WO2014132932A1 - ガスタービンシステム、制御装置及びガスタービンの運転方法 - Google Patents

ガスタービンシステム、制御装置及びガスタービンの運転方法 Download PDF

Info

Publication number
WO2014132932A1
WO2014132932A1 PCT/JP2014/054375 JP2014054375W WO2014132932A1 WO 2014132932 A1 WO2014132932 A1 WO 2014132932A1 JP 2014054375 W JP2014054375 W JP 2014054375W WO 2014132932 A1 WO2014132932 A1 WO 2014132932A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
gas
composition
turbine
combustor
Prior art date
Application number
PCT/JP2014/054375
Other languages
English (en)
French (fr)
Inventor
諒 東
陽介 恵藤
淳 笹原
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to CN201480006320.6A priority Critical patent/CN104968918B/zh
Priority to KR1020157020601A priority patent/KR101690444B1/ko
Priority to US14/760,787 priority patent/US9856795B2/en
Priority to JP2015502916A priority patent/JP6005252B2/ja
Priority to DE112014001000.6T priority patent/DE112014001000T5/de
Publication of WO2014132932A1 publication Critical patent/WO2014132932A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/263Control of fuel supply by means of fuel metering valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/40Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/75Application in combination with equipment using fuel having a low calorific value, e.g. low BTU fuel, waste end, syngas, biomass fuel or flare gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • F05D2270/3013Outlet pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/303Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/306Mass flow

