WO2014132717A1 - Interaction analysis device - Google Patents

Interaction analysis device Download PDF

Info

Publication number
WO2014132717A1
WO2014132717A1 PCT/JP2014/051615 JP2014051615W WO2014132717A1 WO 2014132717 A1 WO2014132717 A1 WO 2014132717A1 JP 2014051615 W JP2014051615 W JP 2014051615W WO 2014132717 A1 WO2014132717 A1 WO 2014132717A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
measurement sample
interaction analysis
amount
analysis apparatus
Prior art date
Application number
PCT/JP2014/051615
Other languages
French (fr)
Japanese (ja)
Inventor
修孝 隈崎
隆之 小原
高橋 智
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Publication of WO2014132717A1 publication Critical patent/WO2014132717A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons

Definitions

  • the present invention relates to an apparatus for analyzing an interaction between a substance and a living body.
  • the present invention relates to a method and apparatus for measuring how a biological sample such as a cell shows a response to a stimulus.
  • a technique for determining whether cells are sensitive to drugs has become widespread.
  • a method for determining whether or not the target molecule and the target drug are physically bound has been used.
  • the effect of a drug can be more accurately evaluated by directly measuring the physiological response of the target cell of the drug.
  • This cell-based assay technique is used not only for drug discovery but also in various fields. For example, as an allergy test, it is possible to determine whether a patient responds to a specific allergen, or to determine whether a substance may cause an allergic reaction.
  • a typical procedure for a cell-based assay is as follows. First, a cell to be a measurement sample is cultured or collected from a subject. Next, the cells are fixed on the surface of a substrate such as a sensor chip. Then, a reaction reagent is added, brought into contact with the measurement sample, observed and measured using means such as a fluorescence microscope, and the obtained data is analyzed to obtain the presence / absence and size of the cell.
  • a technique using surface plasmon resonance (SPR) has been used in recent years.
  • Patent Document 1 a cell response to an external stimulus is observed using SPR.
  • a gold thin film is formed on the surface, and a self-assembled monomolecular film having an amino group terminal is constructed on the substrate to obtain a sensor chip.
  • the cell suspension is dropped onto the sensor chip to fix the cells on the surface.
  • the substrate on which the cells are fixed is set in the apparatus and SPR observation is performed.
  • the incident angle at this time is set to an angle at which resonance occurs due to the dielectric constant of the cell. For this reason, the intensity of the reflected light is reduced.
  • the cell responds, for example, releases histamine.
  • the dielectric constant of the cell changes, the resonance state collapses, and the intensity of reflected light increases.
  • SPR imaging SPRI
  • Patent Document 1 has a problem that the signal intensity of reflected light depends on the number of cells, so that quantitative evaluation is difficult and reproducibility for each measurement is low.
  • Patent Document 2 provides a means for correcting the variation in the result due to the number of cells by calculating the number of cells from the SPR measurement result and converting it to the amount of change per unit cell. .
  • an SPR substrate having a region to which cells can adhere and a region to which cells cannot adhere is prepared, and immersed and cultured in a cell culture medium. The substrate is washed and set in the apparatus, and SPR observation is performed while gradually changing the incident angle.
  • the number of cells is calculated by dividing the difference in angles by the fluctuation value of the resonance angle per cell obtained in advance. Thereafter, the incident angle is set to the resonance angle in the region where the cells are fixed, a stimulating substance is added, and the fluctuation amount of the resonance angle is measured. Finally, by dividing the fluctuation amount by the number of cells, a value normalized as the fluctuation amount per unit cell can be obtained.
  • the number of cells is calculated with a resonance angle fluctuation of 0.4 mdeg when one cell is fixed in an area of 1 mm ⁇ 2.
  • a highly accurate rotation stage is required, This leads to an increase in device cost.
  • the resonance angle is obtained by curve fitting after creating a resonance curve using a rotary stage with low resolution, but this method inevitably causes an error in the calculation result.
  • the value of the resonance angle fluctuation per cell differs depending on the size and type of the cell, the versatility is low.
  • the present invention provides an interaction analysis apparatus that automates fixing of a measurement sample to a measurement substrate and allows an operator to arbitrarily control the amount of the measurement sample at the time of observation.
  • One aspect includes a substrate, a liquid feeding means for providing a measurement sample and a reaction reagent to the substrate, an observation means for observing the measurement sample on the substrate surface, and based on the observation result, Analyzing means for analyzing information related to the amount of the measurement sample fixed on the substrate, and control means for adjusting the amount of the measurement sample fixed on the substrate based on the information; To do.
  • the apparatus configuration described in the first embodiment. 2 is a configuration around a flow cell described in the first embodiment. 3 is a flowchart of the operation described in the first embodiment. It is an analysis result of Example 1.
  • the apparatus configuration described in the second embodiment. 2 is a configuration around a flow cell described in the second embodiment.
  • the apparatus configuration described in the third embodiment. 4 is another apparatus configuration described in the third embodiment.
  • the apparatus configuration of the first embodiment is shown in FIG.
  • the analysis apparatus 101 includes an irradiation unit 102, a detection unit 103, a flow cell 104, a prism 105, and a liquid feeding unit 106.
  • the operation of the analysis apparatus 101 is controlled by the control PC 108.
  • a monitor 109 is connected to the control PC 108 and displays analysis results and the like.
  • the analysis device 101 is provided with a temperature control device 107, and by adjusting the temperature of the CO2 gas sent from the CO2 gas cylinder 110, the temperature inside the analysis device 101 or the entire temperature and CO2 concentration can be arbitrarily set. It can be set.
  • the irradiation unit 102 and the detection unit 103 will be described.
  • the irradiation unit 102 includes components such as a light source 111, an optical fiber 112, a condensing lens 113, and a polarizing element 114.
  • the detection unit 103 includes components such as an imaging lens 115 and an image sensor 116.
  • the light source 111 is an excitation light source for SPR observation.
  • the excitation light 117 emitted from the optical fiber 112 is condensed by the condenser lens 113 and shaped into a parallel beam.
  • the S-polarized light component is removed from the excitation light 117 that has become a parallel beam by the polarizing element 114, and only the P-polarized light component is obtained.
  • the excitation light 117 that has become P-polarized light enters the prism 105, enters the flow cell 104 from the back side of the flow cell 104, and enters the measurement region 118 at an angle ⁇ . Thereafter, the excitation light 117 is reflected at an angle ⁇ to become reflected light 118, passes through the flow cell 104 and the prism 105 again, and is emitted out of the prism 105.
  • the emitted reflected light is collected by the imaging lens 115 and imaged on the image sensor 116 as a two-dimensional image.
  • the image sensor 116 acquires an image and transmits image data to the control PC 108.
  • the control PC 108 includes an analysis unit 121 that analyzes the image data sent from the image sensor 116 and displays the result on the monitor 109.
  • the irradiation unit 102 and the detection unit 103 are arranged symmetrically with respect to the center line of the prism. Note that the irradiation unit 102 and the detection unit 103 are arranged on a drive stage that can take an arbitrary angle with respect to the flow cell 104, but are omitted in FIG. Further, a diaphragm for changing the irradiation range of the excitation light is provided between the condenser lens 113 and the polarizing element 114, but this is omitted in FIG.
  • an LED light source (wavelength 640 nm) is used as the light source 111
  • a quartz core fiber (core diameter 600 ⁇ m, NA 0.22) is used as the optical fiber 112
  • a spherical achromatic lens (outer diameter 50 mm, focal length is used as the condenser lens 113. 25 mm)
  • a polarizing filter as the polarizing element 114 (adaptive wavelength 400 to 700 nm)
  • an objective telecentric lens (5 times magnification) as the imaging lens 115
  • a 1/2 type CMOS camera (effective pixel number 1280 ⁇ ) as the image sensor 116 1024 (1.3 million pixels) and pixel size 5.2 ⁇ m) were used.
  • the spot diameter of the excitation light 117 after passing through the condensing lens 113 is ⁇ 10 mm.
  • an LED having a wavelength of 640 nm is used as the light source 111, but an apparatus that oscillates electromagnetic waves having different wavelengths may be used.
  • the range of wavelengths that can be selected is, for example, 300 nm to 300 ⁇ m.
  • a solid-state laser, a gas laser, a semiconductor laser, or the like can be used.
  • a desired wavelength component may be extracted from a single light source 111 that oscillates a plurality of wavelengths by a band-pass filter or the like.
  • the light source 111 is, for example, a xenon lamp.
  • a commercially available polarizing filter is used as the polarizing element 114, but components having the same function such as a polarizing beam splitter and a Glan-Thompson prism can be used.
  • an objective telecentric lens is used as the imaging lens, but a commercially available machine vision lens, zoom lens, or the like can be used.
  • a commercially available machine vision lens, zoom lens, or the like can be used.
  • the liquid feeding unit 106 includes reagent reservoirs 123 to 125, liquid feeding tubes 126 to 127, switching valves 128 to 129, a liquid feeding pump 130, and a waste liquid tank 131.
  • a liquid supply tube is connected to each of the reagent reservoirs 123 to 125 and is integrated into the liquid supply tube 126 via the switching valves 128 to 129.
  • the liquid feeding tube 126 is connected to the opening (for introduction) of the flow cell 104.
  • the flow cell 104 is provided with another opening (for discharge), and another liquid supply tube 127 is connected thereto.
  • the end portion of the liquid feeding tube 127 is connected to the waste liquid tank 131.
  • a liquid feed pump 130 is attached to the liquid feed tube 127 and moves the liquid from the reagent reservoirs 123 to 125 to the flow cell 104.
  • the kind of reagent, the amount of liquid, the liquid supply speed, the liquid supply timing, etc. sent from the reservoirs 123 to 125 to the flow cell 104 are determined by the liquid supply system control unit 120 of the control PC 108 to the switching valves 128 to 129 and the liquid supply pump 130. This is done by issuing an operation instruction to the user.
  • the reservoir 123 is filled with a measurement sample
  • the reservoir 124 is filled with a reaction reagent
  • the reservoir 125 is filled with a buffer.
  • TYGON R-3603 inner diameter 0.8 mm, manufactured by Saint-Gobain
  • a three-way solenoid valve is used as the switching valves 128 to 129
  • a peristaltic pump (maximum) is used as the liquid feeding pump 130.
  • a pressure of 0.1 MPa was used.
  • the individual parts are not limited to this, and the number of parts can be reduced by using, for example, a 6-way switching valve as the switching valve.
  • another liquid feeding means such as a syringe pump can be selected.
  • the structure of the mechanism that holds the flow cell 104 and the prism 105 is shown in FIG.
  • the flow cell 104 includes a substrate 201 and a flow path component 202.
  • the flow cell 104 and the prism 105 are held by a holder 203.
  • the substrate 201 is produced by forming a gold thin film on an observation surface (front surface / upper side in FIG. 2) for fixing a measurement sample of a glass substrate, like a general SPR substrate.
  • a groove 204 as a flow path pattern is formed on the surface of the flow path component 202.
  • the holder 203 is provided with openings 209 to 210 through which the liquid feeding tubes 126 to 127 are passed.
  • the liquid feeding tubes 126 to 127 pass through the holder openings 209 to 210 and are connected to the openings 207 to 208 on the flow path component 202, respectively.
  • the holder 203 is provided with an opening 212 through which the temperature-controlled CO2 gas pipe 211 is passed.
  • Polydimethylsiloxane (PDMS) used as the flow path component 202 has a high gas exchange function, and the temperature and CO2 concentration on the surface of the substrate 201 can be kept constant. In this embodiment, the temperature is adjusted to 37 ° C. and the CO 2 concentration is 5% so that the cells are most active.
  • the holder 203 is attached with a linear guide for visual field movement and focus adjustment, but is omitted in FIG.
  • the material of the substrate 201 used in this example is S-LAL10 manufactured by Ohara, and the shape is a plate shape of 20 ⁇ 20 mm in length and width and 1.0 mm in thickness.
  • the thickness of the gold thin film formed on the surface is 50 nm.
  • 1 nm-thick chromium exists as an adhesive layer between the glass substrate and the gold thin film.
  • the material of the flow path component 202 used in this example is PDMS, and the shape is a plate shape having a length and width of 18 mm and a thickness of 5 mm.
  • the size of the groove 204 is 2 mm in width, 1 mm in depth, and 10 mm in length.
  • the material of the prism 105 used in this example is S-LAL10 manufactured by Ohara, which is the same as that of the substrate 201, and the shape is a triangular prism shape having a height of 20 mm with an equilateral triangle having a side of 20 mm as the bottom.
  • the substrate 201 and the prism 105 side surface (square surface) are in optical contact with matching oil (not shown).
  • Cargill standard refraction liquid (refractive index 1.72) is used as matching oil.
  • the surface of the substrate 201 may be processed to promote the fixation of the measurement sample.
  • it may be treated with poly L-lysine or various antibodies according to the measurement sample.
  • it is possible to easily hold the measurement sample by providing minute unevenness on the surface of the substrate 201.
  • the PDMS flow path 202 is attached to the substrate 201.
  • a structure in which a flow path pattern is formed on a thin sheet of PDMS, for example, may be sandwiched between the substrate 201 and a member such as a cover glass. .
  • a plurality of the grooves 204 of the flow cell 104 may be provided.
  • the number and width of the grooves 204 and the interval between the grooves 204 are not limited, but the measurement region 118 covers part or all of the plurality of grooves 204, and the grooves 204 can be separated on the image sensor 116. It is desirable that the image is formed under various conditions.
  • S-LAL10 is used as the material of the prism 105 and the substrate 201.
  • any material can be used as long as it is optically transparent, such as glass, sapphire, quartz, acrylic resin, and the like. It can be used.
  • the prism 105 and the substrate 201 are preferably made of the same material in order to prevent reflection at the interface when light is moved between them, but a combination of different materials is used as long as it is not totally reflected at the interface. It does not matter.
  • the shape of the prism 105 is not limited to a triangular prism, and may be another shape such as a trapezoid or a quadrangle. For example, when a semi-cylindrical prism is used, the excitation light 117 always enters the prism 105 regardless of the incident angle, and the loss due to reflection can be minimized.
  • the substrate 201 on which a gold thin film is formed is used.
  • the gold thin film is directly formed on the surface of the prism 105, and the analysis may be performed there.
  • the temperature of the substrate 201 is controlled by introducing warm air into the holder 203, but the temperature of the entire apparatus 101 may be controlled. Further, for example, a temperature control component such as a Peltier element may be brought into contact with the side surface of the prism 105 directly or indirectly. The temperature may be controlled by forming a conductive thin film such as ITO on the side surface of the prism 105 and energizing it.
  • a temperature control component such as a Peltier element may be brought into contact with the side surface of the prism 105 directly or indirectly.
  • the temperature may be controlled by forming a conductive thin film such as ITO on the side surface of the prism 105 and energizing it.
  • the CO2 concentration in the holder 203 is controlled, but the CO2 concentration of the entire apparatus 101 may be controlled.
  • RBL-2H3 cells are activated when the IgE receptor on the surface binds to an antigen via IgE bound to the receptor. Then, granules containing intracellular histamine and proteolytic enzymes are released (degranulated). This is said to play an important role in the development of type I allergy.
  • This response phenomenon of RBL-2H3 cells to antigen stimulation is widely used as a method for evaluating allergic reactions. For example, foods, drugs, and environmental substances (pollen, house dust, etc.) can be used as antigens (reaction reagents), and the antigenicity of substances (whether they cause allergic reactions) can be evaluated. Or you may evaluate the antiallergic effect of the substance added besides an antigen.
  • FIG. 3 is a flowchart of observation according to the present invention.
  • the cell function observation method according to the present invention will be described with reference to FIGS.
  • RBL-2H3 cells were cultured (5% CO2, 37 ° C.) in RPMI (Roswell Park Memorial Institute) medium supplemented with 10% fetal calf serum (FCS), 100 unit / mL penicillin, and 100 ⁇ g / mL streptomycin.
  • FCS fetal calf serum
  • the cells are cultured for 24 hours (5% CO 2, 37 ° C.) in a culture medium supplemented with 50 ng / mL mouse monoclonal anti-DNP-IgE antibody (Sigma-Aldrich) in a cell culture dish (HydroCell, Cellseed). Sensitized the cells.
  • the sensitized cells were treated with a buffer (Siramian buffer containing 5.6 mM glucose, 1 mM CaCl2, 0.1% BSA (119 mM NaCl, 5 mM KCl, 0.4 mM MgCl, 25 mM piperazine-N, N′-bis (2- resuspended in ethanolsulfonic acid (PIPES), 40 mM NaOH, pH 7.2) to a concentration of 1 ⁇ 10 6 / mL, and used as a measurement sample for measurement.
  • the measurement sample was pre-heated (5% CO 2, 37 ° C.) for 10 minutes before being set in the apparatus.
  • DNP-HSA antigen prepared with the above-mentioned buffer to a concentration of 50 ng / mL was used.
  • step P1 the incident angle is adjusted.
  • the liquid feeding system control unit 120 operates the pump 130 and the valves 128 to 129 to send the buffer to the flow cell 104, then stops the pump 130 and fills the flow cell 104 with the buffer.
  • liquid feeding was performed at a liquid feeding amount of 500 ⁇ L and a liquid feeding speed of 1.6 ⁇ L / sec (100 ⁇ L / min).
  • the optical system control unit 122 operates the irradiation unit 102 and the detection unit 103 to perform SPR observation while continuously changing the incident angle of the excitation light 117.
  • images were acquired while continuously changing the incident angle range of 45 to 70 ° at intervals of 0.5 °.
  • the exposure time of the image sensor 116 is 0.1 second.
  • the image data is sequentially transmitted to the control PC 108, and the analysis unit 121 analyzes the signal intensity of the reflected light 119 from the transmitted image.
  • the intensity of the reflected light 119 a value obtained by averaging the sum of the signal intensities in the region where the buffer exists by the number of pixels is used.
  • the analysis unit 121 creates a plot with the incident angle of the excitation light 117 as the X-axis and the signal intensity of the reflected light 119 as the Y-axis, and sets the point showing the minimum value as the incident angle in response observation described later. In this example, the incident angle was 57.5 °.
  • a target value for the amount of fixed cells at the time of observation is set.
  • the target value of the cell fixation amount is directly input by the operator. Alternatively, it is automatically set by the operator selecting a condition (for example, “high magnification observation”) recorded in the apparatus 101 in advance.
  • the average cell density was adopted as an index of the amount of fixed cells. Below, the calculation method for setting the target value of average cell density is demonstrated.
  • the probability B (0) that another cell does not exist within this range can be expressed by the following equation (2).
  • r is equal to the center-to-center distance (cell diameter) of each cell when two cells contact each other.
  • Equation (3) ⁇ ⁇ logB (0) ⁇ / ( ⁇ r ⁇ 2)
  • the target value of the average cell density By setting the target value of the average cell density to 2206 cells / mm ⁇ 2 or less, the number of cells that do not overlap in the visual field becomes a majority. That is, the amount of work for selecting cells without overlapping can be reduced, and the efficiency of analysis is improved.
  • a preferable average cell density ⁇ is 335 cells / mm 2 or less, and at this time, the condition that 90% of cells exist without overlapping is satisfied.
  • a more preferable average cell density ⁇ is 163 cells / mm ⁇ 2, which satisfies the condition that 95% of cells exist without overlapping. In the above conditions, the number of non-overlapping cells in the visual field is 427 and 219, respectively.
  • the target value of the average cell density is set to 335 cells / mm ⁇ 2 or more, the ratio of cells with overlapping exceeds 10%, so it takes time to select cells without overlapping. It is possible to observe. That is, an analysis result with little variation can be obtained by increasing the absolute number of cells to be observed.
  • a preferable average cell density is 1135 cells / mm 2 or more, and the number of non-overlapping cells in the field of view is 1126.
  • a more preferable average cell density is 2206 cells / mm 2 or more, and the number of non-overlapping cells in the field of view is 1563.
  • the average cell density exceeds 3182 cells / mm ⁇ 2, the number of non-overlapping cells in the field of view decreases, and a large number of overlapping cells occupy. For this reason, it is preferable that the average cell density is 3182 cells / mm ⁇ 2 or more in applications such as mainly observing overlapping cells.
  • the operator can set an optimum average cell density according to the purpose of observation.
  • the operator may input a desired ratio of non-overlapping cells (for example, 90%) from a text box or the like, calculate a suitable average cell density, and set it as a target value.
  • the set value of the average cell density was set to 100 cells / mm 2 as a condition that a sufficient number of cells exist in the visual field and most of the cells do not overlap.
  • step P3 cells are fixed on the surface of the substrate 201.
  • the liquid supply system control unit 120 operates the pump 130 and the valves 128 to 129 to send the measurement sample to the flow cell 104, stops the pump 130, and fills the flow cell 104 with the measurement sample.
  • liquid feeding was performed at a liquid feeding amount of 500 ⁇ L and a liquid feeding speed of 1.6 ⁇ L / sec (100 ⁇ L / min).
  • step P4 the number of cells attached to the surface of the substrate 201 is monitored.
  • the optical system control unit 122 operates the irradiation unit 102 and the detection unit 103 to acquire an image after a lapse of a certain time from the start of this process, and sends the image data to the control PC 108.
  • the setting is made so that an image is acquired 10 minutes after the start of the process.
  • the analysis unit 121 analyzes the image and calculates the amount of fixed cells at that time. In this example, first cut out the image data of the region where the measurement sample exists, binarize the cut out image, obtain the number of cells by performing particle number analysis, find the area from the number of pixels of the cut out image data, Cell density was calculated by dividing cell number by area.
  • the distance between cells for example, the distance between the centers or the distance between the contours of the cells is calculated from the acquired image, and the maximum value, the minimum value, the average value, the median value, etc. It may be controlled as an index.
  • step P5 the amount of fixed cells is determined.
  • the analysis unit 121 compares the fixed amount calculated in the process P4 with the target value set in the process P2, and instructs one or both of the liquid feeding system control unit 120 and the optical system control unit 122 according to the result. put out.
  • the magnitude of the value whether the difference between the two is larger than the reference value, whether the ratio between the two is larger than the reference value, or the like may be used.
  • not only a fixed amount at one point in time but also a change with time may be used.
  • a differential value at a certain time point an average increase / decrease amount or increase / decrease rate in a certain time zone, an integrated value, an integrated value, or the like may be used.
  • Parameters such as a reference value used for comparison may be set in advance at the time of manufacture, adjustment, and setting of the apparatus.
  • a GUI is used in the course of the analysis flow.
  • an operator may input from the command line or read from a setting file or the like.
  • the analysis unit 121 uses these comparison methods to determine whether the fixed amount needs to be adjusted or whether the fixed amount needs to be adjusted, so that it is possible to proceed to the next step P6.
  • the analysis unit 121 performs necessary processing of the liquid feeding system control unit 120 and the optical system control unit 122. Either or both are instructed, and the process proceeds to step P4 again.
  • the progress of the fixation reaction may be promoted by simply issuing an instruction to wait for a certain period of time.
  • the liquid supply system control unit 120 operates the pump 130 and the valves 128 to 129 to send a buffer to the flow cell 104, and replaces the measurement sample in the flow cell 104 with the buffer.
  • liquid feeding was performed at a liquid feeding amount of 500 ⁇ L and 1.6 ⁇ L / second (100 ⁇ L / min).
  • the fixation reaction termination process is not limited to this method, and various methods can be used. A drug that inhibits or stops the fixation reaction may be added. Other physical conditions such as temperature and pH may be changed.
  • step P6 response observation is performed.
  • the optical system control unit 122 operates the irradiation unit 102 and the detection unit 103 to continuously acquire images at a constant time interval (time-lapse shooting).
  • the exposure time is 0.1 seconds and the shooting interval is 10 seconds.
  • the captured image data is sequentially transmitted to the control PC 108, and the analysis unit 121 analyzes the signal intensity of the reflected light 119 from the transmitted image.
  • the signal intensity of the reflected light 119 is analyzed using a value obtained by averaging the signal intensity of all the pixels in the region where the buffer exists. For example, all the pixels in all the regions including the flow path component are used. May be calculated. Further, the analysis may be limited to one or more arbitrary regions.
  • the analysis unit 121 creates a plot with the elapsed time as the X axis and the reflected light signal intensity as the Y axis, and displays the plot on the monitor 109 in real time.
  • a reaction reagent containing a stimulating substance is brought into contact with the cells.
  • the liquid supply system control unit 120 operates the pump 130 and the valves 128 to 129 to send the reaction reagent to the flow cell 104, the pump 130 is stopped and the flow cell 104 is filled with the reaction reagent.
  • the reaction reagent was fed at a feeding rate of 500 ⁇ L and a feeding rate of 1.6 ⁇ L / sec (100 ⁇ L / min).
  • Time lapse photography ends after a certain period of time has elapsed since the reagent was charged.
  • the optical system control unit 122 operates the irradiating unit 102 and the detecting unit 103 to stop the operations of the irradiating unit 102 and the detecting unit 103, and displays on the monitor 109 that the measurement is completed to notify the operator.
  • time-lapse imaging was completed after 1800 seconds had elapsed since the reaction reagent was charged.
  • the liquid supply system control unit 120 operates the pump 130 and the valves 128 to 129 to send the buffer to the flow cell 104, and after washing the liquid supply tubes 126 to 127 and the flow cell 104 with the buffer, the pump 130 is stopped.
  • liquid feeding was performed at a liquid feeding amount of 4000 ⁇ L and a liquid feeding speed of 3.2 ⁇ L / sec (200 ⁇ L / min).
  • a solution containing trypsin may be sent before washing with a buffer.
  • Timeout error determination may be included in or before or after the process P5.
  • the timing of this determination may be, for example, before or after the comparison between the fixed amount and the target value, or the processing for adjusting the fixed reaction is performed by either or both of the liquid feeding system control unit 120 and the optical system control unit 122. It may be before or after instructing the process, or before or after instructing either or both of the liquid feeding system control unit 120 and the optical system control unit 122 to stop the fixation reaction.
  • the determination criterion for the timeout error may be when a predetermined time is exceeded or when a predetermined number of times is exceeded. Here, the number of times such as comparison between a fixed amount and a target value, calculation of a fixed amount, execution or instruction of fixed amount adjustment may be used.
  • the time may be the elapsed time calculated from the start time of the fixation reaction of the measurement sample, the preparation of the apparatus, the installation of the measurement sample, the reaction reagent, etc. or the preparation time. Moreover, you may combine the some criteria mentioned here. In addition, the operator may select which of these determination criteria is adopted or not to perform the determination, and the timing of selection may be before or after the analysis flow starts (before the end). As operations after the time-out error is determined, the analysis flow may be temporarily stopped or canceled, a special fixed amount adjustment for time-out error, forcibly shifting to the process P6, etc. The operation content necessary for them is appropriately instructed to one or both of the liquid feeding system control unit 120 and the optical system control unit 122.
  • the analysis unit 121 When the analysis flow is temporarily stopped, for example, the analysis unit 121 notifies the worker to that effect via the monitor 108, voice, or the like, prompts the worker to instruct the next operation, and sets the instruction means as GUI, CUI, It may be provided via gestures, voices and the like. Operation options may include resumption of flow, suspension of flow, special fixed amount adjustment for time-out error, forced transition to step P6, and the like.
  • the apparatus 101 may have a specification that allows the measurement sample, the reaction reagent, various setting values, and apparatus settings to be changed before restarting when the operator chooses to restart the flow.
  • the analysis unit 121 may instruct the liquid supply system control unit 120 and the optical system control unit 122 or both to finish the process as necessary.
  • the target value for the process P2 may be set before the process P5.
  • the setting of the target value in the process P2 is preferably after the device preparation in the process P1 and before the start of the fixed reaction in the process P3.
  • a fixed amount target value is set as the experimental condition, and the results obtained by performing the analysis are added.
  • a new experimental condition a fixed amount of target value is corrected and analyzed, it is possible to efficiently proceed with the experiment because it is not necessary to redo the device preparation.
  • the target value for the process P2 may be set before preparing the apparatus for the process P1, and in this case, after setting a certain fixed amount of target value, the apparatus is prepared and the analysis proceeds. It is not necessary to set the target value again in an experiment in which the setting is changed based on the result, or various reagents are exchanged, re-prepared, and analysis is performed again, so that the experiment can be carried out efficiently. Become. In such cases, when the measurement sample or reaction reagent is inferior from the experimental results, the deviation (error) between the actual fixed amount and the target value is larger than expected, a timeout error, etc. In the case where the target fixed amount is not obtained in (1), the time required to reach the desired fixed amount is longer than expected and the measurement sample or the analysis result is adversely affected.
  • FIG. 4 shows the results of the antigen response reaction of RBL-2H3 cells measured using the above means. 60 seconds after the start of the measurement, the reaction reagent was started to be fed, and after about 50 seconds, an increase in the SPR reflected light intensity accompanying the cell response could be confirmed.
  • FIG. 5 shows an example in which a pipetter mechanism 504 is used for the liquid feeding unit 106 and a well substrate 601 is used instead of the flow cell 104.
  • the pipetter mechanism is a mechanism capable of discharging a specified volume of liquid. A method of discharging the liquid sucked from a separate liquid reservoir before discharging, a method of discharging the liquid directly in a reservoir directly connected to the pipetter mechanism, and discharging intermittently as necessary may be used.
  • the liquid feeding unit 106 of this embodiment includes reagent reservoirs 501 to 503 and a pipetter mechanism 504.
  • the pipetter mechanism 504 includes a nozzle 505, a robot arm 506, a pipe 507, a syringe pump 508, a liquid feed pump 509, a switching valve 510, a water tank 511, a cleaning tank 512, and a waste liquid tank 513.
  • the nozzle 505 is held by the robot arm 506, and can be moved to the well substrate 601, the reagent reservoirs 501 to 503, the cleaning tank 512, the waste liquid tank 513, and the like as necessary.
  • the nozzle 505 is connected to a syringe pump 508 via a pipe 507, and can suck or discharge a specified volume of liquid from the reagent reservoirs 501 to 503, the well substrate 601 and the like. Unnecessary liquid sucked from the reagent reservoirs 501 to 503 and the well substrate 601 is discharged to the waste liquid tank 503.
  • a liquid feed pump 509 is connected to the syringe pump 508 and can fill the water in the water tank 511.
  • the well substrate 601 includes a well component 602, a substrate 201, a prism 105, and a holder 603 for holding them together.
  • Well part 602 includes one or more liquid holding sites 604.
  • the holder 603 is provided with an opening 606 through which the nozzle 505 passes.
  • a septa 607 is installed in the opening 606. The nozzle 505 passes through the septa 607 of the opening 606 and reaches the well 605 on the well substrate 601.
  • the holder 603 is provided with an opening 608 for passing the temperature-controlled CO2 gas pipe 211. Thereby, the temperature and CO2 concentration on the surface of the well substrate 601 can be kept constant. In this embodiment, the temperature is adjusted to 37 ° C. and the CO 2 concentration is 5% so that the cells are most active.
  • the holder 603 is provided with a linear motion guide for moving the visual field and adjusting the focus, but is omitted in FIG.
  • Each well 605 has a function of holding liquid in or on the well 605 and preventing the liquid between the wells 605 from being mixed or moved unintentionally.
  • Each well 605 has at least one opening through which the liquid to be held can be introduced.
  • various structures having such a function may be used.
  • the amount of liquid that can be held in each well 605 can be appropriately changed depending on the application, but is preferably 1 nL to 1 mL, more preferably 10 nL to 100 ⁇ L, and more preferably 100 nL to 10 ⁇ L.
  • a plate-like member having a through hole as the liquid holding site 604 and a wall surface surrounding the liquid as the liquid holding site 604 (for example, the bottom surface of the multi-well plate is cut out)
  • a surface treatment exhibiting hydrophilicity (and functional groups introduced into the surface by the treatment, arrangement of molecules / atoms, etc.) having a pattern that functions as the liquid holding site 604 can be used.
  • each liquid holding site 604 is untreated, or each liquid is held on the surface of a relatively water-repellent substrate 201.
  • a pattern in which a hydrophilic surface treatment is applied only to the outer periphery of the site 604 can be used.
  • a flow cell-like member having an opening provided at the end or in the middle of the flow path may be used.
  • the liquid may be introduced by dropping the liquid into the opening or inserting the nozzle 505 into the opening. Since the liquid in each well 605 is semi-confined inside the well component 602 and the surface area that directly touches the atmosphere is reduced, the liquid is less likely to evaporate, and more accurate analysis can be easily realized.
  • various methods can be used for the method of controlling the material, temperature, and CO2 concentration of the prism 105 and the substrate 201.
  • the analysis target is the same as in Example 1, except that RBL-2H3 cells, which are a rat basophil-derived cell line, are used as measurement samples, and DNP-HSA antigen is used as a reaction reagent to measure the response function to cell antigen stimulation. went.
  • the reagent reservoir 501 was filled with a measurement sample
  • the reagent reservoir 502 was filled with a reaction reagent
  • the reagent reservoir 503 was filled with a buffer.
  • a plate-like PDMS (longitudinal and lateral 19 ⁇ 19 mm, thickness 5 mm) with a through hole ( ⁇ 4 mm) is used, and the upper surface (the thin gold film) of the substrate 201 provided with the thin gold film as in the first embodiment.
  • the holder 603 was held so as to be in close contact with the existing surface) side.
  • step P1 the well 605 is filled with a buffer, and the incident angle is adjusted.
  • the nozzle 505 moves to the reagent reservoir 503, sucks the buffer, moves to the well substrate 601, and discharges the buffer to the well 605.
  • the amount of buffer used in this step is 10 ⁇ L.
  • the nozzle 505 moves to the waste liquid tank 513 and discharges a small amount of water to clean the inside. Thereafter, the nozzle 505 moves to the cleaning tank 512 and cleans the outside.
  • the incident angle is adjusted by the method shown in the first embodiment.
  • the incident angle can be adjusted by filling the buffer only at one specific location and measuring the SPR reflected light intensity in that region.
  • the nozzle 505 moves to the well substrate 601, sucks the buffer, and discharges it to the waste liquid tank 513. Thereafter, the cleaning operation is performed in the same procedure as before.
  • the measurement sample is immobilized. The reaction is performed by discharging the measurement sample to the well 605 and waiting as it is in the same procedure as in the process P1.
  • the liquid volume of the measurement sample used in this step is 10 ⁇ L. While waiting, cells sink to the bottom of the well 605 by gravity.
  • the gold thin film is exposed at the bottom of the well, and the cells adhere to the surface of the gold thin film due to their natural properties.
  • another drug that initiates or accelerates the fixation reaction may be aspirated from another reservoir (not shown) and added to the same well 605 for discharge.
  • step P5 when the fixed amount is less than the target value, 5 ⁇ L of the measurement sample is sucked from the well 605 and discarded in the waste liquid tank 513, and then 5 ⁇ L of the measurement sample is sucked from the reagent reservoir 501. The liquid was discharged into the well 605.
  • Response observation is performed in process P6.
  • the procedure of response observation is as shown in Example 1.
  • the reaction sample is sucked in the same procedure as in Step P1, and added to the well 605 in which the measurement sample is fixed and filled with the buffer.
  • the amount of the reaction reagent used in this step is 10 ⁇ L.
  • the mixing of the reaction reagent may be promoted by performing a pipetting operation using the nozzle 505.
  • the reaction reagent may be added after discarding the buffer in the well 605 with the nozzle 505.
  • FIG. 7 shows a configuration around the irradiation unit and the detection unit according to the third embodiment. Other configurations are the same as those of the first embodiment.
  • the feature of the present embodiment is that the measurement sample is observed using evanescent light.
  • a series of observation processes according to this example will be described by taking, as an example, measurement of the response function of RBL-2H3 cells, which are a cell line derived from rat basophils, in response to stimulation with DNP-HSA antigen as in Example 1.
  • RBL-2H3 cells are labeled in advance with AlexaFluor 546 (Life Technologies), and DNP-HSA antigens are labeled with AlexaFluor 647 (Life Technologies) in advance.
  • Excitation light emitted from two types of light sources 701 to 702 having different wavelengths is arranged coaxially by a dichroic mirror 703, and the wavelength is selected by a filter unit 704.
  • Incident light illumination is formed on the surface of the substrate 201 by being incident under a reflecting condition.
  • evanescent light is formed in a range of several hundred nm from the surface. Therefore, it is possible to irradiate only the measurement sample existing in the very vicinity of the surface of the substrate 201.
  • Light generated from the measurement sample by the evanescent light illumination is collected by the objective lens 706 and divided by the dichroic mirror 707 for each wavelength. From the divided light, only necessary wavelength components are extracted by the band-pass filters 708 to 709, respectively, and then imaged on the image sensors 711 to 713 by the lenses 710 to 711.
  • the material of the substrate 201 used in this example is synthetic quartz, and the shape is a plate shape of 20 ⁇ 20 mm in length and width and 1.0 mm in thickness. There is no gold film on the surface.
  • the material of the prism 105 used in this embodiment is the same synthetic quartz as that of the substrate 201, and the shape thereof is a triangular prism shape having a height of 20 mm with an equilateral triangle having a side of 20 mm as the bottom.
  • the substrate 201 and the side surface (square surface) of the prism 105 are in optical contact with matching oil (not shown).
  • glycerol reffractive index: 1.47) is used as the matching oil.
  • a flow cell similar to that of Example 1 is formed on the surface of the substrate 201, but is omitted from the drawing.
  • a YAG laser with a wavelength of 532 nm was used as the light source 701
  • a He—Ne laser with a wavelength of 633 nm was used as the light source 702, respectively.
  • the dichroic mirror 703 used has a wavelength characteristic that transmits a component having a wavelength of 580 nm or longer and reflects a wavelength component shorter than that.
  • the filter unit 704 holds two types of switchable states: a bandpass filter exG that transmits only a laser with a wavelength of 532 nm and a bandpass filter exR that transmits only a laser with a wavelength of 633 nm.
  • the band pass filter 708 a filter that selectively extracts the fluorescence wavelength component of AlexaFluor 546 was used.
  • the band pass filter 709 a filter that selectively extracts the fluorescence wavelength component of AlexaFluor 647 was used.
  • the image sensors 712 to 713 are the same as those in the first embodiment.
  • the incident angle is adjusted in process P1.
  • the flow cell on the substrate 201 is filled with a buffer, and then irradiated with excitation light, and the incident angle is continuously changed.
  • the angle exceeds a certain angle, the excitation light is totally reflected at the interface between the substrate 201 and the buffer.
  • the angle (critical angle) is set as the incident angle in the subsequent observation.
  • step P2 the cell fixation amount at the time of observation is set.
  • the setting method and operation are the same as those in the first embodiment.
  • step P3 cells are fixed on the surface of the substrate 201.
  • the fixing method and operation are the same as those in the first embodiment.
  • step P4 the number of cells attached to the surface of the substrate 201 is monitored.
  • the filter unit 704 is operated to switch to the band pass filter exG to perform fluorescence observation. Since RBL-2H3 cells are labeled with AlexaFluor 546, they are excited by evanescent light having a wavelength of 532 nm and emit fluorescence. Detection is performed by the image sensor 712. As described above, since evanescent light is limited to a range of several hundred nanometers from the surface of the substrate 201, only cells attached to the surface of the substrate 201 can be detected substantially.
  • step P5 a fixed amount is determined. The determination method and operation are the same as those in the first embodiment.
  • step P6 the response is observed.
  • the addition method and operation of the reaction reagent containing the DNP-HSA antigen are the same as in Example 1.
  • the filter unit 704 is operated to switch to the bandpass filter exR to perform fluorescence observation. Since RBL-2H3 cells are within the irradiation range of evanescent light, when labeled DNP-HSA antigen binds to RBL-2H3 cells, AlexaFluor 647, which is a labeled molecule, is excited by evanescent light having a wavelength of 633 nm and emits fluorescence. . Detection is performed by the image sensor 713.
  • AlexaFluor 546 and AlexaFluor 647 were used as fluorescent dyes for labeling, but these may be different fluorescent dyes.
  • the fluorescent dye include Cy3 and Cy5.
  • fluorescent dyes having different wavelength characteristics can be used.
  • the light sources 701 to 702 and various optical components are selected according to the wavelength characteristics of the fluorescent dye to be used.
  • a labeled compound containing a radioisotope may be used.
  • a desired wavelength component may be extracted by a filter unit 704 from one light source that oscillates a plurality of wavelengths.
  • the light source is, for example, a xenon lamp. In this case, since only one light source unit is required, there is an effect of cost reduction.
  • the fluorescence separated for each wavelength by the dichroic mirror 707 is imaged on each of the two image sensors 712 to 713.
  • the transmitted fluorescence is connected to the left half of the light receiving element of the image sensor 713.
  • the reflected and reflected fluorescence can be folded back by a total reflection mirror to form an image on the right half of the light receiving element of the image sensor 713.
  • the image sensor 712 is unnecessary, and there is an effect of cost reduction.
  • a filter unit capable of switching the bandpass filters 708 to 709 without using the dichroic mirror 712 can be used.
  • Fluorescence resonance energy transfer can be used. AlexaFluor 546, which labels RBL-2H3 cells, is used as a donor, and AlexaFluor 647, which labels DNP-HSA antigen, is used as an acceptor. In this method, since the donor and the acceptor can be detected by exciting the donor, the light source 702 and various optical components for exciting the acceptor are not necessary, and the cost can be reduced. FRET may be a combination of different fluorescent dyes, or quantum dots may be used.
  • FIG. 8 is a schematic diagram of another optical system other than the above. While FIG. 7 shows a prism type evanescent irradiation method, FIG. 8 adopts an objective evanescent irradiation method. Objective evanescent illumination is realized by converging the excitation light through the lens 705 and the multi-edge dichroic mirror 801 at the rear focal position of the objective lens 706. Other configurations are the same as those of the prism type evanescent irradiation method described above. In addition, although this system includes an optical axis adjustment mechanism of excitation light for adjusting the incident angle, it is omitted in the figure.
  • This system is relatively easy to adjust the optical axis, etc., compared to the prism-type evanescent irradiation system.
  • the irradiation unit and the detection unit are partially overlapped, the optical system becomes compact, and there is an effect of reducing the size of the entire apparatus.
  • FIG. 9 shows a configuration around the irradiation unit and the detection unit according to the fourth embodiment.
  • Other configurations are the same as those of the first embodiment.
  • the feature of the present embodiment is that the measurement sample is observed using coaxial epi-illumination.
  • the depth of field is preferably 100 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the measurement method is the same as in Example 1. Although the upright arrangement is shown in FIG. 9, an inverted arrangement may be used.
  • the light after passing through the multi-edge dichroic mirror 801 is once condensed by a lens, a pinhole is set at the focal position, and converted back to parallel light by the lens, so that a so-called confocal microscope structure is obtained. An effect can be obtained.
  • various methods can be used for the type of excitation light source, the detection method, and the combination of components associated therewith.
  • FIG. 10 shows a configuration around the irradiation unit and the detection unit according to the fifth embodiment.
  • Other configurations are the same as those of the first embodiment.
  • the feature of this embodiment is that the measurement sample is observed using transmitted light illumination.
  • the objective lens 706 having a shallow depth of field by using the objective lens 706 having a shallow depth of field, there is an effect that the observation can be limited to the measurement sample existing in the vicinity of the surface of the substrate 201.
  • the depth of field is preferably 100 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the measurement method is the same as in Example 1. In FIG. 10, an inverted arrangement is used, but an upright arrangement may be used.
  • the light before passing through the dichroic mirror 707 is once condensed by the lens, a pinhole is set at the focal position, and then returned to the parallel light by the lens again, so-called confocal microscope. It becomes a structure and the same effect can be acquired.
  • the measurement sample was observed using optical means, but the observation method is not limited to optical means.
  • a surface acoustic wave sensor or observation with an electric signal can be used.
  • a micro electrode array is used as an observation substrate using electrical signals. Examples of observation using such a substrate are disclosed in non-patent literature (Anal. Chem. 2011, 83, 571-577). More specifically, voltammetry, amperometry, measurement of impedance and capacitance, and the like may be used.
  • voltammetry, amperometry, measurement of impedance and capacitance, and the like may be used. Furthermore, by measuring the change of each particle of the measurement sample one by one, and further, the localization of the change inside one particle by measuring the pitch between the electrodes sufficiently small with respect to the particulate measurement sample, It becomes possible to observe.
  • the state of each cell can be measured by using an electrode array in which the pitch between the electrodes is 30 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • the pitch between the electrodes is 30 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • an electrode array having an interelectrode pitch of 3 ⁇ m or less, more preferably 1 ⁇ m or less, and even more preferably 0.5 ⁇ m or less the localization of the intracellular state can be observed.
  • the fixed amount can be evaluated.
  • the method of this embodiment it is possible to observe the change in the state of the measurement sample on the substrate surface, so that the response to the stimulus can be evaluated.
  • the system of the present embodiment it is possible to observe the response of the measurement sample without using optical means. Moreover, you may combine the observation by this system and the above-mentioned optical observation.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Provided is an interaction analysis device which automates the immobilization of a sample to be measured on a measurement substrate and enables an operator to arbitrarily control the amount of the sample to be measured during observation. An interaction analysis device is characterized by comprising: a substrate; a solution sending mechanism for providing a sample to be measured and a reaction reagent to the substrate; an observation mechanism for observing the sample to be measured on the surface of the substrate; an analysis mechanism for analyzing the immobilized amount of the sample to be measured on the measurement substrate on the basis of the result of the observation by the observation mechanism; and a control mechanism for adjusting the immobilized amount of the sample to be measured on the substrate, and is characterized by immobilizing the sample to be measured on the surface of the substrate, measuring the immobilized amount of the sample to be measured immobilized on the surface of the substrate, and adjusting the immobilized amount of the sample to be measured on the substrate on the basis of the result of the measurement.

