WO2014132836A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2014132836A1
WO2014132836A1 PCT/JP2014/053715 JP2014053715W WO2014132836A1 WO 2014132836 A1 WO2014132836 A1 WO 2014132836A1 JP 2014053715 W JP2014053715 W JP 2014053715W WO 2014132836 A1 WO2014132836 A1 WO 2014132836A1
Authority
WO
WIPO (PCT)
Prior art keywords
refresh
signal
word lines
circuit
activated
Prior art date
Application number
PCT/JP2014/053715
Other languages
French (fr)
Japanese (ja)
Inventor
持田 宜晃
Original Assignee
ピーエスフォー ルクスコ エスエイアールエル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ピーエスフォー ルクスコ エスエイアールエル filed Critical ピーエスフォー ルクスコ エスエイアールエル
Publication of WO2014132836A1 publication Critical patent/WO2014132836A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/401Indexing scheme relating to cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C2211/406Refreshing of dynamic cells
    • G11C2211/4061Calibration or ate or cycle tuning

Definitions

  • the present invention relates to a semiconductor device, and more particularly to a semiconductor device that performs a refresh operation for holding data stored in a memory cell array.
  • DRAM Dynamic Random Access Memory
  • tREF Dynamic Random Access Memory
  • the data retention time of the memory cell is not necessarily 64 msec, and changes depending on the process conditions. Considering this point, the number of word lines activated in response to one refresh command is reduced in a DRAM having a long data holding time, and conversely, a single refresh command in a DRAM having a short data holding time. In some cases, control is performed such that the number of word lines to be activated is increased in response to (see Patent Document 1).
  • N the number of word lines that are simultaneously activated in one refresh operation
  • the data retention time is as designed (64 msec or more)
  • N word lines are activated only once in response to one refresh command. What is necessary is just to make it.
  • the data holding time is shorter than the design value (64 ⁇ 2/3 msec or more and less than 64 msec)
  • N word lines may be activated three times in response to one refresh command.
  • the data holding time is 32 msec or more and less than 64 ⁇ 2/3 msec
  • N word lines may be activated four times in response to one refresh command.
  • the refresh frequency for each memory cell is optimized, so that the current consumption due to the refresh operation can be reduced.
  • the adjustment pitch of the refresh frequency is defined as an integer multiple of N
  • the adjustment pitch is coarse and the effect of reducing current consumption is not sufficient.
  • N word lines may be activated 2.5 times in response to one refresh command.
  • the data holding time is 64 ⁇ 4/3 msec or more and less than 128 msec
  • N word lines may be activated 1.5 times in response to one refresh command.
  • such a refresh operation is also impossible.
  • a semiconductor device includes a plurality of memory cells that need to retain data by a refresh operation, a memory cell array including a plurality of word lines that select the plurality of memory cells, and a first activation of a refresh signal
  • the refresh operation is performed by selecting a first number of word lines from among the plurality of word lines in response to activation, and among the plurality of word lines in response to second activation of the refresh signal.
  • a refresh control circuit that performs the refresh operation by selecting a second number of word lines different from the first number.
  • a semiconductor device includes a plurality of memory cells that need to hold data by a refresh operation, and first and second memory banks each including a plurality of word lines that select the plurality of memory cells.
  • first and second memory banks each including a plurality of word lines that select the plurality of memory cells.
  • a first number of word lines are selected from the plurality of word lines included in the first memory bank, and are included in the second memory bank.
  • a refresh control circuit that performs the refresh operation by selecting a second number of word lines different from the first number among the plurality of word lines.
  • the adjustment pitch of the refresh frequency can be set more finely, the current consumption can be further reduced according to the data retention time of the memory cell.
  • FIG. 1 is a block diagram showing an overall configuration of a semiconductor device 10 according to a preferred embodiment of the present invention.
  • FIG. 2 is a block diagram showing a characteristic part extracted from the semiconductor device 10 and corresponds to the first embodiment of the present invention.
  • 3 is a circuit diagram of a refresh counter 200.
  • FIG. FIG. 3 is a circuit diagram of a starting circuit 100.
  • 3 is a circuit diagram showing a configuration of a main part of a mode register 14.
  • FIG. FIG. 10 is a timing chart for explaining a refresh operation when a setting signal M8K is activated.
  • FIG. 10 is a timing chart for explaining a refresh operation when a setting signal M53K is activated.
  • FIG. 10 is a timing chart for explaining a refresh operation when a setting signal M64K is activated.
  • FIG. 10 is a timing chart for explaining a refresh operation when a setting signal M107K is activated. It is a block diagram which extracts and shows the characteristic part among the semiconductor devices 10, and is equivalent to the 2nd Embodiment of this invention. It is a circuit diagram of the refresh counter 200a. It is a circuit diagram of the starting circuit 100a. 3 is a circuit diagram showing a configuration of a main part of a mode register 14. FIG. FIG. 10 is a timing chart for explaining a refresh operation when a setting signal M64K is activated. FIG. 10 is a timing chart for explaining a refresh operation when a setting signal M107K is activated.
  • FIG. 1 is a block diagram showing an overall configuration of a semiconductor device 10 according to a preferred embodiment of the present invention.
  • the semiconductor device 10 is a DRAM integrated on a single semiconductor chip and has a memory cell array 11.
  • the memory cell array 11 includes a plurality of word lines WL and a plurality of bit lines BL, and has a configuration in which memory cells MC are arranged at intersections thereof.
  • the memory cell MC is a DRAM cell that needs to hold data by a refresh operation. Selection of the word line WL is performed by the row decoder 12, and selection of the bit line BL is performed by the column decoder 13.
  • the memory cell array 11 is divided into a plurality of memory banks (BANK0 to BANK7), and non-exclusive access to different memory banks is possible.
  • the semiconductor device 10 is provided with an address terminal 21, a command terminal 22, a clock terminal 23, a data terminal 24, and a power supply terminal 25 as external terminals.
  • the address terminal 21 is a terminal to which an address signal ADD is input from the outside.
  • the address signal ADD input to the address terminal 21 is supplied to the address latch circuit 32 via the address input circuit 31 and is latched by the address latch circuit 32.
  • the address signal PADD latched by the address latch circuit 32 is supplied to the row decoder 12, the column decoder 13, or the mode register 14.
  • the mode register 14 is a circuit in which a parameter indicating the operation mode of the semiconductor device 10 is set.
  • the command terminal 22 is a terminal to which a command signal CMD is input from the outside.
  • the command signal CMD includes a plurality of signals such as a row address strobe signal / RAS, a column address strobe signal / CAS, and a write enable signal / WE.
  • a slash (/) at the head of the signal name means that the corresponding signal is an inverted signal or that the signal is a low active signal.
  • the command signal CMD input to the command terminal 22 is supplied to the command decoding circuit 34 via the command input circuit 33.
  • the command decode circuit 34 is a circuit that generates various internal commands by decoding the command signal CMD. As internal commands, there are an active signal AC, a column signal ICOL, a refresh signal RF, a mode register set signal MRS, and the like.
  • the active signal AC is a signal that is activated when the command signal CMD indicates row access (active command).
  • the address signal ADD latched by the address latch circuit 32 is supplied to the row decoder 12. Thereby, the word line WL designated by the address signal ADD is selected.
  • the column signal ICOL is a signal that is activated when the command signal CMD indicates column access (read command or write command).
  • the address signal ADD latched by the address latch circuit 32 is supplied to the column decoder 13. As a result, the bit line BL specified by the address signal ADD is selected.
  • the refresh signal RF is a signal that is activated when the command signal CMD indicates a refresh command.
  • the refresh signal RF is activated, row access is performed by the refresh control circuit 35, and a predetermined word line WL is selected. As a result, the plurality of memory cells MC connected to the selected word line WL are refreshed. Details of the refresh control circuit 35 will be described later.
  • the mode register set signal MRS is a signal that is activated when the command signal CMD indicates a mode register set command. Therefore, if a mode register set command is input and a mode signal is input from the address terminal 21 in synchronization therewith, the set value of the mode register 14 can be rewritten.
  • the clock terminal 23 is a terminal to which external clock signals CK and / CK are input.
  • the external clock signal CK and the external clock signal / CK are complementary signals, and both are supplied to the clock input circuit 36.
  • the clock input circuit 36 generates an internal clock signal ICLK based on the external clock signals CK and / CK.
  • the internal clock signal ICLK is supplied to the timing generator 37, whereby various internal clock signals are generated.
  • Various internal clock signals generated by the timing generator 37 are supplied to circuit blocks such as the address latch circuit 32 and the command decode circuit 34, and define the operation timing of these circuit blocks.
  • the internal clock signal ICLK is also supplied to the DLL circuit 39.
  • the DLL circuit 39 is a clock generation circuit that generates an internal clock signal LCLK whose phase is controlled based on the internal clock signal ICLK.
  • the internal clock signal LCLK is supplied to the FIFO circuit 15 and the input / output circuit 16.
  • the read data DQ is output in synchronization with the internal clock signal LCLK.
  • the power supply terminal 25 is a terminal to which power supply potentials VDD and VSS are supplied.
  • the power supply potentials VDD and VSS supplied to the power supply terminal 25 are supplied to the internal power supply generation circuit 38.
  • the internal power supply generation circuit 38 generates various internal potentials VPP, VARY, VBLP, VPERI and the like based on the power supply potentials VDD and VSS.
  • the internal potential VPP is a potential mainly used in the row decoder 12, the internal potentials VARY and VBLP are mainly potentials used in the memory cell array 11, and the internal potential VPERI is used in many other circuit blocks. It is a potential.
  • FIG. 2 is a block diagram showing a characteristic part extracted from the semiconductor device 10 according to the present embodiment, and corresponds to the first embodiment of the present invention.
  • the refresh control circuit 35 includes a startup circuit 100, a refresh counter 200, and a bank selection circuit 300.
  • the activation circuit 100 is a circuit that generates the timing signal RREFT once or a plurality of times in response to the activation of the refresh signal RF, and how many times the timing signal RREFT is activated is designated by the setting signal M.
  • the setting signal M includes setting signals M53, M8, and M107.
  • the timing signal RREFT is supplied to the refresh counter 200, the bank selection circuit 300, and the address selector 18.
  • the refresh counter 200 is a counter that is incremented (or decremented) by the timing signal RREFT, and the count value is supplied to the address selector 18 as the refresh address XADD.
  • the refresh address XADD has a 14-bit configuration including bits X0 to X13.
  • the refresh counter 200 includes two latch circuits 201 and 202 that are circularly connected, and performs a latch operation in synchronization with the rising edge and the falling edge of the timing signal RREFT, respectively.
  • the output of the latch circuit 202 is used as the bit X13 and also as a clock signal for the latch circuits 203 and 204 at the next stage.
  • the output of the latch circuit 204 is used as a bit X12 and also as a clock signal for the next stage latch circuit.
  • Such a connection is repeated up to the latch circuits 205 and 206 at the final stage, and the output of the latch circuit 206 is used as the bit X0.
  • the bank selection circuit 300 is a circuit that activates the bank selection signals MCBAT0 to MCBAT7 in response to the timing signal RREFT.
  • Bank selection signals MCBAT0 to MCBAT7 are signals for selecting the memory banks BANK0 to BANK7, respectively.
  • the timing signal RREFT when activated, all the bank selection signals MCBAT0 to MCBAT7 are activated simultaneously.
  • the activation timing of the bank selection signals MCBAT0 to MCBAT7 may be shifted in order to suppress the peak current.
  • each of the memory banks BANK0 to BANK7 includes a memory cell array 11, a row decoder 12, and an address latch circuit 17 independently.
  • the address latch circuit 17 serves to latch the row address RADD supplied from the address selector 18 and supply it to the corresponding row decoder 12.
  • the address selector 18 selects either the address signal PADD supplied from the address latch circuit 32 shown in FIG. 1 or the refresh address XADD supplied from the refresh counter 200, and outputs the selected address as the row address RADD. .
  • the selection is controlled by the active signal AC and the timing signal RREFT.
  • the address signal PADD is selected when the active signal AC is activated
  • the refresh address XADD is selected when the timing signal RREFT is activated.
  • FIG. 4 is a circuit diagram of the activation circuit 100.
  • the pulse generation circuit 110 that generates a one-shot pulse in response to the rising edge of the refresh signal RF and the bank selection signals MCBAT0 and MCBAT7 both change to a low level.
  • a pulse generation circuit 120 that generates a one-shot pulse in response and a counter circuit 130 that counts the timing signal RREFT are provided.
  • the counter circuit 130 is a 3-bit binary counter, and latch circuits 131 and 132 that count the least significant bit, latch circuits 133 and 134 that count the second least significant bit, and latch circuits 135 and 136 that count the most significant bit. Including.
  • the latch circuits 131 and 132 are circularly connected and perform a latch operation in synchronization with the rising edge and falling edge of the timing signal RREFT, respectively.
  • the output of the latch circuit 132 is used as a clock signal for the latch circuits 133 and 134 at the next stage, and the output of the latch circuit 134 is used as a clock signal for the latch circuits 135 and 136 at the final stage. With this configuration, the counter circuit 130 can count the number of activations of the timing signal RREFT.
  • the output of the counter circuit 130 is supplied to the gate circuit 140.
  • the gate circuit 140 includes NAND gate circuits 141 to 143 to which setting signals M107, M8, and M53 are supplied, respectively, and one of the NAND gate circuits 141 to 143 is selected based on the setting signals M53, M8, and M107. Is done.
  • the outputs of the counter circuit 130 are input to the NAND gate circuits 141 to 143 with different logics.
  • the NAND gate circuit 141 selected by the setting signal M107 makes the output low when the count value of the counter circuit 130 is 0, and the NAND gate circuit selected by the setting signal M8.
  • the circuit 142 sets the output to a low level when the count value of the counter circuit 130 is 1, and the NAND gate circuit 143 selected by the setting signal M53 outputs the output when the count value of the counter circuit 130 is 2. Is low level.
  • the outputs of the NAND gate circuits 141 to 143 are input to the gate circuit 150 via the NAND gate circuit 144 and the inverter 145.
  • the gate circuit 150 outputs the one-shot pulse generated by the pulse generation circuit 110 as the timing signal RREFT, and the one-shot pulse generated by the pulse generation circuit 120 on condition that the output of the inverter 145 is at a high level. Is output as a timing signal RREFT. Since the pulse generation circuit 120 generates a one-shot pulse when both the bank selection signals MCBAT0 and MCBAT7 change to a low level, the one-shot pulse is generated every time the refresh operation is completed.
  • the reason why the bank selection signals MCBAT0 and MCBAT7 are used is to correctly detect the completion of the refresh operation even when the refresh operation is performed by shifting the activation timing of the bank selection signals MCBAT0 to MCBAT7. .
  • the timing signal RREFT when the setting signal M53 is activated, the timing signal RREFT is generated three times in response to the activation of the refresh signal RF, and when the setting signal M8 is activated, the refresh is performed. In response to the activation of the signal RF, the timing signal RREFT is generated twice, and when the setting signal M107 is activated, the timing signal RREFT is generated only once in response to the activation of the refresh signal RF. .
  • FIG. 5 is a circuit diagram showing a configuration of a main part of the mode register 14.
  • the mode register 14 includes a register circuit unit 401 and a decoder 402 that decodes mode signals M64KT and M8KT among various parameters set in the register circuit unit 401.
  • Various parameters set in the register circuit unit 401 are rewritten by an address signal PADD input in synchronization with the mode register set signal MRS, and a part thereof is set by a fuse signal FUSE output from a fuse circuit (not shown). Is done.
  • the mode signals M64KT and M8KT are binary signals, and the decoder 402 activates any one of the setting signals M53K, M64K, M8K, and M107K based on the value.
  • the setting signals M53K, M64K, M8K, and M107K are signals indicating the refresh frequency.
  • the refresh address XADD which is the count value of the refresh counter 200, can be made to circulate once within a period of 64 msec.
  • the parameters of the register circuit unit 401 may be set so that the setting signal M8K is activated.
  • the refresh address XADD which is the count value of the refresh counter 200, can be made to circulate once within a period of 64 ⁇ 2/3 msec.
  • the current consumption required for the refresh operation increases to 1.5 times the normal value.
  • the parameters of the register circuit portion 401 may be set so that the setting signal M53K is activated.
  • the refresh address XADD which is the count value of the refresh counter 200, can be made to circulate within a period of 64 ⁇ 4/5 msec, but it is needless to say that the number of activations of the word line WL needs to be an integer value. For this reason, in the present embodiment, in response to one refresh command, the operation of activating two different N word lines WL twice and the operation of activating three times are executed alternately. Achieve 2.5 activations.
  • the parameters of the register circuit unit 401 may be set so that the setting signal M64K is activated.
  • the data holding time is 64 ⁇ 4/3 msec or more
  • 64 ⁇ 4 / The refresh address XADD which is the count value of the refresh counter 200
  • the operation of activating different N word lines WL once and the operation of activating twice are equivalently performed, thereby equivalently 1 . Realize 5 activations.
  • the parameters of the register circuit portion 401 may be set so that the setting signal M107K is activated.
  • the setting signals M53K, M64K, M8K, and M107K are supplied to the gate circuits 411 to 413.
  • the gate circuit 411 activates the setting signal M53 when the setting signal M53K is activated or when the switching signal RMOD is activated on condition that the setting signal M64K is activated.
  • the gate circuit 412 activates the setting signal M8 when the setting signal M8K is activated or when the switching signal RMOD is deactivated on the condition that the setting signal M64K or M107K is activated. Make it.
  • the gate circuit 413 activates the setting signal M107 when the switching signal RMOD is activated on condition that the setting signal M107K is activated.
  • the switching signal RMOD is generated by the circularly connected latch circuits 421 and 422.
  • the latch circuits 421 and 422 perform a latch operation in synchronization with the rising edge and the falling edge of the refresh signal RF on condition that the setting signal M64K or M107K is activated. For this reason, when the setting signal M64K or M107K is activated, the logic level of the switching signal RMOD is inverted every time a refresh command is issued.
  • the switching signal RMOD is reset by a power-on reset signal PON that is activated when the power is turned on.
  • the above is the configuration of the semiconductor device 10 according to the present embodiment. Next, the refresh operation of the semiconductor device 10 according to the present embodiment will be explained.
  • FIG. 6 is a timing chart for explaining the refresh operation when the setting signal M8K is activated.
  • the timing signal RREFT is activated twice each time in response thereto. This is because the setting signal M8 is activated when the setting signal M8K is activated, and the activation circuit 100 counts the timing signal RREFT only once by the activation of the setting signal M8, and then stops the operation. Because it does.
  • a refresh operation is performed on the refresh address XADD, and the value is updated by the refresh counter 200.
  • the number of word lines selected in response to one timing signal RREFT is constant (for example, N).
  • the refresh operation is performed.
  • the refresh command REF is issued 8k times, the refresh address XADD makes a round, and as described above, the refresh address XADD can make a round within the period of 64 msec.
  • FIG. 7 is a timing chart for explaining the refresh operation when the setting signal M53K is activated.
  • the timing signal RREFT is activated three times every time in response thereto. This is because the setting signal M53 is activated when the setting signal M53K is activated, and the activation circuit 100 counts the timing signal RREFT twice by the activation of the setting signal M53, and then stops the operation. Because.
  • the refresh address XADD makes a round, and as described above, the refresh address XADD can make a round within the period of 64 ⁇ 2/3 msec.
  • FIG. 8 is a timing chart for explaining the refresh operation when the setting signal M64K is activated.
  • the timing signal RREFT is activated alternately twice and three times in response thereto. . This is because when the setting signal M64K is activated, the setting signal M53 and the setting signal M8 are alternately activated every time the refresh command REF is issued.
  • a refresh operation is performed on the image.
  • the refresh command REF is issued 8k ⁇ 4/5 times, the refresh address XADD makes one round.
  • the refresh address XADD can make one round within the period of 64 ⁇ 4/5 msec.
  • the operation in response to the odd-numbered (third, fifth,...) Refresh command REF is the same as the operation in response to the first refresh command REF, and the even-numbered (fourth, sixth,...
  • the operation in response to the refresh command REF of (-) is the same as the operation in response to the second refresh command REF.
  • FIG. 9 is a timing chart for explaining the refresh operation when the setting signal M107K is activated.
  • the timing signal RREFT is activated alternately once and twice in response thereto.
  • the setting signal M107K is activated, the setting signal M8 and the setting signal M107 are alternately activated every time the refresh command REF is issued.
  • the activation circuit 100 stops the operation without counting the timing signal RREFT.
  • the refresh command REF is issued 8k ⁇ 4/3 times
  • the refresh address XADD makes one round, and as described above, the refresh address XADD can make one round within the period of 64 ⁇ 4/3 msec.
  • the operation in response to the odd-numbered (third, fifth,...) Refresh command REF is the same as the operation in response to the first refresh command REF
  • the operation in response to the refresh command REF of (-) is the same as the operation in response to the second refresh command REF.
  • the semiconductor device 10 has an operation mode for selecting a different number of word lines each time the refresh command REF is issued. Therefore, the timing signal RREFT can be activated on average 1.5 times or 2.5 times in response to one refresh command REF, and the refresh frequency adjustment pitch can be set more finely. Therefore, current consumption can be further reduced according to the data retention time of the memory cell.
  • FIG. 10 is a block diagram showing a characteristic part extracted from the semiconductor device 10 according to the present embodiment, and corresponds to the second embodiment of the present invention.
  • the activation circuit 100, the refresh counter 200, and the bank selection circuit 300 included in the refresh control circuit 35 of the first embodiment are respectively the activation circuit 100a, the refresh counter 200a, and the bank selection.
  • the difference from the first embodiment is that the circuit 300a is replaced.
  • the refresh counter 200a includes a bank selector 210 that generates a selection signal RBA2 and a row address counter 220 that generates a refresh address XADD.
  • FIG. 11 is a circuit diagram of the refresh counter 200a.
  • the refresh counter 200a has a circuit configuration in which a bank selector 210 is added to the least significant bit of the refresh counter 200 shown in FIG.
  • the bank selector 210 includes two circularly connected latch circuits 211 and 212, and inverts the logic level of the selection signal RBA2 every time the timing signal RREFT is activated.
  • the selection signal RBA2 is used as a clock signal for the first stage latch circuits 221 and 222 constituting the row address counter 220, and the output of the latch circuit 222 is used as the bit X13.
  • the bit X13 is used as a clock signal for the next stage latch circuits 223 and 224, and the output of the latch circuit 224 is used as a bit X12 and also as a clock signal for the next stage latch circuit.
  • Such connection is repeated up to the latch circuits 225 and 226 in the final stage, and the output of the latch circuit 226 is used as the bit X0.
  • the selection signal RBA2 generated by the bank selector 210 is supplied to the bank selection circuit 300a.
  • the bank selection circuit 300a is a circuit that activates the bank selection signals MCBAT0 to MCBAT7 in response to the timing signal RREFT.
  • the selection signal RBA2 is at a low level, the bank selection signals MCBAT0, 3, 4, and 7 are simultaneously transmitted.
  • the selection signal RBA2 is at a high level, the bank selection signals MCBAT1, 2, 5, 6 are simultaneously activated.
  • the activation timing of the bank selection signals MCBAT0, 3, 4, and 7 and the activation timing of the bank selection signals MCBAT1, 2, 5, and 6 may be shifted.
  • FIG. 12 is a circuit diagram of the activation circuit 100a.
  • the pulse generation circuit 161 that generates a one-shot pulse twice in response to the rising edge of the refresh signal RF and the bank selection signals MCBAT0, 1, 6, and 7 are all low.
  • a pulse generation circuit 162 that generates a one-shot pulse twice in response to the change to the level and a counter circuit 170 that counts the timing signal RREFT are provided.
  • the counter circuit 170 is a 3-bit binary counter, and latch circuits 171 and 172 that count the least significant bit, latch circuits 173 and 174 that count the second least significant bit, and latch circuits 175 and 176 that count the most significant bit. Including.
  • the latch circuits 171 and 172 are circularly connected and perform a latch operation in synchronization with the rising edge and falling edge of the timing signal RREFT, respectively.
  • the output of the latch circuit 172 is used as a clock signal for the latch circuits 173 and 174 at the next stage.
  • the output of the latch circuit 174 is used as a clock signal for the latch circuits 175 and 176 at the final stage. With this configuration, the counter circuit 170 can count the number of activations of the timing signal RREFT.
  • the output of the counter circuit 170 is supplied to the gate circuit 180.
  • the gate circuit 180 includes NAND gate circuits 181 to 184 to which setting signals M107K, M8K, M64K, and M53K are respectively supplied. Any of the NAND gate circuits 181 to 184 is based on the setting signals M107K, M8K, M64K, and M53K. Or one is selected. As shown in FIG. 12, the outputs of the counter circuit 170 are inputted to the NAND gate circuits 181 to 184 with different logics. 12, the NAND gate circuit 181 selected by the setting signal M107K makes the output low when the count value of the counter circuit 170 is 2, and the NAND gate circuit selected by the setting signal M8K.
  • the circuit 182 sets its output to a low level.
  • the NAND gate circuit 183 selected by the setting signal M64K makes its output low when the count value of the counter circuit 170 is 4, and the NAND gate circuit 184 selected by the setting signal M53K When the count value is 5, the output is set to low level.
  • the outputs of the NAND gate circuits 181 to 184 are input to the gate circuit 190 via the NAND gate circuit 185 and the inverter 186.
  • the gate circuit 190 outputs the one-shot pulse generated by the pulse generation circuit 161 as the timing signal RREFT, and the one-shot pulse generated by the pulse generation circuit 162 on condition that the output of the inverter 186 is at a high level. Is output as a timing signal RREFT. Since the pulse generation circuit 162 generates a one-shot pulse when any of the bank selection signals MCBAT0, 1, 6, and 7 changes to a low level, the one-shot pulse is generated every time the refresh operation is completed. Become.
  • the two bank selection signals MCBAT0 and MCBAT1 are used for the refresh operation of the group (G1) composed of the bank selection signals MCBAT0, 3, 4 and 7 and the bank selection signals MCBAT1, 2, 5, 6 This is because the refresh operation of the group (G2) consisting of is independently controlled.
  • the bank selection signal MCBAT7 is used in addition to the bank selection signal MCBAT0 even when the refresh operation is performed by shifting the activation timing of the bank selection signals MCBAT0, 1, 6, and 7. This is to correctly detect completion.
  • the bank selection signal MCBAT6 is used in addition to the bank selection signal MCBAT1 for the same reason.
  • FIG. 12 also shows a part of the bank selection circuit 300a.
  • the bank selection circuit 300a includes a gate circuit that activates one of the timing signals RREF0T and RREF1T according to the logic level of the selection signal RBA2 when the timing signal RREFT is activated.
  • the timing signal RREF0T is a signal for activating the bank selection signals MCBAT1, 2, 5, and 6, and the timing signal RREF1T is a signal for activating the bank selection signals MCBAT0, 3, 4, and 7. .
  • the timing signal RREFT when the setting signal M53K is activated, the timing signal RREFT is generated six times in response to the activation of the refresh signal RF, and when the setting signal M64K is activated, the refresh is performed. In response to the activation of the signal RF, the timing signal RREFT is generated five times. Further, when the setting signal M8K is activated, the timing signal RREFT is generated four times in response to the activation of the refresh signal RF, and when the setting signal M107K is activated, the activation of the refresh signal RF In response to the timing, the timing signal RREFT is generated three times.
  • FIG. 13 is a circuit diagram showing a configuration of a main part of the mode register 14.
  • setting signals M53K, M64K, M8K, and M107K which are output signals of the decoder 402, are output as they are and are input to the activation circuit 100a shown in FIG.
  • the above is the configuration of the semiconductor device 10 according to the present embodiment. Next, the refresh operation of the semiconductor device 10 according to the present embodiment will be explained.
  • FIG. 14 is a timing chart for explaining the refresh operation when the setting signal M64K is activated.
  • the timing signal RREFT is activated five times in response thereto.
  • the selection signal RBA2 since the selection signal RBA2 inverts its logic level in response to the timing signal RREFT, the bank selection signals MCBAT0, 3, 4, 7 constituting the group G1 and the bank selection signals MCBAT1, 2, 4 constituting the group G2 One of 5 and 6 is activated three times, and the other is activated twice.
  • the bank selection signals MCBAT0, 3, 4, and 7 constituting the group G1 are activated three times in response to the first issue of the refresh command REF, and the bank selection signals MCBAT1 and MCBAT1 constituting the group G2 are activated. 2, 5 and 6 are activated twice.
  • the bank selection signals MCBAT0, 3, 4, and 7 constituting the group G1 are activated twice, and the bank selection signals MCBAT1, 2, 5, and 6 constituting the group G2 are activated. Is activated three times.
  • the operation in response to the odd-numbered (third, fifth,...) Refresh command REF is the same as the operation in response to the first refresh command REF, and the even-numbered (fourth, sixth,...
  • the operation in response to the refresh command REF of (-) is the same as the operation in response to the second refresh command REF.
  • an average of 2.5 refresh operations are performed in response to one refresh command REF, and the same effect as described with reference to FIG. 8 can be obtained.
  • FIG. 15 is a timing chart for explaining the refresh operation when the setting signal M107K is activated.
  • the timing signal RREFT is activated three times in response thereto. Since the logic level of the selection signal RBA2 is inverted in response to the timing signal RREFT, the bank selection signals MCBAT0, 3, 4, and 7 constituting the group G1 and the bank selection signals MCBAT1, 2, 5, and 5 constituting the group G2 are used. One of 6 is activated twice, and the other is activated once.
  • the bank selection signals MCBAT0, 3, 4, and 7 constituting the group G1 are activated twice in response to the first issue of the refresh command REF, and the bank selection signals MCBAT1 and MCBAT1 constituting the group G2 are activated. 2, 5, and 6 are activated once. Also, in response to the second issuance of the refresh command REF, the bank selection signals MCBAT0, 3, 4, 7 constituting the group G1 are activated once, and the bank selection signals MCBAT1, 2, 5, 6 constituting the group G2 are activated. Is activated twice.
  • the operation in response to the odd-numbered (third, fifth,...) Refresh command REF is the same as the operation in response to the first refresh command REF, and the even-numbered (fourth, sixth,...
  • the operation in response to the refresh command REF of (-) is the same as the operation in response to the second refresh command REF.
  • an average of 1.5 refresh operations are performed in response to one refresh command REF, and the same effect as described with reference to FIG. 9 can be obtained.
  • the timing signal RREFT is activated six times in response to the refresh command REF.
  • the bank selection signals MCBAT0 to MCBAT7 are all activated three times, so that the same effect as described with reference to FIG. 7 can be obtained.
  • the timing signal RREFT is activated four times in response to the refresh command REF. Accordingly, every time the refresh command REF is issued, the bank selection signals MCBAT0 to MCBAT7 are all activated twice, so that the same effect as described with reference to FIG. 6 can be obtained.
  • the bank selection signals MCBAT0 to MCBAT7 are divided into two groups G1 and G2, and when the refresh command REF is issued, the refresh operation is controlled for each group.
  • the same effect as that of the first embodiment can be obtained.
  • the present invention is also applicable to the operation in the self-refresh mode in which the refresh command is automatically generated inside the semiconductor device. Can be applied.
  • the operation in response to the odd-numbered refresh command REF and the operation in response to the even-numbered refresh command REF are executed alternately, but the present invention is not limited to this. is not.
  • N word lines are activated three times in response to the first and second refresh commands REF, and N word lines are activated twice in response to the third refresh command REF.
  • Such control can be repeated.
  • the refresh frequency adjustment pitch can be set more finely.
  • DESCRIPTION OF SYMBOLS 10 Semiconductor device 11 Memory cell array 12 Row decoder 13 Column decoder 14 Mode register 15 FIFO circuit 16 Input / output circuit 17 Address latch circuit 18 Address selector 21 Address terminal 22 Command terminal 23 Clock terminal 24 Data terminal 25 Power supply terminal 31 Address input circuit 32 Address Latch circuit 33 Command input circuit 34 Command decode circuit 35 Refresh control circuit 36 Clock input circuit 37 Timing generator 38 Internal power generation circuit 39 DLL circuit 100, 100a Start circuit 110, 120 Pulse generation circuit 130 Counter circuit 131-136 Latch circuit 140- 143 and 150 Gate circuits 161 and 162 Pulse generation circuit 170 Counter circuits 171 to 176 190 to 184, 190 gate circuit 200, 200a refresh counter 201 to 206 latch circuit 210 bank selector 211 to 226 latch circuit 300, 300a bank selection circuit 401 register circuit unit 402 decoder 411 to 413 gate circuit 421, 422 latch circuit BANK0 to BANK7 Memory banks G1, G2 Groups M53, M8, M107,

