとして、エステル結合により所定のエーテル構造を結合したものを用いれば、当該環状カーボネートを開環重合させることにより、C=3のアルキレン基がカーボネート結合により結合された主鎖を有し、当該アルキレン基の中央の炭素原子に対して当該エーテル構造とメチル基が側鎖として設けられたポリマーを得ることができる。
For example, in general formula (VII):
X and X 'are both oxygen atoms to form a cyclic carbonate, m and m' are both 1, M is a methyl group,
When Y having a predetermined ether structure bonded by an ester bond is used, ring-opening polymerization of the cyclic carbonate has a main chain in which a C = 3 alkylene group is bonded by a carbonate bond. A polymer in which the ether structure and a methyl group are provided as side chains with respect to the central carbon atom of the group can be obtained.
 本発明において、上記のように使用されるモノマー化合物としては、例えば、
 5-メチル-5-(2-メトキシエチル)オキシカルボニル-1,3-ジオキサン-2-オン、
 5-メチル-5-(2-エトキシエチル)オキシカルボニル-1,3-ジオキサン-2-オン、
 5-メチル-5-(2-テトラヒドロフラニルメチル)オキシカルボニル-1,3-ジオキサン-2-オン、
 5-メチル-5-(3-テトラヒドロフラニルメチル)オキシカルボニル-1,3-ジオキサン-2-オン、
 5-メチル-5-(3-テトラヒドロピラニルメチル)オキシカルボニル-1,3-ジオキサン-2-オン
 5-メチル-5-[2-(2-メトキシエトキシ)エチル]オキシカルボニル-1,3-ジオキサン-2-オン、
 5-メチル-5-(2-エポキシオキシエチル)オキシカルボニル-1,3-ジオキサン-2-オン、
 4-メチル-4-(2-メトキシエチル)オキシカルボニル-1,3-ジオキサン-2-オン、
 4-メチル-4-(2-エトキシエチル)オキシカルボニル-1,3-ジオキサン-2-オン、
 4-メチル-4-(2-テトラヒドロフラニルメチル)オキシカルボニル-1,3-ジオキサン-2-オン、
 4-メチル-4-(3-テトラヒドロフラニルメチル)オキシカルボニル-1,3-ジオキサン-2-オン、
 4-メチル-4-(3-テトラヒドロピラニルメチル)オキシカルボニル-1,3-ジオキサン-2-オン
 4-メチル-4-[2-(2-メトキシエトキシ)エチル]オキシカルボニル-1,3-ジオキサン-2-オン、
 4-メチル-4-(2-エポキシオキシエチル)オキシカルボニル-1,3-ジオキサン-2-オン、
 γ-メチル-γ-(2-メトキシエチル)オキシカルボニル-δ-バレロラクトン、
 γ-メチル-γ-(2-エトキシエチル)オキシカルボニル-δ-バレロラクトン、
 γ-メチル-γ-(2-テトラヒドロフラニルメチル)オキシカルボニル-δ-バレロラクトン、
 γ-メチル-γ-(3-テトラヒドロフラニルメチル)オキシカルボニル-δ-バレロラクトン、
 γ-メチル-γ-(3-テトラヒドロピラニルメチル)オキシカルボニル-δ-バレロラクトン、
等が挙げられるが、これらに限定されず、目的とするポリマーの構造に応じて、適宜使用するモノマーを選択することができる。
In the present invention, as the monomer compound used as described above, for example,
5-methyl-5- (2-methoxyethyl) oxycarbonyl-1,3-dioxan-2-one,
5-methyl-5- (2-ethoxyethyl) oxycarbonyl-1,3-dioxane-2-one,
5-methyl-5- (2-tetrahydrofuranylmethyl) oxycarbonyl-1,3-dioxane-2-one,
5-methyl-5- (3-tetrahydrofuranylmethyl) oxycarbonyl-1,3-dioxane-2-one,
5-methyl-5- (3-tetrahydropyranylmethyl) oxycarbonyl-1,3-dioxan-2-one 5-methyl-5- [2- (2-methoxyethoxy) ethyl] oxycarbonyl-1,3- Dioxane-2-one,
5-methyl-5- (2-epoxyoxyethyl) oxycarbonyl-1,3-dioxane-2-one,
4-methyl-4- (2-methoxyethyl) oxycarbonyl-1,3-dioxane-2-one,
4-methyl-4- (2-ethoxyethyl) oxycarbonyl-1,3-dioxane-2-one,
4-methyl-4- (2-tetrahydrofuranylmethyl) oxycarbonyl-1,3-dioxane-2-one,
4-methyl-4- (3-tetrahydrofuranylmethyl) oxycarbonyl-1,3-dioxane-2-one,
4-methyl-4- (3-tetrahydropyranylmethyl) oxycarbonyl-1,3-dioxan-2-one 4-methyl-4- [2- (2-methoxyethoxy) ethyl] oxycarbonyl-1,3- Dioxane-2-one,
4-methyl-4- (2-epoxyoxyethyl) oxycarbonyl-1,3-dioxane-2-one,
γ-methyl-γ- (2-methoxyethyl) oxycarbonyl-δ-valerolactone,
γ-methyl-γ- (2-ethoxyethyl) oxycarbonyl-δ-valerolactone,
γ-methyl-γ- (2-tetrahydrofuranylmethyl) oxycarbonyl-δ-valerolactone,
γ-methyl-γ- (3-tetrahydrofuranylmethyl) oxycarbonyl-δ-valerolactone,
γ-methyl-γ- (3-tetrahydropyranylmethyl) oxycarbonyl-δ-valerolactone,
However, the present invention is not limited thereto, and a monomer to be used can be appropriately selected depending on the structure of the target polymer.
 上記では、カーボネート結合等の生分解性が期待される結合と、所定のエーテル基を含む構造が導入されたモノマーを重合して本発明に係る生体親和性ポリマーを製造する方法について説明したが、本発明はこれに限定されず、生分解性が期待される結合を有するポリマーに対して、主鎖をなす所定の炭素原子に対して所定のエーテル基を含む構造を導入することで本発明に係る生体親和性ポリマーを製造してもよい。本発明の生体親和性ポリマー組成物において、主鎖ポリマーの繰り返し単位全てにわたってエーテル基を含む構造が側鎖として結合している必要は必ずしもないが、合成の簡便さや、ポリマーの特性を予測しやすくする観点からは、エーテル基を含む構造が導入された単一種のモノマーを重合してポリマーとすることも好ましい。
 また、例えば、使用する環状モノマーの環状部分に、ポリマーにおいてカーボネート結合等を形成するカルボニル炭素を複数導入すると共に、環状部分をなす適宜の炭素にエーテル基を含む構造を導入したモノマーを用いることより、カーボネート結合等の生分解性が期待される結合間に導入されたエーテル基を含む構造を有する側鎖の分布が、隣接する繰り返し単位で同一でないポリマーを製造することもできる。
In the above, a method for producing a biocompatible polymer according to the present invention by polymerizing a bond in which biodegradability such as a carbonate bond and a structure including a predetermined ether group are introduced has been described. The present invention is not limited to this, and a polymer having a bond expected to be biodegradable is introduced into the present invention by introducing a structure containing a predetermined ether group with respect to a predetermined carbon atom forming the main chain. Such a biocompatible polymer may be produced. In the biocompatible polymer composition of the present invention, it is not always necessary that a structure containing an ether group is bonded as a side chain over all the repeating units of the main chain polymer, but the ease of synthesis and the characteristics of the polymer can be easily predicted. From this viewpoint, it is also preferable to polymerize a single type of monomer having a structure containing an ether group introduced therein to form a polymer.
In addition, for example, by using a monomer in which a plurality of carbonyl carbons forming a carbonate bond or the like in a polymer are introduced into a cyclic part of a cyclic monomer to be used, and a structure containing an ether group is introduced into an appropriate carbon forming a cyclic part. It is also possible to produce a polymer in which the distribution of side chains having a structure containing an ether group introduced between bonds that are expected to be biodegradable, such as carbonate bonds, is not the same in adjacent repeating units.
 また、本発明の一つの態様において、主鎖の部分に、生分解性ポリマーと非生分解性ポリマーのいずれをも含めることができる。そのような構造を有するポリマーは、例えば生分解性ポリマーと非生分解性ポリマーの共重合により、得ることができる。 Also, in one embodiment of the present invention, the main chain portion can contain either a biodegradable polymer or a non-biodegradable polymer. A polymer having such a structure can be obtained, for example, by copolymerization of a biodegradable polymer and a non-biodegradable polymer.
 一般式(VII)で示される化合物において、例えば、X、X’が共に-O-である場合、すなわち環状カーボネートである場合は、そのような化合物は、当業者に公知の方法を用いて合成することができる。例えば、以下のスキーム4に示すように、ジオールの誘導体から出発して、(a)エーテル基を含む構造を導入する反応、及び(b)ホスゲン、炭酸ジフェニル又は触媒存在下での一酸化炭素等の炭酸源を作用させて環状カーボネートを形成する反応を含む工程により、合成することができる。
Figure JPOXMLDOC01-appb-C000025
(式中、M、m、m’、Y、Zは、先に定義されたとおりであり、P及びP’は脱離基を表し、Rは、-O-フェニルであるか、塩素原子であるか、又は存在しない)
In the compound represented by the general formula (VII), for example, when X and X ′ are both —O—, that is, a cyclic carbonate, such a compound is synthesized using methods known to those skilled in the art. can do. For example, as shown in Scheme 4 below, starting from a diol derivative, (a) a reaction for introducing a structure containing an ether group, and (b) phosgene, diphenyl carbonate or carbon monoxide in the presence of a catalyst, etc. It can synthesize | combine by the process including the reaction which makes the carbonic acid source of this act, and forms a cyclic carbonate.
Figure JPOXMLDOC01-appb-C000025
Wherein M, m, m ′, Y and Z are as defined above, P and P ′ represent a leaving group, and R is —O-phenyl or a chlorine atom Yes or no)
 さらに別の一例として、リンカー部分Lがエステル結合であるような一般式(VII)の化合物は、まず工程(a)として、ジオール構造を有するカルボン酸、例えば2,2-ビス(メチロール)プロピオン酸に、エーテル基を含む構造を有するアルコール、例えば2-メトキシエタノールを作用させてビス(ヒドロキシ)エステルを形成し、次いで工程(b)として、トリホスゲンを作用させることで、得ることができる。 As yet another example, a compound of the general formula (VII) in which the linker moiety L is an ester bond is prepared as a carboxylic acid having a diol structure, such as 2,2-bis (methylol) propionic acid, as the step (a). It can be obtained by reacting an alcohol having a structure containing an ether group, such as 2-methoxyethanol, to form a bis (hydroxy) ester, and then reacting triphosgene as step (b).
 ビス(ヒドロキシ)エステルを合成する工程は、場合により溶媒中で、例えばイオン交換樹脂の存在下で加熱することによって行われる。溶媒を用いる場合には、反応を阻害せず、原料を溶解する溶媒であればその種類は特に制限されないが、原料である構造部分Zを有するアルコールが液体であり、ジオールを十分に溶解する場合は、これを溶媒として用いることもできる。反応温度は室温から溶媒の沸点の範囲をとることができるが、収率を向上させるため、室温から100℃が好ましく、50~90℃の範囲が最も好ましい。反応時間は原料化合物、加熱温度によって変化するが、1~100時間、好ましくは10~50時間の範囲である。 The step of synthesizing the bis (hydroxy) ester is performed by heating in a solvent, for example, in the presence of an ion exchange resin. In the case of using a solvent, the type of the solvent is not particularly limited as long as it does not inhibit the reaction and dissolves the raw material, but the alcohol having the structural part Z as the raw material is liquid and sufficiently dissolves the diol Can also be used as a solvent. The reaction temperature can range from room temperature to the boiling point of the solvent, but is preferably from room temperature to 100 ° C., and most preferably from 50 to 90 ° C. in order to improve the yield. While the reaction time varies depending on the raw material compound and the heating temperature, it is in the range of 1 to 100 hours, preferably 10 to 50 hours.
 リンカー部分Lがエステル以外の構造である場合は、原料化合物の選択、例えばLをアミドとする場合は構造部分Zを有するアルコールをアミンにする、Lをエーテル基(-O-)とする場合にはジオール構造を有するカルボン酸をハロゲン化物にする等の変更を適宜行うことにより、対応するジオールの誘導体が合成される。その際に用いられる反応条件は、当業者に公知である。 When the linker part L has a structure other than an ester, selection of a raw material compound, for example, when L is an amide, an alcohol having a structural part Z is an amine, and L is an ether group (—O—) The diol derivative is synthesized by appropriately changing the carboxylic acid having a diol structure to a halide. The reaction conditions used in this case are known to those skilled in the art.
 環状カーボネートを形成する工程は、例えば前記得られたジオールの誘導体に、適切な溶媒中、塩基の存在下で、トリホスゲンを作用させることによって行われる。用いられる溶媒は特に制限されず、ジクロロメタン、クロロホルム等のハロゲン系溶媒、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒、ベンゼン、トルエン等の芳香族溶媒又は酢酸エチル等が挙げられるが、これらに限定されない。塩基はトリホスゲンを分解して反応系中でホスゲンを発生させるために用いられる。用いられる塩基としては、トリエチルアミン、ジイソプロピルエチルアミン、ピリジン等が挙げられるが、これらに限定されない。 The step of forming the cyclic carbonate is carried out, for example, by allowing triphosgene to act on the obtained diol derivative in a suitable solvent in the presence of a base. The solvent used is not particularly limited, and examples thereof include halogen solvents such as dichloromethane and chloroform, ether solvents such as diethyl ether, tetrahydrofuran and 1,4-dioxane, aromatic solvents such as benzene and toluene, and ethyl acetate. However, it is not limited to these. The base is used to decompose triphosgene to generate phosgene in the reaction system. Examples of the base used include, but are not limited to, triethylamine, diisopropylethylamine, pyridine and the like.
 一般式(VII)で示される化合物において、X、X’の一方が-O-である場合、すなわちラクトンである場合は、そのような化合物は、当業者に公知の方法を用いて合成することができる。 In the compound represented by the general formula (VII), when one of X and X ′ is —O—, that is, a lactone, such a compound should be synthesized using methods known to those skilled in the art. Can do.
 一般式(VII)で示されるラクトンは、(a)エーテル基を含む構造を導入する反応、及び(b)ラクトン化反応を含む方法によって合成される。エーテル基を含む構造を導入する反応は、先にカーボネートの合成において述べたとおりである。ラクトン化反応は、例えばヒドロキシカルボン酸の分子内縮合、ヨードラクトン化又はStaudingerのケテン環化付加反応等の縮合反応、環状ケトンのBaeyer-Villiger酸化のような過酸を用いた酸化反応、あるいは予め環化したラクトールを酸化する等、当業者に公知の反応を用いて行うことができる。種々のモノマー化合物の合成に対する汎用性の高さから、過酸を用いた酸化反応が好ましい。例えば、一般式(VII)で示されるラクトンは、以下に示すようなスキーム5に従って合成することができる。原料化合物は、市販されているか又は当業者に公知の合成方法によって得ることができる。
Figure JPOXMLDOC01-appb-C000026
(式中、M、m、m’、Zは、先に定義されたとおりである)
The lactone represented by the general formula (VII) is synthesized by a method including (a) a reaction for introducing a structure containing an ether group and (b) a lactonization reaction. The reaction for introducing a structure containing an ether group is as described above in the synthesis of carbonate. The lactonization reaction may be, for example, an intramolecular condensation of hydroxycarboxylic acid, a condensation reaction such as iodolactone formation or Staudinger ketene cycloaddition reaction, an oxidation reaction using a peracid such as Baeyer-Villiger oxidation of a cyclic ketone, or The reaction can be performed using a reaction known to those skilled in the art, such as oxidation of cyclized lactol. An oxidation reaction using a peracid is preferred because of its versatility for the synthesis of various monomer compounds. For example, the lactone represented by the general formula (VII) can be synthesized according to Scheme 5 as shown below. The raw material compounds are commercially available or can be obtained by synthetic methods known to those skilled in the art.
Figure JPOXMLDOC01-appb-C000026
(Wherein M, m, m ′ and Z are as defined above)
 さらに、本発明の態様の一つは、上記のような環状化合物、特に環状カーボネートの調製のための知見に加えて、カルボキシル基を有するジオール化合物に対して、当該カルボキシル基を有機塩基により保護しつつ、有機溶媒の存在下でジオール化合物のジオール部に環化反応のための炭酸源を作用させることで、有機塩基により保護されたカルボキシル基を有する環状カーボネートが生じることに基づくものである。また、当該方法により合成された環状カーボネートに対して酸処理等を行うことにより、カルボキシル基を保護する有機塩基を容易に脱離してカルボン酸が生じる等、上記反応は各種の反応性官能基が導入されたカルボキシル基を有する環状カーボネートの合成に用いることが可能である。
 各種検討の結果より、カルボキシル基を有するジオール化合物が上記反応を生じる機序は以下のようであると考えられる。つまり、ジオール化合物のカルボキシル基から生じるプロトンを補足するための有機塩基を介在させることで、ジオール化合物と有機塩基との錯体が形成され、ジオール化合物のカルボキシル基が当該有機塩基により保護される。この際に、当該有機塩基として陽イオンを生じる物質を使用した場合には、当該錯体が有機溶媒に対する溶解度を示し、また当該有機塩基として陰イオン交換樹脂等を使用した場合には、陰イオン交換樹脂の表面に当該錯体が生成するなどにより、錯体の一部であるジオール化合物が有機溶媒中に安定して存在可能となる。
 上記により有機溶媒中に安定して存在するジオール化合物に対し、ジオール部位を環化するための炭酸源「-(C=O)-」を適用することで、カルボキシル基部分に影響を与えることなくジオール部位が環化されるものと考えられる。本発明によれば、適宜の有機塩基によってジオール化合物のカルボキシル基を保護した状態でジオール部位の環化を行うため、以下に説明するように、環化反応に使用する炭酸源の構造についての選択の幅が広く、使用するジオール化合物等に応じて適宜の炭素源を使用することが可能となる。一方、カルボキシル基を保護する保護基として特に有機塩基を用いることで、ジオール化合物の有機溶媒に対する溶解度を高められると共に、環化反応後の脱保護を容易に行うことが可能となって、その後の環化反応とカルボキシル基の脱保護を効率的に行うことができる。また、環化反応に炭酸源として使用する化合物とは独立にカルボキシル基を保護する保護基を適宜選択可能となるため、合成される環状カーボネートにおけるカルボニル基に導入される官能基の構造等に応じた保護基を使用することが可能になる。
Furthermore, one of the aspects of the present invention is that, in addition to the knowledge for the preparation of the cyclic compound as described above, particularly the cyclic carbonate, the carboxyl group is protected with an organic base against a diol compound having a carboxyl group. However, it is based on the fact that a carbonic acid source for cyclization reaction is allowed to act on the diol portion of the diol compound in the presence of an organic solvent, thereby producing a cyclic carbonate having a carboxyl group protected by an organic base. In addition, by performing acid treatment or the like on the cyclic carbonate synthesized by the method, an organic base that protects the carboxyl group is easily eliminated to generate a carboxylic acid. It can be used for the synthesis of a cyclic carbonate having an introduced carboxyl group.
From the results of various studies, it is considered that the mechanism by which a diol compound having a carboxyl group causes the above reaction is as follows. That is, by interposing an organic base for capturing protons generated from the carboxyl group of the diol compound, a complex of the diol compound and the organic base is formed, and the carboxyl group of the diol compound is protected by the organic base. At this time, when a substance that generates a cation is used as the organic base, the complex exhibits solubility in an organic solvent, and when an anion exchange resin or the like is used as the organic base, anion exchange is performed. When the complex is formed on the surface of the resin, the diol compound that is a part of the complex can be stably present in the organic solvent.
By applying the carbonic acid source “— (C═O) —” for cyclizing the diol moiety to the diol compound stably existing in the organic solvent as described above, the carboxyl group portion is not affected. The diol moiety is thought to be cyclized. According to the present invention, since the diol moiety is cyclized while protecting the carboxyl group of the diol compound with an appropriate organic base, the selection of the structure of the carbonic acid source used for the cyclization reaction is explained below. Thus, an appropriate carbon source can be used according to the diol compound to be used. On the other hand, by using an organic base particularly as a protecting group for protecting the carboxyl group, the solubility of the diol compound in an organic solvent can be increased, and deprotection after the cyclization reaction can be easily performed. The cyclization reaction and the deprotection of the carboxyl group can be performed efficiently. In addition, since a protecting group for protecting the carboxyl group can be appropriately selected independently of the compound used as the carbonic acid source in the cyclization reaction, depending on the structure of the functional group introduced into the carbonyl group in the cyclic carbonate to be synthesized, etc. It is possible to use protective groups.