Description

相互作用解析装置Interaction analyzer
 本発明は、物質や生体の相互作用を解析する装置に関する。特に細胞などの生体試料が、刺激に対してどのような応答を示すかを測定する方法、装置に関する。 The present invention relates to an apparatus for analyzing an interaction between a substance and a living body. In particular, the present invention relates to a method and apparatus for measuring how a biological sample such as a cell shows a response to a stimulus.
 創薬のため、有効な薬物をスクリーニングするための方法として、細胞が薬物に対して感受性があるか否かを判定する技術(セルベースアッセイ)が広まっている。従来は薬物の効果を簡便に評価する際には、標的分子と対象薬物が物理的に結合するか否かを判定する方法が用いられていた。これに対し、薬物の標的となる細胞の生理的な応答を直接測定することで、薬物の効果をより正確に評価できる。このセルベースアッセイの技術は、創薬のみならず、いろいろな分野に用いられている。例えば、アレルギー検査として、患者が特定のアレルゲンに反応するか判定したり、ある物質がアレルギー反応を引き起こす可能性について判定したりできる。また、抗がん剤などの薬物を投与する際に、最も効果的な薬物を選択して投与する、個別化医療にも適用可能である。
セルベースアッセイの典型的な手順は以下の通りである。まず、測定試料となる細胞を培養したり、被験者から採取する。次に、細胞をセンサーチップなどの基板表面に固定する。そして、反応試薬を添加して測定試料に接触させ、蛍光顕微鏡などの手段を用いて観察、測定し、得られたデータを解析して細胞の変化の有無や大きさを得る。
観察手段としては、生物学では一般的な蛍光観察のほか、近年では表面プラズモン共鳴(Surface Plasmon Resonance:SPR)を利用した手法が用いられている。
As a method for screening effective drugs for drug discovery, a technique (cell-based assay) for determining whether cells are sensitive to drugs has become widespread. Conventionally, when the effect of a drug is simply evaluated, a method for determining whether or not the target molecule and the target drug are physically bound has been used. On the other hand, the effect of a drug can be more accurately evaluated by directly measuring the physiological response of the target cell of the drug. This cell-based assay technique is used not only for drug discovery but also in various fields. For example, as an allergy test, it is possible to determine whether a patient responds to a specific allergen, or to determine whether a substance may cause an allergic reaction. In addition, when administering a drug such as an anticancer drug, it is also applicable to personalized medicine in which the most effective drug is selected and administered.
A typical procedure for a cell-based assay is as follows. First, a cell to be a measurement sample is cultured or collected from a subject. Next, the cells are fixed on the surface of a substrate such as a sensor chip. Then, a reaction reagent is added, brought into contact with the measurement sample, observed and measured using means such as a fluorescence microscope, and the obtained data is analyzed to obtain the presence / absence and size of the cell.
As an observation means, in addition to fluorescence observation generally used in biology, a technique using surface plasmon resonance (SPR) has been used in recent years.
 SPRの原理について説明する。金属に対して光を当てると、金属内部の自由電子が集団的に振動を起こす状態となる。この状態をプラズモン(Plasmon)と呼ぶ。この現象は金属表面においても生じており、これを表面プラズモン(Surface Plasmon)と呼ぶ。このとき金属表面には電子の振動によって電場が生じる。いま、上面に金属薄膜が蒸着されたガラス基板があったとする。基板下面よりガラスと金属薄膜の界面で全反射する角度で光を入射した場合、金属薄膜表面にはエバネッセント波が生じる。このエバネッセント波と、先述の表面プラズモンの波数が揃った際に共鳴が生じる。これを表面プラズモン共鳴:SPRと呼ぶ。SPRが発生すると入射光のエネルギーが共鳴によって奪われるため、反射光の強度が低下する。なおSPRが生じるときの入射角を共鳴角とよび、その値は金属薄膜表面の誘電率に依存する。 The principle of SPR will be described. When light is applied to a metal, the free electrons inside the metal collectively vibrate. This state is called plasmon. This phenomenon also occurs on the metal surface, and this is called surface plasmon. At this time, an electric field is generated on the metal surface by the vibration of electrons. Suppose that there is a glass substrate with a metal thin film deposited on the upper surface. When light is incident from the lower surface of the substrate at an angle that causes total reflection at the interface between the glass and the metal thin film, an evanescent wave is generated on the surface of the metal thin film. Resonance occurs when the wave number of the evanescent wave and the surface plasmon described above are aligned. This is called surface plasmon resonance: SPR. When SPR occurs, the energy of the incident light is lost by resonance, and the intensity of the reflected light decreases. The incident angle when SPR occurs is called the resonance angle, and its value depends on the dielectric constant of the metal thin film surface.
 特許文献1では、SPRを利用して外部刺激に対する細胞の応答を観察している。表面に金薄膜が形成され基板に対し、アミノ基末端を有する自己組織化単分子膜を構築し、センサーチップとする。センサーチップに細胞懸濁液を滴下して細胞を表面に固定する。細胞が固定された基板を装置にセットして、SPR観察を行う。このときの入射角は、細胞の誘電率によって共鳴が生じる角度に設定されている。このため反射光の強度は低下している。この状態で刺激物質を添加すると、細胞が応答し、例えばヒスタミン等を遊離する。その結果細胞の誘電率が変化し、共鳴状態が崩れ、反射光の強度が増加する。このような反射光の信号強度変化を測定することによって、細胞の変化を観察する。なお特許文献1のように、CMOSなどのイメージセンサを用いることで平面的なSPR情報を得る手法を、SPRイメージング(SPR Imaging:SPRI)と呼ぶ。 In Patent Document 1, a cell response to an external stimulus is observed using SPR. A gold thin film is formed on the surface, and a self-assembled monomolecular film having an amino group terminal is constructed on the substrate to obtain a sensor chip. The cell suspension is dropped onto the sensor chip to fix the cells on the surface. The substrate on which the cells are fixed is set in the apparatus and SPR observation is performed. The incident angle at this time is set to an angle at which resonance occurs due to the dielectric constant of the cell. For this reason, the intensity of the reflected light is reduced. When a stimulating substance is added in this state, the cell responds, for example, releases histamine. As a result, the dielectric constant of the cell changes, the resonance state collapses, and the intensity of reflected light increases. The change in the cell is observed by measuring the change in the signal intensity of the reflected light. A method of obtaining planar SPR information by using an image sensor such as a CMOS as in Patent Document 1 is referred to as SPR imaging (SPR imaging: SPRI).
 しかしながら特許文献1の手法では、反射光の信号強度が細胞数に依存するため、定量的な評価が難しく、また測定ごとの再現性が低いという問題があった。そこで上記課題を解決する手法として特許文献2では、SPR測定結果から細胞数を計算し、単位細胞あたりの変化量に換算することで、細胞数による結果のばらつきを補正する手段を提供している。まず細胞が付着可能な領域と、付着不可能な領域を有するSPR基板を準備し、細胞培養液に浸漬し培養する。基板を洗浄して装置にセットし、入射角を徐々に変化させながらSPR観察を行う。細胞が付着している領域と細胞が付着していない領域とでは誘電率が異なるため、両者の共鳴角に差が生じる。この角度の差分を、予め求めておいた細胞1個あたりの共鳴角の変動値で除することにより、細胞数を算出する。その後入射角を細胞が固定された領域における共鳴角に設定し、刺激物質を添加し、共鳴角の変動量を測定する。最後に変動量を細胞数で除することにより、単位細胞あたりの変動量として規格化された値を得ることができる。 However, the method of Patent Document 1 has a problem that the signal intensity of reflected light depends on the number of cells, so that quantitative evaluation is difficult and reproducibility for each measurement is low. Thus, as a technique for solving the above problem, Patent Document 2 provides a means for correcting the variation in the result due to the number of cells by calculating the number of cells from the SPR measurement result and converting it to the amount of change per unit cell. . First, an SPR substrate having a region to which cells can adhere and a region to which cells cannot adhere is prepared, and immersed and cultured in a cell culture medium. The substrate is washed and set in the apparatus, and SPR observation is performed while gradually changing the incident angle. Since the dielectric constant is different between the area where the cells are attached and the area where the cells are not attached, there is a difference in the resonance angle between the two. The number of cells is calculated by dividing the difference in angles by the fluctuation value of the resonance angle per cell obtained in advance. Thereafter, the incident angle is set to the resonance angle in the region where the cells are fixed, a stimulating substance is added, and the fluctuation amount of the resonance angle is measured. Finally, by dividing the fluctuation amount by the number of cells, a value normalized as the fluctuation amount per unit cell can be obtained.
特許3795312Patent 3795312 特開2007-333612JP2007-333612A
 特許文献2では、1mm^2の領域に細胞1個が固定されたときの共鳴角変動を0.4mdegとして細胞数を計算している。つまり正確に細胞数を計算するためには、共鳴角を設定するための回転軸の角度分解能を0.4mdeg以下に設定する必要があるが、このためには高精度な回転ステージが必要となり、装置コストの増大に繋がる。実際には分解能の低い回転ステージを用いて共鳴曲線を作成した後、カーブフィッティングによって共鳴角を求めているが、この方法では計算結果に誤差が生じることが避けられない。また細胞の大きさや種類によって1細胞あたりの共鳴角変動の値が異なるため、汎用性が低い。 In Patent Document 2, the number of cells is calculated with a resonance angle fluctuation of 0.4 mdeg when one cell is fixed in an area of 1 mm ^ 2. In other words, in order to accurately calculate the number of cells, it is necessary to set the angular resolution of the rotation axis for setting the resonance angle to 0.4 mdeg or less. For this purpose, a highly accurate rotation stage is required, This leads to an increase in device cost. In practice, the resonance angle is obtained by curve fitting after creating a resonance curve using a rotary stage with low resolution, but this method inevitably causes an error in the calculation result. Moreover, since the value of the resonance angle fluctuation per cell differs depending on the size and type of the cell, the versatility is low.
 また、特許文献1および特許文献2記載のいずれの手法においても、基板に細胞を固定するプロセスと、SPR観察のプロセスが独立しているため、基板上に細胞がどの程度固定されているかという情報は、実際にSPR観察を行う段階になって初めて明らかになる。SPR観察を開始した時点で、仮に基板上の細胞数が観察に適した範囲から外れていた場合、再度固定のプロセスを行わねばならないため、作業者にかかる負担が大きい。 Further, in any of the methods described in Patent Document 1 and Patent Document 2, since the process of fixing cells to the substrate and the process of SPR observation are independent, information on how much cells are fixed on the substrate Becomes apparent only when the SPR observation is actually performed. When the SPR observation is started, if the number of cells on the substrate is out of the range suitable for the observation, the fixing process must be performed again, which places a heavy burden on the operator.
 基板などの表面に細胞を固定する場合、基板と細胞懸濁液との接触時間を変化させることで、固定量を制御する手法が一般的である。しかしながら、細胞の種類や環境条件によって基板に付着する速度が変化する。さらに、例えば低倍率で観察する場合、ある程度細胞数が多くても問題ないが、高倍率で1細胞を観察したい場合には細胞同士が離れている必要があるように、観察に最適な細胞数は用途によって異なる。このため、接触時間のパラメータのみで、様々な種類の細胞の固定量を任意に制御することは、極めて困難である。 When cells are fixed on the surface of a substrate or the like, a method of controlling the amount of fixation by changing the contact time between the substrate and the cell suspension is common. However, the rate of attachment to the substrate varies depending on the cell type and environmental conditions. Furthermore, for example, when observing at a low magnification, there is no problem even if the number of cells is large to some extent, but when observing one cell at a high magnification, the number of cells optimal for observation is necessary so that the cells need to be separated from each other. Depends on the application. For this reason, it is extremely difficult to arbitrarily control the fixed amount of various types of cells using only the contact time parameter.
 そこで、本発明は、測定基板に対する測定試料の固定を自動化し、かつ観察時における測定試料の量を、作業者が任意に制御することのできる、相互作用解析装置を提供する。
Therefore, the present invention provides an interaction analysis apparatus that automates fixing of a measurement sample to a measurement substrate and allows an operator to arbitrarily control the amount of the measurement sample at the time of observation.
 上記課題解決するために、本発明は、特許請求の範囲に記載の構成を採用する。 In order to solve the above problems, the present invention adopts the configuration described in the claims.
 ある1つの側面は、基板と前記基板に測定試料および反応試薬を提供するための送液手段と、前記基板表面の測定試料を観察するための観察手段と、前記観察結果をもとに、前記基板において前記測定試料が固定された量に関する情報を解析する解析手段と、前記情報をもとに、前記基板において前記測定試料が固定される量を調整する制御手段と、を有することを特徴とする。 One aspect includes a substrate, a liquid feeding means for providing a measurement sample and a reaction reagent to the substrate, an observation means for observing the measurement sample on the substrate surface, and based on the observation result, Analyzing means for analyzing information related to the amount of the measurement sample fixed on the substrate, and control means for adjusting the amount of the measurement sample fixed on the substrate based on the information; To do.
 本発明によれば、結果の信頼性が高く、かつ使い勝手の良い相互作用解析装置を提供することができる。 According to the present invention, it is possible to provide an interaction analysis device that is highly reliable in results and easy to use.
実施例1記載の装置構成である。The apparatus configuration described in the first embodiment. 実施例1記載のフローセル周辺の構成である。2 is a configuration around a flow cell described in the first embodiment. 実施例1記載の動作のフローチャートである。3 is a flowchart of the operation described in the first embodiment. 実施例1記載の解析結果である。It is an analysis result of Example 1. 実施例2記載の装置構成である。The apparatus configuration described in the second embodiment. 実施例2記載のフローセル周辺の構成である。2 is a configuration around a flow cell described in the second embodiment. 実施例3記載の装置構成である。The apparatus configuration described in the third embodiment. 実施例3記載の別の装置構成である。4 is another apparatus configuration described in the third embodiment. 実施例4記載の装置構成である。The apparatus configuration described in the fourth embodiment. 実施例5記載の装置構成である。This is the apparatus configuration described in the fifth embodiment.
 以下、本発明の新規な特徴と利益を、図面を参酌して説明する。ただし、図面はもっぱら解説のためのものであって、本発明の範囲を限定するものではない。 Hereinafter, the novel features and benefits of the present invention will be described with reference to the drawings. However, the drawings are for explanation only, and do not limit the scope of the present invention.
 (装置構成)
  実施例1の装置構成を図1に示す。解析装置101は、照射部102、検出部103、フローセル104、プリズム105、送液部106、からなる。解析装置101の動作は制御PC108によって制御される。制御PC108にはモニタ109が接続され、解析結果等を表示する。また、解析装置101には温調装置107が設けられており、CO2ガスボンベ110から送られるCO2ガスの温度を調整することで、解析装置101内部の一部または全体の温度およびCO2濃度を任意に設定可能である。
(Device configuration)
The apparatus configuration of the first embodiment is shown in FIG. The analysis apparatus 101 includes an irradiation unit 102, a detection unit 103, a flow cell 104, a prism 105, and a liquid feeding unit 106. The operation of the analysis apparatus 101 is controlled by the control PC 108. A monitor 109 is connected to the control PC 108 and displays analysis results and the like. In addition, the analysis device 101 is provided with a temperature control device 107, and by adjusting the temperature of the CO2 gas sent from the CO2 gas cylinder 110, the temperature inside the analysis device 101 or the entire temperature and CO2 concentration can be arbitrarily set. It can be set.
 (照射部・検出部の構造説明)
  照射部102および検出部103について説明する。照射部102は、光源111、光ファイバ112、集光レンズ113、偏光素子114などの部品で構成される。また検出部103は、結像レンズ115、イメージセンサ116などの部品で構成される。光源111はSPR観察のための励起光光源である。光ファイバ112から出射した励起光117は集光レンズ113によって集光され、平行ビームに成形される。平行ビームとなった励起光117は偏光素子114によってS偏光成分が除去され、P偏光成分のみとなる。P偏光となった励起光117はプリズム105に入射後、フローセル104裏側からフローセル104内部に侵入し、測定領域118に角度θで入射する。その後励起光117は角度θで反射して反射光118となり、再びフローセル104・プリズム105を透過し、プリズム105外へ出射される。出射された反射光は結像レンズ115で集光され、イメージセンサ116上に2次元イメージとして結像される。イメージセンサ116は、画像を取得して、制御PC108に画像データを送信する。制御PC108には解析部121が存在し、イメージセンサ116より送られてきた画像データを解析し、その結果をモニタ109に表示する。照射部102と検出部103はプリズムの中心線に対して、線対称に配置されている。なお、照射部102と検出部103は、フローセル104に対して任意の角度をとることができる駆動ステージ上に配置されるが、図1では省略した。また、集光レンズ113と偏光素子114の間には、励起光の照射範囲を変えるための絞りが設けられているが、図1では省略した。
(Explanation of irradiation unit / detection unit structure)
The irradiation unit 102 and the detection unit 103 will be described. The irradiation unit 102 includes components such as a light source 111, an optical fiber 112, a condensing lens 113, and a polarizing element 114. The detection unit 103 includes components such as an imaging lens 115 and an image sensor 116. The light source 111 is an excitation light source for SPR observation. The excitation light 117 emitted from the optical fiber 112 is condensed by the condenser lens 113 and shaped into a parallel beam. The S-polarized light component is removed from the excitation light 117 that has become a parallel beam by the polarizing element 114, and only the P-polarized light component is obtained. The excitation light 117 that has become P-polarized light enters the prism 105, enters the flow cell 104 from the back side of the flow cell 104, and enters the measurement region 118 at an angle θ. Thereafter, the excitation light 117 is reflected at an angle θ to become reflected light 118, passes through the flow cell 104 and the prism 105 again, and is emitted out of the prism 105. The emitted reflected light is collected by the imaging lens 115 and imaged on the image sensor 116 as a two-dimensional image. The image sensor 116 acquires an image and transmits image data to the control PC 108. The control PC 108 includes an analysis unit 121 that analyzes the image data sent from the image sensor 116 and displays the result on the monitor 109. The irradiation unit 102 and the detection unit 103 are arranged symmetrically with respect to the center line of the prism. Note that the irradiation unit 102 and the detection unit 103 are arranged on a drive stage that can take an arbitrary angle with respect to the flow cell 104, but are omitted in FIG. Further, a diaphragm for changing the irradiation range of the excitation light is provided between the condenser lens 113 and the polarizing element 114, but this is omitted in FIG.
 本実施例では、光源111としてLED光源(波長640nm)を、光ファイバ112として石英コアファイバ(コア径600μm、NA0.22)を、集光レンズ113として球面アクロマティクレンズ(外径50mm、焦点距離25mm)を、偏光素子114として偏光フィルタ(適応波長400~700nm)を、結像レンズ115として対物テレセントリックレンズ(倍率5倍)を、イメージセンサ116として1/2型CMOSカメラ(有効画素数1280×1024(130万画素)、画素サイズ5.2μm)を、それぞれ用いた。集光レンズ113通過後の励起光117のスポット径はφ10mmである。本実施例では、光源111として波長640nmのLEDを用いたが、異なる波長の電磁波を発振する装置を用いても良い。選択できる波長の範囲は、例えば300nm~300μmである。LEDの他に、固体レーザやガスレーザ、半導体レーザなどが使用可能である。また、複数波長を発振する1つの光源111から、所望の波長成分をバンドパスフィルタ等によって取り出しても良い。光源111は、例えばキセノンランプなどである。本実施例では、偏光素子114として市販の偏光フィルタを用いたが、例えば偏光ビームスプリッターや、グラントムソンプリズムなど、同様の機能を有する部品が使用可能である。 In this embodiment, an LED light source (wavelength 640 nm) is used as the light source 111, a quartz core fiber (core diameter 600 μm, NA 0.22) is used as the optical fiber 112, and a spherical achromatic lens (outer diameter 50 mm, focal length is used as the condenser lens 113. 25 mm), a polarizing filter as the polarizing element 114 (adaptive wavelength 400 to 700 nm), an objective telecentric lens (5 times magnification) as the imaging lens 115, and a 1/2 type CMOS camera (effective pixel number 1280 ×) as the image sensor 116 1024 (1.3 million pixels) and pixel size 5.2 μm) were used. The spot diameter of the excitation light 117 after passing through the condensing lens 113 is φ10 mm. In this embodiment, an LED having a wavelength of 640 nm is used as the light source 111, but an apparatus that oscillates electromagnetic waves having different wavelengths may be used. The range of wavelengths that can be selected is, for example, 300 nm to 300 μm. In addition to the LED, a solid-state laser, a gas laser, a semiconductor laser, or the like can be used. Further, a desired wavelength component may be extracted from a single light source 111 that oscillates a plurality of wavelengths by a band-pass filter or the like. The light source 111 is, for example, a xenon lamp. In this embodiment, a commercially available polarizing filter is used as the polarizing element 114, but components having the same function such as a polarizing beam splitter and a Glan-Thompson prism can be used.
 本実施例では、結像レンズとして対物テレセントリックレンズを用いたが、市販のマシンビジョンレンズ、ズームレンズ等が使用可能である。結像レンズの種類を交換することで、用途に合わせて低倍率~高倍率の観察が可能となる。 In this embodiment, an objective telecentric lens is used as the imaging lens, but a commercially available machine vision lens, zoom lens, or the like can be used. By changing the type of imaging lens, observation at low to high magnification is possible according to the application.
 (送液部の構造説明)