Abstract

[Problem] To reduce current consumption caused by refresh operations by fine-tuning an adjustment pitch of a refresh rate. [Solution] In response to the first activation of a refresh signal (RF), N units of word lines are selected twice, and thereby, refresh operations are performed, and then, in response to the second activation of the refresh signal (RF), N units of word lines are selected three times, and thereby, refresh operations are performed. As a result, in response to an activation of the refresh signal (RF), it is possible to perform, on average, 2.5 refresh operations, and therefore, it is possible to more finely tune the adjustment pitch of the refresh rate. As a result, in accordance with data retention time of a memory cell, it is possible to reduce current consumption more.

Description

半導体装置Semiconductor device
 本発明は半導体装置に関し、特に、メモリセルアレイに記憶されたデータを保持するためのリフレッシュ動作を行う半導体装置に関する。 The present invention relates to a semiconductor device, and more particularly to a semiconductor device that performs a refresh operation for holding data stored in a memory cell array.
 代表的な半導体装置であるDRAM(Dynamic Random Access Memory)は揮発性の半導体メモリデバイスであり、セルキャパシタに蓄えられた電荷量によって情報を記憶することから、定期的にリフレッシュ動作を行わなければリーク電流によって情報が消失してしまう。このため、リーク電流によって情報が消失する前に全てのメモリセルをリフレッシュする必要がある。全てのメモリセルをリフレッシュすべき周期(=tREF)は、規格によって例えば64msecと定められている。このため、DRAMを制御するコントローラは、64msecの期間内に全てのワード線が選択されるよう、リフレッシュコマンドを例えば8k(=213)回発行する。 DRAM (Dynamic Random Access Memory), a typical semiconductor device, is a volatile semiconductor memory device that stores information based on the amount of charge stored in the cell capacitor. Information is lost due to current. For this reason, it is necessary to refresh all memory cells before information is lost due to leakage current. The period (= tREF) at which all the memory cells are refreshed is set to 64 msec, for example, according to the standard. For this reason, the controller that controls the DRAM issues refresh commands, for example, 8k (= 2 13 ) times so that all word lines are selected within a period of 64 msec.
 しかしながら、実際にはメモリセルのデータ保持時間が64msecであるとは限らず、プロセス条件などによって変化する。この点を考慮して、データ保持時間の長いDRAMにおいては1回のリフレッシュコマンドに応答して活性化させるワード線の本数を減らし、逆に、データ保持時間の短いDRAMにおいては1回のリフレッシュコマンドに応答して活性化させるワード線の本数を増やすといった制御が行われることがある(特許文献1参照)。 However, in reality, the data retention time of the memory cell is not necessarily 64 msec, and changes depending on the process conditions. Considering this point, the number of word lines activated in response to one refresh command is reduced in a DRAM having a long data holding time, and conversely, a single refresh command in a DRAM having a short data holding time. In some cases, control is performed such that the number of word lines to be activated is increased in response to (see Patent Document 1).
 例えば、1回のリフレッシュ動作で同時に活性化させるワード線の本数をN本とした場合、データ保持時間が設計値通り(64msec以上)である場合には、1回のリフレッシュコマンドに応答してN本のワード線を2回活性化させ、データ保持時間が設計値の2倍以上(128msec以上)である場合には、1回のリフレッシュコマンドに応答してN本のワード線を1回だけ活性化させればよい。逆に、データ保持時間が設計値よりも短い(64×2/3msec以上、64msec未満)場合には、1回のリフレッシュコマンドに応答してN本のワード線を3回活性化させればよい。さらに、データ保持時間が32msec以上、64×2/3msec未満である場合には、1回のリフレッシュコマンドに応答してN本のワード線を4回活性化させればよい。これにより、各メモリセルに対するリフレッシュ頻度が最適化されることから、リフレッシュ動作による消費電流を削減することが可能となる。 For example, if the number of word lines that are simultaneously activated in one refresh operation is N, and the data retention time is as designed (64 msec or more), N in response to one refresh command. When two word lines are activated twice and the data retention time is more than twice the design value (128 msec or more), N word lines are activated only once in response to one refresh command. What is necessary is just to make it. Conversely, if the data holding time is shorter than the design value (64 × 2/3 msec or more and less than 64 msec), N word lines may be activated three times in response to one refresh command. . Further, when the data holding time is 32 msec or more and less than 64 × 2/3 msec, N word lines may be activated four times in response to one refresh command. As a result, the refresh frequency for each memory cell is optimized, so that the current consumption due to the refresh operation can be reduced.
特開2010-170608号公報JP 2010-170608 A
 しかしながら、上述した方法ではリフレッシュ頻度の調整ピッチがNの整数倍で定義されるため調整ピッチが粗く、消費電流の削減効果が十分ではなかった。例えば、データ保持時間が64×4/5msec以上、64msec未満である場合には、1回のリフレッシュコマンドに応答してN本のワード線を計算上は2.5回活性化させればよいが、当然ながらこのようなリフレッシュ動作は不可能である。同様に、データ保持時間が64×4/3msec以上、128msec未満である場合には、1回のリフレッシュコマンドに応答してN本のワード線を計算上は1.5回活性化させればよいが、このようなリフレッシュ動作も不可能である。 However, in the above-described method, since the adjustment pitch of the refresh frequency is defined as an integer multiple of N, the adjustment pitch is coarse and the effect of reducing current consumption is not sufficient. For example, when the data retention time is 64 × 4/5 msec or more and less than 64 msec, N word lines may be activated 2.5 times in response to one refresh command. Of course, such a refresh operation is impossible. Similarly, if the data holding time is 64 × 4/3 msec or more and less than 128 msec, N word lines may be activated 1.5 times in response to one refresh command. However, such a refresh operation is also impossible.
 本発明の一側面による半導体装置は、リフレッシュ動作によるデータの保持が必要な複数のメモリセルと、前記複数のメモリセルを選択する複数のワード線を含むメモリセルアレイと、リフレッシュ信号の第1の活性化に応答して前記複数のワード線のうち第1の本数のワード線を選択することにより前記リフレッシュ動作を行い、前記リフレッシュ信号の第2の活性化に応答して前記複数のワード線のうち前記第1の本数とは異なる第2の本数のワード線を選択することにより前記リフレッシュ動作を行うリフレッシュ制御回路と、を備えることを特徴とする。 A semiconductor device according to an aspect of the present invention includes a plurality of memory cells that need to retain data by a refresh operation, a memory cell array including a plurality of word lines that select the plurality of memory cells, and a first activation of a refresh signal The refresh operation is performed by selecting a first number of word lines from among the plurality of word lines in response to activation, and among the plurality of word lines in response to second activation of the refresh signal. And a refresh control circuit that performs the refresh operation by selecting a second number of word lines different from the first number.
 本発明の他の側面による半導体装置は、リフレッシュ動作によるデータの保持が必要な複数のメモリセルと、前記複数のメモリセルを選択する複数のワード線をそれぞれ含む第1及び第2のメモリバンクと、リフレッシュ信号の第1の活性化に応答して、前記第1のメモリバンクに含まれる前記複数のワード線のうち第1の本数のワード線を選択するとともに、前記第2のメモリバンクに含まれる前記複数のワード線のうち前記第1の本数とは異なる第2の本数のワード線を選択することにより前記リフレッシュ動作を行うリフレッシュ制御回路と、を備えることを特徴とする。 A semiconductor device according to another aspect of the present invention includes a plurality of memory cells that need to hold data by a refresh operation, and first and second memory banks each including a plurality of word lines that select the plurality of memory cells. In response to the first activation of the refresh signal, a first number of word lines are selected from the plurality of word lines included in the first memory bank, and are included in the second memory bank. A refresh control circuit that performs the refresh operation by selecting a second number of word lines different from the first number among the plurality of word lines.
 本発明によれば、リフレッシュ頻度の調整ピッチをより細かく設定できることから、メモリセルのデータ保持時間に応じて、消費電流をより削減することが可能となる。 According to the present invention, since the adjustment pitch of the refresh frequency can be set more finely, the current consumption can be further reduced according to the data retention time of the memory cell.
本発明の好ましい実施形態による半導体装置10の全体構成を示すブロック図である。1 is a block diagram showing an overall configuration of a semiconductor device 10 according to a preferred embodiment of the present invention. 半導体装置10のうち特徴的な部分を抜き出して示すブロック図であり、本発明の第1の実施形態に相当する。FIG. 2 is a block diagram showing a characteristic part extracted from the semiconductor device 10 and corresponds to the first embodiment of the present invention. リフレッシュカウンタ200の回路図である。3 is a circuit diagram of a refresh counter 200. FIG. 起動回路100の回路図である。FIG. 3 is a circuit diagram of a starting circuit 100. モードレジスタ14の主要部の構成を示す回路図である。3 is a circuit diagram showing a configuration of a main part of a mode register 14. FIG. 設定信号M8Kが活性化している場合のリフレッシュ動作を説明するためのタイミング図である。FIG. 10 is a timing chart for explaining a refresh operation when a setting signal M8K is activated. 設定信号M53Kが活性化している場合のリフレッシュ動作を説明するためのタイミング図である。FIG. 10 is a timing chart for explaining a refresh operation when a setting signal M53K is activated. 設定信号M64Kが活性化している場合のリフレッシュ動作を説明するためのタイミング図である。FIG. 10 is a timing chart for explaining a refresh operation when a setting signal M64K is activated. 設定信号M107Kが活性化している場合のリフレッシュ動作を説明するためのタイミング図である。FIG. 10 is a timing chart for explaining a refresh operation when a setting signal M107K is activated. 半導体装置10のうち特徴的な部分を抜き出して示すブロック図であり、本発明の第2の実施形態に相当する。It is a block diagram which extracts and shows the characteristic part among the semiconductor devices 10, and is equivalent to the 2nd Embodiment of this invention. リフレッシュカウンタ200aの回路図である。It is a circuit diagram of the refresh counter 200a. 起動回路100aの回路図である。It is a circuit diagram of the starting circuit 100a. モードレジスタ14の主要部の構成を示す回路図である。3 is a circuit diagram showing a configuration of a main part of a mode register 14. FIG. 設定信号M64Kが活性化している場合のリフレッシュ動作を説明するためのタイミング図である。FIG. 10 is a timing chart for explaining a refresh operation when a setting signal M64K is activated. 設定信号M107Kが活性化している場合のリフレッシュ動作を説明するためのタイミング図である。FIG. 10 is a timing chart for explaining a refresh operation when a setting signal M107K is activated.
 以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 図1は、本発明の好ましい実施形態による半導体装置10の全体構成を示すブロック図である。 FIG. 1 is a block diagram showing an overall configuration of a semiconductor device 10 according to a preferred embodiment of the present invention.
 本実施形態による半導体装置10は単一の半導体チップに集積されたDRAMであり、メモリセルアレイ11を有している。メモリセルアレイ11は、複数のワード線WLと複数のビット線BLを備え、これらの交点にメモリセルMCが配置された構成を有している。メモリセルMCは、リフレッシュ動作によるデータの保持が必要なDRAMセルである。ワード線WLの選択はロウデコーダ12によって行われ、ビット線BLの選択はカラムデコーダ13によって行われる。後述するように、メモリセルアレイ11は複数のメモリバンク(BANK0~BANK7)に分割されており、異なるメモリバンクに対しては非排他的なアクセスが可能である。 The semiconductor device 10 according to the present embodiment is a DRAM integrated on a single semiconductor chip and has a memory cell array 11. The memory cell array 11 includes a plurality of word lines WL and a plurality of bit lines BL, and has a configuration in which memory cells MC are arranged at intersections thereof. The memory cell MC is a DRAM cell that needs to hold data by a refresh operation. Selection of the word line WL is performed by the row decoder 12, and selection of the bit line BL is performed by the column decoder 13. As will be described later, the memory cell array 11 is divided into a plurality of memory banks (BANK0 to BANK7), and non-exclusive access to different memory banks is possible.
 図1に示すように、半導体装置10には外部端子としてアドレス端子21、コマンド端子22、クロック端子23、データ端子24及び電源端子25が設けられている。 As shown in FIG. 1, the semiconductor device 10 is provided with an address terminal 21, a command terminal 22, a clock terminal 23, a data terminal 24, and a power supply terminal 25 as external terminals.
 アドレス端子21は、外部からアドレス信号ADDが入力される端子である。アドレス端子21に入力されたアドレス信号ADDは、アドレス入力回路31を介してアドレスラッチ回路32に供給され、アドレスラッチ回路32にラッチされる。アドレスラッチ回路32にラッチされたアドレス信号PADDは、ロウデコーダ12、カラムデコーダ13又はモードレジスタ14に供給される。モードレジスタ14は、半導体装置10の動作モードを示すパラメータが設定される回路である。 The address terminal 21 is a terminal to which an address signal ADD is input from the outside. The address signal ADD input to the address terminal 21 is supplied to the address latch circuit 32 via the address input circuit 31 and is latched by the address latch circuit 32. The address signal PADD latched by the address latch circuit 32 is supplied to the row decoder 12, the column decoder 13, or the mode register 14. The mode register 14 is a circuit in which a parameter indicating the operation mode of the semiconductor device 10 is set.
 コマンド端子22は、外部からコマンド信号CMDが入力される端子である。コマンド信号CMDは、ロウアドレスストローブ信号/RAS、カラムアドレスストローブ信号/CAS、ライトイネーブル信号/WEなどの複数の信号からなる。ここで、信号名の先頭にスラッシュ(/)が付されているのは、対応する信号の反転信号、或いは、当該信号がローアクティブな信号であることを意味する。コマンド端子22に入力されたコマンド信号CMDは、コマンド入力回路33を介してコマンドデコード回路34に供給される。コマンドデコード回路34は、コマンド信号CMDをデコードすることによって各種内部コマンドを生成する回路である。内部コマンドとしては、アクティブ信号AC、カラム信号ICOL、リフレッシュ信号RF、モードレジスタセット信号MRSなどがある。 The command terminal 22 is a terminal to which a command signal CMD is input from the outside. The command signal CMD includes a plurality of signals such as a row address strobe signal / RAS, a column address strobe signal / CAS, and a write enable signal / WE. Here, a slash (/) at the head of the signal name means that the corresponding signal is an inverted signal or that the signal is a low active signal. The command signal CMD input to the command terminal 22 is supplied to the command decoding circuit 34 via the command input circuit 33. The command decode circuit 34 is a circuit that generates various internal commands by decoding the command signal CMD. As internal commands, there are an active signal AC, a column signal ICOL, a refresh signal RF, a mode register set signal MRS, and the like.
 アクティブ信号ACは、コマンド信号CMDがロウアクセス(アクティブコマンド)を示している場合に活性化される信号である。アクティブ信号ACが活性化すると、アドレスラッチ回路32にラッチされたアドレス信号ADDがロウデコーダ12に供給される。これにより、当該アドレス信号ADDにより指定されるワード線WLが選択される。 The active signal AC is a signal that is activated when the command signal CMD indicates row access (active command). When the active signal AC is activated, the address signal ADD latched by the address latch circuit 32 is supplied to the row decoder 12. Thereby, the word line WL designated by the address signal ADD is selected.
 カラム信号ICOLは、コマンド信号CMDがカラムアクセス(リードコマンド又はライトコマンド)を示している場合に活性化される信号である。内部カラム信号ICOLが活性化すると、アドレスラッチ回路32にラッチされたアドレス信号ADDがカラムデコーダ13に供給される。これにより、当該アドレス信号ADDにより指定されるビット線BLが選択される。 The column signal ICOL is a signal that is activated when the command signal CMD indicates column access (read command or write command). When the internal column signal ICOL is activated, the address signal ADD latched by the address latch circuit 32 is supplied to the column decoder 13. As a result, the bit line BL specified by the address signal ADD is selected.