 上記環状カーボネートを生成するための炭酸源として利用される化合物は、ジオール化合物のジオール部位と反応して環化するものであれば特に限定されない。例えば、一酸化炭素(CO)や二酸化炭素(CO)を使用する他に、以下の式(VIII)により示される化合物を用いることも可能である。
              R-(C=O)-R (VIII)
 式(VIII)の化合物において、R及びRは、適宜の条件でカルボニル炭素から遊離可能なものであればよく、フッ素、塩素、臭素を含むハロゲン原子であるか、イミダゾリウム基であるか、-ORであり、ここでRは炭素数6以下のアルキル基若しくはそれらのハロゲン置換体であるか、ベンゼンやナフタレン等のアリール基、又は1個以上の置換基により置換されたアリール基(ここで、置換基には例えばフッ素、塩素、臭素を含むハロゲン原子、アルコキシカルボニル基、ニトロ基、シアノ基、アルコキシ基、アルキル基、ハロアルキル基が挙げられる)等が例示される。また、RとRの構造は同じでも異なっていてもよい。また、R,Rはカーボネートの生成の際に遊離するため、遊離後のR,Rが一連の反応系において望まない影響を示さないものとすることが好ましい。
 すなわち、式(VIII)で表される化合物の例としては、非限定的に、炭酸ジメチル、炭酸ジエチル、炭酸ジブチル等の脂肪族炭酸ジエステル、炭酸ジフェニル、炭酸ジナフチル等の芳香族炭酸ジエステル、炭酸メチルフェニル等の混合炭酸ジエステル、ホスゲン、トリホスゲン(炭酸ビス(トリクロロメチル))、カルボニルジイミダゾール(CDI)等が挙げられる。炭酸ジメチル、炭酸ジフェニル又はトリホスゲンが、入手又は取扱いの容易さ、安全性等の面で好ましい。
 式(VIII)で表される化合物において、適宜のR,Rを選択することにより、カルボニル炭素との結合強度等が変化し、特にカルボニル炭素からR,Rが遊離する温度等を変化することが可能である。R,Rの選択によりカルボニル炭素が遊離しやすい化合物を使用する場合には、比較的低温においてジオール化合物の環化反応を行うことが好ましい。また、カルボニル炭素と強固な結合を形成するR,Rを選択する場合には、加熱環境下で環化反応を行う他、適宜の触媒などを使用してカルボニル炭素の遊離を促進することも好ましい。
 また、R,Rとして比較的分子量の大きい炭化水素基を選択することで、ジオール化合物の環化反応の反応場として使用する有機溶媒中への溶解度が向上し、高い密度での環状カーボネートの合成が可能になる点で好ましい。
 本発明においてジオール化合物の環化反応における炭素源として使用される化合物の量は、使用されるジオール化合物と等モル量以上が好ましく、より好ましくはジオール1分子に対して等モル以上2モル以下のカルボニル単位が作用する量である。
 本発明においては、ジオール化合物のジオール部位をカルボニル炭素により環化する環化反応の反応場として、典型的には有機溶媒が選択されるが、当該環化反応を良好に進行させるためには、特に非プロトン性有機溶媒が好ましく使用される。
The compound used as the carbonic acid source for producing the cyclic carbonate is not particularly limited as long as it reacts with the diol moiety of the diol compound and cyclizes. For example, in addition to using carbon monoxide (CO) or carbon dioxide (CO 2 ), it is also possible to use a compound represented by the following formula (VIII).
R 1 — (C═O) —R 2 (VIII)
In the compound of formula (VIII), R 1 and R 2 may be any one that can be liberated from the carbonyl carbon under appropriate conditions, and is a halogen atom containing fluorine, chlorine, bromine, or an imidazolium group , —OR 3 , wherein R 3 is an alkyl group having 6 or less carbon atoms or a halogen substituent thereof, an aryl group such as benzene or naphthalene, or an aryl group substituted with one or more substituents (Here, examples of the substituent include a halogen atom containing fluorine, chlorine and bromine, an alkoxycarbonyl group, a nitro group, a cyano group, an alkoxy group, an alkyl group, and a haloalkyl group). The structures of R 1 and R 2 may be the same or different. In addition, since R 1 and R 2 are liberated during the production of carbonate, it is preferable that R 1 and R 2 after liberation do not exhibit undesired effects in a series of reaction systems.
That is, examples of the compound represented by the formula (VIII) include, but are not limited to, aliphatic carbonate diesters such as dimethyl carbonate, diethyl carbonate and dibutyl carbonate, aromatic carbonate diesters such as diphenyl carbonate and dinaphthyl carbonate, methyl carbonate Examples thereof include mixed carbonic acid diesters such as phenyl, phosgene, triphosgene (bis (trichloromethyl carbonate)), carbonyldiimidazole (CDI) and the like. Dimethyl carbonate, diphenyl carbonate or triphosgene is preferable in terms of ease of acquisition or handling, safety, and the like.
In the compound represented by the formula (VIII), by selecting appropriate R 1 and R 2 , the bond strength with the carbonyl carbon and the like change, and in particular the temperature at which R 1 and R 2 are liberated from the carbonyl carbon. It is possible to change. When using a compound in which carbonyl carbon is easily liberated by selection of R 1 and R 2 , it is preferable to carry out the cyclization reaction of the diol compound at a relatively low temperature. In addition, when selecting R 1 and R 2 that form a strong bond with carbonyl carbon, in addition to performing a cyclization reaction in a heating environment, the release of carbonyl carbon should be promoted using an appropriate catalyst or the like. Is also preferable.
Further, by selecting a hydrocarbon group having a relatively large molecular weight as R 1 and R 2 , the solubility in an organic solvent used as a reaction field for the cyclization reaction of the diol compound is improved, and a cyclic carbonate at a high density is obtained. This is preferable in that it can be synthesized.
In the present invention, the amount of the compound used as the carbon source in the cyclization reaction of the diol compound is preferably equimolar or more, more preferably equimolar or more and 2 mol or less per diol molecule. This is the amount that the carbonyl unit acts on.
In the present invention, an organic solvent is typically selected as the reaction field for the cyclization reaction in which the diol moiety of the diol compound is cyclized with carbonyl carbon. In order to allow the cyclization reaction to proceed well, In particular, an aprotic organic solvent is preferably used.
 本発明においては、炭酸源である化合物とジオール化合物との間で環化反応を生じる限りにおいて、有機塩基、有機溶媒等との混合の手順などは特に限定されるものでないが、本発明の好ましい実施形態では、有機塩基等の介在によって有機溶媒に溶解させたジオール化合物に対して炭酸源である化合物を作用させることで、ジオール部位の環化反応を行うことが好ましい。 In the present invention, as long as a cyclization reaction occurs between the carbonic acid source compound and the diol compound, the mixing procedure with an organic base, an organic solvent, or the like is not particularly limited. In the embodiment, it is preferable to carry out the cyclization reaction of the diol moiety by allowing a compound that is a carbonic acid source to act on a diol compound dissolved in an organic solvent by the intervention of an organic base or the like.
 したがって、1つの好ましい実施形態において、本発明の環状カーボネートの製造方法は、カルボキシル基を有するジオール化合物を、有機塩基の存在下で、有機溶媒に溶解する第一の工程と、有機溶媒に溶解した前記ジオール化合物と炭酸源である化合物を反応させる第二の工程とを含む形態が挙げられる。 Therefore, in one preferred embodiment, the method for producing a cyclic carbonate of the present invention comprises a first step of dissolving a diol compound having a carboxyl group in an organic solvent in the presence of an organic base, and the organic solvent. The form containing the said 2nd process with which the said diol compound and the compound which is a carbonic acid source are made to react is mentioned.
 本発明の一つの実施形態において、前記カルボキシル基を有するジオール化合物は、式(IX)により表すことができる。
Figure JPOXMLDOC01-appb-C000027
 式中、Rは、合成される環状カーボネートの重合により得られるポリカーボネートの側鎖の有無やその構成を決定する部分であり、当該ポリカーボネートにおいて期待される特性に応じてRが適宜決定される。つまり、ポリカーボネートにおける該当箇所に側鎖を設けない場合は、Rは水素原子とされ、側鎖を設ける場合には、当該側鎖に応じた官能基等がRとして導入される。また、特に以下で説明する生体親和性のポリカーボネートを得るための環状カーボネートである場合には、Rは水素原子又は低級アルキル基であり、低級アルキル基としては特にC1-3アルキル基が好ましく、メチルであることが最も好ましい。
 式(IX)におけるm及びm’は、合成される環状カーボネートの環状部の員数を決定する部分であり、環化反応の容易さや、合成される環状カーボネートの安定性の観点から、m及びm’の和が1~7程度以下であることが好ましい。また、環状カーボネートの生成を選択的に行うことを可能とするため、その和が1~3の範囲であることが好ましい。この範囲において、m及びm’は、互いに独立して、0~5の整数であってよいが、m,m’間の差が大きい場合には環化反応が困難になる傾向があり、環化反応の容易さの点からはm,m’間の差が2以下であり、特にm及びm’が同じ値であることが好ましい。環状カーボネートの生成の点からは、m及びm’が 共に1であることが最も好ましい。
In one embodiment of the present invention, the diol compound having a carboxyl group can be represented by the formula (IX).
Figure JPOXMLDOC01-appb-C000027
In the formula, R 4 is a part that determines the presence or configuration of the side chain of the polycarbonate obtained by polymerization of the cyclic carbonate to be synthesized and its configuration, and R 4 is appropriately determined according to the properties expected in the polycarbonate . That is, when a side chain is not provided at a corresponding position in the polycarbonate, R 4 is a hydrogen atom, and when a side chain is provided, a functional group or the like corresponding to the side chain is introduced as R 4 . In particular, in the case of a cyclic carbonate for obtaining a biocompatible polycarbonate described below, R 4 is a hydrogen atom or a lower alkyl group, and a C 1-3 alkyl group is particularly preferred as the lower alkyl group. Most preferably, it is methyl.
M and m ′ in the formula (IX) determine the number of cyclic parts of the cyclic carbonate to be synthesized. From the viewpoint of ease of the cyclization reaction and stability of the cyclic carbonate to be synthesized, m and m ′ The sum of 'is preferably about 1 to 7 or less. Further, the sum is preferably in the range of 1 to 3 so that the cyclic carbonate can be selectively produced. In this range, m and m ′ may be an integer of 0 to 5 independently of each other, but if the difference between m and m ′ is large, the cyclization reaction tends to be difficult, and the ring The difference between m and m ′ is 2 or less from the viewpoint of the easiness of the conversion reaction. From the viewpoint of the formation of cyclic carbonate, it is most preferable that m and m ′ are both 1.
 本発明において有機塩基の語は、プロトン受容体として作用する有機化合物を意味し、プロトン受容部位として、例えば、窒素又はリンのような原子を有する化合物及びイオン交換樹脂等を含むものとする。このような有機塩基は、カルボキシル基を有するジオール化合物に対し、当該カルボキシル基からプロトンを引き抜くことによりイオン性の結合による錯体を形成し、ジオール化合物の有機溶媒中への溶解度を高めると共に、ジオール部位の環化反応の際にカルボキシル基を保護する機能が期待される。このため、本発明において用いられる有機塩基は、カルボキシル基から生じるプロトンを捕捉することができるものであれば特に限定されないが、有機溶媒中への溶解度を高める点からはアルキル置換基を有する有機塩基が好ましく使用される。また、カルボン酸との錯体(塩)を形成後にも塩基性が残るような強い有機塩基を用いた場合には環化したモノマーの重合を促進する傾向があるため、目的とする環状カーボネートの構造等に応じて有機塩基を選択して用いることが望ましい。
 また、カルボキシル基を有するジオール化合物に反応試薬を作用させる際には、カルボキシル基部分とジオール部位との反応の競争を考慮する必要があるが、一般に有機塩基はジオール部位との反応を生じ難いため、カルボキシル基の保護に適している。この点において、トリエチルアミン等の三級アミン等においては窒素上の水素が存在せず、ジオール部位の環化反応に関与する可能性が特に低い点で好ましく用いられる。また、ジオール化合物との錯体形成後の余剰分の有機塩基を減圧乾燥で除去可能な点でも、トリエチルアミンが好ましく用いられる。
 本発明において用いられる有機塩基の例としては、非限定的に、トリメチルアミン、トリエチルアミン、N,N-ジイソプロピルエチルアミン等の第三級アルキルアミン、1,4-ジアザビシクロ[2,2,2]オクタン(DABCO)、メチルモルホリン等の環状アミン、ピリジン、イミダゾール等の芳香族アミン、アミジン、グアニジンのような含窒素化合物、フォスファゼン等のリン原子を含む化合物、オキソニウム、イミダゾリウム、アンモニウム、スルホニウム、ホスフォニウム等のオニウムイオンの水酸化物、陰イオン交換樹脂等が挙げられる。好ましくは、トリエチルアミン等の三級アミンである。また、本発明において用いられる有機塩基には、炭酸源である式(VIII)の化合物から脱離した基R及びRをトラップする作用が期待される。
In the present invention, the term organic base means an organic compound that acts as a proton acceptor, and includes, for example, a compound having an atom such as nitrogen or phosphorus, an ion exchange resin, and the like as a proton accepting site. Such an organic base forms a complex with an ionic bond by extracting a proton from the carboxyl group with respect to the diol compound having a carboxyl group, thereby increasing the solubility of the diol compound in an organic solvent, and at the diol site. The function of protecting the carboxyl group during the cyclization reaction is expected. For this reason, the organic base used in the present invention is not particularly limited as long as it can capture a proton generated from a carboxyl group, but from the viewpoint of increasing the solubility in an organic solvent, the organic base having an alkyl substituent Are preferably used. In addition, when a strong organic base that remains basic after formation of a complex (salt) with a carboxylic acid is used, the polymerization of the cyclized monomer tends to be promoted. It is desirable to select and use an organic base according to the above.
In addition, when a reaction reagent is allowed to act on a diol compound having a carboxyl group, it is necessary to consider the competition of the reaction between the carboxyl group moiety and the diol moiety, but generally organic bases are unlikely to react with the diol moiety. Suitable for protecting carboxyl groups. In this respect, tertiary amines such as triethylamine are preferably used because there is no hydrogen on nitrogen and the possibility of participating in the cyclization reaction of the diol site is particularly low. Also, triethylamine is preferably used from the viewpoint that the excess organic base after complex formation with the diol compound can be removed by drying under reduced pressure.
Examples of organic bases used in the present invention include, but are not limited to, tertiary alkylamines such as trimethylamine, triethylamine, N, N-diisopropylethylamine, 1,4-diazabicyclo [2,2,2] octane (DABCO ), Cyclic amines such as methylmorpholine, aromatic amines such as pyridine and imidazole, nitrogen-containing compounds such as amidine and guanidine, compounds containing phosphorus atoms such as phosphazene, oniums such as oxonium, imidazolium, ammonium, sulfonium and phosphonium Examples thereof include ionic hydroxides and anion exchange resins. A tertiary amine such as triethylamine is preferable. The organic base used in the present invention is expected to trap the groups R 1 and R 2 eliminated from the compound of formula (VIII), which is a carbonic acid source.
 オニウム水酸化物(オニウムヒドロキシド)は、オニウムカチオンと水酸化物アニオンとからなる物質である。オニウム水酸化物として、1,3-ジメチルイミダゾリウムヒドロキシド、1-エチル-3-メチルイミダゾリウムヒドロキシド、1-ブチル-3-メチルイミダゾリウムヒドロキシド、1-ヘキシル-3-メチルイミダゾリウムヒドロキシド、1-オクチル-3-メチルイミダゾリウムヒドロキシド、1-アリル-3-エチルイミダゾリウムヒドロキシド、1-アリル-3-ブチルイミダゾリウムヒドロキシド、1,3-ジアリルイミダゾリウムヒドロキシド、1-エチル-2,3-ジメチルイミダゾリウムヒドロキシド、1-ブチル-2,3-ジメチルイミダゾリウムヒドロキシド、1-ヘキシル-2,3-ジメチルイミダゾリウムヒドロキシド等のイミダゾリウムの水酸化物;
 2-エチル-1,3,5-トリメチルピラゾリウムヒドロキシド、2-プロピル-1,3,5-トリメチルピラゾリウムヒドロキシド、2-ブチル-1,3,5-トリメチルピラゾリウムヒドロキシド、2-ヘキシル-1,3,5-トリメチルピラゾリウムヒドロキシド等のピラゾリウムの水酸化物;
 1-エチルピリジニウムヒドロキシド、1-ブチルピリジニウムヒドロキシド、1-ヘキシルピリジニウムヒドロキシド、1-オクチルピリジニウムヒドロキシド、1-エチル-3-メチルピリジニウムヒドロキシド、1-エチル-3-ヒドロキシメチルピリジニウムヒドロキシド、1-ブチル-3-メチルピリジニウムヒドロキシド、1-ブチル-4-メチルピリジニウムヒドロキシド、1-オクチル-4-メチルピリジニウムヒドロキシド、1-ブチル-3,4-ジメチルピリジニウムヒドロキシド、1-ブチル-3,5-ジメチルピリジニウムヒドロキシド等のピリジニウムの水酸化物;
 1-プロピル-1-メチルピロリジニウムヒドロキシド、1-ブチル-1-メチルピロリジニウムヒドロキシド、1-ヘキシル-1-メチルピロリジニウムヒドロキシド、1-オクチル-1-メチルピロリジニウムヒドロキシド、1-ブチル-1-プロピルピロリジニウムヒドロキシド等のピロリジニウムの水酸化物;
 1-プロピル-1-メチルピペリジニウムヒドロキシド、1-ブチル-1-メチルピペリジニウムヒドロキシド、1-(2-メトキシエチル)-1-メチルピペリジニウムヒドロキシド等のピペリジニウムの水酸化物;
 4-プロピル-4-メチルモルホリニウムヒドロキシド、4-(2-メトキシエチル)-4-メチルモルホリニウムヒドロキシド等のモルホリニウムの水酸化物;
 テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、テトラヘプチルアンモニウムヒドロキシド、テトラヘキシルアンモニウムヒドロキシド、テトラオクチルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、プロピルトリメチルアンモニウムヒドロキシド、ジエチル-2-メトキシエチルメチルアンモニウムヒドロキシド、メチルトリオクチルアンモニウムヒドロキシド、シクロヘキシルトリメチルアンモニウムヒドロキシド、2-ヒドロキシエチルトリメチルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ベンジルトリブチルアンモニウムヒドロキシド、ベンジルトリエチルアンモニウムヒドロキシド、ジメチルジステアリルアンモニウムヒドロキシド、ジアリルジメチルアンモニウムヒドロキシド、2-メトキシエトキシメチルトリメチルアンモニウムヒドロキシド、テトラキス(ペンタフルオロエチル)アンモニウムヒドロキシド、N-メトキシトリメチルアンモニウムヒドロキシド、N-エトキシトリメチルアンモニウムヒドロキシド、N-プロポキシトリメチルアンモニウムヒドロキシド等の4級アンモニウムの水酸化物;
 トリヘキシルテトラデシルホスホニウムヒドロキシド等のホスホニウムの水酸化物;
 トリメチルスルホニウムヒドロキシド等のスルホニウムの水酸化物;
 グアニジニウムヒドロキシド、2-エチル-1,1,3,3-テトラメチルグアニジニウムヒドロキシド等のグアニジニウムの水酸化物;
 2-エチル-1,1,3,3-テトラメチルイソウロニウムヒドロキシド等のイソウロニウムの水酸化物;及び
 2-エチル-1,1,3,3-テトラメチルイソチオウロニウムヒドロキシド等のイソチオウロニウムの水酸化物を挙げることができる。
Onium hydroxide (onium hydroxide) is a substance composed of an onium cation and a hydroxide anion. As onium hydroxide, 1,3-dimethylimidazolium hydroxide, 1-ethyl-3-methylimidazolium hydroxide, 1-butyl-3-methylimidazolium hydroxide, 1-hexyl-3-methylimidazolium hydroxy 1-octyl-3-methylimidazolium hydroxide, 1-allyl-3-ethylimidazolium hydroxide, 1-allyl-3-butylimidazolium hydroxide, 1,3-diallylimidazolium hydroxide, 1-allyl-3-ethylimidazolium hydroxide, 1-allyl-3-butylimidazolium hydroxide, 1,3-diallylimidazolium hydroxide, Imidazolium hydroxides such as ethyl-2,3-dimethylimidazolium hydroxide, 1-butyl-2,3-dimethylimidazolium hydroxide, 1-hexyl-2,3-dimethylimidazolium hydroxide;
2-ethyl-1,3,5-trimethylpyrazolium hydroxide, 2-propyl-1,3,5-trimethylpyrazolium hydroxide, 2-butyl-1,3,5-trimethylpyrazolium hydroxide , Pyrazolium hydroxides such as 2-hexyl-1,3,5-trimethylpyrazolium hydroxide;
1-ethylpyridinium hydroxide, 1-butylpyridinium hydroxide, 1-hexylpyridinium hydroxide, 1-octylpyridinium hydroxide, 1-ethyl-3-methylpyridinium hydroxide, 1-ethyl-3-hydroxymethylpyridinium hydroxide 1-butyl-3-methylpyridinium hydroxide, 1-butyl-4-methylpyridinium hydroxide, 1-octyl-4-methylpyridinium hydroxide, 1-butyl-3,4-dimethylpyridinium hydroxide, 1-butyl -Pyridinium hydroxides such as 3,5-dimethylpyridinium hydroxide;
1-propyl-1-methylpyrrolidinium hydroxide, 1-butyl-1-methylpyrrolidinium hydroxide, 1-hexyl-1-methylpyrrolidinium hydroxide, 1-octyl-1-methylpyrrolidinium hydroxy And pyrrolidinium hydroxides such as 1-butyl-1-propylpyrrolidinium hydroxide;
Piperidinium hydroxides such as 1-propyl-1-methylpiperidinium hydroxide, 1-butyl-1-methylpiperidinium hydroxide, 1- (2-methoxyethyl) -1-methylpiperidinium hydroxide ;
Morpholinium hydroxides such as 4-propyl-4-methylmorpholinium hydroxide, 4- (2-methoxyethyl) -4-methylmorpholinium hydroxide;
Tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetraheptylammonium hydroxide, tetrahexylammonium hydroxide, tetraoctylammonium hydroxide, triethylmethylammonium hydroxide, propyltrimethylammonium Hydroxide, diethyl-2-methoxyethylmethylammonium hydroxide, methyltrioctylammonium hydroxide, cyclohexyltrimethylammonium hydroxide, 2-hydroxyethyltrimethylammonium hydroxide, trimethylphenylammonium hydroxide, benzyltrimethylammonium hydroxide, benzyl Ributylammonium hydroxide, benzyltriethylammonium hydroxide, dimethyldistearylammonium hydroxide, diallyldimethylammonium hydroxide, 2-methoxyethoxymethyltrimethylammonium hydroxide, tetrakis (pentafluoroethyl) ammonium hydroxide, N-methoxytrimethylammonium Quaternary ammonium hydroxides such as hydroxide, N-ethoxytrimethylammonium hydroxide, N-propoxytrimethylammonium hydroxide;
Phosphonium hydroxides such as trihexyltetradecylphosphonium hydroxide;
Sulfonium hydroxides such as trimethylsulfonium hydroxide;
Guanidinium hydroxides such as guanidinium hydroxide and 2-ethyl-1,1,3,3-tetramethylguanidinium hydroxide;
Isouronium hydroxides such as 2-ethyl-1,1,3,3-tetramethylisouronium hydroxide; and isothionium such as 2-ethyl-1,1,3,3-tetramethylisothiouronium hydroxide; Examples include auronium hydroxide.