  次に、送液部106について説明する。送液部106は、試薬リザーバ123~125、送液用チューブ126~127、切り替えバルブ128~129、送液ポンプ130、廃液タンク131によって構成される。各試薬リザーバ123~125には送液チューブが接続され、切り替えバルブ128~129を介して送液チューブ126に統合される。送液チューブ126は、フローセル104の開口部(導入用)に接続される。フローセル104には別の開口部(排出用)が設けられており、こちらにも別の送液チューブ127が接続される。送液チューブ127の末端部分は廃液タンク131に繋がっている。また、送液チューブ127には送液ポンプ130が取り付けられ、試薬リザーバ123~125からフローセル104への液の移動を行う。リザーバ123~125からフローセル104に送られる試薬の種類、液量、送液速度、送液のタイミング等は、制御PC108の送液系制御部120が、切り替えバルブ128~129と送液ポンプ130に対して動作指示を出すことによって行われる。
(Structure explanation of liquid feeding part)
Next, the liquid feeding unit 106 will be described. The liquid feeding unit 106 includes reagent reservoirs 123 to 125, liquid feeding tubes 126 to 127, switching valves 128 to 129, a liquid feeding pump 130, and a waste liquid tank 131. A liquid supply tube is connected to each of the reagent reservoirs 123 to 125 and is integrated into the liquid supply tube 126 via the switching valves 128 to 129. The liquid feeding tube 126 is connected to the opening (for introduction) of the flow cell 104. The flow cell 104 is provided with another opening (for discharge), and another liquid supply tube 127 is connected thereto. The end portion of the liquid feeding tube 127 is connected to the waste liquid tank 131. Further, a liquid feed pump 130 is attached to the liquid feed tube 127 and moves the liquid from the reagent reservoirs 123 to 125 to the flow cell 104. The kind of reagent, the amount of liquid, the liquid supply speed, the liquid supply timing, etc. sent from the reservoirs 123 to 125 to the flow cell 104 are determined by the liquid supply system control unit 120 of the control PC 108 to the switching valves 128 to 129 and the liquid supply pump 130. This is done by issuing an operation instruction to the user.
 本実施例では、リザーバ123には測定試料を、リザーバ124には反応試薬を、リザーバ125にはバッファーをそれぞれ満たす。また本実施例では、送液チューブ126~127としてTYGON R-3603(内径0.8mm、サンゴバン製)を、切り替えバルブ128~129として3方ソレノイドバルブを、送液ポンプ130としてペリスタルティックポンプ(最大圧力0.1MPa)をそれぞれ用いた。なお個々の部品類はこの限りではなく、例えば切り替えバルブとして6方切り替えバルブを用いることで、部品点数を低減することができる。また、送液ポンプ130として、シリンジポンプ等の別の送液手段が選択可能である。 In this embodiment, the reservoir 123 is filled with a measurement sample, the reservoir 124 is filled with a reaction reagent, and the reservoir 125 is filled with a buffer. In this embodiment, TYGON R-3603 (inner diameter 0.8 mm, manufactured by Saint-Gobain) is used as the liquid feeding tubes 126 to 127, a three-way solenoid valve is used as the switching valves 128 to 129, and a peristaltic pump (maximum) is used as the liquid feeding pump 130. A pressure of 0.1 MPa was used. The individual parts are not limited to this, and the number of parts can be reduced by using, for example, a 6-way switching valve as the switching valve. Further, as the liquid feeding pump 130, another liquid feeding means such as a syringe pump can be selected.
 (フローセルの構造説明)
  フローセル104およびプリズム105を保持する機構の構成を図2に示す。フローセル104は基板201、流路部品202からなる。フローセル104とプリズム105は、ホルダ203によって保持される。基板201は、一般的なSPR基板同様、ガラス基板の測定試料を固定するための観察面(おもて面・図2における上側)に金の薄膜を形成することによって作製される。流路部品202には、表面に流路パターンとしての溝204が形成されている。前記基板201の金薄膜面と流路部品202の溝側平面とを密着させることによって、フローセル104として機能する。ホルダ203には、送液用チューブ126~127を通すための開口部209~210が設けられている。送液用チューブ126~127はホルダの開口部209~210を通り、それぞれ流路部品202上の開口部207~208に接続される。またホルダ203には、温調されたCO2ガス用配管211を通すための開口部212が設けられている。流路部品202として使用するポリジメチルシロキサン(PDMS)は高いガス交換機能を有しており、基板201表面の温度およびCO2濃度を一定に保つことが可能である。本実施例では、細胞が最も活発となるよう、温度37℃、CO2濃度5%に調節されている。なお、ホルダ203には視野の移動やピント調整のための直動ガイドが取り付けられているが、図1では省略した。
(Description of flow cell structure)
The structure of the mechanism that holds the flow cell 104 and the prism 105 is shown in FIG. The flow cell 104 includes a substrate 201 and a flow path component 202. The flow cell 104 and the prism 105 are held by a holder 203. The substrate 201 is produced by forming a gold thin film on an observation surface (front surface / upper side in FIG. 2) for fixing a measurement sample of a glass substrate, like a general SPR substrate. A groove 204 as a flow path pattern is formed on the surface of the flow path component 202. By functioning the gold thin film surface of the substrate 201 and the groove side plane of the flow path component 202, the flow cell 104 functions. The holder 203 is provided with openings 209 to 210 through which the liquid feeding tubes 126 to 127 are passed. The liquid feeding tubes 126 to 127 pass through the holder openings 209 to 210 and are connected to the openings 207 to 208 on the flow path component 202, respectively. In addition, the holder 203 is provided with an opening 212 through which the temperature-controlled CO2 gas pipe 211 is passed. Polydimethylsiloxane (PDMS) used as the flow path component 202 has a high gas exchange function, and the temperature and CO2 concentration on the surface of the substrate 201 can be kept constant. In this embodiment, the temperature is adjusted to 37 ° C. and the CO 2 concentration is 5% so that the cells are most active. The holder 203 is attached with a linear guide for visual field movement and focus adjustment, but is omitted in FIG.
 本実施例で用いた基板201の材質はOhara社製S-LAL10、形状は縦横20×20mm、厚さ1.0mmの板状である。また表面に形成した金薄膜の厚みは50nmである。なお、ガラス基板と金薄膜の間には、厚み1nmのクロムが接着層として存在する。また、本実施例で用いた流路部品202の材質はPDMSで、形状は縦横18mm、厚さ5mmの板状である。溝204のサイズは幅2mm、深さ1mm、長さ10mmである。溝204の両端からは溝204と反対側の面まで伸びる垂直の流路205~206が存在し、それぞれの末端には開口部207~208が設けられている。また、本実施例で用いたプリズム105の材質は基板201と同じOhara社製S-LAL10で、形状は一辺20mmの正三角形を底面とした高さ20mmの三角柱状である。基板201とプリズム105側面(正方形の面)との間には図示されないマッチングオイルによって光学的に接している。本実施例では、マッチングオイルとしてカーギル標準屈折液(屈折率1.72)を用いている。 The material of the substrate 201 used in this example is S-LAL10 manufactured by Ohara, and the shape is a plate shape of 20 × 20 mm in length and width and 1.0 mm in thickness. The thickness of the gold thin film formed on the surface is 50 nm. In addition, 1 nm-thick chromium exists as an adhesive layer between the glass substrate and the gold thin film. In addition, the material of the flow path component 202 used in this example is PDMS, and the shape is a plate shape having a length and width of 18 mm and a thickness of 5 mm. The size of the groove 204 is 2 mm in width, 1 mm in depth, and 10 mm in length. There are vertical flow paths 205 to 206 extending from both ends of the groove 204 to the surface opposite to the groove 204, and openings 207 to 208 are provided at the respective ends. The material of the prism 105 used in this example is S-LAL10 manufactured by Ohara, which is the same as that of the substrate 201, and the shape is a triangular prism shape having a height of 20 mm with an equilateral triangle having a side of 20 mm as the bottom. The substrate 201 and the prism 105 side surface (square surface) are in optical contact with matching oil (not shown). In this embodiment, Cargill standard refraction liquid (refractive index 1.72) is used as matching oil.
 基板201表面には測定試料の固定を促進するための処理がなされていても良い。例えば、ポリーL-リジンや、測定試料に応じた各種抗体などによって処理されていても構わない。その他、基板201表面に微小な凹凸などを設けることで、測定試料を保持しやすくすることも可能である。 The surface of the substrate 201 may be processed to promote the fixation of the measurement sample. For example, it may be treated with poly L-lysine or various antibodies according to the measurement sample. In addition, it is possible to easily hold the measurement sample by providing minute unevenness on the surface of the substrate 201.
 本実施例では基板201にPDMS流路202を貼りつけたが、例えば薄いシート状のPDMSに流路パターンが形成されたものを、基板201およびカバーガラス等の部材で挟むような構造としても良い。 In this embodiment, the PDMS flow path 202 is attached to the substrate 201. However, a structure in which a flow path pattern is formed on a thin sheet of PDMS, for example, may be sandwiched between the substrate 201 and a member such as a cover glass. .
 フローセル104の溝204は複数本設けられていて良い。溝204の本数や幅、溝204同士の間隔等に制限は無いが、測定領域118が複数の溝204の一部または全部をカバーしており、かつ溝204同士がイメージセンサ116上で分離可能な条件で結像される条件であることが望ましい。 A plurality of the grooves 204 of the flow cell 104 may be provided. The number and width of the grooves 204 and the interval between the grooves 204 are not limited, but the measurement region 118 covers part or all of the plurality of grooves 204, and the grooves 204 can be separated on the image sensor 116. It is desirable that the image is formed under various conditions.
 本実施例ではプリズム105と基板201の材料としてS-LAL10を用いたが、これらは光学的に透明であればどのような材料であっても良く、例えばガラス、サファイア、石英、アクリル樹脂などが使用可能である。またプリズム105と基板201の材料については、両者間の光の移動の際に界面での反射を防ぐために同じ材質であることが望ましいが、界面で全反射しない条件であれば、異なる材質の組み合わせであっても構わない。プリズム105の形状は三角プリズムに限らず、台形や四角形など別の形状としても良い。例えば半円柱状プリズムを用いれば、励起光117は入射角によらずプリズム105に対して常に垂直に入射するようになり、反射による損失を最小限に抑えることができる。 In this embodiment, S-LAL10 is used as the material of the prism 105 and the substrate 201. However, any material can be used as long as it is optically transparent, such as glass, sapphire, quartz, acrylic resin, and the like. It can be used. The prism 105 and the substrate 201 are preferably made of the same material in order to prevent reflection at the interface when light is moved between them, but a combination of different materials is used as long as it is not totally reflected at the interface. It does not matter. The shape of the prism 105 is not limited to a triangular prism, and may be another shape such as a trapezoid or a quadrangle. For example, when a semi-cylindrical prism is used, the excitation light 117 always enters the prism 105 regardless of the incident angle, and the loss due to reflection can be minimized.
 本実施例では金薄膜を形成した基板201を用いたが、プリズム105表面に直接金薄膜が形成し、そこで解析を行っても良い。基板201とプリズム105を一体化することで、両者の界面における光の反射損失を低減できる。また部品点数が低減し、マッチングオイルが不要となるため、操作性が向上する。 In this embodiment, the substrate 201 on which a gold thin film is formed is used. However, the gold thin film is directly formed on the surface of the prism 105, and the analysis may be performed there. By integrating the substrate 201 and the prism 105, light reflection loss at the interface between the two can be reduced. In addition, the number of parts is reduced and no matching oil is required, so that the operability is improved.
 本実施例ではホルダ203内に温風を導入することで基板201表面を温調しているが、装置101全体を温調しても良い。また、例えばペルチェ素子などの温調部品を直接または間接的にプリズム105側面に接触させてもよい。またプリズム105の側面にITO等の導電性薄膜を形成し、通電することによって温調してもよい。 In this embodiment, the temperature of the substrate 201 is controlled by introducing warm air into the holder 203, but the temperature of the entire apparatus 101 may be controlled. Further, for example, a temperature control component such as a Peltier element may be brought into contact with the side surface of the prism 105 directly or indirectly. The temperature may be controlled by forming a conductive thin film such as ITO on the side surface of the prism 105 and energizing it.
 本実施例ではホルダ203内のCO2濃度を制御しているが、装置101全体のCO2濃度を制御しても良い。 In this embodiment, the CO2 concentration in the holder 203 is controlled, but the CO2 concentration of the entire apparatus 101 may be controlled.
 (装置動作のフローチャート)
  本実施例による一連の観察プロセスについて、DNP-HSA抗原(Sigma-Aldrich社)の刺激に対する、ラット好塩基球由来の細胞株であるRBL-2H3細胞の応答機能の測定を例に説明する。
(Flow chart of device operation)
A series of observation processes according to this example will be described with reference to measurement of the response function of RBL-2H3 cells, a cell line derived from rat basophils, in response to stimulation of DNP-HSA antigen (Sigma-Aldrich).
 RBL-2H3細胞はその表面のIgE受容体が、受容体に結合したIgEを介して抗原と結合することで活性化する。すると、細胞内のヒスタミンやタンパク質分解酵素などを含む顆粒を放出(脱顆粒)する。これがI型アレルギーの発症に重要な役割を果たすとされている。この、RBL-2H3細胞の抗原刺激への応答現象は、アレルギー反応の評価方法として広く用いられている。例えば、食品や薬剤、環境中の物質(花粉やハウスダストなど)を抗原(反応試薬)とし、物質の抗原性(アレルギー反応を引き起こすか否か)を評価できる。または、抗原の他に加える物質の抗アレルギー効果を評価してもよい。すなわち、既に応答が見られることが分かっている細胞と抗原の組合せ、例えば(以下に述べるような)抗DNP-IgE抗体で感作したRBL-2H3細胞、DNP-HSA抗原を用いた上で、ここにさらに被験物質を加えることで応答が抑制されるか、または増強されるか、否かを測定すればよい。 RBL-2H3 cells are activated when the IgE receptor on the surface binds to an antigen via IgE bound to the receptor. Then, granules containing intracellular histamine and proteolytic enzymes are released (degranulated). This is said to play an important role in the development of type I allergy. This response phenomenon of RBL-2H3 cells to antigen stimulation is widely used as a method for evaluating allergic reactions. For example, foods, drugs, and environmental substances (pollen, house dust, etc.) can be used as antigens (reaction reagents), and the antigenicity of substances (whether they cause allergic reactions) can be evaluated. Or you may evaluate the antiallergic effect of the substance added besides an antigen. That is, using a combination of a cell and an antigen whose response is already known, such as RBL-2H3 cells sensitized with an anti-DNP-IgE antibody (as described below), DNP-HSA antigen, What is necessary is just to measure whether a response is suppressed or enhanced by adding a test substance further here.
 図3は、本発明による観察のフローチャートである。以下、本発明による細胞機能観察方法について、図1~4を用いて説明する。 FIG. 3 is a flowchart of observation according to the present invention. Hereinafter, the cell function observation method according to the present invention will be described with reference to FIGS.
 工程開始前に、測定試料や反応試薬等を準備する。まず、RBL-2H3細胞を、10%ウシ胎児血清(FCS)、100unit/mL ペニシリン,100μg/mLストレプトマイシンを加えたRPMI(Roswell Park Memorial Institute)培地で培養(5%CO2、37℃)した。次に細胞培養用ディッシュ(HydroCell、セルシード社)中で、50ng/mLのマウスモノクローナル抗DNP-IgE抗体(Sigma-Aldrich社)を加えた培養液により24時間培養(5%CO2、37℃)することによって細胞を感作させた.その後,感作した細胞をバッファー(5.6mM glucose、1mM CaCl2,0.1%BSAを含むSiraganianバッファー(119mM NaCl、5mM KCl、0.4mM MgCl,25mM piperazine-N,N‘-bis(2-ethanesulfonic acid)(PIPES),40mM NaOH,pH7.2))中に濃度1×10^6個/mLとなるよう再懸濁し、測定に用いる測定試料とした。測定試料については、装置にセットする前に、10分間の予備加温(5%CO2、37℃)を施した。反応試薬としては、DNP-HSA抗原を、先述のバッファーで濃度50ng/mLとなるよう調製したものを用いた。 ・ Prepare measurement samples and reaction reagents before starting the process. First, RBL-2H3 cells were cultured (5% CO2, 37 ° C.) in RPMI (Roswell Park Memorial Institute) medium supplemented with 10% fetal calf serum (FCS), 100 unit / mL penicillin, and 100 μg / mL streptomycin. Next, the cells are cultured for 24 hours (5% CO 2, 37 ° C.) in a culture medium supplemented with 50 ng / mL mouse monoclonal anti-DNP-IgE antibody (Sigma-Aldrich) in a cell culture dish (HydroCell, Cellseed). Sensitized the cells. Thereafter, the sensitized cells were treated with a buffer (Siramian buffer containing 5.6 mM glucose, 1 mM CaCl2, 0.1% BSA (119 mM NaCl, 5 mM KCl, 0.4 mM MgCl, 25 mM piperazine-N, N′-bis (2- resuspended in ethanolsulfonic acid (PIPES), 40 mM NaOH, pH 7.2) to a concentration of 1 × 10 6 / mL, and used as a measurement sample for measurement. The measurement sample was pre-heated (5% CO 2, 37 ° C.) for 10 minutes before being set in the apparatus. As the reaction reagent, DNP-HSA antigen prepared with the above-mentioned buffer to a concentration of 50 ng / mL was used.
 以上の手順によって調整した各種試薬および、フローセル104を装置101にセットした。なお、基板ホルダ203内部は予め温度37℃、CO2濃度5%に制御されている。 Various reagents adjusted by the above procedure and the flow cell 104 were set in the apparatus 101. The inside of the substrate holder 203 is previously controlled at a temperature of 37 ° C. and a CO 2 concentration of 5%.
 工程P1で、入射角の調整を行う。送液系制御部120はポンプ130およびバルブ128~129を操作してフローセル104にバッファーを送った後、ポンプ130を停止し、フローセル104内部をバッファーで充填する。本実施例では、送液量500μL、送液速度1.6μL/秒(100μL/分)で送液を行った。バッファー充填後、光学系制御部122は照射部102と検出部103を操作して、励起光117の入射角を連続的に変化させながらSPR観察を行う。本実施例では、入射角45~70°の範囲を0.5°間隔で連続的変化させながら画像を取得した。イメージセンサ116の露光時間0.1秒である。画像データは制御PC108に逐次送信され、解析部121は送られた画像から反射光119の信号強度の解析を行う。本実施例では反射光119の強度として、バッファーが存在する領域の信号強度の和を、画素数で平均した値を用いた。解析部121は、励起光117の入射角をX軸、反射光119の信号強度をY軸としてプロットを作成し、極小値を示す点を後述の応答観察における入射角とする。本実施例では、入射角は57.5°であった。 In step P1, the incident angle is adjusted. The liquid feeding system control unit 120 operates the pump 130 and the valves 128 to 129 to send the buffer to the flow cell 104, then stops the pump 130 and fills the flow cell 104 with the buffer. In this example, liquid feeding was performed at a liquid feeding amount of 500 μL and a liquid feeding speed of 1.6 μL / sec (100 μL / min). After filling the buffer, the optical system control unit 122 operates the irradiation unit 102 and the detection unit 103 to perform SPR observation while continuously changing the incident angle of the excitation light 117. In this example, images were acquired while continuously changing the incident angle range of 45 to 70 ° at intervals of 0.5 °. The exposure time of the image sensor 116 is 0.1 second. The image data is sequentially transmitted to the control PC 108, and the analysis unit 121 analyzes the signal intensity of the reflected light 119 from the transmitted image. In this embodiment, as the intensity of the reflected light 119, a value obtained by averaging the sum of the signal intensities in the region where the buffer exists by the number of pixels is used. The analysis unit 121 creates a plot with the incident angle of the excitation light 117 as the X-axis and the signal intensity of the reflected light 119 as the Y-axis, and sets the point showing the minimum value as the incident angle in response observation described later. In this example, the incident angle was 57.5 °.
 工程P2で、観察時の細胞固定量の目標値を設定する。細胞固定量の目標値は、作業者が直接入力する。または、作業者が予め装置101に記録されている条件(例えば「高倍率観察」など)を選択することによって自動的に設定される。 In step P2, a target value for the amount of fixed cells at the time of observation is set. The target value of the cell fixation amount is directly input by the operator. Alternatively, it is automatically set by the operator selecting a condition (for example, “high magnification observation”) recorded in the apparatus 101 in advance.
 なお、細胞を1個単位で観察する場合、観察視野内にある程度の細胞が存在し、かつ細胞同士が重ならずに固定されている状態が望ましい。本実施例では、細胞固定量の指標として平均細胞密度を採用した。以下に、平均細胞密度の目標値を設定するための計算方法について説明する。 When observing cells in units of one, it is desirable that a certain amount of cells exist in the observation field and the cells are fixed without overlapping. In this example, the average cell density was adopted as an index of the amount of fixed cells. Below, the calculation method for setting the target value of average cell density is demonstrated.
 細胞が基板上にランダムに固定されるものと仮定すると、平均細胞密度δのとき、面積sの範囲にx個の細胞が存在する確率B(x)は、ポアソン分布に従って以下の式(1)で表わすことができる。 Assuming that the cells are randomly fixed on the substrate, when the average cell density δ, the probability B (x) that x cells exist within the area s is expressed by the following equation (1) according to the Poisson distribution. It can be expressed as
 B(x)=(sδ)x/x!exp(-sδ)   ・・・式(1) B (x) = (sδ) x / x! exp (-sδ) ... Formula (1)
 面積sは、ある細胞を中心とした半径rの範囲(s=πr^2)である。この範囲内に別の細胞が存在しない確率B(0)は以下の式(2)で表わすことができる。 The area s is a range of radius r around a certain cell (s = πr ^ 2). The probability B (0) that another cell does not exist within this range can be expressed by the following equation (2).
 B(0)=exp(-sδ)
=exp(-πr^2δ)   ・・・式(2)
 細胞が円形の場合、面積sを細胞の面積とすれば、B(0)は「細胞同士が重ならずに存在する確率」であると言える。このときのrは、2個の細胞が接するときのそれぞれの細胞の中心間距離(細胞の直径)に等しい。平均細胞密度δとB(0)の関係は、以下の式(3)によって与えられる。
B (0) = exp (−sδ)
= Exp (-πr ^ 2δ) Equation (2)
In the case where the cells are circular, if the area s is the area of the cells, it can be said that B (0) is “probability of cells not overlapping each other”. In this case, r is equal to the center-to-center distance (cell diameter) of each cell when two cells contact each other. The relationship between the average cell density δ and B (0) is given by the following equation (3).
 δ=-{logB(0)}/(πr^2)   ・・・式(3)
 例えば、直径10μmの細胞を用いて、50%以上の細胞が重ならずに存在する条件を満たす平均細胞密度δは、式(3)をδについて解くことで得られる(式(4))。
δ = − {logB (0)} / (πr ^ 2) (3)
For example, using a cell having a diameter of 10 μm, the average cell density δ satisfying the condition that 50% or more cells do not overlap can be obtained by solving Equation (3) for δ (Equation (4)).
 δ≦-{log0.5}/(πr^2)
≦2206個/mm^2   ・・・式(4)
 平均細胞密度の目標値を2206個/mm^2以下に設定することで、視野内において重なりの無い細胞の数が過半数となる。すなわち、重なりの無い細胞を選別するための作業量を低減することができ、解析の効率が向上する。好ましい平均細胞密度δは335個/mm^2以下であり、このとき90%の細胞が重ならずに存在する条件を満たす。より好ましい平均細胞密度δは163個/mm^2であり、このとき95%の細胞が重ならずに存在する条件を満たす。なお、前記条件において、視野内の重なりの無い細胞の数は、それぞれ427個、219個である。