Definitions

  • the present invention relates to a gas turbine system that supplies fuel gas to a combustor and burns it, a control device, and a gas turbine operating method.
  • the gas turbine includes a compressor, a combustor, and a turbine.
  • the fuel gas and air compressed by the compressor are combusted by the combustor, and the generated combustion gas is supplied to the turbine to rotate the turbine.
  • the combustion gas temperature at the turbine inlet is set to a predetermined value by using the relationship between the temperature of the exhaust gas discharged from the turbine and the pressure of the air discharged from the compressor when the combustion gas temperature at the turbine inlet is constant.
  • temperature control a method for controlling the flow rate of the fuel gas supplied to the combustor. More specifically, the temperature of the combustion gas at the turbine inlet is lowered from the turbine inlet temperature to the exhaust gas temperature by adiabatic expansion by passing through the turbine and mixing of cooling air from turbine blades. That is, the main parameters that determine the exhaust gas temperature when a certain turbine inlet temperature is given are the turbine expansion ratio that determines the temperature drop of the combustion gas due to adiabatic expansion, the turbine efficiency and the specific heat ratio of the combustion gas, and the cooling air. The amount of cooling air and the temperature of the cooling air that determine the amount of temperature drop due to the mixing of these are five.
  • the exhaust gas temperature is unique at a certain turbine inlet temperature and a certain turbine expansion ratio. Determined.
  • the turbine inlet temperature can be estimated from the turbine expansion ratio and the exhaust gas temperature.
  • the combustion gas temperature is controlled to a predetermined value by controlling the fuel flow rate so that the actually measured turbine expansion ratio and the exhaust gas temperature coincide with a function of a given turbine expansion ratio and the exhaust gas temperature. It is said.
  • the turbine inlet pressure is equal to the compressor exhaust air pressure excluding the combustor pressure loss
  • the turbine outlet pressure is equal to the atmospheric pressure (approximately 1 atm) excluding the exhaust pressure loss.
  • Patent Document 1 discloses a method in which the discharge air pressure of a gas turbine compressor and the gas turbine exhaust gas temperature are measured, and the gas turbine fuel flow rate is controlled based on these measured values to control the combustion temperature. The amount of heat generated by the turbine fuel is detected, and the change in the exhaust gas temperature characteristic with respect to the discharge air pressure of the gas turbine compressor is calculated using the detected value of the generated heat. The exhaust gas temperature characteristic is corrected by the calculated value, and the corrected value And a measured value of the exhaust gas temperature, and a gas turbine combustion temperature control method for adjusting the fuel flow rate so as to minimize the difference in the comparison is described.
  • the gas turbine combustion temperature control method described in Patent Document 1 uses the calorific value of the gas turbine fuel to correct the exhaust gas temperature characteristics and perform control, so that even if the fuel gas composition varies, the temperature of the combustion gas It is intended to control the temperature so that the temperature becomes a predetermined temperature.
  • the actual combustion gas temperature deviates from the assumed combustion gas temperature, and as a result, the output and efficiency of the gas turbine may be reduced. More specifically, even if the calorific value of the fuel gas is the same, the fuel gas composition may be different. In that case, even if the calorific value of the fuel gas is the same, the composition of the combustion gas is different, so the specific heat ratio of the combustion gas is also different, and as a result, the exhaust gas temperature is also different. Therefore, if the fuel flow rate is controlled using the exhaust gas temperature characteristic corrected only by the fuel gas heating value, the combustion gas temperature cannot be controlled to be a predetermined temperature.
  • the temperature of the combustion gas exceeds the maximum allowable temperature of the gas turbine (overfire), which shortens the life of the combustor and turbine blades. Further, as long as the combustion gas temperature cannot be accurately controlled, the gas turbine must be operated with the combustion gas temperature lowered from the maximum allowable temperature, and such operation leads to a decrease in output and efficiency of the gas turbine.
  • the present invention solves the above-described problems, and provides a gas turbine system, a control device, and a gas turbine operating method capable of controlling the combustion gas temperature of a gas turbine and reducing the risk of overfire.
  • the purpose is to provide.
  • a gas turbine system includes a compressor, a combustor, a gas turbine having a turbine, a fuel supply mechanism for supplying fuel to the combustor, and a composition for detecting the composition of the fuel.
  • the fuel supply mechanism Based on a function of a detector, an air pressure of air discharged from the compressor toward the combustor or an expansion ratio of the turbine, and an exhaust temperature of exhaust gas that has passed through the turbine, the fuel supply mechanism
  • the function is corrected based on the control, and the flow rate of the fuel is controlled based on the corrected function.
  • the possibility of overfire can be reduced by controlling the combustion gas temperature of the gas turbine.
  • the temperature of the combustion gas in the combustor can be made higher and the gas turbine can be more efficiently operated. To get the output.
  • control device calculates the composition of the combustion gas based on the fuel composition and the intake air flow rate of the compressor, and the ratio of each component contained in the combustion gas;
  • the specific heat ratio of the combustion gas is calculated based on the specific heat ratio of each component.
  • the specific heat ratio of the combustion gas can be accurately calculated in consideration of the fuel-air ratio in the combustor.
  • control device calculates a bias value based on the calculated specific heat ratio of the combustion gas and a specific heat ratio of the reference combustion gas, and the function in the case of the reference combustion gas.
  • the flow rate of the fuel supplied to the combustor is controlled based on a function obtained by adding the calculated bias value to.
  • the present invention is also a control device for controlling a fuel supply mechanism that supplies fuel to a combustor of a gas turbine, the composition information acquiring unit acquiring the composition information of the fuel supplied to the combustor, and the compressor Of the fuel supplied from the fuel supply mechanism to the combustor based on a function of the air pressure discharged from the fuel to the combustor or the expansion ratio of the turbine and the exhaust temperature of the exhaust gas that has passed through the turbine.
  • a fuel supply mechanism control unit that controls a flow rate, wherein the fuel supply mechanism control unit calculates a specific heat ratio of combustion gas from the composition of the fuel, and corrects the function based on the calculated specific heat ratio. The flow rate of the fuel is controlled based on the corrected function and operation information.
  • the composition of the turbine fuel gas varies and the combustion gas specific heat ratio, which is one of the main parameters for determining the exhaust gas temperature, mainly varies, so that the relationship between the turbine expansion ratio and the exhaust gas temperature deviates from the standard state. Even in such a case, since the control can be performed according to the deviation, the combustion gas temperature of the gas turbine can be controlled with high accuracy. Specifically, based on the specific heat ratio of the combustion gas, the function of the air pressure or turbine expansion ratio of the air discharged from the compressor toward the combustor and the exhaust gas temperature of the exhaust gas that has passed through the turbine is corrected. Based on the result, the temperature of the combustion gas in the combustor can be controlled with higher accuracy by adjusting the amount of fuel gas supplied.
  • the possibility of overfire can be reduced by controlling the combustion gas temperature of the gas turbine.
  • the temperature of the combustion gas in the combustor can be made higher and more efficient.
  • the output can be taken out well with a gas turbine.
  • a gas turbine having a compressor, a combustor, and a turbine, a fuel supply mechanism that supplies fuel to the combustor, a composition detection unit that detects the composition of the fuel, And a step of calculating a specific heat ratio of the combustion gas from the composition of the fuel detected by the composition detection unit, and a predetermined discharge from the compressor toward the combustor. Correcting the function of the air pressure of the air or the expansion ratio of the turbine and the exhaust gas temperature of the exhaust gas that has passed through the turbine based on the calculated specific heat ratio, and the fuel based on the corrected function And a step of controlling fuel supplied from the supply mechanism to the combustor.
  • the composition of the turbine fuel gas varies and the combustion gas specific heat ratio, which is one of the main parameters for determining the exhaust gas temperature, mainly varies, so that the relationship between the turbine expansion ratio and the exhaust gas temperature deviates from the standard state.
  • the combustion gas temperature of the gas turbine can be controlled with high accuracy. Specifically, based on the specific heat ratio of the combustion gas, the function of the air pressure or turbine expansion ratio of the air discharged from the compressor toward the combustor and the exhaust gas temperature of the exhaust gas that has passed through the turbine is corrected.
  • the temperature of the combustion gas in the combustor can be controlled with higher accuracy by adjusting the supply amount of the fuel gas based on the correction result.
  • the possibility of overfire can be reduced by controlling the combustion gas temperature of the gas turbine.
  • the temperature of the combustion gas in the combustor can be made higher and more efficient.
  • the output can be taken out well with a gas turbine.
  • the temperature of the combustion gas can be controlled in response to the variation in the composition of the fuel gas supplied to the combustor.
  • the risk of the ring being generated can be reduced.
  • the temperature of the combustion gas of a combustor can be made into higher temperature, and an output can be taken out more efficiently by a gas turbine.
  • FIG. 1 is a schematic configuration diagram illustrating a gas turbine system according to the present embodiment.
  • FIG. 2 is a schematic diagram showing a control device of the gas turbine system.
  • FIG. 3 is a graph showing an example of the temperature control line.
  • FIG. 4 is a graph showing an example of the relationship between the specific heat ratio and the bias value.
  • FIG. 5 is a graph showing an example of the relationship between the specific heat ratio and the bias value.
  • FIG. 6 is a graph showing an example of the relationship between the specific heat ratio and the bias value.
  • FIG. 7 is a flowchart showing an example of the driving operation of the gas turbine system of the present embodiment.
  • FIG. 8 is a schematic view showing another example of the fuel gas supply mechanism.
  • FIG. 8 is a schematic view showing another example of the fuel gas supply mechanism.
  • FIG. 9 is a flowchart illustrating an example of the driving operation of the gas turbine system of another example.
  • FIG. 10 is a flowchart showing a modification of the driving operation of the gas turbine system.
  • FIG. 11 is a flowchart showing a modification of the driving operation of the gas turbine system.
  • FIG. 12 is a flowchart showing a modification of the driving operation of the gas turbine system.
  • FIG. 13 is a schematic configuration diagram illustrating a gas turbine system according to another embodiment.
  • FIG. 1 is a schematic configuration diagram showing a gas turbine system of the present embodiment.
  • a gas turbine system 10 includes a gas turbine 11, a fuel gas supply mechanism 12 that supplies fuel gas to the gas turbine 11, and an air supply mechanism that supplies air to the gas turbine 11. 13, an exhaust gas discharge mechanism 14 through which exhaust gas discharged from the gas turbine 11 flows, an operation information detection unit 16 that detects various operation information of the gas turbine 11, an input setting, an input instruction, and a detection unit And a control device 18 that controls the operation of each part of the gas turbine system 10 based on the results and the like.
  • the gas turbine 11 includes a compressor (A / C) 21, a combustor 22, and a turbine (G / T) 23.
  • the compressor 21 and the turbine 23 are coupled to each other by a rotating shaft 24 so as to be integrally rotatable. Yes.
  • the compressor 21 and the combustor 22 are connected, and the combustor 22 and the turbine 23 are connected.
  • the compressor 21 compresses the air A taken in from the air supply mechanism 13, and changes the amount of the air A taken in by changing the angle of the inlet guide vane 21a provided at the inlet.
  • the combustor 22 mixes and combusts the compressed air supplied from the compressor 21 and the fuel gas L supplied from the fuel gas supply line 32.
  • the turbine 23 rotates when the combustion gas generated by burning the fuel gas L in the combustor 22 is supplied.
  • the compressor 21 is provided with an inlet guide vane (IGV: Inlet Guide Vane) 21a whose opening degree can be adjusted at the air intake port.
  • IGV Inlet Guide Vane
  • the compressor 21 increases the amount of compressed air generated by the compressor 21 by increasing the opening of the inlet guide vane 21a, and decreases the amount of compressed air generated by the compressor 21 by decreasing the opening.
  • the turbine 23 is supplied with compressed air compressed by the compressor 21 through the passenger compartment, and cools the blades or the like using the compressed air as cooling air.
  • the fuel gas supply mechanism 12 has a fuel gas supply line 32 and a control valve 34.
  • the fuel gas supply line 32 is a pipe connecting the fuel gas supply source and the combustor 22.
  • the fuel gas supply line 32 supplies fuel gas supplied from a supply source to the combustor 22.
  • the control valve 34 is a valve having a mechanism for adjusting the opening degree, and is provided in the fuel gas supply line 32.
  • the control valve 34 can adjust the flow rate of the fuel gas L supplied from the fuel gas supply line 32 to the combustor 22 by adjusting the opening and closing and the opening degree.
  • the air supply mechanism 13 includes an air supply line 36.
  • One of the air supply lines 36 is open to the atmosphere, and the other is connected to the compressor 21.
  • the air supply line 36 supplies air A to the compressor 21.