 有機塩基とジオール化合物との混合操作は、錯体形成の反応が円滑に進展するものであればよく、使用する有機塩基、ジオール化合物の種類等に応じて適宜決定される。本発明において典型的に使用される有機塩基の量は、投入されるジオール化合物のカルボキシル基に対する当量以上とすることが好ましく、特に安定してカルボキシル基を保護するために2~5倍当量の有機塩基を用いることが好ましい。有機塩基とジオール化合物との錯体形成は、適宜の有機溶媒中で両者を混合すれば良く、有機溶媒に対する溶解度が小さいジオール化合物を用いる場合には、適宜の方法で有機溶媒中に分散させたジオール化合物に対して有機塩基を作用させることが好ましい。有機塩基とジオール化合物との錯体形成は、有機溶媒中に分散相として存在するジオール化合物が、有機塩基の存在により有機溶媒中に溶解して均一な溶液を形成する等、適宜の手段により確認される。 The mixing operation of the organic base and the diol compound is not particularly limited as long as the complex formation reaction proceeds smoothly, and is appropriately determined according to the type of organic base and diol compound used. The amount of the organic base typically used in the present invention is preferably equal to or more than the equivalent of the carboxyl group of the diol compound to be added, and in particular 2 to 5 times equivalent of organic in order to stably protect the carboxyl group. It is preferable to use a base. The complex formation between the organic base and the diol compound may be performed by mixing both in an appropriate organic solvent. When a diol compound having low solubility in the organic solvent is used, the diol dispersed in the organic solvent by an appropriate method is used. It is preferable to allow an organic base to act on the compound. Complex formation between the organic base and the diol compound is confirmed by appropriate means such that the diol compound existing as a dispersed phase in the organic solvent dissolves in the organic solvent due to the presence of the organic base to form a uniform solution. The
 有機塩基とジオール化合物との混合は、室温等の適宜の温度環境下で行うことが可能であるが、各種の副次反応の防止等の点からは、冷却環境下で行うことも好ましい。また、錯体形成後に存在する過剰量の有機塩基が、その後のジオール化合物の環化反応に望ましくない影響を及ぼさない場合には、有機塩基とジオール化合物とを混合して錯体を生じた有機溶媒中において、更にジオール化合物の環化反応を生じさせるための炭酸源を加えて、環状カーボネートの生成を行ってもよい。その際には、ジオール化合物の環化反応に適した有機溶媒中において、有機塩基とジオール化合物との錯体生成を行うことが好ましい。
 錯体生成反応と、環化反応を同一の反応場で行う場合には、必ずしも全ての錯体生成が完了した後に環化反応を生じさせる必要はなく、例えば、別相から供給されるジオール化合物を錯体とする反応と、生成した錯体に対する環化反応とを同時に進行することもできる。
The mixing of the organic base and the diol compound can be performed in an appropriate temperature environment such as room temperature, but it is also preferable to perform it in a cooling environment from the viewpoint of preventing various side reactions. If the excess organic base present after the complex formation does not undesirably affect the subsequent cyclization reaction of the diol compound, the organic base and the diol compound are mixed to form a complex in the organic solvent. In addition, a carbonic acid source for causing a cyclization reaction of the diol compound may be added to produce a cyclic carbonate. In that case, it is preferable to form a complex of the organic base and the diol compound in an organic solvent suitable for the cyclization reaction of the diol compound.
When the complex formation reaction and the cyclization reaction are performed in the same reaction field, it is not always necessary to cause the cyclization reaction after all the complex formation is completed. For example, a diol compound supplied from another phase may be complexed. And the cyclization reaction for the formed complex can proceed simultaneously.
 本発明においては、ジオール化合物のジオール部位をカルボニル炭素により環化する環化反応の反応場として、一般に有機溶媒が望ましいが、当該環化反応への関与を抑制して収率を高めるためには、特に非プロトン性有機溶媒が好ましく使用される。つまり、本発明において用いられる有機溶媒は、本発明の反応を阻害しないものであれば特に制限なく用いることが可能であり、例えば、ジクロロメタン、クロロホルム等のハロゲン系溶媒、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒、ベンゼン、トルエン等の芳香族溶媒又はアセトニトリルや酢酸エチル等が挙げられるが、これらに限定されない。好ましくは、ジクロロメタン及びテトラヒドロフランである。 In the present invention, an organic solvent is generally desirable as a reaction field for the cyclization reaction in which the diol portion of the diol compound is cyclized with carbonyl carbon, but in order to suppress the participation in the cyclization reaction and increase the yield, In particular, an aprotic organic solvent is preferably used. That is, the organic solvent used in the present invention can be used without particular limitation as long as it does not inhibit the reaction of the present invention. For example, halogen solvents such as dichloromethane and chloroform, diethyl ether, tetrahydrofuran, 1, Examples thereof include, but are not limited to, ether solvents such as 4-dioxane, aromatic solvents such as benzene and toluene, acetonitrile, ethyl acetate, and the like. Preferred are dichloromethane and tetrahydrofuran.
 本発明の方法において、ジオール化合物と式(VIII)の化合物の間の環化反応は、用いられる式(VIII)の化合物又は溶媒の種類に応じて適宜選択されるが、用いる溶媒の沸点以下の温度で、例えば100℃以下で行われ、また室温以下で行うこともできる。 In the method of the present invention, the cyclization reaction between the diol compound and the compound of the formula (VIII) is appropriately selected according to the type of the compound of the formula (VIII) or the solvent used, but not more than the boiling point of the solvent used. The temperature is, for example, 100 ° C. or lower, and can also be performed at room temperature or lower.
 本発明の一つの実施形態は、上記方法によって得られた環状カーボネートを、酸で処理し、環状カーボネートのカルボン酸を回収する工程を更に含む、上記環状カーボネートの製造方法である。前記工程において用いられる酸としては、塩酸や硫酸等の無機酸、トリフルオロ酢酸やメタンスルホン酸、パラトルエンスルホン酸等の有機カルボン酸や有機スルホン酸、有機ホスホン酸の他、陽イオン交換樹脂や固体酸等、錯体中の塩基性化合物とカルボン酸よりも強く相互作用してカルボキシル基を再生するものであればこれらに限定されないが、好ましくは塩基性化合物と錯体を形成して沈殿状物質を形成し、分離を容易にするものが望ましい。また、その実施方法として、錯体状の環状カーボネートの溶液にこれら酸性物質を加えて沈殿状副生物を除去する方法の他、陽イオン交換樹脂や固体酸の入った管に錯体状の環状カーボネートの溶液を通す方法も用いることができる。 One embodiment of the present invention is a method for producing the above cyclic carbonate, further comprising the step of treating the cyclic carbonate obtained by the above method with an acid to recover the carboxylic acid of the cyclic carbonate. Examples of the acid used in the step include inorganic acids such as hydrochloric acid and sulfuric acid, organic carboxylic acids such as trifluoroacetic acid, methanesulfonic acid, and paratoluenesulfonic acid, organic sulfonic acids, and organic phosphonic acids, cation exchange resins, Although it is not limited to these as long as it reacts more strongly than the carboxylic acid with the basic compound in the complex such as a solid acid and regenerates the carboxyl group, it preferably forms a complex with the basic compound to form a precipitated substance. Those that form and facilitate separation are desirable. In addition to the method of adding these acidic substances to the complex cyclic carbonate solution to remove the precipitated by-product, the implementation method includes the addition of the complex cyclic carbonate to a tube containing a cation exchange resin or a solid acid. A method of passing a solution can also be used.
 したがって、本発明の一つの実施形態における環状カーボネートの製造方法は、以下のようなスキーム6により表される。
Figure JPOXMLDOC01-appb-C000028
(式中、Rは、水素原子又は低級アルキル基であり、m及びm’は、互いに独立して、0~5の整数であり、ただし、その少なくとも一方は0ではなく、また、m及びm’の和は、7以下である)
Therefore, the manufacturing method of the cyclic carbonate in one embodiment of this invention is represented by the following scheme 6.
Figure JPOXMLDOC01-appb-C000028
(Wherein R 4 is a hydrogen atom or a lower alkyl group, and m and m ′ are each independently an integer of 0 to 5, provided that at least one of them is not 0, and m and The sum of m ′ is 7 or less)
 本発明のさらなる一つの実施形態は、上記方法で得られた環状カーボネートのカルボン酸誘導体にハロゲン化剤(例えば、PX、PX、SOX又はNCX)を反応させて、環状カーボネートのカルボン酸ハロゲン化物を生成する工程をさらに含む、上記環状カーボネートの製造方法である。好ましくは、ハロゲン化剤は、塩化チオニル、五塩化リン、塩化オキサリル、三臭化リン及びフッ化シアヌルから選択され、最も好ましくは、塩化チオニルである。ハロゲン化剤として好ましく用いられる塩化チオニルの量は、例えば、1当量以上5当量以下である。 In another embodiment of the present invention, the carboxylic acid derivative of the cyclic carbonate obtained by the above method is reacted with a halogenating agent (for example, PX 3 , PX 5 , SOX 2 or NCX) to form a carboxylic acid of the cyclic carbonate. It is the manufacturing method of the said cyclic carbonate further including the process of producing | generating a halide. Preferably, the halogenating agent is selected from thionyl chloride, phosphorus pentachloride, oxalyl chloride, phosphorus tribromide and cyanuric fluoride, most preferably thionyl chloride. The amount of thionyl chloride preferably used as the halogenating agent is, for example, 1 equivalent or more and 5 equivalents or less.
 本発明の別の一つの実施形態は、上記方法により得られた環状カーボネートのカルボン酸ハロゲン化物に、基Rで示される、少なくとも1つのエーテル基を有する構造部分を含むアルコール又はアミンを反応させて、環状カーボネートのカルボン酸誘導体を合成する工程をさらに含む、環状カーボネートの製造方法である。 In another embodiment of the present invention, the carboxylic acid halide of the cyclic carbonate obtained by the above method is reacted with an alcohol or amine containing a structural moiety having at least one ether group, represented by the group R. The method for producing a cyclic carbonate further comprises a step of synthesizing a carboxylic acid derivative of the cyclic carbonate.
 上記少なくとも1つのエーテル基を有する構造部分は、鎖状エーテル、環状エーテル又はアセタール構造を少なくとも1つ有する構造であることが好ましく、当該構造部分によって、本発明の方法によって得られる環状カーボネートをポリカーボネート材料としたときに、ポリカーボネートに付与される物性を任意に設計することができる。具体的な1つの実施形態として、当該構造部分は、下記式(II)で示すことができる。 The structural part having at least one ether group is preferably a structure having at least one chain ether, cyclic ether or acetal structure, and the structural part is used to convert the cyclic carbonate obtained by the method of the present invention into a polycarbonate material. The physical properties imparted to the polycarbonate can be arbitrarily designed. As a specific embodiment, the structural portion can be represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000029
 (上記式(II)中、繰り返し数(l)及びUは、上記定義のとおりである)
Figure JPOXMLDOC01-appb-C000029
(In the above formula (II), the number of repetitions (l) and U are as defined above)
 また、他の具体的な実施形態においては、上記少なくとも1つのエーテル基を有する構造部分Rは、下記式(V)で示される構造であることもできる。
Figure JPOXMLDOC01-appb-C000030
(上記式(V)中、M’、E及びE’、Q’及びQ”ならびにk及びk’は、上記定義のとおりである)
In another specific embodiment, the structural portion R having at least one ether group may have a structure represented by the following formula (V).
Figure JPOXMLDOC01-appb-C000030
(In the above formula (V), M ′, E and E ′, Q ′ and Q ″ and k and k ′ are as defined above)
 本発明の一つの実施形態において、上記方法は、環化反応を行う反応容器、イオン交換樹脂を詰めたイオン交換塔及びハロゲン化からエステル化又はアミド化を行う反応容器を連結させて、中間体を単離、精製しない連続した工程で行うこともできる。また、単一の反応容器でワンポット合成方法により行うことができる。 In one embodiment of the present invention, the above method comprises a reaction vessel for performing a cyclization reaction, an ion exchange column packed with an ion exchange resin, and a reaction vessel for performing esterification or amidation from halogenation to form an intermediate. Can also be carried out in a continuous process without isolation and purification. Moreover, it can carry out by the one pot synthesis method with a single reaction vessel.
 6員環構造を有する、本発明の1つの実施形態における環状カーボネートの製造方法は、以下に示すスキーム7により表すことができる。本実施形態の方法により、環状カーボネートの誘導体(MTC-XR)を効率的に得ることができる。MTC-XRは、環状カーボネート部分に(-(C=O)X-)をリンカー部分(L)として基Rを結合した構造を有し、開環重合によりポリカーボネートとすることができ、Rの性質に応じたスマートバイオマテリアルの原料として有用である。
Figure JPOXMLDOC01-appb-C000031
A method for producing a cyclic carbonate in one embodiment of the present invention having a 6-membered ring structure can be represented by Scheme 7 shown below. By the method of the present embodiment, a cyclic carbonate derivative (MTC-XR) can be obtained efficiently. MTC-XR has a structure in which a group R is bonded to a cyclic carbonate moiety with (-(C = O) X-) as a linker moiety (L), and can be converted to a polycarbonate by ring-opening polymerization. It is useful as a raw material for smart biomaterials according to
Figure JPOXMLDOC01-appb-C000031
 本実施形態では、リンカー部分Lがエステル結合、すなわちXがOであるような化合物MTC-XRを製造するために、第一の工程として、ジオール構造を有するカルボン酸、例えば2,2-ビス(メチロール)プロピオン酸に対して、塩基性有機化合物と1:1の錯体を形成させて有機溶媒に可溶化させ、第二の工程として、例えばトリホスゲンのような炭酸源と作用させて環状カーボネート化させ、第三の工程として、酸性物質によって錯体部位の塩基性化合物を取り除いてカルボキシル基を再生した後、第四の工程のように、基Rで示す構造部分等を有するアルコールとエステル化させることで得る方法である。エステル化は、第三の工程で得られたカルボン酸をハロゲン化剤(例えば、PX’、PX’、SOX’又はNCX’なお、X’はハロゲン原子)と反応させてアシルハロゲン化物を得ることを含む。
 第一の工程で得られる錯体は単離されなくてもよく、塩基性有機化合物を過剰に用いて、第二の工程の環状カーボネート化で用いる炭酸源の脱離成分を捕捉させることもできる。この場合、第一及び第二の工程は、連続した1工程とすることができる。さらに、錯体状の環状カーボネートに対して第四の工程を行って、基Rで示す構造部分等を有するアルコールとエステル化させることもできる。
In this embodiment, in order to produce a compound MTC-XR in which the linker moiety L is an ester bond, that is, X is O, as a first step, a carboxylic acid having a diol structure, such as 2,2-bis ( For methylol) propionic acid, a 1: 1 complex with a basic organic compound is formed and solubilized in an organic solvent, and as a second step, it is reacted with a carbonic acid source such as triphosgene to form a cyclic carbonate. As a third step, after removing the basic compound at the complex site with an acidic substance and regenerating the carboxyl group, as in the fourth step, it is esterified with an alcohol having a structural portion indicated by the group R, etc. How to get. In the esterification, the carboxylic acid obtained in the third step is reacted with a halogenating agent (for example, PX ′ 3 , PX ′ 5 , SOX ′ 2 or NCX ′, where X ′ is a halogen atom) to produce an acyl halide. Including getting.
The complex obtained in the first step may not be isolated, and an excess of the basic organic compound can be used to capture the elimination component of the carbonic acid source used in the cyclic carbonation in the second step. In this case, the first and second steps can be one continuous step. Further, a fourth step may be performed on the complex cyclic carbonate to esterify with an alcohol having a structural portion represented by the group R.
 また、上記MTC-TEAから出発して、少なくとも1つのエーテル基を有する構造部分を含むアミン、又はチオールを反応させることにより、アミド(-C(=O)NH-)又はチオエステル(-C(=O)S-)をリンカーとするMTC-XRが合成される。その際に用いられる反応条件は、当業者に公知である。 Also, starting from the above MTC-TEA, an amide (—C (═O) NH—) or a thioester (—C (=) is obtained by reacting an amine or thiol containing a structural moiety having at least one ether group. O) MTC-XR using S-) as a linker is synthesized. The reaction conditions used in this case are known to those skilled in the art.
 本発明の方法により得られる中間体化合物もまた、本発明の目的である。すなわち、本発明における一つの実施形態は、下記式(X):
Figure JPOXMLDOC01-appb-C000032
(式中、Rは、水素原子又は低級アルキル基であり、m及びm’は、互いに独立して、0~5の整数であり、ただし、m及びm’の少なくとも一方は0ではなく、また、m及びm’の和は、7以下である)で表される化合物又は錯体である。
Intermediate compounds obtained by the process of the present invention are also an object of the present invention. That is, one embodiment in the present invention is represented by the following formula (X):
Figure JPOXMLDOC01-appb-C000032
(Wherein R 4 is a hydrogen atom or a lower alkyl group, and m and m ′ are each independently an integer of 0 to 5, provided that at least one of m and m ′ is not 0; And the sum of m and m ′ is 7 or less).
 本発明の方法によりカーボネートに導入される、基Rで示す構造部分は、上述した少なくとも1つのエーテル基を有する構造部分であることが好ましく、このような実施形態の方法で合成されるMTC-XRとしては、エステル結合(-C(=O)O-)で環状カーボネート部分と少なくとも1つのエーテル基を有する構造部分とが連結された化合物を得ることができる。すなわち、本発明の方法によって得られる好ましい一群の化合物は、下記式(XII):
Figure JPOXMLDOC01-appb-C000033
(式中、
 m、m’、Rは、上記定義のとおりであり、
 lは、0~30の整数であり、ここで、
  lが0でないとき、Uは、低級アルキル又は環員数3~7までの環状エーテル基であり、
  lが0のとき、Uは、下記:
Figure JPOXMLDOC01-appb-C000034
 (式中、M’は、水素原子、炭素数3以下の直鎖状若しくは分岐鎖状のアルキル基であり、E及びE’は、互いに独立して、直接結合、-O-又は-CH-であり、ただし、少なくとも一方は-O-であり、Q’及びQ”は、互いに独立して、水素原子、炭素数6以下の直鎖状若しくは分岐鎖状のアルキル、アルケニル若しくはアルキニル、C3-8脂環式アルキル又はベンジルを表すか、あるいはQ’及びQ”は、一緒になって炭素数2~5のアルキレン基を形成し、k及びk’は、互いに独立して、0~2の整数である)で表される基である)で表すことができる。
The structural portion represented by the group R introduced into the carbonate by the method of the present invention is preferably a structural portion having at least one ether group as described above, and MTC-XR synthesized by the method of such an embodiment. For example, a compound in which a cyclic carbonate moiety and a structural moiety having at least one ether group are linked by an ester bond (—C (═O) O—) can be obtained. That is, a preferred group of compounds obtained by the method of the present invention is represented by the following formula (XII):
Figure JPOXMLDOC01-appb-C000033
(Where
m, m ′ and R 4 are as defined above,
l is an integer from 0 to 30, where
When l is not 0, U is lower alkyl or a cyclic ether group having 3 to 7 ring members,
When l is 0, U is:
Figure JPOXMLDOC01-appb-C000034
(In the formula, M ′ is a hydrogen atom or a linear or branched alkyl group having 3 or less carbon atoms, and E and E ′ are each independently a direct bond, —O— or —CH 2. -Provided that at least one is -O- and Q 'and Q "are independently of each other a hydrogen atom, a linear or branched alkyl having 6 or less carbon atoms, alkenyl or alkynyl, C 3-8 represents an alicyclic alkyl or benzyl, or Q ′ and Q ″ together form an alkylene group having 2 to 5 carbon atoms, and k and k ′ are each independently 0 to It is an integer of 2).
 さらに具体的な本発明の一つの実施形態において、本発明の方法によって得られる化合物は、下記式(XI):
Figure JPOXMLDOC01-appb-C000035
(式中、m、m’、R、M’、E及びE’、Q’及びQ”ならびにk及びk’は、上記定義のとおりである)で表される化合物である。
In one more specific embodiment of the present invention, the compound obtained by the method of the present invention has the following formula (XI):
Figure JPOXMLDOC01-appb-C000035
(Wherein m, m ′, R 4 , M ′, E and E ′, Q ′ and Q ″, and k and k ′ are as defined above).