δ ≦ − {log 0.5} / (πr ^ 2)
≦ 2206 / mm ^ 2 Formula (4)
By setting the target value of the average cell density to 2206 cells / mm ^ 2 or less, the number of cells that do not overlap in the visual field becomes a majority. That is, the amount of work for selecting cells without overlapping can be reduced, and the efficiency of analysis is improved. A preferable average cell density δ is 335 cells / mm 2 or less, and at this time, the condition that 90% of cells exist without overlapping is satisfied. A more preferable average cell density δ is 163 cells / mm ^ 2, which satisfies the condition that 95% of cells exist without overlapping. In the above conditions, the number of non-overlapping cells in the visual field is 427 and 219, respectively.
 一方、平均細胞密度の目標値を335個/mm^2以上に設定すると、重なりのある細胞の割合が10%を超えるため、重なりの無い細胞の選別に時間を要するが、より多くの細胞を観察することが可能である。すなわち、観察する細胞の絶対数を大きくすることで、ばらつきの少ない解析結果を得ることができる。好ましい平均細胞密度は1135個/mm^2以上であり、視野内の重なりの無い細胞の数は1126個である。より好ましい平均細胞密度は2206個/mm^2以上であり、視野内の重なりの無い細胞の数は1563個である。なお平均細胞密度が3182個/mm^2を超えると視野内の重なりの無い細胞の数は減少し、重なりのある細胞が多数を占める。このため、主に重なりのある細胞を観察する用途などにおいては、平均細胞密度が3182個/mm^2以上であることが好ましい。 On the other hand, if the target value of the average cell density is set to 335 cells / mm ^ 2 or more, the ratio of cells with overlapping exceeds 10%, so it takes time to select cells without overlapping. It is possible to observe. That is, an analysis result with little variation can be obtained by increasing the absolute number of cells to be observed. A preferable average cell density is 1135 cells / mm 2 or more, and the number of non-overlapping cells in the field of view is 1126. A more preferable average cell density is 2206 cells / mm 2 or more, and the number of non-overlapping cells in the field of view is 1563. When the average cell density exceeds 3182 cells / mm ^ 2, the number of non-overlapping cells in the field of view decreases, and a large number of overlapping cells occupy. For this reason, it is preferable that the average cell density is 3182 cells / mm ^ 2 or more in applications such as mainly observing overlapping cells.
 以上の計算方法により、作業者は観察の用途に合わせ、最適な平均細胞密度を設定することが可能である。例えば、作業者にテキストボックス等から、希望する重なりのない細胞の割合(例えば90%)を入力させ、これから適する平均細胞密度を算出し、目標値として設定してもよい。本実施例では、視野内に十分な数の細胞が存在し、かつ大部分の細胞が重ならない条件として、平均細胞密度の設定値を100個/mm^2とした。 By the above calculation method, the operator can set an optimum average cell density according to the purpose of observation. For example, the operator may input a desired ratio of non-overlapping cells (for example, 90%) from a text box or the like, calculate a suitable average cell density, and set it as a target value. In this example, the set value of the average cell density was set to 100 cells / mm 2 as a condition that a sufficient number of cells exist in the visual field and most of the cells do not overlap.
 工程P3で、基板201表面に細胞を固定する。送液系制御部120はポンプ130およびバルブ128~129を操作してフローセル104に測定試料を送った後、ポンプを130停止し、フローセル104内部を測定試料で充填する。本実施例では、送液量500μL、送液速度1.6μL/秒(100μL/分)で送液を行った。 In step P3, cells are fixed on the surface of the substrate 201. The liquid supply system control unit 120 operates the pump 130 and the valves 128 to 129 to send the measurement sample to the flow cell 104, stops the pump 130, and fills the flow cell 104 with the measurement sample. In this example, liquid feeding was performed at a liquid feeding amount of 500 μL and a liquid feeding speed of 1.6 μL / sec (100 μL / min).
 工程P4で、基板201表面に付着した細胞数のモニタリングを行う。光学系制御部122は照射部102と検出部103を操作して、本工程開始から一定時間経過後に画像を取得し、制御PC108に画像データを送る。本実施例では、工程開始後10分で画像を取得するよう設定した。解析部121は画像を解析し、そのときの細胞の固定量を計算する。本実施例では、まず測定試料が存在する領域の画像データを切り出し、切り出した画像を二値化し、粒子数解析を行うことで細胞数を求め、切り出した画像データのピクセル数から面積を求め、細胞数を面積で除することによって細胞密度を計算した。そのほか、面積から計算する方法(バックグラウンド以外のピクセル数をカウントし、予め求めておいた細胞1個に相当するピクセル数で除することによって細胞数を求める)など、種々の方法によって計算が可能である。密度の計算を行わず、細胞数のみを固定量として用いても良い。また、固定量の指標として、細胞間の距離を用いてもよい。例えば、取得した画像から細胞同士の距離、例えば中心間距離または細胞同士の輪郭間の距離を算出し、全ての細胞間の距離の最大値、最小値、平均値、中央値などを固定量の指標として、制御してもよい。 In step P4, the number of cells attached to the surface of the substrate 201 is monitored. The optical system control unit 122 operates the irradiation unit 102 and the detection unit 103 to acquire an image after a lapse of a certain time from the start of this process, and sends the image data to the control PC 108. In this embodiment, the setting is made so that an image is acquired 10 minutes after the start of the process. The analysis unit 121 analyzes the image and calculates the amount of fixed cells at that time. In this example, first cut out the image data of the region where the measurement sample exists, binarize the cut out image, obtain the number of cells by performing particle number analysis, find the area from the number of pixels of the cut out image data, Cell density was calculated by dividing cell number by area. In addition, it is possible to calculate by various methods such as a method of calculating from the area (counting the number of pixels other than the background and dividing by the number of pixels corresponding to one cell obtained in advance). It is. Only the number of cells may be used as a fixed amount without calculating the density. Moreover, you may use the distance between cells as a fixed quantity parameter | index. For example, the distance between cells, for example, the distance between the centers or the distance between the contours of the cells is calculated from the acquired image, and the maximum value, the minimum value, the average value, the median value, etc. It may be controlled as an index.
 工程P5で、細胞固定量の判定を行う。解析部121は、工程P4で算出した固定量と、工程P2で設定した目標値を比較し、その結果に応じて送液系制御部120と光学系制御部122のいずれかもしくは両方に指示を出す。固定量と目標値の比較方法としては、値の大小、両者の差が基準値より大きいか否か、両者の比が基準値より大きいか否か、などを用いてよい。または、当該時点一点の固定量だけでなく、経時変化を用いてもよい。例えば、ある時点での微分値や、ある時間帯での平均的な増減量や増減率、積算値、積分値などを用いてもよい。比較に用いる際の基準値等のパラメータは、装置の製造や調整、設定時にあらかじめ設定しておいてもよく、解析フローの途中、例えば工程P2の固定量の目標値の設定時に併せて、GUIやコマンドラインから作業者に入力させたり、設定ファイル等から読み込んだりしてもよい。解析部121は、これらの比較方法を用いて、未だ固定量の調整の必要があるか、または固定量の調整が不要なので、次の工程P6へ進めばよいかを判定する。 In step P5, the amount of fixed cells is determined. The analysis unit 121 compares the fixed amount calculated in the process P4 with the target value set in the process P2, and instructs one or both of the liquid feeding system control unit 120 and the optical system control unit 122 according to the result. put out. As a comparison method between the fixed amount and the target value, the magnitude of the value, whether the difference between the two is larger than the reference value, whether the ratio between the two is larger than the reference value, or the like may be used. Alternatively, not only a fixed amount at one point in time but also a change with time may be used. For example, a differential value at a certain time point, an average increase / decrease amount or increase / decrease rate in a certain time zone, an integrated value, an integrated value, or the like may be used. Parameters such as a reference value used for comparison may be set in advance at the time of manufacture, adjustment, and setting of the apparatus. In the course of the analysis flow, for example, at the time of setting a fixed amount target value in the process P2, a GUI is used. Alternatively, an operator may input from the command line or read from a setting file or the like. The analysis unit 121 uses these comparison methods to determine whether the fixed amount needs to be adjusted or whether the fixed amount needs to be adjusted, so that it is possible to proceed to the next step P6.
 例えば、固定量が工程P2で設定した目標値に達していなかった場合、固定量を調整する必要があるため、解析部121は必要な処理を送液系制御部120と光学系制御部122のいずれかもしくは両方に指示し、再度工程P4に進む。指示の内容としては、例えば、単に一定時間待機する指示を出すことで、固定反応の進行を促してもよい。また、固定反応を促進するような条件、温度、液の撹拌、流速、その他の物理的な条件の変更を指示してもよい。または、工程P3の固定反応に進んでもよい。または、これらの指示を組み合わせたり、適宜これらのうちから選択したりしてもよい。 For example, if the fixed amount has not reached the target value set in step P2, it is necessary to adjust the fixed amount. Therefore, the analysis unit 121 performs necessary processing of the liquid feeding system control unit 120 and the optical system control unit 122. Either or both are instructed, and the process proceeds to step P4 again. As the content of the instruction, for example, the progress of the fixation reaction may be promoted by simply issuing an instruction to wait for a certain period of time. Moreover, you may instruct | indicate the change of conditions, temperature, liquid stirring, flow velocity, and other physical conditions which accelerate | stimulate a fixed reaction. Or you may progress to the fixing reaction of process P3. Alternatively, these instructions may be combined or appropriately selected from these.
 例えば、固定量が工程P2で設定した目標値に達していた場合、固定量の調整が不要であるため工程6に進むが、必要に応じて固定反応停止のための処理を行う。具体的には、送液系制御部120がポンプ130およびバルブ128~129を操作してフローセル104にバッファーを送り、フローセル104内部の測定試料をバッファーに置換する。本実施例では、送液量500μL、1.6μL/秒(100μL/分)で送液を行った。固定反応の停止処理は本方法に限らず、各種の方法を用いることができる。固定反応を阻害もしくは停止するような薬剤を添加しても良い。温度やpHなどその他の物理条件を変えても良い。 For example, when the fixed amount has reached the target value set in step P2, the adjustment to the fixed amount is unnecessary, and thus the process proceeds to step 6. However, processing for stopping the fixed reaction is performed as necessary. Specifically, the liquid supply system control unit 120 operates the pump 130 and the valves 128 to 129 to send a buffer to the flow cell 104, and replaces the measurement sample in the flow cell 104 with the buffer. In this example, liquid feeding was performed at a liquid feeding amount of 500 μL and 1.6 μL / second (100 μL / min). The fixation reaction termination process is not limited to this method, and various methods can be used. A drug that inhibits or stops the fixation reaction may be added. Other physical conditions such as temperature and pH may be changed.
 工程P6で、応答観察を行う。光学系制御部122は照射部102と検出部103を操作して、一定の時間間隔で連続的に画像を取得する(タイムラプス撮影)。本実施例では露光時間0.1秒、撮影間隔を10秒とした。撮影した画像データは制御PC108に逐次送信され、解析部121は送られた画像から反射光119の信号強度の解析を行う。本実施例では反射光119の信号強度として、バッファーが存在する領域の全画素の信号強度を平均した値を用いて解析を行ったが、例えば流路部品を含む全ての領域の全画素を用いて計算しても良い。また、1つ以上の任意の領域に限定して解析を行っても良い。解析部121は、経過時間をX軸、反射光の信号強度をY軸としてプロットを作成し、リアルタイムでモニタ109に表示する。 In step P6, response observation is performed. The optical system control unit 122 operates the irradiation unit 102 and the detection unit 103 to continuously acquire images at a constant time interval (time-lapse shooting). In this embodiment, the exposure time is 0.1 seconds and the shooting interval is 10 seconds. The captured image data is sequentially transmitted to the control PC 108, and the analysis unit 121 analyzes the signal intensity of the reflected light 119 from the transmitted image. In this embodiment, the signal intensity of the reflected light 119 is analyzed using a value obtained by averaging the signal intensity of all the pixels in the region where the buffer exists. For example, all the pixels in all the regions including the flow path component are used. May be calculated. Further, the analysis may be limited to one or more arbitrary regions. The analysis unit 121 creates a plot with the elapsed time as the X axis and the reflected light signal intensity as the Y axis, and displays the plot on the monitor 109 in real time.
 タイムラプス撮影開始から一定時間経過後に、細胞に対し刺激物質を含む反応試薬を接触させる。送液系制御部120はポンプ130およびバルブ128~129を操作してフローセル104に反応試薬を送った後、ポンプ130を停止し、フローセル104内部を反応試薬で充填する。本実施例では、開始から60秒経過後に、送液量500μL、送液速度1.6μL/秒(100μL/分)で反応試薬の送液を行った。 ¡After a certain period of time has elapsed since the start of time-lapse photography, a reaction reagent containing a stimulating substance is brought into contact with the cells. After the liquid supply system control unit 120 operates the pump 130 and the valves 128 to 129 to send the reaction reagent to the flow cell 104, the pump 130 is stopped and the flow cell 104 is filled with the reaction reagent. In this example, after the elapse of 60 seconds from the start, the reaction reagent was fed at a feeding rate of 500 μL and a feeding rate of 1.6 μL / sec (100 μL / min).
 反応試薬充填から一定時間経過後に、タイムラプス撮影を終了する。光学系制御部122は照射部102と検出部103を操作して、照射部102および検出部103の動作を停止し、測定が完了した旨をモニタ109に表示し作業者に告知する。本実施例では、反応試薬充填から1800秒経過後に、タイムラプス撮影を終了した。 タ イ ム Time lapse photography ends after a certain period of time has elapsed since the reagent was charged. The optical system control unit 122 operates the irradiating unit 102 and the detecting unit 103 to stop the operations of the irradiating unit 102 and the detecting unit 103, and displays on the monitor 109 that the measurement is completed to notify the operator. In this example, time-lapse imaging was completed after 1800 seconds had elapsed since the reaction reagent was charged.
 最後に、送液系制御部120はポンプ130およびバルブ128~129を操作してフローセル104にバッファーを送り、送液チューブ126~127およびフローセル104内をバッファーで洗浄した後、ポンプ130を停止する。本実施例では、送液量4000μL、送液速度3.2μL/秒(200μL/分)で送液を行った。なお、バッファーによる洗浄前に、トリプシンを含む溶液を送液してもよい。前記プロセスを追加することで基板201表面に付着した細胞が脱落し、基板201表面が測定前の状態に戻るため、基板201を交換することなく繰り返し測定することが可能である。 Finally, the liquid supply system control unit 120 operates the pump 130 and the valves 128 to 129 to send the buffer to the flow cell 104, and after washing the liquid supply tubes 126 to 127 and the flow cell 104 with the buffer, the pump 130 is stopped. . In this example, liquid feeding was performed at a liquid feeding amount of 4000 μL and a liquid feeding speed of 3.2 μL / sec (200 μL / min). A solution containing trypsin may be sent before washing with a buffer. By adding the above process, cells attached to the surface of the substrate 201 drop off, and the surface of the substrate 201 returns to the state before the measurement, so that the measurement can be repeated without replacing the substrate 201.
 工程P5の内部または前後にタイムアウトエラーの判定を含んでもよい。この判定のタイミングは、例えば、固定量と目標値の比較の前または後でよく、または、固定反応の調整のための処理を送液系制御部120と光学系制御部122のいずれかもしくは両方に指示する前や後、または、固定反応の停止処理を送液系制御部120と光学系制御部122のいずれかもしくは両方に指示する前や後でもよい。タイムアウトエラーの判定基準は、所定の時間を超過した場合や所定の回数を超過した場合でよい。ここで回数とは固定量と目標値の比較、固定量の算出、固定量調整の実行や指示、などの回数を用いてよい。また、時間とは、測定試料の固定反応の開始時点、装置準備、測定試料や反応試薬等の設置や調製時から起算した経過時間を用いてよい。また、ここに挙げた複数の判定基準を組み合わせても良い。また、作業者に、これらの判定基準のいずれを採用するか、または判定を実施しないかを選択させてもよく、選択のタイミングは解析フローの開始前でも開始後(終了前)でもよい。タイムアウトエラーと判定された後の動作としては、解析フローの一時停止や中止、タイムアウトエラー時用の特殊な固定量調整、強制的な工程P6への移行、などを用いてよく、解析部121は送液系制御部120と光学系制御部122のいずれかもしくは両方に対し、適宜これらに必要な動作内容を指示する。解析フローを一時停止した場合は、例えば解析部121はその旨をモニタ108や音声等を介して作業者に告知し、作業者に次の動作の指示を促し、指示の手段をGUI、CUI、ジェスチャ、音声等を介して提供してよい。動作の選択肢としては、フローの再開、フローの中止や、タイムアウトエラー時用の特殊な固定量調整、強制的な工程P6への移行、などを含んでよい。装置101は、作業者がフローの再開を選ぶ場合に、再開前に測定試料や反応試薬、各種設定値や装置設定を変更できる仕様であっても良い。フローの中止が選択された際は、解析部121は、必要に応じて送液系制御部120と光学系制御部122のいずれかもしくは両方に終了処理を指示してよい。 Timeout error determination may be included in or before or after the process P5. The timing of this determination may be, for example, before or after the comparison between the fixed amount and the target value, or the processing for adjusting the fixed reaction is performed by either or both of the liquid feeding system control unit 120 and the optical system control unit 122. It may be before or after instructing the process, or before or after instructing either or both of the liquid feeding system control unit 120 and the optical system control unit 122 to stop the fixation reaction. The determination criterion for the timeout error may be when a predetermined time is exceeded or when a predetermined number of times is exceeded. Here, the number of times such as comparison between a fixed amount and a target value, calculation of a fixed amount, execution or instruction of fixed amount adjustment may be used. The time may be the elapsed time calculated from the start time of the fixation reaction of the measurement sample, the preparation of the apparatus, the installation of the measurement sample, the reaction reagent, etc. or the preparation time. Moreover, you may combine the some criteria mentioned here. In addition, the operator may select which of these determination criteria is adopted or not to perform the determination, and the timing of selection may be before or after the analysis flow starts (before the end). As operations after the time-out error is determined, the analysis flow may be temporarily stopped or canceled, a special fixed amount adjustment for time-out error, forcibly shifting to the process P6, etc. The operation content necessary for them is appropriately instructed to one or both of the liquid feeding system control unit 120 and the optical system control unit 122. When the analysis flow is temporarily stopped, for example, the analysis unit 121 notifies the worker to that effect via the monitor 108, voice, or the like, prompts the worker to instruct the next operation, and sets the instruction means as GUI, CUI, It may be provided via gestures, voices and the like. Operation options may include resumption of flow, suspension of flow, special fixed amount adjustment for time-out error, forced transition to step P6, and the like. The apparatus 101 may have a specification that allows the measurement sample, the reaction reagent, various setting values, and apparatus settings to be changed before restarting when the operator chooses to restart the flow. When the cancellation of the flow is selected, the analysis unit 121 may instruct the liquid supply system control unit 120 and the optical system control unit 122 or both to finish the process as necessary.
 なお、工程P2の目標値の設定は、工程P5以前であればよい。工程P2の目標値の設定は、好ましくは、工程P1の装置準備のあと、工程P3の固定反応開始の前である。この場合、例えば、まず実験開始時に測定試料や反応試薬類、装置を準備した後、実験条件としてある固定量の目標値を設定、解析を実施して得られた結果について考察を加え、その考察に基づいて新たな実験条件として固定量の目標値を修正して解析する、というような実験の進め方において、装置準備をやり直す必要がないため実験を効率的に進めることが可能になる。または、工程P2の目標値の設定を、工程P1の装置準備の前に実施してもよく、この場合には、ある固定量の目標値を設定した後、装置準備をして解析を進めた結果を見て設定を変更したり、各種試薬を交換、再調製して、改めて解析を実施する、という実験において、目標値設定をやり直す必要がないため、実験を効率的に進めることが可能になる。このようなケースとして、実験結果から、測定試料や反応試薬の不備が推測された場合や、実際に得られた固定量と目標値のかい離(誤差)が期待より大きかった場合や、タイムアウトエラー等で目標とする固定量が得られなかった場合、所望の固定量に到達するまでの時間が想定よりも長くかかりすぎて測定試料や解析結果に悪影響が認められた場合、などが挙げられる。 Note that the target value for the process P2 may be set before the process P5. The setting of the target value in the process P2 is preferably after the device preparation in the process P1 and before the start of the fixed reaction in the process P3. In this case, for example, after preparing the measurement sample, reaction reagents, and apparatus at the start of the experiment, a fixed amount target value is set as the experimental condition, and the results obtained by performing the analysis are added. As a new experimental condition, a fixed amount of target value is corrected and analyzed, it is possible to efficiently proceed with the experiment because it is not necessary to redo the device preparation. Alternatively, the target value for the process P2 may be set before preparing the apparatus for the process P1, and in this case, after setting a certain fixed amount of target value, the apparatus is prepared and the analysis proceeds. It is not necessary to set the target value again in an experiment in which the setting is changed based on the result, or various reagents are exchanged, re-prepared, and analysis is performed again, so that the experiment can be carried out efficiently. Become. In such cases, when the measurement sample or reaction reagent is inferior from the experimental results, the deviation (error) between the actual fixed amount and the target value is larger than expected, a timeout error, etc. In the case where the target fixed amount is not obtained in (1), the time required to reach the desired fixed amount is longer than expected and the measurement sample or the analysis result is adversely affected.