 したがって、アクティブコマンド及びリードコマンドをこの順に入力するとともに、これらに同期してロウアドレス及びカラムアドレスを入力すれば、これらロウアドレス及びカラムアドレスによって指定されるメモリセルMCからリードデータが読み出される。リードデータDQは、FIFO回路15及び入出力回路16を介して、データ端子24から外部に出力される。一方、アクティブコマンド及びライトコマンドをこの順に入力するとともに、これらに同期してロウアドレス及びカラムアドレスを入力し、その後、データ端子24にライトデータDQを入力すれば、ライトデータDQは入出力回路16及びFIFO回路15を介してメモリセルアレイ11に供給され、ロウアドレス及びカラムアドレスによって指定されるメモリセルMCに書き込まれる。FIFO回路15及び入出力回路16の動作は、内部クロック信号LCLKに同期して行われる。内部クロック信号LCLKは、DLL回路39によって生成される。 Therefore, when an active command and a read command are input in this order, and a row address and a column address are input in synchronization therewith, read data is read from the memory cell MC specified by the row address and the column address. The read data DQ is output to the outside from the data terminal 24 via the FIFO circuit 15 and the input / output circuit 16. On the other hand, when an active command and a write command are input in this order, and a row address and a column address are input in synchronization therewith, and then write data DQ is input to the data terminal 24, the write data DQ is input to the input / output circuit 16 The data is supplied to the memory cell array 11 via the FIFO circuit 15 and written to the memory cell MC specified by the row address and the column address. The operations of the FIFO circuit 15 and the input / output circuit 16 are performed in synchronization with the internal clock signal LCLK. The internal clock signal LCLK is generated by the DLL circuit 39.
 リフレッシュ信号RFは、コマンド信号CMDがリフレッシュコマンドを示している場合に活性化される信号である。リフレッシュ信号RFが活性化するとリフレッシュ制御回路35によってロウアクセスが行われ、所定のワード線WLが選択される。これにより、選択されたワード線WLに接続された複数のメモリセルMCがリフレッシュされる。リフレッシュ制御回路35の詳細については後述する。 The refresh signal RF is a signal that is activated when the command signal CMD indicates a refresh command. When the refresh signal RF is activated, row access is performed by the refresh control circuit 35, and a predetermined word line WL is selected. As a result, the plurality of memory cells MC connected to the selected word line WL are refreshed. Details of the refresh control circuit 35 will be described later.
 モードレジスタセット信号MRSは、コマンド信号CMDがモードレジスタセットコマンドを示している場合に活性化される信号である。したがって、モードレジスタセットコマンドを入力するとともに、これに同期してアドレス端子21からモード信号を入力すれば、モードレジスタ14の設定値を書き換えることができる。 The mode register set signal MRS is a signal that is activated when the command signal CMD indicates a mode register set command. Therefore, if a mode register set command is input and a mode signal is input from the address terminal 21 in synchronization therewith, the set value of the mode register 14 can be rewritten.
 クロック端子23は、外部クロック信号CK,/CKが入力される端子である。外部クロック信号CKと外部クロック信号/CKは互いに相補の信号であり、いずれもクロック入力回路36に供給される。クロック入力回路36は、外部クロック信号CK,/CKに基づいて内部クロック信号ICLKを生成する。内部クロック信号ICLKは、タイミングジェネレータ37に供給され、これによって各種内部クロック信号が生成される。タイミングジェネレータ37によって生成される各種内部クロック信号は、アドレスラッチ回路32やコマンドデコード回路34などの回路ブロックに供給され、これら回路ブロックの動作タイミングを規定する。 The clock terminal 23 is a terminal to which external clock signals CK and / CK are input. The external clock signal CK and the external clock signal / CK are complementary signals, and both are supplied to the clock input circuit 36. The clock input circuit 36 generates an internal clock signal ICLK based on the external clock signals CK and / CK. The internal clock signal ICLK is supplied to the timing generator 37, whereby various internal clock signals are generated. Various internal clock signals generated by the timing generator 37 are supplied to circuit blocks such as the address latch circuit 32 and the command decode circuit 34, and define the operation timing of these circuit blocks.
 内部クロック信号ICLKは、DLL回路39にも供給される。DLL回路39は、内部クロック信号ICLKに基づいて位相制御された内部クロック信号LCLKを生成するクロック生成回路である。上述の通り、内部クロック信号LCLKはFIFO回路15及び入出力回路16に供給される。これにより、リードデータDQは内部クロック信号LCLKに同期して出力されることになる。 The internal clock signal ICLK is also supplied to the DLL circuit 39. The DLL circuit 39 is a clock generation circuit that generates an internal clock signal LCLK whose phase is controlled based on the internal clock signal ICLK. As described above, the internal clock signal LCLK is supplied to the FIFO circuit 15 and the input / output circuit 16. As a result, the read data DQ is output in synchronization with the internal clock signal LCLK.
 電源端子25は、電源電位VDD,VSSが供給される端子である。電源端子25に供給される電源電位VDD,VSSは内部電源発生回路38に供給される。内部電源発生回路38は、電源電位VDD,VSSに基づいて各種の内部電位VPP,VARY,VBLP,VPERIなどを発生させる。内部電位VPPは主にロウデコーダ12において使用される電位であり、内部電位VARY,VBLPは主にメモリセルアレイ11において使用される電位であり、内部電位VPERIは他の多くの回路ブロックにおいて使用される電位である。 The power supply terminal 25 is a terminal to which power supply potentials VDD and VSS are supplied. The power supply potentials VDD and VSS supplied to the power supply terminal 25 are supplied to the internal power supply generation circuit 38. The internal power supply generation circuit 38 generates various internal potentials VPP, VARY, VBLP, VPERI and the like based on the power supply potentials VDD and VSS. The internal potential VPP is a potential mainly used in the row decoder 12, the internal potentials VARY and VBLP are mainly potentials used in the memory cell array 11, and the internal potential VPERI is used in many other circuit blocks. It is a potential.
 図2は、本実施形態による半導体装置10のうち特徴的な部分を抜き出して示すブロック図であり、本発明の第1の実施形態に相当する。 FIG. 2 is a block diagram showing a characteristic part extracted from the semiconductor device 10 according to the present embodiment, and corresponds to the first embodiment of the present invention.
 図2に示すように、リフレッシュ制御回路35は、起動回路100、リフレッシュカウンタ200及びバンク選択回路300を含んでいる。起動回路100は、リフレッシュ信号RFの活性化に応答してタイミング信号RREFTを1回又は複数回生成する回路であり、タイミング信号RREFTを何回起動させるかは、設定信号Mによって指定される。本実施形態においては、設定信号Mには設定信号M53,M8,M107が含まれている。タイミング信号RREFTは、リフレッシュカウンタ200、バンク選択回路300及びアドレスセレクタ18に供給される。 As shown in FIG. 2, the refresh control circuit 35 includes a startup circuit 100, a refresh counter 200, and a bank selection circuit 300. The activation circuit 100 is a circuit that generates the timing signal RREFT once or a plurality of times in response to the activation of the refresh signal RF, and how many times the timing signal RREFT is activated is designated by the setting signal M. In the present embodiment, the setting signal M includes setting signals M53, M8, and M107. The timing signal RREFT is supplied to the refresh counter 200, the bank selection circuit 300, and the address selector 18.
 リフレッシュカウンタ200は、図3に示すように、タイミング信号RREFTによってインクリメント(又はデクリメント)されるカウンタであり、そのカウント値はリフレッシュアドレスXADDとしてアドレスセレクタ18に供給される。特に限定されるものではないが、本実施形態においてはリフレッシュアドレスXADDがビットX0~X13からなる14ビット構成である。 As shown in FIG. 3, the refresh counter 200 is a counter that is incremented (or decremented) by the timing signal RREFT, and the count value is supplied to the address selector 18 as the refresh address XADD. Although not particularly limited, in this embodiment, the refresh address XADD has a 14-bit configuration including bits X0 to X13.
 図3に示すように、リフレッシュカウンタ200には循環接続された2つのラッチ回路201,202を備えており、それぞれタイミング信号RREFTの立ち上がりエッジ及び立ち下がりエッジに同期してラッチ動作を行う。ラッチ回路202の出力はビットX13として用いられるとともに、次段のラッチ回路203,204に対するクロック信号として用いられる。ラッチ回路204の出力はビットX12として用いられるとともに、次段のラッチ回路に対するクロック信号として用いられる。このような接続が最終段のラッチ回路205,206まで繰り返され、ラッチ回路206の出力がビットX0として用いられる。かかる構成により、リフレッシュカウンタ200はタイミング信号RREFTが16k回(=214)活性化すると、そのカウント値であるリフレッシュアドレスXADDを一周させる。 As shown in FIG. 3, the refresh counter 200 includes two latch circuits 201 and 202 that are circularly connected, and performs a latch operation in synchronization with the rising edge and the falling edge of the timing signal RREFT, respectively. The output of the latch circuit 202 is used as the bit X13 and also as a clock signal for the latch circuits 203 and 204 at the next stage. The output of the latch circuit 204 is used as a bit X12 and also as a clock signal for the next stage latch circuit. Such a connection is repeated up to the latch circuits 205 and 206 at the final stage, and the output of the latch circuit 206 is used as the bit X0. With this configuration, when the timing signal RREFT is activated 16k times (= 2 14 ), the refresh counter 200 makes one cycle of the refresh address XADD that is the count value.
 バンク選択回路300は、タイミング信号RREFTに応答してバンク選択信号MCBAT0~MCBAT7を活性化させる回路である。バンク選択信号MCBAT0~MCBAT7は、それぞれメモリバンクBANK0~BANK7を選択する信号であり、本実施形態においてはタイミング信号RREFTが活性化すると全てのバンク選択信号MCBAT0~MCBAT7が同時に活性化する。但し、ピーク電流を抑制するために、バンク選択信号MCBAT0~MCBAT7の活性化タイミングをずらして構わない。 The bank selection circuit 300 is a circuit that activates the bank selection signals MCBAT0 to MCBAT7 in response to the timing signal RREFT. Bank selection signals MCBAT0 to MCBAT7 are signals for selecting the memory banks BANK0 to BANK7, respectively. In this embodiment, when the timing signal RREFT is activated, all the bank selection signals MCBAT0 to MCBAT7 are activated simultaneously. However, the activation timing of the bank selection signals MCBAT0 to MCBAT7 may be shifted in order to suppress the peak current.
 図2に示すように、各メモリバンクBANK0~BANK7は、メモリセルアレイ11、ロウデコーダ12及びアドレスラッチ回路17をそれぞれ独立に備えている。アドレスラッチ回路17は、アドレスセレクタ18から供給されるロウアドレスRADDをラッチし、これを対応するロウデコーダ12に供給する役割を果たす。アドレスセレクタ18は、図1に示すアドレスラッチ回路32から供給されるアドレス信号PADDと、リフレッシュカウンタ200から供給されるリフレッシュアドレスXADDのいずれか一方を選択し、選択したアドレスをロウアドレスRADDとして出力する。その選択は、アクティブ信号AC及びタイミング信号RREFTによって制御される。 As shown in FIG. 2, each of the memory banks BANK0 to BANK7 includes a memory cell array 11, a row decoder 12, and an address latch circuit 17 independently. The address latch circuit 17 serves to latch the row address RADD supplied from the address selector 18 and supply it to the corresponding row decoder 12. The address selector 18 selects either the address signal PADD supplied from the address latch circuit 32 shown in FIG. 1 or the refresh address XADD supplied from the refresh counter 200, and outputs the selected address as the row address RADD. . The selection is controlled by the active signal AC and the timing signal RREFT.
 具体的には、アクティブ信号ACが活性化している場合にはアドレス信号PADDを選択し、タイミング信号RREFTが活性化している場合にはリフレッシュアドレスXADDを選択する。これにより、外部からアクティブコマンドが発行された場合には、外部から供給されたアドレス信号ADDが各メモリバンクBANK0~BANK7に供給され、これによりロウアクセスが実行される。一方、外部からリフレッシュコマンドが発行された場合には、リフレッシュアドレスXADDが各メモリバンクBANK0~BANK7に供給され、これによりリフレッシュ動作が実行される。 Specifically, the address signal PADD is selected when the active signal AC is activated, and the refresh address XADD is selected when the timing signal RREFT is activated. As a result, when an active command is issued from the outside, the address signal ADD supplied from the outside is supplied to each of the memory banks BANK0 to BANK7, thereby executing row access. On the other hand, when a refresh command is issued from the outside, the refresh address XADD is supplied to each of the memory banks BANK0 to BANK7, thereby executing a refresh operation.
 図4は、起動回路100の回路図である。 FIG. 4 is a circuit diagram of the activation circuit 100.
 図4に示すように、起動回路100は、リフレッシュ信号RFの立ち上がりエッジに応答してワンショットパルスを生成するパルス生成回路110と、バンク選択信号MCBAT0,MCBAT7がいずれもローレベルに変化したことに応答してワンショットパルスを生成するパルス生成回路120と、タイミング信号RREFTをカウントするカウンタ回路130を備えている。 As shown in FIG. 4, in the activation circuit 100, the pulse generation circuit 110 that generates a one-shot pulse in response to the rising edge of the refresh signal RF and the bank selection signals MCBAT0 and MCBAT7 both change to a low level. A pulse generation circuit 120 that generates a one-shot pulse in response and a counter circuit 130 that counts the timing signal RREFT are provided.
 カウンタ回路130は3ビットのバイナリカウンタであり、最下位ビットをカウントするラッチ回路131,132と、下位2ビット目をカウントするラッチ回路133,134と、最上位ビットをカウントするラッチ回路135,136とを含んでいる。ラッチ回路131,132は循環接続されており、それぞれタイミング信号RREFTの立ち上がりエッジ及び立ち下がりエッジに同期してラッチ動作を行う。ラッチ回路132の出力は次段のラッチ回路133,134に対するクロック信号として用いられ、ラッチ回路134の出力は最終段のラッチ回路135,136に対するクロック信号として用いられる。かかる構成により、カウンタ回路130はタイミング信号RREFTの活性化回数をカウントすることができる。 The counter circuit 130 is a 3-bit binary counter, and latch circuits 131 and 132 that count the least significant bit, latch circuits 133 and 134 that count the second least significant bit, and latch circuits 135 and 136 that count the most significant bit. Including. The latch circuits 131 and 132 are circularly connected and perform a latch operation in synchronization with the rising edge and falling edge of the timing signal RREFT, respectively. The output of the latch circuit 132 is used as a clock signal for the latch circuits 133 and 134 at the next stage, and the output of the latch circuit 134 is used as a clock signal for the latch circuits 135 and 136 at the final stage. With this configuration, the counter circuit 130 can count the number of activations of the timing signal RREFT.
 カウンタ回路130の出力は、ゲート回路140に供給される。ゲート回路140は、それぞれ設定信号M107,M8,M53が供給されるNANDゲート回路141~143を含んでおり、設定信号M53,M8,M107に基づいてNANDゲート回路141~143のいずれか1つが選択される。図4に示すように、各NANDゲート回路141~143には、カウンタ回路130の出力が互いに異なる論理で入力されている。そして、図4に示す結線により、設定信号M107によって選択されるNANDゲート回路141は、カウンタ回路130のカウント値が0である場合にその出力をローレベルとし、設定信号M8によって選択されるNANDゲート回路142は、カウンタ回路130のカウント値が1である場合にその出力をローレベルとし、設定信号M53によって選択されるNANDゲート回路143は、カウンタ回路130のカウント値が2である場合にその出力をローレベルとする。 The output of the counter circuit 130 is supplied to the gate circuit 140. The gate circuit 140 includes NAND gate circuits 141 to 143 to which setting signals M107, M8, and M53 are supplied, respectively, and one of the NAND gate circuits 141 to 143 is selected based on the setting signals M53, M8, and M107. Is done. As shown in FIG. 4, the outputs of the counter circuit 130 are input to the NAND gate circuits 141 to 143 with different logics. Then, according to the connection shown in FIG. 4, the NAND gate circuit 141 selected by the setting signal M107 makes the output low when the count value of the counter circuit 130 is 0, and the NAND gate circuit selected by the setting signal M8. The circuit 142 sets the output to a low level when the count value of the counter circuit 130 is 1, and the NAND gate circuit 143 selected by the setting signal M53 outputs the output when the count value of the counter circuit 130 is 2. Is low level.