 具体的な式(XI)の化合物の例としては、非限定的に、以下のような化合物:
 5-メチル-5-(2-テトラヒドロフラニルメチル)オキシカルボニル-1,3-ジオキサン-2-オン、
 5-メチル-5-(3-テトラヒドロフラニルメチル)オキシカルボニル-1,3-ジオキサン-2-オン、
 5-メチル-5-(3-テトラヒドロピラニルメチル)オキシカルボニル-1,3-ジオキサン-2-オン
 4-メチル-4-(2-テトラヒドロフラニルメチル)オキシカルボニル-1,3-ジオキサン-2-オン、
 4-メチル-4-(3-テトラヒドロフラニルメチル)オキシカルボニル-1,3-ジオキサン-2-オン、及び
 4-メチル-4-(3-テトラヒドロピラニルメチル)オキシカルボニル-1,3-ジオキサン-2-オン、
等を挙げることができる。
Specific examples of compounds of formula (XI) include, but are not limited to, the following compounds:
5-methyl-5- (2-tetrahydrofuranylmethyl) oxycarbonyl-1,3-dioxane-2-one,
5-methyl-5- (3-tetrahydrofuranylmethyl) oxycarbonyl-1,3-dioxane-2-one,
5-methyl-5- (3-tetrahydropyranylmethyl) oxycarbonyl-1,3-dioxane-2-one 4-methyl-4- (2-tetrahydrofuranylmethyl) oxycarbonyl-1,3-dioxane-2- on,
4-methyl-4- (3-tetrahydrofuranylmethyl) oxycarbonyl-1,3-dioxane-2-one, and 4-methyl-4- (3-tetrahydropyranylmethyl) oxycarbonyl-1,3-dioxane- 2-on,
Etc.
 本発明の一つの態様は、一般式(VII)で示される化合物を開環重合する工程を含む、抗血栓性ポリマーの製造方法である。具体的には、本発明の方法により得られた環状カーボネート、例えば式(XI)で示される環状カーボネートを開環重合することにより、種々のポリカーボネートを製造することができる。 One embodiment of the present invention is a method for producing an antithrombotic polymer comprising a step of ring-opening polymerization of a compound represented by the general formula (VII). Specifically, various polycarbonates can be produced by ring-opening polymerization of a cyclic carbonate obtained by the method of the present invention, for example, a cyclic carbonate represented by the formula (XI).
 一般式(VII)で示される化合物の開環重合は、当業者に公知の方法により実施される。開環重合の方法としては、カチオン重合反応、アニオン重合反応等を用いることができる。カチオン重合反応は、三フッ化ホウ素エーテル錯体、四塩化チタン、塩化アルミニウム等のルイス酸、塩酸、メタンスルホン酸等のプロトン酸、ヨウ化メチル等のアルキルカチオン発生剤を開始剤として用いて、行うことができる。アニオン開環重合は、アルカリ金属、金属ヒドリド、金属アルコキシド、有機金属化合物等を開始剤として用いて、行うことができる。 The ring-opening polymerization of the compound represented by the general formula (VII) is carried out by a method known to those skilled in the art. As the ring-opening polymerization method, a cationic polymerization reaction, an anionic polymerization reaction, or the like can be used. The cationic polymerization reaction is carried out using a Lewis acid such as boron trifluoride ether complex, titanium tetrachloride or aluminum chloride, a protonic acid such as hydrochloric acid or methanesulfonic acid, or an alkyl cation generator such as methyl iodide as an initiator. be able to. Anionic ring-opening polymerization can be performed using an alkali metal, a metal hydride, a metal alkoxide, an organometallic compound, or the like as an initiator.
 一般式(VII)で示される化合物が環状カーボネートである場合、ラクトンである場合のいずれも、カチオン重合及びアニオン重合のいずれをも用いることができる。環状カーボネートをカチオン重合する場合には、脱炭酸に伴うポリエーテルの副生を抑制するために、アルキルハライドのような大きな求核性を有する対アニオンを発生する開始剤を用いて行うことが好ましい。また、配位挿入機構で進行するとされており、米国食品医薬品局(FDA)によって使用が認められている、現在、該環状モノマー類の開環重合に最も一般的に用いられているオクチル酸スズを触媒とし、アルコールを開始剤として用いて該開環重合反応を行うこともできる。さらには、近年、注目されている有機分子触媒は水素結合によってモノマーとアルコール開始剤を共に温和に活性化させて重合反応を進行させるため、脱炭酸はもとよりエステル交換反応などの連鎖移動反応も抑制することができ、分子量分布が比較的揃ったポリマーが得られやすく、モノマー活性化触媒としてはチオウレア構造や芳香族フルオロアルコールを含むルイス酸、開始剤活性化触媒としては3級アミンを用いて該重合反応を行うこともできる。 In the case where the compound represented by the general formula (VII) is a cyclic carbonate, both cationic polymerization and anionic polymerization can be used in both cases where the compound is a lactone. When the cyclic carbonate is cationically polymerized, it is preferable to use an initiator that generates a counter anion having a large nucleophilicity, such as an alkyl halide, in order to suppress by-production of the polyether accompanying decarboxylation. . In addition, tin octylate, which is believed to proceed through a coordinated insertion mechanism and is approved for use by the US Food and Drug Administration (FDA), is currently the most commonly used ring-opening polymerization of cyclic monomers. It is also possible to carry out the ring-opening polymerization reaction by using alcohol as an initiator. Furthermore, in recent years, organic molecular catalysts that have been attracting attention both moderately activate monomers and alcohol initiators by hydrogen bonds to advance the polymerization reaction, and thus suppress chain transfer reactions such as transesterification as well as decarboxylation. It is easy to obtain a polymer with a relatively uniform molecular weight distribution, using a thiourea structure or a Lewis acid containing an aromatic fluoroalcohol as a monomer activation catalyst, and a tertiary amine as an initiator activation catalyst. A polymerization reaction can also be performed.
 一般式(VII)で示される化合物の開環重合は、例えば、ジクロロメタン、クロロホルム、ジエチルエーテル、テトラヒドロフラン又はトルエン等の溶媒中、1-ピレンブタノール、ラウリルアルコール、デカノール又はステアリルアルコール等の重合開始剤、1,8-ジアザビシクロ[5,4,0]ウンデカ-7-エン(DBU)、ジメチルアミノピリジン(DMAP)又はトリエチレンジアミン(DABCO)等の環状アミン重合開始剤の存在下で、場合により二官能基化チオウレア、例えば1-(3,5-ビス(トリフルオロメチル)フェニル)-3-シクロヘキシル-2-チオウレア等の有機分子触媒を用いて、窒素雰囲気下、室温で反応させることにより行われる。 The ring-opening polymerization of the compound represented by the general formula (VII) is, for example, a polymerization initiator such as 1-pyrenebutanol, lauryl alcohol, decanol or stearyl alcohol in a solvent such as dichloromethane, chloroform, diethyl ether, tetrahydrofuran or toluene. In the presence of a cyclic amine polymerization initiator such as 1,8-diazabicyclo [5,4,0] undec-7-ene (DBU), dimethylaminopyridine (DMAP) or triethylenediamine (DABCO), optionally a bifunctional group This is carried out by reacting at room temperature under a nitrogen atmosphere using an organic molecular catalyst such as a thiourea compound such as 1- (3,5-bis (trifluoromethyl) phenyl) -3-cyclohexyl-2-thiourea.
 本発明の重合方法において、反応系は、副反応を抑制する点から、酸素、水を除去した窒素雰囲気下で行うことが好ましい。反応温度は、室温から溶媒の沸点の範囲で選択することができる。反応の制御等の点から、室温~50℃の範囲が好ましく、室温で行うことが最も好ましい。反応時間は、原料となる一般式(VII)の化合物、反応温度、触媒の有無に応じて変動するが、例えば室温で触媒を用いて行う場合、反応時間は1分~12時間、好ましくは30分~6時間、さらに好ましくは1時間~3時間である。反応の終了は、モノマーである一般式(VII)の化合物が反応系中に存在しているか否かで判断することができ、H-NMR、TLC等の方法により確認することができる。重合反応が十分に進行したら、反応停止剤を加えることによって重合反応を終了させることができる。反応停止剤には、例えば酢酸、塩酸、硫酸、安息香酸等が挙げられるが、その種類は特に制限されない。 In the polymerization method of the present invention, the reaction system is preferably performed in a nitrogen atmosphere from which oxygen and water are removed from the viewpoint of suppressing side reactions. The reaction temperature can be selected in the range of room temperature to the boiling point of the solvent. From the viewpoint of controlling the reaction, the temperature is preferably in the range of room temperature to 50 ° C., and most preferably at room temperature. The reaction time varies depending on the raw material compound of general formula (VII), the reaction temperature, and the presence or absence of a catalyst. For example, when using a catalyst at room temperature, the reaction time is 1 minute to 12 hours, preferably 30 Min to 6 hours, more preferably 1 to 3 hours. The completion of the reaction can be judged by whether or not the compound of the general formula (VII), which is a monomer, is present in the reaction system, and can be confirmed by a method such as 1 H-NMR or TLC. When the polymerization reaction has proceeded sufficiently, the polymerization reaction can be terminated by adding a reaction terminator. Examples of the reaction terminator include acetic acid, hydrochloric acid, sulfuric acid, benzoic acid and the like, but the type is not particularly limited.
 また、開環重合の反応は、モノマーである環状カーボネートを溶解する溶媒に溶解させて溶液相で行うことができるが、懸濁液の状態で重合反応を行ってもよく、さらにはバルク重合又は固体状のモノマーを溶融させた状態で重合させることもできる。分子量分布の小さい均一なポリマーを得るためには溶液相で重合することが好ましい。溶液重合を行う際の溶媒としては、モノマーを溶解することができ、溶媒自体が重合等の反応を起こさないような溶媒であれば特に制限されない。 The ring-opening polymerization reaction can be carried out in a solution phase by dissolving it in a solvent that dissolves the cyclic carbonate as a monomer. However, the polymerization reaction may be carried out in a suspension state, and further, bulk polymerization or Polymerization can also be performed in a state where a solid monomer is melted. In order to obtain a uniform polymer having a small molecular weight distribution, it is preferable to polymerize in a solution phase. The solvent for performing the solution polymerization is not particularly limited as long as the monomer can be dissolved and the solvent itself does not cause a reaction such as polymerization.
 カーボネート結合を繰り返し単位とする主鎖に、少なくとも1つのエーテル基を有する構造部分を有するポリカーボネートは、主鎖のポリカーボネートに由来する生分解性と、側鎖の少なくとも一つのエーテル基を有する構造に由来する血液適合性及び生体適合性等の特性を有するポリマーであり、医療用材料として用いたときに、優れた生体親和性を発揮する。したがって、本発明の方法を含む上記方法により得られるこのようなポリカーボネートを、本明細書では「生体親和性ポリカーボネート」と称する。本発明の方法を含む上記方法により得られる、生体親和性ポリカーボネートは、典型的には以下のような式で表すことができる。
Figure JPOXMLDOC01-appb-C000036
(式中、
 Xは、O、NH,又はSであり;
 Rは、上述した少なくとも1つのエーテル基を有する構造部分であり;
 m及びm’は、互いに独立して、0~5の整数であり、また、m及びm’の和は、7以下であり;
 これらの各々は、各繰り返し単位において異なっていてもよく、
 nは、重合度を表し、好ましくは2~2000の範囲である)。
A polycarbonate having a structural part having at least one ether group in the main chain having a carbonate bond as a repeating unit is derived from the biodegradability derived from the main chain polycarbonate and the structure having at least one ether group in the side chain. It is a polymer having characteristics such as blood compatibility and biocompatibility, and exhibits excellent biocompatibility when used as a medical material. Accordingly, such polycarbonates obtained by the above methods, including those of the present invention, are referred to herein as “biocompatible polycarbonates”. The biocompatible polycarbonate obtained by the above method including the method of the present invention can typically be represented by the following formula.
Figure JPOXMLDOC01-appb-C000036
(Where
X is O, NH, or S;
R 5 is a structural moiety having at least one ether group as described above;
m and m ′ are each independently an integer of 0 to 5, and the sum of m and m ′ is 7 or less;
Each of these may be different in each repeating unit,
n represents the degree of polymerization, preferably in the range of 2 to 2000).
 mとm’の値は、モノマーの原料化合物の選択によって決定されるが、モノマーの調製の点から、mとm’の和が、1~4の範囲にあることが好ましく、mとm’が、共に1であることが最も好ましい。 The values of m and m ′ are determined by the selection of the monomer raw material compound. From the viewpoint of monomer preparation, the sum of m and m ′ is preferably in the range of 1 to 4, and m and m ′. Are most preferably 1.
 上記式(XIII)において少なくとも1つのエーテル基を有する構造部分Rは、ポリエチレングリコール等の鎖状エーテル、環状エーテル又はアセタール構造を少なくとも一つ、すなわち少なくとも一つエーテル基を有するような分子鎖であれば特に制限されない。構造部分Rが、少なくとも一つのエーテル基(-O-)を有していることにより、例えばポリエチレングリコールに見られるような高い分子運動性を示すことが可能であって、このような構造を側鎖中に有することでポリマーとして中間水を含有可能になると考えられる。そして、構造部分Rに含まれるエーテル基の数、構造部分R自体の嵩高さ等を調節することにより、得られるポリマーが含有可能な中間水の量が調節されて抗血栓性の程度を調節することができる。 In the above formula (XIII), the structural portion R 5 having at least one ether group is a molecular chain having at least one chain ether such as polyethylene glycol, cyclic ether or acetal structure, that is, at least one ether group. If there is no particular limitation. Since the structural portion R 5 has at least one ether group (—O—), it is possible to exhibit high molecular mobility as seen in, for example, polyethylene glycol. It is considered that intermediate water can be contained as a polymer by having it in the side chain. Then, the ether groups contained in the structural moiety R 5 numbers, by adjusting the bulkiness or the like structural parts R 5 itself, the degree amount is regulated antithrombotic of the resulting polymer capable intermediate water content Can be adjusted.
 上記生体親和性ポリカーボネートの製造方法は、本発明の方法により得られた環状カーボネートを開環重合に限定されず、ポリカーボネートポリマーを最初に合成し、その主鎖の所定の炭素原子に対して所定のエーテル基を含む構造を導入することで生体親和性ポリカーボネートを製造してもよい。この生体親和性ポリカーボネート組成物において、主鎖ポリマーの繰り返し単位全てにわたってエーテル基を含む構造が側鎖として結合している必要は必ずしもないが、合成の簡便さや、ポリマーの特性を予測しやすくする観点からは、エーテル基を含む構造が導入された単一種のモノマーを重合してポリマーとすることも好ましい。 The method for producing the biocompatible polycarbonate is not limited to the ring-opening polymerization of the cyclic carbonate obtained by the method of the present invention. The polycarbonate polymer is synthesized first, and a predetermined carbon atom of the main chain is determined with respect to a predetermined carbon atom. A biocompatible polycarbonate may be produced by introducing a structure containing an ether group. In this biocompatible polycarbonate composition, it is not always necessary that a structure containing an ether group is bonded as a side chain over all the repeating units of the main chain polymer, but it is easy to synthesize and to make it easy to predict the characteristics of the polymer. From the above, it is also preferable to polymerize a single kind of monomer into which a structure containing an ether group is introduced to form a polymer.
 一般式(VII)で示されるモノマー化合物の開環重合によって製造される生体親和性ポリマー組成物もまた、本発明の目的である。 A biocompatible polymer composition produced by ring-opening polymerization of a monomer compound represented by the general formula (VII) is also an object of the present invention.
 本発明により製造される生体親和性ポリマー組成物には、本発明の趣旨を逸脱しない範囲内で、必要に応じて、例えば、ラジカル捕捉剤、過酸化物分解剤、酸化防止剤、紫外線吸収剤、熱安定剤、可塑剤、難燃剤、帯電防止剤等の添加剤を添加して使用することができる。また、本発明のポリマー以外のポリマーと混合させて使用することができる。このような、本発明の生体親和性ポリマー組成物を含む組成物もまた、本発明の目的である。 The biocompatible polymer composition produced according to the present invention may contain, for example, a radical scavenger, a peroxide decomposer, an antioxidant, and an ultraviolet absorber as long as it does not depart from the spirit of the present invention. In addition, additives such as a heat stabilizer, a plasticizer, a flame retardant, and an antistatic agent can be added and used. Moreover, it can be used by mixing with polymers other than the polymer of this invention. Such a composition comprising the biocompatible polymer composition of the present invention is also an object of the present invention.
 本発明により製造される種々の生体親和性ポリマー組成物は、適宜の有機溶媒に溶解させて単独で使用することもできるし、使用の目的に応じて他の高分子化合物と混合して使用する等、各種の組成物として使用することができる。また、本発明の医療用機器は、生体内組織や血液と接して使用される表面の少なくとも一部分に本発明の生体親和性ポリマー組成物を有していればよい。つまり、医療用機器を成す基材の表面に対して、本発明の生体親和性ポリマー組成物を含む組成物を表面処理剤として用いることができる。また、医療用機器の少なくとも一部の部材を本発明の生体親和性ポリマー組成物、又は、その組成物で構成しても良い。 The various biocompatible polymer compositions produced according to the present invention can be used alone by being dissolved in an appropriate organic solvent, or used by mixing with other polymer compounds depending on the purpose of use. Etc., and can be used as various compositions. Moreover, the medical device of this invention should just have the bioaffinity polymer composition of this invention in at least one part of the surface used in contact with the structure | tissue or blood in a living body. That is, a composition containing the biocompatible polymer composition of the present invention can be used as a surface treatment agent on the surface of a base material constituting a medical device. Moreover, you may comprise at least one part member of a medical device with the bioaffinity polymer composition of this invention, or its composition.
 本発明の一つの態様は、生体内組織や血液に接して使用されたときに、分解されるまでの間、血液や組織に対して異物反応を抑制するための、本発明の生体親和性ポリマー組成物である。 One aspect of the present invention is a biocompatible polymer of the present invention for suppressing a foreign body reaction to blood or tissue until it is decomposed when used in contact with tissue or blood in vivo. It is a composition.
 本発明の生体親和性ポリマー組成物は、医療用途に好ましく使用されることができる。本発明の生体親和性ポリマー組成物を他の高分子化合物等と混合して組成物として使用する場合には、その使用の用途に応じて適宜の混合割合で使用することができる。特に、本発明の生体親和性ポリマー組成物の割合を90重量%以上とすることで、本発明の特徴を強く有する組成物とすることができる。その他、使用の用途によっては、本発明の生体親和性ポリマー組成物の割合を50~70重量%とすることで、本発明の特徴を活かしつつ、各種の特性を併せ持つ組成物とすることができる。 The biocompatible polymer composition of the present invention can be preferably used for medical applications. When the biocompatible polymer composition of the present invention is mixed with another polymer compound and used as a composition, it can be used in an appropriate mixing ratio depending on the intended use. In particular, by setting the ratio of the biocompatible polymer composition of the present invention to 90% by weight or more, a composition having the characteristics of the present invention can be obtained. In addition, depending on the intended use, by setting the ratio of the biocompatible polymer composition of the present invention to 50 to 70% by weight, it is possible to obtain a composition having various characteristics while utilizing the features of the present invention. .
 本発明の一つの態様は、本発明の生体親和性ポリマー組成物を含む、医療用機器である。また、生体親和性ポリカーボネート組成物は、生体内組織や血液と接して使用される医療用機器の表面の少なくとも一部分に適用して、生体親和性ポリカーボネートを含む医療用機器とすることができる。つまり、医療用機器を成す基材の表面に対して、表面処理剤として用いることができるほか、医療用機器の少なくとも一部の部材を構成する材料として用いることができる。ここで、「医療用機器」とは、人工器官等の体内埋め込み型デバイス及びカテーテル等の一時的に生体組織と接触することがあるデバイスを含み、生体内で取り扱われるものに限定されない。また、本発明の医療用機器は、本発明のポリマー組成物を少なくとも表面の一部に有する医療用途に使用される機器である。本発明でいう医療用機器の表面とは、例えば、医療用機器が使用される際に血液等が接触する医療用機器を構成する材料の表面並びに材料内の孔の表面部分等をいう。
 なお、本明細書において、「生体内組織や血液に接して使用され」とは、例えば、生体内に入れられた状態、生体内組織が露出した状態で当該組織や血液と接して使用される形態、及び体外循環医用材料において体外に取り出した生体内成分である血液と接して使用される形態等を当然に含むものとする。また、「医療用途に使用され」とは、上記「生体内組織や血液に接して使用され」、又は、それを予定して使用されることを含むものである。
One aspect of the present invention is a medical device comprising the biocompatible polymer composition of the present invention. In addition, the biocompatible polycarbonate composition can be applied to at least a part of the surface of a medical device used in contact with tissue or blood in a living body to obtain a medical device containing the biocompatible polycarbonate. That is, it can be used as a surface treatment agent for the surface of a base material constituting a medical device, and can also be used as a material constituting at least a part of members of the medical device. Here, the “medical device” includes an implantable device such as a prosthesis and a device such as a catheter that may temporarily come into contact with living tissue, and is not limited to a device that is handled in a living body. The medical device of the present invention is a device used for medical applications having the polymer composition of the present invention on at least a part of its surface. The surface of the medical device referred to in the present invention refers to, for example, the surface of the material constituting the medical device that contacts blood when the medical device is used, the surface portion of the hole in the material, and the like.
In this specification, “used in contact with tissue or blood in a living body” is used, for example, in contact with the tissue or blood in a state where it is placed in the living body or in a state where the tissue in the living body is exposed. Naturally, the form and the form used in contact with blood which is an in vivo component taken out of the body in the extracorporeal circulation medical material are included. In addition, “used for medical use” includes the above-mentioned “used in contact with in vivo tissues and blood” or intended use.