 以上の手段を用いて測定したRBL-2H3細胞の抗原応答反応の結果を図4に示す。測定開始から60秒後に反応試薬の送液を開始し、その約50秒後から、細胞の応答に伴うSPR反射光強度の上昇が確認することができた。 FIG. 4 shows the results of the antigen response reaction of RBL-2H3 cells measured using the above means. 60 seconds after the start of the measurement, the reaction reagent was started to be fed, and after about 50 seconds, an increase in the SPR reflected light intensity accompanying the cell response could be confirmed.
 図5に送液部106にピペッタ機構504を用い、フローセル104の代わりにウェル基板601を用いた例を示す。その他の構成は実施例1と同等である。ここでピペッタ機構とは、液体を指定した容積だけ吐出できるものである。吐出前に別個の液体リザーバから吸引した液体を吐出する方式や、ピペッタ機構に直結されたリザーバに予め液体を満たしておき必要に応じて断続的に吐出する方式などを用いてよい。 FIG. 5 shows an example in which a pipetter mechanism 504 is used for the liquid feeding unit 106 and a well substrate 601 is used instead of the flow cell 104. Other configurations are the same as those of the first embodiment. Here, the pipetter mechanism is a mechanism capable of discharging a specified volume of liquid. A method of discharging the liquid sucked from a separate liquid reservoir before discharging, a method of discharging the liquid directly in a reservoir directly connected to the pipetter mechanism, and discharging intermittently as necessary may be used.
 (構造の説明)
  本実施例の送液部106は、試薬リザーバ501~503とピペッタ機構504からなる。ピペッタ機構504は、ノズル505、ロボットアーム506、配管507、シリンジポンプ508、送液ポンプ509、切り替えバルブ510、水タンク511、洗浄槽512、廃液タンク513からなる。
(Description of structure)
The liquid feeding unit 106 of this embodiment includes reagent reservoirs 501 to 503 and a pipetter mechanism 504. The pipetter mechanism 504 includes a nozzle 505, a robot arm 506, a pipe 507, a syringe pump 508, a liquid feed pump 509, a switching valve 510, a water tank 511, a cleaning tank 512, and a waste liquid tank 513.
 ノズル505はロボットアーム506によって保持され、必要に応じて、ウェル基板601、試薬リザーバ501~503、洗浄槽512、廃液タンク513などへ移動できる。ノズル505は配管507を介してシリンジポンプ508に接続されており、試薬リザーバ501~503やウェル基板601などから指定容積の液体を吸引または吐出可能である。試薬リザーバ501~503やウェル基板601などから吸引された不要な液体は、廃液タンク503へと吐出される。シリンジポンプ508には、送液ポンプ509が接続されており、水タンク511の水を充填できる。また、ノズル505を廃液タンク513に移動した上で、送液ポンプ509からシリンジポンプ508、ノズル505を介して水を吐出することで、流路内やノズル505内部を洗浄し、コンタミネーションや吸引吐出される液体のキャリーオーバーを防止、低減できる。さらに、ノズル505を洗浄槽512へ移動した上で、切り替えバルブ510を切り替えて、水を洗浄槽510に吐出し、ノズル505に水をかけることで、ノズル505の外側も洗浄可能であり、同じくコンタミネーションや吸引吐出される液体のキャリーオーバーを防止、低減できる。これらの動作は、本図では省略された送液系制御部からロボットアーム506、シリンジポンプ508、送液ポンプ509、切り替えバルブ510に動作指示が送られることによって行われる。 The nozzle 505 is held by the robot arm 506, and can be moved to the well substrate 601, the reagent reservoirs 501 to 503, the cleaning tank 512, the waste liquid tank 513, and the like as necessary. The nozzle 505 is connected to a syringe pump 508 via a pipe 507, and can suck or discharge a specified volume of liquid from the reagent reservoirs 501 to 503, the well substrate 601 and the like. Unnecessary liquid sucked from the reagent reservoirs 501 to 503 and the well substrate 601 is discharged to the waste liquid tank 503. A liquid feed pump 509 is connected to the syringe pump 508 and can fill the water in the water tank 511. In addition, after moving the nozzle 505 to the waste liquid tank 513, water is discharged from the liquid feed pump 509 via the syringe pump 508 and the nozzle 505, thereby cleaning the inside of the flow path and the inside of the nozzle 505 to prevent contamination and suction. Carryover of discharged liquid can be prevented and reduced. Furthermore, after moving the nozzle 505 to the cleaning tank 512, the switching valve 510 is switched to discharge water to the cleaning tank 510, and water is applied to the nozzle 505, so that the outside of the nozzle 505 can also be cleaned. Contamination and carry-over of sucked / discharged liquid can be prevented and reduced. These operations are performed by sending operation instructions to the robot arm 506, the syringe pump 508, the liquid feeding pump 509, and the switching valve 510 from the liquid feeding system control unit, which is omitted in the drawing.
 ウェル基板601の構成図を図6に示す。ウェル基板601は、ウェル部品602、基板201、プリズム105およびこれらを一体に保持するためのホルダ603によって構成される。基板201、プリズム105に関しては、基本的に実施例1と同様の構成を用いることができる。ウェル部品602は、1つ以上の液体保持サイト604を備える。ウェル部品602を基板601上に設置することで、前記の液体保持サイト604と基板201とで、1つ以上のウェル605を形成する。ホルダ603には、ノズル505を通すための開口部606が設けられている。開口部606にはセプタ607が設置されている。ノズル505は開口部606のセプタ607を貫通し、ウェル基板601上のウェル605に到達する。またホルダ603には、温調されたCO2ガス用配管211を通すための開口部608が設けられている。これにより、ウェル基板601表面の温度およびCO2濃度を一定に保つことが可能である。本実施例では、細胞が最も活発となるよう、温度37℃、CO2濃度5%に調節されている。なお、ホルダ603には視野の移動やピント調整のための直動ガイドが取り付けられているが、図6では省略した。
1つのウェル基板601に複数のウェル605が存在する場合、一度のウェル基板601のセットアップで、複数条件での相互作用解析が可能となる効果がある。特に、照射部102および検出部103を含む光学系により、複数のウェル605を全時間帯または一時的に同時並行して観察可能である場合、複数条件を同時並行的に解析可能になる。各ウェル605は、その中または上に液体を保持し、ウェル605間の液が意図せず混ざったり移動したりすることを防ぐ機能をもつ。また、各ウェル605は、保持される液体を導入可能な開口部を少なくとも1つずつ持つ。ウェル部品602としては、このような機能を持つ各種の構造を用いてよい。各ウェル605に保持できる液体の量は、用途に応じて適宜変更可能であるが、好ましくは1nL~1mL、より好ましくは10nL~100μL、より好ましくは100nL~10μLである。
A configuration diagram of the well substrate 601 is shown in FIG. The well substrate 601 includes a well component 602, a substrate 201, a prism 105, and a holder 603 for holding them together. Regarding the substrate 201 and the prism 105, the same configuration as that of the first embodiment can be basically used. Well part 602 includes one or more liquid holding sites 604. By installing the well component 602 on the substrate 601, the liquid holding site 604 and the substrate 201 form one or more wells 605. The holder 603 is provided with an opening 606 through which the nozzle 505 passes. A septa 607 is installed in the opening 606. The nozzle 505 passes through the septa 607 of the opening 606 and reaches the well 605 on the well substrate 601. The holder 603 is provided with an opening 608 for passing the temperature-controlled CO2 gas pipe 211. Thereby, the temperature and CO2 concentration on the surface of the well substrate 601 can be kept constant. In this embodiment, the temperature is adjusted to 37 ° C. and the CO 2 concentration is 5% so that the cells are most active. The holder 603 is provided with a linear motion guide for moving the visual field and adjusting the focus, but is omitted in FIG.
When there are a plurality of wells 605 in one well substrate 601, there is an effect that an interaction analysis under a plurality of conditions can be performed by setting up the well substrate 601 once. In particular, when a plurality of wells 605 can be observed in all time periods or temporarily in parallel by an optical system including the irradiation unit 102 and the detection unit 103, a plurality of conditions can be analyzed in parallel. Each well 605 has a function of holding liquid in or on the well 605 and preventing the liquid between the wells 605 from being mixed or moved unintentionally. Each well 605 has at least one opening through which the liquid to be held can be introduced. As the well component 602, various structures having such a function may be used. The amount of liquid that can be held in each well 605 can be appropriately changed depending on the application, but is preferably 1 nL to 1 mL, more preferably 10 nL to 100 μL, and more preferably 100 nL to 10 μL.
 ウェル部品602の別の形態としては、液体保持サイト604として貫通穴をもつ厚みを持った板状部材、液体保持サイト604として液を囲む壁面を持つ(例えば、マルチウェルプレートの底面をくり抜いたような)部材、保持する液体に対してはっ水性を示すシート状部材に液体保持サイト604として貫通穴を設けたシート状部材、または基板201表面に施される保持する液体に対してはっ水性や親水性を示す表面処理(および処理によって表面に導入される官能基や分子・原子の配列等)で液体保持サイト604として機能するパターンを持つものなどを用いることができる。前記のパターンとして例えば、各液体保持サイト604以外ははっ水性表面処理され、各液体保持サイト604内は未処理であるパターンや、比較的にはっ水性の基板201の表面上に各液体保持サイト604の外周だけ親水性表面処理を施したパターン、等を用いることができる。また、ウェル部品602の別の例としては、フローセル状の部材で、流路の末端もしくは途中に開口部が設けられたものを用いてもよい。この場合、液体の導入は、液を開口部に滴下したり、ノズル505を開口部に差し込んだ上で注入してもよい。各ウェル605の液体がウェル部品602内部に半ば閉じ込められており、雰囲気に直接触れる表面積が小さくなるため、液体が蒸発しにくく、より正確な解析を実現しやすいという効果がある。 As another form of the well part 602, a plate-like member having a through hole as the liquid holding site 604 and a wall surface surrounding the liquid as the liquid holding site 604 (for example, the bottom surface of the multi-well plate is cut out) Water repellent to the liquid held on the surface of the substrate 201 or the sheet-like member provided with a through hole as the liquid holding site 604 Or a surface treatment exhibiting hydrophilicity (and functional groups introduced into the surface by the treatment, arrangement of molecules / atoms, etc.) having a pattern that functions as the liquid holding site 604 can be used. As the pattern, for example, water-repellent surface treatment is performed except for each liquid holding site 604, and each liquid holding site 604 is untreated, or each liquid is held on the surface of a relatively water-repellent substrate 201. A pattern in which a hydrophilic surface treatment is applied only to the outer periphery of the site 604 can be used. As another example of the well component 602, a flow cell-like member having an opening provided at the end or in the middle of the flow path may be used. In this case, the liquid may be introduced by dropping the liquid into the opening or inserting the nozzle 505 into the opening. Since the liquid in each well 605 is semi-confined inside the well component 602 and the surface area that directly touches the atmosphere is reduced, the liquid is less likely to evaporate, and more accurate analysis can be easily realized.
 以上の様なピペッタ機構504を用いた場合、異なる測定試料や反応試薬が共通して触れる部分はノズル505のみ、またはノズル505近傍の配管504のみとなるため、キャリーオーバーを防止、低減する効果がある。 When the pipetter mechanism 504 as described above is used, only the nozzle 505 or the pipe 504 in the vicinity of the nozzle 505 is in contact with different measurement samples and reaction reagents in common, so that the effect of preventing and reducing carryover is obtained. is there.
 その他、プリズム105および基板201の材料、温度およびCO2濃度の制御方法などについては、実施例1に記載したとおり種々の方法が使用可能である。 In addition, as described in the first embodiment, various methods can be used for the method of controlling the material, temperature, and CO2 concentration of the prism 105 and the substrate 201.
 (動作の概要)
  ピペッタ機構504とウェル基板601の組合せを用いたときの実際の解析例について説明する。ここで解析対象は、実施例1と同じく、ラット好塩基球由来の細胞株であるRBL-2H3細胞を測定試料、DNP-HSA抗原を反応試薬として、細胞の抗原刺激への応答機能の測定を行った。試薬リザーバ501には測定試料を、試薬リザーバ502には反応試薬を、試薬リザーバ503にはバッファーを、それぞれ満たした。ウェル部品602として、板状のPDMS(縦横19×19mm、厚み5mm)に、貫通穴(φ4mm)を開けたものを用い、実施例1と同じく金薄膜を設けた基板201の上面(金薄膜の存在する面)側に密着するよう、ホルダ603で保持した。
(Overview of operation)
An actual analysis example when the combination of the pipetter mechanism 504 and the well substrate 601 is used will be described. Here, the analysis target is the same as in Example 1, except that RBL-2H3 cells, which are a rat basophil-derived cell line, are used as measurement samples, and DNP-HSA antigen is used as a reaction reagent to measure the response function to cell antigen stimulation. went. The reagent reservoir 501 was filled with a measurement sample, the reagent reservoir 502 was filled with a reaction reagent, and the reagent reservoir 503 was filled with a buffer. As the well component 602, a plate-like PDMS (longitudinal and lateral 19 × 19 mm, thickness 5 mm) with a through hole (φ4 mm) is used, and the upper surface (the thin gold film) of the substrate 201 provided with the thin gold film as in the first embodiment. The holder 603 was held so as to be in close contact with the existing surface) side.
 なお、基本的な動作のフローチャートは、実施例1に示したものと同じものを用いることができるため、ここでは実施例1と異なる部分についてのみ、図3を引用しながら説明する。また、全ての動作は、実施例1で示した制御PC108内の送液系制御部120および光学系制御部122の指示に従って行われる。 In addition, since the same flowchart as the first embodiment can be used for the basic operation flowchart, only the parts different from the first embodiment will be described with reference to FIG. All operations are performed in accordance with instructions from the liquid feeding system control unit 120 and the optical system control unit 122 in the control PC 108 described in the first embodiment.
 工程P1においてウェル605にバッファーを充填し、入射角の調整を行う。ノズル505は試薬リザーバ503に移動し、バッファーを吸引した後、ウェル基板601に移動し、ウェル605にバッファーを吐出する。本工程に用いたバッファーの液量は10μLである。バッファー吐出後、ノズル505は廃液タンク513に移動し、少量の水を吐出することにより、内部の洗浄を行う。その後ノズル505は洗浄槽512に移動し、外部を洗浄する。以上の動作の後、実施例1に示す手法により、入射角を調整する。なおウェル基板601に複数個のウェル605が存在している場合、特定の一箇所のみにバッファーを充填し、その領域のSPR反射光強度を測定することによって、入射角の調整が可能である。入射角の調整が完了後、ノズル505はウェル基板601に移動し、バッファーを吸引し、廃液タンク513に吐出する。その後、先程と同様の手順で洗浄動作を行う。 工程P3において、測定試料の固定反応を行う。反応は、工程P1と同様の手順で測定試料をウェル605に吐出し、そのまま待機することでなされる。本工程に用いた測定試料の液量は10μLである。待機中、細胞が重力によってウェル605の底に沈む。ウェルの底には金薄膜が露出しており、細胞は生来の性質により金薄膜表面に接着する。その他、測定試料を吸引し、ウェル605に吐出した後に、図示されない別のリザーバから固定反応を開始または促進する別の薬剤を吸引し、同じウェル605に追加して吐出してもよい。 In step P1, the well 605 is filled with a buffer, and the incident angle is adjusted. The nozzle 505 moves to the reagent reservoir 503, sucks the buffer, moves to the well substrate 601, and discharges the buffer to the well 605. The amount of buffer used in this step is 10 μL. After discharging the buffer, the nozzle 505 moves to the waste liquid tank 513 and discharges a small amount of water to clean the inside. Thereafter, the nozzle 505 moves to the cleaning tank 512 and cleans the outside. After the above operation, the incident angle is adjusted by the method shown in the first embodiment. In the case where a plurality of wells 605 are present on the well substrate 601, the incident angle can be adjusted by filling the buffer only at one specific location and measuring the SPR reflected light intensity in that region. After the adjustment of the incident angle is completed, the nozzle 505 moves to the well substrate 601, sucks the buffer, and discharges it to the waste liquid tank 513. Thereafter, the cleaning operation is performed in the same procedure as before. In step P3, the measurement sample is immobilized. The reaction is performed by discharging the measurement sample to the well 605 and waiting as it is in the same procedure as in the process P1. The liquid volume of the measurement sample used in this step is 10 μL. While waiting, cells sink to the bottom of the well 605 by gravity. The gold thin film is exposed at the bottom of the well, and the cells adhere to the surface of the gold thin film due to their natural properties. In addition, after the measurement sample is aspirated and discharged into the well 605, another drug that initiates or accelerates the fixation reaction may be aspirated from another reservoir (not shown) and added to the same well 605 for discharge.
 工程P5の固定量判定において、固定量が目標値未満であった場合には、ウェル605から測定試料を5μL吸引し、廃液タンク513に廃棄した上で、試薬リザーバ501から測定試料5μLを吸引し、ウェル605に吐出した。 In the fixed amount determination in step P5, when the fixed amount is less than the target value, 5 μL of the measurement sample is sucked from the well 605 and discarded in the waste liquid tank 513, and then 5 μL of the measurement sample is sucked from the reagent reservoir 501. The liquid was discharged into the well 605.
 固定量が目標値以上であった場合には、まずウェル605から測定試料を5μL吸引し、廃液タンク513に廃棄した。試薬リザーバ503からバッファー10μLを吸引し、ウェル605に吐出し、同ウェル605から10μLを吸引して廃液タンク513に廃棄した。この操作を5回繰り返し、ウェル605中の液から、固定していない細胞を取り除き、固定反応を停止した。この操作の繰り返し回数は、あらかじめ決めておいても、また光学系制御部122および解析部121を用いて固定反応の進行をモニタすることで、固定反応の停止が確認されるまで継続してもよい。また、この際にも、タイムアウトや上限回数の設定により、繰り返しを止める条件を設けてもよい。 When the fixed amount was not less than the target value, first, 5 μL of the measurement sample was sucked from the well 605 and discarded into the waste liquid tank 513. 10 μL of buffer was aspirated from the reagent reservoir 503 and discharged into the well 605, and 10 μL was aspirated from the well 605 and discarded into the waste liquid tank 513. This operation was repeated 5 times to remove unfixed cells from the solution in the well 605 to stop the fixing reaction. The number of repetitions of this operation may be determined in advance, or may be continued until the stop of the fixation reaction is confirmed by monitoring the progress of the fixation reaction using the optical system control unit 122 and the analysis unit 121. Good. Also in this case, a condition for stopping the repetition may be provided by setting a timeout or an upper limit number.
 工程P6で応答観察を行う。応答観察の手順は実施例1に示すとおりである。測定試料に対する反応試薬の添加方法については、まず工程P1と同様の手順で反応試料を吸引し、測定試料が固定されバッファーが充填されたウェル605に添加することでなされる。本工程に用いた反応試薬の液量は10μLである。反応試薬添加後に、ノズル505を用いてピペッティング動作を行うことで、反応試薬の混合を促進しても良い。またはノズル505でウェル605内部のバッファーを廃棄した後、反応試薬を添加しても良い。 Response observation is performed in process P6. The procedure of response observation is as shown in Example 1. Regarding the method of adding the reaction reagent to the measurement sample, first, the reaction sample is sucked in the same procedure as in Step P1, and added to the well 605 in which the measurement sample is fixed and filled with the buffer. The amount of the reaction reagent used in this step is 10 μL. After adding the reaction reagent, the mixing of the reaction reagent may be promoted by performing a pipetting operation using the nozzle 505. Alternatively, the reaction reagent may be added after discarding the buffer in the well 605 with the nozzle 505.
 図7は、実施例3の照射部と検出部周辺の構成である。そのほかの構成は、前記実施例1の構成と同等である。本実施例の特徴は、エバネッセント光を利用して測定試料を観察することである。本実施例による一連の観察プロセスについて、実施例1と同じくDNP-HSA抗原の刺激に対する、ラット好塩基球由来の細胞株であるRBL-2H3細胞の応答機能の測定を例に説明する。なお、RBL-2H3細胞はAlexaFluor546(Life Technologies)によって、DNP-HSA抗原はAlexaFluor647(Life Technologies)によって、それぞれ事前に標識されていることとする。 FIG. 7 shows a configuration around the irradiation unit and the detection unit according to the third embodiment. Other configurations are the same as those of the first embodiment. The feature of the present embodiment is that the measurement sample is observed using evanescent light. A series of observation processes according to this example will be described by taking, as an example, measurement of the response function of RBL-2H3 cells, which are a cell line derived from rat basophils, in response to stimulation with DNP-HSA antigen as in Example 1. RBL-2H3 cells are labeled in advance with AlexaFluor 546 (Life Technologies), and DNP-HSA antigens are labeled with AlexaFluor 647 (Life Technologies) in advance.
 (照射部・検出部の構造説明)
  波長の異なる2種類の光源701~702から出射した励起光をダイクロイックミラー703によって同軸に配置し、フィルタユニット704によって波長を選択した後、レンズ705、プリズム105を通して基板201上に対し、裏側から全反射する条件で入射することで、基板201表面にエバネッセント光照明を形成させる。
一般的にエバネッセント光は、表面から数百nmの範囲に形成される。従って、基板201表面のごく近傍に存在する測定試料のみに限定して照射することができる。エバネッセント光照明によって測定試料から生じた光は、対物レンズ706によって集光され、ダイクロイックミラー707によって波長ごとに分割される。分割された光は、それぞれバンドパスフィルタ708~709によって必要な波長成分のみが取り出された後、レンズ710~711によってイメージセンサ711~713に結像される。
(Explanation of irradiation unit / detection unit structure)
Excitation light emitted from two types of light sources 701 to 702 having different wavelengths is arranged coaxially by a dichroic mirror 703, and the wavelength is selected by a filter unit 704. Incident light illumination is formed on the surface of the substrate 201 by being incident under a reflecting condition.
In general, evanescent light is formed in a range of several hundred nm from the surface. Therefore, it is possible to irradiate only the measurement sample existing in the very vicinity of the surface of the substrate 201. Light generated from the measurement sample by the evanescent light illumination is collected by the objective lens 706 and divided by the dichroic mirror 707 for each wavelength. From the divided light, only necessary wavelength components are extracted by the band-pass filters 708 to 709, respectively, and then imaged on the image sensors 711 to 713 by the lenses 710 to 711.