  • the exhaust gas discharge mechanism 14 includes an exhaust gas line 38.
  • the exhaust gas line 38 is connected to the turbine 23 and is supplied with exhaust gas that has passed through the turbine 23 (combustion gas that has passed through the turbine 23).
  • the exhaust gas line 38 supplies the exhaust gas to a mechanism for treating the exhaust gas, such as an exhaust heat recovery mechanism or a mechanism for removing harmful substances.
  • the operation information detection unit 16 includes a composition meter 50, an exhaust gas thermometer 52, a compressed air pressure gauge 54, a fuel flow meter 56, an atmospheric pressure gauge 59, an inlet guide blade angle meter (IGV opening meter) 70, A revolution meter 72. Each unit sends the detected information to the control device 18.
  • the composition meter 50 is provided in the fuel gas supply line 32 and detects the composition of the fuel gas flowing through the fuel gas supply line 32.
  • various measuring devices for measuring the composition of the fuel gas can be used as the composition meter 50. The measurement light is irradiated to the fuel gas, the absorption of the measurement light is detected, and the target component is detected based on the absorption amount.
  • the composition meter 50 may include a sensor for detecting a component to be detected, or may detect all components of the fuel gas with one sensor. The composition meter 50 only needs to be able to detect the main component contained in the fuel gas, and does not necessarily need to detect a trace amount of the component.
  • the exhaust gas thermometer 52 is provided in the exhaust gas line 38 and detects the temperature of exhaust gas flowing through the exhaust gas line 38, so-called exhaust temperature.
  • the compressed air pressure gauge 54 detects the pressure of the compressed air flowing from the compressor 21 toward the combustor 22. The compressed air pressure gauge 54 measures the discharge pressure of the compressor 21.
  • the fuel flow meter 56 is disposed between the control valve 34 of the fuel gas supply line 32 and the combustor 22.
  • the fuel flow meter 56 measures the flow rate of the fuel gas that passes through the control valve 34 and is supplied to the combustor 22.
  • the barometer 59 is a pressure gauge that detects atmospheric pressure. If the atmospheric pressure gauge 59 can detect the pressure of the atmosphere in the space where the gas turbine system 10 is installed, the installation position is not particularly limited.
  • the inlet guide vane angle meter 70 is a measuring instrument that detects the angle of the inlet guide vane 21 a provided at the inlet of the compressor 21.
  • the rotational speed meter 72 is a measuring instrument that detects the rotational speed of the gas turbine 11. The revolution meter 72 can use an encoder provided on a shaft that rotates coaxially with the rotation shaft 24 of the gas turbine 11.
  • the control device 18 controls the operation of each part of the gas turbine system 10.
  • the configuration of the control device 18 will be described with reference to FIG.
  • FIG. 2 is a schematic diagram showing a control device of the gas turbine system. Note that FIG. 2 shows a part extracted from the functions of the control device 18 that are related to the function of controlling the supply of fuel gas.
  • the control device 18 has various functions necessary for controlling the gas turbine system 10 in addition to the functions shown in FIG.
  • the control device 18 includes a composition information acquisition unit 60, an operation information acquisition unit 62, an arithmetic processing unit 64, a storage unit 66, and a control valve control unit (fuel gas supply mechanism control unit) 68.
  • the composition information acquisition unit 60 acquires information on the composition of the fuel gas detected by the composition meter 50.
  • the operation information acquisition unit 62 acquires information on the temperature of the exhaust gas detected by the exhaust gas thermometer 52, the pressure of compressed air detected by the compressed air pressure gauge 54, and the flow rate of fuel gas detected by the fuel flow meter 56. .
  • the arithmetic processing unit 64 includes a CPU (Central Processing Unit) and a buffer, and has a function of executing a program and executing various calculations.
  • the arithmetic processing unit 64 is based on the fuel gas composition information acquired by the composition information acquisition unit 60, the operation information acquired by the operation information acquisition unit 62, and the information stored in the storage unit 66. And the flow rate of the fuel gas supplied to the combustor 22 is controlled. This point will be described later.
  • the storage unit 66 includes reference data 66a and a bias value calculation table 66b.
  • the reference data 66a stores information on the temperature adjustment line in the case of the composition of the reference fuel gas.
  • FIG. 3 is a graph illustrating an example of a temperature control line (a line indicating a relationship between control set values). Specifically, as shown in FIG. 3, the temperature adjustment line is a function of the pressure of compressed air and the exhaust temperature at which the inlet temperature of the turbine 23 becomes constant.
  • the compressor discharge air pressure compressed air pressure
  • the inlet pressure of the turbine 23 is equal to the compressor discharge air pressure except for the pressure loss of the combustor 22 as described above.
  • the outlet pressure of the turbine 23 is equal to atmospheric pressure (approximately 1 atm) excluding exhaust pressure loss
  • compressed air pressure compressed air at a position measured by the compressed air pressure gauge 54
  • the exhaust gas temperature is the exhaust gas temperature (the exhaust gas temperature at the position measured by the exhaust gas thermometer 52). If the fuel composition is in accordance with the standard and does not fluctuate, the gas turbine system 10 operates under the conditions indicated by the temperature control line 80 in that case, thereby setting the temperature of the combustion gas supplied to the turbine to a desired temperature. Can do.
  • the bias value calculation table 66b is a table that stores the relationship between the specific heat ratio ⁇ of the combustion gas calculated from the composition of the fuel gas and the bias value for bias correction of the temperature adjustment line 80 of the reference data.
  • the relationship between the specific heat ratio ⁇ and the bias value in the bias value calculation table 66b may be calculated by experiment or simulation.
  • this relationship does not necessarily have to be a relationship in which the temperature of the combustion gas is constant with respect to fluctuations in ⁇ of the combustion gas, and a different relationship may be used depending on the purpose.
  • the table is used, but it may be simply a function.
  • the ratio of the bias value to the above-described deviation amount may be stored.
  • the arithmetic processing unit 64 calculates the bias value 84 from the bias value calculation table 66b or the above-described function, and corrects the temperature adjustment line 80 with the bias value 84, so that the temperature adjustment line 82 is obtained. calculate. This point will be described later.
  • FIGS. 4 to 6 are graphs showing examples of the relationship between the specific heat ratio and the bias value, respectively.
  • the relationship between the specific heat ratio ⁇ and the bias value stored in the bias value calculation table 66b is set to the specific heat ratio ⁇ so that the temperature of the combustion gas is constant regardless of the specific heat ratio ⁇ of the combustion gas. Accordingly, the temperature control bias can be changed.
  • the control device 18 can control the bias value using the relationship shown in FIG. 4, thereby further reducing the variation in the temperature of the combustion gas that occurs when the specific heat ratio ⁇ of the combustion gas varies.
  • the bias value is a constant value X1.
  • the specific heat ratio ⁇ of the combustion gas is larger than the reference value ⁇ , a relationship that makes the temperature of the combustion gas constant regardless of the specific heat ratio ⁇ of the combustion gas can be used.
  • the control device 18 controls the bias value using the relationship shown in FIG. 5 so that the temperature of the combustion gas is constant regardless of the specific heat ratio ⁇ of the combustion gas.
  • the control device 18 controls the bias value using the relationship shown in FIG. 5, so that when the specific heat ratio ⁇ of the combustion gas is equal to or less than the reference value ⁇ , the control device 18 detects the bias value as a constant value X1.
  • the specific heat ratio ⁇ of the combustion gas calculated from the composition of the fuel gas calculated is lower than the reference value, this is a specific heat ratio ⁇ lower than the specific heat ratio ⁇ of the actual combustion gas due to instrument error Even if is calculated, combustion can be performed under conditions where there is little risk of overfire.
  • the bias value is a constant value X1.
  • X2 is smaller than X1, that is, X2 ⁇ X1.
  • the control device 18 controls the bias value using the relationship shown in FIG. 6 and switches the bias value depending on whether the specific heat ratio ⁇ of the combustion gas is greater than the reference value ⁇ or less than the reference value ⁇ .
  • the bias value is switched in two steps based on the specific heat ratio ⁇ of the combustion gas, but it may be three or more.
  • the control valve control unit 68 controls the control valve 34 based on the opening degree of the control valve 34 calculated by the arithmetic processing unit 64.
  • FIG. 7 is a flowchart showing an example of the driving operation of the gas turbine system of the present embodiment.
  • the control device 18 repeatedly executes the process shown in FIG. 7 while the gas turbine 11 is in operation.
  • the control device 18 acquires the handling information and the fuel gas composition (step S12).
  • the control device 18 acquires fuel gas composition information with the composition information acquisition unit 60, and acquires various operation information with the operation information acquisition unit 62.
  • the control device 18 calculates the composition of the combustion gas (step S13). Specifically, the composition after combustion of the fuel gas is calculated based on the obtained composition of the fuel gas. For example, H 2 becomes H 2 O after combustion, CO becomes CO 2 after combustion, and CH 4 becomes CO 2 and H 2 O after combustion. The composition of the gas generated when the fuel gas is completely burned is calculated using a relationship such that nitrogen, carbon dioxide, and water as incombustible components remain as they are. Next, the control device 18 calculates the supply amount of air based on the angle of the inlet guide vane 21 a detected by the inlet guide vane angle meter 70, the intake air temperature, and the rotation speed of the compressor detected by the rotation speed meter 72.
  • the air-fuel ratio is calculated based on the fuel gas supply amount and the air supply amount.
  • the control device 18 detects the composition of the combustion gas based on the composition of the gas generated when the fuel gas is completely burned and the air-fuel ratio. That is, the ratio of surplus air that does not contribute to combustion is calculated based on the air-fuel ratio, and the composition of the combustion gas is calculated on the assumption that the gas generated when the fuel gas is completely burned is diluted with this surplus air.
  • the control device 18 calculates ⁇ of the combustion gas based on the composition of the combustion gas (step S14). Specifically, ⁇ of each component of the combustion gas is extracted based on the composition of the combustion gas. Thereafter, the specific heat ratio of the combustion gas is calculated based on the specific heat ratio of the components contained in the combustion gas and the ratio of each component of the combustion gas. As a calculation method, the weighted average can be calculated based on the concentration of each component.
  • the control device 18 determines a bias value based on the specific heat ratio ⁇ of the combustion gas (step S16). Specifically, the bias value calculation table 66b is read, and a bias value corresponding to the specific heat ratio ⁇ of the combustion gas is determined based on the bias value calculation table 66b and the calculated specific heat ratio ⁇ of the combustion gas.
  • the control device 18 After determining the bias value, the control device 18 corrects the function of the compressed air pressure and the exhaust gas temperature using the bias value (step S18). That is, a corrected temperature adjustment line is obtained by adding a bias value to the reference temperature adjustment line.
  • the fuel control value (fuel gas A value used for controlling the supply amount) is determined (step S20). Specifically, in FIG. 3, a set of actually measured compressed air pressure and exhaust gas temperature is plotted. When this is on the upper right side of the corrected temperature adjustment line, the fuel flow rate is decreased, and on the lower left side. The fuel control value is determined so as to increase the fuel flow rate. Based on the fuel control value determined by the control valve control unit 68, the control valve 34 is controlled (step S22), and this process is terminated.
  • the fuel control value may be information on a value indicating the opening of the control valve 34, or information on the amount of change in the opening.
  • the gas turbine system 10 detects the composition of the fuel gas, calculates the specific heat ratio ⁇ of the combustion gas based on the composition of the fuel gas, and calculates the bias value based on a preset relationship.
  • the temperature control line is corrected using the bias value.
  • the gas turbine system 10 can make the relationship between the exhaust gas temperature and the temperature of the combustion gas at the turbine inlet correspond to the composition of the fuel gas by correcting the temperature adjustment line.
  • the difference between the predicted temperature of the combustion gas at the turbine inlet and the actual temperature is reduced by controlling the operating conditions (in this embodiment, the supply amount of fuel gas) based on the corrected temperature control line. can do.
  • the gas turbine system 10 can be controlled with higher accuracy, and the gas turbine system 10 can be operated with higher output and efficiency.
  • the temperature adjustment line is controlled by the calorie of the fuel gas, it is controlled by the same temperature adjustment line for the fuel gas having a different composition even if the calorie is the same.
  • the gas turbine system 10 can calculate ⁇ of the combustion gas corresponding to the composition and correct the temperature adjustment line.
  • combustion in the combustor 22 can be controlled more accurately, and the risk of overfire occurring can be reduced.
  • the gas turbine system 10 can reduce the error between the target temperature of the combustion gas at the turbine inlet and the actual temperature, thereby allowing the target temperature to approach the maximum allowable temperature of the gas turbine 11. Thereby, the gas turbine system 10 can be operated efficiently.