 本発明において、医療用機器を構成する基材の材質や形状は特に制限されることなく、例えば、多孔質体、繊維、不織布、粒子、フィルム、シート、チューブ、中空糸や粉末等いずれでも良い。その材質としては木錦、麻等の天然高分子、ナイロン、ポリエステル、ポリアクリロニトリル、ポリオレフィン、ハロゲン化ポリオレフィン、ポリウレタン、ポリアミド、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリ(メタ)アクリレート、エチレン-ビニルアルコール共重合体、ブタジエン-アクリロニトリル共重合体等の合成高分子あるいはこれらの混合物が挙げられる。また、金属、セラミクス及びそれらの複合材料等が例示でき、複数の基材より構成されていても構わず、その血液と接する表面の少なくとも一部、好ましくは血液と接する表面のほぼ全部に本発明に係る生体親和性ポリマー組成物が設けられることが望ましい。 In the present invention, the material and shape of the base material constituting the medical device are not particularly limited, and may be any of, for example, a porous body, fiber, nonwoven fabric, particle, film, sheet, tube, hollow fiber, and powder. . The materials include natural polymers such as Kinishiki and hemp, nylon, polyester, polyacrylonitrile, polyolefin, halogenated polyolefin, polyurethane, polyamide, polycarbonate, polysulfone, polyethersulfone, poly (meth) acrylate, and ethylene-vinyl alcohol. Examples thereof include synthetic polymers such as polymers, butadiene-acrylonitrile copolymers, and mixtures thereof. Further, metals, ceramics, composite materials thereof, and the like can be exemplified, and they may be composed of a plurality of base materials. The present invention is applied to at least a part of the surface in contact with blood, preferably almost the entire surface in contact with blood. Desirably, a biocompatible polymer composition is provided.
 本発明の生体親和性ポリマー組成物は、生体内組織や血液と接して使用される医療用機器の全体をなす材料、又はその表面部をなす材料として用いることができ、体内埋め込み型の人工器官や治療器具、体外循環型の人工臓器類、手術縫合糸、さらにカテーテル類(血管造影用カテーテル、ガイドワイヤー、PTCA用カテーテル等の循環器用カテーテル、胃管カテーテル、胃腸カテーテル、食道チューブ等の消化器用カテーテル、チューブ、尿道カテーテル、尿菅カテーテル等の泌尿器科用カテーテル)等の医療用機器の血液と接する表面の少なくとも一部、好ましくは血液と接する表面のほぼ全部が本発明に係る生体親和性ポリマー組成物で構成されることが望ましい。また、本発明に係る生体親和性ポリマー組成物が有する生分解性を利用して、治療の際に体内に留置される医療用機器に特に好ましく用いることができる。 The biocompatible polymer composition of the present invention can be used as a material constituting a whole medical device used in contact with a tissue or blood in a living body or a material constituting a surface portion thereof, and can be used as an implantable prosthesis. And therapeutic instruments, extracorporeal circulation type artificial organs, surgical sutures, and catheters (circulatory catheters such as angiographic catheters, guide wires, PTCA catheters, gastrointestinal catheters, gastrointestinal catheters, esophageal tubes, etc.) A biocompatible polymer according to the present invention, wherein at least a part of the surface in contact with blood of a medical device such as a catheter, tube, urinary catheter, urinary catheter, etc. It is desirable to be composed of a composition. In addition, the biodegradability of the biocompatible polymer composition according to the present invention can be used particularly preferably for a medical device placed in the body during treatment.
 本発明の生体親和性ポリマー組成物は、止血剤、生体組織の粘着材、組織再生用の補修材、薬物徐放システムの担体、人工すい臓や人工肝臓等のハイブリッド人工臓器、人工血管、塞栓材、細胞工学用の足場のためのマトリックス材料等に用いても良い。 The biocompatible polymer composition of the present invention comprises a hemostatic agent, a biological tissue adhesive, a tissue regeneration repair material, a drug sustained release carrier, a hybrid artificial organ such as an artificial pancreas and an artificial liver, an artificial blood vessel, and an embolization material. It may also be used as a matrix material for a scaffold for cell engineering.
 これらの医療用機器においては、血管や組織への挿入を容易にして組織を損傷しないため、さらに表面潤滑性を付与してもよい。表面潤滑性を付与する方法としては水溶性高分子を不溶化して材料表面に吸水性のゲル層を形成させる方法が優れている。この方法によれば、生体親和性と表面潤滑性を併せ持つ材料表面を提供できる。 These medical devices may be further provided with surface lubricity because they can be easily inserted into blood vessels and tissues and do not damage the tissues. As a method for imparting surface lubricity, a method in which a water-soluble polymer is insolubilized to form a water-absorbing gel layer on the material surface is excellent. According to this method, a material surface having both biocompatibility and surface lubricity can be provided.
 本発明の生体親和性ポリマー組成物はそれ自体が生体親和性に優れた材料であるが、様々な生理活性物質をさらに担持させることもできるため、血液フィルターのみならず、血液保存容器、血液回路、留置針、カテーテル、ガイドワイヤー、ステント、人工肺装置、透析装置、内視鏡等の様々な医療用機器に用いることができる。
 具体的には、本発明の生体親和性ポリマー組成物を、血液フィルターを構成する基材表面の少なくとも一部にコーティングしてもよい。また、血液バッグと前記血液バッグに連通するチューブの血液と接する表面の少なくとも一部に本発明の高分子化合物をコーティングしてもよい。また、チューブ、動脈フィルター、遠心ポンプ、ヘモコンセントレーター、カーディオプレギア等からなる器械側血液回路部、チューブ、カテーテル、サッカー等からなる術野側血液回路部から構成される体外循環血液回路の血液と接する表面の少なくとも一部を本発明の生体親和性ポリマー組成物でコーティングしてもよい。
 また、先端に鋭利な針先を有する内針と、前記内針の基端側に設置された内針ハブと、前記内針が挿入可能な中空の外針と、前記外針の基端側に設置された外針ハブと、前記内針に装着され、かつ前記内針の軸方向に移動可能なプロテクタと、前記外針ハブと前記プロテクタとを連結する連結手段とを備えた留置針組立体の、血液と接する表面の少なくとも一部が本発明の生体親和性ポリマー組成物でコーティングされてもよい。また、長尺チューブとその基端(手元側)に接続させたアダプターから構成されるカテーテルの血液と接触する表面の少なくとも一部が本発明の生体親和性ポリマー組成物でコーティングされてもよい。
 また、ガイドワイヤーの血液と接触する表面の少なくとも一部が本発明の生体親和性ポリマー組成物でコーティングされてもよい。また、金属材料や高分子材料よりなる中空管状体の側面に細孔を設けたものや金属材料のワイヤや高分子材料の繊維を編み上げて円筒形に成形したもの等、様々な形状のステントの血液と接触する表面の少なくとも一部が本発明の生体親和性ポリマー組成物でコーティングされてもよい。
 また、多数のガス交換用多孔質中空糸膜をハウジングに収納し、中空糸膜の外面側に血液が流れ、中空糸膜の内部に酸素含有ガスが流れるタイプの中空糸膜外部血液灌流型人工肺の、中空糸膜の外面もしくは外面層に、本発明の生体親和性ポリマー組成物が被覆されている人工肺としてもよい。
 また、透析液が充填された少なくとも一つの透析液容器と、透析液を回収する少なくとも一つの排液容器とを含む透析液回路と、前記透析液容器を起点とし、又は、前記排液容器を終点として、透析液を送液する送液手段とを有する透析装置であって、その血液と接する表面の少なくとも一部が本発明の生体親和性ポリマー組成物でコーティングされてもよい。
The biocompatible polymer composition of the present invention itself is a material excellent in biocompatibility, but since it can further carry various physiologically active substances, not only blood filters but also blood storage containers and blood circuits It can be used for various medical devices such as indwelling needles, catheters, guide wires, stents, oxygenators, dialysis machines, and endoscopes.
Specifically, the biocompatible polymer composition of the present invention may be coated on at least a part of the substrate surface constituting the blood filter. Further, the polymer compound of the present invention may be coated on at least a part of the blood bag and the surface of the tube communicating with the blood bag in contact with the blood. In addition, blood in an extracorporeal circulation blood circuit composed of an instrument side blood circuit unit composed of a tube, an arterial filter, a centrifugal pump, a hemoconcentrator, a cardio pregear, etc., and an operative field side blood circuit unit composed of a tube, catheter, soccer, etc. At least a part of the surface in contact with the surface may be coated with the biocompatible polymer composition of the present invention.
Further, an inner needle having a sharp needle tip at a distal end, an inner needle hub installed on the proximal end side of the inner needle, a hollow outer needle into which the inner needle can be inserted, and a proximal end side of the outer needle An indwelling needle assembly comprising: an outer needle hub installed on the inner needle; a protector mounted on the inner needle and movable in the axial direction of the inner needle; and a connecting means for connecting the outer needle hub and the protector. At least a portion of the three-dimensional, blood-contacting surface may be coated with the biocompatible polymer composition of the present invention. Moreover, at least a part of the surface of the long tube that contacts the blood of the catheter composed of the adapter connected to the proximal end (hand side) may be coated with the biocompatible polymer composition of the present invention.
Further, at least a part of the surface of the guide wire that comes into contact with blood may be coated with the biocompatible polymer composition of the present invention. In addition, stents of various shapes, such as hollow tubular bodies made of metal materials or polymer materials with pores on the side, metal material wires or polymer material fibers knitted into a cylindrical shape, etc. At least a portion of the surface that contacts blood may be coated with the biocompatible polymer composition of the present invention.
Also, a large number of porous hollow fiber membranes for gas exchange are housed in a housing, blood flows on the outer surface side of the hollow fiber membrane, and oxygen-containing gas flows inside the hollow fiber membrane. The lung may be an artificial lung in which the outer surface or outer layer of the hollow fiber membrane is coated with the biocompatible polymer composition of the present invention.
Further, a dialysate circuit including at least one dialysate container filled with dialysate and at least one drainage container for collecting dialysate, and starting from the dialysate container, or The end point may be a dialyzer having a liquid feeding means for feeding dialysate, and at least a part of the surface in contact with the blood may be coated with the biocompatible polymer composition of the present invention.
 本発明の生体親和性ポリマー組成物を含む組成物を医療用機器等の表面に保持させる方法としては、コーティング法、放射線、電子線及び紫外線によるグラフト重合、基材の官能基との化学反応を利用して導入する方法等の公知の方法が挙げられる。この中でも特にコーティング法は製造操作が容易であるため、実用上好ましい。さらにコーティング方法についても、塗布法、スプレー法、ディップ法等があるが、特に制限なくいずれも適用できる。その膜厚は、好ましくは、0.1μm~1mmである。例えば、本発明の生体親和性ポリマー組成物を含む組成物の塗布法によるコーティング処理は、適当な溶媒に本発明の生体親和性ポリマー組成物を含む組成物を溶解したコーティング溶液に、コーティングを行う部材を浸漬した後、余分な溶液を除き、ついで風乾させる等の簡単な操作で実施できる。また、コーティングを行う部材に本発明の生体親和性ポリマー組成物をより強固に固定化させるために、コーティング後に熱を加え、本発明の生体親和性ポリマー組成物との接着性を更に高めることもできる。また、表面を架橋することで固定化しても良い。架橋する方法として、コモノマー成分として架橋性モノマーを導入しても良い。また、電子線、γ線、光照射によって架橋しても良い。 As a method for holding the composition containing the biocompatible polymer composition of the present invention on the surface of a medical device or the like, a coating method, a graft polymerization by radiation, electron beam or ultraviolet ray, a chemical reaction with a functional group of a base material is used. Well-known methods, such as a method of introducing by using, may be mentioned. Among these, the coating method is particularly preferable in practical use because the manufacturing operation is easy. Furthermore, there are coating methods, spraying methods, dipping methods and the like as coating methods, and any of them can be applied without any particular limitation. The film thickness is preferably 0.1 μm to 1 mm. For example, in the coating treatment by the application method of the composition containing the biocompatible polymer composition of the present invention, the coating solution is prepared by dissolving the composition containing the biocompatible polymer composition of the present invention in an appropriate solvent. After dipping the member, it can be carried out by a simple operation such as removing excess solution and then air-drying. In addition, in order to more firmly immobilize the biocompatible polymer composition of the present invention on the member to be coated, heat may be applied after coating to further improve the adhesion with the biocompatible polymer composition of the present invention. it can. Moreover, you may fix | immobilize by bridge | crosslinking the surface. As a method for crosslinking, a crosslinkable monomer may be introduced as a comonomer component. Moreover, you may bridge | crosslink by an electron beam, a gamma ray, and light irradiation.
 架橋性モノマーとしては、メチレンビスアクリルアミド、トリメチロールプロパンジアクリレート、トリアリルイソシアネート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート等のビニル基又はアリル基を1分子中に複数個有する化合物のほかに、ポリエチレングリコールジアクリレートがあげられる。このうち、ポリエチレングリコールジアクリレートを用いて、種々の官能基を導入した場合が、官能基を有する化合物の導入率が高く、更にポリエチレングリコール鎖を導入して親水性化できることにより、上記のように目的以外の細胞やタンパク質等の非特異的吸着が抑制されるので好ましい。この場合のポリエチレングリコール鎖の分子量は好ましくは100~10000、さらに好ましくは500~6000である。 In addition to compounds having a plurality of vinyl groups or allyl groups in one molecule such as methylene bisacrylamide, trimethylolpropane diacrylate, triallyl isocyanate, trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, etc. And polyethylene glycol diacrylate. Among these, when various functional groups are introduced using polyethylene glycol diacrylate, the introduction rate of the compound having a functional group is high, and further, by introducing a polyethylene glycol chain to make it hydrophilic, as described above This is preferable because nonspecific adsorption of cells and proteins other than the intended purpose is suppressed. In this case, the molecular weight of the polyethylene glycol chain is preferably 100 to 10,000, more preferably 500 to 6,000.
 さらに、生体親和性ポリカーボネート組成物は、止血剤、生体組織の粘着材、組織再生用の補修材、薬物徐放システムの担体、人工すい臓や人工肝臓等のハイブリッド人工臓器、人工血管、塞栓材、細胞工学用の足場のためのマトリックス材料等に用いることが特に好ましい。すなわち、生体内の所望の場所に存在する一定の期間は、抗血栓性等の血液適合性を発揮して血液凝固などの好ましくない生体反応を防止しつつ、適度な細胞接着性を有することから、生体内に存在する種々の細胞等の接着により様々な用途に使用することができる。そして、生分解性を有することから生体内で必要な期間経過後は酵素などにより分解されて接着した生細胞と置き換わることも可能であると考えられる。
 例えば、生体内の人工血管に用いた場合は、血管内皮細胞が接着して自己の組織が再生するまでその足場として機能し、一定期間経過後は生体内で分解されるので再手術により取り出す必要がない。また、抗血栓性と癌細胞の接着性を利用して血液中を循環している転移性の高い癌細胞の吸着及び補足剤としても利用することができる。癌細胞の表面抗原に結合する抗体を用いた従来の特異的な吸着法に比べて、生体親和性ポリカーボネートを用いる場合はより広範囲の癌細胞を吸着できる可能性がある。さらに生体内の環境により近い状態で癌細胞を培養することができるため、抗癌剤のスクリーニングに用いる培養基材としても利用でき、抗癌剤の開発促進が期待される。生体親和性ポリカーボネートが生分解性を有する点は、生体内で癌細胞を吸着する用途においても有利な効果を示す。例えば、生体内で吸着された癌細胞が一定の大きさに達すると自然免疫システムによって認識されるが、免疫細胞に捕食されたときにポリマー自体が分解されやすいことは生体内の免疫システムにとって有利である。したがって、血液適合性と細胞接着性を併せ持つ生体親和性ポリカーボネートは、癌の診断や治療デバイスとして新たな用途に使用できると考えられる。
 一方、生体内には様々な細胞が存在するところ、未分化な幹細胞を吸着することができれば、事故や病気で損傷を受けた組織の修復、補修材として用いた場合に、生体内に存在するこれらの幹細胞を損傷部位に濃縮することができ、組織の再生に極めて有利であろう。
Furthermore, the biocompatible polycarbonate composition includes a hemostatic agent, an adhesive for living tissue, a repair material for tissue regeneration, a carrier for a drug sustained release system, a hybrid artificial organ such as an artificial pancreas and an artificial liver, an artificial blood vessel, an embolizing material, It is particularly preferable to use it as a matrix material for a scaffold for cell engineering. That is, for a certain period of time in a desired place in the living body, it exhibits appropriate blood cell adhesion while exhibiting blood compatibility such as antithrombotic properties and preventing undesirable biological reactions such as blood coagulation. It can be used for various purposes by adhesion of various cells existing in the living body. And, since it has biodegradability, it is considered that it can be replaced with living cells that have been decomposed and adhered by an enzyme or the like after a necessary period of time in vivo.
For example, when used for an artificial blood vessel in a living body, it functions as a scaffold until the vascular endothelial cells adhere and the self tissue regenerates. There is no. It can also be used as an adsorbing and supplementing agent for highly metastatic cancer cells circulating in the blood by utilizing antithrombogenicity and cancer cell adhesion. Compared with the conventional specific adsorption method using an antibody that binds to a surface antigen of cancer cells, a wider range of cancer cells may be adsorbed when using a biocompatible polycarbonate. Furthermore, since cancer cells can be cultured in a state closer to the environment in the living body, it can be used as a culture substrate used for screening for anticancer agents, and the development of anticancer agents is expected to be promoted. The point that the biocompatible polycarbonate has biodegradability shows an advantageous effect even in applications for adsorbing cancer cells in vivo. For example, when cancer cells adsorbed in vivo reach a certain size, they are recognized by the innate immune system, but it is advantageous for the in vivo immune system that the polymer itself is easily decomposed when preyed on by immune cells. It is. Therefore, it is considered that the biocompatible polycarbonate having both blood compatibility and cell adhesion can be used for new applications as a cancer diagnosis and treatment device.
On the other hand, there are various cells in the body. If undifferentiated stem cells can be adsorbed, they will be present in the body when used for repairing or repairing tissues damaged by accidents or diseases. These stem cells can be concentrated at the site of injury and would be extremely advantageous for tissue regeneration.
 以上のように、本発明の方法により、簡便かつ効率的に、種々のカーボネート化合物を合成することができる。また、本発明の方法を含む方法により得られた生体親和性ポリカーボネート組成物を含む組成物を、医療用機器の血液と接触する表面の少なくとも一部に導入すると、凝固系、補体系、血小板系の活性化等の望ましくない生体反応を抑制することが可能であり、優れた生体適合性を付与することができる。さらに一方では、生体親和性ポリカーボネート組成物は、生分解性を有するとともに、生体内においては、適度な細胞接着性を発揮して生体との親和性を有するため、生体及び環境に対する負荷を少なくすることができると考えられる。 As described above, various carbonate compounds can be synthesized simply and efficiently by the method of the present invention. Further, when a composition containing a biocompatible polycarbonate composition obtained by a method including the method of the present invention is introduced into at least a part of a surface of a medical device that comes into contact with blood, a coagulation system, a complement system, and a platelet system It is possible to suppress undesirable biological reactions such as activation, and to impart excellent biocompatibility. On the other hand, the biocompatible polycarbonate composition has biodegradability and exhibits appropriate cell adhesion in the living body and has an affinity with the living body, thereby reducing the burden on the living body and the environment. It is considered possible.
 以下、実施例により本発明を詳細に説明するが、本発明はこれら実施例によって限定されるものではない。なお、以下の例で用いた薬品は、とくに断りの無い場合は市販品をそのまま用いた。以下の例において、実施例1~3及び比較例1で得られた生成物(中間化合物、最終化合物)の構造の確認、重合の進行度、各実施例で得られた重合体の数平均分子量及び分子量分布の測定、中間水の有無の確認は以下のようにして行った。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples. In addition, as long as there was no notice in particular, the chemical | medical agent used in the following examples used the commercial item as it was. In the following examples, confirmation of the structure of the products (intermediate compounds, final compounds) obtained in Examples 1 to 3 and Comparative Example 1, the degree of polymerization, and the number average molecular weight of the polymers obtained in each Example Measurement of molecular weight distribution and confirmation of the presence of intermediate water were performed as follows.
(1)数平均分子量([Mn]、単位:g/mol)
ピーク分子量が既知の標準ポリスチレンを用い、該標準ポリスチレンで校正したゲル浸透クロマトグラフィー(GPC)(東ソー社製「HLC-8220」、カラム構成:Tosoh TSK-gels super AW5000、super AW4000、super AW3000)を使用して、重合体の数平均分子量(Mn)及び重量平均分子量(Mw)を測定した。(溶媒:テトラヒドロフラン、温度:40℃、流量:1.0mL/min)。
(1) Number average molecular weight ([Mn], unit: g / mol)
Gel permeation chromatography (GPC) calibrated with the standard polystyrene having a known peak molecular weight (“HLC-8220” manufactured by Tosoh Corporation, column configuration: Tosoh TSK-gels super AW5000, super AW4000, super AW3000) Used to measure the number average molecular weight (Mn) and weight average molecular weight (Mw) of the polymer. (Solvent: tetrahydrofuran, temperature: 40 ° C., flow rate: 1.0 mL / min).
(2)分子量分布([Mw/Mn])
上記(1)の方法で求めた重量平均分子量(Mw)と数平均分子量(Mn)の値を用い、その比(Mw/Mn)として求めた。
(2) Molecular weight distribution ([Mw / Mn])
It calculated | required as the ratio (Mw / Mn) using the value of the weight average molecular weight (Mw) calculated | required by the method of said (1), and a number average molecular weight (Mn).
(3)NMR測定
モノマー及びポリマーの構造解析については、NMR測定装置(日本電子株式会社製、JEOL 500MHz JNM-ECX)を用い、H-NMR測定及び13C-NMR測定を行った。なお、ケミカルシフトはCDClH:7.26ppm、13C:77.1ppm)を基準とした。
(3) NMR measurement For structural analysis of the monomer and polymer, 1 H-NMR measurement and 13 C-NMR measurement were performed using an NMR measurement apparatus (JEOL 500 MHz JNM-ECX, manufactured by JEOL Ltd.). The chemical shift was based on CDCl 3 ( 1 H: 7.26 ppm, 13 C: 77.1 ppm).
