WO2014132986A1 - Cultivation method, seedling raising method, ultrasonic disease control device, disease control method, production method and plant body or seedling - Google Patents

Cultivation method, seedling raising method, ultrasonic disease control device, disease control method, production method and plant body or seedling Download PDF

Info

Publication number
WO2014132986A1
WO2014132986A1 PCT/JP2014/054648 JP2014054648W WO2014132986A1 WO 2014132986 A1 WO2014132986 A1 WO 2014132986A1 JP 2014054648 W JP2014054648 W JP 2014054648W WO 2014132986 A1 WO2014132986 A1 WO 2014132986A1
Authority
WO
WIPO (PCT)
Prior art keywords
disease
ultrasonic
plant
seedling
disease control
Prior art date
Application number
PCT/JP2014/054648
Other languages
French (fr)
Japanese (ja)
Inventor
隆延 吉田
智道 水上
力 有江
徹 寺岡
雄太郎 金丸
Original Assignee
国立大学法人東京農工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京農工大学 filed Critical 国立大学法人東京農工大学
Publication of WO2014132986A1 publication Critical patent/WO2014132986A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general

Definitions

  • the present invention relates to a plant cultivation method, a seedling method, an ultrasonic disease control apparatus, a disease control method, a production method, and a plant body or a seedling for inducing disease resistance against pathogens such as filamentous fungi, for example.
  • ⁇ Reducing food production due to plant diseases is expected to reach more than 15% of the ideal yield.
  • a pesticide bactericide
  • bactericide having a bactericidal action against chemical substances, particularly pathogens
  • the establishment of disease control technology that does not rely on chemical pesticides is socially demanded due to the emergence of resistant bacteria, residue in food, and environmental effects.
  • a lighting device for controlling plant pests spore formation and fungal growth of fungi such as gray mold disease and powdery mildew are reliably suppressed, and disease resistance is surely induced in plants, causing disease generation and plant growth.
  • fungi such as gray mold disease and powdery mildew
  • the plant disease control lighting device has a simple configuration that does not require adjustment of light output, and prevents plant burn resistance caused by ultraviolet irradiation, while preventing plant burn damage.
  • a method has been proposed in which the amount of ultraviolet irradiation necessary to induce the disease is secured and plant diseases are suppressed (see Patent Document 2).
  • the present invention has been made in view of the above situation, and is to provide a technique for solving the above-described problems.
  • the cultivation method according to the present invention irradiates a plant to be cultivated with ultrasonic waves.
  • the period of irradiation with the ultrasonic waves may be a growth period.
  • the period for irradiating the ultrasonic wave may be a seedling raising period.
  • the seedling raising method which concerns on this invention irradiates an ultrasonic wave with respect to a seedling plant in the seedling raising period before planting to this field.
  • the ultrasonic disease control apparatus of the present invention irradiates ultrasonic waves to a plant to be cultivated.
  • ultrasonic waves having a predetermined frequency may be alternately generated at long pulse intervals and short pulse intervals.
  • the disease control method of the present invention controls plant diseases using the above cultivation method, seedling raising method or ultrasonic disease control apparatus.
  • the production method of the present invention produces a plant or seedling that is resistant to disease using the cultivation method, seedling raising method or ultrasonic disease control apparatus.
  • the seedlings of the present invention are irradiated with ultrasonic waves during the seedling raising period before being planted in the main field.
  • the ultrasonic wave may be generated by alternately generating a predetermined frequency at a long pulse interval and a short pulse interval.
  • the present invention by irradiating the plant to be cultivated with ultrasonic waves, it is possible to control diseases that occur at other times, to control diseases that are infected at other times, In addition, it is possible to provide a technique capable of producing a plant body or a seedling that is resistant to pathogens that are infected or diseased at other times.
  • Test 1 the effect of ultrasonic irradiation during the cultivation period was confirmed.
  • Test 2 the effect of ultrasonic irradiation only during the seedling period was confirmed. The effect by the difference in the ultrasonic irradiation period was confirmed.
  • FIG. 5A shows the ultrasonic disease control apparatus 10 used in this test
  • FIG. 5B shows a pulse output pattern
  • the ultrasonic disease control apparatus 10 used in this test includes an output amplifier device 30 of 100 W, a ceramic vibration element 20 that oscillates in resonance in the front-rear direction, and a control unit 40 that controls driving of the ceramic vibration element 20.
  • the section where this treatment was performed is referred to as “ultrasonic treatment section”, and the section where ultrasonic treatment is not performed is referred to as “no treatment section”.
  • the ceramic type vibration element 20 was separated from the pot 50 where the plant was cultivated by 5 cm or more and exposed to ultrasonic waves at a distance of about 15 cm to 30 cm.
  • the installation position of the ceramic type vibration element 20 is 15 cm to 30 cm in height and is located obliquely above the plant.
  • the sound pressure of the ultrasonic waves is about 130 dB at the position of the irradiation target plant 30 cm from the ceramic type vibration element 20 and 120 dB or more at the position of 1 m.
  • the ceramic type vibration element 20 having a strong directivity is used, but the present invention is not limited to this type. Similarly, this process does not limit the frequency of ultrasonic waves, the pulse interval, the sound pressure, and the installation position of the ceramic type vibration element 20.
  • Tomato wilt control test Tomato seeds (variety: Moneymaker) were cultivated for 16 hours under light irradiation conditions at 28 ° C. and for 8 hours under dark conditions at 25 ° C. for one week. Thereafter, ultrasonic treatment was continued in a greenhouse at a temperature of 20 to 30 ° C. for 2 weeks.
  • the variety of tomatoes is not limited to Moneymaker, and may be Momotaro, for example.
  • the pathogenic bacteria are not limited to the present bacteria.
  • Tomato wilt fungus (Fusarium oxysporum f. Sp. Lycopersici race 2 880621a-1 strain) was cultured with shaking in a potato dextrol liquid medium at 28 ° C. for 5 days.
  • the spore concentration in the culture solution of tomato wilt fungus was diluted to 1 to 2 ⁇ 10 7 spores / ml with distilled water and used as an inoculation source.
  • Inoculation is partly by irrigation by rooting (inserting 3 tags with a width of about 1 cm in the soil at the time, partially cutting the tomato roots, and inoculating the inoculation source with 1 ml per tomato) Symptom evaluation was performed at 6 weeks, and the effect of sonication was tested by comparison with the untreated group.
  • the symptom evaluation of each tomato individual was performed by cutting the stem at the border and examining the severity of the disease from 0 to 4 based on the browning degree of the vascular part.
  • the severity of the disease was evaluated in five stages as follows. 0: Healthy 1: Browning is observed in 25% of stems 2: Browning is observed in 26-50% of stems 3: Browning is observed in 51-75% of stems 4: Browning is observed in 76-100% of stems Is accepted,
  • the average disease severity was calculated using the following formula.
  • Average disease severity (1 ⁇ A + 2 ⁇ B + 3 ⁇ C + 4 ⁇ D) / (4 ⁇ N) (In the formula, A, the number of plants showing disease severity 1; B, the number of plants showing disease severity 2; C, the number of plants showing disease severity 3; D, the number of plants showing disease severity 4; N, Represents the total number of plants tested.)
  • Test 1 the tomato wilt disease suppression effect by ultrasonic treatment throughout the growing period (cultivation period) was verified. In this test, tomato was sown, seeded, inoculated and grown continuously in a pot filled with sterilized soil, and ultrasonic waves were continuously irradiated during that time. The results are shown in the table of FIG. 1 (Examples 1 and 2).
  • VMA treatment validamycin A having a purity of 99% (plant activator, Sumika Takeda Agricultural Chemical Co., Ltd.) was dissolved in water (VMA) so as to be 100 ⁇ g / ml and sprayed on the foliage using a spray.
  • Other plant activators include validoxylamine A, probenazole, benzoisothiazole, thiazinyl, isothianyl.
  • the disease severity was 0.27, and it was confirmed that the disease suppression effect by ultrasonic treatment was increased. A similar tendency was confirmed for Example 2.
  • Test 2 Verification of the tomato wilt disease suppression effect by ultrasonic treatment during seedling raising was conducted. In this test, tomato seeds were sown in a cell tray filled with sterilized soil, cultivated for 1 week, and then irradiated with ultrasonic waves in a greenhouse at a temperature of 20 to 30 ° C. for 2 weeks. Then, it transplanted to the pot and inoculated the tomato wilt disease inoculation source one week later. The results are shown in the table of FIG. 2 (Examples 3 and 4). The tests of Examples 3 and 4 are both under the same conditions.
  • Control value (morbidity of untreated area ⁇ average disease degree of each treated area) ⁇ 100 / morbidity of untreated area
  • the ultrasonic treatment with a seedling period of 2 weeks showed an effect of suppressing the onset of wilt disease in this field.
  • the untreated disease severity is 1.73
  • the ultrasonic irradiation treatment section the disease severity is 0.45
  • a significant suppression effect is obtained.
  • Test 3 the influence on the tomato wilt disease suppression effect by the ultrasonic treatment period at the time of raising seedlings was verified. Specifically, the disease-inhibiting effect was investigated for three types: a non-treated group, a one-week ultrasonic irradiation treatment group, and a two-week ultrasonic irradiation treatment group. In the 1 week ultrasonic irradiation treatment group, ultrasonic irradiation was performed in the latter half of the 2 weeks of seedling raising. The results are shown in the tables of Examples 3 and 4 (Examples 5 and 6). Note that the tests of Examples 5 and 6 are both under the same conditions.
  • Control value (morbidity of untreated area ⁇ average disease degree of each treated area) ⁇ 100 / morbidity of untreated area
  • the second embodiment relates to a rice blast control test.
  • Rice (variety: Aichi Asahi) was sown in a 9 cm pot filled with sterilized soil and cultivated for 16 hours under 30 ° C. light irradiation conditions and for 8 hours under 25 ° C. dark conditions for 2 weeks. After continuing ultrasonic treatment for 2 weeks in a greenhouse at a temperature of 20 to 30 ° C., the plant height of rice was measured and spray inoculated with rice blast fungus (Magnaporthe oryzae P2) adjusted to 2 ⁇ 10 4 spores / ml. After inoculation, the rice was transferred into an inoculation humidifier (Nippon Kaika Kikai Seisakusho Co., Ltd.) previously maintained at 27 ° C. and relative humidity of 100%.
  • an inoculation humidifier Nippon Kaika Kikai Seisakusho Co., Ltd.
  • Control value (Disease level of untreated area ⁇ Average severity of treated area) ⁇ 100 / Disease degree of untreated area
  • Sonication for 2 weeks during the seedling period showed a subsequent blast disease suppression effect.
  • the average disease severity is 7.89 in the untreated section, whereas the average disease severity is reduced to 5.00 in the treated section.
  • the blast disease suppression effect by the ultrasonic treatment was persistent.
  • the tendency for the seedling height to become slightly small was recognized by ultrasonication. It is known that seedlings become stronger while rolling seedlings with rice while the seedlings become shorter, but it is estimated that the same phenomenon occurs.
  • FIG. 7 is a table showing the verification results of the blast disease control effect by 40 kHz ultrasonic irradiation.
  • the rice cultivar “Aichi Asahi” was irradiated with 40 kHz ultrasonic waves for 2 weeks using the above-described ultrasonic oscillator that outputs the same pulse, and then spontaneously infected in the field (the time of infection is not clear). Seemed to be about two weeks after the end of irradiation).
  • a T test was performed 4 weeks after the end of the treatment.
  • the number of lesions was 26.2, whereas in the 40 kHz ultrasonic treatment group, the number of lesions was 3.1 and the control value was 88.2. Moreover, in the T test, the probability p of being outside the 95% confidence interval was less than 0.05, and the decrease in the number of lesions was significant, and it was confirmed that it was effective even when infection was slow.
  • FIG. 8 is a table showing verification results of cabbage yellowing prevention effect by 40 kHz ultrasonic irradiation.
  • the cabbage cultivar “Four Seasonal Harvest” was irradiated with 40 kHz ultrasonic waves for 2 weeks from 1 week after sowing using the ultrasonic oscillator with the same pulse output as described above, and then the pathogen (Fusarium oxysporum f. ) Spore suspension was irrigated.
  • the test was performed 3 weeks after the inoculation. In the case of the untreated group, the average disease severity was 3.13, but in the 40 kHz ultrasonic treatment group, the average disease severity was 2.93 and the control value was 7.4.
  • FIG. 9 is a table showing the verification results of the blast control effect when two types of ultrasonic waves of 21 kHz and 40 kHz are used.
  • the rice cultivar “Aichi Asahi” was irradiated with the above-mentioned two types of ultrasonic waves for 2 weeks using the same ultrasonic output device as described above, and then spontaneously infected in the field (the time of infection was not clear). No, but it seems to be about 2 weeks after the end of irradiation). The test was performed 4 weeks after the end of the treatment.
  • the average disease severity was 1.61 in the untreated zone, the average disease severity was 1.39 (control value 13.7) in the ultrasonic treatment zone of 21 kHz, and the average disease severity was 0.61 (control in the ultrasonic treatment zone of 40 kHz. Value 62.1). Regarding the rice blast control effect, it was confirmed that the ultrasonic treatment at 40 kHz was more effective than the ultrasonic treatment at 21 kHz.
  • FIG. 10 is a table showing verification results of the tomato powdery mildew prevention effect when three types of ultrasonic waves of 21 kHz, 28 kHz, and 40 kHz are used.
  • tomato variety “Momotaro” is irradiated with the above-mentioned three types of ultrasonic waves for 2 weeks from 1 week after sowing using the ultrasonic oscillating device that outputs the same pulse as described above, and after 1 week after the end of irradiation, infection It was placed in the same meteorological instrument as the stock to promote infection.
  • the test was performed 3 weeks after the end of irradiation.
  • the average disease severity was 1.78 in the untreated group, the average disease severity was 0.83 (control value 53.4) in the 21 kHz ultrasonic treatment group, and the average disease severity 1.00 (control in the 28 kHz ultrasonic treatment group.
  • the average disease severity was 1.17 (control value 34.3) in the ultrasonic treatment section at 40 kHz.
  • 21 kHz sonication was most effective, followed by 28 kHz sonication. Note that the 40 kHz ultrasonic treatment section in this test is relatively less effective than the other treatment sections, but the effect itself is sufficient.
  • the first to sixth embodiments can be summarized as follows.
  • a technique for imparting disease resistance by exposing plants to ultrasonic waves, which is a kind of external stress has been realized. Since the long-term disease prevention effect is maintained by a single treatment, it is possible to grow seedling plants that are resistant to diseases by exposing them to ultrasound during the seedling season, and do not use agricultural chemicals. Or the seedling raising method which reduced use is realizable. It is possible to greatly reduce labor and expenses at the production site.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Environmental Sciences (AREA)
  • Catching Or Destruction (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Provided is a technique which, by irradiating plants under cultivation with ultrasonic waves, induces disease resistance in the plants to produce plant bodies or seedlings that control or are resistant to disease. The tomato wilt disease suppression effect of ultrasonic treatment over the growing period (cultivation period) was examined. In the tests, tomatoes were sequentially seeded, nursed, inoculated, and grown in pots filled with sterilized soil, and were continually irradiated with ultrasonic waves during this process. As a result, the wilt disease suppression effect of ultrasonic treatment was seen over the growth period. For example, as shown in the result of example 1, a large suppression effect of the incidence of disease was observed, with 0.54 in the ultrasonic treatment area compared to 1.61 for non-treated area. Further, in the VMA combined use area had an incidence of disease of 0.27, confirming an increase in the disease suppression effect.