  • the gas turbine system 10 can reduce the actual temperature fluctuation by calculating the bias value using the relationship shown in FIG. 4, thereby reducing the risk of overfire.
  • the operation can be performed while the state close to the maximum allowable temperature is maintained.
  • the gas turbine system 10 calculates the bias value using, for example, the relationship shown in FIG. 4, so that the specific heat ratio ⁇ of the combustion gas is appropriately changed when it changes to the overfire side from the reference value ⁇ . The temperature can be controlled, and the risk of overfire can be reduced.
  • the temperature adjustment line is a function of the compressed air pressure and the exhaust temperature, but a turbine expansion ratio may be used instead of the compressed air pressure.
  • the compressed air pressure may be used as an alternative to the turbine inlet pressure for obtaining the turbine expansion ratio, or the atmospheric pressure may be used as an alternative to the turbine exhaust pressure.
  • the fuel is assumed to be a gas.
  • the form of the fuel is not limited to the gas, and it is obvious that, for example, a liquid fuel may be used.
  • FIG. 8 is a schematic view showing another example of the fuel gas supply mechanism.
  • the gas turbine system 10 a shown in FIG. 8 is the same as the gas turbine system 10 except for the configuration on the upstream side of the fuel gas supply line 32. A configuration unique to the gas turbine system 10a will be described.
  • a gas turbine system 10a shown in FIG. 8 includes a first fuel gas supply line 102 for supplying a fuel gas L1, a second fuel gas supply line 104 for supplying a fuel gas L2, and a first fuel.
  • a control valve 106 provided in the gas supply line 102 and a control valve 108 provided in the second fuel gas supply line 104 are provided.
  • the fuel gas supply mechanism 12 a supplies the fuel gas L 1 from the first fuel gas supply line 102 to the fuel gas supply line 32 and supplies the fuel gas L 2 from the second fuel gas supply line 104 to the fuel gas supply line 32.
  • control valves 106 and 108 capable of adjusting the flow rates of the first fuel gas supply line 102 and the second fuel gas supply line 104 are provided, but the control valves 106 and 108 may not be provided.
  • the fuel gas L1 and the fuel gas L2 of the present embodiment are fuel gas having a known composition.
  • the operation information detection unit 16 a further includes a fuel flow meter 112 provided in the first fuel gas supply line 102 and a fuel flow meter 114 provided in the second fuel gas supply line 104.
  • the fuel flow meters 112 and 114 calculate the fuel flow rate of the provided line.
  • FIG. 9 is a flowchart illustrating an example of the driving operation of the gas turbine system of another example.
  • the calculation shown in FIG. 9 may be performed by the control device 18 or may be performed by providing a separate calculation device. In the present embodiment, it is assumed that the control device 18 performs.
  • the control device 18 acquires the composition of each fuel gas, that is, the fuel gas L1, L2 (Step S30), acquires the balance of the flow rate of each fuel gas from the fuel flow meters 112, 114 (Step S32), and each fuel gas. Based on the flow rate balance and composition, the composition of the mixed fuel gas is calculated (step S34), and this process is terminated.
  • the flow rate balance is not limited as long as a relative balance can be acquired, and the flow rate may be acquired or the flow rate ratio may be detected.
  • the composition of the fuel gas supplied to the combustor without detecting the composition of the fuel gas by the composition meter can be calculated.
  • the apparatus configuration can be simplified by not using the composition meter.
  • the gas turbine system 10a mixed two types of fuel gas, the number of fuel gas to mix is not specifically limited.
  • the gas turbine system 10, 10a sets a reference value for the composition of the fuel gas, and switches the control to be executed depending on whether the composition of the fuel gas has fluctuated to the overfire side from the reference value. It is preferable to do. That is, the gas turbine system 10, 10a sets a reference value for ⁇ , which is a specific heat ratio calculated based on the composition of the fuel gas, and when ⁇ fluctuates to the overfire side from the reference value, that is, It is preferable to switch the control to be executed when ⁇ increases and when it changes to the side opposite to the overfire side, that is, when ⁇ decreases.
  • the control device 18 calculates a bias value, executes control based on the bias value (lowers the bias), and ⁇ becomes equal to or less than the reference value. , The control to change the bias value is not executed (the bias is not increased).
  • FIG. 10 is a flowchart showing a modification of the driving operation of the gas turbine system.
  • the control device 18 executes the process shown in FIG. 10 as a process of determining a bias value based on the composition of the fuel gas, for example, the process of steps S14 and S16 in the flowchart of FIG.
  • the control device 18 calculates the specific heat ratio ⁇ of the combustion gas based on the composition of the fuel gas (step S42). After calculating the specific heat ratio ⁇ of the combustion gas, the control device 18 determines whether the calculated specific heat ratio ⁇ of the combustion gas is higher than a reference value (step S44). When it is determined that the specific heat ratio ⁇ is higher than the reference value (Yes in step S44), the control device 18 sets a bias value based on the specific heat ratio ⁇ (step S46). In this case, since the specific heat ratio ⁇ is higher than the reference value, the bias value is lowered.
  • the exhaust temperature with respect to the compressed air pressure is set to a low state, and the combustion in the combustor 22 can be changed to a condition that can be operated in a safer state.
  • the control device 18 does not change the bias value (step S48).
  • the specific heat ratio ⁇ is equal to or less than the reference value, the combustion temperature of the combustor 22 is lowered by temperature control compared to the case where the specific heat ratio ⁇ is the reference value. Therefore, the combustor 22 can be operated in a safer state.
  • the gas turbine system 10 can execute control that does not raise the bias value higher than the reference value by executing control that adjusts the bias value only when the composition of the fuel gas changes to the overfire side. Thereby, the gas turbine system 10 can be operated safely. Such an operation can also be realized by controlling the bias value using the relationship shown in FIG. 5 described above as the relationship between the specific heat ratio ⁇ and the bias value.
  • the gas turbine system 10 sets a reference value for ⁇ , which is a specific heat ratio calculated based on the composition of the fuel gas, and when ⁇ fluctuates to the overfire side, that is, when ⁇ increases. Execute the process to decrease the bias value promptly, and if it fluctuates to the opposite side from the overfire side, that is, if ⁇ becomes smaller, execute the process to increase the bias value according to the arrival time of the fuel gas It is preferable to make it.
  • the gas turbine system 10 can shift the timing for adjusting the opening degree of the control valve by shifting the timing for executing the processing based on the fluctuation of the bias value.
  • FIG. 11 is a flowchart showing a modification of the driving operation of the gas turbine system.
  • the control device 18 executes the process shown in FIG. 11 as a process for executing control of the control valve, for example, the process in step S22 in FIG.
  • the control device 18 determines whether or not the calculated specific heat ratio ⁇ has increased (step S52). When it is determined that the specific heat ratio ⁇ has increased (Yes in Step S52), the control device 18 executes control of the control valve 34 without providing a waiting time (Step S54). In this case, the control device 18 controls the control valve 34 so as to be the control value determined at the time when the control value is determined. When it is determined that the specific heat ratio ⁇ has not increased (No in step S52), that is, the specific heat ratio ⁇ is the same or decreased, the control device 18 controls the control valve 34 in consideration of the arrival time of the fuel gas. (Step S56). In this case, the control device 18 controls the control valve 34 so that the determined control value is obtained when the measured fuel gas reaches the control valve 34.
  • the gas turbine system 10 performs combustion in the combustor 22 while maintaining high safety by shifting the timing for executing the processing based on the fluctuation of the bias value and shifting the timing for adjusting the opening of the control valve. Conditions can be controlled appropriately. Specifically, when ⁇ becomes large, the process of lowering the bias value is promptly executed, so that overfire can be prevented and damage to the combustor 22 can be prevented. In such a case, by executing the process of increasing the bias value in accordance with the arrival time of the fuel gas, it is possible to prevent the fluctuation of the gas turbine output due to the fluctuation of the combustion temperature.
  • FIG. 12 is a flowchart showing a modification of the driving operation of the gas turbine system.
  • the control device 18 preferably executes the control shown in FIG. 12 in parallel with the various controls described above.
  • the control device 18 determines whether an abnormality of the composition meter 50 has been detected (step S62).
  • the control device 18 determines that the composition meter 50 is abnormal when it detects a signal that reports the occurrence of an abnormality that is output from the composition meter 50 or when a measurement result cannot be obtained from the composition meter 50.
  • the control device 18 sets the bias value to a safer bias value (step S64). That is, the control device 18 lowers the bias value and changes the condition so that the output decreases.
  • the control device 18 ends the process as it is.
  • the gas turbine system 10 detects that the composition meter 58 is abnormal, the gas turbine system 10 can be operated more safely by setting the bias value to a value that is operated under safer conditions.
  • FIG. 13 is a schematic configuration diagram showing a gas turbine system of another embodiment.
  • the gas turbine system 10b shown in FIG. 13 is the same as the gas turbine system 10 except for the configuration on the upstream side of the fuel gas supply line 32.
  • a configuration unique to the gas turbine system 10b will be described.
  • the gas turbine system 10b is a gas turbine system fired with blast furnace gas (BFG, Blast Furnace Gas), supplied with blast furnace gas (BFG) as fuel gas L1a, and coke oven gas (COG, Coke Oven Gas) as fuel gas L2a. Is supplied.
  • BFG blast furnace gas
  • COG coke oven gas
  • the fuel gas supply mechanism 12b of the gas turbine system 10b includes a first fuel gas supply line 120 that supplies the fuel gas L1a, a second fuel gas supply line 122 that supplies the fuel gas L2a, and a first fuel gas supply line 120.
  • the fuel gas L1a supplied and the fuel gas L2a supplied from the second fuel gas supply line 122 are mixed, and the fuel gas mixed by the mixer 124 is guided and connected to the fuel gas supply line 32.
  • the mixed fuel line 126, the gas compressor (G / C) 128 that compresses and pressurizes the mixed fuel gas, and the fuel gas supply line 32 and the mixed fuel line 126.
  • the bypass line 130 is branched from the connecting portion of the fuel tank 126 and connected to the upstream side of the mixed fuel line 126, and the bypass line 130 A cooler 132 kicked, the bypass line 130, and a connecting portion between the fuel gas supply line 32 and the mixed fuel line 126, a bypass control valve 140 disposed between the condenser 132, the.
  • the gas compressor 128 is provided with an inlet guide vane (IGV: Inlet Guide Vane) 128a for controlling the flow rate at a fuel gas intake port.
  • IGV Inlet Guide Vane
  • the fuel gas L1a supplied from the first fuel gas supply line 120 and the fuel gas L2a supplied from the second fuel gas supply line 122 are mixed by the mixer 124 and supplied to the mixed fuel line 126. Is done.
  • the fuel gas supplied to the mixed fuel line 126 is boosted by the gas compressor 128 and supplied to the fuel gas supply line 32.
  • the fuel gas supply mechanism 12b is provided with the bypass line 130, when the bypass control valve 140 is open, a part of the fuel gas in the mixed fuel line 126 flows into the bypass line 130.
  • the fuel gas flowing into the bypass line 130 is cooled to the same pressure as the mixed fuel gas before being pressurized by the cooler 132, and then supplied to the mixed fuel line 126.
  • the fuel gas supply mechanism 12b controls the flow rate of the fuel gas supplied to the combustor 22 by controlling the flow rate of the fuel gas circulating in the bypass line 130 with the bypass control valve 140.
  • the fuel gas supply mechanism 12b circulates a part of the fuel gas to continuously supply the fuel gas whose pressure is increased to a predetermined pressure to the gas turbine 11 while reducing the load applied to the gas turbine 11. it can.
  • the composition meter 50a is provided in the mixed fuel line 126.
  • the control device 18a determines the supply amount of the fuel gas based on the composition of the mixed fuel gas detected by the composition meter 50a in the same manner as the control device 18, and based on the determination, the opening degree of the bypass control valve 140 is determined. By controlling this, the flow rate of the fuel gas supplied to the combustor 22 is controlled.
  • the gas turbine system 10b detects the composition of the fuel gas and controls the temperature based on the ⁇ of the combustion gas even when the property change of the fuel gas is large, as in the gas turbine system using blast furnace gas. By correcting the line, the output of the gas turbine can be controlled with high accuracy.
  • the composition meter 50a is provided in the mixed fuel line 126, but the position where the composition meter 50a is provided is not limited to this.
  • the fuel gas supply line 32 may be provided, or the bypass line 130 may be provided.
  • the gas turbine system 10b may provide a control valve in the fuel gas supply line 32 to control the opening degree of the control valve.
  • the gas turbine system 10b may be provided with a device for removing foreign substances contained in fuel such as an electric dust collector in the mixed fuel line 126. In this embodiment, two types of fuel gas are mixed, but three or more types of fuel may be mixed.
  • the gas turbine system of the present embodiment can be suitably used not only for a blast furnace gas-fired gas turbine system but also for a low-calorie gas-fired gas turbine system in which a change in calorie setting occurs.
  • the gas turbine system of the present embodiment is a case where the fuel gas has a low calorie and the flow rate of the fuel gas is high, such as the above-described blast furnace gas-fired gas turbine system or low-calorie gas-fired gas turbine system.
  • Significant effects can be obtained when applied to systems where the composition may change.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Abstract