[実施例1]2,2-ビス(メチロール)プロピオン酸2-メトキシエチル(MPA-ME)の合成
Figure JPOXMLDOC01-appb-C000037
 2,2-ビス(メチロール)プロピオン酸(ビス-MPA;30.0g、0.224mol)、イオン交換樹脂Amberyst-15(登録商標)(6.00g)を2-メトキシエタノール(150mL、1.91mol)に加えて90℃にて45時間加熱、撹拌した。その後、反応溶液からイオン交換樹脂を濾別し、得られた濾液を減圧下で濃縮、乾燥して淡黄色の油状物質として、2,2-ビス(メチロール)プロピオン酸2-メトキシエチル(MPA-ME)を得た(25.1g、収率58.5%)。1H-NMR (500 MHz, CDCl3): δ 4.35 (quin, 2H, CH2CH2OCH3), 3.85 (d, 2H, CHaHbOH), 3.73 (d, 2H, CH2HbOH), 4.35 (quin, 2H, CH2OCH3), 3.39 (s, 3H, OCH3), 1.11 (s, 3H, CH3).
[Example 1] Synthesis of 2-methoxyethyl 2,2-bis (methylol) propionate (MPA-ME)
Figure JPOXMLDOC01-appb-C000037
2,2-bis (methylol) propionic acid (bis-MPA; 30.0 g, 0.224 mol), ion exchange resin Ameryst-15 (6.00 g) was added to 2-methoxyethanol (150 mL, 1.91 mol). ) And heated and stirred at 90 ° C. for 45 hours. Thereafter, the ion exchange resin was filtered off from the reaction solution, and the obtained filtrate was concentrated and dried under reduced pressure to give 2-methoxyethyl 2,2-bis (methylol) propionate (MPA-) as a pale yellow oily substance. ME) was obtained (25.1 g, yield 58.5%). 1 H-NMR (500 MHz, CDCl 3 ): δ 4.35 (quin, 2H, CH 2 CH 2 OCH 3 ), 3.85 (d, 2H, CH a H b OH), 3.73 (d, 2H, CH 2 H b OH), 4.35 (quin, 2H, CH 2 OCH 3 ), 3.39 (s, 3H, OCH 3 ), 1.11 (s, 3H, CH 3 ).
[実施例2]5-メチル-5-(2-メトキシエチル)オキシカルボニル-1,3-ジオキサン-2-オン(MTC-ME)の合成
Figure JPOXMLDOC01-appb-C000038
 MPA-ME(25.1g、0.131mol)とピリジン(63.5mL、0.787mol)をジクロロメタン(DCM;150mL)に加え、ドライアイス-アセトン浴中で-75℃に冷却した。次にトリホスゲン(19.5g、0.0655mol)のDCM溶液(200mL)を滴下し、-75℃の冷却下にて2時間、その後室温にて2時間撹拌した。反応終了後、飽和塩化アンモニウム水溶液(200mL)を加えて45分間撹拌し、次いで有機相を1N 塩酸水溶液(200mL)で2回、飽和炭酸水素ナトリウム水溶液(200mL)、飽和食塩水(200mL)、及びイオン交換水(200mL)にて洗浄した。得られた有機相を硫酸マグネシウムにて乾燥後、減圧下で濃縮、乾燥した。その後、カラムクロマトグラフィー(酢酸エチル)にて精製し、無色の粘性液体として、5-メチル-5-(2-メトキシエチル)オキシカルボニル-1,3-ジオキサン-2-オン(MTC-ME)を得た(11.0g、収率43.8%)。1H-NMR (500MHz, CDCl3): δ 4.68 (d,2H,CHaHbOCOO), 4.32 (quin, 2H, CH2CH2OCH3), 4.20 (d, 2H, CHaHbOCOO), 3.57 (quin, 2H, CH2OCH3), 3.33 (s, 3H, OCH3), 1.31 (s, 3H, CH3). 13C-NMR (125MHz, CDCl3): δ 171.2 , 147.6 , 73.0 , 70.1 , 65.0 , 59.0 , 40.3 , 17.6。
Example 2 Synthesis of 5-methyl-5- (2-methoxyethyl) oxycarbonyl-1,3-dioxan-2-one (MTC-ME)
Figure JPOXMLDOC01-appb-C000038
MPA-ME (25.1 g, 0.131 mol) and pyridine (63.5 mL, 0.787 mol) were added to dichloromethane (DCM; 150 mL) and cooled to −75 ° C. in a dry ice-acetone bath. Next, a DCM solution (200 mL) of triphosgene (19.5 g, 0.0655 mol) was added dropwise, and the mixture was stirred at −75 ° C. for 2 hours and then at room temperature for 2 hours. After completion of the reaction, saturated aqueous ammonium chloride solution (200 mL) was added and stirred for 45 minutes, and then the organic phase was washed twice with 1N aqueous hydrochloric acid solution (200 mL), saturated aqueous sodium bicarbonate solution (200 mL), saturated brine (200 mL), and Washed with ion-exchanged water (200 mL). The obtained organic phase was dried over magnesium sulfate and then concentrated and dried under reduced pressure. Thereafter, the residue was purified by column chromatography (ethyl acetate) to give 5-methyl-5- (2-methoxyethyl) oxycarbonyl-1,3-dioxane-2-one (MTC-ME) as a colorless viscous liquid. Obtained (11.0 g, yield 43.8%). 1 H-NMR (500MHz, CDCl 3 ): δ 4.68 (d, 2H, CH a H b OCOO), 4.32 (quin, 2H, CH 2 CH 2 OCH 3 ), 4.20 (d, 2H, CH a H b OCOO .), 3.57 (quin, 2H , CH 2 OCH 3), 3.33 (s, 3H, OCH 3), 1.31 (s, 3H, CH 3) 13 C-NMR (125MHz, CDCl 3): δ 171.2, 147.6, 73.0, 70.1, 65.0, 59.0, 40.3, 17.6.
[実施例3]MTC-MEの開環重合:P(MTC-ME)の調製
Figure JPOXMLDOC01-appb-C000039
 窒素雰囲気下グローブボックス内で、MTC-ME(0.441g、2.02mmol)を、1-ピレンブタノール(PB;5.2mg、0.019mmol)、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU;6.1mg、0.040mmol)及び1-(3,5-ビス(トリフルオロメチル)フェニル)-3-シクロヘキシル-2-チオウレア(TU;15.0mg、0.041mmol)の存在下、DCM(1mL)中、室温で重合した。90分間の撹拌後、H-NMRにてモノマーの消費を確認した後、停止剤として無水酢酸を数滴加え、一晩撹拌した。その後、反応溶液をジエチルエーテル:ヘキサン(1:3、40mL)中に再沈殿し、真空下で乾燥させて無色で粘性のあるポリマー、P(MTC-ME)を得た(0.350g、収率79.3%)。GPC: Mn 9556 g/mol, Mw/Mn 1.27. 1H-NMR (500MHz, CDCl3) δ 4.30 (m, 6H, COOCH2), 3.58 (t, 2H, CH2OCH3), 3.36 (s, 3H, OCH3), 1.27 (s, 3H, CH3).
[Example 3] Ring-opening polymerization of MTC-ME: Preparation of P (MTC-ME)
Figure JPOXMLDOC01-appb-C000039
In a glove box under a nitrogen atmosphere, MTC-ME (0.441 g, 2.02 mmol) was replaced with 1-pyrenebutanol (PB; 5.2 mg, 0.019 mmol), 1,8-diazabicyclo [5.4.0]. Undec-7-ene (DBU; 6.1 mg, 0.040 mmol) and 1- (3,5-bis (trifluoromethyl) phenyl) -3-cyclohexyl-2-thiourea (TU; 15.0 mg, 0.041 mmol) ) In the presence of) in DCM (1 mL) at room temperature. After stirring for 90 minutes, the consumption of the monomer was confirmed by 1 H-NMR, and then several drops of acetic anhydride was added as a terminator and stirred overnight. Thereafter, the reaction solution was reprecipitated in diethyl ether: hexane (1: 3, 40 mL) and dried under vacuum to obtain a colorless and viscous polymer, P (MTC-ME) (0.350 g, yield). (Rate 79.3%). GPC: Mn 9556 g / mol, Mw / Mn 1.27. 1 H-NMR (500MHz, CDCl 3 ) δ 4.30 (m, 6H, COOCH 2 ), 3.58 (t, 2H, CH 2 OCH 3 ), 3.36 (s, 3H, OCH 3 ), 1.27 (s, 3H, CH 3 ).
[比較例1]PTMCの合成
Figure JPOXMLDOC01-appb-C000040
 窒素雰囲気下のグローブボックス内で、トリメチレンカーボネート(TMC:408mg、4.0mmol)を、PB(11.3mg、0.041mmol)、DBU(33.5mg、0.22mmol)、TU(75.3mg、0.20mmol)の存在下、DCM(1mL)中、室温で重合した。90分間の撹拌後、H-NMRにてモノマーの消費を確認した後、停止剤として無水酢酸を数滴加え、一晩撹拌した。その後、反応溶液をメタノール(40mL)中に再沈殿し、真空下で乾燥させて、無色で粘性のあるポリマーPTMCを得た(292.9mg、71.8%)。GPC: Mn 12000 g/mol, Mw/Mn 1.1. 1H-NMR (500MHz, CDCl3) δ 4.25(t, 4H, CH2CH2CH2), 2.05(quin, 2H, CH2CH2CH2).
[Comparative Example 1] Synthesis of PTMC
Figure JPOXMLDOC01-appb-C000040
In a glove box under nitrogen atmosphere, trimethylene carbonate (TMC: 408 mg, 4.0 mmol), PB (11.3 mg, 0.041 mmol), DBU (33.5 mg, 0.22 mmol), TU (75.3 mg). , 0.20 mmol) in the presence of DCM (1 mL) at room temperature. After stirring for 90 minutes, the consumption of the monomer was confirmed by 1 H-NMR, and then several drops of acetic anhydride was added as a terminator and stirred overnight. The reaction solution was then reprecipitated in methanol (40 mL) and dried under vacuum to give a colorless and viscous polymer PTMC (292.9 mg, 71.8%). GPC: Mn 12000 g / mol, Mw / Mn 1.1. 1 H-NMR (500MHz, CDCl 3 ) δ 4.25 (t, 4H, CH 2 CH 2 CH 2 ), 2.05 (quin, 2H, CH 2 CH 2 CH 2 ).
[実施例4]MTC-TEAを経由する5-カルボキシル-5-メチル-1,3-ジオキサン-2-オン(MTC-OH)の合成
Figure JPOXMLDOC01-appb-C000041
 環状カーボネートの出発原料であるジオール化合物として2,2-ビス(メチロール)プロピオン酸(bis-MPA;268mg、2.0mmol)を塩化メチレン(4mL)に分散させ、有機塩基であるトリエチルアミン(0.97mL、7.0mmol)を加えて攪拌することで、bis-MPAが塩化メチレン中に溶解して透明な溶液がえられた。溶液が透明になった後、その溶液をドライアイス-アセトン浴中で-75℃に冷却した。次にジオール化合物の環化反応における炭酸源としてトリホスゲン(239mg、0.8mmol)の塩化メチレン溶液(3mL)を滴下し、-75℃の冷却下にて30分、その後室温にて2時間撹拌し反応を終了させた。反応終了後、反応により生じた沈殿物をろ過にて除去した。沈殿物は、トリエチルアミン塩酸塩を主成分とするものであった。得られたろ液を減圧下で濃縮し、その後にテトラヒドロフランに再溶解させた。
 なお、図5には、上記と同一の操作を経て合成され、沈殿物(トリエチルアミン塩酸塩)を除去した後の溶液に含まれる溶質について得られたH-NMRスペクトルを示す。H-NMRスペクトルから、上記操作によりMTC-TEAが生成していると同定した。
 次に、テトラヒドロフランに溶解したMTC-TEAから有機塩基を分離して除去するために、その溶液にイオン交換樹脂Amberyst-15(登録商標)(550mg)を加えて室温で5時間撹拌後、溶液からイオン交換樹脂を濾別した。得られた濾液を減圧下で濃縮、乾燥して淡黄色の固体(245mg)を得た。
 図6には、上記淡黄色の固体について得られたH-NMRスペクトルを示す。また、図9には、公知の方法で合成(比較例1)された5-カルボキシル-5-メチル-1,3-ジオキサン-2-オン(MTC-OH)についてのH-NMRスペクトルを示す。両スペクトルは良く一致し、上記操作により得られた淡黄色の固体は、MTC-OHであると考えられた。上記操作により得られるMTC-OHの収率は76.4%であった。
[Example 4] Synthesis of 5-carboxyl-5-methyl-1,3-dioxane-2-one (MTC-OH) via MTC-TEA
Figure JPOXMLDOC01-appb-C000041
2,2-bis (methylol) propionic acid (bis-MPA; 268 mg, 2.0 mmol) as a diol compound that is a starting material for cyclic carbonate was dispersed in methylene chloride (4 mL), and triethylamine (0.97 mL) as an organic base was used. 7.0 mmol), and bis-MPA was dissolved in methylene chloride to obtain a transparent solution. After the solution became clear, the solution was cooled to -75 ° C. in a dry ice-acetone bath. Next, a solution of triphosgene (239 mg, 0.8 mmol) in methylene chloride (3 mL) was added dropwise as a carbonic acid source in the cyclization reaction of the diol compound, and the mixture was stirred at −75 ° C. for 30 minutes and then at room temperature for 2 hours. The reaction was terminated. After completion of the reaction, the precipitate produced by the reaction was removed by filtration. The precipitate was mainly composed of triethylamine hydrochloride. The resulting filtrate was concentrated under reduced pressure and then redissolved in tetrahydrofuran.
FIG. 5 shows a 1 H-NMR spectrum obtained for the solute synthesized in the same manner as described above and contained in the solution after removing the precipitate (triethylamine hydrochloride). From the 1 H-NMR spectrum, it was identified that MTC-TEA was produced by the above operation.
Next, in order to separate and remove the organic base from MTC-TEA dissolved in tetrahydrofuran, an ion exchange resin Ameryst-15 (registered trademark) (550 mg) was added to the solution, and the mixture was stirred at room temperature for 5 hours. The ion exchange resin was filtered off. The obtained filtrate was concentrated and dried under reduced pressure to obtain a pale yellow solid (245 mg).
FIG. 6 shows the 1 H-NMR spectrum obtained for the pale yellow solid. FIG. 9 shows a 1 H-NMR spectrum of 5-carboxyl-5-methyl-1,3-dioxane-2-one (MTC-OH) synthesized by a known method (Comparative Example 1). . Both spectra agreed well, and the pale yellow solid obtained by the above operation was considered to be MTC-OH. The yield of MTC-OH obtained by the above operation was 76.4%.
[実施例5]MTC-Clの合成
Figure JPOXMLDOC01-appb-C000042
 実施例4に記載の方法で合成したMTC-TEA(2.60g、10mmol)を塩化メチレン50mLに溶解させ、氷浴中で0℃以下に冷却した溶液中に、シュウ酸クロリド(1.05mL、12mmol)の塩化メチレン溶液(20mL)を15分かけて滴下した。その後、当該溶液を室温にて1時間攪拌し、ロータリーエバポレーターにて濃縮した。濃縮物にテトラヒドロフラン50mLを加え、不溶物を濾別後、濾液を濃縮して淡黄色の固体を得た(1.711g)。
 図7には、上記で得られた淡黄色の固体についてのH-NMRスペクトルを示す。当該スペクトルより、上記で得られた淡黄色の固体はMTC-Clであると推察され、収率が96.1%と計算された。
[Example 5] Synthesis of MTC-Cl
Figure JPOXMLDOC01-appb-C000042
MTC-TEA (2.60 g, 10 mmol) synthesized by the method described in Example 4 was dissolved in 50 mL of methylene chloride, and oxalic chloride (1.05 mL, 1.05 mL, 12 mmol) in methylene chloride (20 mL) was added dropwise over 15 minutes. Thereafter, the solution was stirred at room temperature for 1 hour and concentrated on a rotary evaporator. To the concentrate was added 50 mL of tetrahydrofuran, the insoluble material was filtered off, and the filtrate was concentrated to give a pale yellow solid (1.711 g).
FIG. 7 shows the 1 H-NMR spectrum of the pale yellow solid obtained above. From the spectrum, the pale yellow solid obtained above was presumed to be MTC-Cl, and the yield was calculated to be 96.1%.
[実施例6]MTC-THFの合成
Figure JPOXMLDOC01-appb-C000043
 実施例5に記載の操作で合成したMTC-Cl(1.403g、7.86mmol)をテトラヒドロフラン20mLに溶解させ、氷浴中で0℃以下に冷却した溶液中に、テトラヒドロフルフリルアルコール(0.725g、7.1mmol)とトリエチルアミン(1.51mL、10.8mmol)をテトラヒドロフラン(10mL)に溶解した溶液を10分かけて滴下した。その後、当該溶液を室温にて3時間攪拌し、不溶物を濾別後、ロータリーエバポレーターにて濃縮した。油状の残渣に酢酸エチル100mLを加えて、1N塩酸水溶液と蒸留水で各1回ずつ洗浄し、有機層を硫酸マグネシウムで乾燥後、減圧下で濃縮、乾燥させて透明な油状物質を得た(0.6653g)。
 図8には、当該油状物質についてのH-NMRスペクトルを示す。当該スペクトルより、上記で得られた油状物質はMTC-THFであると推察され、収率が34.7%と計算された。
[Example 6] Synthesis of MTC-THF
Figure JPOXMLDOC01-appb-C000043
MTC-Cl (1.403 g, 7.86 mmol) synthesized by the procedure described in Example 5 was dissolved in 20 mL of tetrahydrofuran and cooled to 0 ° C. or lower in an ice bath, and tetrahydrofurfuryl alcohol (0. A solution of 725 g, 7.1 mmol) and triethylamine (1.51 mL, 10.8 mmol) in tetrahydrofuran (10 mL) was added dropwise over 10 minutes. Thereafter, the solution was stirred at room temperature for 3 hours, the insoluble material was filtered off, and then concentrated on a rotary evaporator. 100 mL of ethyl acetate was added to the oily residue, washed once each with 1N aqueous hydrochloric acid and distilled water, and the organic layer was dried over magnesium sulfate and then concentrated and dried under reduced pressure to obtain a transparent oily substance ( 0.6653 g).
FIG. 8 shows a 1 H-NMR spectrum of the oily substance. From the spectrum, the oily substance obtained above was inferred to be MTC-THF, and the yield was calculated to be 34.7%.
[実施例7]MTC-THFの、MTC-TEAからの直接的合成
Figure JPOXMLDOC01-appb-C000044
 実施例4に記載の方法で合成したMTC-TEA(2.08g、7.95mmol)を塩化メチレン40mLに溶解させ、氷浴中で0℃以下に冷却した溶液中に、シュウ酸クロリド(0.83mL、9.54mmol)の塩化メチレン溶液(15mL)を15分かけて滴下した。その後、当該溶液を室温にて3時間攪拌した後、窒素気流下で副生した塩化水素ガスを除去した。再び、溶液を0℃以下に冷却し、テトラヒドロフルフリルアルコール(0.732g、7.17mmol)とトリエチルアミン(1.66mL、11.3mmol)をテトラヒドロフラン(10mL)に溶解した溶液を10分かけて滴下した。その後、反応溶液を室温にて3時間攪拌し、不溶物を濾別後、ロータリーエバポレーターにて濃縮した。油状の残渣に酢酸エチル100mLを加えて、1N塩酸水溶液と蒸留水で各1回ずつ洗浄し、有機層を硫酸マグネシウムで乾燥後、減圧下で濃縮、乾燥させて透明な油状物質を得た(0.4867g)。当該油状物質についてH-NMRスペクトルを取得したところ、MTC-THFが生成していることが推察され、収率が25.1%と計算された。
[Example 7] Direct synthesis of MTC-THF from MTC-TEA
Figure JPOXMLDOC01-appb-C000044
MTC-TEA (2.08 g, 7.95 mmol) synthesized by the method described in Example 4 was dissolved in 40 mL of methylene chloride, and oxalic chloride (0. 83 mL, 9.54 mmol) in methylene chloride (15 mL) was added dropwise over 15 minutes. Thereafter, the solution was stirred at room temperature for 3 hours, and then hydrogen chloride gas by-produced under a nitrogen stream was removed. The solution was cooled again to 0 ° C. or lower, and a solution of tetrahydrofurfuryl alcohol (0.732 g, 7.17 mmol) and triethylamine (1.66 mL, 11.3 mmol) dissolved in tetrahydrofuran (10 mL) was added dropwise over 10 minutes. did. Thereafter, the reaction solution was stirred at room temperature for 3 hours, insoluble matters were filtered off, and then concentrated on a rotary evaporator. 100 mL of ethyl acetate was added to the oily residue, washed once each with 1N aqueous hydrochloric acid and distilled water, and the organic layer was dried over magnesium sulfate and then concentrated and dried under reduced pressure to obtain a transparent oily substance ( 0.4867 g). When a 1 H-NMR spectrum was obtained for the oily substance, it was estimated that MTC-THF was produced, and the yield was calculated to be 25.1%.