Description

栽培方法、育苗方法、超音波病害防除装置、病害防除方法、製造方法及び植物体もしくは苗Cultivation method, seedling method, ultrasonic disease control device, disease control method, production method and plant body or seedling
 本発明は、例えば、糸状菌などの病原菌に対して病害抵抗性を誘導する植物の栽培方法、育苗方法、超音波病害防除装置、病害防除方法、製造方法及び植物体もしくは苗に関する。 The present invention relates to a plant cultivation method, a seedling method, an ultrasonic disease control apparatus, a disease control method, a production method, and a plant body or a seedling for inducing disease resistance against pathogens such as filamentous fungi, for example.
 植物病害による食料生産の減収は、理想的な収量の15%以上に及ぶと想定されている。現状では植物病害の防除には化学物質特に病原に対する殺菌作用を有する農薬(殺菌剤)が使用されることが一般的である。しかしながら、耐性菌の出現、食料への残留や環境影響等から、化学農薬にたよらない病害防除技術の確立が社会的に求められている。  Reducing food production due to plant diseases is expected to reach more than 15% of the ideal yield. At present, a pesticide (bactericide) having a bactericidal action against chemical substances, particularly pathogens, is generally used for controlling plant diseases. However, the establishment of disease control technology that does not rely on chemical pesticides is socially demanded due to the emergence of resistant bacteria, residue in food, and environmental effects.
 近年、農業生産現場でも、環境保全に対する関心が高まり、環境への負荷を低減するため、農薬・化学肥料の使用量を極力減少させた栽培技術に取組む生産者が増加している。さらに、有機農業推進法が施行され、環境負荷低減を目指した生産技術に関する研究開発も大学、公立試験機関等で推進しており、化学農薬に依存しない新しい防除技術の開発が望まれている。 In recent years, there has been an increasing interest in environmental conservation in agricultural production sites, and an increasing number of producers are engaged in cultivation techniques that reduce the use of agricultural chemicals and chemical fertilizers as much as possible in order to reduce the burden on the environment. In addition, the Law on Promotion of Organic Farming has been enforced, and research and development related to production technologies aimed at reducing environmental impacts are being promoted by universities and public testing institutions, and the development of new control technologies that do not depend on chemical pesticides is desired.
 そのような技術として各種のものが提案されている。例えば、植物病害虫防除用照明装置において、灰色カビ病、うどんこ病等の糸状菌の胞子形成や菌糸の成長を確実に抑制し、植物に病害抵抗性を確実に誘導して病害発生、植物育成障害を低減し、植物体の花芽形成等への影響を抑え、夜行性害虫の防除を効率的に行う方法がある(例えば特許文献1参照)。また、同様に光を用いた技術として、植物病害防除用照明装置では、光出力の調整を必要としない簡便な構成であり、紫外線照射による植物への葉焼け障害を防ぎつつ植物の病害抵抗性を誘発するのに必要な紫外線照射量を確保し、植物病害を抑制する方法が提案されている(特許文献2参照)。 Various types of technologies have been proposed. For example, in a lighting device for controlling plant pests, spore formation and fungal growth of fungi such as gray mold disease and powdery mildew are reliably suppressed, and disease resistance is surely induced in plants, causing disease generation and plant growth. There is a method for reducing the damage, suppressing the influence on plant flower bud formation, etc., and efficiently controlling nocturnal pests (see, for example, Patent Document 1). Similarly, as a technology using light, the plant disease control lighting device has a simple configuration that does not require adjustment of light output, and prevents plant burn resistance caused by ultraviolet irradiation, while preventing plant burn damage. A method has been proposed in which the amount of ultraviolet irradiation necessary to induce the disease is secured and plant diseases are suppressed (see Patent Document 2).
特開2009-153397号公報JP 2009-153397 A 特開2012-61号公報JP 2012-61 A
 ところで、上述の特許文献1や2に記載のように、光を利用した抵抗性誘導と病害防除法が数多く提案され、生産現場への普及を目指し、研究や実証試験等が行われている。しかし、光を利用した場合、その波長の種類(色の種類)によって、抵抗性が誘導される植物と抵抗性が誘導されない植物があり、反応が植物の種類によって大きく異なるという課題があった。また、光の種類によって植物の葉色に影響を及ぼすことがあり、利用可能な作物が限定される等の課題があった。また、風を用いた抵抗性誘導に関する技術も提案はされているが、実際に抵抗性が誘導されているか否かの検証が十分でなく、風による病害防徐効果が明確になっておらず、また、生産現場でも、本技術を利用した防除技術は普及しておらず別の技術が求められていた。 By the way, as described in Patent Documents 1 and 2 described above, many resistance induction and disease control methods using light have been proposed, and research, verification tests, and the like have been conducted with the aim of spreading to production sites. However, when light is used, there is a plant in which resistance is induced and a plant in which resistance is not induced depending on the type of wavelength (color type), and there is a problem that the reaction varies greatly depending on the type of plant. Moreover, the leaf color of the plant may be affected depending on the type of light, and there are problems such as limited available crops. In addition, although technology related to resistance induction using wind has been proposed, it has not been sufficiently verified whether resistance is actually induced, and the disease prevention effect due to wind has not been clarified. Also, even at production sites, control technology using this technology is not widespread, and another technology has been demanded.
 化学物質(プラントアクチベーター)や微生物を利用した抵抗性誘導に基づく病害防除法も数多く発明されており、生産現場に普及している技術も多い。しかし、これらを生産現場で利用する場合、農薬登録等の手続きを取らなければならず、多額の経費がかかるため、実用化された技術は少ないのが現状である。また、天然物でない化学物質を農薬として登録した場合、有機農業等の生産現場では利用し難いという課題があり、この観点からも代替あるいは補完技術が求められていた。 Many disease control methods based on resistance induction using chemical substances (plant activators) and microorganisms have been invented, and many techniques are widely used in production sites. However, when these are used at the production site, procedures such as registration of agricultural chemicals have to be taken, and a large amount of money is required. Therefore, there are few technologies that have been put to practical use. In addition, when a chemical substance that is not a natural product is registered as an agrochemical, there is a problem that it is difficult to use it at production sites such as organic agriculture. From this viewpoint, an alternative or complementary technique has been demanded.
 本発明は、以上のような状況に鑑みなされたものであって、上記課題を解決する技術を提供することにある。 The present invention has been made in view of the above situation, and is to provide a technique for solving the above-described problems.
 本発明に係る栽培方法は、栽培対象の植物に対して超音波を照射する。
 また、前記超音波を照射する期間は、生育期間であってもよい。
 また、前記超音波を照射する期間は、育苗期間であってもよい。
 また、前記超音波の照射とともに、前記栽培対象の植物に対してプラントアクチベーターによる処理を施してもよい。
 本発明に係る育苗方法は、本圃に定植する前の育苗期間において、苗植物に対して超音波を照射する。
 本発明の超音波病害防除装置は、栽培対象の植物に対して超音波を照射する。
 また、所定の周波数の超音波を、長いパルス間隔と短いパルス間隔で交互に発生させてもよい。
 本発明の病害防除方法は、上記の栽培方法、育苗方法または超音波病害防除装置を用いて植物病害を防除する。
 本発明の製造方法は、上記の栽培方法、育苗方法または超音波病害防除装置を用いて病害に強い植物体もしくは苗を製造する。
 本発明の苗は、本圃に定植する前の育苗期間において、超音波が照射されている。
 また、前記超音波は、所定の周波数を長いパルス間隔と短いパルス間隔とで交互に発生させたものであってもよい。
The cultivation method according to the present invention irradiates a plant to be cultivated with ultrasonic waves.
Further, the period of irradiation with the ultrasonic waves may be a growth period.
Moreover, the period for irradiating the ultrasonic wave may be a seedling raising period.
Moreover, you may perform the process by a plant activator with respect to the plant of the said cultivation object with the said ultrasonic irradiation.
The seedling raising method which concerns on this invention irradiates an ultrasonic wave with respect to a seedling plant in the seedling raising period before planting to this field.
The ultrasonic disease control apparatus of the present invention irradiates ultrasonic waves to a plant to be cultivated.
Further, ultrasonic waves having a predetermined frequency may be alternately generated at long pulse intervals and short pulse intervals.
The disease control method of the present invention controls plant diseases using the above cultivation method, seedling raising method or ultrasonic disease control apparatus.
The production method of the present invention produces a plant or seedling that is resistant to disease using the cultivation method, seedling raising method or ultrasonic disease control apparatus.