 NANDゲート回路141~143の出力は、NANDゲート回路144及びインバータ145を介してゲート回路150に入力される。ゲート回路150は、パルス生成回路110によって生成されるワンショットパルスをタイミング信号RREFTとして出力するとともに、インバータ145の出力がハイレベルであることを条件として、パルス生成回路120によって生成されるワンショットパルスをタイミング信号RREFTとして出力する。パルス生成回路120は、バンク選択信号MCBAT0,MCBAT7がいずれもローレベルに変化した場合にワンショットパルスを生成するため、リフレッシュ動作が完了する度にワンショットパルスが生成されることになる。ここで、バンク選択信号MCBAT0,MCBAT7を用いているのは、バンク選択信号MCBAT0~MCBAT7の活性化タイミングをずらしてリフレッシュ動作を行う場合であっても、リフレッシュ動作の完了を正しく検知するためである。 The outputs of the NAND gate circuits 141 to 143 are input to the gate circuit 150 via the NAND gate circuit 144 and the inverter 145. The gate circuit 150 outputs the one-shot pulse generated by the pulse generation circuit 110 as the timing signal RREFT, and the one-shot pulse generated by the pulse generation circuit 120 on condition that the output of the inverter 145 is at a high level. Is output as a timing signal RREFT. Since the pulse generation circuit 120 generates a one-shot pulse when both the bank selection signals MCBAT0 and MCBAT7 change to a low level, the one-shot pulse is generated every time the refresh operation is completed. Here, the reason why the bank selection signals MCBAT0 and MCBAT7 are used is to correctly detect the completion of the refresh operation even when the refresh operation is performed by shifting the activation timing of the bank selection signals MCBAT0 to MCBAT7. .
 以上の回路構成により、設定信号M53が活性化している場合には、リフレッシュ信号RFの活性化に応答してタイミング信号RREFTが3回生成され、設定信号M8が活性化している場合には、リフレッシュ信号RFの活性化に応答してタイミング信号RREFTが2回生成され、設定信号M107が活性化している場合には、リフレッシュ信号RFの活性化に応答してタイミング信号RREFTが1回だけ生成される。 With the above circuit configuration, when the setting signal M53 is activated, the timing signal RREFT is generated three times in response to the activation of the refresh signal RF, and when the setting signal M8 is activated, the refresh is performed. In response to the activation of the signal RF, the timing signal RREFT is generated twice, and when the setting signal M107 is activated, the timing signal RREFT is generated only once in response to the activation of the refresh signal RF. .
 図5は、モードレジスタ14の主要部の構成を示す回路図である。 FIG. 5 is a circuit diagram showing a configuration of a main part of the mode register 14.
 図5に示すように、モードレジスタ14にはレジスタ回路部401と、レジスタ回路部401に設定された各種パラメータのうち、モード信号M64KT,M8KTをデコードするデコーダ402を備えている。レジスタ回路部401に設定される各種パラメータは、モードレジスタセット信号MRSに同期して入力されるアドレス信号PADDによって書き替えられるとともに、図示しないヒューズ回路から出力されるヒューズ信号FUSEによってその一部が設定される。 As shown in FIG. 5, the mode register 14 includes a register circuit unit 401 and a decoder 402 that decodes mode signals M64KT and M8KT among various parameters set in the register circuit unit 401. Various parameters set in the register circuit unit 401 are rewritten by an address signal PADD input in synchronization with the mode register set signal MRS, and a part thereof is set by a fuse signal FUSE output from a fuse circuit (not shown). Is done.
 モード信号M64KT,M8KTはバイナリ形式の信号であり、デコーダ402はその値に基づいて設定信号M53K,M64K,M8K,M107Kのいずれか一つを活性化させる。ここで、設定信号M53K,M64K,M8K,M107Kは、リフレッシュ頻度を示す信号である。リフレッシュ頻度とは、1回のリフレッシュコマンドに応答して活性化されるワード線WLの本数に対応し、これが多いほどリフレッシュ頻度が高くなる。つまり、半導体装置10を制御するコントローラ(図示せず)は、規格によって定められた64msecの期間内に全てのワード線WLが選択されるよう、リフレッシュコマンドを例えば8k(=213)回発行する。つまり、単位時間当たり発行されるリフレッシュコマンドの発行回数はあらかじめ定められている。これに対し、1回のリフレッシュ動作で同時に活性化させるワード線WLの本数については、半導体装置10側において任意に設定することができる。 The mode signals M64KT and M8KT are binary signals, and the decoder 402 activates any one of the setting signals M53K, M64K, M8K, and M107K based on the value. Here, the setting signals M53K, M64K, M8K, and M107K are signals indicating the refresh frequency. The refresh frequency corresponds to the number of word lines WL activated in response to one refresh command, and the refresh frequency increases as the number increases. That is, a controller (not shown) that controls the semiconductor device 10 issues a refresh command, for example, 8k (= 2 13 ) times so that all word lines WL are selected within a period of 64 msec determined by the standard. . That is, the number of refresh commands issued per unit time is determined in advance. On the other hand, the number of word lines WL that are simultaneously activated in one refresh operation can be arbitrarily set on the semiconductor device 10 side.
 例えば、1回のリフレッシュ動作で同時に活性化させるワード線WLの本数をN本とした場合、データ保持時間が設計値通り(64msec以上)である場合には、1回のリフレッシュコマンドに応答して異なるN本のワード線WLを2回活性化させれば、64msecの期間内にリフレッシュカウンタ200のカウント値であるリフレッシュアドレスXADDを一周させることができる。このような動作を行う場合、設定信号M8Kが活性化するよう、レジスタ回路部401のパラメータを設定すればよい。 For example, when the number of word lines WL that are simultaneously activated in one refresh operation is N, and the data retention time is as designed (64 msec or more), in response to one refresh command. If N different word lines WL are activated twice, the refresh address XADD, which is the count value of the refresh counter 200, can be made to circulate once within a period of 64 msec. When performing such an operation, the parameters of the register circuit unit 401 may be set so that the setting signal M8K is activated.
 一方、データ保持時間が64×2/3msec以上、64×4/5msec未満である場合には、1回のリフレッシュコマンドに応答して異なるN本のワード線WLを3回活性化させればよい。これにより、64×2/3msecの期間内にリフレッシュカウンタ200のカウント値であるリフレッシュアドレスXADDを一周させることができる。逆に言えば、規格によって定められた64msecの期間内に、通常の1.5倍のワード線が選択されることから、リフレッシュ動作に要する消費電流は通常の1.5倍に増大する。このような動作を行う場合、設定信号M53Kが活性化するよう、レジスタ回路部401のパラメータを設定すればよい。 On the other hand, if the data holding time is 64 × 2/3 msec or more and less than 64 × 4/5 msec, different N word lines WL may be activated three times in response to one refresh command. . As a result, the refresh address XADD, which is the count value of the refresh counter 200, can be made to circulate once within a period of 64 × 2/3 msec. In other words, since a normal word line of 1.5 times is selected within a period of 64 msec determined by the standard, the current consumption required for the refresh operation increases to 1.5 times the normal value. When performing such an operation, the parameters of the register circuit portion 401 may be set so that the setting signal M53K is activated.
 これに対し、データ保持時間が64×4/5msec以上、64msec未満である場合には、1回のリフレッシュコマンドに応答して異なるN本のワード線WLを2.5回活性化させれば、64×4/5msecの期間内にリフレッシュカウンタ200のカウント値であるリフレッシュアドレスXADDを一周させることができるが、当然ながら、ワード線WLの活性化回数は整数値である必要がある。このため、本実施形態では、1回のリフレッシュコマンドに応答して異なるN本のワード線WLを2回活性化させる動作と、3回活性化させる動作を交互に実行することにより、等価的に2.5回の活性化を実現する。この場合、規格によって定められた64msecの期間内に、通常の1.25倍のワード線が選択されることから、リフレッシュ動作に要する消費電流は通常の1.25倍に増大する。このような動作を行う場合、設定信号M64Kが活性化するよう、レジスタ回路部401のパラメータを設定すればよい。 On the other hand, when the data holding time is 64 × 4/5 msec or more and less than 64 msec, if N different word lines WL are activated 2.5 times in response to one refresh command, The refresh address XADD, which is the count value of the refresh counter 200, can be made to circulate within a period of 64 × 4/5 msec, but it is needless to say that the number of activations of the word line WL needs to be an integer value. For this reason, in the present embodiment, in response to one refresh command, the operation of activating two different N word lines WL twice and the operation of activating three times are executed alternately. Achieve 2.5 activations. In this case, since the normal 1.25 times the word line is selected within the period of 64 msec determined by the standard, the current consumption required for the refresh operation increases to 1.25 times the normal. When performing such an operation, the parameters of the register circuit unit 401 may be set so that the setting signal M64K is activated.
 同様に、データ保持時間が64×4/3msec以上である場合には、1回のリフレッシュコマンドに応答して異なるN本のワード線WLを1.5回活性化させれば、64×4/3msecの期間内にリフレッシュカウンタ200のカウント値であるリフレッシュアドレスXADDを一周させることができる。そして、本実施形態では、1回のリフレッシュコマンドに応答して異なるN本のワード線WLを1回活性化させる動作と、2回活性化させる動作を交互に実行することにより、等価的に1.5回の活性化を実現する。この場合、規格によって定められた64msecの期間内に、通常の0.75倍のワード線が選択されることから、リフレッシュ動作に要する消費電流は通常の0.75倍に減少する。このような動作を行う場合、設定信号M107Kが活性化するよう、レジスタ回路部401のパラメータを設定すればよい。 Similarly, when the data holding time is 64 × 4/3 msec or more, if N different word lines WL are activated 1.5 times in response to one refresh command, 64 × 4 / The refresh address XADD, which is the count value of the refresh counter 200, can be made to make a round within a period of 3 msec. In the present embodiment, in response to one refresh command, the operation of activating different N word lines WL once and the operation of activating twice are equivalently performed, thereby equivalently 1 . Realize 5 activations. In this case, since the normal 0.75 times the word line is selected within the period of 64 msec determined by the standard, the current consumption required for the refresh operation is reduced to 0.75 times the normal. When performing such an operation, the parameters of the register circuit portion 401 may be set so that the setting signal M107K is activated.
 図5に示すように、設定信号M53K,M64K,M8K,M107Kは、ゲート回路411~413に供給される。ゲート回路411は、設定信号M53Kが活性化しているか、或いは、設定信号M64Kが活性化していることを条件として、切り替え信号RMODが活性化している場合に、設定信号M53を活性化させる。また、ゲート回路412は、設定信号M8Kが活性化しているか、或いは、設定信号M64K又はM107Kが活性化していることを条件として、切り替え信号RMODが非活性化している場合に、設定信号M8を活性化させる。さらに、ゲート回路413は、設定信号M107Kが活性化していることを条件として、切り替え信号RMODが活性化している場合に設定信号M107を活性化させる。 As shown in FIG. 5, the setting signals M53K, M64K, M8K, and M107K are supplied to the gate circuits 411 to 413. The gate circuit 411 activates the setting signal M53 when the setting signal M53K is activated or when the switching signal RMOD is activated on condition that the setting signal M64K is activated. The gate circuit 412 activates the setting signal M8 when the setting signal M8K is activated or when the switching signal RMOD is deactivated on the condition that the setting signal M64K or M107K is activated. Make it. Further, the gate circuit 413 activates the setting signal M107 when the switching signal RMOD is activated on condition that the setting signal M107K is activated.
 切り替え信号RMODは、循環接続されたラッチ回路421,422によって生成される。ラッチ回路421,422は、設定信号M64K又はM107Kが活性化していることを条件として、リフレッシュ信号RFの立ち上がりエッジ及び立ち下がりエッジに同期してラッチ動作を行う。このため、設定信号M64K又はM107Kが活性化している場合には、リフレッシュコマンドが発行される度に、切り替え信号RMODの論理レベルが反転することになる。切り替え信号RMODは、電源投入時に活性化されるパワーオンリセット信号PONによってリセットされる。 The switching signal RMOD is generated by the circularly connected latch circuits 421 and 422. The latch circuits 421 and 422 perform a latch operation in synchronization with the rising edge and the falling edge of the refresh signal RF on condition that the setting signal M64K or M107K is activated. For this reason, when the setting signal M64K or M107K is activated, the logic level of the switching signal RMOD is inverted every time a refresh command is issued. The switching signal RMOD is reset by a power-on reset signal PON that is activated when the power is turned on.
 以上が本実施形態による半導体装置10の構成である。次に、本実施形態による半導体装置10のリフレッシュ動作について説明する。 The above is the configuration of the semiconductor device 10 according to the present embodiment. Next, the refresh operation of the semiconductor device 10 according to the present embodiment will be explained.
 図6は、設定信号M8Kが活性化している場合のリフレッシュ動作を説明するためのタイミング図である。 FIG. 6 is a timing chart for explaining the refresh operation when the setting signal M8K is activated.
 図6に示すように、設定信号M8Kが活性化している場合、リフレッシュコマンドREFの発行によってリフレッシュ信号RFが活性化すると、これに応答してタイミング信号RREFTが毎回2回活性化する。これは、設定信号M8Kが活性化している場合、設定信号M8が活性化されるからであり、設定信号M8の活性化によって起動回路100はタイミング信号RREFTを1回だけカウントした後、動作を停止するからである。 As shown in FIG. 6, when the setting signal M8K is activated, when the refresh signal RF is activated by issuing the refresh command REF, the timing signal RREFT is activated twice each time in response thereto. This is because the setting signal M8 is activated when the setting signal M8K is activated, and the activation circuit 100 counts the timing signal RREFT only once by the activation of the setting signal M8, and then stops the operation. Because it does.
 タイミング信号RREFTが活性化すると、リフレッシュアドレスXADDに対してリフレッシュ動作が行われるとともに、リフレッシュカウンタ200によってその値が更新される。1回のタイミング信号RREFTに応答して選択されるワード線の数は一定(例えばN本)である。図6に示す例では、1回目のリフレッシュコマンドREFの発行によってリフレッシュアドレスXADD=n及びn+1に対してリフレッシュ動作が行われ、2回目のリフレッシュコマンドREFの発行によってリフレッシュアドレスXADD=n+2及びn+3に対してリフレッシュ動作が行われている。これにより、リフレッシュコマンドREFが8k回発行されるとリフレッシュアドレスXADDが一周することから、上述の通り、64msecの期間内にリフレッシュアドレスXADDを一周させることができる。 When the timing signal RREFT is activated, a refresh operation is performed on the refresh address XADD, and the value is updated by the refresh counter 200. The number of word lines selected in response to one timing signal RREFT is constant (for example, N). In the example shown in FIG. 6, the refresh operation is performed for the refresh addresses XADD = n and n + 1 by issuing the first refresh command REF, and the refresh addresses XADD = n + 2 and n + 3 are issued by issuing the second refresh command REF. The refresh operation is performed. As a result, when the refresh command REF is issued 8k times, the refresh address XADD makes a round, and as described above, the refresh address XADD can make a round within the period of 64 msec.
 図7は、設定信号M53Kが活性化している場合のリフレッシュ動作を説明するためのタイミング図である。 FIG. 7 is a timing chart for explaining the refresh operation when the setting signal M53K is activated.
 図7に示すように、設定信号M53Kが活性化している場合、リフレッシュコマンドREFの発行によってリフレッシュ信号RFが活性化すると、これに応答してタイミング信号RREFTが毎回3回活性化する。これは、設定信号M53Kが活性化している場合、設定信号M53が活性化されるからであり、設定信号M53の活性化によって起動回路100はタイミング信号RREFTを2回カウントした後、動作を停止するからである。 As shown in FIG. 7, when the setting signal M53K is activated, when the refresh signal RF is activated by issuing the refresh command REF, the timing signal RREFT is activated three times every time in response thereto. This is because the setting signal M53 is activated when the setting signal M53K is activated, and the activation circuit 100 counts the timing signal RREFT twice by the activation of the setting signal M53, and then stops the operation. Because.
 図7に示す例では、1回目のリフレッシュコマンドREFの発行によってリフレッシュアドレスXADD=n、n+1及びn+2に対してリフレッシュ動作が行われ、2回目のリフレッシュコマンドREFの発行によってリフレッシュアドレスXADD=n+3、n+4及びn+5に対してリフレッシュ動作が行われている。これにより、リフレッシュコマンドREFが8k×2/3回発行されるとリフレッシュアドレスXADDが一周することから、上述の通り、64×2/3msecの期間内にリフレッシュアドレスXADDを一周させることができる。 In the example shown in FIG. 7, the refresh operation is performed on the refresh addresses XADD = n, n + 1, and n + 2 by issuing the first refresh command REF, and the refresh address XADD = n + 3, n + 4 is issued by issuing the second refresh command REF. And n + 5 are refreshed. As a result, when the refresh command REF is issued 8k × 2/3 times, the refresh address XADD makes a round, and as described above, the refresh address XADD can make a round within the period of 64 × 2/3 msec.
 図8は、設定信号M64Kが活性化している場合のリフレッシュ動作を説明するためのタイミング図である。 FIG. 8 is a timing chart for explaining the refresh operation when the setting signal M64K is activated.
 図8に示すように、設定信号M64Kが活性化している場合、リフレッシュコマンドREFの発行によってリフレッシュ信号RFが活性化すると、これに応答してタイミング信号RREFTが2回及び3回交互に活性化する。これは、設定信号M64Kが活性化している場合、リフレッシュコマンドREFが発行される度に、設定信号M53と設定信号M8が交互に活性化されるからである。 As shown in FIG. 8, when the setting signal M64K is activated, when the refresh signal RF is activated by issuing the refresh command REF, the timing signal RREFT is activated alternately twice and three times in response thereto. . This is because when the setting signal M64K is activated, the setting signal M53 and the setting signal M8 are alternately activated every time the refresh command REF is issued.
 図8に示す例では、1回目のリフレッシュコマンドREFの発行によってリフレッシュアドレスXADD=n及びn+1に対してリフレッシュ動作が行われ、2回目のリフレッシュコマンドREFの発行によってリフレッシュアドレスXADD=n+2、n+3及びn+4に対してリフレッシュ動作が行われている。これにより、リフレッシュコマンドREFが8k×4/5回発行されるとリフレッシュアドレスXADDが一周することから、上述の通り、64×4/5msecの期間内にリフレッシュアドレスXADDを一周させることができる。図示しないが、奇数回目(3回目、5回目・・・)のリフレッシュコマンドREFに応答した動作は1回目のリフレッシュコマンドREFに応答した動作と同じであり、偶数回目(4回目、6回目・・・)のリフレッシュコマンドREFに応答した動作は2回目のリフレッシュコマンドREFに応答した動作と同じである。 In the example shown in FIG. 8, the refresh operation is performed on the refresh addresses XADD = n and n + 1 by issuing the first refresh command REF, and the refresh addresses XADD = n + 2, n + 3, and n + 4 are issued by issuing the second refresh command REF. A refresh operation is performed on the image. As a result, when the refresh command REF is issued 8k × 4/5 times, the refresh address XADD makes one round. As described above, the refresh address XADD can make one round within the period of 64 × 4/5 msec. Although not shown, the operation in response to the odd-numbered (third, fifth,...) Refresh command REF is the same as the operation in response to the first refresh command REF, and the even-numbered (fourth, sixth,... The operation in response to the refresh command REF of (-) is the same as the operation in response to the second refresh command REF.
 図9は、設定信号M107Kが活性化している場合のリフレッシュ動作を説明するためのタイミング図である。 FIG. 9 is a timing chart for explaining the refresh operation when the setting signal M107K is activated.
 図9に示すように、設定信号M107Kが活性化している場合、リフレッシュコマンドREFの発行によってリフレッシュ信号RFが活性化すると、これに応答してタイミング信号RREFTが1回及び2回交互に活性化する。これは、設定信号M107Kが活性化している場合、リフレッシュコマンドREFが発行される度に、設定信号M8と設定信号M107が交互に活性化されるからである。設定信号M107Kが活性化している場合、起動回路100はタイミング信号RREFTをカウントすることなく動作を停止する。 As shown in FIG. 9, when the setting signal M107K is activated, when the refresh signal RF is activated by issuing the refresh command REF, the timing signal RREFT is activated alternately once and twice in response thereto. . This is because when the setting signal M107K is activated, the setting signal M8 and the setting signal M107 are alternately activated every time the refresh command REF is issued. When the setting signal M107K is activated, the activation circuit 100 stops the operation without counting the timing signal RREFT.
 図9に示す例では、1回目のリフレッシュコマンドREFの発行によってリフレッシュアドレスXADD=nに対してリフレッシュ動作が行われ、2回目のリフレッシュコマンドREFの発行によってリフレッシュアドレスXADD=n+1及びn+2に対してリフレッシュ動作が行われている。これにより、リフレッシュコマンドREFが8k×4/3回発行されるとリフレッシュアドレスXADDが一周することから、上述の通り、64×4/3msecの期間内にリフレッシュアドレスXADDを一周させることができる。図示しないが、奇数回目(3回目、5回目・・・)のリフレッシュコマンドREFに応答した動作は1回目のリフレッシュコマンドREFに応答した動作と同じであり、偶数回目(4回目、6回目・・・)のリフレッシュコマンドREFに応答した動作は2回目のリフレッシュコマンドREFに応答した動作と同じである。 In the example shown in FIG. 9, a refresh operation is performed on the refresh address XADD = n by issuing the first refresh command REF, and a refresh operation is performed on the refresh addresses XADD = n + 1 and n + 2 by issuing the second refresh command REF. Operation is taking place. As a result, when the refresh command REF is issued 8k × 4/3 times, the refresh address XADD makes one round, and as described above, the refresh address XADD can make one round within the period of 64 × 4/3 msec. Although not shown, the operation in response to the odd-numbered (third, fifth,...) Refresh command REF is the same as the operation in response to the first refresh command REF, and the even-numbered (fourth, sixth,... The operation in response to the refresh command REF of (-) is the same as the operation in response to the second refresh command REF.
 以上説明したように、本実施形態による半導体装置10は、リフレッシュコマンドREFが発行される度に異なる本数のワード線を選択する動作モードを備えている。このため、1回のリフレッシュコマンドREFに応答してタイミング信号RREFTを平均して1.5回又は2.5回活性化させることができ、リフレッシュ頻度の調整ピッチをより細かく設定することができる。したがって、メモリセルのデータ保持時間に応じて、消費電流をより削減することが可能となる。 As described above, the semiconductor device 10 according to the present embodiment has an operation mode for selecting a different number of word lines each time the refresh command REF is issued. Therefore, the timing signal RREFT can be activated on average 1.5 times or 2.5 times in response to one refresh command REF, and the refresh frequency adjustment pitch can be set more finely. Therefore, current consumption can be further reduced according to the data retention time of the memory cell.
 次に、本発明の第2の実施形態について説明する。 Next, a second embodiment of the present invention will be described.
 図10は、本実施形態による半導体装置10のうち特徴的な部分を抜き出して示すブロック図であり、本発明の第2の実施形態に相当する。 FIG. 10 is a block diagram showing a characteristic part extracted from the semiconductor device 10 according to the present embodiment, and corresponds to the second embodiment of the present invention.
 図10に示すように、本実施形態においては、第1の実施形態のリフレッシュ制御回路35に含まれる起動回路100、リフレッシュカウンタ200及びバンク選択回路300がそれぞれ起動回路100a、リフレッシュカウンタ200a及びバンク選択回路300aに置き換えられている点において、第1の実施形態と相違する。リフレッシュカウンタ200aは、選択信号RBA2を生成するバンクセレクタ210と、リフレッシュアドレスXADDを生成するロウアドレスカウンタ220を含んでいる。 As shown in FIG. 10, in this embodiment, the activation circuit 100, the refresh counter 200, and the bank selection circuit 300 included in the refresh control circuit 35 of the first embodiment are respectively the activation circuit 100a, the refresh counter 200a, and the bank selection. The difference from the first embodiment is that the circuit 300a is replaced. The refresh counter 200a includes a bank selector 210 that generates a selection signal RBA2 and a row address counter 220 that generates a refresh address XADD.
 図11は、リフレッシュカウンタ200aの回路図である。 FIG. 11 is a circuit diagram of the refresh counter 200a.
 図11に示すように、リフレッシュカウンタ200aは、図3に示したリフレッシュカウンタ200の最下位ビットにバンクセレクタ210が追加された回路構成を有している。バンクセレクタ210は、循環接続された2つのラッチ回路211,212を備えており、タイミング信号RREFTが活性化する度に選択信号RBA2の論理レベルを反転させる。選択信号RBA2は、ロウアドレスカウンタ220を構成する初段のラッチ回路221,222に対するクロック信号として用いられ、ラッチ回路222の出力はビットX13として用いられる。ビットX13は、次段のラッチ回路223,224に対するクロック信号として用いられ、ラッチ回路224の出力はビットX12として用いられるとともに、次段のラッチ回路に対するクロック信号として用いられる。このような接続が最終段のラッチ回路225,226まで繰り返され、ラッチ回路226の出力がビットX0として用いられる。かかる構成により、リフレッシュカウンタ200はタイミング信号RREFTが32k回(=215)活性化すると、そのカウント値であるリフレッシュアドレスXADDを一周させる。 As shown in FIG. 11, the refresh counter 200a has a circuit configuration in which a bank selector 210 is added to the least significant bit of the refresh counter 200 shown in FIG. The bank selector 210 includes two circularly connected latch circuits 211 and 212, and inverts the logic level of the selection signal RBA2 every time the timing signal RREFT is activated. The selection signal RBA2 is used as a clock signal for the first stage latch circuits 221 and 222 constituting the row address counter 220, and the output of the latch circuit 222 is used as the bit X13. The bit X13 is used as a clock signal for the next stage latch circuits 223 and 224, and the output of the latch circuit 224 is used as a bit X12 and also as a clock signal for the next stage latch circuit. Such connection is repeated up to the latch circuits 225 and 226 in the final stage, and the output of the latch circuit 226 is used as the bit X0. With this configuration, when the timing signal RREFT is activated 32k times (= 2 15 ), the refresh counter 200 makes one cycle of the refresh address XADD that is the count value.
 バンクセレクタ210によって生成される選択信号RBA2は、バンク選択回路300aに供給される。バンク選択回路300aは、タイミング信号RREFTに応答してバンク選択信号MCBAT0~MCBAT7を活性化させる回路であり、選択信号RBA2がローレベルである場合にはバンク選択信号MCBAT0,3,4,7を同時に活性化させ、選択信号RBA2がハイレベルである場合にはバンク選択信号MCBAT1,2,5,6を同時に活性化させる。但し、ピーク電流を抑制するために、バンク選択信号MCBAT0,3,4,7の活性化タイミングや、バンク選択信号MCBAT1,2,5,6の活性化タイミングをずらして構わない。 The selection signal RBA2 generated by the bank selector 210 is supplied to the bank selection circuit 300a. The bank selection circuit 300a is a circuit that activates the bank selection signals MCBAT0 to MCBAT7 in response to the timing signal RREFT. When the selection signal RBA2 is at a low level, the bank selection signals MCBAT0, 3, 4, and 7 are simultaneously transmitted. When the selection signal RBA2 is at a high level, the bank selection signals MCBAT1, 2, 5, 6 are simultaneously activated. However, in order to suppress the peak current, the activation timing of the bank selection signals MCBAT0, 3, 4, and 7 and the activation timing of the bank selection signals MCBAT1, 2, 5, and 6 may be shifted.
 図12は、起動回路100aの回路図である。 FIG. 12 is a circuit diagram of the activation circuit 100a.
 図12に示すように、起動回路100aは、リフレッシュ信号RFの立ち上がりエッジに応答してワンショットパルスを2回生成するパルス生成回路161と、バンク選択信号MCBAT0,1,6,7がいずれもローレベルに変化したことに応答してワンショットパルスを2回生成するパルス生成回路162と、タイミング信号RREFTをカウントするカウンタ回路170を備えている。 As shown in FIG. 12, in the activation circuit 100a, the pulse generation circuit 161 that generates a one-shot pulse twice in response to the rising edge of the refresh signal RF and the bank selection signals MCBAT0, 1, 6, and 7 are all low. A pulse generation circuit 162 that generates a one-shot pulse twice in response to the change to the level and a counter circuit 170 that counts the timing signal RREFT are provided.
 カウンタ回路170は3ビットのバイナリカウンタであり、最下位ビットをカウントするラッチ回路171,172と、下位2ビット目をカウントするラッチ回路173,174と、最上位ビットをカウントするラッチ回路175,176とを含んでいる。ラッチ回路171,172は循環接続されており、それぞれタイミング信号RREFTの立ち上がりエッジ及び立ち下がりエッジに同期してラッチ動作を行う。ラッチ回路172の出力は次段のラッチ回路173,174に対するクロック信号として用いられる。ラッチ回路174の出力は最終段のラッチ回路175,176に対するクロック信号として用いられる。かかる構成により、カウンタ回路170はタイミング信号RREFTの活性化回数をカウントすることができる。 The counter circuit 170 is a 3-bit binary counter, and latch circuits 171 and 172 that count the least significant bit, latch circuits 173 and 174 that count the second least significant bit, and latch circuits 175 and 176 that count the most significant bit. Including. The latch circuits 171 and 172 are circularly connected and perform a latch operation in synchronization with the rising edge and falling edge of the timing signal RREFT, respectively. The output of the latch circuit 172 is used as a clock signal for the latch circuits 173 and 174 at the next stage. The output of the latch circuit 174 is used as a clock signal for the latch circuits 175 and 176 at the final stage. With this configuration, the counter circuit 170 can count the number of activations of the timing signal RREFT.
 カウンタ回路170の出力は、ゲート回路180に供給される。ゲート回路180は、それぞれ設定信号M107K,M8K,M64K,M53Kが供給されるNANDゲート回路181~184を含んでおり、設定信号M107K,M8K,M64K,M53Kに基づいてNANDゲート回路181~184のいずれか1つが選択される。図12に示すように、各NANDゲート回路181~184には、カウンタ回路170の出力が互いに異なる論理で入力されている。そして、図12に示す結線により、設定信号M107Kによって選択されるNANDゲート回路181は、カウンタ回路170のカウント値が2である場合にその出力をローレベルとし、設定信号M8Kによって選択されるNANDゲート回路182は、カウンタ回路170のカウント値が3である場合にその出力をローレベルとする。また、設定信号M64Kによって選択されるNANDゲート回路183は、カウンタ回路170のカウント値が4である場合にその出力をローレベルとし、設定信号M53Kによって選択されるNANDゲート回路184は、カウンタ回路170のカウント値が5である場合にその出力をローレベルとする。 The output of the counter circuit 170 is supplied to the gate circuit 180. The gate circuit 180 includes NAND gate circuits 181 to 184 to which setting signals M107K, M8K, M64K, and M53K are respectively supplied. Any of the NAND gate circuits 181 to 184 is based on the setting signals M107K, M8K, M64K, and M53K. Or one is selected. As shown in FIG. 12, the outputs of the counter circuit 170 are inputted to the NAND gate circuits 181 to 184 with different logics. 12, the NAND gate circuit 181 selected by the setting signal M107K makes the output low when the count value of the counter circuit 170 is 2, and the NAND gate circuit selected by the setting signal M8K. When the count value of the counter circuit 170 is 3, the circuit 182 sets its output to a low level. The NAND gate circuit 183 selected by the setting signal M64K makes its output low when the count value of the counter circuit 170 is 4, and the NAND gate circuit 184 selected by the setting signal M53K When the count value is 5, the output is set to low level.
 NANDゲート回路181~184の出力は、NANDゲート回路185及びインバータ186を介してゲート回路190に入力される。ゲート回路190は、パルス生成回路161によって生成されるワンショットパルスをタイミング信号RREFTとして出力するとともに、インバータ186の出力がハイレベルであることを条件として、パルス生成回路162によって生成されるワンショットパルスをタイミング信号RREFTとして出力する。パルス生成回路162は、バンク選択信号MCBAT0,1,6,7がいずれもローレベルに変化した場合にワンショットパルスを生成するため、リフレッシュ動作が完了する度にワンショットパルスが生成されることになる。ここで、バンク選択信号MCBAT0,MCBAT1の2つを用いているのは、バンク選択信号MCBAT0,3,4,7からなるグループ(G1)のリフレッシュ動作と、バンク選択信号MCBAT1,2,5,6からなるグループ(G2)のリフレッシュ動作が独立して制御されるためである。さらに、バンク選択信号MCBAT0に加えてバンク選択信号MCBAT7を用いているのは、バンク選択信号MCBAT0,1,6,7の活性化タイミングをずらしてリフレッシュ動作を行う場合であっても、リフレッシュ動作の完了を正しく検知するためである。バンク選択信号MCBAT1に加えてバンク選択信号MCBAT6を用いているのも同様の理由による。 The outputs of the NAND gate circuits 181 to 184 are input to the gate circuit 190 via the NAND gate circuit 185 and the inverter 186. The gate circuit 190 outputs the one-shot pulse generated by the pulse generation circuit 161 as the timing signal RREFT, and the one-shot pulse generated by the pulse generation circuit 162 on condition that the output of the inverter 186 is at a high level. Is output as a timing signal RREFT. Since the pulse generation circuit 162 generates a one-shot pulse when any of the bank selection signals MCBAT0, 1, 6, and 7 changes to a low level, the one-shot pulse is generated every time the refresh operation is completed. Become. Here, the two bank selection signals MCBAT0 and MCBAT1 are used for the refresh operation of the group (G1) composed of the bank selection signals MCBAT0, 3, 4 and 7 and the bank selection signals MCBAT1, 2, 5, 6 This is because the refresh operation of the group (G2) consisting of is independently controlled. Further, the bank selection signal MCBAT7 is used in addition to the bank selection signal MCBAT0 even when the refresh operation is performed by shifting the activation timing of the bank selection signals MCBAT0, 1, 6, and 7. This is to correctly detect completion. The bank selection signal MCBAT6 is used in addition to the bank selection signal MCBAT1 for the same reason.
 図12にはバンク選択回路300aの一部も図示されている。バンク選択回路300aは、タイミング信号RREFTが活性化した場合、選択信号RBA2の論理レベルに応じて、タイミング信号RREF0T,RREF1Tのいずれか一方を活性化させるゲート回路が含まれている。ここで、タイミング信号RREF0Tはバンク選択信号MCBAT1,2,5,6を活性化させるための信号であり、タイミング信号RREF1Tはバンク選択信号MCBAT0,3,4,7を活性化させるための信号である。 FIG. 12 also shows a part of the bank selection circuit 300a. The bank selection circuit 300a includes a gate circuit that activates one of the timing signals RREF0T and RREF1T according to the logic level of the selection signal RBA2 when the timing signal RREFT is activated. Here, the timing signal RREF0T is a signal for activating the bank selection signals MCBAT1, 2, 5, and 6, and the timing signal RREF1T is a signal for activating the bank selection signals MCBAT0, 3, 4, and 7. .
 以上の回路構成により、設定信号M53Kが活性化している場合には、リフレッシュ信号RFの活性化に応答してタイミング信号RREFTが6回生成され、設定信号M64Kが活性化している場合には、リフレッシュ信号RFの活性化に応答してタイミング信号RREFTが5回生成される。また、設定信号M8Kが活性化している場合には、リフレッシュ信号RFの活性化に応答してタイミング信号RREFTが4回生成され、設定信号M107Kが活性化している場合には、リフレッシュ信号RFの活性化に応答してタイミング信号RREFTが3回生成される。 With the above circuit configuration, when the setting signal M53K is activated, the timing signal RREFT is generated six times in response to the activation of the refresh signal RF, and when the setting signal M64K is activated, the refresh is performed. In response to the activation of the signal RF, the timing signal RREFT is generated five times. Further, when the setting signal M8K is activated, the timing signal RREFT is generated four times in response to the activation of the refresh signal RF, and when the setting signal M107K is activated, the activation of the refresh signal RF In response to the timing, the timing signal RREFT is generated three times.
 図13は、モードレジスタ14の主要部の構成を示す回路図である。 FIG. 13 is a circuit diagram showing a configuration of a main part of the mode register 14.
 図13に示すように、本実施形態においてはデコーダ402の出力信号である設定信号M53K,M64K,M8K,M107Kがそのまま出力され、図12に示した起動回路100aに入力される。 As shown in FIG. 13, in this embodiment, setting signals M53K, M64K, M8K, and M107K, which are output signals of the decoder 402, are output as they are and are input to the activation circuit 100a shown in FIG.
 以上が本実施形態による半導体装置10の構成である。次に、本実施形態による半導体装置10のリフレッシュ動作について説明する。 The above is the configuration of the semiconductor device 10 according to the present embodiment. Next, the refresh operation of the semiconductor device 10 according to the present embodiment will be explained.
 図14は、設定信号M64Kが活性化している場合のリフレッシュ動作を説明するためのタイミング図である。 FIG. 14 is a timing chart for explaining the refresh operation when the setting signal M64K is activated.
 図14に示すように、設定信号M64Kが活性化している場合、リフレッシュコマンドREFの発行によってリフレッシュ信号RFが活性化すると、これに応答してタイミング信号RREFTが5回活性化する。この時、選択信号RBA2はタイミング信号RREFTに応答してその論理レベルを反転させるため、グループG1を構成するバンク選択信号MCBAT0,3,4,7及びグループG2を構成するバンク選択信号MCBAT1,2,5,6の一方については3回活性化し、他方については2回活性化する。 As shown in FIG. 14, when the setting signal M64K is activated, when the refresh signal RF is activated by issuing the refresh command REF, the timing signal RREFT is activated five times in response thereto. At this time, since the selection signal RBA2 inverts its logic level in response to the timing signal RREFT, the bank selection signals MCBAT0, 3, 4, 7 constituting the group G1 and the bank selection signals MCBAT1, 2, 4 constituting the group G2 One of 5 and 6 is activated three times, and the other is activated twice.
 図14に示す例では、1回目のリフレッシュコマンドREFの発行に応答してグループG1を構成するバンク選択信号MCBAT0,3,4,7が3回活性化し、グループG2を構成するバンク選択信号MCBAT1,2,5,6が2回活性化している。また、2回目のリフレッシュコマンドREFの発行に応答してグループG1を構成するバンク選択信号MCBAT0,3,4,7が2回活性化し、グループG2を構成するバンク選択信号MCBAT1,2,5,6が3回活性化している。図示しないが、奇数回目(3回目、5回目・・・)のリフレッシュコマンドREFに応答した動作は1回目のリフレッシュコマンドREFに応答した動作と同じであり、偶数回目(4回目、6回目・・・)のリフレッシュコマンドREFに応答した動作は2回目のリフレッシュコマンドREFに応答した動作と同じである。これにより、1回のリフレッシュコマンドREFに応答して平均2.5回のリフレッシュ動作を行うことになり、図8を用いて説明した効果と同じ効果を得ることが可能となる。 In the example shown in FIG. 14, the bank selection signals MCBAT0, 3, 4, and 7 constituting the group G1 are activated three times in response to the first issue of the refresh command REF, and the bank selection signals MCBAT1 and MCBAT1 constituting the group G2 are activated. 2, 5 and 6 are activated twice. In response to the second issuance of the refresh command REF, the bank selection signals MCBAT0, 3, 4, and 7 constituting the group G1 are activated twice, and the bank selection signals MCBAT1, 2, 5, and 6 constituting the group G2 are activated. Is activated three times. Although not shown, the operation in response to the odd-numbered (third, fifth,...) Refresh command REF is the same as the operation in response to the first refresh command REF, and the even-numbered (fourth, sixth,... The operation in response to the refresh command REF of (-) is the same as the operation in response to the second refresh command REF. Thus, an average of 2.5 refresh operations are performed in response to one refresh command REF, and the same effect as described with reference to FIG. 8 can be obtained.
 図15は、設定信号M107Kが活性化している場合のリフレッシュ動作を説明するためのタイミング図である。 FIG. 15 is a timing chart for explaining the refresh operation when the setting signal M107K is activated.
 図15に示すように、設定信号M107Kが活性化している場合、リフレッシュコマンドREFの発行によってリフレッシュ信号RFが活性化すると、これに応答してタイミング信号RREFTが3回活性化する。そして、タイミング信号RREFTに応答して選択信号RBA2の論理レベルが反転するため、グループG1を構成するバンク選択信号MCBAT0,3,4,7及びグループG2を構成するバンク選択信号MCBAT1,2,5,6の一方については2回活性化し、他方については1回活性化する。 As shown in FIG. 15, when the setting signal M107K is activated, when the refresh signal RF is activated by issuing the refresh command REF, the timing signal RREFT is activated three times in response thereto. Since the logic level of the selection signal RBA2 is inverted in response to the timing signal RREFT, the bank selection signals MCBAT0, 3, 4, and 7 constituting the group G1 and the bank selection signals MCBAT1, 2, 5, and 5 constituting the group G2 are used. One of 6 is activated twice, and the other is activated once.
 図15に示す例では、1回目のリフレッシュコマンドREFの発行に応答してグループG1を構成するバンク選択信号MCBAT0,3,4,7が2回活性化し、グループG2を構成するバンク選択信号MCBAT1,2,5,6が1回活性化している。また、2回目のリフレッシュコマンドREFの発行に応答してグループG1を構成するバンク選択信号MCBAT0,3,4,7が1回活性化し、グループG2を構成するバンク選択信号MCBAT1,2,5,6が2回活性化している。図示しないが、奇数回目(3回目、5回目・・・)のリフレッシュコマンドREFに応答した動作は1回目のリフレッシュコマンドREFに応答した動作と同じであり、偶数回目(4回目、6回目・・・)のリフレッシュコマンドREFに応答した動作は2回目のリフレッシュコマンドREFに応答した動作と同じである。これにより、1回のリフレッシュコマンドREFに応答して平均1.5回のリフレッシュ動作を行うことになり、図9を用いて説明した効果と同じ効果を得ることが可能となる。 In the example shown in FIG. 15, the bank selection signals MCBAT0, 3, 4, and 7 constituting the group G1 are activated twice in response to the first issue of the refresh command REF, and the bank selection signals MCBAT1 and MCBAT1 constituting the group G2 are activated. 2, 5, and 6 are activated once. Also, in response to the second issuance of the refresh command REF, the bank selection signals MCBAT0, 3, 4, 7 constituting the group G1 are activated once, and the bank selection signals MCBAT1, 2, 5, 6 constituting the group G2 are activated. Is activated twice. Although not shown, the operation in response to the odd-numbered (third, fifth,...) Refresh command REF is the same as the operation in response to the first refresh command REF, and the even-numbered (fourth, sixth,... The operation in response to the refresh command REF of (-) is the same as the operation in response to the second refresh command REF. Thus, an average of 1.5 refresh operations are performed in response to one refresh command REF, and the same effect as described with reference to FIG. 9 can be obtained.
 図示しないが、設定信号M53Kが活性化している場合には、リフレッシュコマンドREFに応答してタイミング信号RREFTが6回活性化する。これにより、リフレッシュコマンドREFが発行される度に、バンク選択信号MCBAT0~MCBAT7がいずれも3回活性化するため、図7を用いて説明した効果と同じ効果を得ることが可能となる。また、設定信号M8Kが活性化している場合には、リフレッシュコマンドREFに応答してタイミング信号RREFTが4回活性化する。これにより、リフレッシュコマンドREFが発行される度に、バンク選択信号MCBAT0~MCBAT7がいずれも2回活性化するため、図6を用いて説明した効果と同じ効果を得ることが可能となる。 Although not shown, when the setting signal M53K is activated, the timing signal RREFT is activated six times in response to the refresh command REF. As a result, every time the refresh command REF is issued, the bank selection signals MCBAT0 to MCBAT7 are all activated three times, so that the same effect as described with reference to FIG. 7 can be obtained. When the setting signal M8K is activated, the timing signal RREFT is activated four times in response to the refresh command REF. Accordingly, every time the refresh command REF is issued, the bank selection signals MCBAT0 to MCBAT7 are all activated twice, so that the same effect as described with reference to FIG. 6 can be obtained.
 以上説明したように、本実施形態においては、バンク選択信号MCBAT0~MCBAT7を2つのグループG1,G2に分け、リフレッシュコマンドREFが発行された場合、グループごとにリフレッシュ動作を制御していることから、第1の実施形態と同様の効果を得ることが可能となる。 As described above, in the present embodiment, the bank selection signals MCBAT0 to MCBAT7 are divided into two groups G1 and G2, and when the refresh command REF is issued, the refresh operation is controlled for each group. The same effect as that of the first embodiment can be obtained.
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。 The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. Needless to say, it is included in the range.
 例えば、上記の各実施形態においては、外部からリフレッシュコマンドREFが発行された場合の動作について説明したが、半導体装置の内部でリフレッシュコマンドを自動生成するセルフリフレッシュモードにおける動作に対しても、本発明の適用が可能である。 For example, in each of the embodiments described above, the operation when the refresh command REF is issued from the outside has been described. However, the present invention is also applicable to the operation in the self-refresh mode in which the refresh command is automatically generated inside the semiconductor device. Can be applied.
 さらに、上記の各実施形態においては、奇数回目のリフレッシュコマンドREFに応答した動作と、偶数回目のリフレッシュコマンドREFに応答した動作を交互に実行しているが、本発明がこれに限定されるものではない。例えば、1回目及び2回目のリフレッシュコマンドREFに応答してN本のワード線をそれぞれ3回活性化させ、3回目のリフレッシュコマンドREFに応答してN本のワード線を2回活性化させる、といった制御を繰り返し行うことも可能である。このような制御を行うことにより、リフレッシュ頻度の調整ピッチをよりいっそう細かく設定することが可能となる。 Further, in each of the above embodiments, the operation in response to the odd-numbered refresh command REF and the operation in response to the even-numbered refresh command REF are executed alternately, but the present invention is not limited to this. is not. For example, N word lines are activated three times in response to the first and second refresh commands REF, and N word lines are activated twice in response to the third refresh command REF. Such control can be repeated. By performing such control, the refresh frequency adjustment pitch can be set more finely.
10   半導体装置
11   メモリセルアレイ
12   ロウデコーダ
13   カラムデコーダ
14   モードレジスタ
15   FIFO回路
16   入出力回路
17   アドレスラッチ回路
18   アドレスセレクタ
21   アドレス端子
22   コマンド端子
23   クロック端子
24   データ端子
25   電源端子
31   アドレス入力回路
32   アドレスラッチ回路
33   コマンド入力回路
34   コマンドデコード回路
35   リフレッシュ制御回路
36   クロック入力回路
37   タイミングジェネレータ
38   内部電源発生回路
39   DLL回路
100,100a  起動回路
110,120  パルス生成回路
130  カウンタ回路
131~136  ラッチ回路
140~143,150  ゲート回路
161,162  パルス生成回路
170  カウンタ回路
171~176  ラッチ回路
180~184,190  ゲート回路
200,200a  リフレッシュカウンタ
201~206  ラッチ回路
210  バンクセレクタ
211~226  ラッチ回路
300,300a  バンク選択回路
401  レジスタ回路部
402  デコーダ
411~413  ゲート回路
421,422  ラッチ回路
BANK0~BANK7  メモリバンク
G1,G2  グループ
M53,M8,M107,M53K,M64K,M8K,M107K  設定信号
M64KT,M8KT  モード信号
MCBAT0~MCBAT7  バンク選択信号
RF   リフレッシュ信号
RMOD 切り替え信号
RREFT  タイミング信号
DESCRIPTION OF SYMBOLS 10 Semiconductor device 11 Memory cell array 12 Row decoder 13 Column decoder 14 Mode register 15 FIFO circuit 16 Input / output circuit 17 Address latch circuit 18 Address selector 21 Address terminal 22 Command terminal 23 Clock terminal 24 Data terminal 25 Power supply terminal 31 Address input circuit 32 Address Latch circuit 33 Command input circuit 34 Command decode circuit 35 Refresh control circuit 36 Clock input circuit 37 Timing generator 38 Internal power generation circuit 39 DLL circuit 100, 100a Start circuit 110, 120 Pulse generation circuit 130 Counter circuit 131-136 Latch circuit 140- 143 and 150 Gate circuits 161 and 162 Pulse generation circuit 170 Counter circuits 171 to 176 190 to 184, 190 gate circuit 200, 200a refresh counter 201 to 206 latch circuit 210 bank selector 211 to 226 latch circuit 300, 300a bank selection circuit 401 register circuit unit 402 decoder 411 to 413 gate circuit 421, 422 latch circuit BANK0 to BANK7 Memory banks G1, G2 Groups M53, M8, M107, M53K, M64K, M8K, M107K Setting signal M64KT, M8KT Mode signal MCBAT0 to MCBAT7 Bank selection signal RF Refresh signal RMOD Switching signal RREFT Timing signal

Claims (13)

  1.  リフレッシュ動作によるデータの保持が必要な複数のメモリセルと、前記複数のメモリセルを選択する複数のワード線を含むメモリセルアレイと、
     リフレッシュ信号の第1の活性化に応答して前記複数のワード線のうち第1の本数のワード線を選択することにより前記リフレッシュ動作を行い、前記リフレッシュ信号の第2の活性化に応答して前記複数のワード線のうち前記第1の本数とは異なる第2の本数のワード線を選択することにより前記リフレッシュ動作を行うリフレッシュ制御回路と、を備えることを特徴とする半導体装置。
    A plurality of memory cells that need to retain data by a refresh operation, and a memory cell array including a plurality of word lines that select the plurality of memory cells;
    The refresh operation is performed by selecting a first number of word lines among the plurality of word lines in response to the first activation of the refresh signal, and in response to the second activation of the refresh signal. A semiconductor device comprising: a refresh control circuit that performs the refresh operation by selecting a second number of word lines different from the first number among the plurality of word lines.
  2.  前記リフレッシュ信号は、前記第1の活性化及び前記第2の活性化の順に活性化することを特徴とする請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the refresh signal is activated in the order of the first activation and the second activation.
  3.  前記リフレッシュ制御回路は、前記リフレッシュ信号の前記第2の活性化に続く第3の活性化に応答して前記複数のワード線のうち前記第1の本数のワード線を選択することにより前記リフレッシュ動作を行うことを特徴とする請求項2に記載の半導体装置。 The refresh control circuit selects the first number of word lines from among the plurality of word lines in response to a third activation following the second activation of the refresh signal. The semiconductor device according to claim 2, wherein:
  4.  前記リフレッシュ制御回路は、前記リフレッシュ信号の前記第3の活性化に続く第4の活性化に応答して前記複数のワード線のうち前記第2の本数のワード線を選択することにより前記リフレッシュ動作を行うことを特徴とする請求項3に記載の半導体装置。 The refresh control circuit selects the second number of word lines among the plurality of word lines in response to a fourth activation following the third activation of the refresh signal, thereby performing the refresh operation. The semiconductor device according to claim 3, wherein:
  5.  前記リフレッシュ制御回路は、前記リフレッシュ信号の前記第1の活性化に応答して前記複数のワード線のうち第3の本数のワード線を第1の回数選択することにより前記第1の本数のワード線を選択し、前記リフレッシュ信号の前記第2の活性化に応答して前記複数のワード線のうち前記第3の本数のワード線を前記第1の回数とは異なる第2の回数選択することにより前記第2の本数のワード線を選択することを特徴とする請求項1に記載の半導体装置。 The refresh control circuit selects the third number of word lines from the plurality of word lines a first number of times in response to the first activation of the refresh signal, thereby causing the first number of words. Selecting a line and selecting the third number of word lines out of the plurality of word lines for a second number of times different from the first number in response to the second activation of the refresh signal. The semiconductor device according to claim 1, wherein the second number of word lines is selected.
  6.  前記第1の回数と前記第2の回数の和は2で割り切れないことを特徴とする請求項5に記載の半導体装置。 6. The semiconductor device according to claim 5, wherein the sum of the first number and the second number is not divisible by two.
  7.  リフレッシュ動作によるデータの保持が必要な複数のメモリセルと、前記複数のメモリセルを選択する複数のワード線をそれぞれ含む第1及び第2のメモリバンクと、
     リフレッシュ信号の第1の活性化に応答して、前記第1のメモリバンクに含まれる前記複数のワード線のうち第1の本数のワード線を選択するとともに、前記第2のメモリバンクに含まれる前記複数のワード線のうち前記第1の本数とは異なる第2の本数のワード線を選択することにより前記リフレッシュ動作を行うリフレッシュ制御回路と、を備えることを特徴とする半導体装置。
    A plurality of memory cells that need to hold data by a refresh operation, and first and second memory banks each including a plurality of word lines that select the plurality of memory cells;
    In response to the first activation of the refresh signal, a first number of word lines are selected from among the plurality of word lines included in the first memory bank and included in the second memory bank. A semiconductor device comprising: a refresh control circuit that performs the refresh operation by selecting a second number of word lines different from the first number among the plurality of word lines.
  8.  前記リフレッシュ制御回路は、前記リフレッシュ信号の第2の活性化に応答して、前記第1のメモリバンクに含まれる前記複数のワード線のうち前記第2の本数のワード線を選択するとともに、前記第2のメモリバンクに含まれる前記複数のワード線のうち前記第1の本数のワード線を選択することにより前記リフレッシュ動作を行うことを特徴とする請求項7に記載の半導体装置。 The refresh control circuit selects the second number of word lines from the plurality of word lines included in the first memory bank in response to the second activation of the refresh signal, and 8. The semiconductor device according to claim 7, wherein the refresh operation is performed by selecting the first number of word lines among the plurality of word lines included in a second memory bank.
  9.  前記リフレッシュ信号は、前記第1の活性化及び前記第2の活性化の順に活性化することを特徴とする請求項8に記載の半導体装置。 9. The semiconductor device according to claim 8, wherein the refresh signal is activated in the order of the first activation and the second activation.
  10.  前記リフレッシュ制御回路は、前記リフレッシュ信号の前記第2の活性化に続く第3の活性化に応答して、前記第1のメモリバンクに含まれる前記複数のワード線のうち前記第1の本数のワード線を選択するとともに、前記第2のメモリバンクに含まれる前記複数のワード線のうち前記第2の本数のワード線を選択することにより前記リフレッシュ動作を行うことを特徴とする請求項9に記載の半導体装置。 The refresh control circuit is responsive to a third activation following the second activation of the refresh signal, and the first number of the plurality of word lines included in the first memory bank. 10. The refresh operation is performed by selecting a word line and selecting the second number of word lines from the plurality of word lines included in the second memory bank. The semiconductor device described.
  11.  前記リフレッシュ制御回路は、前記リフレッシュ信号の前記第3の活性化に続く第4の活性化に応答して、前記第1のメモリバンクに含まれる前記複数のワード線のうち前記第2の本数のワード線を選択するとともに、前記第2のメモリバンクに含まれる前記複数のワード線のうち前記第1の本数のワード線を選択することにより前記リフレッシュ動作を行うことを特徴とする請求項10に記載の半導体装置。 The refresh control circuit is responsive to a fourth activation following the third activation of the refresh signal, and the second number of the plurality of word lines included in the first memory bank. 11. The refresh operation is performed by selecting a word line and selecting the first number of word lines among the plurality of word lines included in the second memory bank. The semiconductor device described.
  12.  前記リフレッシュ制御回路は、前記第1のメモリバンクに含まれる前記複数のワード線のうち第3の本数のワード線を第1の回数選択することにより前記第1の本数のワード線を選択し、前記第2のメモリバンクに含まれる前記複数のワード線のうち前記第3の本数のワード線を前記第1の回数とは異なる第2の回数選択することにより前記第2の本数のワード線を選択することを特徴とする請求項7に記載の半導体装置。 The refresh control circuit selects the first number of word lines by selecting a third number of word lines among the plurality of word lines included in the first memory bank a first number of times; The second number of word lines are selected by selecting the third number of word lines out of the plurality of word lines included in the second memory bank a second number of times different from the first number of times. The semiconductor device according to claim 7, wherein the semiconductor device is selected.
  13.  前記第1の回数と前記第2の回数の和は2で割り切れないことを特徴とする請求項12に記載の半導体装置。 13. The semiconductor device according to claim 12, wherein the sum of the first number and the second number is not divisible by two.
PCT/JP2014/053715 2013-02-28 2014-02-18 Semiconductor device WO2014132836A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013038727 2013-02-28
JP2013-038727 2013-02-28