[比較例2]従来法によるMTC-OHの合成
Figure JPOXMLDOC01-appb-C000045
 公知の手法、たとえば非特許文献[Pratt et al., Chem. Commun., 2008, 114-116]にならってMTC-OHを合成した。つまり、bis-MPAから58.9%の収率で得られたた5-ベンジルオキシカルボニル-5-メチル-1,3-ジオキサン-2-オン(MTC-Bn;253.4mg、1.0mmol)をテトラヒドロフランに溶解し、脱気、窒素置換後に10wt%パラジウム担持Pd/C(63mg)を加えてさらに脱気と窒素置換し、シクロヘキセン(1.0mL、10mmol)を加えて18時間攪拌した。その後、Pd/Cをろ別し、ろ液を減圧下で濃縮してMTC-OHを得た(149.5mg、収率92.2%)。
 図9には、上記で得られたMTC-OHについてのH-NMRスペクトルを示す。
[Comparative Example 2] Synthesis of MTC-OH by conventional method
Figure JPOXMLDOC01-appb-C000045
MTC-OH was synthesized according to a known method, for example, non-patent literature [Pratt et al., Chem. Commun., 2008, 114-116]. That is, 5-benzyloxycarbonyl-5-methyl-1,3-dioxan-2-one (MTC-Bn; 253.4 mg, 1.0 mmol) obtained in a yield of 58.9% from bis-MPA Was dissolved in tetrahydrofuran, degassed and purged with nitrogen, 10 wt% palladium-supported Pd / C (63 mg) was added, further degassed and purged with nitrogen, cyclohexene (1.0 mL, 10 mmol) was added, and the mixture was stirred for 18 hours. Thereafter, Pd / C was filtered off, and the filtrate was concentrated under reduced pressure to obtain MTC-OH (149.5 mg, yield 92.2%).
FIG. 9 shows a 1 H-NMR spectrum of the MTC-OH obtained above.
[実施例8]P(TMC-ME)のDSC測定
 乾燥状態及び5%水を含有させた状態のP(TMC-ME)について、DSC測定を行った。DSC装置(エスアイアイ・ナノテクノロジーズ株式会社、「EXSTAR X-DSC7000」)を用い、窒素流量50mL/min、5.0℃/minの条件で測定を行った。温度プログラムは、(i)30℃から-100℃まで冷却、(ii)-100℃で5分間保持、(iii)-100℃から30℃まで加熱を行った。上記(iii)において、水の低温結晶化に起因する発熱ピーク及び水の低温融解に起因する吸熱ピークの有無によって中間水の有無を確認した。乾燥状態及び5%水を含有させた状態のP(TMC-ME)のDSC測定の結果を図10に示す。5%水を含有させたP(TMC-ME)のDSC測定の結果を示す(b)の図より、-5℃付近に水の低温融解に伴う挙動、-15℃付近に水の低温結晶化に伴う挙動が確認され、本発明の抗血栓性ポリマーが、中間水を保持しており、すなわち生体適合性を有すること、生体適合性ポリマーとして機能し得ることが明らかになった。
[Example 8] DSC measurement of P (TMC-ME) DSC measurement was performed on P (TMC-ME) in a dry state and in a state containing 5% water. Measurement was performed using a DSC apparatus (SII Nano Technologies, Inc., “EXSTAR X-DSC7000”) under conditions of a nitrogen flow rate of 50 mL / min and 5.0 ° C./min. The temperature program was (i) cooling from 30 ° C. to −100 ° C., (ii) holding at −100 ° C. for 5 minutes, and (iii) heating from −100 ° C. to 30 ° C. In (iii) above, the presence or absence of intermediate water was confirmed by the presence or absence of an exothermic peak due to low-temperature crystallization of water and an endothermic peak due to low-temperature melting of water. FIG. 10 shows the results of DSC measurement of P (TMC-ME) in a dry state and a state containing 5% water. From the figure of (b) showing the results of DSC measurement of P (TMC-ME) containing 5% water, the behavior associated with low-temperature melting of water around -5 ° C, and low-temperature crystallization of water around -15 ° C It was revealed that the antithrombotic polymer of the present invention retains intermediate water, that is, has biocompatibility and can function as a biocompatible polymer.
[実施例9]水の静的接触角測定(液滴法)
 メタノールで前洗浄したPET基板(直径14mm、厚さ125μm)に、1.0、0.5、0.2、0.1w/v%の各濃度に調整したP(MTC-ME)及びPTMCのアセトン溶液(40μL)をスピンコートにて塗布した(スピン条件:500rpm 5s、2000rpm 10s、SLOPE 5s、4000rpm 5s、SLOPE 4s、25℃)。1度目のスピンコートの10分後に2度目の塗布を行った。24時間の真空乾燥後、各ポリマーコート基板の中心部、左端、右端の3点についてそれぞれ水に対する接触角を測定した。1点の測定につき2μLの水滴を使用した。
[Example 9] Water static contact angle measurement (droplet method)
PET (MTC-ME) and PTMC adjusted to concentrations of 1.0, 0.5, 0.2, and 0.1 w / v% on a PET substrate (diameter 14 mm, thickness 125 μm) pre-cleaned with methanol An acetone solution (40 μL) was applied by spin coating (spin conditions: 500 rpm 5 s, 2000 rpm 10 s, SLOPE 5 s, 4000 rpm 5 s, SLOPE 4 s, 25 ° C.). The second application was performed 10 minutes after the first spin coating. After vacuum drying for 24 hours, the contact angle with water was measured for each of the three points of the center, left end, and right end of each polymer-coated substrate. 2 μL of water droplet was used for each measurement.
[実施例10]水の静的接触角測定(水中気泡法)
 ミリQ水の入った水槽に実施例9と同様のポリマーコート基板を、コート面を下向きにして浸漬させた。マイクロピペッターを用いて、気泡(2μL)を浸漬させたポリマーコート基板の中心部、左端、右端の3点に付着させ、コーティング面と気泡との接触角をθ/2法を用いて測定した。実施例9及び10の接触角測定の結果を、表1に示す。実施例3で得られたポリマーの接触角は、対照としてのPETを用いた場合と比べて小さな値を示し、実施例3で得られたポリマーの表面がより親水性であることが示された。また、比較例1で得られたポリマーの接触角は、PETを用いた場合と比べて大きな値を示し、ポリマーの表面がより疎水性であることを示した。
[Example 10] Measurement of static contact angle of water (underwater bubble method)
The same polymer-coated substrate as in Example 9 was immersed in a water tank containing Milli-Q water with the coated surface facing downward. Using a micropipettor, the polymer-coated substrate on which bubbles (2 μL) were immersed was adhered to the center, the left end, and the right end, and the contact angle between the coating surface and the bubbles was measured using the θ / 2 method. The results of contact angle measurement of Examples 9 and 10 are shown in Table 1. The contact angle of the polymer obtained in Example 3 showed a small value compared to the case where PET was used as a control, indicating that the surface of the polymer obtained in Example 3 was more hydrophilic. . Moreover, the contact angle of the polymer obtained in Comparative Example 1 showed a larger value than when PET was used, indicating that the polymer surface was more hydrophobic.
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
[実施例11] ヒト血管内皮細胞(HUVEC)培養
 準備したポリマーコーティング基板を6 well plateに収め、クリーンベンチ内で30分間UV滅菌を行った。基板をリン酸緩衝(phosphate buffered saline:PBS)溶液500μLで洗浄後、20% FBS DMEM/F-12(HUVEC用培地)を500μLずつ加え、37℃で一晩インキュベートした。HUVEC(P5)が培養されている10cmディッシュをPBS溶液2mLで洗浄し、トリプシン/エチレンジアミンテトラ酢酸イオン(EDTA)酵素溶液を2mL入れ、37℃で2分間インキュベート後、細胞を回収した。その溶液を1300rpmで5分間遠心分離し、上澄みを除去後、顕微鏡にて細胞数をカウントし、20% FBS DMEM/F-12を加え播種密度を5.0×10cells/cm2に調製した。プレコンディショニングで使用した培地を除去した後、調製した細胞溶液500μLと20% FBS DMEM/F-12 500μLを播種し、37℃でインキュベートした。培養は1時間、1日、3日の3つのタイムポイントで行った。各試料は抗体染色により染色し、共焦点レーザー顕微鏡にて細胞数と細胞形態を観察した。
Example 11 Human Vascular Endothelial Cell (HUVEC) Culture The prepared polymer-coated substrate was placed in a 6-well plate and UV sterilized for 30 minutes in a clean bench. After the substrate was washed with 500 μL of a phosphate buffered saline (PBS) solution, 500 μL of 20% FBS DMEM / F-12 (HUVEC medium) was added and incubated at 37 ° C. overnight. A 10 cm dish in which HUVEC (P5) was cultured was washed with 2 mL of PBS solution, 2 mL of trypsin / ethylenediaminetetraacetate ion (EDTA) enzyme solution was added, and the cells were collected after incubation at 37 ° C. for 2 minutes. The solution was centrifuged at 1300 rpm for 5 minutes, the supernatant was removed, the number of cells was counted with a microscope, and 20% FBS DMEM / F-12 was added to adjust the seeding density to 5.0 × 10 4 cells / cm 2 . did. After removing the medium used for preconditioning, 500 μL of the prepared cell solution and 500 μL of 20% FBS DMEM / F-12 were inoculated and incubated at 37 ° C. Incubation was performed at three time points for 1 hour, 1 day, and 3 days. Each sample was stained by antibody staining, and the cell number and cell morphology were observed with a confocal laser microscope.
 その結果を図11に示す。リン脂質極性基を側鎖に有し、血液適合性を示す対照サンプルとして用いたPMPCでコートした基板には、ほとんど血管内皮細胞が接着していないのに対し、P(MTC-ME)でコートした基板には、培養後1日程度の間は、PETやPMEAと同程度に血管内皮細胞が接着することが分かる。培養3日後には、P(MTC-ME)やPTMCコート基板上の細胞数が減少しているのは、これらのポリマーが生分解性を有することに起因するものと考えられる。 The result is shown in FIG. The substrate coated with PMPC, which has a phospholipid polar group in the side chain and was used as a control sample showing blood compatibility, is coated with P (MTC-ME), whereas vascular endothelial cells are hardly adhered. It can be seen that vascular endothelial cells adhere to the same substrate as PET and PMEA for about one day after culturing. The decrease in the number of cells on P (MTC-ME) or PTMC-coated substrate after 3 days of culture is considered to be due to the biodegradability of these polymers.
[実施例12]ヒト線維肉腫細胞(HT-1080)培養
 上記同様にポリマーコーティング基板を準備し、プレコンデショニング(60分、37℃まで)を行った。HT-1080が培養されている10cmディッシュをPBS溶液2mLで洗浄し、トリプシン/EDTA酵素溶液を3mL加え、37℃で2分間インキュベート後、細胞を回収した。その溶液を1300rpmで5分間遠心分離し、上澄みを除去後、顕微鏡にて細胞数をカウントし、培地を加え播種密度を1.0×10cells/cm2に調製した。プレコンディショニングで使用した培地を除去後、調製した細胞懸濁液を1mL播種し、37℃で1時間インキュベートした。培養後、PBS 1mLで2回洗浄した後、4%パラホルムアルデヒドで固定し、PBS 1mLで洗浄後、クリスタルバイオレットで染色し、位相差顕微鏡にて細胞数をカウントした。
[Example 12] Culture of human fibrosarcoma cells (HT-1080) A polymer-coated substrate was prepared in the same manner as described above and preconditioned (60 minutes, up to 37 ° C). A 10 cm dish in which HT-1080 was cultured was washed with 2 mL of PBS solution, 3 mL of trypsin / EDTA enzyme solution was added, and the cells were collected after incubation at 37 ° C. for 2 minutes. The solution was centrifuged at 1300 rpm for 5 minutes, the supernatant was removed, the number of cells was counted with a microscope, the medium was added, and the seeding density was adjusted to 1.0 × 10 4 cells / cm 2 . After removing the medium used for preconditioning, 1 mL of the prepared cell suspension was inoculated and incubated at 37 ° C. for 1 hour. After culturing, the cells were washed twice with 1 mL of PBS, fixed with 4% paraformaldehyde, washed with 1 mL of PBS, stained with crystal violet, and the number of cells was counted with a phase contrast microscope.
 その結果を図12に示す。P(MTC-ME)でコートした基板状には、PETやPMEAと同程度の細胞接着を示すことが分かった。 The result is shown in FIG. The substrate coated with P (MTC-ME) was found to exhibit cell adhesion similar to PET and PMEA.
[実施例13]血小板粘着試験
 P(MTC-ME)の0.2w/v%のアセトン溶液を塗布したスピンコート基板を8mm四方に切り、走査型電子顕微鏡(SEM)用試料台に固定した。ヒト血液を1500rpmで5分間遠心分離し、上澄みを多血小板血漿(platelet rich plasma:PRP)として回収した。残りの血液をさらに4000rpmで10分間遠心分離した上澄みを乏血小板血漿(platelet poor plasma:PPP)として回収した。PPPをリン酸緩衝(phosphate buffered saline:PBS)溶液を用いて800倍に希釈し、さらにPRPを希釈し、顕微鏡にて血小板数を確認しながら血小板濃度が4×10cell/mLの血小板溶液を調製した。この血小板溶液を各基板に200μL滴下し、37℃にて1時間静置した。その後、各基板をPBS溶液にて2回洗浄し、1%グルタルアルデヒド溶液に浸漬し、37℃にて2時間固定した。固定化した試料はPBS溶液にて10分、PBS:水=1:1にて8分、水にて8分、さらに水でもう一度8分浸漬させて洗浄した。各試料は室温で風乾し、SEMにて血小板粘着数を計測した。計測結果は、各基板表面に粘着した血小板の粘着形態を三種類、すなわちI型:活性化の度合いが小さい、血液中と同様の円形状の粘着形態、II型:活性化の度合いが中程度の、偽足形成が見られる粘着形態、III型:活性化の度合いが大きい、伸展した粘着形態に分類し、PETを対照として評価した。
[Example 13] Platelet adhesion test A spin-coated substrate coated with a 0.2 w / v% acetone solution of P (MTC-ME) was cut into 8 mm squares and fixed to a sample table for a scanning electron microscope (SEM). Human blood was centrifuged at 1500 rpm for 5 minutes, and the supernatant was collected as platelet rich plasma (PRP). The remaining blood was further centrifuged at 4000 rpm for 10 minutes, and the supernatant was collected as platelet poor plasma (PPP). Platelet solution with a platelet concentration of 4 × 10 7 cells / mL while diluting PPP 800-fold with phosphate buffered saline (PBS) solution, further diluting PRP, and checking the platelet count with a microscope Was prepared. 200 μL of this platelet solution was dropped on each substrate and allowed to stand at 37 ° C. for 1 hour. Thereafter, each substrate was washed twice with a PBS solution, immersed in a 1% glutaraldehyde solution, and fixed at 37 ° C. for 2 hours. The immobilized sample was washed by immersing in PBS solution for 10 minutes, PBS: water = 1: 1 for 8 minutes, water for 8 minutes, and water for another 8 minutes. Each sample was air-dried at room temperature, and the platelet adhesion number was measured by SEM. The measurement results are three types of adhesion forms of platelets adhering to the surface of each substrate, that is, type I: small degree of activation, circular adhesion form similar to that in blood, type II: medium degree of activation The adhesive form in which pseudo-leg formation was observed, type III: classified into the extended adhesive form with a high degree of activation, and PET was evaluated as a control.
 血小板粘着数の計測結果を図13に示す。この結果から、比較例のPTMCと比べて、本発明の抗血栓性ポリマーは、血小板の粘着数を小さく抑えることができ、良好な生体適合性、抗血栓性を示すことが明らかになった。 Fig. 13 shows the measurement results of the platelet adhesion number. From this result, it became clear that the antithrombotic polymer of the present invention can suppress the number of adhesion of platelets to be small and exhibits good biocompatibility and antithrombogenicity as compared with PTMC of the comparative example.
[実施例14]酵素分解試験
 P(MTC-ME)とPTMCの2種類のポリマーを使用した。1.5mLチューブにポリマーを30mg、リパーゼ溶液1mLを加えて、37℃にて静置した。リパーゼ溶液は2日毎に交換し、9日後、チューブよりリパーゼ溶液を抜き取り、残ったポリマー試料をミリQ水で3回すすいだ。その後、室温で24時間の真空乾燥後のポリマー重量から重量損失を求めた。
 酵素処理9日後の重量減少率はそれぞれ、P(MTC-ME):6.4%、PTMC:1.7%であった。この結果から、比較例のPTMCと比べて、本発明の抗血栓性ポリマーは、酵素による優れた生分解性を有することが明らかになった。
[Example 14] Enzymatic degradation test Two types of polymers, P (MTC-ME) and PTMC, were used. 30 mg of polymer and 1 mL of lipase solution were added to a 1.5 mL tube and allowed to stand at 37 ° C. The lipase solution was changed every 2 days. After 9 days, the lipase solution was withdrawn from the tube and the remaining polymer sample was rinsed 3 times with milliQ water. Thereafter, the weight loss was determined from the polymer weight after 24 hours of vacuum drying at room temperature.
The weight loss rates after 9 days of enzyme treatment were P (MTC-ME): 6.4% and PTMC: 1.7%, respectively. From this result, it was revealed that the antithrombotic polymer of the present invention has excellent biodegradability by an enzyme as compared with the PTMC of the comparative example.
 実施例4及び比較例2を比べると、本発明の方法により、従来法より簡便に、また高い収率で目的の生成物が得られることが明らかとなった。また、本発明の方法から出発して、生体親和性等の物性を与えたポリカーボネート材料が調製でき、当該材料は、生体内の組織を選択的に吸着させ、かつ生分解性を有する、スマートバイオマテリアルとして有用な材料であることが示された。 Comparison of Example 4 and Comparative Example 2 revealed that the target product can be obtained by the method of the present invention more easily and in a higher yield than the conventional method. In addition, starting from the method of the present invention, a polycarbonate material having physical properties such as biocompatibility can be prepared. The material can selectively adsorb tissues in the living body and has biodegradability. It was shown to be a useful material as a material.
 本発明によれば、本発明のポリマー組成物は、血液凝固等の原因となる物質が付着しにくい、抗血栓材料として用いることができる。本発明のポリマー組成物は、例えば、人工血管のような医療用機器、又はステント等の、生体に接触する、又は生体内に留置させることがある医療用機器の表面処理剤として用いることができる。さらに、本発明のポリマー組成物を用いた医療用機器は、生分解性をも有することから、生体、環境に負荷を与えない高機能医療材料、スマートバイオマテリアルとして、例えば、組織の再生後に分解・吸収される人工代替器官や、埋め込み可能な細胞培養足場材料として用いることができる。更に、本発明の方法によって、様々な官能基を有する環状カーボネート化合物を、簡便に得ることができる。本発明の方法は、種々のポリカーボネート材料を得るために用いることができ、特に、生体親和性材料として利用可能なポリカーボネート及びこれを用いた医療用機器を製造するにあたって有用である。 According to the present invention, the polymer composition of the present invention can be used as an antithrombotic material to which substances that cause blood coagulation and the like hardly adhere. The polymer composition of the present invention can be used, for example, as a surface treatment agent for medical devices such as artificial blood vessels or medical devices that may come into contact with or be placed in the living body, such as stents. . Furthermore, since the medical device using the polymer composition of the present invention also has biodegradability, it can be decomposed as a highly functional medical material or smart biomaterial that does not give a load to the living body and the environment, for example, after tissue regeneration. -It can be used as an artificial substitute to be absorbed or as an implantable cell culture scaffold material. Furthermore, cyclic carbonate compounds having various functional groups can be easily obtained by the method of the present invention. The method of the present invention can be used to obtain various polycarbonate materials, and is particularly useful in producing a polycarbonate that can be used as a biocompatible material and a medical device using the polycarbonate.

Claims (25)

  1.  側鎖にエーテル基を少なくとも一つ含む構造と、生分解性ポリマー骨格からなる主鎖とを含む、生体親和性ポリマー組成物。 A biocompatible polymer composition comprising a structure containing at least one ether group in the side chain and a main chain composed of a biodegradable polymer skeleton.
  2.  前記生分解性ポリマー骨格が、式:(I)
       -C-A-      (I)
    (式中、
     Cは、カーボネート結合、エステル結合、アミド結合、ウレタン結合又はウレア結合を有する単位構造から選択され;
     Aは、少なくとも一つの基-Yによって水素原子が置換されているC1-8アルキレン基であり;
     Yは、式:-L-Z(式中、Zは、鎖状エーテル、環状エーテル又はアセタール構造を少なくとも一つ有する構造であり、Lは、主鎖とZとのリンカーであり、アルキレン基、エーテル結合、チオエーテル結合、エステル結合、アミド結合、ウレタン結合もしくはウレア結合又はそれらの組み合わせを有する単位構造から選択される)で示される基である)
    で示される繰り返し単位を含む、請求項1に記載の生体親和性ポリマー組成物。
    The biodegradable polymer backbone has the formula (I)
    -C B -A- (I)
    (Where
    C B is selected from unit structures having a carbonate bond, an ester bond, an amide bond, a urethane bond or a urea bond;
    A is a C 1-8 alkylene group in which a hydrogen atom is replaced by at least one group —Y;
    Y is represented by the formula: -LZ (wherein Z is a structure having at least one chain ether, cyclic ether or acetal structure, L is a linker between the main chain and Z, an alkylene group, Selected from unit structures having an ether bond, a thioether bond, an ester bond, an amide bond, a urethane bond or a urea bond, or a combination thereof))
    The biocompatible polymer composition of Claim 1 containing the repeating unit shown by these.
  3.  前記Aが、C1-8アルキレン基中のCに隣接する炭素原子以外の少なくとも一つの炭素原子がN、O又はSから選択されるヘテロ原子で置き換えられているか、及び/又はC1-8アルキレン基中の水素原子が低級アルキル基で置換されている基である、請求項2に記載の生体親和性ポリマー組成物。 In the above C 1-8 alkylene group, at least one carbon atom other than the carbon atom adjacent to C B is replaced with a heteroatom selected from N, O or S, and / or C 1- The biocompatible polymer composition according to claim 2, wherein the hydrogen atom in the 8 alkylene group is a group substituted with a lower alkyl group.