 ガスタービンの燃焼ガス温度をより高い精度で制御することができるガスタービンシステム、制御装置及びガスタービンの運転方法を提供する。ガスタービンシステムは、圧縮機と燃焼器とタービンを有するガスタービンと、燃焼器に燃料を供給する燃料供給機構と、燃料の組成を検出する組成検出部と、圧縮機から燃焼器に向けて排出される空気の空気圧またはタービンの膨張比と、タービンを通過した排ガスの排気温度との関数に基づいて、燃料供給機構から燃焼器に供給する燃料の流量を制御する制御装置と、を有し、制御装置は、組成検出部で検出した燃料の組成から燃焼ガスの比熱比を算出し、算出した比熱比に基づいて関数を補正し、補正した関数に基づいて燃料の流量を制御する。

Description

ガスタービンシステム、制御装置及びガスタービンの運転方法
 本発明は、燃焼器に燃料ガスを供給し、燃焼させるガスタービンシステム、制御装置及びガスタービンの運転方法に関するものである。
 ガスタービンは、圧縮機と燃焼器とタービンとを有し、燃料ガスと圧縮機で圧縮した空気とを燃焼器で燃焼させ、発生した燃焼ガスをタービンに供給し、タービンを回転させる。ガスタービンは、出力や効率を高くするために、タービン入口の燃焼ガス温度を許容範囲内でできるだけ高くして運転する事が望ましい。そのためには、タービン入口の燃焼ガス温度が一定の場合における、タービンから排出される排ガスの温度と、圧縮機から排出される空気の圧力との関係を用い、燃焼ガス温度を所定値とするように、燃焼器に供給する燃料ガスの流量を制御する方法(以下、この制御方式を「温調制御」という。)が知られている。詳述すると、タービン入口の燃焼ガスは、タービン通過による断熱膨張、およびタービン翼などからの冷却空気の混合によって、タービン入口温度から排ガス温度まで温度が低下する。すなわち、あるタービン入口温度が与えられたときに排ガス温度を決定する主要なパラメータは、断熱膨張による燃焼ガスの温度低下量を決定するタービン膨張比、タービン効率と燃焼ガスの比熱比、および冷却空気の混合による温度低下量を決定する冷却空気量と冷却空気温度の5つである。タービン効率、燃焼ガスの比熱比、冷却空気量、冷却空気温度の4つは大きくはガスタービンの運転状態によって大きくは変動しないものとすると、あるタービン入口温度、あるタービン膨張比では排ガス温度は一意に定まる。逆に言えば、タービン膨張比と排ガス温度からタービン入口温度を推定する事が可能である。前述した温調制御では、実測されたタービン膨張比と排ガス温度とが、所与のタービン膨張比と排ガス温度との関数に一致するように燃料流量を制御することで、燃焼ガス温度を所定値としている。なお、温調制御の実際においては、タービンの入口圧力が燃焼器圧損を除いて圧縮機排出空気圧力と等しく、タービンの出口圧力が排気圧損を除いて大気圧(ほぼ1気圧)に等しいことを考慮し、タービン膨張比の代替として前述した圧縮機排出空気圧力をもちいることも一般に行われる。
 しかしながら、特に高炉ガスや石炭ガスを燃料とするガスタービンにおいては、燃料ガスの組成が大きく変化することがある。その場合、燃料ガスの組成を考慮して、温調制御におけるタービン膨張比と排ガス温度との関数を補正することが望ましい。例えば、特許文献1には、ガスタービン圧縮機の吐出空気圧と、ガスタービン排ガス温度とを測定し、これらの測定値に基づいてガスタービン燃料流量を制御して燃焼温度を制御する方法において、ガスタービン燃料の発熱量を検出し、上記発熱量検出値を用いて、ガスタービン圧縮機の吐出空気圧に対する排ガス温度特性の変化を算出し、上記の算出値によって排ガス温度特性を補正し、上記補正値と、排ガス温度の実測値とを比較し、上記比較における差分を極小ならしめるように燃料流量を調節するガスタービン燃焼温度制御方法が記載されている。
特開昭63-183230号公報
 特許文献1に記載のガスタービン燃焼温度制御方法は、ガスタービン燃料の発熱量を用いて、排ガス温度特性を補正して制御を行うことで、燃料ガス組成が変動したとしても、燃焼ガスの温度を所定の温度となるように温調制御することを意図している。
 しかしながら、特許文献1に記載の制御方法でも、実際の燃焼ガスの温度が想定した燃焼ガスの温度とずれるため、結果としてガスタービンの出力や効率を低下させてしまう場合があった。より具体的には、たとえ燃料ガスの発熱量が同じであったとしても、燃料ガスの組成が異なる場合が考えられる。その場合、燃料ガスの発熱量が同じであっても燃焼ガスの組成は異なるため、燃焼ガスの比熱比も異なり、結果的に排ガス温度も異なる。よって、燃料ガス発熱量のみで補正した排ガス温度特性を用いて燃料流量を制御すると、燃焼ガス温度を所定の温度となるように制御することができない。一般に、燃焼ガスの温度がガスタービンの最高許容温度を超える事(オーバーファイアリング)は、燃焼器やタービン翼の寿命を縮めることとなり望ましくない。また、燃焼ガス温度を精度よく制御できない以上、燃焼ガス温度を最高許容温度から下げてガスタービンを運転せざるを得ず、このような運転はガスタービンの出力や効率の低下を招く。
 本発明は、上述した課題を解決するものであり、ガスタービンの燃焼ガス温度を制御し、オーバーファイアリングが発生する恐れを低減することができるガスタービンシステム、制御装置及びガスタービンの運転方法を提供することを目的とする。
 上記の目的を達成するための本発明のガスタービンシステムは、圧縮機と燃焼器とタービンを有するガスタービンと、前記燃焼器に燃料を供給する燃料供給機構と、前記燃料の組成を検出する組成検出部と、前記圧縮機から前記燃焼器に向けて排出される空気の空気圧または前記タービンの膨張比と、前記タービンを通過した排ガスの排気温度との関数に基づいて、前記燃料供給機構から前記燃焼器に供給する燃料の流量を制御する制御装置と、を有し、前記制御装置は、前記組成検出部で検出した前記燃料の組成から燃焼ガスの比熱比を算出し、算出した前記比熱比に基づいて前記関数を補正し、前記補正した関数に基づいて前記燃料の流量を制御することを特徴とする。
 前述の通り、排ガス温度を決定する主要なパラメータは、タービン膨張比、タービン効率、燃焼ガス比熱比、冷却空気量、冷却空気温度の5つである。タービン燃料ガスの組成が変動すると、これらパラメータのうち主に燃焼ガス比熱比が変動することで、タービン膨張比と排ガス温度との関係が基準の状態からずれる。そのため、燃焼ガス比熱比に基づいて、圧縮機から燃焼器に向けて排出される空気の空気圧またはタービン膨張比と、タービンを通過した排ガスの排気温度との関数を補正し、その補正結果に基づいて、燃料ガスの供給量を調整することで、燃焼器の燃焼ガスの温度をより高い精度で制御することができる。このように、ガスタービンの燃焼ガス温度を制御できることで、オーバーファイアリングが発生する恐れを低減することができる。また、燃焼器の燃焼ガスの温度を高い精度で制御し、オーバーファイアリングが発生する恐れを低減できることで、燃焼器の燃焼ガスの温度をより高い温度とすることができ、より効率よくガスタービンで出力を取り出すことができる。
 本発明のガスタービンシステムでは、前記制御装置は、前記燃料の組成と、前記圧縮機の吸気流量とに基づいて、前記燃焼ガスの組成を算出し、前記燃焼ガスに含まれる各成分の割合と、前記各成分の比熱比と、に基づいて、前記燃焼ガスの比熱比を算出することを特徴とする。
 従って、燃焼器における燃空比を考慮して、精度よく燃焼ガスの比熱比を算出することができる。
 本発明のガスタービンシステムでは、前記制御装置は、算出した前記燃焼ガスの比熱比と、基準の燃焼ガスの比熱比とに基づいてバイアス値を算出し、前記基準の燃焼ガスの場合の前記関数に算出したバイアス値を加算して得られた関数に基づき、前記燃焼器に供給する燃料の流量を制御することを特徴とする。
 従って、燃焼ガスの比熱比ごとに関数を設定したりすることなく、少ない記憶容量および演算量で、補正後の関数を得ることができる。
 また、本発明は、ガスタービンの燃焼器に燃料を供給する燃料供給機構を制御する制御装置であって、前記燃焼器に供給する燃料の組成情報を取得する組成情報取得部と、前記圧縮機から前記燃焼器に向けて排出される空気の空気圧または前記タービンの膨張比と、前記タービンを通過した排ガスの排気温度との関数に基づいて、前記燃料供給機構から前記燃焼器に供給する燃料の流量を制御する燃料供給機構制御部と、を有し、前記燃料供給機構制御部は、前記燃料の組成から燃焼ガスの比熱比を算出し、算出した前記比熱比に基づいて前記関数を補正し、前記補正した関数と運転情報とに基づいて前記燃料の流量を制御することを特徴とする。
 従って、タービン燃料ガスの組成が変動し、排ガス温度を決定する主要なパラメータの1つである燃焼ガス比熱比が主として変動することで、タービン膨張比と排ガス温度との関係が基準の状態からずれた場合であっても、ずれに応じて制御を行うことができるため、ガスタービンの燃焼ガス温度を高い精度で制御することができる。具体的には、燃焼ガス比熱比に基づいて、圧縮機から燃焼器に向けて排出される空気の空気圧またはタービン膨張比と、タービンを通過した排ガスの排気温度との関数を補正し、その補正結果に基づいて、燃料ガスの供給量を調整することで、燃焼器の燃焼ガスの温度をより高い精度で制御することができる。このように、ガスタービンの燃焼ガス温度を制御できることで、オーバーファイアリングが発生する恐れを低減することができる。また、燃焼器の燃焼ガスの温度を高い精度で制御し、オーバーファイアリングが発生する恐れを低減することができることで、燃焼器の燃焼ガスの温度をより高い温度とすることができ、より効率よくガスタービンで出力を取り出すことができる。
 また、本発明のガスタービンの運転方法では、圧縮機と燃焼器とタービンを有するガスタービンと、前記燃焼器に燃料を供給する燃料供給機構と、前記燃料の組成を検出する組成検出部と、を有するガスタービンの運転方法であって、前記組成検出部で検出した前記燃料の組成から燃焼ガスの比熱比を算出するステップと、予め定められた、前記圧縮機から前記燃焼器に向けて排出される空気の空気圧または前記タービンの膨張比と、前記タービンを通過した排ガスの排気温度との関数を、算出した前記比熱比に基づいて、補正するステップと、前記補正した関数に基づいて前記燃料供給機構から前記燃焼器に供給する燃料を制御するステップと、を有することを特徴とする。
 従って、タービン燃料ガスの組成が変動し、排ガス温度を決定する主要なパラメータの1つである燃焼ガス比熱比が主として変動することで、タービン膨張比と排ガス温度との関係が基準の状態からずれた場合であっても、ずれに応じて制御を行うことができるため、ガスタービンの燃焼ガス温度を高い精度で制御することができる。具体的には、燃焼ガスの比熱比に基づいて、圧縮機から燃焼器に向けて排出される空気の空気圧またはタービン膨張比と、タービンを通過した排ガスの排気温度との関数を補正し、その補正結果に基づいて、燃料ガスの供給量を調整することで、燃焼器の燃焼ガスの温度をより高い精度で制御することができる。このように、ガスタービンの燃焼ガス温度を制御できることで、オーバーファイアリングが発生する恐れを低減することができる。また、燃焼器の燃焼ガスの温度を高い精度で制御し、オーバーファイアリングが発生する恐れを低減することができることで、燃焼器の燃焼ガスの温度をより高い温度とすることができ、より効率よくガスタービンで出力を取り出すことができる。
 本発明のガスタービンシステム、制御装置及びガスタービンの運転方法によれば、燃焼器に供給する燃料ガスの組成の変動に対応して、燃焼ガスの温度を制御することができるこれにより、オーバーファイアリングが発生する恐れを低減することができる。これにより、燃焼器の燃焼ガスの温度をより高い温度とすることができ、より効率よくガスタービンで出力を取り出すことができる。
図1は、本実施例のガスタービンシステムを表す概略構成図である。 図2は、ガスタービンシステムの制御装置を示す概略図である。 図3は、温調線の一例を示すグラフである。 図4は、比熱比とバイアス値との関係の一例を示すグラフである。 図5は、比熱比とバイアス値との関係の一例を示すグラフである。 図6は、比熱比とバイアス値との関係の一例を示すグラフである。 図7は、本実施例のガスタービンシステムの駆動動作の一例を示すフローチャートである。 図8は、燃料ガス供給機構の他の例を示す概略図である。 図9は、他の例のガスタービンシステムの駆動動作の一例を示すフローチャートである。 図10は、ガスタービンシステムの駆動動作の変形例を示すフローチャートである。 図11は、ガスタービンシステムの駆動動作の変形例を示すフローチャートである。 図12は、ガスタービンシステムの駆動動作の変形例を示すフローチャートである。 図13は、他の実施例のガスタービンシステムを表す概略構成図である。
 以下に添付図面を参照して、本発明に係るガスタービンシステム、制御装置及びガスタービンの運転方法の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。
 図1は、本実施例のガスタービンシステムを表す概略構成図である。本実施例において、図1に示すように、ガスタービンシステム10は、ガスタービン11と、ガスタービン11に燃料ガスを供給する燃料ガス供給機構12と、ガスタービン11に空気を供給する空気供給機構13と、ガスタービン11から排出される排ガスが流れる排ガス排出機構14と、ガスタービン11の各種運転情報を検出する運転情報検出部16と、入力された設定、入力された指示及び検出部で検出した結果等に基づいて、ガスタービンシステム10の各部の動作を制御する制御装置18と、を有する。
 ガスタービン11は、圧縮機(A/C)21、燃焼器22、タービン(G/T)23を有しており、圧縮機21とタービン23は、回転軸24により一体回転可能に連結されている。また、ガスタービン11は、圧縮機21と燃焼器22とが接続され、燃焼器22とタービン23とが接続されている。圧縮機21は、空気供給機構13から取り込んだ空気Aを圧縮するとともに、その入口に設けられた入口案内翼21aの角度を変更することで、取り込む空気Aの量を変更する。燃焼器22は、圧縮機21から供給された圧縮空気と、燃料ガス供給ライン32から供給された燃料ガスLとを混合して燃焼する。タービン23は、燃焼器22で燃料ガスLを燃焼して生成された燃焼ガスが供給されることにより回転する。圧縮機21は、空気取り込み口に開度を調整できる入口案内翼(IGV:Inlet Guide Vane)21aが設けられている。圧縮機21は、入口案内翼21aの開度を大きくすることで、圧縮機21が生成する圧縮空気量を増加させ、開度を小さくすることで、圧縮機21が生成する圧縮空気量を減少させる。なお、図示しないが、タービン23は、圧縮機21で圧縮された圧縮空気が車室を通して供給され、この圧縮空気を冷却空気として翼などを冷却する。