The seedlings of the present invention are irradiated with ultrasonic waves during the seedling raising period before being planted in the main field.
The ultrasonic wave may be generated by alternately generating a predetermined frequency at a long pulse interval and a short pulse interval.
 本発明によれば、超音波を栽培対象の植物に照射することで、当該及びそれ以外の時期に発生する病害を防除したり、当該及びそれ以外の時期に感染する病害を防除したり、当該及びそれ以外の時期に感染あるいは発病する病原に強い植物体あるいは苗を製造したりすることが可能な技術を提供できる。 According to the present invention, by irradiating the plant to be cultivated with ultrasonic waves, it is possible to control diseases that occur at other times, to control diseases that are infected at other times, In addition, it is possible to provide a technique capable of producing a plant body or a seedling that is resistant to pathogens that are infected or diseased at other times.
第1の実施形態に係る、生育期間を通しての超音波処理によるトマト萎凋病発病抑制効果の検証結果(実施例1、2)を示すテーブルである。It is a table which shows the verification result (Examples 1 and 2) of the tomato wilt disease onset suppression effect by the ultrasonic treatment through the growth period based on 1st Embodiment. 第1の実施形態に係る、育苗時の超音波処理によるトマト萎凋病発病抑制効果の検証結果(実施例3、4)を示すテーブルである。It is a table which shows the verification result (Example 3, 4) of the tomato wilt disease onset suppression effect by the ultrasonic treatment at the time of seedling raising based on 1st Embodiment. 第1の実施形態に係る、育苗時の超音波処理期間によるトマト萎凋病発病抑制効果への影響の検証結果(実施例5)を示すテーブルである。It is a table which shows the verification result (Example 5) of the influence on the tomato wilt disease onset suppression effect by the ultrasonic treatment period at the time of seedling raising based on 1st Embodiment. 第1の実施形態に係る、育苗時の超音波処理期間によるトマト萎凋病発病抑制効果への影響の検証結果(実施例6)を示すテーブルである。It is a table which shows the verification result (Example 6) of the influence on the tomato wilt disease onset suppression effect by the ultrasonic treatment period at the time of seedling raising based on 1st Embodiment. 第1の実施の形態に係る、超音波病害防除装置及び超音波の出力パターンを示す図である。It is a figure which shows the ultrasonic disease control apparatus and output pattern of an ultrasonic wave based on 1st Embodiment. 第2の実施形態に係る、育苗時の超音波処理によるイネいもち病防除効果の検証結果(実施例7~9)を示すテーブルである。10 is a table showing verification results (Examples 7 to 9) of rice blast control effect by ultrasonic treatment during seedling raising according to a second embodiment. 第3の実施形態に係る、40kHzの超音波照射によるいもち病防除効果の検証結果を示すテーブルである。It is a table which shows the verification result of the rice blast prevention | control effect by 40-kHz ultrasonic irradiation based on 3rd Embodiment. 第4の実施形態に係る、40kHzの超音波照射によるキャベツ萎黄病防除効果の検証結果を示すテーブルである。テーブルである。It is a table which shows the verification result of the cabbage dwarf prevention effect by 40kHz ultrasonic irradiation based on 4th Embodiment. It is a table. 第5の実施形態に係る、21kHzと40kHzの2種類の超音波を用いた場合のいもち病防除効果の検証結果を示すテーブルである。テーブルである。It is a table which shows the verification result of the blast disease control effect at the time of using two types of ultrasonic waves of 21 kHz and 40 kHz based on 5th Embodiment. It is a table. 第6の実施形態に係る、21kHz、28kHz及び40kHzの3種類の超音波を用いた場合のトマトうどんこ病防除効果の検証結果を示すテーブルである。It is a table which shows the verification result of the tomato powdery mildew prevention effect at the time of using 3 types of ultrasonic waves based on 6th Embodiment, 21kHz, 28kHz, and 40kHz.
 本実施の形態(以下、単に実施形態という)を、図面を参照して説明する。 The present embodiment (hereinafter simply referred to as an embodiment) will be described with reference to the drawings.
 <第1の実施形態>
 第1の実施形態は、トマト萎凋病防除試験に関して、試験1~試験3の3種類について行った。試験1~試験3の詳細は後述するが、試験1では栽培期間を通して超音波照射したときの効果の確認、試験2では育苗期間のみ超音波照射した場合の効果の確認、試験3では育苗期間における超音波照射期間の違いによる効果の確認を行った。
<First Embodiment>
In the first embodiment, three types of test 1 to test 3 were conducted with respect to the tomato wilt disease control test. Details of Test 1 to Test 3 will be described later. In Test 1, the effect of ultrasonic irradiation during the cultivation period was confirmed. In Test 2, the effect of ultrasonic irradiation only during the seedling period was confirmed. The effect by the difference in the ultrasonic irradiation period was confirmed.
 超音波暴露:
 図5(a)に本試験に用いた超音波病害防除装置10及び図5(b)にパルスの出力パターンを示す。図示のように、本試験に用いた超音波病害防除装置10は、100Wの出力アンプ装置30、前後方向に共振発振するセラミック型振動素子20及びセラミック型振動素子20の駆動制御を行う制御部40とを備える。この超音波病害防除装置10は、周波数40kHzの超音波をパルス幅(T1)5ミリ秒を、長いパルス間隔(T2=約150ミリ秒)で12回出力したものと短いパルス間隔(T3=約30ミリ秒)で10回出力したものとを交互に発生させる。
Ultrasonic exposure:
FIG. 5A shows the ultrasonic disease control apparatus 10 used in this test, and FIG. 5B shows a pulse output pattern. As shown in the figure, the ultrasonic disease control apparatus 10 used in this test includes an output amplifier device 30 of 100 W, a ceramic vibration element 20 that oscillates in resonance in the front-rear direction, and a control unit 40 that controls driving of the ceramic vibration element 20. With. The ultrasonic disease control apparatus 10 outputs an ultrasonic wave having a frequency of 40 kHz and outputs a pulse width (T1) of 5 milliseconds for 12 times with a long pulse interval (T2 = about 150 milliseconds) and a short pulse interval (T3 = about). 30 times) and 10 times output are generated alternately.
 以降の試験ではこの処理を行った区を「超音波処理区」、超音波を処理していない区を「無処理区」と称する。セラミック型振動素子20を植物を栽培しているポット50から5cm以離し、概ね15cm~30cm程度の距離で超音波に暴露した。また、セラミック型振動素子20の設置位置は高さ15cm~30cmであって、植物の斜め上方に位置している。超音波の音圧は、セラミック型振動素子20から30cmの照射対象植物の位置において約130dB、1mの位置で120dB以上である。なお、本試験及び以降の試験では超音波暴露の効果を確認するために、指向性の強いセラミック型振動素子20を用いているが、この型に限定するものではない。同様に、本処理は、超音波の周波数、パルス間隔、音圧、セラミック型振動素子20の設置位置を限定するものではない。 In the following tests, the section where this treatment was performed is referred to as “ultrasonic treatment section”, and the section where ultrasonic treatment is not performed is referred to as “no treatment section”. The ceramic type vibration element 20 was separated from the pot 50 where the plant was cultivated by 5 cm or more and exposed to ultrasonic waves at a distance of about 15 cm to 30 cm. The installation position of the ceramic type vibration element 20 is 15 cm to 30 cm in height and is located obliquely above the plant. The sound pressure of the ultrasonic waves is about 130 dB at the position of the irradiation target plant 30 cm from the ceramic type vibration element 20 and 120 dB or more at the position of 1 m. In addition, in order to confirm the effect of ultrasonic exposure in this test and subsequent tests, the ceramic type vibration element 20 having a strong directivity is used, but the present invention is not limited to this type. Similarly, this process does not limit the frequency of ultrasonic waves, the pulse interval, the sound pressure, and the installation position of the ceramic type vibration element 20.
 トマト萎凋病防除試験:
 トマト種子(品種:Moneymaker)を、28℃光照射条件下で16時間、25℃暗黒条件下で8時間、1週間栽培した。その後、温度20~30℃の温室で2週間超音波を処理し続けた。なお、トマトの品種はMoneymakerに限る趣旨ではなく例えば桃太郎等でも良い。また、病原菌は本菌に限定されるものではない。
Tomato wilt control test:
Tomato seeds (variety: Moneymaker) were cultivated for 16 hours under light irradiation conditions at 28 ° C. and for 8 hours under dark conditions at 25 ° C. for one week. Thereafter, ultrasonic treatment was continued in a greenhouse at a temperature of 20 to 30 ° C. for 2 weeks. Note that the variety of tomatoes is not limited to Moneymaker, and may be Momotaro, for example. Moreover, the pathogenic bacteria are not limited to the present bacteria.
 トマト萎凋病菌(Fusarium oxysporum f. sp. lycopersici race 2 880621a-1株)をポテトデキストロール液体培地で28℃で5日間振とう培養した。トマト萎凋病菌培養液中の胞子濃度を1~2×10個胞子/mlに蒸留水で希釈し、接種源として用いた。接種は一部断根による潅注接種(時際部土壌に幅約1cm程度のタグを3箇所差し込んでトマトの根を部分的に切り、接種源をトマト1個体あたり1ml灌注)で、接種後3~6週間で病徴評価を行い、無処理区との比較によって超音波処理の効果を検定した。 Tomato wilt fungus (Fusarium oxysporum f. Sp. Lycopersici race 2 880621a-1 strain) was cultured with shaking in a potato dextrol liquid medium at 28 ° C. for 5 days. The spore concentration in the culture solution of tomato wilt fungus was diluted to 1 to 2 × 10 7 spores / ml with distilled water and used as an inoculation source. Inoculation is partly by irrigation by rooting (inserting 3 tags with a width of about 1 cm in the soil at the time, partially cutting the tomato roots, and inoculating the inoculation source with 1 ml per tomato) Symptom evaluation was performed at 6 weeks, and the effect of sonication was tested by comparison with the untreated group.
 各トマト個体の病徴評価は、茎を地際部で切断し、維管束部の褐変程度から0~4の発病度を調査しておこなった。発病度は次の通り5段階で評価した。
  0:健全
  1:茎の25%に褐変が認められる
  2:茎の26~50%で褐変が認められる
  3:茎の51~75%で褐変が認められる
  4:茎の76~100%で褐変が認められる、
また平均発病度を下記の式を用いて算出した。
平均発病度=(1×A+2×B+3×C+4×D)/(4×N)
(式中、A,発病度1を示した植物数;B,発病度2を示した植物数;C,発病度3を示した植物数;D,発病度4を示した植物数;N,供試全植物数を表す。)
The symptom evaluation of each tomato individual was performed by cutting the stem at the border and examining the severity of the disease from 0 to 4 based on the browning degree of the vascular part. The severity of the disease was evaluated in five stages as follows.
0: Healthy 1: Browning is observed in 25% of stems 2: Browning is observed in 26-50% of stems 3: Browning is observed in 51-75% of stems 4: Browning is observed in 76-100% of stems Is accepted,
The average disease severity was calculated using the following formula.
Average disease severity = (1 × A + 2 × B + 3 × C + 4 × D) / (4 × N)
(In the formula, A, the number of plants showing disease severity 1; B, the number of plants showing disease severity 2; C, the number of plants showing disease severity 3; D, the number of plants showing disease severity 4; N, Represents the total number of plants tested.)
 1. 試験1
 試験1では、生育期間(栽培期間)を通しての超音波処理によるトマト萎凋病発病抑制効果の検証を行った。本試験では、滅菌土壌を充填したポットにトマトを播種、育苗、接種、生育を連続的に行い、その間継続的に超音波を照射した。結果を図1のテーブル(実施例1および2)に示す。
1. Test 1
In Test 1, the tomato wilt disease suppression effect by ultrasonic treatment throughout the growing period (cultivation period) was verified. In this test, tomato was sown, seeded, inoculated and grown continuously in a pot filled with sterilized soil, and ultrasonic waves were continuously irradiated during that time. The results are shown in the table of FIG. 1 (Examples 1 and 2).
 試験条件は次の通りである。なお、実施例1及び2の試験は、いずれも同条件による。
・超音波は栽培期間を通して照射し続けた。
・接種28日後に検定。
・防除価は以下の式を用いて計算した。
 防除価=(無処理区の発病度-各処理区の平均発病度)×100/無処理区の発病度・VMA処理では、接種1週間前に、純度99%のバリダマイシンA(プラントアクチベーター、住化武田農薬株式会社)を100μg/mlになるように水で溶解(VMAと表記する)し、スプレーを用いて茎葉散布した。他のプラントアクチベーターとして、バリドキシルアミンA、プロベナゾール、ベンゾイソチアゾール、チアジニル、イソチアニルがある。
The test conditions are as follows. The tests of Examples 1 and 2 are both under the same conditions.
・ Ultrasonic waves continued to be irradiated throughout the cultivation period.
・ Tested 28 days after inoculation.
-The control value was calculated using the following formula.
Control value = (morbidity of untreated group−average disease degree of each treated group) × 100 / morbidity of untreated group. In VMA treatment, validamycin A having a purity of 99% (plant activator, Sumika Takeda Agricultural Chemical Co., Ltd.) was dissolved in water (VMA) so as to be 100 μg / ml and sprayed on the foliage using a spray. Other plant activators include validoxylamine A, probenazole, benzoisothiazole, thiazinyl, isothianyl.
 図1のテーブルに示すように、上記試験1の結果、生育期間を通しての超音波処理の萎凋病発病抑制効果がみられた。例えば、実施例1の結果に示すように、発病度については、無処理区の1.61に対して超音波処理区の0.54と大幅に抑制効果が得られた。 As shown in the table of FIG. 1, as a result of the test 1, the effect of suppressing the onset of wilt disease by sonication throughout the growth period was observed. For example, as shown in the results of Example 1, the degree of illness was significantly suppressed as 0.54 in the ultrasonic treatment group compared to 1.61 in the non-treatment group.
 さらにVMA併用区では発病度0.27となり、超音波処理による発病抑制効果が増大することが確認できた。実施例2についても同様の傾向が確認できた。 Furthermore, in the VMA combined section, the disease severity was 0.27, and it was confirmed that the disease suppression effect by ultrasonic treatment was increased. A similar tendency was confirmed for Example 2.
 2.試験2
 試験2では.育苗時の超音波処理によるトマト萎凋病発病抑制効果の検証を行った。本試験では、トマト種子を、滅菌土壌を充填したセルトレーに播種し、1週間栽培した後、温度20~30℃の温室で2週間超音波を照射した。その後、ポットに移植し、1週間後にトマト萎凋病菌接種源を接種した。結果を図2のテーブル(実施例3および4)に示す。なお、実施例3及び4の試験は、いずれも同条件による。
2. Test 2
In test 2. Verification of the tomato wilt disease suppression effect by ultrasonic treatment during seedling raising was conducted. In this test, tomato seeds were sown in a cell tray filled with sterilized soil, cultivated for 1 week, and then irradiated with ultrasonic waves in a greenhouse at a temperature of 20 to 30 ° C. for 2 weeks. Then, it transplanted to the pot and inoculated the tomato wilt disease inoculation source one week later. The results are shown in the table of FIG. 2 (Examples 3 and 4). The tests of Examples 3 and 4 are both under the same conditions.
 試験条件は次の通りである
・超音波は育苗中の2週間照射し続けた。
・接種28日後に検定。
・防除価は以下の式を用いて計算した。
 防除価=(無処理区の発病度-各処理区の平均発病度)×100/無処理区の発病度
The test conditions are as follows:-Ultrasonic wave was continuously irradiated for 2 weeks during seedling raising.
・ Tested 28 days after inoculation.
-The control value was calculated using the following formula.
Control value = (morbidity of untreated area−average disease degree of each treated area) × 100 / morbidity of untreated area
 図2のテーブルに示すように、上記試験2の結果、育苗期間2週間の超音波処理で、本圃での萎凋病発病抑制効果がみられた。例えば、実施例3では無処理の発病度が1.73であるのに対して、超音波照射処理区では発病度が0.45となり、大幅な抑制効果が得られている。このように、超音波処理による萎凋病発病抑制効果は持続性があることが確認できた。 As shown in the table of FIG. 2, as a result of the test 2, the ultrasonic treatment with a seedling period of 2 weeks showed an effect of suppressing the onset of wilt disease in this field. For example, in Example 3, the untreated disease severity is 1.73, whereas in the ultrasonic irradiation treatment section, the disease severity is 0.45, and a significant suppression effect is obtained. As described above, it was confirmed that the effect of suppressing the onset of wilt disease by ultrasonic treatment was persistent.
 3.試験3
 試験3では、育苗時の超音波処理期間によるトマト萎凋病発病抑制効果への影響の検証を行った。具体的には、無処理区、1週間超音波照射処理区、2週間超音波照射処理区の3種類について発病抑制効果を調査した。なお、1週間超音波照射処理区については、育苗期間2週間のうち後半の1週間に超音波照射を行った。結果を図3及び4のテーブル(実施例5および6)に示す。なお、実施例5及び6の試験は、いずれも同条件による。
3. Test 3
In Test 3, the influence on the tomato wilt disease suppression effect by the ultrasonic treatment period at the time of raising seedlings was verified. Specifically, the disease-inhibiting effect was investigated for three types: a non-treated group, a one-week ultrasonic irradiation treatment group, and a two-week ultrasonic irradiation treatment group. In the 1 week ultrasonic irradiation treatment group, ultrasonic irradiation was performed in the latter half of the 2 weeks of seedling raising. The results are shown in the tables of Examples 3 and 4 (Examples 5 and 6). Note that the tests of Examples 5 and 6 are both under the same conditions.
 試験条件は次の通りである
・超音波は育苗中の2週間あるいは1週間照射し続けた。
・接種28日後に検定。
・防除価は以下の式を用いて計算した。
 防除価=(無処理区の発病度-各処理区の平均発病度)×100/無処理区の発病度 
The test conditions were as follows:-Ultrasound was continuously irradiated for 2 weeks or 1 week during seedling raising.
・ Tested 28 days after inoculation.
-The control value was calculated using the following formula.
Control value = (morbidity of untreated area−average disease degree of each treated area) × 100 / morbidity of untreated area
 図3及び図4のテーブルに示すように、育苗期間の超音波処理は1週間でも本圃での十分な発病抑制効果は認められるが、2週間の方が効果は高いことが検証された。 As shown in the tables of FIGS. 3 and 4, it was verified that the ultrasonic treatment during the seedling period had a sufficient disease-suppressing effect in this field even for one week, but the effect was higher in two weeks.
 <第2の実施形態>
 第2の実施形態は、イネいもち病防除試験に関する。ここでは、育苗時の超音波処理によるイネいもち病発病抑制効果について検証している。なお、超音波暴露には、第1の実施形態と同様に、周波数40kHzでパルス幅(T1)5ミリ秒の超音波を、長いパルス間隔(T2=約150ミリ秒)と短いパルス間隔(T3=約30ミリ秒)で交互に発生させる超音波発振装置を用いている。
<Second Embodiment>
The second embodiment relates to a rice blast control test. Here, we verify the rice blast disease suppression effect by ultrasonic treatment during seedling raising. For ultrasonic exposure, as in the first embodiment, ultrasonic waves having a frequency of 40 kHz and a pulse width (T1) of 5 milliseconds are applied to a long pulse interval (T2 = about 150 milliseconds) and a short pulse interval (T3). = About 30 milliseconds) is used.
 イネ(品種:愛知旭)を滅菌土壌を充填した9cmのポットに播種し、30℃光照射条件下で16時間、25℃暗黒条件下で8時間、2週間栽培した。温度20~30℃の温室で2週間超音波を処理し続けた後、イネの草丈を測定し、2×10個胞子/mlに調整したイネいもち病菌(Magnaporthe oryzae P2)を噴霧接種した。接種後、イネをあらかじめ27℃、相対湿度100%に保持した接種恒湿器(日本医化器械製作所)内に移し、24時間保湿後、ガラス温室に移した。28℃光照射条件下で16時間、25℃暗黒条件下で8時間、1週間栽培したのちに最上位展開葉から3枚目までの葉に形成された伸展型病斑の数を数え発病度とした。結果を図6のテーブル(実施例7~9)に示す。なお、実施例7~9の試験は、いずれも同条件による。病原菌は本菌に限らず、品種も愛知旭に限定されるものではない。 Rice (variety: Aichi Asahi) was sown in a 9 cm pot filled with sterilized soil and cultivated for 16 hours under 30 ° C. light irradiation conditions and for 8 hours under 25 ° C. dark conditions for 2 weeks. After continuing ultrasonic treatment for 2 weeks in a greenhouse at a temperature of 20 to 30 ° C., the plant height of rice was measured and spray inoculated with rice blast fungus (Magnaporthe oryzae P2) adjusted to 2 × 10 4 spores / ml. After inoculation, the rice was transferred into an inoculation humidifier (Nippon Kaika Kikai Seisakusho Co., Ltd.) previously maintained at 27 ° C. and relative humidity of 100%. After moisturizing for 24 hours, the rice was transferred to a glass greenhouse. After cultivating for 16 hours under light irradiation conditions at 28 ° C, for 8 hours under dark conditions at 25 ° C for 1 week, the number of extension-type lesions formed on the third to third leaves was counted. It was. The results are shown in the table of Examples 6 (Examples 7 to 9). The tests in Examples 7 to 9 are all under the same conditions. The pathogenic bacterium is not limited to this bacterium, and the variety is not limited to Aichi Asahi.
 防除価は以下の式を用いて計算した。
 防除価=(無処理区の発病度-処理区の平均発病度)×100/無処理区の発病度
The control value was calculated using the following formula.
Control value = (Disease level of untreated area−Average severity of treated area) × 100 / Disease degree of untreated area
 育苗期2週間の超音波処理で、その後のいもち病発病抑制効果がみられた。例えば、実施例7に示すように、無処理区では平均発病度が7.89であるのに対して、処理区では平均発病度が5.00まで低減している。このように、超音波処理によるいもち病発病抑制効果は持続性があることが確認できた。また、トマトに関する試験では確認できなかったが、イネに関する当該試験では、超音波処理によって苗草丈がやや小さくなる傾向が認められた。育苗中のイネにローラーがけを行うことで苗草丈が小さくなる一方で、苗が強くなることが知られているが、それと同様の現象が発生していると推定される。 Sonication for 2 weeks during the seedling period showed a subsequent blast disease suppression effect. For example, as shown in Example 7, the average disease severity is 7.89 in the untreated section, whereas the average disease severity is reduced to 5.00 in the treated section. As described above, it was confirmed that the blast disease suppression effect by the ultrasonic treatment was persistent. Moreover, although it was not able to confirm in the test regarding tomato, in the said test regarding rice, the tendency for the seedling height to become slightly small was recognized by ultrasonication. It is known that seedlings become stronger while rolling seedlings with rice while the seedlings become shorter, but it is estimated that the same phenomenon occurs.
 <第3の実施形態>
 第3の実施形態は、イネのいもち病防除効果について、病原菌の接種を遅くした場合の発病抑制効果について説明する。図7は、40kHzの超音波照射によるいもち病防除効果の検証結果を示すテーブルである。こここでは、イネ品種「愛知旭」に、上述の同様のパルス出力をする超音波発振装置を用いて、40kHzの超音波を2週間照射した後、圃場で自然感染(感染時期は明確では無いが照射終了後2週間程度と思われる)を促した。処理終了後4週目にT検定を行った。無処理区の場合、病斑数が26.2であったが、40kHzの超音波の処理区では病斑数が3.1で、防除価が88.2であった。また、T検定において、95%信頼区間の外側に来る確率pが0.05未満であり、病斑数低下が有意であり、感染が遅い場合でも効果があることが確認できた。
<Third Embodiment>
3rd Embodiment demonstrates the onset suppression effect at the time of delaying inoculation of a pathogenic microbe about the rice blast control effect of rice. FIG. 7 is a table showing the verification results of the blast disease control effect by 40 kHz ultrasonic irradiation. Here, the rice cultivar “Aichi Asahi” was irradiated with 40 kHz ultrasonic waves for 2 weeks using the above-described ultrasonic oscillator that outputs the same pulse, and then spontaneously infected in the field (the time of infection is not clear). Seemed to be about two weeks after the end of irradiation). A T test was performed 4 weeks after the end of the treatment. In the case of the untreated group, the number of lesions was 26.2, whereas in the 40 kHz ultrasonic treatment group, the number of lesions was 3.1 and the control value was 88.2. Moreover, in the T test, the probability p of being outside the 95% confidence interval was less than 0.05, and the decrease in the number of lesions was significant, and it was confirmed that it was effective even when infection was slow.
 <第4の実施形態>
 第4の実施形態は、キャベツ萎黄病防除効果について説明する。図8は、40kHzの超音波照射によるキャベツ萎黄病防除効果の検証結果を示すテーブルである。キャベツ品種「四季穫」に上述の同様のパルス出力をする超音波発振装置を用いて40kHzの超音波を播種1週間後から2週間照射し、その後、土壌に病原菌(Fusarium oxysporum f. sp. conglutinans)胞子懸濁液を灌注接種した。接種後3週目に検定を行った。無処理区の場合、平均発病度が3.13であったが、40kHzの超音波の処理区では平均発病度が2.93で、防除価が7.4であった。
<Fourth Embodiment>
4th Embodiment demonstrates the cabbage wilt yellow disease prevention effect. FIG. 8 is a table showing verification results of cabbage yellowing prevention effect by 40 kHz ultrasonic irradiation. The cabbage cultivar “Four Seasonal Harvest” was irradiated with 40 kHz ultrasonic waves for 2 weeks from 1 week after sowing using the ultrasonic oscillator with the same pulse output as described above, and then the pathogen (Fusarium oxysporum f. ) Spore suspension was irrigated. The test was performed 3 weeks after the inoculation. In the case of the untreated group, the average disease severity was 3.13, but in the 40 kHz ultrasonic treatment group, the average disease severity was 2.93 and the control value was 7.4.
 <第5の実施形態>
 第の5実施形態は、異なる周波数の超音波処理を行った場合によるイネいもち病防除効果について説明する。図9は、21kHzと40kHzの2種類の超音波を用いた場合のいもち病防除効果の検証結果を示すテーブルである。ここでは、イネ品種「愛知旭」に、上述の同様のパルス出力をする超音波発振装置を用いて、上記2種類の超音波を2週間照射した後、圃場で自然感染(感染時期は明確では無いが照射終了後2週間程度と思われる)を促した。処理終了後4週目に検定を行った。無処理区では平均発病度1.61であり、21kHzの超音波処理区では平均発病度1.39(防除価13.7)で、40kHzの超音波処理区では平均発病度0.61(防除価62.1)であった。イネいもち病防除効果に関しては、40kHzの超音波処理が21kHzの超音波処理より効果的であることが確認できた。
<Fifth Embodiment>
5th Embodiment demonstrates the rice blast control effect by the case where the ultrasonic processing of a different frequency is performed. FIG. 9 is a table showing the verification results of the blast control effect when two types of ultrasonic waves of 21 kHz and 40 kHz are used. Here, the rice cultivar “Aichi Asahi” was irradiated with the above-mentioned two types of ultrasonic waves for 2 weeks using the same ultrasonic output device as described above, and then spontaneously infected in the field (the time of infection was not clear). No, but it seems to be about 2 weeks after the end of irradiation). The test was performed 4 weeks after the end of the treatment. The average disease severity was 1.61 in the untreated zone, the average disease severity was 1.39 (control value 13.7) in the ultrasonic treatment zone of 21 kHz, and the average disease severity was 0.61 (control in the ultrasonic treatment zone of 40 kHz. Value 62.1). Regarding the rice blast control effect, it was confirmed that the ultrasonic treatment at 40 kHz was more effective than the ultrasonic treatment at 21 kHz.
 <第6の実施形態>
 第6の実施形態は、異なる周波数の超音波処理を行った場合によるトマトうどんこ病防除効果について説明する。図10は、21kHz、28kHz及び40kHzの3種類の超音波を用いた場合のトマトうどんこ病防除効果の検証結果を示すテーブルである。ここでは、トマト品種「桃太郎」に上述の同様のパルス出力をする超音波発振装置を用いて、上述の3種類の超音波を播種1週間後から2週間照射し、照射終了1週間後に、感染株と同じ人工気象器に入れ、感染を促進させた。照射終了3週後に検定を行った。無処理区では平均発病度1.78であり、21kHzの超音波処理区では平均発病度0.83(防除価53.4)で、28kHzの超音波処理区では平均発病度1.00(防除価44.9)で、40kHzの超音波処理区では平均発病度1.17(防除価34.3)であった。トマトうどんこ病防除効果に関しては、21kHzの超音波処理がもっとも効果的で、つぎに28kHzの超音波処理が効果的であった。なお、本検定における40kHzの超音波処理区は、相対的には他の処理区より効果は低いが、効果自体は十分なものである。
<Sixth Embodiment>
6th Embodiment demonstrates the tomato powdery mildew prevention effect by the case where the ultrasonication of a different frequency is performed. FIG. 10 is a table showing verification results of the tomato powdery mildew prevention effect when three types of ultrasonic waves of 21 kHz, 28 kHz, and 40 kHz are used. Here, tomato variety “Momotaro” is irradiated with the above-mentioned three types of ultrasonic waves for 2 weeks from 1 week after sowing using the ultrasonic oscillating device that outputs the same pulse as described above, and after 1 week after the end of irradiation, infection It was placed in the same meteorological instrument as the stock to promote infection. The test was performed 3 weeks after the end of irradiation. The average disease severity was 1.78 in the untreated group, the average disease severity was 0.83 (control value 53.4) in the 21 kHz ultrasonic treatment group, and the average disease severity 1.00 (control in the 28 kHz ultrasonic treatment group. The average disease severity was 1.17 (control value 34.3) in the ultrasonic treatment section at 40 kHz. Regarding the tomato powdery mildew control effect, 21 kHz sonication was most effective, followed by 28 kHz sonication. Note that the 40 kHz ultrasonic treatment section in this test is relatively less effective than the other treatment sections, but the effect itself is sufficient.
 以上、第1~第6の実施形態を纏めると次の通りである。
(1)植物を一種の外的ストレスである超音波に暴露することにより病害抵抗性を付与する技術を実現できた。一回の処理によって長期に亘る病害発病予防効果が維持されるため、育苗期において超音波に暴露しておくことで、病害に対して強い苗植物を育成することができ、農薬等も使用しないあるいは使用を低減した育苗方法を実現できる。生産現場における労働力および経費等の大幅削減が可能になる。
(2)上記の技術は、化学物質を使用せず、物理的ストレスで病害抵抗性を賦与できるため、耐性菌の出現、標的外生物への影響、食料での化学物質の残留や、環境残留・蓄積等を考慮する必要がないという顕著な効果を奏する。
(3)上記の技術を利用することにより、育苗業者にとっては付加価値の高い苗の育成が可能になる。また、有機農業に取組む生産者にとっては、農薬を使用できないために防除が困難であった病害を効果的に防除することが可能となり、労力削減、栽培面積拡大等が現実的に可能となる。
(4)上記の技術で誘導した病害抵抗性は、少なくとも数週間持続する。このため、一回の処理によって長期に亘る病害発病予防効果が維持される。その結果、育苗期に暴露しておくことで、病害に対して強い苗植物を育成することができ、農薬等も使用しない又は大幅に低減した育苗方法を提供できる。
(5)具体例1(第1の実施形態)として、トマトを超音波に暴露することによって、土壌伝染性病害である萎凋病(Fusarium oysporum f. sp. lycopersiciによる)の発病を抑制できる技術であることが検証できた。
(6)具体例2(第2の実施形態)として、イネを超音波に暴露することによって、空気伝染性病害であるいもち病(Magnaporthe oryzaeによる)の発病を抑制できる技術であることが検証できた。
(7)生育期間通しても超音波の暴露によって発病を抑制できる技術であることが検証できた。
(8)育苗期の超音波への暴露によって、病害に強い苗の育成が可能であることが検証できた。
(9)育苗期の超音波への暴露によって、本圃定植後も病害抵抗性が維持されることが検証できた。
(10)上記の発病抑制効果を得るために植物に対する超音波の暴露が育苗期のみでもよいことが検証できた。
(11)植物に対する超音波への暴露期間が長い方が発病抑制効果が高いことが検証できた。
(12)植物に対する超音波への暴露による病害発病抑制効果は暴露終了後も少なくとも4週間は持続することが検証できた。
(13)超音波暴露によって草丈の小さな植物体を育苗できること、具体的にはイネについて草丈の小さな個体を育苗できることが検証できた。
(14)プラントアクチベーターを併用することで、超音波暴露による病害発病抑制効果を一層効果的にすることができる。
(15)感染が遅い場合でも一定の病害発病抑制効果があることが検証できた。
(16)発病する病原によって病害発病抑制に効果的な超音波の周波数があることが検証できた。
The first to sixth embodiments can be summarized as follows.
(1) A technique for imparting disease resistance by exposing plants to ultrasonic waves, which is a kind of external stress, has been realized. Since the long-term disease prevention effect is maintained by a single treatment, it is possible to grow seedling plants that are resistant to diseases by exposing them to ultrasound during the seedling season, and do not use agricultural chemicals. Or the seedling raising method which reduced use is realizable. It is possible to greatly reduce labor and expenses at the production site.
(2) Since the above technology does not use chemical substances and can impart disease resistance with physical stress, the emergence of resistant bacteria, effects on non-target organisms, residual chemical substances in food, environmental residues -Significant effect that there is no need to consider accumulation.
(3) By using the above technology, it is possible to grow seedlings with high added value for seedling growers. In addition, it is possible for producers engaged in organic farming to effectively control diseases that were difficult to control due to the inability to use pesticides, and it is possible to reduce labor and expand cultivation area.
(4) Disease resistance induced by the above technique lasts for at least several weeks. For this reason, the disease disease prevention effect for a long term is maintained by one process. As a result, it is possible to grow a seedling plant that is resistant to disease by exposing it to the seedling raising period, and it is possible to provide a seedling raising method that does not use or significantly reduces agricultural chemicals.
(5) As a specific example 1 (first embodiment), a technique that can suppress the onset of wilt disease (by Fusarium oysporum f. Sp. Lycopersici), a soil-borne disease, by exposing tomatoes to ultrasound. It was verified that there was.
(6) As a specific example 2 (second embodiment), it can be verified that the technique is capable of suppressing the onset of rice blast disease (by Magnaporthe oryzae), which is an airborne disease, by exposing rice to ultrasound. It was.
(7) It was verified that this technique can suppress disease by exposure to ultrasonic waves even during the growth period.
(8) It was verified that it was possible to grow seedlings resistant to disease by exposure to ultrasound during the seedling stage.
(9) It was verified that the disease resistance was maintained even after planting in this field by exposure to ultrasound during the seedling stage.
(10) It was verified that the exposure of the ultrasonic wave to the plant may be only during the seedling raising period in order to obtain the above-described disease control effect.
(11) It was verified that the longer the period of exposure to ultrasonic waves to plants, the higher the disease-suppressing effect.
(12) It was verified that the disease disease-suppressing effect by exposure to ultrasonic waves on plants lasted for at least 4 weeks after the end of exposure.
(13) It was verified that a plant having a small plant height can be raised by ultrasonic exposure, specifically, that an individual having a small plant height can be raised for rice.
(14) By using a plant activator in combination, it is possible to make the disease onset suppression effect by ultrasonic exposure more effective.
(15) It was verified that even when infection is late, the disease has a certain disease control effect.
(16) It has been verified that there is an ultrasonic frequency effective for disease prevention depending on the pathogenic disease.
 以上、本発明を実施形態をもとに説明した。この実施形態は例示であり、それらの各構成要素や各処理の組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described based on the embodiments. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to combinations of the respective components and processes, and such modifications are within the scope of the present invention.
10 超音波病害防除装置
20 セラミック型振動素子
30 出力アンプ装置
40 制御部
DESCRIPTION OF SYMBOLS 10 Ultrasonic disease control apparatus 20 Ceramic type vibration element 30 Output amplifier apparatus 40 Control part

Claims (15)

  1.  栽培対象の植物に対して超音波を照射することを特徴とする栽培方法。 A cultivation method characterized by irradiating ultrasonic waves to a plant to be cultivated.
  2.  前記超音波を照射する期間は、生育期間であることを特徴とする請求項1に記載の栽培方法。 The cultivation method according to claim 1, wherein the period during which the ultrasonic wave is irradiated is a growth period.
  3.  前記超音波を照射する期間は、育苗期間であることを特徴とする請求項1に記載の栽培方法。 The cultivation method according to claim 1, wherein the period of irradiating the ultrasonic waves is a seedling raising period.
  4.  前記超音波の照射とともに、前記栽培対象の植物に対してプラントアクチベーターによる処理を施すことを特徴とする請求項1から3のいずれかに記載の栽培方法。 The cultivation method according to any one of claims 1 to 3, wherein the plant to be cultivated is treated with a plant activator together with the irradiation of the ultrasonic wave.
  5.  本圃に定植する前の育苗期間において、苗植物に対して超音波を照射することを特徴とする育苗方法。 A seedling raising method characterized by irradiating the seedling plant with ultrasonic waves during the seedling raising period before planting in the main field.
  6.  栽培対象の植物に対して超音波を照射することを特徴とする超音波病害防除装置。 An ultrasonic disease control apparatus characterized by irradiating ultrasonic waves to a plant to be cultivated.
  7.  所定の周波数の超音波を、長いパルス間隔と短いパルス間隔で交互に発生させることを特徴とする請求項6に記載の超音波病害防除装置。 The ultrasonic disease control apparatus according to claim 6, wherein ultrasonic waves having a predetermined frequency are alternately generated at a long pulse interval and a short pulse interval.
  8.  請求項1から3のいずれかに記載の栽培方法を用いて植物病害を防除することを特徴とする病害防除方法。 A disease control method comprising controlling a plant disease using the cultivation method according to any one of claims 1 to 3.
  9.  請求項1から3のいずれかに記載の栽培方法を用いて病害に強い植物体もしくは苗を製造することを特徴とする製造方法。 A production method comprising producing a plant body or a seedling resistant to disease using the cultivation method according to any one of claims 1 to 3.
  10.  請求項5に記載の育苗方法を用いて植物病害を防除することを特徴とする病害防除方法。 A disease control method comprising controlling a plant disease using the seedling raising method according to claim 5.
  11.  請求項5に記載の育苗方法を用いて病害に強い植物体もしくは苗を製造することを特徴とする製造方法。 A production method comprising producing a plant body or a seedling resistant to disease using the seedling raising method according to claim 5.
  12.  請求項6または7に記載の超音波病害防除装置を用いて植物病害を防除することを特徴とする病害防除方法。 A disease control method comprising controlling a plant disease using the ultrasonic disease control apparatus according to claim 6 or 7.
  13.  請求項6または7に記載の超音波病害防除装置を用いて病害に強い植物体もしくは苗を製造することを特徴とする製造方法。 A production method comprising producing a plant body or a seedling resistant to a disease using the ultrasonic disease control apparatus according to claim 6 or 7.
  14.  育苗期間において、超音波が照射されたことを特徴とする植物体もしくは苗。 Plant or seedling characterized by being irradiated with ultrasonic waves during the seedling raising period.
  15.  前記超音波は、所定の周波数を長いパルス間隔と短いパルス間隔とで交互に発生させたものであることを特徴とする請求項14に記載の植物体もしくは苗。 15. The plant body or seedling according to claim 14, wherein the ultrasonic wave is generated by alternately generating a predetermined frequency at a long pulse interval and a short pulse interval.
PCT/JP2014/054648 2013-02-26 2014-02-26 Cultivation method, seedling raising method, ultrasonic disease control device, disease control method, production method and plant body or seedling WO2014132986A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013035518 2013-02-26
JP2013-035518 2013-02-26

Publications (1)

Publication Number Publication Date
WO2014132986A1 true WO2014132986A1 (en) 2014-09-04

Family

ID=51428249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054648 WO2014132986A1 (en) 2013-02-26 2014-02-26 Cultivation method, seedling raising method, ultrasonic disease control device, disease control method, production method and plant body or seedling

Country Status (2)

Country Link
JP (1) JP6482053B2 (en)
WO (1) WO2014132986A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105075698A (en) * 2015-09-25 2015-11-25 云南省烟草农业科学研究院 Tobacco black shank resistance single plant identification method
CN105359855A (en) * 2015-10-19 2016-03-02 中国农业科学院棉花研究所 Improved verticillium wilt resistance identification method for cotton variety in artificial disease garden during whole growth period

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019146014A1 (en) * 2018-01-24 2020-02-06 三菱電機株式会社 Plant growth promotion device and plant growth promotion method
KR102113804B1 (en) * 2018-07-16 2020-05-21 주식회사 유앤아이기술 Methods and devices for plant growth using sound waves

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127947A (en) * 1979-03-23 1980-10-03 Kouzou Kawasaki Method and apparatus for repelling night moth
JPH05289683A (en) * 1992-04-10 1993-11-05 Nippon Telegr & Teleph Corp <Ntt> Method and device for generating artificial cry of bat
JPH06217641A (en) * 1993-01-25 1994-08-09 Honda Electron Co Ltd Ultrasonic cultivation process
JP2000342067A (en) * 1999-06-07 2000-12-12 Shogo Sano Device for accelerating growth of organism by vibration
JP2007302634A (en) * 2006-05-13 2007-11-22 Tokyo Univ Of Agriculture & Technology Method for screening plant activator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127947A (en) * 1979-03-23 1980-10-03 Kouzou Kawasaki Method and apparatus for repelling night moth
JPH05289683A (en) * 1992-04-10 1993-11-05 Nippon Telegr & Teleph Corp <Ntt> Method and device for generating artificial cry of bat
JPH06217641A (en) * 1993-01-25 1994-08-09 Honda Electron Co Ltd Ultrasonic cultivation process
JP2000342067A (en) * 1999-06-07 2000-12-12 Shogo Sano Device for accelerating growth of organism by vibration
JP2007302634A (en) * 2006-05-13 2007-11-22 Tokyo Univ Of Agriculture & Technology Method for screening plant activator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105075698A (en) * 2015-09-25 2015-11-25 云南省烟草农业科学研究院 Tobacco black shank resistance single plant identification method
CN105359855A (en) * 2015-10-19 2016-03-02 中国农业科学院棉花研究所 Improved verticillium wilt resistance identification method for cotton variety in artificial disease garden during whole growth period

Also Published As

Publication number Publication date
JP6482053B2 (en) 2019-03-13
JP2014193150A (en) 2014-10-09

Similar Documents

Publication Publication Date Title
JP5714603B2 (en) Novel fluorescent Pseudomonas species of the Pseudomonas azotoformans species for enhancing budding and growth of plants
JP6482053B2 (en) Method for controlling fungal diseases
BG67257B1 (en) Bacterial strain of bacillus amyloliquefaciens subsp. plantarum bs89 as a means of increasing plant productivity and their protection against diseases
WO2015041336A1 (en) Hydroponic method utilizing beneficial micro-organisms
Singh et al. Good Agronomic Practices (GAP)-An efficient and eco-friendly tool for sustainable management of plant diseases under changing climate scenario
CN104996140A (en) Planting method for grapes interplanting garlic for preventing and treating grape diseases
Jedlička et al. Research of effect of low frequency magnetic field on germination, growth and fruiting of field tomatoes
JP2012217445A (en) Method for accelerating plant growth by infrasonic stimulation
JP2016029080A (en) Growth promoter for gramineous plants and cultivating method therefor
Abdet-Sattar et al. Occurrence of soilborne diseases and root knot nematodes in strawberry plants grown on compacted rice straw bales compared with naturally infested soils
US20090133157A1 (en) Method of producing fruit of capsicum plant with vitamin c content increased
CN105309081B (en) Soil disinfection method matched with medicinal plant cultivation base
TW201041497A (en) Method for plant sterilization and insect elimination
Horotan et al. Effects of fungicide and acetylsalicylic acid treatments on the physiological and enzymatic activity in tomato (Lycopersicon esculentum Mill.)
CN104770250A (en) Insect damage prevention method for strawberry seedlings
CN107155738B (en) Method for preventing and treating crop diseases by using electronic pesticide
RU2655848C1 (en) Means for increasing the yield and protecting plants of solanaceae family from phytopathogenic mushrooms
CN110476754A (en) A kind of nuisanceless purple fragrant glutinous rice implantation methods
RU2005121407A (en) METHOD FOR CULTIVATING POTATOES
RU2570624C2 (en) STRAIN Bacillus atrophaeus ARCIM-11474, POSSESSING FUNGICIDAL PROPERTIES AND GROWTH-STIMULATING ACTIVITY
RU2725818C1 (en) Planting method and further plants growing method
CN109429933A (en) A kind of method of powdery antimicrobial composition and earthworm joint prevention and treatment watermelon root-knot
KR101442661B1 (en) Rhizopus oligosporus CS109 and composition comprising thereof for preventing plant diseases
JP2010053104A (en) Agent and method for inhibiting germ infection of vegetable
CN1069811C (en) Method of screening disease-resisting cotton plant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756974

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14756974

Country of ref document: EP

Kind code of ref document: A1