 本実施例で用いた基板201の材質は合成石英で、形状は縦横20×20mm、厚さ1.0mmの板状である。表面に金薄膜は存在しない。本実施例で用いたプリズム105の材質は基板201と同じ合成石英で、形状は一辺20mmの正三角形を底面とした高さ20mmの三角柱状である。基板201とプリズム105側面(正方形の面)は、図示されないマッチングオイルによって光学的に接している。本実施例では、マッチングオイルとしてグリセロール(屈折率1.47)を用いている。基板201表面には実施例1と同様のフローセルが形成されているが、図では省略した。 The material of the substrate 201 used in this example is synthetic quartz, and the shape is a plate shape of 20 × 20 mm in length and width and 1.0 mm in thickness. There is no gold film on the surface. The material of the prism 105 used in this embodiment is the same synthetic quartz as that of the substrate 201, and the shape thereof is a triangular prism shape having a height of 20 mm with an equilateral triangle having a side of 20 mm as the bottom. The substrate 201 and the side surface (square surface) of the prism 105 are in optical contact with matching oil (not shown). In this embodiment, glycerol (refractive index: 1.47) is used as the matching oil. A flow cell similar to that of Example 1 is formed on the surface of the substrate 201, but is omitted from the drawing.
 本実施例では、光源701に波長532nmのYAGレーザを、光源702に波長633nmのHe-Neレーザをそれぞれ用いた。ダイクロイックミラー703は、波長580nm以上の成分を透過し、それ以下の波長成分を反射する波長特性を有するものを用いた。フィルタユニット704は、波長532nmのレーザのみを透過するバンドパスフィルタexGと、波長633nmのレーザのみを透過するバンドパスフィルタexRの2種類が、切り替え可能な状態で保持されている。ダイクロイックミラー707は、波長630nm以上の成分を透過し、それ以下の波長成分を反射する波長特性を有するものを用いた。バンドパスフィルタ708は、AlexaFluor546の蛍光波長成分を選択的に抽出するものを用いた。またバンドパスフィルタ709は、AlexaFluor647の蛍光波長成分を選択的に抽出するものを用いた。イメージセンサ712~713は、実施例1と同一である。 In this example, a YAG laser with a wavelength of 532 nm was used as the light source 701, and a He—Ne laser with a wavelength of 633 nm was used as the light source 702, respectively. The dichroic mirror 703 used has a wavelength characteristic that transmits a component having a wavelength of 580 nm or longer and reflects a wavelength component shorter than that. The filter unit 704 holds two types of switchable states: a bandpass filter exG that transmits only a laser with a wavelength of 532 nm and a bandpass filter exR that transmits only a laser with a wavelength of 633 nm. A dichroic mirror 707 having a wavelength characteristic that transmits a component having a wavelength of 630 nm or longer and reflects a wavelength component shorter than that is used. As the band pass filter 708, a filter that selectively extracts the fluorescence wavelength component of AlexaFluor 546 was used. As the band pass filter 709, a filter that selectively extracts the fluorescence wavelength component of AlexaFluor 647 was used. The image sensors 712 to 713 are the same as those in the first embodiment.
 (動作の説明)
  本実施例の動作について説明する。基本的な動作のフローチャートは、図3に示したものと同じものを用いることができる。また、全ての動作は、実施例1で示した制御PC108内の送液系制御部120および光学系制御部122の指示に従って行われる。
(Description of operation)
The operation of this embodiment will be described. The same basic operation flowchart as that shown in FIG. 3 can be used. All operations are performed in accordance with instructions from the liquid feeding system control unit 120 and the optical system control unit 122 in the control PC 108 described in the first embodiment.
 工程P1で入射角の調整を行う。実施例1と同様に基板201上のフローセルをバッファーで満たした後、励起光を照射し、入射角を連続的に変化させる。ある一定の角度を超えると、励起光は基板201とバッファーの界面で全反射するので、そのとき角度(臨界角)を以降の観察における入射角として設定する。 The incident angle is adjusted in process P1. As in the first embodiment, the flow cell on the substrate 201 is filled with a buffer, and then irradiated with excitation light, and the incident angle is continuously changed. When the angle exceeds a certain angle, the excitation light is totally reflected at the interface between the substrate 201 and the buffer. At that time, the angle (critical angle) is set as the incident angle in the subsequent observation.
 工程P2で、観察時の細胞固定量の設定を行う。設定の方法および動作は実施例1と同様である。 In step P2, the cell fixation amount at the time of observation is set. The setting method and operation are the same as those in the first embodiment.
 工程P3で、基板201表面に細胞を固定する。固定の方法および動作は実施例1と同様である。 In step P3, cells are fixed on the surface of the substrate 201. The fixing method and operation are the same as those in the first embodiment.
 工程P4で、基板201表面に付着した細胞数のモニタリングを行う。フィルタユニット704を操作してバンドパスフィルタexGに切り替え、蛍光観察を行う。RBL-2H3細胞はAlexaFluor546によって標識されているため、波長532nmのエバネッセント光で励起され、蛍光を発する。検出はイメージセンサ712で行う。前述の通りエバネッセント光は基板201表面から数百ナノメートルの範囲に限定されるため、実質的に基板201表面に付着した細胞のみを検出することができる。
工程P5で、固定量の判定を行う。判定方法および動作は実施例1と同様である。
工程P6で、応答の観察を行う。DNP-HSA抗原を含む反応試薬の添加方法および動作は、実施例1と同様である。フィルタユニット704を操作してバンドパスフィルタexRに切り替え、蛍光観察を行う。RBL-2H3細胞はエバネッセント光の照射範囲内に存在するため、標識されたDNP-HSA抗原がRBL-2H3細胞と結合すると、標識分子であるAlexaFluor647が波長633nmのエバネッセント光で励起され、蛍光を発する。検出はイメージセンサ713で行う。
In step P4, the number of cells attached to the surface of the substrate 201 is monitored. The filter unit 704 is operated to switch to the band pass filter exG to perform fluorescence observation. Since RBL-2H3 cells are labeled with AlexaFluor 546, they are excited by evanescent light having a wavelength of 532 nm and emit fluorescence. Detection is performed by the image sensor 712. As described above, since evanescent light is limited to a range of several hundred nanometers from the surface of the substrate 201, only cells attached to the surface of the substrate 201 can be detected substantially.
In step P5, a fixed amount is determined. The determination method and operation are the same as those in the first embodiment.
In step P6, the response is observed. The addition method and operation of the reaction reagent containing the DNP-HSA antigen are the same as in Example 1. The filter unit 704 is operated to switch to the bandpass filter exR to perform fluorescence observation. Since RBL-2H3 cells are within the irradiation range of evanescent light, when labeled DNP-HSA antigen binds to RBL-2H3 cells, AlexaFluor 647, which is a labeled molecule, is excited by evanescent light having a wavelength of 633 nm and emits fluorescence. . Detection is performed by the image sensor 713.
 本実施例では、標識のための蛍光色素としてAlexaFluor546とAlexaFluor647を用いたが、これらは別の蛍光色素であってもかまわない。蛍光色素は、例えばCy3、Cy5などである。また異なる波長特性を有する蛍光色素を用いることもできる。この場合、使用する蛍光色素の波長特性に合わせて、光源701~702および各種光学部品を選択する。また、蛍光色素の代わりに量子ドットを用いても良い。その他、放射性同位体を含む標識化合物を用いても良い。 In this example, AlexaFluor 546 and AlexaFluor 647 were used as fluorescent dyes for labeling, but these may be different fluorescent dyes. Examples of the fluorescent dye include Cy3 and Cy5. Also, fluorescent dyes having different wavelength characteristics can be used. In this case, the light sources 701 to 702 and various optical components are selected according to the wavelength characteristics of the fluorescent dye to be used. Moreover, you may use a quantum dot instead of a fluorescent pigment | dye. In addition, a labeled compound containing a radioisotope may be used.
 本実施例では、波長の異なる2種類の光源701~702を用いたが、複数波長を発振する1つの光源から、所望の波長成分をフィルタユニット704によって取り出しても良い。光源は例えばキセノンランプなどである。この場合、光源ユニットが1個で済むため、コスト低減の効果がある。 In this embodiment, two types of light sources 701 to 702 having different wavelengths are used. However, a desired wavelength component may be extracted by a filter unit 704 from one light source that oscillates a plurality of wavelengths. The light source is, for example, a xenon lamp. In this case, since only one light source unit is required, there is an effect of cost reduction.
 本実施例では、ダイクロイックミラー707で波長ごとに分離した蛍光を、それぞれ2台のイメージセンサ712~713に結像しているが、例えば透過した蛍光をイメージセンサ713の受光素子の左半分に結像し、反射した蛍光を全反射ミラーで折り返してイメージセンサ713の受光素子の右半分に結像することができる。この場合、イメージセンサ712が不要となり、コスト低減の効果がある。1台のイメージセンサ713で2種類の蛍光を検出する他の方式としては、例えばダイクロイックミラー712を用いずに、バンドパスフィルタ708~709を切り替え可能なフィルタユニットを用いることができる。また、ダイクロイックミラー712を用いずに回折格子などを用いて波長分散させ、イメージセンサ713上の別の領域に結像させることも可能である。 In this embodiment, the fluorescence separated for each wavelength by the dichroic mirror 707 is imaged on each of the two image sensors 712 to 713. For example, the transmitted fluorescence is connected to the left half of the light receiving element of the image sensor 713. The reflected and reflected fluorescence can be folded back by a total reflection mirror to form an image on the right half of the light receiving element of the image sensor 713. In this case, the image sensor 712 is unnecessary, and there is an effect of cost reduction. As another method of detecting two types of fluorescence with one image sensor 713, for example, a filter unit capable of switching the bandpass filters 708 to 709 without using the dichroic mirror 712 can be used. Further, it is also possible to perform wavelength dispersion using a diffraction grating or the like without using the dichroic mirror 712 and form an image on another region on the image sensor 713.
 (蛍光検出方法の別の形態)
  蛍光共鳴エネルギー移動(Forster/Fluorescence Resonance Energy Transfer:FRET)を利用することができる。RBL-2H3細胞を標識するAlexaFluor546をドナー、DNP-HSA抗原を標識するAlexaFluor647をアクセプターとして用いる。本方式では、ドナーを励起することで、ドナーおよびアクセプターの検出が可能となるため、アクセプターを励起するための光源702および各種光学部品類が不要となり、コスト低減の効果がある。FRETは、別の蛍光色素の組み合わせでも構わないし、量子ドットを用いることも可能である。
(Another form of fluorescence detection method)
Fluorescence resonance energy transfer (FRET) can be used. AlexaFluor 546, which labels RBL-2H3 cells, is used as a donor, and AlexaFluor 647, which labels DNP-HSA antigen, is used as an acceptor. In this method, since the donor and the acceptor can be detected by exciting the donor, the light source 702 and various optical components for exciting the acceptor are not necessary, and the cost can be reduced. FRET may be a combination of different fluorescent dyes, or quantum dots may be used.
 (エバネッセント照明の別の形態)
  図8は、上記以外の別の光学系の模式図である。図7がプリズム型エバネッセント照射方式であったのに対し、図8は対物エバネッセント照射方式を採用した。励起光をレンズ705およびマルチエッジダイクロイックミラー801を通して、対物レンズ706の後側焦点位置に集光させることで、対物エバネッセント照明を実現する。そのほかの構成は、前述のプリズム型エバネッセント照射方式と同様である。なお本方式では、入射角調整のための励起光の光軸調整機構を含むが、図では省略した。本方式はプリズム型エバネッセント照射方式と比較して、光軸調整等が比較的容易である。また、照射部と検出部が一部重複しているため、光学系がコンパクトになり、装置全体のサイズを小さくする効果がある。
(Another form of evanescent lighting)
FIG. 8 is a schematic diagram of another optical system other than the above. While FIG. 7 shows a prism type evanescent irradiation method, FIG. 8 adopts an objective evanescent irradiation method. Objective evanescent illumination is realized by converging the excitation light through the lens 705 and the multi-edge dichroic mirror 801 at the rear focal position of the objective lens 706. Other configurations are the same as those of the prism type evanescent irradiation method described above. In addition, although this system includes an optical axis adjustment mechanism of excitation light for adjusting the incident angle, it is omitted in the figure. This system is relatively easy to adjust the optical axis, etc., compared to the prism-type evanescent irradiation system. In addition, since the irradiation unit and the detection unit are partially overlapped, the optical system becomes compact, and there is an effect of reducing the size of the entire apparatus.
 図9は、実施例4の照射部と検出部周辺の構成である。そのほかの構成は、前記実施例1の構成と同等である。本実施例の特徴は、同軸落射照明を利用して、測定試料を観察することである。本実施例においては、被写界深度の浅い対物レンズ706を使用することで、基板201表面近傍に存在する測定試料に限定して観察することができるという効果がある。被写界深度は好ましくは100μm以下で、より好ましくは10μm以下である。測定の方法は、実施例1と同様である。なお、図9では正立形の配置としたが、倒立型の配置であっても良い。また、マルチエッジダイクロイックミラー801通過後の光を、一度レンズで集光し、焦点の位置にピンホールを設置し、再びレンズによって平行光に戻すことで、いわゆる共焦点顕微鏡の構造となり、同様の効果を得ることができる。その他励起光源の種類や、検出の方式、それらに伴う部品の組み合わせについては、実施例3に記載したとおり種々の方法が使用可能である。 FIG. 9 shows a configuration around the irradiation unit and the detection unit according to the fourth embodiment. Other configurations are the same as those of the first embodiment. The feature of the present embodiment is that the measurement sample is observed using coaxial epi-illumination. In this embodiment, by using the objective lens 706 having a shallow depth of field, there is an effect that the observation can be limited to the measurement sample existing in the vicinity of the surface of the substrate 201. The depth of field is preferably 100 μm or less, more preferably 10 μm or less. The measurement method is the same as in Example 1. Although the upright arrangement is shown in FIG. 9, an inverted arrangement may be used. In addition, the light after passing through the multi-edge dichroic mirror 801 is once condensed by a lens, a pinhole is set at the focal position, and converted back to parallel light by the lens, so that a so-called confocal microscope structure is obtained. An effect can be obtained. In addition, as described in the third embodiment, various methods can be used for the type of excitation light source, the detection method, and the combination of components associated therewith.
 図10は、実施例5の照射部と検出部周辺の構成である。そのほかの構成は、前記実施例1の構成と同等である。本実施例の特徴は、透過光照明を利用して、測定サンプルを観察することである。本実施例においては、実施例4と同様に、被写界深度の浅い対物レンズ706を使用することで、基板201表面近傍に存在する測定試料に限定して観察できるという効果がある。被写界深度は好ましくは100μm以下で、より好ましくは10μm以下である。測定の方法は、実施例1と同様である。なお、図10では倒立型の配置としたが、正立型の配置であっても良い。また、実施例4と同様に、ダイクロイックミラー707通過前の光を、一度レンズで集光し、焦点の位置にピンホールを設置し、再びレンズによって平行光に戻すことで、いわゆる共焦点顕微鏡の構造となり、同様の効果を得ることができる。 FIG. 10 shows a configuration around the irradiation unit and the detection unit according to the fifth embodiment. Other configurations are the same as those of the first embodiment. The feature of this embodiment is that the measurement sample is observed using transmitted light illumination. In the present embodiment, similarly to the fourth embodiment, by using the objective lens 706 having a shallow depth of field, there is an effect that the observation can be limited to the measurement sample existing in the vicinity of the surface of the substrate 201. The depth of field is preferably 100 μm or less, more preferably 10 μm or less. The measurement method is the same as in Example 1. In FIG. 10, an inverted arrangement is used, but an upright arrangement may be used. Similarly to the fourth embodiment, the light before passing through the dichroic mirror 707 is once condensed by the lens, a pinhole is set at the focal position, and then returned to the parallel light by the lens again, so-called confocal microscope. It becomes a structure and the same effect can be acquired.
 その他励起光源の種類や、検出の方式、それらに伴う部品の組み合わせについては、実施例3に記載したとおり種々の方法が使用可能である。 As described in the third embodiment, various methods can be used for other types of excitation light sources, detection methods, and combinations of components associated therewith.
 実施例1~5では光学的手段を用いて測定試料を観察したが、観察の方法は光学的手段に限らない。例えば、表面弾性波センサ、または電気信号による観察が使用可能である。電気信号による観察基板としては、微小な電極アレイを用いる。このような基板による観察の例は、非特許文献(Anal.Chem.2011,83,571-577)に開示されている。より具体的には、ボルタンメトリー、アンペロメトリー、インピーダンスやキャパシタンスの測定などを用いてよい。さらに、粒子状の測定試料に対して、電極間のピッチを十分に小さくとることで、測定試料の粒子1個ずつの変化や、さらには1個の粒子の内部の変化の局在を測定、観察することが可能となる。例えば、直径およそ10μmの細胞に対し、電極間ピッチが30μm以下、より好ましくは10μm以下、さらに好ましくは5μm以下となる電極アレイを用いることで、細胞1個ずつの状態を測定可能である。また、同様に電極間ピッチが3μm以下、より好ましくは1μm以下、さらに好ましくは0.5μm以下の電極アレイを用いることで、細胞内の状態の局在を観察可能となる。本実施例の方式によれば、基板表面の測定試料の有無を観察可能であるため、固定量の評価を行うことができる。また、本実施例の方式によれば、基板表面の測定試料の状態変化を観察可能であるため、刺激に対する応答の評価を行うことができる。本実施例の方式によれば、光学的手段を用いずに、測定試料の応答観察を行うことが可能である。また、本方式による観察と、前述の光学的観察とを組み合わせても良い。 In Examples 1 to 5, the measurement sample was observed using optical means, but the observation method is not limited to optical means. For example, a surface acoustic wave sensor or observation with an electric signal can be used. A micro electrode array is used as an observation substrate using electrical signals. Examples of observation using such a substrate are disclosed in non-patent literature (Anal. Chem. 2011, 83, 571-577). More specifically, voltammetry, amperometry, measurement of impedance and capacitance, and the like may be used. Furthermore, by measuring the change of each particle of the measurement sample one by one, and further, the localization of the change inside one particle by measuring the pitch between the electrodes sufficiently small with respect to the particulate measurement sample, It becomes possible to observe. For example, for a cell having a diameter of about 10 μm, the state of each cell can be measured by using an electrode array in which the pitch between the electrodes is 30 μm or less, more preferably 10 μm or less, and even more preferably 5 μm or less. Similarly, by using an electrode array having an interelectrode pitch of 3 μm or less, more preferably 1 μm or less, and even more preferably 0.5 μm or less, the localization of the intracellular state can be observed. According to the method of this embodiment, since the presence or absence of the measurement sample on the substrate surface can be observed, the fixed amount can be evaluated. Further, according to the method of this embodiment, it is possible to observe the change in the state of the measurement sample on the substrate surface, so that the response to the stimulus can be evaluated. According to the system of the present embodiment, it is possible to observe the response of the measurement sample without using optical means. Moreover, you may combine the observation by this system and the above-mentioned optical observation.
 以上、本発明の例を説明したが、本発明はこれに限定されるものではなく、特許請求の範囲に記載された発明の範囲にて様々な変更が可能であることは当業者に理解される。各実施例を適宜組み合わせることも、本発明の範囲である。 As mentioned above, although the example of this invention was demonstrated, this invention is not limited to this, It is understood by those skilled in the art that various changes are possible in the range of the invention described in the claim. The It is also within the scope of the present invention to appropriately combine the embodiments.
101 解析装置
102 照射部
103 検出部
104 フローセル
105 プリズム
106 送液部
107 温調装置
108 制御PC
109 モニタ
110 CO2ガスボンベ
111 光源
112 光ファイバ
113 集光レンズ
114 偏光素子
115 結像レンズ
116 イメージセンサ
117 励起光
118 測定領域
119 反射光
120 送液系制御部
121 解析部
122 光学系制御部
123、124、125 試薬リザーバ
126、127 送液チューブ
128、129 切り替えバルブ
130 送液ポンプ
131 廃液タンク
201 基板
202 流路部品
203 ホルダ
204 溝
205、206 垂直流路
207、208、209、210、212 開口部
211 CO2ガス用配管
P1 装置準備
P2 固定量の目標値設定
P3 測定試料の固定反応
P4 固定量計測
P5 固定量判定
P6 応答観察
501、502、503 試薬リザーバ
504 ピペッタ機構
505 ノズル
506 ロボットアーム
507 配管
508 シリンジポンプ
509 送液ポンプ
510 切り替えバルブ
511 水タンク
512 洗浄槽
513 廃液タンク
601 ウェル基板
602 ウェル部品
603 ホルダ
604 液体保持サイト
605 ウェル
606、608 開口部
607 セプタ
701、702 光源
703 ダイクロイックミラー
704 フィルタユニット
705 レンズ
706 対物レンズ
707 ダイクロイックミラー
708、709 バンドパスフィルタ
710、711 レンズ
712、713 イメージセンサ
801 マルチエッジダイクロイックミラー
DESCRIPTION OF SYMBOLS 101 Analysis apparatus 102 Irradiation part 103 Detection part 104 Flow cell 105 Prism 106 Liquid sending part 107 Temperature control apparatus 108 Control PC
109 Monitor 110 CO 2 Gas Cylinder 111 Light Source 112 Optical Fiber 113 Condensing Lens 114 Polarizing Element 115 Imaging Lens 116 Image Sensor 117 Excitation Light 118 Measurement Area 119 Reflected Light 120 Liquid Supply System Control Unit 121 Analysis Unit 122 Optical System Control Units 123 and 124 , 125 Reagent reservoir 126, 127 Liquid feed tube 128, 129 Switching valve 130 Liquid feed pump 131 Waste liquid tank 201 Substrate 202 Flow path component 203 Holder 204 Groove 205, 206 Vertical flow path 207, 208, 209, 210, 212 Opening 211 CO2 gas piping P1 Device preparation P2 Fixed amount target value setting P3 Measurement sample fixed reaction P4 Fixed amount measurement P5 Fixed amount determination P6 Response observation 501, 502, 503 Reagent observation 504 Pipetter mechanism 505 Nozzle 506 Robot arm 507 Pipe 508 Syringe pump 509 Liquid feed pump 510 Switching valve 511 Water tank 512 Cleaning tank 513 Waste liquid tank 601 Well substrate 602 Well part 603 Holder 604 Liquid holding site 605 Well 606, 608 Opening 607 Septa 701, 702 Light source 703 Dichroic mirror 704 Filter unit 705 Lens 706 Objective lens 707 Dichroic mirrors 708 and 709 Band pass filters 710 and 711 Lenses 712 and 713 Image sensor 801 Multi-edge dichroic mirror