Publications (1)

Publication Number Publication Date
WO2014132836A1 true WO2014132836A1 (en) 2014-09-04

Family

ID=51428108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053715 WO2014132836A1 (en) 2013-02-28 2014-02-18 Semiconductor device

Country Status (2)

Country Link
TW (1) TW201510998A (en)
WO (1) WO2014132836A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013242958A (en) * 2012-05-17 2013-12-05 Samsung Electronics Co Ltd Semiconductor memory device adjusting refresh cycle, memory system, and operation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298597A (en) * 1988-05-27 1989-12-01 Hitachi Ltd Semiconductor memory
JP2007287267A (en) * 2006-04-18 2007-11-01 Elpida Memory Inc Semiconductor memory device
JP2012022751A (en) * 2010-07-15 2012-02-02 Elpida Memory Inc Semiconductor device
JP2013242958A (en) * 2012-05-17 2013-12-05 Samsung Electronics Co Ltd Semiconductor memory device adjusting refresh cycle, memory system, and operation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298597A (en) * 1988-05-27 1989-12-01 Hitachi Ltd Semiconductor memory
JP2007287267A (en) * 2006-04-18 2007-11-01 Elpida Memory Inc Semiconductor memory device
JP2012022751A (en) * 2010-07-15 2012-02-02 Elpida Memory Inc Semiconductor device
JP2013242958A (en) * 2012-05-17 2013-12-05 Samsung Electronics Co Ltd Semiconductor memory device adjusting refresh cycle, memory system, and operation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013242958A (en) * 2012-05-17 2013-12-05 Samsung Electronics Co Ltd Semiconductor memory device adjusting refresh cycle, memory system, and operation method thereof

Also Published As

Publication number Publication date
TW201510998A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
US11315619B2 (en) Apparatuses and methods for distributing row hammer refresh events across a memory device
US11361808B2 (en) Apparatuses and methods for selective row refreshes
US11955158B2 (en) Apparatuses and methods for access based refresh timing
US9984738B2 (en) Apparatuses and methods for refreshing memory cells of a semiconductor device
US8547759B2 (en) Semiconductor device performing refresh operation
US8547768B2 (en) Verifying multi-cycle self refresh operation of semiconductor memory device and testing the same
US20040008544A1 (en) Semiconductor memory
JP4534141B2 (en) Semiconductor memory device
JP2010170596A (en) Semiconductor memory device
JP2015219938A (en) Semiconductor device
US10923172B2 (en) Apparatuses and methods for multi-bank refresh timing
US11749324B2 (en) Variable clock divider
JP4563694B2 (en) Semiconductor memory device and word line driving method.
WO2014132836A1 (en) Semiconductor device
KR100529036B1 (en) Semiconductor memory device with decreased self refresh current
JP2008004249A (en) Semiconductor integrated circuit device
JP2013101733A (en) Semiconductor device
TW201503136A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14756457

Country of ref document: EP

Kind code of ref document: A1