 燃料ガス供給機構12は、燃料ガス供給ライン32と制御弁34と、を有する。燃料ガス供給ライン32は、燃料ガスを供給する供給源と燃焼器22とを繋げる配管である。燃料ガス供給ライン32は、供給源から供給される燃料ガスを燃焼器22に供給する。制御弁34は、開度を調整する機構を備えた弁であり、燃料ガス供給ライン32に設けられている。制御弁34は、開閉や開度を調整することで、燃料ガス供給ライン32から燃焼器22に供給する燃料ガスLの流量を調整することができる。
 空気供給機構13は、空気供給ライン36を備えている。空気供給ライン36は、一方が大気に開放され、他方が圧縮機21に連結されている。空気供給ライン36は、圧縮機21に空気Aを供給する。
 排ガス排出機構14は、排ガスライン38を備えている。排ガスライン38は、タービン23と連結されており、タービン23を通過した排ガス(タービン23を通過した燃焼ガス)が供給される。排ガスライン38は、排ガスを処理する機構、例えば、排熱回収機構や有害物質を除去する機構等に排ガスを供給する。
 運転情報検出部16は、組成計50と、排ガス温度計52と、圧縮空気圧力計54と、燃料流量計56と、大気圧計59と、入口案内翼角度計(IGV開度計)70と、回転数計72と、を有する。各部は検出した情報を制御装置18に送る。組成計50は、燃料ガス供給ライン32に設けられており、燃料ガス供給ライン32を流れる燃料ガスの組成を検出する。組成計50としては、燃料ガスの組成を計測する各種計測装置を用いることができ、燃料ガスに測定光を照射し、測定光の吸収を検出し、吸収量に基づいて対象の成分を検出するセンサや、測定光のラマン散乱光を検出し、当該ラマン散乱光の強度に基づいて対象の成分を検出するセンサを用いることができる。組成計50は、検出する成分を検出するセンサをそれぞれ備えていてもよいし、1つのセンサで燃料ガスの全成分を検出してもよい。なお、組成計50は、燃料ガスに含まれている主成分を検出できればよく、必ずしも微量な成分まで検出することを要しない。排ガス温度計52は、排ガスライン38に設けられており、排ガスライン38を流れる排ガスの温度、いわゆる排気温度を検出する。圧縮空気圧力計54は、圧縮機21から燃焼器22に向かって流れる圧縮空気の圧力を検出する。圧縮空気圧力計54は、圧縮機21の吐出圧力を計測する。燃料流量計56は、燃料ガス供給ライン32の制御弁34と燃焼器22との間に配置されている。燃料流量計56は、制御弁34を通過し燃焼器22に供給される燃料ガスの流量を計測する。大気圧計59は、大気圧を検出する圧力計である。大気圧計59は、ガスタービンシステム10が設置されている空間にある大気の圧力を検出できれば、設置位置は特に限定されない。入口案内翼角度計70は、圧縮機21の入口に設けられた入口案内翼21aの角度を検出する計測器である。回転数計72は、ガスタービン11の回転速度を検出する計測器である。回転数計72は、ガスタービン11の回転軸24と同軸で回転するシャフトに設けられたエンコーダを用いることができる。
 制御装置18は、ガスタービンシステム10の各部の動作を制御する。図2を用いて、制御装置18の構成について説明する。図2は、ガスタービンシステムの制御装置を示す概略図である。なお、図2は、制御装置18の機能のうち、燃料ガスの供給を制御する機能に関連する部分を抽出したものである。制御装置18は、図2に示す機能以外に、ガスタービンシステム10の制御に必要な各種機能を備えている。
 制御装置18は、組成情報取得部60と、運転情報取得部62と、演算処理部64と、記憶部66と、制御弁制御部(燃料ガス供給機構制御部)68と、を有する。組成情報取得部60は、組成計50で検出された燃料ガスの組成の情報を取得する。運転情報取得部62は、排ガス温度計52で検出された排ガスの温度、圧縮空気圧力計54で検出された圧縮空気の圧力、燃料流量計56で検出された燃料ガスの流量の情報を取得する。
 演算処理部64は、CPU(Central Processing Unit)やバッファを備え、プログラムを実行し各種演算を実行する機能を備えている。演算処理部64は、組成情報取得部60で取得した燃料ガスの組成の情報と、運転情報取得部62で取得した運転情報と、記憶部66に記憶されている情報に基づいて、制御弁34の開度を算出し、燃焼器22に供給する燃料ガスの流量を制御する。この点については、後述する。
 記憶部66は、基準データ66aと、バイアス値算出テーブル66bと、を有する。基準データ66aは、基準となる燃料ガスの組成の場合の温調線の情報を記憶している。図3は、温調線(制御設定値の関係を示す線)の一例を示すグラフである。具体的には、温調線は、図3に示すように、タービン23の入口温度が一定となるような圧縮空気の圧力と排気温度との関数である。ここで、圧縮機排出空気圧力(圧縮空気圧力)は、本質的にはタービン膨張比であるが、前述したとおりタービン23の入口圧力が燃焼器22の圧損を除いて圧縮機排出空気圧力と等しく、タービン23の出口圧力が排気圧損を除いて大気圧(ほぼ1気圧)に等しいことを考慮し、タービン膨張比の代替として圧縮空気の圧力(圧縮空気圧力計54で計測される位置の圧縮空気の圧力)を用いている。排気温度とは、排ガスの温度(排ガス温度計52で計測される位置の排ガスの温度)である。ガスタービンシステム10は、燃料組成が基準どおりで変動がなければ、その場合の温調線80で示す条件で運転を行うことで、タービンに供給される燃焼ガスの温度を所望の温度とすることができる。
 例えば、図3に示すように、基準となる燃料ガスの組成においては、燃焼ガスのκが1.4であり、その場合の温調線は80である。そこから燃料ガスの組成が変動し、その結果燃焼ガスのκが1.5となった場合、温調線は温調線82となる。この、温調線80を基準とした温調線82のズレ量がバイアス値84となる。バイアス値算出テーブル66bは、燃料ガスの組成から算出した燃焼ガスの比熱比κと、基準データの温調線80をバイアス補正するバイアス値との関係を記憶したテーブルである。バイアス値算出テーブル66bの比熱比κとバイアス値との関係は、実験やシミュレーションで算出しておけばよい。さらに、この関係は必ずしも燃焼ガスのκの変動に対して燃焼ガスの温度を一定とするような関係である必要はなく、目的に応じてこれとは異なる関係を用いてもよい。また、本実施例では、テーブルとしたが、単に関数としてもよく、例えば前述のズレ量に対するバイアス値の比を記憶していてもよい。演算処理部64は、κが1.5の場合、バイアス値算出テーブル66bや前述の関数からバイアス値84を算出し、温調線80をバイアス値84で補正することで、温調線82を算出する。この点については、後述する。
 以下、図4から図6を用いて、本実施例に用いることができる比熱比とバイアス値との関係について説明する。図4から図6は、それぞれ比熱比とバイアス値との関係の一例を示すグラフである。バイアス値算出テーブル66bに記憶させる比熱比κとバイアス値との関係としては、図4に示すように、燃焼ガスの比熱比κによらず燃焼ガスの温度が一定となるように比熱比κに応じて温調バイアスを変化させた関係とすることができる。制御装置18は、図4に示す関係を用いてバイアス値を制御することで、燃焼ガスの比熱比κが変動した場合に生じる燃焼ガスの温度の変動をより小さくすることができる。
 また、バイアス値算出テーブル66bに記憶させる比熱比κとバイアス値との関係としては、図5に示すように、燃焼ガスの比熱比κが基準値κ以下の場合、バイアス値を一定の値X1とし、燃焼ガスの比熱比κが基準値κより大きい場合、燃焼ガスの比熱比κによらず燃焼ガスの温度が一定となるような関係を用いることができる。制御装置18は、図5に示す関係を用いてバイアス値を制御することで、燃焼ガスの比熱比κが基準値κより大きい場合、燃焼ガスの比熱比κによらず燃焼ガスの温度が一定となるように比熱比κに応じて温調バイアスをリニアに変動させることで、燃料ガスの組成がオーバーファイアリング側に変動した場合、温度が一定になるように制御を行うことができる。また、制御装置18は、図5に示す関係を用いてバイアス値を制御することで、燃焼ガスの比熱比κが基準値κ以下の場合、バイアス値を一定の値X1とすることで、検出した燃料ガスの組成から算出された燃焼ガスの比熱比κが基準値よりも低く算出された場合に、これが計器の誤差などに起因して実際の燃焼ガスの比熱比κよりも低い比熱比κが算出されても、オーバーファイアリングが発生する恐れが少ない条件で燃焼を行うことができる。
 また、バイアス値算出テーブル66bに記憶させる比熱比κとバイアス値との関係としては、図6に示すように、燃焼ガスの比熱比κが基準値κ以下の場合、バイアス値を一定の値X1とし、燃焼ガスの比熱比κが基準値κより大きい場合、バイアス値を一定の値X2とする関係を用いることができる。ここで、X2は、X1よりも小さい値、つまりX2<X1となる。制御装置18は、図6に示す関係を用いてバイアス値を制御し、燃焼ガスの比熱比κが基準値κより大きいか、基準値κ以下であるかで、バイアス値を切り換える関係とすることでも、燃焼ガスの比熱比κが高くなり、同じ燃焼条件では、オーバーファイアリングが発生しやすい状態になったら、バイアス値を小さくすることで、オーバーファイアリングが発生する恐れが少ない条件で燃焼を行うことができる。なお、図6では、燃焼ガスの比熱比κに基づいて、バイアス値を2段階で切り換えたが3段階以上としてもよい。
 制御弁制御部68は、演算処理部64で算出した制御弁34の開度に基づいて、制御弁34を制御する。
 次に、図7を用いて、制御装置による制御動作について説明する。図7は、本実施例のガスタービンシステムの駆動動作の一例を示すフローチャートである。制御装置18は、ガスタービン11の運転中は、図7に示す処理を繰り返し実行する。制御装置18は、運手情報及び燃料ガスの組成を取得する(ステップS12)。制御装置18は、組成情報取得部60で燃料ガスの組成の情報を取得し、運転情報取得部62で各種運転情報を取得する。
 制御装置18は、燃料ガス及び運転情報を取得したら、燃焼ガスの組成を算出する(ステップS13)。具体的には、取得した燃料ガスの組成に基づいて、燃料ガスの燃焼後の組成を算出する。例えば、Hは、燃焼後HOとなり、COは、燃焼後COとなり、CHは、燃焼後COとHOとなる。不燃成分の窒素や二酸化炭素や水はそのままとなる等の関係を用いて、燃料ガスが完全燃焼した場合に生成されるガスの組成を算出する。次に、制御装置18は、入口案内翼角度計70で検出した入口案内翼21aの角度、吸気温度、回転数計72で検出した圧縮機の回転数に基づいて、空気の供給量を算出し、さらに、燃料ガスの供給量と、空気の供給量とに基づいて、空燃比を算出する。次に、制御装置18は、燃料ガスが完全燃焼した場合に生成されるガスの組成と空燃比とに基づいて燃焼ガスの組成を検出する。つまり、空燃比に基づいて、燃焼に寄与しない余剰空気の割合を算出し、燃料ガスが完全燃焼した場合に生成されるガスがこの余剰空気で希釈されるとして、燃焼ガスの組成を算出する。
 制御装置18は、燃焼ガスの組成に基づいて、燃焼ガスのκを算出する(ステップS14)。具体的には、燃焼ガスの組成に基づいて、燃焼ガスの各成分のκを抽出する。その後、燃焼ガスに含まれる成分の比熱比と燃焼ガスの各成分の割合とに基づいて、燃焼ガスの比熱比を算出する。算出方法としては、各成分の濃度に基づいて、加重平均で算出することができる。
 制御装置18は、燃焼ガスの比熱比κを算出したら、燃焼ガスの比熱比κに基づいて、バイアス値を決定する(ステップS16)。具体的には、バイアス値算出テーブル66bを読み出し、バイアス値算出テーブル66bと算出した燃焼ガスの比熱比κとに基づいて、燃焼ガスの比熱比κに対応するバイアス値を決定する。
 制御装置18は、バイアス値を決定したら、バイアス値を用いて、圧縮空気圧力と排ガス温度との関数を補正する(ステップS18)。つまり、基準となる温調線に、バイアス値を加算することにより、補正された温調線を得る。
 制御装置18は、圧縮空気圧力と排ガス温度との関数(温調線)をバイアス値で補正したら、補正された温調線(関数)と運転情報とに基づいて、燃料制御値(燃料ガスの供給量の制御に用いる値)を決定する(ステップS20)。具体的には、図3において、実測された圧縮空気圧力と排ガス温度との組をプロットし、これが補正された温調線よりも右上にくる場合は燃料流量を減少させ、左下にくる場合は燃料流量を増加させるように、燃料制御値を決定する。制御弁制御部68で決定した燃料制御値に基づいて、制御弁34を制御し(ステップS22)、本処理を終了する。なお、燃料制御値は、制御弁34の開度を示す値の情報でもよいし、開度の変動量の情報でもよい。
 ガスタービンシステム10は、以上のように、燃料ガスの組成を検出し、燃料ガスの組成に基づいて、燃焼ガスの比熱比κを算出し、予め設定された関係に基づいてバイアス値を算出し、バイアス値を用いて温調線を補正する。これにより、燃料ガスの組成が変化した場合でも、その変化に応じて温調線を補正することができる。ガスタービンシステム10は、温調線を補正することで、排気温度とタービン入口での燃焼ガスの温度との関係を、燃料ガスの組成に対応させることができる。これにより、補正した温調線に基づいて、運転条件(本実施例では、燃料ガスの供給量)を制御することで、タービン入口での燃焼ガスの予測温度と実際の温度との差を少なくすることができる。これにより、ガスタービンシステム10をより高い精度で制御することが可能となり、ガスタービンシステム10をより高い出力、効率で運転することができる。具体的には、燃料ガスのカロリーで温調線を制御すると、カロリーが同一であっても組成が異なる燃料ガスに対して、同じ温調線で制御してしまうのに対して、本実施例のガスタービンシステム10は、燃料ガスの組成が変われば、その組成に対応した燃焼ガスのκを算出し、温調線を補正することができる。これにより、燃焼器22での燃焼をより正確に制御することができ、オーバーファイアリングが発生する恐れを低減することができる。また、ガスタービンシステム10は、タービン入口での燃焼ガスの目標温度と実際の温度との誤差を少なくすることができることで、目標温度をガスタービン11の最高許容温度に近づけることができる。これにより、効率よくガスタービンシステム10を運転させることができる。
 ここで、ガスタービンシステム10は、例えば、図4に示す関係を用いて、バイアス値を算出することで、実際の温度の変動を小さくすることができ、オーバーファイアリングが発生する恐れを低減することができ、かつ、燃焼ガスの比熱比κが変動した場合も、最高許容温度に近づいた状態を維持して運転を行うことができる。また、ガスタービンシステム10は、例えば、図4に示す関係を用いて、バイアス値を算出することで、燃焼ガスの比熱比κが基準値κよりもオーバーファイアリング側に変動した場合に適切に温度を制御することができ、オーバーファイアリングが発生する恐れを低減することができる。
 ここで、本実施例では、温調線を、圧縮空気圧力と排気温度との関数としたが、圧縮空気圧力に替えてタービン膨張比を用いてもよい。その場合、タービン膨張比を求めるためのタービン入口圧力の代替として圧縮空気圧力を用いてもよいし、タービン排気圧力の代替として大気圧力を用いてもよい。また、本実施例では燃料がガスであるとして説明したが、本質的には燃料の形態はガスに限定されるものではなく、例えば液体燃料であってもよいことは明らかである。
 ガスタービンシステム10は、組成計を用いて、燃料ガスの組成を検出したが、これに限定されない。図8は、燃料ガス供給機構の他の例を示す概略図である。図8に示すガスタービンシステム10aは、燃料ガス供給ライン32の上流側の構成以外は、ガスタービンシステム10と同様である。ガスタービンシステム10aに特有の構成を説明する。
 図8に示すガスタービンシステム10aは、燃料ガス供給機構12aが、燃料ガスL1を供給する第1燃料ガス供給ライン102と、燃料ガスL2を供給する第2燃料ガス供給ライン104と、第1燃料ガス供給ライン102に設けられた制御弁106と、第2燃料ガス供給ライン104に設けられた制御弁108と、を有する。燃料ガス供給機構12aは、第1燃料ガス供給ライン102から燃料ガスL1を燃料ガス供給ライン32に供給し、第2燃料ガス供給ライン104から燃料ガスL2を燃料ガス供給ライン32に供給する。なお、本実施例では、第1燃料ガス供給ライン102と第2燃料ガス供給ライン104の流量を調整可能な制御弁106、108を設けたが、制御弁106、108は設けなくてもよい。また、本実施例の燃料ガスL1、燃料ガスL2は、組成が機知の燃料ガスである。
 運転情報検出部16aは、第1燃料ガス供給ライン102に設けられた燃料流量計112、第2燃料ガス供給ライン104に設けられた燃料流量計114と、をさらに有する。燃料流量計112、114は、設けられたラインの燃料流量を算出する。
 次に、図9を用いて、ガスタービンシステム10aの燃料ガスの組成を算出する方法について説明する。図9は、他の例のガスタービンシステムの駆動動作の一例を示すフローチャートである。なお、図9に示す演算は、制御装置18が行ってもよいし、別途演算装置を設けて行ってもよい。本実施例では、制御装置18が行うものとする。
 制御装置18は、各燃料ガス、つまり燃料ガスL1、L2の組成を取得し(ステップS30)、燃料流量計112、114から各燃料ガスの流量のバランスを取得し(ステップS32)、各燃料ガスの流量のバランスと組成に基づいて、混合した燃料ガスの組成を算出し(ステップS34)、本処理を終了する。なお、流量のバランスは、相対的なバランスを取得できればよく、流量を取得しても、流量比を検出してもよい。
 ガスタービンシステム10aのように、燃料ガスの組成が機知である場合、また機知であるとみなせる場合は、燃料ガスの組成を組成計で検出しなくても燃焼器に供給される燃料ガスの組成を算出することができる。また組成計を用いないことで装置構成を簡単にすることができる。また、ガスタービンシステム10aは、2種類の燃料ガスを混合したが、混合する燃料ガスの数は特に限定されない。
 また、ガスタービンシステム10、10aは、燃料ガスの組成に対して基準値を設定し、燃料ガスの組成が基準値よりもオーバーファイアリング側に変動したか否かで実行する制御を切り換えるようにすることが好ましい。つまり、ガスタービンシステム10、10aは、燃料ガスの組成に基づいて算出される比熱比であるκに対して基準値を設定し、κが基準値よりもオーバーファイアリング側に変動した場合、つまりκが大きくなった場合と、オーバーファイアリング側とは反対側に変動した場合、つまりκが小さくなった場合とで実行する制御を切り換えることが好ましい。
 一例としては、制御装置18は、κが基準値よりも大きくなった場合、バイアス値を算出し、バイアス値に基づいた制御を実行し(バイアスを下げる)、κが基準値以下となった場合、バイアス値を変更する制御を実行しない(バイアスを上げない)。
 以下、図10を用いて、制御動作の一例を説明する。図10は、ガスタービンシステムの駆動動作の変形例を示すフローチャートである。以下、ガスタービンシステム10の場合として説明するが、ガスタービンシステム10aまた別の例のガスタービンシステムの場合でも同様である。ここで、制御装置18は、図10に示す処理を、燃料ガスの組成に基づいてバイアス値を決定する処理、例えば、図7のフローチャートのステップS14、ステップS16の処理として実行する。
 制御装置18は、燃料ガスの組成に基づいて、燃焼ガスの比熱比κを算出する(ステップS42)。制御装置18は、燃焼ガスの比熱比κを算出したら、算出した燃焼ガスの比熱比κが基準値よりも高いかを判定する(ステップS44)。制御装置18は、比熱比κが基準値よりも高い(ステップS44でYes)と判定した場合、比熱比κに基づいて、バイアス値を設定する(ステップS46)。この場合、比熱比κが基準値よりも高いため、バイアス値を下げる。バイアス値を下げることで、圧縮空気圧力に対する排気温度が低く設定される状態となり、燃焼器22での燃焼をより安全な状態で運転できる条件に変更することができる。また、制御装置18は、比熱比κが基準値よりも高くない(ステップS44でNo)、つまり基準値以下であると判定した場合、バイアス値を変更しない(ステップS48)。この場合、比熱比κが基準値以下であるため、燃焼器22の燃焼温度は温調制御によって比熱比κが基準値である場合と比べて低下する。そのため、燃焼器22をより安全な状態で運転できる。
 ガスタービンシステム10は、燃料ガスの組成が、オーバーファイアリング側に変動した場合のみバイアス値を調整する制御を実行することで、バイアス値を基準値よりも高くしない制御を実行することができる。これにより、ガスタービンシステム10を安全に運転することができる。なお、このような動作は、比熱比κとバイアス値との関係として上述した図5に示す関係を用いて、バイアス値を制御することでも実現可能である。
 また、ガスタービンシステム10は、燃料ガスの組成に基づいて算出される比熱比であるκに対して基準値を設定し、κがオーバーファイアリング側に変動した場合、つまりκが大きくなった場合、バイアス値を下げる処理を速やかに実行し、オーバーファイアリング側とは反対側に変動した場合、つまりκが小さくなった場合、燃料ガスの到達時間に合わせてバイアス値を上げる処理を実行するようにすることが好ましい。ガスタービンシステム10は、バイアス値の変動に基づいた処理を実行するタイミングをずらすことで、制御弁の開度を調整するタイミングをずらすことができる。
 以下、図11を用いて、制御動作の一例を説明する。図11は、ガスタービンシステムの駆動動作の変形例を示すフローチャートである。制御装置18は、図11に示す処理を、制御弁の制御を実行する処理、例えば、図7のステップS22の処理として実行する。
 制御装置18は、算出した比熱比κが上昇したかを判定する(ステップS52)。制御装置18は、比熱比κが上昇した(ステップS52でYes)と判定した場合、待ち時間を設けずに制御弁34の制御を実行する(ステップS54)。この場合、制御装置18は、制御値が決定した時点で決定した制御値となるように制御弁34を制御する。制御装置18は、比熱比κが上昇していない(ステップS52でNo)つまり、比熱比κが同じまたは低下したと判定した場合、燃料ガスの到達時間を加味して制御弁34の制御を実行する(ステップS56)。この場合、制御装置18は、計測した燃料ガスが制御弁34に到達した時点で、決定した制御値となるように制御弁34を制御する。
 ガスタービンシステム10は、バイアス値の変動に基づいた処理を実行するタイミングをずらして、制御弁の開度を調整するタイミングをずらすことで、安全性を高く維持しつつ、燃焼器22での燃焼条件を適切に制御することができる。具体的には、κが大きくなった場合、バイアス値を下げる処理を速やかに実行することで、オーバーファイアリングを防止して燃焼器22へのダメージを防止することができ、反対にκが小さくなった場合、燃料ガスの到達時間に合わせてバイアス値を上げる処理を実行することで、燃焼温度の変動によるガスタービン出力の変動を防止することができる。
 また、ガスタービンシステム10は、組成計50が異常であることを検出した場合、バイアス値を下げることが好ましい。以下、図12を用いて、組成計50の状態に応じた制御動作の一例を説明する。図12は、ガスタービンシステムの駆動動作の変形例を示すフローチャートである。制御装置18は、図12に示す制御を上述した各種制御と並行して実行することが好ましい。
 制御装置18は、組成計50の異常を検出したかを判定する(ステップS62)。制御装置18は、組成計50から出力された異常の発生を知らせる信号を検出した場合、または、組成計50から計測結果が取得できない場合、組成計50が異常であると判定する。制御装置18は、組成計50の異常を検出した(ステップS62でYes)と判定した場合、バイアス値をより安全側のバイアス値に設定する(ステップS64)。つまり、制御装置18は、バイアス値をより下げ、出力が低下する方向に条件を変更する。制御装置18は、組成計50の異常を検出していない(ステップS62でNo)と判定した場合、そのまま処理を終了する。
 ガスタービンシステム10は、組成計58が異常であることを検出した場合、バイアス値をより安全な条件で運転される値とすることで、ガスタービンシステム10をより安全に運転することができる。
 図13は、他の実施例のガスタービンシステムを表す概略構成図である。次に図13を用いて、ガスタービンシステムの他の例について説明する。図13に示すガスタービンシステム10bも、燃料ガス供給ライン32の上流側の構成以外は、ガスタービンシステム10と同様である。ガスタービンシステム10bに特有の構成を説明する。ガスタービンシステム10bは、高炉ガス(BFG、Blast Furnace Gas)焚きのガスタービンシステムであり、燃料ガスL1aとして高炉ガス(BFG)が供給され、燃料ガスL2aとしてコークス炉ガス(COG、Coke Oven Gas)が供給される。
 ガスタービンシステム10bの燃料ガス供給機構12bは、燃料ガスL1aを供給する第1燃料ガス供給ライン120と、燃料ガスL2aを供給する第2燃料ガス供給ライン122と、第1燃料ガス供給ライン120から供給される燃料ガスL1aと第2燃料ガス供給ライン122から供給される燃料ガスL2aとを混合する混合器124と、混合器124で混合された燃料ガスを案内し、燃料ガス供給ライン32と連結している混合燃料ライン126と、混合燃料ライン126に配置され、混合された燃料ガスを圧縮し、昇圧させるガス圧縮機(G/C)128と、燃料ガス供給ライン32と混合燃料ライン126との連結部から分岐し、混合燃料ライン126の上流側と連結しているバイパスライン130と、バイパスライン130に設けられた冷却器132と、バイパスライン130の、燃料ガス供給ライン32と混合燃料ライン126との連結部と、冷却器132との間に配置されたバイパス制御弁140と、を有する。また、ガス圧縮機128は、燃料ガスの取り込み口に流量を制御する入口案内翼(IGV:Inlet Guide Vane)128aが設けられている。
 燃料ガス供給機構12bは、第1燃料ガス供給ライン120から供給された燃料ガスL1aと第2燃料ガス供給ライン122から供給された燃料ガスL2aが混合器124で混合され、混合燃料ライン126に供給される。混合燃料ライン126に供給された燃料ガスは、ガス圧縮機128で昇圧されて、燃料ガス供給ライン32に供給される。ここで、燃料ガス供給機構12bは、バイパスライン130が設けられていることで、バイパス制御弁140が開いている場合、混合燃料ライン126の燃料ガスの一部がバイパスライン130に流入する。バイパスライン130に流入した燃料ガスは、冷却器132で昇圧される前の混合された燃料ガスと同様の圧力まで冷却された後、混合燃料ライン126に供給される。このように、燃料ガス供給機構12bは、燃料ガスの一部がバイパスライン130で循環する。また、燃料ガス供給機構12bは、バイパスライン130で循環する燃料ガスの流量をバイパス制御弁140で制御することで、燃焼器22に供給する燃料ガスの流量を制御する。これにより、燃料ガス供給機構12bは、燃料ガスを一部循環させることで、ガスタービン11にかかる負荷を低減しつつ、所定圧力に昇圧した燃料ガスを連続的にガスタービン11に供給することができる。
 運転情報検出部16bは、組成計50aが、混合燃料ライン126に設けられている。制御装置18aは、組成計50aで検出した混合された燃料ガスの組成に基づいて、制御装置18と同様に燃料ガスの供給量を決定し、その決定に基づいて、バイパス制御弁140の開度を制御することで、燃焼器22に供給する燃料ガスの流量を制御する。
 また、ガスタービンシステム10bは、高炉ガス焚きのガスタービンシステムのように、燃料ガスの性状変化の大きい場合であっても、燃料ガスの組成を検出し、燃焼ガスのκに基づいて、温調線を補正することで、高い精度でガスタービンの出力を制御することができる。
 また、本実施例では、組成計50aを混合燃料ライン126に設けたが、組成計50aを設ける位置はこれに限定されない。例えば、燃料ガス供給ライン32に設けても良いし、バイパスライン130に設けてもよい。また、ガスタービンシステム10bは、燃料ガス供給ライン32に制御弁を設け、制御弁の開度を制御してもよい。また、ガスタービンシステム10bは、混合燃料ライン126に電器集塵機等の燃料に含まれる異物を除去する装置を設けてもよい。また、本実施例では、2種類の燃料ガスを混合させたが、3種類以上の燃料を混合してもよい。
 本実施例のガスタービンシステムは、高炉ガス焚きのガスタービンシステム以外にも、カロリー設定の変更が生じる低カロリーガス焚きのガスタービンシステムにも好適に用いることができる。本実施例のガスタービンシステムは、上述した高炉ガス焚きのガスタービンシステムや低カロリーガス焚きのガスタービンシステム等、燃料ガスのカロリーが低く、燃料ガスの流量が多くなる場合で、かつ燃料ガスの組成が変化することがあるシステムに適用した場合顕著な効果を得ることができる。
 10、10a、10b ガスタービンシステム
 11 ガスタービン
 12、12a、12b 燃料ガス供給機構
 13 空気供給機構
 14 排ガス排出機構
 16、16a 運転情報検出部
 18 制御装置
 21 圧縮機
 22 燃焼器
 23 タービン
 24 回転軸
 32 燃料ガス供給ライン
 34、106、108 制御弁
 36 空気供給ライン
 38 排ガスライン
 50、50a 組成計
 52 排ガス温度計
 54 圧縮空気圧力計
 56、112、114 燃料流量計
 59 大気圧計
 60 組成情報取得部
 62 運転情報取得部
 64 演算処理部
 66 記憶部
 66a 基準データ
 66b バイアス値算出テーブル
 68 制御弁制御部(燃料ガス供給機構制御部)
 80、82 温調線
 84 バイアス値
 102、120 第1燃料ガス供給ライン
 104、122 第2燃料ガス供給ライン
 124 混合器
 126 混合燃料ライン
 128 ガス圧縮機
 130 バイパスライン
 132 冷却器
 140 バイパス制御弁

Claims (6)

  1.  圧縮機と燃焼器とタービンを有するガスタービンと、
     前記燃焼器に燃料を供給する燃料供給機構と、
     前記燃料の組成を検出する組成検出部と、
     前記圧縮機から前記燃焼器に向けて排出される空気の空気圧または前記タービンの膨張比と、前記タービンを通過した排ガスの排気温度との関数に基づいて、前記燃料供給機構から前記燃焼器に供給する燃料の流量を制御する制御装置と、を有し、
     前記制御装置は、前記組成検出部で検出した前記燃料の組成から燃焼ガスの比熱比を算出し、算出した前記比熱比に基づいて前記関数を補正し、前記補正した関数に基づいて前記燃料の流量を制御することを特徴とするガスタービンシステム。
  2.  前記制御装置は、前記燃料の組成と、前記圧縮機の吸気流量とに基づいて、前記燃焼ガスの組成を算出し、
     前記燃焼ガスに含まれる各成分の割合と、前記各成分の比熱比と、に基づいて、前記燃焼ガスの比熱比を算出することを特徴とする請求項1に記載のガスタービンシステム。
  3.  前記制御装置は、算出した前記燃焼ガスの比熱比と、基準の燃焼ガスの比熱比とに基づいてバイアス値を算出し、前記基準の燃焼ガスの場合の前記関数に算出したバイアス値を加算して得られた関数に基づき、前記燃焼器に供給する燃料の流量を制御することを特徴とする請求項1または2に記載のガスタービンシステム。
  4.  前記燃料供給機構は、複数の異なる成分の燃料を混合し、混合した燃料を前記燃焼器に供給し、
     前記組成検出部は、前記複数の異なる成分の燃料の組成と、前記複数の異なる成分の燃料の混合比に基づいて、前記燃料の組成を検出することを特徴とする請求項1に記載のガスタービンシステム。
  5.  ガスタービンの燃焼器に燃料を供給する燃料供給機構を制御する制御装置であって、
     前記燃焼器に供給する燃料の組成情報を取得する組成情報取得部と、
     前記圧縮機から前記燃焼器に向けて排出される空気の空気圧または前記タービンの膨張比と、前記タービンを通過した排ガスの排気温度との関数に基づいて、前記燃料供給機構から前記燃焼器に供給する燃料の流量を制御する燃料供給機構制御部と、を有し、
     前記燃料供給機構制御部は、前記燃料の組成から燃焼ガスの比熱比を算出し、算出した前記比熱比に基づいて前記関数を補正し、前記補正した関数と運転情報とに基づいて前記燃料の流量を制御することを特徴とする制御装置。
  6.  圧縮機と燃焼器とタービンを有するガスタービンと、前記燃焼器に燃料を供給する燃料供給機構と、前記燃料の組成を検出する組成検出部と、を有するガスタービンの運転方法であって、
     前記組成検出部で検出した前記燃料の組成から燃焼ガスの比熱比を算出するステップと、
     予め定められた、前記圧縮機から前記燃焼器に向けて排出される空気の空気圧または前記タービンの膨張比と、前記タービンを通過した排ガスの排気温度との関数を、算出した前記比熱比に基づいて、補正するステップと、
     前記補正した関数に基づいて前記燃料供給機構から前記燃焼器に供給する燃料を制御するステップと、を有することを特徴とするガスタービンの運転方法。
PCT/JP2014/054375 2013-02-26 2014-02-24 ガスタービンシステム、制御装置及びガスタービンの運転方法 WO2014132932A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480006320.6A CN104968918B (zh) 2013-02-26 2014-02-24 燃气轮机系统、控制装置以及燃气轮机系统的运转方法
KR1020157020601A KR101690444B1 (ko) 2013-02-26 2014-02-24 가스 터빈 시스템, 제어 장치 및 가스 터빈 운전 방법
US14/760,787 US9856795B2 (en) 2013-02-26 2014-02-24 Gas turbine system, controller, and gas turbine operation method
JP2015502916A JP6005252B2 (ja) 2013-02-26 2014-02-24 ガスタービンシステム、制御装置及びガスタービンの運転方法
DE112014001000.6T DE112014001000T5 (de) 2013-02-26 2014-02-24 Gasturbinensystem, Steuer- bzw. Regelungseinrichtung und Gasturbinenbetriebsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013036376 2013-02-26
JP2013-036376 2013-02-26

Publications (1)

Publication Number Publication Date
WO2014132932A1 true WO2014132932A1 (ja) 2014-09-04

Family

ID=51428196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054375 WO2014132932A1 (ja) 2013-02-26 2014-02-24 ガスタービンシステム、制御装置及びガスタービンの運転方法

Country Status (6)

Country Link
US (1) US9856795B2 (ja)
JP (1) JP6005252B2 (ja)
KR (1) KR101690444B1 (ja)
CN (1) CN104968918B (ja)
DE (1) DE112014001000T5 (ja)
WO (1) WO2014132932A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017160843A (ja) * 2016-03-09 2017-09-14 三菱日立パワーシステムズ株式会社 ガスタービンの制御装置及びガスタービンの制御方法
JP2019501330A (ja) * 2015-12-04 2019-01-17 パワーフェイズ・エルエルシー 空気注入システムを用いたガスタービン燃焼温度制御

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2840245A1 (en) * 2013-08-20 2015-02-25 Alstom Technology Ltd Method for controlling a gas turbine group
JP6786233B2 (ja) * 2016-03-22 2020-11-18 三菱パワー株式会社 ガスタービンの特性評価装置及びガスタービンの特性評価方法
KR101985353B1 (ko) * 2018-03-27 2019-06-03 두산중공업 주식회사 연료 조성에 따른 가스 터빈 제어 시스템 및 방법
US11125169B2 (en) * 2018-12-19 2021-09-21 General Electric Company Fuel system for heat engine
CN110925107B (zh) * 2019-12-20 2022-02-22 潍柴西港新能源动力有限公司 一种燃气发电发动机燃料闭环控制方法
JP7269204B2 (ja) * 2020-09-28 2023-05-08 三菱重工業株式会社 ガスタービン及びその燃料流量調整方法
CN113466691B (zh) * 2021-06-18 2022-02-22 哈尔滨工程大学 一种两阶段压缩膨胀发电机发电效率的预测方法
GB2617309A (en) * 2021-12-21 2023-10-11 Rolls Royce Plc Aircraft fuel management

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183230A (ja) * 1987-01-26 1988-07-28 Hitachi Ltd ガスタ−ビン燃焼温度制御方法
JP2009216085A (ja) * 2008-02-05 2009-09-24 General Electric Co <Ge> ガスタービンエンジンシステムを運転するための方法及び装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004132255A (ja) 2002-10-10 2004-04-30 Mitsubishi Heavy Ind Ltd 燃焼器制御装置
JP4119908B2 (ja) * 2005-09-14 2008-07-16 三菱重工業株式会社 ガスタービンの燃焼制御装置
IT1396517B1 (it) 2009-11-27 2012-12-14 Nuovo Pignone Spa Metodo di controllo di modo basato su temperatura di scarico per turbina a gas e turbina a gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183230A (ja) * 1987-01-26 1988-07-28 Hitachi Ltd ガスタ−ビン燃焼温度制御方法
JP2009216085A (ja) * 2008-02-05 2009-09-24 General Electric Co <Ge> ガスタービンエンジンシステムを運転するための方法及び装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019501330A (ja) * 2015-12-04 2019-01-17 パワーフェイズ・エルエルシー 空気注入システムを用いたガスタービン燃焼温度制御
JP2017160843A (ja) * 2016-03-09 2017-09-14 三菱日立パワーシステムズ株式会社 ガスタービンの制御装置及びガスタービンの制御方法

Also Published As

Publication number Publication date
KR101690444B1 (ko) 2016-12-27
US9856795B2 (en) 2018-01-02
KR20150099865A (ko) 2015-09-01
JPWO2014132932A1 (ja) 2017-02-02
JP6005252B2 (ja) 2016-10-12
CN104968918A (zh) 2015-10-07
DE112014001000T5 (de) 2015-11-12
US20150354466A1 (en) 2015-12-10
CN104968918B (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
JP6005252B2 (ja) ガスタービンシステム、制御装置及びガスタービンの運転方法
JP4885567B2 (ja) エンジン燃焼器の制御方法
US9506649B2 (en) Methods and apparatus to control combustion process systems
EP3069083B1 (en) Intelligent control method with predictive emissions monitoring ability
KR101520240B1 (ko) 밸브 제어 장치, 가스 터빈, 및 밸브 제어 방법
US9803560B2 (en) Dynamic tuning of a gas turbine engine to detect and prevent lean blowout
US20210310409A1 (en) State determining device, operation controlling device, gas turbine, and state determining method
KR102324007B1 (ko) 건식 저공해 기관을 위한 벌크 화염 온도 조정기
US20180128175A1 (en) System and method for flexible fuel usage for gas turbines
JP2018091331A (ja) ガスタービンに使用される燃料のための燃料組成を決定するためのシステムおよび方法
WO2012132062A1 (ja) ガス圧縮機の運転方法及びガス圧縮機を備えるガスタービン
US20070227125A1 (en) Assured compliance mode of operating a combustion system
KR20080020493A (ko) 보일러 및 보일러의 연소 방법
JP2012207564A (ja) ガスタービンの制御装置
US20140182297A1 (en) Gas turbine and method of controlling a gas turbine at part-load condition
JP6164994B2 (ja) ガスタービンプラント、その制御装置、及びガスタービンの運転方法
JP6413415B2 (ja) ボイラ装置
JP5281467B2 (ja) ガスタービン燃焼器の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14757812

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015502916

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14760787

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157020601

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120140010006

Country of ref document: DE

Ref document number: 112014001000

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14757812

Country of ref document: EP

Kind code of ref document: A1