  4.  前記リンカーLが、以下に示される基:
    Figure JPOXMLDOC01-appb-C000001
    から選択されるか、又は上記の基とZとの結合部分に1,2,3-トリアゾール基を有している基から選択される、請求項2又は3に記載の生体親和性ポリマー組成物。
    The linker L is a group shown below:
    Figure JPOXMLDOC01-appb-C000001
    The biocompatible polymer composition according to claim 2 or 3, wherein the biocompatible polymer composition is selected from the group having a 1,2,3-triazole group at the binding part of the group and Z. .
  5.  Zが、下記式(II):
    Figure JPOXMLDOC01-appb-C000002
    [式中、lは、1~30の整数であり、Uは、水素原子又は炭素数5以下の直鎖もしくは分岐鎖状のアルキル基であるか、又は下記式(III):
    Figure JPOXMLDOC01-appb-C000003
    (式中、l’は、1~5の整数である)で示される基である]
     で示される基であるか、あるいは、Zは、下記式(IV):
    Figure JPOXMLDOC01-appb-C000004
    (式中、l”は、1~5の整数である)で示される基であるか、あるいは、Zは、下記式(V):
    Figure JPOXMLDOC01-appb-C000005
    (式中、M’は、水素原子又は炭素数3以下の直鎖状もしくは分岐鎖状のアルキル基であり、E及びE’は、互いに独立して、-O-又は-CH-であり、ただし、少なくとも一方は-O-であり、Q’及びQ”は、互いに独立して、水素原子、炭素数6以下の直鎖状もしくは分岐鎖状のアルキル、アルケニルもしくはアルキニル、C3-8脂環式アルキル又はベンジルを表すか、あるいはQ’及びQ”は、一緒になって炭素数2~5のアルキレン基を形成し、k及びk’は、互いに独立して、0~2の整数である)
    で示される基である、請求項2~4のいずれか一項に記載の生体親和性ポリマー組成物。
    Z represents the following formula (II):
    Figure JPOXMLDOC01-appb-C000002
    [Wherein, l is an integer of 1 to 30, U is a hydrogen atom or a linear or branched alkyl group having 5 or less carbon atoms, or the following formula (III):
    Figure JPOXMLDOC01-appb-C000003
    (Wherein l ′ is an integer of 1 to 5)]
    Or Z is a group represented by the following formula (IV):
    Figure JPOXMLDOC01-appb-C000004
    (Wherein l ″ is an integer of 1 to 5), or Z is the following formula (V):
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, M ′ is a hydrogen atom or a linear or branched alkyl group having 3 or less carbon atoms, and E and E ′ are each independently —O— or —CH 2 —. Provided that at least one is —O— and Q ′ and Q ″ each independently represent a hydrogen atom, a linear or branched alkyl having 6 or less carbon atoms, alkenyl or alkynyl, C 3-8 Represents alicyclic alkyl or benzyl, or Q ′ and Q ″ together form an alkylene group having 2 to 5 carbon atoms, and k and k ′ are each independently an integer of 0 to 2 Is)
    The biocompatible polymer composition according to any one of claims 2 to 4, which is a group represented by:
  6.  前記主鎖が、生分解性ポリマーと非生分解性ポリマーとの共重合体である、請求項1~5のいずれか一項に記載の生体親和性ポリマー組成物。 The biocompatible polymer composition according to any one of claims 1 to 5, wherein the main chain is a copolymer of a biodegradable polymer and a non-biodegradable polymer.
  7.  下記一般式(VII):
    Figure JPOXMLDOC01-appb-C000006
    (式中、
     X及びX’は、互いに独立して-O-、-NH-又は-CH-であり、ただし、少なくとも一方は-CH-ではなく;
     Yは、基-L-Zで示される構造部分であり(ここで、L及びZは、請求項2で定義されたとおりである);
     Mは、水素原子、炭素数3以下の直鎖状もしくは分岐鎖状のアルキル基又は基-L-Zであり;
     m及びm’は、互いに独立して、0~5の整数であり、ただし、X及びX’が共に-O-のとき、m及びm’の少なくとも一方は0ではなく、また、m及びm’の和は、7以下であり;
     これらの各々は、各繰り返し単位において異なっていてもよい)
    で表される、モノマー化合物。
    The following general formula (VII):
    Figure JPOXMLDOC01-appb-C000006
    (Where
    X and X ′ are independently of each other —O—, —NH— or —CH 2 —, but at least one is not —CH 2 —;
    Y is a structural moiety represented by the group -LZ (wherein L and Z are as defined in claim 2);
    M is a hydrogen atom, a linear or branched alkyl group having 3 or less carbon atoms, or a group -LZ;
    m and m ′ are each independently an integer of 0 to 5, provided that when X and X ′ are both —O—, at least one of m and m ′ is not 0, and m and m ′ The sum of 'is 7 or less;
    Each of these may be different in each repeating unit)
    The monomer compound represented by these.
  8.  請求項7に記載の一般式(VII)で示されるモノマー化合物を開環重合する工程を含む、生体親和性ポリマー組成物の製造方法。 A method for producing a biocompatible polymer composition, comprising a step of ring-opening polymerization of a monomer compound represented by the general formula (VII) according to claim 7.
  9.  請求項7に記載のモノマー化合物の開環重合によって製造される生体親和性ポリマー組成物。 A biocompatible polymer composition produced by ring-opening polymerization of the monomer compound according to claim 7.
  10.  生体内組織や血液に接して使用されたときに、分解されるまでの間、血液や組織に対して異物反応を抑制するための、請求項1~6のいずれか一項に記載の生体親和性ポリマー組成物。 The biocompatibility according to any one of claims 1 to 6, which suppresses a foreign body reaction to blood or tissue until it is decomposed when used in contact with tissue or blood in the living body. Polymer composition.
  11.  請求項1~6、9及び10のいずれか一項に記載の生体親和性ポリマー組成物を含む、医療用機器。 A medical device comprising the biocompatible polymer composition according to any one of claims 1 to 6, 9, and 10.
  12.  カルボキシル基を有するジオール化合物を環化して環状カーボネートを製造する方法において、前記カルボキシル基を有機塩基で保護することを特徴とする環状カーボネートの製造方法。 A process for producing a cyclic carbonate by cyclizing a diol compound having a carboxyl group, wherein the carboxyl group is protected with an organic base.
  13.  カルボキシル基を有するジオール化合物を、有機塩基、及び有機溶媒の存在下で、式(VIII):
               R-(C=O)-R (VIII)
    [式中、R及びRは、互いに独立してハロゲン原子、イミダゾリウム基、若しくは-OR(ここでRは、場合によりハロゲン原子で置換された低級アルキル基、又はハロゲン原子、アルコキシカルボニル基、ニトロ基、シアノ基、アルコキシ基、アルキル基、及びハロアルキル基からなる群より選択される少なくとも1つの置換基で場合により置換されたアリール基である)である]で表される化合物と反応させることを含む、請求項12に記載の環状カーボネートの製造方法。
    In the presence of an organic base and an organic solvent, the diol compound having a carboxyl group is converted to the formula (VIII):
    R 1 — (C═O) —R 2 (VIII)
    [Wherein R 1 and R 2 are independently of each other a halogen atom, an imidazolium group, or —OR 3 (wherein R 3 is a lower alkyl group optionally substituted with a halogen atom, or a halogen atom, alkoxy A carbonyl group, a nitro group, a cyano group, an alkoxy group, an alkyl group, and an haloalkyl group, which is an aryl group optionally substituted with at least one substituent selected from the group consisting of: The manufacturing method of the cyclic carbonate of Claim 12 including making it react.
  14.  前記式(VIII)の化合物との反応の前に、カルボキシル基を有するジオール化合物を、有機塩基の存在下で、有機溶媒に溶解することを含む、請求項13に記載の方法。 The method according to claim 13, comprising dissolving a diol compound having a carboxyl group in an organic solvent in the presence of an organic base before the reaction with the compound of the formula (VIII).
  15.  前記カルボキシル基を有するジオール化合物が、式(IX):
    Figure JPOXMLDOC01-appb-C000007
    (式中、Rは、水素原子又は低級アルキル基であり、m及びm’は、互いに独立して、0~5の整数であり、ただし、m及びm’の少なくとも一方は0ではなく、また、m及びm’の和は、7以下である)で表される、請求項12~14のいずれか一項に記載の方法。
    The diol compound having a carboxyl group is represented by the formula (IX):
    Figure JPOXMLDOC01-appb-C000007
    (Wherein R 4 is a hydrogen atom or a lower alkyl group, and m and m ′ are each independently an integer of 0 to 5, provided that at least one of m and m ′ is not 0; The method according to any one of claims 12 to 14, wherein the sum of m and m 'is 7 or less.
  16.  前記有機塩基が、トリエチルアミン、ジイソプロピルエチルアミン、ブチルアミン、ピリジン、イミダゾール、アミジン、グアニジン等の窒素塩基化合物、フォスファゼン等のリン原子含有化合物、オキソニウム、イミダゾリウム、アンモニウム、スルホニウム、ホスフォニウム等のオニウムイオンの水酸化物、又は陰イオン交換樹脂である、請求項12~15のいずれか一項に記載の方法。 The organic base is a nitrogen base compound such as triethylamine, diisopropylethylamine, butylamine, pyridine, imidazole, amidine or guanidine, a phosphorus atom-containing compound such as phosphazene, or an onium ion such as oxonium, imidazolium, ammonium, sulfonium or phosphonium. The method according to any one of claims 12 to 15, which is a product or an anion exchange resin.
  17.  前記有機溶媒が、ジクロロメタン、クロロホルム、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、ベンゼン、トルエン、アセトニトリル及び酢酸エチルからなる群から選択される、請求項12~16のいずれか一項に記載の方法。 The process according to any one of claims 12 to 16, wherein the organic solvent is selected from the group consisting of dichloromethane, chloroform, diethyl ether, tetrahydrofuran, 1,4-dioxane, benzene, toluene, acetonitrile and ethyl acetate. .
  18.  請求項12~17のいずれか一項に記載の方法で得られた環状カーボネートを、酸で処理し、環状カーボネートのカルボン酸を回収する工程をさらに含む、請求項12~17のいずれか一項に記載の方法。 The method according to any one of claims 12 to 17, further comprising a step of treating the cyclic carbonate obtained by the method according to any one of claims 12 to 17 with an acid to recover the carboxylic acid of the cyclic carbonate. The method described in 1.
  19.  請求12~18のいずれか一項に記載の方法で得られた環状カーボネートにハロゲン化剤を反応させて、環状カーボネートのカルボン酸ハロゲン化物を生成する工程をさらに含む、請求項12~18のいずれか一項に記載の環状カーボネートの製造方法。 The method according to any one of claims 12 to 18, further comprising the step of reacting the cyclic carbonate obtained by the method according to any one of claims 12 to 18 with a halogenating agent to produce a carboxylic acid halide of the cyclic carbonate. A method for producing the cyclic carbonate according to claim 1.
  20.  請求項19に記載の方法により得られた環状カーボネートのカルボン酸ハロゲン化物に、少なくとも1つのエーテル基を有する構造部分を含むアルコール又はアミンを反応させて環状カーボネートのカルボン酸誘導体を合成する工程をさらに含む、請求項19に記載の方法。 The step of synthesizing a carboxylic acid derivative of a cyclic carbonate by reacting the carboxylic acid halide of the cyclic carbonate obtained by the method according to claim 19 with an alcohol or an amine containing a structural moiety having at least one ether group. 20. The method of claim 19, comprising.
  21.  前記少なくとも1つのエーテル基を有する構造部分が、鎖状エーテル、環状エーテル又はアセタール構造を少なくとも1つ有する請求項20に記載の方法。 21. The method according to claim 20, wherein the structural portion having at least one ether group has at least one chain ether, cyclic ether or acetal structure.
  22.  連続的若しくは半連続的に、及び/又は単一の反応容器で行われることを特徴とする請求項12~21に記載の方法。 The process according to claims 12 to 21, characterized in that it is carried out continuously or semi-continuously and / or in a single reaction vessel.
  23.  下記式(X):
    Figure JPOXMLDOC01-appb-C000008
    (式中、Rは、水素原子又は低級アルキル基であり、m及びm’は、互いに独立して、0~5の整数であり、ただし、m及びm’の少なくとも一方は0ではなく、また、m及びm’の和は、7以下である)で表される化合物又は錯体。
    Formula (X) below:
    Figure JPOXMLDOC01-appb-C000008
    (Wherein R 4 is a hydrogen atom or a lower alkyl group, and m and m ′ are each independently an integer of 0 to 5, provided that at least one of m and m ′ is not 0; And the sum of m and m ′ is 7 or less.
  24.  下記式(XI):
    Figure JPOXMLDOC01-appb-C000009
    (式中、
     m、m’、Rは、請求項15で定義されたとおりであり、
     M’は、水素原子、炭素数3以下の直鎖状若しくは分岐鎖状のアルキル基であり、
     E及びE’は、互いに独立して、直接結合、-O-又は-CH-であり、ただし、少なくとも一方は-O-であり、
     Q’及びQ”は、互いに独立して、水素原子、炭素数6以下の直鎖状若しくは分岐鎖状のアルキル、アルケニル若しくはアルキニル、C3-8脂環式アルキル又はベンジルを表すか、あるいはQ’及びQ”は、一緒になって炭素数2~5のアルキレン基を形成し、
     k及びk’は、互いに独立して、0~2の整数である)
    で表される化合物。
    Following formula (XI):
    Figure JPOXMLDOC01-appb-C000009
    (Where
    m, m ′, R 4 are as defined in claim 15;
    M ′ is a hydrogen atom, a linear or branched alkyl group having 3 or less carbon atoms,
    E and E ′ are each independently a direct bond, —O— or —CH 2 —, wherein at least one is —O—,
    Q ′ and Q ″ each independently represent a hydrogen atom, linear or branched alkyl having 6 or less carbon atoms, alkenyl or alkynyl, C 3-8 alicyclic alkyl or benzyl, 'And Q "together form an alkylene group having 2 to 5 carbon atoms,
    k and k ′ are each independently an integer of 0 to 2)
    A compound represented by
  25.  5-メチル-5-(2-テトラヒドロフラニルメチル)オキシカルボニル-1,3-ジオキサン-2-オン、
     5-メチル-5-(3-テトラヒドロフラニルメチル)オキシカルボニル-1,3-ジオキサン-2-オン、
     5-メチル-5-(3-テトラヒドロピラニルメチル)オキシカルボニル-1,3-ジオキサン-2-オン
     4-メチル-4-(2-テトラヒドロフラニルメチル)オキシカルボニル-1,3-ジオキサン-2-オン、
     4-メチル-4-(3-テトラヒドロフラニルメチル)オキシカルボニル-1,3-ジオキサン-2-オン、及び
     4-メチル-4-(3-テトラヒドロピラニルメチル)オキシカルボニル-1,3-ジオキサン-2-オン
    からなる群より選択される、請求項24に記載の化合物。
    5-methyl-5- (2-tetrahydrofuranylmethyl) oxycarbonyl-1,3-dioxane-2-one,
    5-methyl-5- (3-tetrahydrofuranylmethyl) oxycarbonyl-1,3-dioxane-2-one,
    5-methyl-5- (3-tetrahydropyranylmethyl) oxycarbonyl-1,3-dioxane-2-one 4-methyl-4- (2-tetrahydrofuranylmethyl) oxycarbonyl-1,3-dioxane-2- on,
    4-methyl-4- (3-tetrahydrofuranylmethyl) oxycarbonyl-1,3-dioxane-2-one, and 4-methyl-4- (3-tetrahydropyranylmethyl) oxycarbonyl-1,3-dioxane- 25. The compound of claim 24, selected from the group consisting of 2-ones.
PCT/JP2014/054948 2013-02-27 2014-02-27 Biocompatible polymer as antithrombogenic material, cyclic carbonate useful as precursor thereof, and method for producing same WO2014133102A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-037994 2013-02-27
JP2013037994A JP6226357B2 (en) 2013-02-27 2013-02-27 Biocompatible polymers as antithrombotic materials
JP2013-111270 2013-05-27
JP2013111270A JP6320688B2 (en) 2013-05-27 2013-05-27 Method for producing cyclic carbonate

Publications (1)

Publication Number Publication Date
WO2014133102A1 true WO2014133102A1 (en) 2014-09-04

Family

ID=51428361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054948 WO2014133102A1 (en) 2013-02-27 2014-02-27 Biocompatible polymer as antithrombogenic material, cyclic carbonate useful as precursor thereof, and method for producing same

Country Status (1)

Country Link
WO (1) WO2014133102A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017535633A (en) * 2014-10-06 2017-11-30 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Medical water-soluble polycarbonate
WO2018008662A1 (en) * 2016-07-08 2018-01-11 国立大学法人東京農工大学 Novel aliphatic polycarbonate and binder resin composition containing said polycarbonate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100305281A1 (en) * 2009-06-02 2010-12-02 International Business Machines Corporation Polymers bearing pendant pentafluorophenyl ester groups, and methods of synthesis and functionalization thereof
WO2011078805A1 (en) * 2009-12-23 2011-06-30 International Business Machines Corporation Biodegradable polymers, complexes thereof for gene therapeutics and drug delivery, and methods related thereto
WO2011078804A1 (en) * 2009-12-23 2011-06-30 International Business Machines Corporation Antimicrobial polymers and methods of manufacture thereof
JP2012232909A (en) * 2011-04-28 2012-11-29 Osaka Univ Novel trimethylene carbonate derivative and polymer of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100305281A1 (en) * 2009-06-02 2010-12-02 International Business Machines Corporation Polymers bearing pendant pentafluorophenyl ester groups, and methods of synthesis and functionalization thereof
WO2011078805A1 (en) * 2009-12-23 2011-06-30 International Business Machines Corporation Biodegradable polymers, complexes thereof for gene therapeutics and drug delivery, and methods related thereto
WO2011078804A1 (en) * 2009-12-23 2011-06-30 International Business Machines Corporation Antimicrobial polymers and methods of manufacture thereof
JP2012232909A (en) * 2011-04-28 2012-11-29 Osaka Univ Novel trimethylene carbonate derivative and polymer of the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017535633A (en) * 2014-10-06 2017-11-30 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Medical water-soluble polycarbonate
WO2018008662A1 (en) * 2016-07-08 2018-01-11 国立大学法人東京農工大学 Novel aliphatic polycarbonate and binder resin composition containing said polycarbonate
KR20190028420A (en) * 2016-07-08 2019-03-18 고꾸리쯔 다이가꾸호우징 도쿄노우코우다이가쿠 A novel aliphatic polycarbonate and a binder resin composition comprising the polycarbonate
JPWO2018008662A1 (en) * 2016-07-08 2019-04-25 国立大学法人東京農工大学 Novel aliphatic polycarbonate and binder resin composition containing the polycarbonate
US10787540B2 (en) 2016-07-08 2020-09-29 National University Corporation Tokyo University Of Agriculture And Technology Aliphatic polycarbonate and binder resin composition containing said polycarbonate
KR102331102B1 (en) 2016-07-08 2021-11-26 고꾸리쯔 다이가꾸호우징 도쿄노우코우다이가쿠 Novel aliphatic polycarbonate and binder resin composition comprising the polycarbonate

Similar Documents

Publication Publication Date Title
JP5671024B2 (en) Process for making polymers, preferably (alkyl) acryloyl polycarbonates, resulting polymers and (alkyl) acryloyl polycarbonates, and biodevices comprising the same
JP5599712B2 (en) Oligofluorinated cross-linked polymer and use thereof
JP5346333B2 (en) Medical device comprising a copolymer of polyamide and polycarbonate diamine
EP1803754B1 (en) Biologically active block copolymers and coated articles thereof
JP5346334B2 (en) Medical devices comprising copolymers of modified polyamides and polyethers
US20100076162A1 (en) Biodegradable nitric oxide generating polymers and related biomedical devices
JP5255627B2 (en) Medical devices comprising copolymers of modified polyamide and polycarbonate
Lopez‐Donaire et al. Surface modifying oligomers used to functionalize polymeric surfaces: Consideration of blood contact applications
JP2017082174A (en) Polymer, polymer solution and polymer coated substrate
JP6226357B2 (en) Biocompatible polymers as antithrombotic materials
WO2018061916A1 (en) Copolymer and medical material using same
WO2014133102A1 (en) Biocompatible polymer as antithrombogenic material, cyclic carbonate useful as precursor thereof, and method for producing same
JP6320688B2 (en) Method for producing cyclic carbonate
EP3219330B1 (en) Synthesis of nano aggregate of chitosan modified by self-assembling peptide and application thereof to protein delivery
WO2015170769A1 (en) Antibacterial polymer, production method therefor, and usage thereof
EP3342795B1 (en) Biodegradable injectable gel
JP2017203062A (en) New polymer
WO2022210938A1 (en) Composition for medical use and application of same
JP2023026365A (en) Medical composition and its use
Ghosh et al. Recent Development in Polyurethanes for Biomedical Applications
Navarro Tissue Engineering Simplified: Biodegradable Polymers and Biomimetic Scaffolds Made Easy, Tailorable, and Economical for Tissue Engineering
EP2098256A1 (en) Blood-coagulation inhibiting material, coating material and in vivo indwelling members made by using the material, and method of treatment
JP2022157235A (en) polymer composition
KR20200130368A (en) Carbonate-linked surface-modifying macromolecules
JP2006271888A (en) Antithrombogenic medical material and its preparation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14756260

Country of ref document: EP

Kind code of ref document: A1