Claims (23)

  1. 基板と
    前記基板に測定試料および反応試薬を提供するための送液手段と、
    前記基板表面の測定試料を観察するための観察手段と、
    前記観察結果をもとに、前記基板において前記測定試料が固定された量に関する情報を解析する解析手段と、
    前記情報をもとに、前記基板において前記測定試料が固定される量を調整する制御手段と、
    を有することを特徴とする相互作用解析装置。
    A substrate and a liquid feeding means for providing a measurement sample and a reaction reagent to the substrate;
    Observation means for observing the measurement sample on the substrate surface;
    Based on the observation results, analysis means for analyzing information on the amount of the measurement sample fixed on the substrate;
    Based on the information, control means for adjusting the amount by which the measurement sample is fixed on the substrate;
    An interaction analysis apparatus characterized by comprising:
  2. 請求項1に記載の相互作用解析装置において、
    前記情報が、前記基板に固定された前記測定試料の粒子数または粒子密度に関する情報であることを特徴とする装置。
    The interaction analysis apparatus according to claim 1,
    The apparatus is characterized in that the information is information relating to the number of particles or the particle density of the measurement sample fixed to the substrate.
  3. 請求項1に記載の相互作用解析装置において、
    前記制御手段が、測定試料を提供する工程を停止することにより、前記基板において前記測定試料が固定される量を調整することを特徴とする装置。
    The interaction analysis apparatus according to claim 1,
    The control means adjusts the amount by which the measurement sample is fixed on the substrate by stopping the step of providing the measurement sample.
  4. 請求項1に記載の相互作用解析装置において、
    前記制御手段が、測定試料を提供する工程の繰り返し回数を制御することにより、前記基板において前記測定試料が固定される量を調整することを特徴とする装置。
    The interaction analysis apparatus according to claim 1,
    The apparatus characterized in that the control means adjusts the amount by which the measurement sample is fixed on the substrate by controlling the number of repetitions of the step of providing the measurement sample.
  5. 請求項1に記載の相互作用解析装置において、
    前記制御手段が、測定試料を含む流体における測定試料の濃度の変更を制御することによって、前記基板において前記測定試料が固定される量を調整することを特徴とする装置。
    The interaction analysis apparatus according to claim 1,
    The control means adjusts the amount by which the measurement sample is fixed on the substrate by controlling the change of the concentration of the measurement sample in the fluid containing the measurement sample.
  6. 請求項1に記載の相互作用解析装置において、
    前記観察手段が、前記基板に対する前記測定試料の結合反応を観察することを特徴とする装置。
    The interaction analysis apparatus according to claim 1,
    The observation device observes the binding reaction of the measurement sample with respect to the substrate.
  7. 請求項1に記載の相互作用解析装置において、
    前記観察手段が、前記基板に結合した前記測定試料の前記反応試薬に対する応答反応を観察することを特徴とする装置。
    The interaction analysis apparatus according to claim 1,
    The observation means observes a response reaction of the measurement sample bound to the substrate to the reaction reagent.
  8. 請求項1に記載の相互作用解析装置において、
    前記観察手段が、前記基板に対する前記測定試料の結合反応を観察し、かつ、前記基板に結合した前記測定試料の前記反応試薬に対する応答反応を観察することを特徴とする装置。
    The interaction analysis apparatus according to claim 1,
    The observation means observes a binding reaction of the measurement sample to the substrate and observes a response reaction of the measurement sample bound to the substrate to the reaction reagent.
  9. 請求項1に記載の相互作用解析装置において、
    前記解析手段が、前記情報をもとに、
    前記制御手段に対し、次に行う動作を指示するためのアルゴリズムを備えていることを特徴とする装置。
    The interaction analysis apparatus according to claim 1,
    Based on the information, the analysis means
    An apparatus comprising an algorithm for instructing the control means to perform the next operation.
  10. 請求項1に記載の相互作用解析装置において、
    前記制御手段が、前記送液手段と前記観察手段のいずれかもしくは両方の動作を制御することを特徴とする装置。
    The interaction analysis apparatus according to claim 1,
    The control means controls the operation of one or both of the liquid feeding means and the observation means.
  11. 請求項1に記載の相互作用解析装置において、
    前記測定試料が、分子、生体試料、または、細胞であることを特徴とする装置。
    The interaction analysis apparatus according to claim 1,
    The measurement sample is a molecule, a biological sample, or a cell.
  12. 請求項1に記載の相互作用解析装置において、
    前記観察手段が、前記基板に第一の光を照射するための光源と、照射の結果生じる第二の光を測定する検出器を有することを特徴とする装置。
    The interaction analysis apparatus according to claim 1,
    The apparatus, wherein the observation means includes a light source for irradiating the substrate with the first light and a detector for measuring the second light generated as a result of the irradiation.
  13. 請求項12に記載の相互作用解析装置において、
    第二の光は、第一の光の反射光であることを特徴とする装置。
    The interaction analysis apparatus according to claim 12,
    The apparatus wherein the second light is reflected light of the first light.
  14. 請求項12に記載の相互作用解析装置において、
    表面プラズモン共鳴現象における反射光の強度を測定することを特徴とする装置。
    The interaction analysis apparatus according to claim 12,
    An apparatus for measuring the intensity of reflected light in a surface plasmon resonance phenomenon.
  15. 請求項12に記載の相互作用解析装置において、
    表面プラズモン共鳴現象における共鳴角変化を測定することを特徴とする装置。
    The interaction analysis apparatus according to claim 12,
    An apparatus for measuring a change in resonance angle in a surface plasmon resonance phenomenon.
  16. 請求項12に記載の相互作用解析装置において、
    前記第一の光の照射方法が、エバネッセント光照明、落射光照明、または、透過光照明であることを特徴とする装置。
    The interaction analysis apparatus according to claim 12,
    The apparatus according to claim 1, wherein the first light irradiation method is evanescent light illumination, epi-illumination, or transmitted light illumination.
  17. 基板と
    前記基板に測定試料を提供するための送液手段と、
    前記基板表面の測定試料を観察するための観察手段と、
    前記基板に固定された前記測定試料の量が、予め設定された所定値以上である場合、測定試料の提供を停止するよう前記送液手段を制御する制御手段と、
    を有することを特徴とする相互作用解析装置。
    A substrate and liquid feeding means for providing a measurement sample to the substrate;
    Observation means for observing the measurement sample on the substrate surface;
    Control means for controlling the liquid feeding means to stop providing the measurement sample when the amount of the measurement sample fixed to the substrate is not less than a predetermined value set in advance;
    An interaction analysis apparatus characterized by comprising:
  18. 測定試料に反応試薬を接触させて、前記測定試料の応答を観察する相互作用解析方法において、
    基板表面に前記測定試料を提供し、
    前記基板表面に固定された前記測定試料の量に関する情報を測定し、
    前記測定結果をもとに、前記基板に固定される前記測定試料の量を調節する、
    ことを特徴とする方法。
    In an interaction analysis method in which a reaction reagent is brought into contact with a measurement sample and the response of the measurement sample is observed,
    Providing the measurement sample on the substrate surface;
    Measuring information about the amount of the measurement sample fixed to the substrate surface;
    Based on the measurement results, the amount of the measurement sample fixed to the substrate is adjusted.
    A method characterized by that.
  19. 請求項18に記載の方法において、
    前記情報が、前記基板に固定された前記測定試料の粒子数または粒子密度であることを特徴とする方法。
    The method of claim 18, wherein
    The method is characterized in that the information is the number of particles or the particle density of the measurement sample fixed to the substrate.
  20. 請求項18に記載の方法において、
    前記調整において、測定試料を提供する工程を停止することにより、前記基板に固定される前記測定試料の量を調節することを特徴とする方法。
    The method of claim 18, wherein
    In the adjustment, the method of adjusting the amount of the measurement sample fixed to the substrate by stopping the step of providing the measurement sample.
  21. 請求項18に記載の方法において、
    前記調整において、測定試料を提供する工程の繰り返し回数を調整することにより、前記基板に固定される前記測定試料の量を調節することを特徴とする方法。
    The method of claim 18, wherein
    In the adjustment, the amount of the measurement sample fixed to the substrate is adjusted by adjusting the number of repetitions of the step of providing the measurement sample.
  22. 請求項18に記載の方法において、
    前記調整において、測定試料を含む流体の測定試料の濃度の変更により、前記基板に固定される前記測定試料の量を調節することを特徴とする方法。
    The method of claim 18, wherein
    In the adjustment, the amount of the measurement sample fixed to the substrate is adjusted by changing the concentration of the measurement sample of the fluid including the measurement sample.
  23. 請求項18に記載の方法において、
    前記測定試料が、分子、生体試料、または、細胞であることを特徴とする方法。
    The method of claim 18, wherein
    The method, wherein the measurement sample is a molecule, a biological sample, or a cell.
PCT/JP2014/051615 2013-02-28 2014-01-27 Interaction analysis device WO2014132717A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-038120 2013-02-28
JP2013038120A JP2016118389A (en) 2013-02-28 2013-02-28 Interaction analyzer

Publications (1)

Publication Number Publication Date
WO2014132717A1 true WO2014132717A1 (en) 2014-09-04

Family

ID=51427991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051615 WO2014132717A1 (en) 2013-02-28 2014-01-27 Interaction analysis device

Country Status (2)

Country Link
JP (1) JP2016118389A (en)
WO (1) WO2014132717A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016120951A1 (en) * 2015-01-26 2017-10-19 株式会社日立ハイテクノロジーズ Optical analyzer
WO2022067361A1 (en) * 2020-09-30 2022-04-07 Anton Paar Gmbh Method and refractometer for determining the critical angle of the total reflection in a liquid sample
US20220260560A1 (en) * 2019-12-09 2022-08-18 Ming Chuan University Methods of using self-heating biosensor based on lossy mode resonance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3803345A4 (en) * 2018-05-27 2022-06-08 Biosensing Instrument Inc. Surface plasmon resonance imaging system and method for measuring molecular interactions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11507724A (en) * 1995-06-07 1999-07-06 インフォサイト・インコーポレーテッド Biological cell specimen holder used for infrared and / or Raman spectroscopy
JP2006098345A (en) * 2004-09-30 2006-04-13 Fuji Photo Film Co Ltd Device and method of measuring fixed value of sensor
JP2007333612A (en) * 2006-06-16 2007-12-27 Moritex Corp Surface plasmon resonance biosensor, and cell response measuring device and measuring method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11507724A (en) * 1995-06-07 1999-07-06 インフォサイト・インコーポレーテッド Biological cell specimen holder used for infrared and / or Raman spectroscopy
JP2006098345A (en) * 2004-09-30 2006-04-13 Fuji Photo Film Co Ltd Device and method of measuring fixed value of sensor
JP2007333612A (en) * 2006-06-16 2007-12-27 Moritex Corp Surface plasmon resonance biosensor, and cell response measuring device and measuring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016120951A1 (en) * 2015-01-26 2017-10-19 株式会社日立ハイテクノロジーズ Optical analyzer
DE112015005746B4 (en) 2015-01-26 2022-12-22 Hitachi High-Tech Corporation Optical analysis device
US20220260560A1 (en) * 2019-12-09 2022-08-18 Ming Chuan University Methods of using self-heating biosensor based on lossy mode resonance
US11630105B2 (en) * 2019-12-09 2023-04-18 Ming Chuan University Methods of using self-heating biosensor based on lossy mode resonance
WO2022067361A1 (en) * 2020-09-30 2022-04-07 Anton Paar Gmbh Method and refractometer for determining the critical angle of the total reflection in a liquid sample

Also Published As

Publication number Publication date
JP2016118389A (en) 2016-06-30

Similar Documents

Publication Publication Date Title
JP7155134B2 (en) Methods and systems for studying biological cells
US9829434B2 (en) Optical detection system for liquid samples
JP5759377B2 (en) Detection system and method
JP2019168471A (en) Detecting and using of light representing sample
CN103604775B (en) Micro-fluid chip-based microorganism detection instrument and SPR detection method thereof
JP6458056B2 (en) Optical analyzer
US9551662B2 (en) Surface plasmon-field enhanced fluorescence measurement device and fluorescence detection method using the same
JP5463840B2 (en) Measuring method and surface plasmon enhanced fluorescence measuring apparatus
WO2014132717A1 (en) Interaction analysis device
JP2007192806A (en) Substrate for target material detection element, target material detection element, device and method of detecting target material using it, and kit therefor
WO2021040021A1 (en) Detection method for substance to be detected and detection system for substance to be detected
US20210010920A1 (en) Spectroscopic analysis device, spectroscopic analysis method, program, recording medium, and microscope
JP6926731B2 (en) Detection chip, detection kit, detection system and detection method of the substance to be detected
JP2007101308A (en) Target substance detecting element, device, and method
JP6838612B2 (en) Inspection chip and inspection system
JP6627778B2 (en) Detection device and detection method
JP2008051512A (en) Sensor using near field light and its manufacturing method
WO2017130359A1 (en) Liquid feeding method, and detection system and detection device for carrying out said method
JP6943262B2 (en) Liquid feeding system, inspection system and liquid feeding method
US20150316546A1 (en) Sensor chip
JP2024531090A (en) Interference Scattering Microscopy
Rengevych et al. Visualization of submicron Si-rods by SPR-enhanced total internal reflection microscopy
JP2024066198A (en) Biological molecule automatic detection device
JP2014025951A (en) Measurement method and surface plasmon enhanced fluorescence measurement device
JP2004045434A (en) Thermal lens microscope ultratraceanalysis method and its device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14756569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP