WO2014132708A1 - Speed reduction device used in wind power generation facility - Google Patents
Speed reduction device used in wind power generation facility Download PDFInfo
- Publication number
- WO2014132708A1 WO2014132708A1 PCT/JP2014/051364 JP2014051364W WO2014132708A1 WO 2014132708 A1 WO2014132708 A1 WO 2014132708A1 JP 2014051364 W JP2014051364 W JP 2014051364W WO 2014132708 A1 WO2014132708 A1 WO 2014132708A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hollow shaft
- power transmission
- shaft
- power generation
- gear
- Prior art date
Links
- 230000009467 reduction Effects 0.000 title claims abstract description 133
- 238000010248 power generation Methods 0.000 title claims abstract description 39
- 230000005540 biological transmission Effects 0.000 claims abstract description 54
- 230000008859 change Effects 0.000 claims abstract description 37
- 230000007246 mechanism Effects 0.000 claims description 60
- 239000003638 chemical reducing agent Substances 0.000 claims description 21
- 239000000314 lubricant Substances 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 4
- 238000012423 maintenance Methods 0.000 abstract description 10
- 230000000694 effects Effects 0.000 description 10
- 230000005856 abnormality Effects 0.000 description 4
- 230000005489 elastic deformation Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000007664 blowing Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0204—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D15/00—Transmission of mechanical power
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D15/00—Transmission of mechanical power
- F03D15/10—Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/28—Toothed gearings for conveying rotary motion with gears having orbital motion
- F16H1/46—Systems consisting of a plurality of gear trains each with orbital gears, i.e. systems having three or more central gears
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/28—Toothed gearings for conveying rotary motion with gears having orbital motion
- F16H1/32—Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
- F16H2001/325—Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear comprising a carrier with pins guiding at least one orbital gear with circular holes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the present invention relates to a reduction gear used for a wind power generation facility.
- Patent Document 1 discloses a reduction gear used for a wind power generation facility.
- a yaw drive speed reducer for rotating a nacelle (power generation chamber) installed at the top of a support in a horizontal plane, or an angle of a windmill blade There is a reduction device for driving a pitch for changing.
- the nacelle of the wind power generation facility is located very high from the ground and only a very narrow space is secured.
- each reduction gear used for wind power generation facilities has a considerable weight. Therefore, handling etc. is difficult until it is carried into the nacelle.
- the casing of the speed reducer can be separated into a high speed side casing body including an orthogonal gear mechanism and a low speed side casing body including a final stage speed reducing mechanism.
- the structure enclosed in a casing body is disclosed. Thereby, the handleability of a reduction gear can be improved more.
- JP 2011-231749 A (FIGS. 2 to 4)
- the present invention has been made to solve such a conventional problem, and provides a reduction gear used for a wind power generation facility capable of performing maintenance work more easily in a narrow nacelle. It is an issue.
- the present invention is a reduction gear used for wind power generation equipment, comprising a hollow structure hollow shaft as a part of a power transmission system, and a power transmission member to the next stage is connected to the inside of the hollow shaft,
- the hollow shaft is configured such that one end portion of the hollow structure can be exposed from the casing, and the power transmission member is more susceptible to specific changes in transmission of power than other members constituting the power transmission system.
- the power transmission member is configured to be able to be taken out of the casing from the one end portion of the hollow shaft while the speed reducer itself is installed in the wind power generation facility. It has been solved.
- a hollow structure hollow shaft is provided as a shaft constituting the power transmission system.
- a power transmission member to the next stage is connected to the inside of the hollow shaft.
- the power transmission member is dared to be a weak part compared to other members constituting the power transmission system, and if a severe situation occurs regarding power transmission, the power transmission member constituting the weak part is Certain changes are made to occur.
- one end of the hollow structure of the hollow shaft can be exposed from the casing.
- the power transmission member can be taken out of the casing from the one end of the hollow shaft while the speed reducer itself is installed in the wind power generation facility. Therefore, maintenance is extremely easy.
- FIG. 7 is an exploded view when the power transmission member of the reduction gear of FIG. 7 is taken out.
- the present invention is applied to a reduction gear used for a yaw drive system of a wind power generation facility.
- the overall structure of the wind power generation facility will be described.
- this wind power generation facility 10 includes a nacelle (power generation chamber) 12 at the top of a cylindrical support (the main body of the wind power generation facility 10) 11.
- the nacelle 12 incorporates a yaw drive system 14 and a pitch drive system 16.
- the yaw drive system 14 controls the turning angle of the nacelle 12 with respect to the cylindrical column 11.
- the pitch drive system 16 controls the pitch angle of the three windmill blades 20 attached to the nose cone 18.
- the yaw drive system 14 includes four reduction gears G1 to G4 with a motor 22 and an output pinion 24, and one swivel gear 28 that meshes with each output pinion 24 (the swivel gear 28 is an output in this example).
- the pinion 24 is an internal gear with which the pinion 24 is inscribed, but it may be an external gear with which the output pinion 24 is circumscribed).
- Each of the reduction gears G1 to G4 is fixed to a predetermined position of the structure 12A of the nacelle 12 via a bolt 29 (see FIG. 1).
- the output pinions 24 are simultaneously rotated by the motors 22 attached to the reduction gears G1 to G4, the output pinion 24 is engaged with the swivel gear 28 and the center 36 of the swivel gear 28 (see FIG. 4). ).
- the nacelle 12 can be moved relative to the swivel gear 28 fixed to the cylindrical column 11, and the entire nacelle 12 is counteracted at the center 36 of the swivel gear 28 fixed to the cylindrical column 11. You can swivel around. Thereby, the nose cone 18 can be directed in a desired direction (for example, the windward direction), and the wind pressure can be efficiently received.
- FIG. 1 is an overall cross-sectional view of a reduction gear G1 of a yaw drive system 14 used in a wind power generation facility according to an example of an embodiment of the present invention
- FIG. 2 is an enlarged cross-sectional view of a main part of FIG.
- the reduction gear G1 includes a motor 22, an orthogonal gear reduction mechanism 40, first and second parallel shaft reduction mechanisms 41 and 42, and an eccentric oscillating planetary gear reduction mechanism 44 arranged in this order on the power transmission path.
- the orthogonal gear reduction mechanism 40 and the first and second parallel shaft reduction mechanisms 41 and 42 are accommodated in the front-stage casing 45.
- the front-side casing 45 includes a side cover 45A that also serves as a motor cover, a front-side casing body 45B, a lid body 45C, and a joint casing 45D that also serves as a bridge with the rear-stage casing 48, and is integrated by a bolt 43.
- the internal space P1 of the front casing 45 is sealed with oil seals (seal members) 71A to 71C and filled with a lubricant.
- the motor shaft 46 of the motor 22 also serves as the input shaft of the orthogonal gear reduction mechanism 40, and a hypoid pinion 47 is formed by cutting directly at the tip.
- a brake device (not shown) is provided at the end of the motor shaft 46 on the side opposite to the load.
- the orthogonal gear reduction mechanism 40 includes a hypoid pinion 47 and a hypoid gear 50.
- the first parallel shaft reduction mechanism 41 includes a spar pinion 54 and a spar gear 56.
- the second parallel axis reduction mechanism 42 includes a spar pinion 60 and a spar gear 64.
- the spur gear 64 is fixed to a hollow hollow shaft 66 (an output shaft of the second parallel shaft reduction mechanism 42).
- the power transmission system of this embodiment includes a hollow shaft 66 having a hollow structure in a part thereof.
- a connecting shaft (power transmission member) 70 to the next stage is connected to the inside of the hollow shaft 66.
- the planetary gear speed reduction mechanism 44 includes an input shaft 73 connected to a connecting shaft (power transmission member) 70 via a joint ring member 79, and two eccentric bodies 74 integrated with the input shaft 73 via a key 75.
- Two external gears 76 that are incorporated in the outer periphery of the eccentric body 74 and are swung by the eccentric body 74, and an internal gear 78 that is internally meshed while the external gear 76 is swung.
- the planetary gear reduction mechanism 44 is accommodated in the rear casing 48.
- the rear casing 48 is mainly composed of a first casing body 48A, a second casing body 48B, an anti-load side cover body 48C, and a load side cover body 48D, and is connected to the structural body 12A of the nacelle 12 via bolts 29. It is fixed.
- the internal space P2 of the rear casing 48 is sealed with oil seals (seal members) 71D and 71E, and a lubricant is enclosed.
- the internal gear 78 includes an internal gear main body 78A integrated with the first casing body 48A, and a cylindrical external gear that is rotatably held by the internal gear main body 78A and functions as internal teeth. It is comprised by the pin 78B.
- the number of internal teeth (the number of external pins 78B) of the internal gear 78 is slightly larger (only 1 in this example) than the number of external teeth of the external gear 76.
- a plurality of internal pins 80 penetrate along the same circumference together with the sliding acceleration member 81.
- the inner pin 80 is integrated with an output flange (carrier) 82, and the output flange 82 is integrated with the output shaft 84 of the reduction gear G1.
- Each inner pin 80 is supported at its end by a pressing plate 86, and the pressing plate 86 has a very small gap that makes contact only when a strong radial load is applied to the pressing plate 86. It has and opposes the step part 48C1 of the anti-load side cover body 48C.
- the output shaft 84 is supported by a self-aligning roller bearing 85 incorporated in the inner periphery of the second casing body 48B and a roller 83 disposed on the inner periphery of the first casing body 48A.
- the roller 83 is disposed coaxially with the outer pin 78B of the internal gear 78, and supports an output flange 82 integrated with the output shaft 84, thereby rotatably supporting one end of the output shaft 84.
- the output pinion 24 is connected to the output shaft 84 via a spline 87, and the output pinion 24 is configured to mesh with the swivel gear 28 (FIG. 4) already described.
- the configuration of the hollow shaft 66 that is the output shaft of the second parallel shaft speed reduction mechanism 42 and the vicinity of the connecting shaft 70 that is connected to the inside of the hollow shaft 66 will be described in detail.
- the hollow shaft 66 is configured such that one end portion 66 ⁇ / b> A of the hollow structure can be exposed from the front casing 45.
- the hollow shaft 66 has a hollow structure having a hollow portion 66C penetrating in the axial direction.
- the hollow shaft 66 is rotatably supported by the front casing 45 via a pair of seal ball bearings 88 and 90, and one end portion 66 ⁇ / b> A of the hollow structure extends further outward in the axial direction than the one seal ball bearing 88. Exist.
- one end portion 66 ⁇ / b> A of the hollow shaft 66 can be exposed outside the front casing 45.
- one end portion 66A of the hollow shaft 66 is actually closed by a dust-proof transparent lid member 67.
- the lid member 67 can be easily removed by removing the bolt 68, and the one end portion 66A can be easily exposed.
- “exposed” does not require that the one end portion 66A protrudes outside the casing side surface, and the one end portion 66A may be located inside the casing side surface.
- a connecting shaft (power transmission member) 70 to the next stage is connected.
- the connecting shaft 70 includes a first connecting portion 70A connected to the hollow shaft 66 in the vicinity of one end portion 66A thereof, and is connected to the inside of the hollow shaft 66 at the first connecting portion 70A.
- the first connecting portion 70 ⁇ / b> A is provided inside the one end portion 66 ⁇ / b> A of the hollow shaft 66 via the bush 63.
- the connecting shaft 70 is a portion protruding from the other end 66B of the hollow shaft 66, and connects the input shaft 73 and the joint ring member 79 of the above-described eccentric oscillating planetary gear speed reduction mechanism 44, which is the next stage member. Are connected through.
- the connecting shaft 70 is not directly connected to the hollow shaft 66 itself, but a bush 63 is interposed therebetween. That is, in the present embodiment, a bush 63 (cylindrical member) that engages with the inner periphery of the hollow shaft 66 via the key 69 in the rotation direction is provided, and the connecting shaft 70 is connected to the bush 63, The hollow shaft 66 is connected to the inside.
- the connecting shaft 70 and the bush 63 are integrated as a single assembly A 1 including a retaining ring 77, and are engaged with the hollow shaft 66 by a key 69. That is, the connection between the bush 63 and the hollow shaft 66 is a “gap fitting” using the key 69.
- the connection between the first connecting portion 70A of the connecting shaft 70 and the bush 63 (integrated with the hollow shaft 66) is performed by “an interference fit”.
- the interference fit is realized by press fitting or shrink fitting. This interference fit is an interference fit in which relative slip occurs between the connecting shaft 70 and the hollow shaft 66 within the range of elastic deformation when a torque of the first predetermined value S1 or more is applied to the first connecting portion 70A. It is said that.
- the first predetermined value S1 is set to a value obtained by converting a predetermined load in a range larger than the rated torque equivalent load of the motor 22 and smaller than the extreme load into a load of the first connecting portion 70A.
- the rated torque equivalent load means a load applied to the output shaft 84 when the connected motor 22 outputs the rated torque.
- the extreme load is a load that is not destroyed even if it is applied only once to the output shaft 84 during the service life (20 years in the case of a reduction gear of a wind power generation facility). In this embodiment, the extreme load is slightly more than twice the load equivalent to the rated output torque (although the width is slightly larger).
- the first connecting portion 70A of the connecting shaft 70 is a “fragile portion that easily undergoes a specific change in transmission of power compared to other members constituting the power transmission system” according to the present invention.
- “specific change” means “when a torque greater than a specific torque (in this example, the first predetermined value S1 or more) is applied to the power transmission member, the applied torque can be transmitted as it is. It means "change that will disappear”.
- a torque greater than or equal to the first predetermined value S1 is applied to the connecting shaft 70 due to the setting of the interference fit, a “relative slip” occurs in the first connecting portion 70A, and the torque cannot be transmitted as it is. .
- this “relative slip” corresponds to a specific change, and the first connecting portion 70A in which the relative slip is likely to occur (compared to other members of the power transmission system) becomes the “fragile portion”. It corresponds.
- the connecting shaft 70 since the first connecting portion 70A of the connecting shaft 70 constitutes the “fragile portion” according to the present invention, the connecting shaft 70 has a specific change (with the hollow shaft 66 and It can also be understood that the relative slippage is likely to occur.
- a detection mechanism D1 that can detect from the outside that the specific change (relative slip) has occurred is provided.
- the end surface 63A of the bush 63 integrated with the hollow shaft 66 and the end surface 70D of the connecting shaft 70 are arranged in substantially the same plane, and straddle both end surfaces 63A, 70D. It is composed of, for example, red markings (continuous marks) drawn in the radial direction (or a sharp line with a sharp point, a thin copper wire, etc. straddling both end faces 63A and 70D. It may be the same).
- connection shaft 70 and the input shaft 73 of the planetary gear speed reduction mechanism 44 which is the next stage member, will be described.
- the connecting shaft 70 includes a second connecting portion 70B at the end of the portion protruding from the other end 66B of the hollow shaft 66, and the planetary gear speed reduction mechanism 44, which is a member of the next stage, is provided via the second connecting portion 70B.
- the input shaft 73 is connected. Specifically, this connection is made via a joint ring member 79.
- the joint ring member 79 includes an inner spline 79A.
- the second connecting portion 70B includes an outer spline 70B1 and is engaged with a portion 79A1 of the inner spline 79A of the joint ring member 79 on the axial hollow shaft 66 side.
- an outer spline 73A is formed at the end of the input shaft 73 of the eccentric swing planetary gear speed reduction mechanism 44 at the next stage, and the outer spline 73A of the input shaft 73 is the inner spline 79A of the joint ring member 79. Is engaged with the other part 79A2 on the side opposite to the hollow shaft 66. Therefore, in this embodiment, the power is transmitted as it is through the joint ring member 79 between the second connecting portion 70 ⁇ / b> B of the connecting shaft 70 and the input shaft 73. That is, it is not regarded as a “fragile part”.
- the axial direction length of the joint ring member 79 is set long, and the entire length of the connecting shaft 70 is configured to be wrapped by the hollow shaft 66 and the joint ring member 79.
- the outer diameter of the first connecting portion 70A (with the hollow shaft 66) of the connecting shaft 70 is d1
- the outer diameter of the second connecting portion 70B (with the next-stage member) is d2.
- the diameter of the intermediate portion 70 ⁇ / b> C constituting between the connecting portion with the hollow shaft 66 and the connecting portion with the next stage is d ⁇ b> 3
- an intermediate portion 70C between the first connecting portion 70A and the second connecting portion 70B is a diameter d3 smaller than the outer diameters d1 and d2 of the connecting portions 70A and 70B.
- the space P3 in the hollow portion 66C of the hollow shaft 66 is separated from the space P1 in which the lubricant in the front casing 45 of the reduction gear G1 is sealed by oil seals 71B and 71C (seal members). ing. That is, in the present embodiment, the hollow shaft 66 passes through the front casing 45. Oil seals 71B and 71C are disposed between the hollow shaft 66 and the front casing 45, and the lubricant in the space P1 of the front casing 45 cannot enter the space P3 in the hollow shaft 66. .
- An oil seal 71D is also disposed between the rear casing 48 and the bush 72 that is press-fitted into the outer periphery of the input shaft 73 protruding from the rear casing 48.
- the lubricant in the rear casing 48 is It is configured such that it cannot enter the space P4 in the joint ring member 79. After all, the space P3 in the hollow shaft 66 and the space P4 in the joint ring member 79 are completely separated from the spaces P1 and P2 in which the lubricant of the reduction gear G1 is sealed by the oil seals 71B, 71C, and 71D. Thus, the lubricant of the reduction gear G1 does not adhere to the connecting shaft 70.
- the hollow shaft 66 has an axial dimension L1.
- the connecting shaft 70 is connected to the vicinity of one end portion 66A of the hollow shaft 66, and is an input shaft of the planetary gear speed reduction mechanism 44 that is a member of the next stage at a portion protruding from the other end portion 66B of the hollow shaft 66. 73. Therefore, the connecting shaft 70 has a considerably long total length L2. Further, as described above, the connecting shaft 70 has the outer diameter d3 of the intermediate portion 70C between the first connecting portion 70A and the second connecting portion 70B smaller than the outer diameters d1 and d2 at the connecting portions 70A and 70B. It is said that.
- the reason why the connecting shaft 70 has such a configuration is that the connecting shaft 70 is intended to be twisted and deformed by a predetermined amount of twist deformation (rotational angle phase difference) in the rotational direction under a predetermined condition. is there.
- each of the reduction gears G1 to G4 is used.
- the output pinion 24 is twisted and deformed in the rotational direction by a predetermined angle or more corresponding to each “difference in backlash” of the output pinion 24 with respect to the turning gear 28.
- the second predetermined value S2 when “the load acting on the output pinion 24 becomes equal to or larger than the second predetermined value S2 smaller than the load corresponding to the first predetermined value S1” is “the strong wind load is When applied, before each specific change (relative slip) occurs in the first connecting portion 70A, each reduction gear is equally loaded, so that the load does not concentrate only on the specific reduction gear. Determined.
- a load equivalent to the rated torque applied to the output pinion 24 when the motor 22 outputs the rated torque is one index.
- the second predetermined value S2 may be low, but too low. If the torsional deformation is generated from a low level, the responsiveness when driven by the motor 22 is deteriorated and it is difficult to secure the necessary strength. Therefore, the motor 22 is subjected to fatigue equivalent load (about half of the rated torque of the motor). ), The value applied to the output pinion 24 when the torque is output is substantially the lower limit.
- the “backlash difference” is ideally the difference between the backlash amount of the speed reducer with the smallest backlash between the swivel gear 28 and the output pinion 24 and the backlash amount of the speed reducer with the largest backlash. is there. More specifically, “After the nacelle 12 is rotated by the wind load, the backlash of the reduction gear with the minimum backlash is clogged (becomes zero), and the backlash of the reduction gear with the maximum backlash is reduced. The angle at which the output pinion 24 of the reduction gear having the maximum backlash rotates until it disappears ”.
- the connecting shaft 70 of the speed reducer with the smallest backlash is twisted, and the output pinion 24 of the speed reducer with the next smallest backlash meshes with the swivel gear 28, the even distribution effect by the two speed reducers can be obtained. Further, when the connecting shafts 70 of the two reduction gears are twisted, and the output pinion 24 of the next reduction gear meshes with the swivel gear 28, a further equal distribution effect is obtained. Then, after all, the “backlash difference” may be regarded as a difference in backlash between any two reduction gears.
- the “corresponding angle” to the difference in backlash means an angle obtained by multiplying the reduction ratio (speed increase ratio when viewed from the output pinion) depending on the position of the target connecting shaft 70 on the power transmission system. It is. For example, in this embodiment, since the speed increasing ratio of the planetary gear speed reduction mechanism 44 as viewed from the output pinion 24 is 43, the angle is 43 times.
- the tap hole 70T formed in the end surface 70D of the connecting shaft 70 in FIGS. 1 to 3 is for screwing a screw of a pulling jig when the connecting shaft 70 is difficult to pull out. is there.
- the rotation of the motor shaft 46 of the motor 22 is first-stage decelerated by the engagement of the hypoid pinion 47 and the hypoid gear 50 of the orthogonal gear reduction mechanism 40, and then the first parallel axis reduction mechanism 41 and the second parallel axis. It is transmitted to the hollow shaft 66 via the speed reduction mechanism 42.
- the deceleration by the planetary gear reduction mechanism 44 is realized by taking out the autorotation component from the output shaft 84 via the sliding promotion member 81, the inner pin 80, and the output flange (carrier) 82.
- the rotation of the output shaft 84 is transmitted to the output pinion 24 via the spline 87.
- the output pinion 24 meshes with the swivel gear 28, and the swivel gear 28 is fixed to the cylindrical column 11. Therefore, due to the reaction, the output pinion 24 revolves around the center 36 of the turning gear 28 while rotating, and the nacelle 12 rotates in a horizontal direction (turning) with respect to the axis 36 of the turning gear 28 on the cylindrical column 11 side.
- a “wind load” is generated in which the nacelle 12 is forced to turn due to a gust of wind or the like.
- This wind load drives the yaw drive system 14 from the reverse and tries to rotate the output pinion 24 of the reduction gear G1 via the swivel gear 28.
- the wind load is a torque within a normally assumed range (smaller than the first predetermined value S1), no relative slip occurs between the connecting shaft 70 and the hollow shaft 66 (the bush 63 integrated with the connecting shaft 70). (There will be no specific change). That is, the torque is further transmitted to the second parallel shaft reduction mechanism 42 side of the reduction gear G1 through the hollow shaft 66 as it is, and finally received by a brake device (not shown) attached to the motor 22.
- a brake device not shown
- connection shaft 70 (the first connection portion 70A thereof) is intentionally compared with other members constituting the power transmission system in a specific change (hollow shaft 66) when transmitting power. Relative slippage) is a “fragile part”. Therefore, when the wind load is applied from the output pinion 24 side and the torque related to the first connecting portion 70A of the connecting shaft 70 exceeds the first predetermined value S1, (before other members cause any change in power transmission) In the first connecting portion 70A of the connecting shaft 70, “relative slip with the hollow shaft 66” occurs as a specific change between the first connecting portion 70A and the hollow shaft 66.
- the torque greater than or equal to the first predetermined value S1 is not transmitted in the first connecting portion 70A, the torque greater than or equal to the torque corresponding to the first predetermined value S1 is automatically transmitted to all components of the yaw drive system 14. Is prevented from being applied.
- connection shaft 70 can continue to be used (as before certain changes have occurred). However, when such a specific change occurs (or when the specific change occurs several times), it is considered that the connecting shaft 70 is showing some signs of abnormality. It is preferable to inspect the connecting shaft 70.
- the hollow member 66 ⁇ / b> A of the hollow structure of the hollow shaft 66 is exposed to the outside of the front-side casing 45 simply by removing the cover member 67 by removing the bolt 68.
- the connecting shaft 70 can be taken out of the front casing 45 from the one end 66A (while the speed reducer G1 itself is installed on the nacelle 12 of the wind power generation facility 10). That is, the connecting shaft 70 can be taken out without disassembling the front casing 45 and the rear casing 48 at all.
- the first connecting portion 70A with the hollow shaft 66 is a fragile portion, and as a specific change, the connecting shaft 70 and the hollow shaft Since the configuration in which relative slip to 66 occurs is adopted, not only can each member of the yaw drive system 14 be protected from excessive torque, but also the connecting shaft 70 itself (having a weak portion and Even if a specific change occurs, it does not necessarily have to be replaced immediately.
- the nacelle 12 fluctuates in a disorderly manner compared to a method in which the transmission of power in the reduction gear is completely cut off by simply disengaging the clutch or the like (the state in which the direction is not determined while leaving to the wind without the function of the brake) Can be further prevented.
- the bush (tubular member) 63 that engages with the inner periphery of the hollow shaft 66 in the rotational direction is provided, and the connecting shaft 70 is connected to the bush 63 by an interference fit. .
- This provides many benefits. That is, if the connection shaft 70 is to be directly connected to the inside of the hollow shaft 66 by interference fitting, the connection shaft 70 once taken out from the hollow shaft 66 is inserted into the hollow shaft 66 again and connected. When repairing, assembly is performed while performing connection by interference fitting, which entails great difficulty.
- connecting shaft 70 since the connecting shaft 70 according to the present embodiment merely engages the joint ring member 79 and the bush 63 in the rotational direction by splines in the second connecting portion 70B, for example, when taking out the connecting shaft 70 The connecting shaft 70 can be easily removed by pulling out the “assembly A1 of the connecting shaft 70 and the bush 63” together with the retaining ring 77 (see FIG. 3).
- the inside of the hollow shaft 66 assembled to the front casing 45 may be assembled from the one end 66A of the hollow structure of the hollow shaft 66 until it is locked by the retaining ring 77 again (with a clearance fit) using the key 69. Therefore, reassembly and replacement are very easy.
- the connecting shaft 70 can be manufactured in advance “with an appropriate interference fit” in the factory, the management of the first predetermined value S1 (management of the torque that starts to slide) can be realized extremely accurately.
- the configuration in which the assembly A1 is inserted into the hollow shaft 66 with a clearance fit may cause fretting.
- the assembly A1 is pulled out.
- the connecting shaft 70 can be easily pulled out using a jig (not shown) using the tap hole 70T formed at the end of the connecting shaft 70.
- the connecting shaft 70 is connected to the vicinity of the one end portion 66A of the hollow shaft 66, and the eccentric rocking type planetary gear speed reduction mechanism at the portion protruding from the other end portion 66B of the hollow shaft 66. 44 input shafts (next stage members) 73 are connected. For this reason, the full length L2 of the connecting shaft 70 can be secured longer, and a load distribution effect utilizing "twist deformation" can be obtained.
- each rotating element of the yaw drive system 14 is made non-rotatable by a brake device (not shown) provided on the non-load side of the motor 22 and the nacelle 12 is strong. This prevents the wind from turning in an uncontrolled state.
- the reduction gear (first reduction gear G1 for the sake of convenience) in which the backlash of the drive system is initially packed by moving the nacelle 12 is “only one”.
- the output pinions 24 of the other reduction gears G 2 to G 4 remain in a state where backlash with the swivel gear 28 is not filled, and the swivel gear 28.
- the wind load from the side could not be received.
- the connection is caused by this load.
- the shaft 70 is twisted and deformed. Therefore, the output pinion 24 rotates as it is due to the torsional deformation of the connecting shaft 70 (although the rotation of the rotating elements of the speed reducers G1 to G4 is basically stopped by the brake device).
- the swivel gear 28 can also follow the rotation and continue to rotate.
- the wind load is substantially reduced (compared to the conventional case). This means that it is possible to obtain the same effect as that reduced to 1 ⁇ 4.
- the wind load that causes the connecting shaft 70 and the hollow shaft 66 to start relative rotation can be increased almost four times. .
- the connecting shaft 70 has an outer diameter d3 of an intermediate portion 70C between the first connecting portion 70A and the second connecting portion 70B smaller than the outer diameters d1 and d2 at the connecting portions 70A and 70B. It is said that. For this reason, even with the same overall length L2, the above-described twist deformation can be ensured to be larger, and as a result, the reduction gear G1 as a whole can be reduced in size. In the unlikely event that the connecting shaft 70 breaks, the remaining portion of the connecting shaft 70 remaining on the input shaft 73 side (by holding the intermediate portion 70C having a small diameter with an appropriate holding jig) It is also possible to pull it up with a not shown).
- the detection mechanism D1 that can detect from the outside that a specific change (relative slip) has occurred is provided, whether or not the specific change has occurred is disassembled in the front casing 45. It is possible to confirm without doing. Specifically, whether or not relative slip has occurred is determined by straddling the end surface 63A of the bush 63 integrated with the hollow shaft 66 on the upper part of the reduction gear G1 and the end surface 70D of the connecting shaft 70 in the radial direction. It can be confirmed by visually confirming whether or not there is a deviation in the red marking (continuous mark) drawn.
- the one end portion 66A of the hollow shaft 66 is closed by the lid member 67, so that it is possible to maintain the ease of visual recognition while preventing dust and the like from entering the hollow shaft 66. Can do.
- the lid member 67 is made of a transparent member, the presence or absence of a specific change can be confirmed without removing the lid member 67, so that the convenience is particularly high.
- the space P3 of the hollow shaft 66 and the space P4 of the joint ring member 79 are separated from the spaces P1 and P2 in which the lubricant of the reduction gear G1 is sealed by the oil seals 71B, 71B, and 71D. Because of the above configuration, there is no possibility that the lubricant will drip when the connecting shaft 70 is pulled up.
- the reduction gear G1 (the motor 22, the orthogonal gear reduction mechanism 40, the first and second parallel shaft reduction mechanisms 41 and 42, and the planetary gear reduction mechanism 44 are arranged in this order on the power transmission path.
- the specific configuration of the deceleration mechanism of the yaw deceleration system is not particularly limited to the above configuration.
- the other three reduction gears (not shown) have the same configuration as the reduction gear G1a.
- the motor is mounted in a direction perpendicular to the paper surface.
- the motor itself is not displayed, and only the motor mounting hole 114 is displayed.
- the worm reduction mechanism 110 includes a worm 116 and a worm gear 118.
- the worm gear 118 is integrated with a worm output shaft 120 (which is an output shaft of the worm reduction mechanism 110).
- the worm output shaft 120 is hollow and has the same configuration as the hollow shaft 66 of the second parallel axis reduction mechanism 42 in the previous embodiment.
- the connection shaft 70 is connected to the inside of the worm output shaft 120 with the same connection configuration as in the previous embodiment. Further, the connecting shaft 70 is connected to the rotating shaft 133 of the sun gear 132 of the first simple planetary gear speed reduction mechanism 130 which is the next stage member with the same configuration as the connecting shaft 70 of the previous embodiment.
- the first simple planetary gear reduction mechanism 130 includes a sun gear 132, a planetary gear 134, and an internal gear 136.
- the sun gear 132 functions as an input member
- the carrier 138 that supports the planetary gear 134 functions as an output member. Yes.
- the second simple planetary gear reduction mechanism 140 is connected to the subsequent stage of the first simple planetary gear reduction mechanism 130.
- the second simple planetary gear reduction mechanism 140 includes a sun gear 142, a planetary gear 144, and an internal gear 146 connected to the carrier 138 via a spline 139.
- the sun gear 142 supports the input member and the planetary gear 144.
- the carrier 148 functioning as an output member.
- the reduction ratio of the worm reduction mechanism 110 is set to 30 or more (preferably 40 or more).
- the self-lock function function that does not rotate due to a load from the load side
- the brake device attached to the motor 22 which was essential in the previous embodiment can be omitted, and the cost can be reduced accordingly.
- FIGS. 7 and 8 show an example of still another embodiment of the present invention.
- the basic structure of the reduction gear G1b is the same as that of the reduction gear G1 according to the embodiment shown in FIGS.
- the bush 63 is interposed between the hollow shaft 66 and the connecting shaft 70 in the previous embodiment.
- the connecting shaft 70 is directly connected to the key 169 inside the hollow shaft 66. Are connected. Since the retaining ring (77) is also unnecessary, it is omitted.
- the connecting shaft 70 Since the first connecting portion 70A with the hollow shaft 66 is connected with the key 169, the connecting shaft 70 is inserted into and removed from the one end portion 66A of the hollow shaft 66 by “gap fitting” as in the previous embodiment. It is easy. However, since it is connected by the key 169, even if an excessive wind load is applied, relative slip does not occur in this portion. That is, in this embodiment, 70 A of 1st connection parts do not comprise the weak part.
- the connecting shaft 70 has the same outer diameter of the first connecting portion 70A with the hollow shaft 66 as that of the previous embodiment d1, and the outer diameter of the second connecting portion 70B with the next stage is also earlier. While d2 is the same as that of the embodiment, the outer diameter of the intermediate portion 70Ca between the first connection portion 70A and the second connection portion 70B is d3a, which is slightly smaller than the outer diameter d3 of the previous embodiment.
- This portion, that is, the intermediate portion 70Ca itself of the first and second connecting portions 70A and 70B is a “fragile portion”. That is, when an excessive wind load is input, the intermediate portion 70Ca of the connecting shaft 70 itself is configured to be plastically deformed. In other words, in this embodiment, the specific change of the connecting shaft (power transmission member) 70 is plastic deformation of the connecting shaft 70 itself.
- the connecting shaft 70 can be taken out, reassembled, or replaced very easily. Moreover, as a practical matter, it is not so often that the wind load is applied so that the connecting shaft 70 is plastically deformed. On the other hand, it is possible to assume that the connecting shaft 70 is the connecting shaft 70 if plastically deformed. Since it is possible to stock in advance, there is not much trouble in practical use, and the embodiment shown in FIGS. 1 to 3 is particularly effective in that the initial cost (construction cost of wind power generation equipment) can be reduced. Excellent compared to.
- which part of the power transmission member is used as the weakened part is not particularly limited.
- a 2nd connection part as a weak part instead of a 1st connection part or in addition to a 1st connection part.
- the method of using the thin key which is easy to carry out plastic deformation is also considered.
- the specific change in this case is the plastic deformation of the key.
- the formation of the fragile portion is not necessarily limited to only one place or only one type. If the structure for making the fragile part is different, the specific change that appears also changes, so in order to ensure that a specific change in any power transmission member occurs prior to damage to other parts, etc. It is effective to have a vulnerable part. In this case, the specific change may be set to occur at the same wind load, or may be deviated slightly.
- the second weakened portion in addition to forming the first weakened portion by the interference fitting of the first connecting portion, the second weakened portion is formed by setting the strength of the intermediate portion of the connecting portion to be lower. If the relative slip at the first connecting portion does not function properly due to some cause such as adhesion, the connecting shaft itself is plastically deformed at a slightly higher set value than that.
- a configuration having a stage configuration may be employed.
- the configuration of the speed reduction mechanism of the speed reduction device is not particularly limited.
- a plurality of eccentric body shafts having eccentric bodies are provided at positions offset from the axis of the internal gear, and each eccentric body shaft is provided.
- An eccentric oscillating planetary gear reduction mechanism called a so-called sort type that oscillates the external gear by rotating the eccentric members synchronously may be adopted.
- a bevel reduction mechanism may be adopted instead of the hypoid reduction mechanism.
- the present invention can be similarly applied to a reduction device for pitch drive in addition to a reduction device for yaw drive.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Wind Motors (AREA)
- Retarders (AREA)
Abstract
A speed reduction device (G1(-G4)) used in a wind power generation facility (10) is configured in such a manner that the speed reduction device (G1(-G4)) is provided with a hollow shaft (66) having a hollow structure, the hollow shaft (66) being provided as a part of a power transmission system, the hollow shaft (66) allowing a connection shaft (power transmission member)(70) connected to the next stage to be connected to the inside of the hollow shaft (66), the hollow shaft (66) enabling one end section (66A) of the hollow structure to be exposed from a preceding state-side casing (45), the connection shaft (70) being formed as a weak section in which a specific change is more likely to occur during the transmission of power than in other members constituting the power transmission system, the connection shaft (70) being configured so as to be capable of being extracted from the one end section (66A) of the hollow shaft section (66) to the outside of the preceding stage-side casing (45) with the speed reduction device (G1) installed in the wind power generation facility (10). The provided speed reduction device used in the wind power generation facility makes maintenance work in a nacelle having a small space easier.
Description
本発明は、風力発電設備に使用する減速装置に関する。
The present invention relates to a reduction gear used for a wind power generation facility.
特許文献1に、風力発電設備に使用する減速装置が開示されている。
Patent Document 1 discloses a reduction gear used for a wind power generation facility.
風力発電設備に使用される減速装置としては、支柱の最上部に設置されるナセル(発電室)を水平面内で回転させるためのヨー(Yaw)駆動用の減速装置、あるいは、風車ブレードの角度を変化させるためのピッチ(Pitch)駆動用の減速装置等がある。
As a speed reducer used in wind power generation equipment, a yaw drive speed reducer for rotating a nacelle (power generation chamber) installed at the top of a support in a horizontal plane, or an angle of a windmill blade There is a reduction device for driving a pitch for changing.
風力発電設備のナセルは、地上から非常に高い位置にあり、かつ非常に狭い空間しか確保されていない。一方で、風力発電設備に使用する減速装置は、1個1個がかなりの重量を有する。そのため、ナセル内に運び込むまで、あるいは運び込んだ後の取り扱い等が大変である。
The nacelle of the wind power generation facility is located very high from the ground and only a very narrow space is secured. On the other hand, each reduction gear used for wind power generation facilities has a considerable weight. Therefore, handling etc. is difficult until it is carried into the nacelle.
そこで、特許文献1では、減速装置のケーシングを、直交歯車機構を含む高速側ケーシング体と、最終段減速機構を含む低速側ケーシング体とに分離可能とし、その上で、それぞれの潤滑油を各ケーシング体に閉じ込める構成を開示している。これにより、減速装置の取り扱い性をより高めることができる。
Therefore, in Patent Document 1, the casing of the speed reducer can be separated into a high speed side casing body including an orthogonal gear mechanism and a low speed side casing body including a final stage speed reducing mechanism. The structure enclosed in a casing body is disclosed. Thereby, the handleability of a reduction gear can be improved more.
しかしながら、風力発電設備は、自然環境下に設置される設備であるため、ときに乱れた風や強い突風を受けたりすることがある。このような状況では、巨大な風力負荷が減速装置の出力側から入力されてくる「動力の逆流現象」が発生する。このため、減速装置等は、ときに非常に過酷な状態に置かれ、メンテナンスが必要になることもある。
However, since wind power generation equipment is installed in a natural environment, it sometimes receives turbulent winds or strong gusts. Under such circumstances, a “power reverse flow phenomenon” occurs in which a huge wind load is input from the output side of the reduction gear. For this reason, the speed reducer or the like is sometimes placed in a very harsh state and may require maintenance.
特許文献1に開示された技術によれば、ケーシングが、高速側ケーシング体と低速側ケーシング体とに分離可能とされているため、低速側ケーシング体をナセルに据え付けたまま、高速側ケーシング体のみを分離(分解)してメンテナンスを行うことが可能であった。しかし、実際には、それでも未だ、取り扱いが容易とは言いがたかった。
According to the technique disclosed in Patent Document 1, since the casing is separable into a high speed side casing body and a low speed side casing body, only the high speed side casing body is mounted while the low speed side casing body is mounted on the nacelle. It was possible to perform maintenance by separating (disassembling). However, in reality, it was still not easy to handle.
本発明は、このような従来の問題を解消するためになされたものであって、狭いナセル内においてメンテナンス作業をより容易に行うことのできる風力発電設備に使用する減速装置を提供することをその課題としている。
The present invention has been made to solve such a conventional problem, and provides a reduction gear used for a wind power generation facility capable of performing maintenance work more easily in a narrow nacelle. It is an issue.
本発明は、風力発電設備に使用する減速装置であって、動力伝達系の一部として、中空構造のホロー軸を備え、該ホロー軸の内部に次段への動力伝達部材が連結され、該ホロー軸は、ケーシングから前記中空構造の一端部が露出可能とされ、前記動力伝達部材は、動力伝達系を構成する他の部材に比べて、動力の伝達に当たって特定の変化が生じやすい脆弱部とされ、かつ、該動力伝達部材は、当該減速装置自体を前記風力発電設備に据え付けたまま、前記ホロー軸の前記一端部からケーシング外に取り出し可能とされている構成とすることにより、上記課題を解決したものである。
The present invention is a reduction gear used for wind power generation equipment, comprising a hollow structure hollow shaft as a part of a power transmission system, and a power transmission member to the next stage is connected to the inside of the hollow shaft, The hollow shaft is configured such that one end portion of the hollow structure can be exposed from the casing, and the power transmission member is more susceptible to specific changes in transmission of power than other members constituting the power transmission system. The power transmission member is configured to be able to be taken out of the casing from the one end portion of the hollow shaft while the speed reducer itself is installed in the wind power generation facility. It has been solved.
本発明においては、動力伝達系を構成する軸として、中空構造のホロー軸を備える。そして、該ホロー軸の内部に次段への動力伝達部材が連結される。動力伝達部材は、動力伝達系を構成する他の部材に比べて、敢えて脆弱部とされ、もし、動力伝達に関して過酷な状況が発生したときには、この脆弱部を構成している動力伝達部材に、特定の変化が生じるようにしている。
In the present invention, a hollow structure hollow shaft is provided as a shaft constituting the power transmission system. A power transmission member to the next stage is connected to the inside of the hollow shaft. The power transmission member is dared to be a weak part compared to other members constituting the power transmission system, and if a severe situation occurs regarding power transmission, the power transmission member constituting the weak part is Certain changes are made to occur.
一方、ホロー軸は、ケーシングから中空構造の一端部が露出可能とされている。そして、動力伝達部材に該特定の変化が生じたときには、減速装置自体は風力発電設備に据え付けたまま、該動力伝達部材を、ホロー軸の前記一端部からケーシング外に取り出し可能である。そのため、メンテナンスが極めて容易である。
On the other hand, one end of the hollow structure of the hollow shaft can be exposed from the casing. When the specific change occurs in the power transmission member, the power transmission member can be taken out of the casing from the one end of the hollow shaft while the speed reducer itself is installed in the wind power generation facility. Therefore, maintenance is extremely easy.
本発明によれば、狭いナセル内においてメンテナンス作業をより容易に行うことのできる風力発電設備に使用する減速装置を得ることができる。
According to the present invention, it is possible to obtain a reduction gear used for a wind power generation facility capable of performing maintenance work more easily in a narrow nacelle.
以下、図面を参照しつつ、本発明の実施形態の一例に係る風力発電設備に使用する減速装置の構成について詳細に説明する。
Hereinafter, the configuration of a reduction gear used for a wind power generation facility according to an example of an embodiment of the present invention will be described in detail with reference to the drawings.
本実施形態では風力発電設備のヨー駆動システムに使用する減速装置に本発明が適用されている。風力発電設備の全体概略構成から説明する。
In the present embodiment, the present invention is applied to a reduction gear used for a yaw drive system of a wind power generation facility. The overall structure of the wind power generation facility will be described.
図4を参照して、この風力発電設備10は、円筒支柱(風力発電設備10の本体)11の最上部にナセル(発電室)12を備える。ナセル12には、ヨー(Yaw)駆動システム14と、ピッチ(Pitch)駆動システム16が組み込まれている。ヨー駆動システム14は、円筒支柱11に対するナセル12の旋回角を制御する。ピッチ駆動システム16は、ノーズコーン18に取り付けられる3枚の風車ブレード20のピッチ角を制御する。
Referring to FIG. 4, this wind power generation facility 10 includes a nacelle (power generation chamber) 12 at the top of a cylindrical support (the main body of the wind power generation facility 10) 11. The nacelle 12 incorporates a yaw drive system 14 and a pitch drive system 16. The yaw drive system 14 controls the turning angle of the nacelle 12 with respect to the cylindrical column 11. The pitch drive system 16 controls the pitch angle of the three windmill blades 20 attached to the nose cone 18.
ヨー駆動システム14は、モータ22および出力ピニオン24付きの4個の減速装置G1~G4、およびそれぞれの出力ピニオン24と噛合する1個の旋回歯車28を備える(旋回歯車28は、この例では出力ピニオン24が内接する内歯歯車であるが、出力ピニオン24が外接する外歯歯車であってもよい)。各減速装置G1~G4は、ボルト29(図1参照)を介してそれぞれナセル12の構造体12Aの所定の位置に固定されている。
The yaw drive system 14 includes four reduction gears G1 to G4 with a motor 22 and an output pinion 24, and one swivel gear 28 that meshes with each output pinion 24 (the swivel gear 28 is an output in this example). The pinion 24 is an internal gear with which the pinion 24 is inscribed, but it may be an external gear with which the output pinion 24 is circumscribed). Each of the reduction gears G1 to G4 is fixed to a predetermined position of the structure 12A of the nacelle 12 via a bolt 29 (see FIG. 1).
この構成により、各減速装置G1~G4に付設したモータ22によってそれぞれの出力ピニオン24を同時に回転させると、該出力ピニオン24が旋回歯車28と噛合しながら該旋回歯車28の中心36(図4参照)に対して公転する。この結果、ナセル12を円筒支柱11に固定された旋回歯車28に対して相対的に移動させることができ、反作用によって、ナセル12全体を円筒支柱11に固定されている旋回歯車28の中心36の周りで旋回させることができる。これにより、ノーズコーン18を所望の方向(例えば風上の方向)に向けることができ、効率的に風圧を受けることができる。
With this configuration, when the output pinions 24 are simultaneously rotated by the motors 22 attached to the reduction gears G1 to G4, the output pinion 24 is engaged with the swivel gear 28 and the center 36 of the swivel gear 28 (see FIG. 4). ). As a result, the nacelle 12 can be moved relative to the swivel gear 28 fixed to the cylindrical column 11, and the entire nacelle 12 is counteracted at the center 36 of the swivel gear 28 fixed to the cylindrical column 11. You can swivel around. Thereby, the nose cone 18 can be directed in a desired direction (for example, the windward direction), and the wind pressure can be efficiently received.
前記ヨー駆動システム14の減速装置G1~G4は、それぞれ同一の構成を有しているため、ここでは減速装置G1について説明する。
Since the speed reducers G1 to G4 of the yaw drive system 14 have the same configuration, the speed reducer G1 will be described here.
図1は、本発明の実施形態の一例に係る風力発電設備に使用するヨー駆動システム14の減速装置G1の全体断面図、図2は、図1の要部拡大断面図である。
FIG. 1 is an overall cross-sectional view of a reduction gear G1 of a yaw drive system 14 used in a wind power generation facility according to an example of an embodiment of the present invention, and FIG. 2 is an enlarged cross-sectional view of a main part of FIG.
減速装置G1はモータ22、直交歯車減速機構40、第1、第2平行軸減速機構41、42、および偏心揺動型の遊星歯車減速機構44が動力伝達経路上でこの順に配置されている。このうち、直交歯車減速機構40、第1、第2平行軸減速機構41、42が、前段側ケーシング45内に収容されている。
The reduction gear G1 includes a motor 22, an orthogonal gear reduction mechanism 40, first and second parallel shaft reduction mechanisms 41 and 42, and an eccentric oscillating planetary gear reduction mechanism 44 arranged in this order on the power transmission path. Among these, the orthogonal gear reduction mechanism 40 and the first and second parallel shaft reduction mechanisms 41 and 42 are accommodated in the front-stage casing 45.
本実施形態では、前段側ケーシング45は、モータカバーを兼ねるサイドカバー45A、前段側ケーシング本体45B、蓋体45C、および後段側ケーシング48との橋渡しを兼ねる継ケーシング45Dを備え、ボルト43によって一体化されている。前段側ケーシング45の内部空間P1は、オイルシール(シール部材)71A~71Cで密封され、潤滑剤が封入されている。
In the present embodiment, the front-side casing 45 includes a side cover 45A that also serves as a motor cover, a front-side casing body 45B, a lid body 45C, and a joint casing 45D that also serves as a bridge with the rear-stage casing 48, and is integrated by a bolt 43. Has been. The internal space P1 of the front casing 45 is sealed with oil seals (seal members) 71A to 71C and filled with a lubricant.
モータ22のモータ軸46は、直交歯車減速機構40の入力軸を兼ねており、先端にハイポイドピニオン47が直切りで形成されている。なお、該モータ軸46の反負荷側の端部にはブレーキ装置(図示略)が備えられている。
The motor shaft 46 of the motor 22 also serves as the input shaft of the orthogonal gear reduction mechanism 40, and a hypoid pinion 47 is formed by cutting directly at the tip. A brake device (not shown) is provided at the end of the motor shaft 46 on the side opposite to the load.
直交歯車減速機構40は、ハイポイドピニオン47およびハイポイドギヤ50を備える。第1平行軸減速機構41は、スパーピニオン54およびスパーギヤ56を備える。第2平行軸減速機構42は、スパーピニオン60およびスパーギヤ64を備える。スパーギヤ64は、中空構造のホロー軸(第2平行軸減速機構42の出力軸)66に固定されている。
The orthogonal gear reduction mechanism 40 includes a hypoid pinion 47 and a hypoid gear 50. The first parallel shaft reduction mechanism 41 includes a spar pinion 54 and a spar gear 56. The second parallel axis reduction mechanism 42 includes a spar pinion 60 and a spar gear 64. The spur gear 64 is fixed to a hollow hollow shaft 66 (an output shaft of the second parallel shaft reduction mechanism 42).
この実施形態の動力伝達系は、このように、その一部に、中空構造のホロー軸66を備えている。そして該ホロー軸66の内部に次段への連結軸(動力伝達部材)70が連結されている。
Thus, the power transmission system of this embodiment includes a hollow shaft 66 having a hollow structure in a part thereof. A connecting shaft (power transmission member) 70 to the next stage is connected to the inside of the hollow shaft 66.
ホロー軸66および連結軸70の近傍の構成については、後に詳述することとして、ここでは、ホロー軸66および連結軸70の後段に配置されている偏心揺動型の遊星歯車減速機構44について、先に説明しておく。
The configuration in the vicinity of the hollow shaft 66 and the connecting shaft 70 will be described in detail later. Here, the eccentric oscillating planetary gear speed reduction mechanism 44 disposed downstream of the hollow shaft 66 and the connecting shaft 70 will be described. I will explain it first.
遊星歯車減速機構44は、連結軸(動力伝達部材)70と継リング部材79を介して連結された入力軸73と、該入力軸73とキー75を介して一体化された2つの偏心体74と、該偏心体74の外周に組み込まれ、該偏心体74によって揺動される2枚の外歯歯車76と、該外歯歯車76が揺動しながら内接噛合する内歯歯車78と、を備えたいわゆるセンタクランク型と称される偏心揺動型の減速機構である。
The planetary gear speed reduction mechanism 44 includes an input shaft 73 connected to a connecting shaft (power transmission member) 70 via a joint ring member 79, and two eccentric bodies 74 integrated with the input shaft 73 via a key 75. Two external gears 76 that are incorporated in the outer periphery of the eccentric body 74 and are swung by the eccentric body 74, and an internal gear 78 that is internally meshed while the external gear 76 is swung. This is an eccentric oscillating type deceleration mechanism called a so-called center crank type.
なお、遊星歯車減速機構44は後段側ケーシング48に収容されている。後段側ケーシング48は、第1ケーシング体48A、第2ケーシング体48B、反負荷側カバー体48C、および負荷側カバー体48Dとで主に構成され、ボルト29を介してナセル12の構造体12Aに固定されている。後段側ケーシング48の内部空間P2は、オイルシール(シール部材)71D、71Eで密封され、潤滑剤が封入されている。
The planetary gear reduction mechanism 44 is accommodated in the rear casing 48. The rear casing 48 is mainly composed of a first casing body 48A, a second casing body 48B, an anti-load side cover body 48C, and a load side cover body 48D, and is connected to the structural body 12A of the nacelle 12 via bolts 29. It is fixed. The internal space P2 of the rear casing 48 is sealed with oil seals (seal members) 71D and 71E, and a lubricant is enclosed.
前記内歯歯車78は、このうちの第1ケーシング体48Aと一体化されている内歯歯車本体78Aと、該内歯歯車本体78Aに回転自在に保持されて内歯として機能する円筒状の外ピン78Bによって構成されている。内歯歯車78の内歯の数(外ピン78Bの数)は、外歯歯車76の外歯の数より僅かだけ(この例では1だけ)多い。
The internal gear 78 includes an internal gear main body 78A integrated with the first casing body 48A, and a cylindrical external gear that is rotatably held by the internal gear main body 78A and functions as internal teeth. It is comprised by the pin 78B. The number of internal teeth (the number of external pins 78B) of the internal gear 78 is slightly larger (only 1 in this example) than the number of external teeth of the external gear 76.
外歯歯車76には、内ピン80が摺動促進部材81とともに複数(この例では12本)、同一円周上で貫通している。内ピン80は、出力フランジ(キャリヤ)82と一体化され、該出力フランジ82は減速装置G1の出力軸84と一体化されている。
In the external gear 76, a plurality of internal pins 80 (12 in this example) penetrate along the same circumference together with the sliding acceleration member 81. The inner pin 80 is integrated with an output flange (carrier) 82, and the output flange 82 is integrated with the output shaft 84 of the reduction gear G1.
なお、各内ピン80は、押さえプレート86によってそれぞれの端部を支持されており、押さえプレート86は、該押さえプレート86に強いラジアル負荷が掛かったときにのみ接触するような極めて僅かな隙間を有して反負荷側カバー体48Cの段部48C1と対峙している。
Each inner pin 80 is supported at its end by a pressing plate 86, and the pressing plate 86 has a very small gap that makes contact only when a strong radial load is applied to the pressing plate 86. It has and opposes the step part 48C1 of the anti-load side cover body 48C.
出力軸84は、第2ケーシング体48Bの内周に組み込まれた自動調心ころ軸受85と、第1ケーシング体48Aの内周に配置されたころ83によって支持されている。ころ83は、内歯歯車78の前記外ピン78Bと同軸に配置され、出力軸84と一体化された出力フランジ82を支持することによって、出力軸84の一端を回転自在に支持している。
The output shaft 84 is supported by a self-aligning roller bearing 85 incorporated in the inner periphery of the second casing body 48B and a roller 83 disposed on the inner periphery of the first casing body 48A. The roller 83 is disposed coaxially with the outer pin 78B of the internal gear 78, and supports an output flange 82 integrated with the output shaft 84, thereby rotatably supporting one end of the output shaft 84.
出力軸84には、スプライン87を介して前出の出力ピニオン24が連結され、該出力ピニオン24が既に説明した旋回歯車28(図4)と噛合する構成とされている。
The output pinion 24 is connected to the output shaft 84 via a spline 87, and the output pinion 24 is configured to mesh with the swivel gear 28 (FIG. 4) already described.
ここで、第2平行軸減速機構42の出力軸である前記ホロー軸66、および該ホロー軸66の内部に連結された前記連結軸70の近傍の構成について、詳細に説明する。
Here, the configuration of the hollow shaft 66 that is the output shaft of the second parallel shaft speed reduction mechanism 42 and the vicinity of the connecting shaft 70 that is connected to the inside of the hollow shaft 66 will be described in detail.
図2を合わせて参照して、ホロー軸66は、前段側ケーシング45から中空構造の一端部66Aが露出可能とされている。具体的には、ホロー軸66は、軸方向に貫通した中空部66Cを有する中空構造とされている。ホロー軸66は、一対のシール玉軸受88、90を介して前段側ケーシング45に回転自在に支持され、該中空構造の一端部66Aが、一方のシール玉軸受88よりもさらに軸方向外側に延在している。この結果、ホロー軸66の一端部66Aが、前段側ケーシング45外に露出可能となっている。
Referring also to FIG. 2, the hollow shaft 66 is configured such that one end portion 66 </ b> A of the hollow structure can be exposed from the front casing 45. Specifically, the hollow shaft 66 has a hollow structure having a hollow portion 66C penetrating in the axial direction. The hollow shaft 66 is rotatably supported by the front casing 45 via a pair of seal ball bearings 88 and 90, and one end portion 66 </ b> A of the hollow structure extends further outward in the axial direction than the one seal ball bearing 88. Exist. As a result, one end portion 66 </ b> A of the hollow shaft 66 can be exposed outside the front casing 45.
なお、この実施形態では、実際には、該ホロー軸66の一端部66Aは、防塵用の透明な蓋部材67により塞がれている。しかし、該蓋部材67は、ボルト68を外すことにより簡単に取り除くことができ、一端部66Aは容易に露出可能である。また、「露出可能」とは、一端部66Aがケーシング側面よりも外側に突出している必要はなく、一端部66Aがケーシング側面よりも内側に位置していてもよい。
In this embodiment, one end portion 66A of the hollow shaft 66 is actually closed by a dust-proof transparent lid member 67. However, the lid member 67 can be easily removed by removing the bolt 68, and the one end portion 66A can be easily exposed. Further, “exposed” does not require that the one end portion 66A protrudes outside the casing side surface, and the one end portion 66A may be located inside the casing side surface.
ホロー軸66の内部には、次段への連結軸(動力伝達部材)70が連結されている。
In the hollow shaft 66, a connecting shaft (power transmission member) 70 to the next stage is connected.
具体的には、連結軸70は、その一端部66Aの近傍にホロー軸66との第1連結部70Aを備え、該第1連結部70Aにおいてホロー軸66の内部に連結されている。本実施形態においては、ブッシュ63を介してホロー軸66の一端部66Aの内側に第1連結部70Aが設けられている。また、連結軸70は、該ホロー軸66の他端部66Bから突出した部分で、次段の部材である前述した偏心揺動型の遊星歯車減速機構44の入力軸73と継リング部材79を介して連結されている。
Specifically, the connecting shaft 70 includes a first connecting portion 70A connected to the hollow shaft 66 in the vicinity of one end portion 66A thereof, and is connected to the inside of the hollow shaft 66 at the first connecting portion 70A. In the present embodiment, the first connecting portion 70 </ b> A is provided inside the one end portion 66 </ b> A of the hollow shaft 66 via the bush 63. The connecting shaft 70 is a portion protruding from the other end 66B of the hollow shaft 66, and connects the input shaft 73 and the joint ring member 79 of the above-described eccentric oscillating planetary gear speed reduction mechanism 44, which is the next stage member. Are connected through.
先ず、連結軸70をホロー軸66の内部に連結する構成から詳細に説明する。
First, the structure in which the connecting shaft 70 is connected to the inside of the hollow shaft 66 will be described in detail.
この実施形態では、連結軸70をホロー軸66自体に直接連結するのではなく、両者間にブッシュ63を介在させている。すなわち、本実施形態では、ホロー軸66の内周と回転方向にキー69を介して係合するブッシュ63(筒状部材)を備え、連結軸70は、このブッシュ63と連結されることで、ホロー軸66の内部に連結されている。具体的には連結軸70とブッシュ63は止め輪77を含む単一のアッセンブリA1として一体化され、キー69にてホロー軸66に係合されている。すなわち、ブッシュ63とホロー軸66の連結は、キー69を利用した「隙間嵌め」である。
In this embodiment, the connecting shaft 70 is not directly connected to the hollow shaft 66 itself, but a bush 63 is interposed therebetween. That is, in the present embodiment, a bush 63 (cylindrical member) that engages with the inner periphery of the hollow shaft 66 via the key 69 in the rotation direction is provided, and the connecting shaft 70 is connected to the bush 63, The hollow shaft 66 is connected to the inside. Specifically, the connecting shaft 70 and the bush 63 are integrated as a single assembly A 1 including a retaining ring 77, and are engaged with the hollow shaft 66 by a key 69. That is, the connection between the bush 63 and the hollow shaft 66 is a “gap fitting” using the key 69.
一方、連結軸70の第1連結部70Aと、(ホロー軸66と一体化されている)ブッシュ63との連結は、「締まり嵌め」にて行われる。締まり嵌めは、圧入または焼き嵌めにて実現する。この締まり嵌めは、第1連結部70Aに第1所定値S1以上のトルクが掛かったときに弾性変形の範囲内で連結軸70とホロー軸66との間に相対滑りが発生するような締まり嵌めとされている。
On the other hand, the connection between the first connecting portion 70A of the connecting shaft 70 and the bush 63 (integrated with the hollow shaft 66) is performed by “an interference fit”. The interference fit is realized by press fitting or shrink fitting. This interference fit is an interference fit in which relative slip occurs between the connecting shaft 70 and the hollow shaft 66 within the range of elastic deformation when a torque of the first predetermined value S1 or more is applied to the first connecting portion 70A. It is said that.
第1所定値S1は、モータ22の定格トルク相当荷重より大きく、極値荷重より小さい範囲の所定の荷重を、第1連結部70Aの部分の荷重に換算した値に設定される。定格トルク相当荷重とは、接続されるモータ22が定格トルクを出力しているときに、出力軸84に掛かる荷重を意味している。極値荷重とは、耐用年数(風力発電設備の減速装置の場合、20年)の間に、出力軸84に1度だけ掛かっても破壊されない荷重のことである。極値荷重は、本実施形態においては、(幅が若干大きいが)定格出力トルク相当荷重の2倍強である。
The first predetermined value S1 is set to a value obtained by converting a predetermined load in a range larger than the rated torque equivalent load of the motor 22 and smaller than the extreme load into a load of the first connecting portion 70A. The rated torque equivalent load means a load applied to the output shaft 84 when the connected motor 22 outputs the rated torque. The extreme load is a load that is not destroyed even if it is applied only once to the output shaft 84 during the service life (20 years in the case of a reduction gear of a wind power generation facility). In this embodiment, the extreme load is slightly more than twice the load equivalent to the rated output torque (although the width is slightly larger).
この実施形態では、連結軸70の第1連結部70Aが、本発明に係る「動力伝達系を構成する他の部材に比べて、動力の伝達に当たって特定の変化が生じやすい脆弱部」とされている。ここで、「特定の変化」とは、「動力伝達部材に、特定のトルク以上(この例では第1所定値S1以上)のトルクが掛かったときに、該掛かったトルクをそのまま伝えることができなくなるような変化」のことを意味している。この実施形態では、締まり嵌めの設定により、連結軸70に第1所定値S1以上のトルクが掛かると、第1連結部70Aに「相対滑り」が発生し、該トルクはそのまま伝えることができなくなる。したがって、この「相対滑り」が特定の変化に相当しており、該相対滑りが(動力伝達系の他の部材に比べて)生じ易く設定されている第1連結部70Aが「脆弱部」に相当している。逆に言うならば、連結軸70の第1連結部70Aが、本発明に係る「脆弱部」を構成しているが故に、連結軸70は、動力の伝達に当たって特定の変化(ホロー軸66との相対滑り)が生じ易くなっていると捉えることもできる。
In this embodiment, the first connecting portion 70A of the connecting shaft 70 is a “fragile portion that easily undergoes a specific change in transmission of power compared to other members constituting the power transmission system” according to the present invention. Yes. Here, “specific change” means “when a torque greater than a specific torque (in this example, the first predetermined value S1 or more) is applied to the power transmission member, the applied torque can be transmitted as it is. It means "change that will disappear". In this embodiment, when a torque greater than or equal to the first predetermined value S1 is applied to the connecting shaft 70 due to the setting of the interference fit, a “relative slip” occurs in the first connecting portion 70A, and the torque cannot be transmitted as it is. . Therefore, this “relative slip” corresponds to a specific change, and the first connecting portion 70A in which the relative slip is likely to occur (compared to other members of the power transmission system) becomes the “fragile portion”. It corresponds. In other words, since the first connecting portion 70A of the connecting shaft 70 constitutes the “fragile portion” according to the present invention, the connecting shaft 70 has a specific change (with the hollow shaft 66 and It can also be understood that the relative slippage is likely to occur.
なお、本実施形態では、当該特定の変化(相対滑り)が生じたことを、外部から検出可能な検出機構D1を備えている。具体的には、この検出機構D1は、ホロー軸66と一体化されたブッシュ63の端面63Aと、連結軸70の端面70Dがほぼ同一平面に配置され、両端面63A、70Dに跨がって径方向に描かれた例えば赤色のマーキング(連続した印)によって構成されている(あるいは、先の尖ったものでけがいたラインや、細い銅線等を両端面63A、70Dに跨がって渡したものであってもよい)。当該マーキングが透明の蓋部材67を介して視認可能とされることにより、ホロー軸66(ブッシュ63)と連結軸70との間に特定の変化(相対滑り)が生じると、このマーキングがずれ、該特定の変化が生じたことが外部から視認できる。
In the present embodiment, a detection mechanism D1 that can detect from the outside that the specific change (relative slip) has occurred is provided. Specifically, in the detection mechanism D1, the end surface 63A of the bush 63 integrated with the hollow shaft 66 and the end surface 70D of the connecting shaft 70 are arranged in substantially the same plane, and straddle both end surfaces 63A, 70D. It is composed of, for example, red markings (continuous marks) drawn in the radial direction (or a sharp line with a sharp point, a thin copper wire, etc. straddling both end faces 63A and 70D. It may be the same). By making the marking visible through the transparent lid member 67, when a specific change (relative slip) occurs between the hollow shaft 66 (bush 63) and the connecting shaft 70, the marking is shifted, It can be visually recognized from the outside that the specific change has occurred.
次に、連結軸70と次段の部材である遊星歯車減速機構44の入力軸73との連結構成について説明する。
Next, a connection configuration between the connection shaft 70 and the input shaft 73 of the planetary gear speed reduction mechanism 44, which is the next stage member, will be described.
連結軸70は、ホロー軸66の他端部66Bから突出した部分の端部に第2連結部70Bを備え、該第2連結部70Bを介して次段の部材である遊星歯車減速機構44の入力軸73と連結されている。具体的には、この連結は、継リング部材79を介して行われている。継リング部材79は内スプライン79Aを備える。第2連結部70Bは、外スプライン70B1を備え、継リング部材79の内スプライン79Aの軸方向ホロー軸66側の一部79A1と係合している。一方、次段の偏心揺動型の遊星歯車減速機構44の入力軸73の端部には外スプライン73Aが形成されており、この入力軸73の外スプライン73Aが継リング部材79の内スプライン79Aの軸方向反ホロー軸66側の他の一部79A2と係合している。したがって、この実施形態では、連結軸70の第2連結部70Bと入力軸73との間では、継リング部材79を介して動力はそのまま伝達される。すなわち、「脆弱部」とはされていない。
The connecting shaft 70 includes a second connecting portion 70B at the end of the portion protruding from the other end 66B of the hollow shaft 66, and the planetary gear speed reduction mechanism 44, which is a member of the next stage, is provided via the second connecting portion 70B. The input shaft 73 is connected. Specifically, this connection is made via a joint ring member 79. The joint ring member 79 includes an inner spline 79A. The second connecting portion 70B includes an outer spline 70B1 and is engaged with a portion 79A1 of the inner spline 79A of the joint ring member 79 on the axial hollow shaft 66 side. On the other hand, an outer spline 73A is formed at the end of the input shaft 73 of the eccentric swing planetary gear speed reduction mechanism 44 at the next stage, and the outer spline 73A of the input shaft 73 is the inner spline 79A of the joint ring member 79. Is engaged with the other part 79A2 on the side opposite to the hollow shaft 66. Therefore, in this embodiment, the power is transmitted as it is through the joint ring member 79 between the second connecting portion 70 </ b> B of the connecting shaft 70 and the input shaft 73. That is, it is not regarded as a “fragile part”.
なお、継リング部材79の軸方向長さを長く設定し、連結軸70の全長をホロー軸66と継リング部材79とで包み込むように構成している。
In addition, the axial direction length of the joint ring member 79 is set long, and the entire length of the connecting shaft 70 is configured to be wrapped by the hollow shaft 66 and the joint ring member 79.
なお、本実施形態では、連結軸70の(ホロー軸66との)第1連結部70Aの外径はd1であり、(次段の部材との)第2連結部70Bの外径はd2である。また、ホロー軸66との連結部と、次段との連結部との間を構成する中間部70Cの径はd3であり、d2>d1>d3である。つまり、第1連結部70Aと、第2連結部70Bとの中間部70Cが、各連結部70A、70Bの外径d1、d2よりも小径のd3とされている。
In this embodiment, the outer diameter of the first connecting portion 70A (with the hollow shaft 66) of the connecting shaft 70 is d1, and the outer diameter of the second connecting portion 70B (with the next-stage member) is d2. is there. Further, the diameter of the intermediate portion 70 </ b> C constituting between the connecting portion with the hollow shaft 66 and the connecting portion with the next stage is d <b> 3, and d <b> 2> d <b> 1> d <b> 3. That is, an intermediate portion 70C between the first connecting portion 70A and the second connecting portion 70B is a diameter d3 smaller than the outer diameters d1 and d2 of the connecting portions 70A and 70B.
また、ホロー軸66の前記中空部66C内の空間P3は、当該減速装置G1の前段側ケーシング45内の潤滑剤の封入される空間P1とは、オイルシール71B、71C(シール部材)により隔離されている。すなわち、本実施形態では、前段側ケーシング45をホロー軸66が貫通している。ホロー軸66と前段側ケーシング45との間は、オイルシール71B、71Cが配置されており、該前段側ケーシング45の空間P1内の潤滑剤は、ホロー軸66内の空間P3内には進入できない。また、後段側ケーシング48も、後段側ケーシング48から突出している入力軸73の外周に圧入されたブッシュ72との間にオイルシール71Dが配置されており、後段側ケーシング48内の潤滑剤は、継リング部材79内の空間P4には進入できない構成とされている。結局、ホロー軸66内の空間P3および継リング部材79内の空間P4は、減速装置G1の潤滑剤の封入される空間P1、P2とは、オイルシール71B、71C、71Dにより完全に隔離されており、連結軸70に減速装置G1の潤滑剤が付着することはない。
Further, the space P3 in the hollow portion 66C of the hollow shaft 66 is separated from the space P1 in which the lubricant in the front casing 45 of the reduction gear G1 is sealed by oil seals 71B and 71C (seal members). ing. That is, in the present embodiment, the hollow shaft 66 passes through the front casing 45. Oil seals 71B and 71C are disposed between the hollow shaft 66 and the front casing 45, and the lubricant in the space P1 of the front casing 45 cannot enter the space P3 in the hollow shaft 66. . An oil seal 71D is also disposed between the rear casing 48 and the bush 72 that is press-fitted into the outer periphery of the input shaft 73 protruding from the rear casing 48. The lubricant in the rear casing 48 is It is configured such that it cannot enter the space P4 in the joint ring member 79. After all, the space P3 in the hollow shaft 66 and the space P4 in the joint ring member 79 are completely separated from the spaces P1 and P2 in which the lubricant of the reduction gear G1 is sealed by the oil seals 71B, 71C, and 71D. Thus, the lubricant of the reduction gear G1 does not adhere to the connecting shaft 70.
なお、ホロー軸66は、この実施形態では、軸方向寸法がL1である。一方、連結軸70は、ホロー軸66の一端部66Aの近傍と連結されると共に、該ホロー軸66の他端部66Bから突出した部分で次段の部材である遊星歯車減速機構44の入力軸73と連結されている。そのため、連結軸70は、全長L2がかなり長い。また、前述したように、連結軸70は、第1連結部70Aと第2連結部70Bとの中間部70Cの外径d3が、各連結部70A、70Bでの外径d1、d2よりも小径とされている。
In this embodiment, the hollow shaft 66 has an axial dimension L1. On the other hand, the connecting shaft 70 is connected to the vicinity of one end portion 66A of the hollow shaft 66, and is an input shaft of the planetary gear speed reduction mechanism 44 that is a member of the next stage at a portion protruding from the other end portion 66B of the hollow shaft 66. 73. Therefore, the connecting shaft 70 has a considerably long total length L2. Further, as described above, the connecting shaft 70 has the outer diameter d3 of the intermediate portion 70C between the first connecting portion 70A and the second connecting portion 70B smaller than the outer diameters d1 and d2 at the connecting portions 70A and 70B. It is said that.
連結軸70をこのような構成としたのは、該連結軸70が、所定の条件のときに回転方向に、敢えて所定の捻れ変形量(回転角位相差)だけ捻れ変形することを意図したためである。
The reason why the connecting shaft 70 has such a configuration is that the connecting shaft 70 is intended to be twisted and deformed by a predetermined amount of twist deformation (rotational angle phase difference) in the rotational direction under a predetermined condition. is there.
この構成は、公知ではないため、少し詳しく説明する。
This configuration is not well known and will be explained in a little more detail.
この実施形態に係る連結軸70は、出力ピニオン24に作用する荷重が、前記第1所定値S1に対応する荷重よりは小さい第2所定値S2以上となったときに、各減速装置G1~G4における出力ピニオン24の旋回歯車28に対するそれぞれの「バックラッシの差」に相当する所定角度以上、回転方向に捻れ変形する。
In the connecting shaft 70 according to this embodiment, when the load acting on the output pinion 24 becomes equal to or greater than the second predetermined value S2 that is smaller than the load corresponding to the first predetermined value S1, each of the reduction gears G1 to G4 is used. The output pinion 24 is twisted and deformed in the rotational direction by a predetermined angle or more corresponding to each “difference in backlash” of the output pinion 24 with respect to the turning gear 28.
ここで、「出力ピニオン24に作用する荷重が、第1所定値S1に対応する荷重より小さい第2所定値S2以上となったとき」の「第2所定値S2」は、「強い風力負荷が掛かったときに、第1連結部70Aに特定の変化(相対滑り)が発生するより前の段階で、各減速装置が均等に荷重を受け持つことによって、特定の減速装置のみに荷重が集中しないようにする。」という点を考慮して決定される。
Here, “the second predetermined value S2” when “the load acting on the output pinion 24 becomes equal to or larger than the second predetermined value S2 smaller than the load corresponding to the first predetermined value S1” is “the strong wind load is When applied, before each specific change (relative slip) occurs in the first connecting portion 70A, each reduction gear is equally loaded, so that the load does not concentrate only on the specific reduction gear. Determined.
具体的には、「モータ22が定格トルクを出力しているときに出力ピニオン24に掛かる定格トルク相当荷重が1つの指標となる。なお、第2所定値S2は、低くてもよいが、余りに低いレベルから捻れ変形が発生するようにすると、モータ22で駆動するときの応答性が悪くなるほか、必要な強度も確保しにくくなるため、モータ22が疲労等価荷重(モータの定格トルクの半分程度)のトルクを出力したときに出力ピニオン24に掛かる値が、事実上のほぼ下限となる。
Specifically, “a load equivalent to the rated torque applied to the output pinion 24 when the motor 22 outputs the rated torque is one index. Note that the second predetermined value S2 may be low, but too low. If the torsional deformation is generated from a low level, the responsiveness when driven by the motor 22 is deteriorated and it is difficult to secure the necessary strength. Therefore, the motor 22 is subjected to fatigue equivalent load (about half of the rated torque of the motor). ), The value applied to the output pinion 24 when the torque is output is substantially the lower limit.
なお、前記「バックラッシの差」とは、理想的には、旋回歯車28と出力ピニオン24とのバックラッシが最も小さな減速装置のバックラッシ量と、該バックラッシが最も大きな減速装置のバックラッシ量との差である。より具体的には、「風力負荷によってナセル12が回転することにより、バックラッシが最小の減速装置のバックラッシが詰まった(0になった)後、最大のバックラッシを有している減速装置のバックラッシがなくなるまでに当該最大のバックラッシを有している減速装置の出力ピニオン24が回転する角度」のことである。
The “backlash difference” is ideally the difference between the backlash amount of the speed reducer with the smallest backlash between the swivel gear 28 and the output pinion 24 and the backlash amount of the speed reducer with the largest backlash. is there. More specifically, “After the nacelle 12 is rotated by the wind load, the backlash of the reduction gear with the minimum backlash is clogged (becomes zero), and the backlash of the reduction gear with the maximum backlash is reduced. The angle at which the output pinion 24 of the reduction gear having the maximum backlash rotates until it disappears ”.
ただし、バックラッシが最も小さな減速装置の連結軸70が捻れることにより、バックラッシが次に小さな減速装置の出力ピニオン24が旋回歯車28と噛合うと、それだけでも2台の減速装置による等配効果は得られ、さらに当該2台の減速装置の連結軸70が捻れることにより、次の減速装置の出力ピニオン24が旋回歯車28と噛合うと、さらに等配効果が得られる。そうすると、結局、「バックラッシの差」とは、任意の2台の減速装置におけるバックラッシの差と捉えてもよい。
However, if the connecting shaft 70 of the speed reducer with the smallest backlash is twisted, and the output pinion 24 of the speed reducer with the next smallest backlash meshes with the swivel gear 28, the even distribution effect by the two speed reducers can be obtained. Further, when the connecting shafts 70 of the two reduction gears are twisted, and the output pinion 24 of the next reduction gear meshes with the swivel gear 28, a further equal distribution effect is obtained. Then, after all, the “backlash difference” may be regarded as a difference in backlash between any two reduction gears.
なお、バックラッシの差に「相当する角度」とは、対象となる連結軸70の動力伝達系上の位置によって、減速比(出力ピニオンから見た場合は増速比)の分乗じた角度ということである。例えば、この実施形態では出力ピニオン24から見た遊星歯車減速機構44の増速比は43であるため、43倍とした角度、ということになる。
The “corresponding angle” to the difference in backlash means an angle obtained by multiplying the reduction ratio (speed increase ratio when viewed from the output pinion) depending on the position of the target connecting shaft 70 on the power transmission system. It is. For example, in this embodiment, since the speed increasing ratio of the planetary gear speed reduction mechanism 44 as viewed from the output pinion 24 is 43, the angle is 43 times.
なお、図1~図3の連結軸70の端面70Dに形成されているタップ穴70Tは、連結軸70の引き抜きが困難なときに、引き抜き用の治具のねじを螺合させるためのものである。
The tap hole 70T formed in the end surface 70D of the connecting shaft 70 in FIGS. 1 to 3 is for screwing a screw of a pulling jig when the connecting shaft 70 is difficult to pull out. is there.
次に、この減速装置G1の作用を説明する。
Next, the operation of the reduction gear G1 will be described.
図1を参照して、モータ22のモータ軸46の回転は、直交歯車減速機構40のハイポイドピニオン47及びハイポイドギヤ50の噛合によって初段減速された後、第1平行軸減速機構41および第2平行軸減速機構42を介してホロー軸66に伝達される。
Referring to FIG. 1, the rotation of the motor shaft 46 of the motor 22 is first-stage decelerated by the engagement of the hypoid pinion 47 and the hypoid gear 50 of the orthogonal gear reduction mechanism 40, and then the first parallel axis reduction mechanism 41 and the second parallel axis. It is transmitted to the hollow shaft 66 via the speed reduction mechanism 42.
ホロー軸66の回転は、連結軸70を介して偏心揺動型の遊星歯車減速機構44の入力軸73に伝達される。この部分の作用については、後に詳述する。
The rotation of the hollow shaft 66 is transmitted to the input shaft 73 of the eccentric oscillating planetary gear reduction mechanism 44 via the connecting shaft 70. The operation of this part will be described in detail later.
偏心揺動型の遊星歯車減速機構44の入力軸73が回転すると、偏心体74を介して外歯歯車76が(内歯歯車78に内接しながら)揺動回転する。この結果、入力軸73が1回回転する毎に、外歯歯車76が1回揺動し、内歯歯車78に対して1歯分ずつ(歯数差分ずつ)位相がずれて行くようになる(自転成分が発生する)。
When the input shaft 73 of the eccentric oscillating type planetary gear speed reduction mechanism 44 rotates, the external gear 76 oscillates and rotates through the eccentric body 74 (while inscribed in the internal gear 78). As a result, every time the input shaft 73 rotates once, the external gear 76 swings once, and the phase shifts by one tooth (by the number of teeth difference) with respect to the internal gear 78. (Rotation component is generated).
この自転成分を摺動促進部材81、内ピン80、および出力フランジ(キャリヤ)82を介して出力軸84から取り出すことにより、遊星歯車減速機構44での減速が実現される。
The deceleration by the planetary gear reduction mechanism 44 is realized by taking out the autorotation component from the output shaft 84 via the sliding promotion member 81, the inner pin 80, and the output flange (carrier) 82.
出力軸84の回転は、スプライン87を介して出力ピニオン24に伝達される。出力ピニオン24は旋回歯車28と噛合しており、且つ、該旋回歯車28は、円筒支柱11に固定されている。そのため、反作用によって、出力ピニオン24は、自転しながら旋回歯車28の中心36に対して公転し、該円筒支柱11側の旋回歯車28の軸心36に対してナセル12が水平方向に回転(旋回)する。
The rotation of the output shaft 84 is transmitted to the output pinion 24 via the spline 87. The output pinion 24 meshes with the swivel gear 28, and the swivel gear 28 is fixed to the cylindrical column 11. Therefore, due to the reaction, the output pinion 24 revolves around the center 36 of the turning gear 28 while rotating, and the nacelle 12 rotates in a horizontal direction (turning) with respect to the axis 36 of the turning gear 28 on the cylindrical column 11 side. )
ここで、例えば、突風等によりナセル12を強制的に旋回させようとする「風力負荷」が発生したとする。この風力負荷は、ヨー駆動システム14を逆から駆動し、旋回歯車28を介して減速装置G1の出力ピニオン24を回転させようとする。この風力負荷が通常想定される範囲内の(第1所定値S1より小さい)トルクであれば、連結軸70とホロー軸66(と一体化されたブッシュ63)との間で相対滑りは発生しない(特定の変化が生じることはない)。すなわち、該トルクはそのままホロー軸66を介して減速装置G1の第2平行軸減速機構42側へと、さらに伝達されて行き、最後にモータ22に付設された図示せぬブレーキ装置によって受け止められる。この結果、風によるナセル12の動きは確実に制動される。勿論、減速装置G1を含むヨー駆動システム14の各部には特に異常は発生しない。
Here, for example, it is assumed that a “wind load” is generated in which the nacelle 12 is forced to turn due to a gust of wind or the like. This wind load drives the yaw drive system 14 from the reverse and tries to rotate the output pinion 24 of the reduction gear G1 via the swivel gear 28. If the wind load is a torque within a normally assumed range (smaller than the first predetermined value S1), no relative slip occurs between the connecting shaft 70 and the hollow shaft 66 (the bush 63 integrated with the connecting shaft 70). (There will be no specific change). That is, the torque is further transmitted to the second parallel shaft reduction mechanism 42 side of the reduction gear G1 through the hollow shaft 66 as it is, and finally received by a brake device (not shown) attached to the motor 22. As a result, the movement of the nacelle 12 due to the wind is reliably braked. Of course, no abnormality occurs in each part of the yaw drive system 14 including the reduction gear G1.
しかし、風力発電設備は、自然環境下に設置される設備であるため、ときに非常に強い乱れた風や突風を受けたりすることがある。一般に強い風が吹いているときには、モータ22の反負荷側に設けられたブレーキ装置によって減速装置G1~G4の各回転要素は回転不能の状態とされ、ナセル12が強い風によって無制御状態で旋回してしまうのを防止している。したがって、減速装置G1を含むヨー駆動システム14の各構成部材は、殆ど停止状態でこの強い風力負荷をまともに受けることになり、非常に過酷な状態下に置かれることになる。
However, since wind power generation equipment is installed in a natural environment, it sometimes receives a very strong turbulent wind or gust. In general, when a strong wind is blowing, the rotating elements of the reduction gears G1 to G4 are made non-rotatable by a brake device provided on the non-load side of the motor 22, and the nacelle 12 turns uncontrolled by the strong wind. To prevent it. Therefore, each component of the yaw drive system 14 including the speed reducer G1 receives this strong wind load properly almost in a stopped state, and is placed under a very severe condition.
そのため、何らの対策もなされていないと、減速装置G1を含むヨー駆動システム14のいずれかの部分において、当該風力負荷に耐えられなくなった部位が塑性変形に至ってしまう虞がある。この場合、塑性変形箇所が、例えば、ヨー駆動システム14の旋回歯車28であったとき等では、その復旧作業は、極めて大掛かりなものとなり、膨大なコストが掛かってしまう。
Therefore, if no measures are taken, there is a possibility that a part that cannot withstand the wind load in any part of the yaw drive system 14 including the reduction gear G1 may be plastically deformed. In this case, when the plastic deformation portion is, for example, the swivel gear 28 of the yaw drive system 14, the restoration work becomes very large and enormous costs are required.
しかしながら、本実施形態によれば、連結軸70(の第1連結部70A)は、意図的に、動力伝達系を構成する他の部材に比べて、動力の伝達に当たって特定の変化(ホロー軸66との相対滑り)が生じやすい「脆弱部」とされている。そのため、風力負荷が出力ピニオン24側から掛かることによって、連結軸70の第1連結部70Aに係るトルクが第1所定値S1を超えると、(他の部材が動力伝達に関して何らかの変化を起こす前に)この連結軸70の第1連結部70Aにおいて、ホロー軸66との間に特定の変化として「ホロー軸66との相対滑り」が発生する。
However, according to the present embodiment, the connection shaft 70 (the first connection portion 70A thereof) is intentionally compared with other members constituting the power transmission system in a specific change (hollow shaft 66) when transmitting power. Relative slippage) is a “fragile part”. Therefore, when the wind load is applied from the output pinion 24 side and the torque related to the first connecting portion 70A of the connecting shaft 70 exceeds the first predetermined value S1, (before other members cause any change in power transmission) In the first connecting portion 70A of the connecting shaft 70, “relative slip with the hollow shaft 66” occurs as a specific change between the first connecting portion 70A and the hollow shaft 66.
すると、該第1連結部70Aにおいて第1所定値S1以上のトルクが伝達されなくなるため、自動的に、ヨー駆動システム14のあらゆる構成要素に、当該第1所定値S1に対応するトルク以上のトルクが掛かることが防止される。
Then, since the torque greater than or equal to the first predetermined value S1 is not transmitted in the first connecting portion 70A, the torque greater than or equal to the torque corresponding to the first predetermined value S1 is automatically transmitted to all components of the yaw drive system 14. Is prevented from being applied.
すなわち、本実施形態では、風力負荷が過大であったときには、動力伝達系の各部材の中で、一番先に連結軸70に特定の変化として「ホロー軸66との相対滑り」が発生するため、いわゆる重大損傷が発生することがなく、先ず、この点でメンテナンスが容易である。
That is, in the present embodiment, when the wind load is excessive, “relative slip with the hollow shaft 66” occurs as a specific change in the connecting shaft 70 first in each member of the power transmission system. Therefore, so-called serious damage does not occur, and first, maintenance is easy in this respect.
本実施形態においては、特定の変化が生じたと検出された場合であっても、(弾性変形内の締まり嵌めが採用されているため)当該過大な風力負荷がなくなったときには、多くの場合、再び(特定の変化が生じる前と同様に)連結軸70の使用を継続することができる。しかしながら、このような特定の変化が生じた場合(あるいは特定の変化が何回か生じた場合)には、連結軸70が何らかの異常の兆しを呈していることが考えられるため、取り出して実際に連結軸70を検査するのが好ましい。
In the present embodiment, even when it is detected that a specific change has occurred, when the excessive wind load is eliminated (because an interference fit in elastic deformation is employed), in many cases, again The connection shaft 70 can continue to be used (as before certain changes have occurred). However, when such a specific change occurs (or when the specific change occurs several times), it is considered that the connecting shaft 70 is showing some signs of abnormality. It is preferable to inspect the connecting shaft 70.
この場合において、本実施形態では、図3に示されるように、蓋部材67を、ボルト68を外すことによって取り除くだけで、ホロー軸66の中空構造の一端部66Aが前段側ケーシング45外に露出可能である。また、連結軸70を、(当該減速装置G1自体を風力発電設備10のナセル12に据え付けたまま)当該一端部66Aから前段側ケーシング45外に取り出すことができる。つまり、前段側ケーシング45も、また後段側ケーシング48も、全く分解することなく、連結軸70を取り出すことができる。
In this case, in this embodiment, as shown in FIG. 3, the hollow member 66 </ b> A of the hollow structure of the hollow shaft 66 is exposed to the outside of the front-side casing 45 simply by removing the cover member 67 by removing the bolt 68. Is possible. Further, the connecting shaft 70 can be taken out of the front casing 45 from the one end 66A (while the speed reducer G1 itself is installed on the nacelle 12 of the wind power generation facility 10). That is, the connecting shaft 70 can be taken out without disassembling the front casing 45 and the rear casing 48 at all.
そして、検査の結果、問題がなければ、その検査した連結軸70をそのまま、異常が見つかれば、新しい交換部品を、露出しているホロー軸66の中空構造の一端部66Aから組み付け可能である。このため、この点でもメンテナンスは簡便である。
If there is no problem as a result of the inspection, if there is an abnormality with the inspected connecting shaft 70 as it is, a new replacement part can be assembled from the exposed end portion 66A of the hollow structure of the hollow shaft 66. For this reason, maintenance is also simple in this respect.
こうした基本的な作用効果に加え、上記実施形態では、既に述べたように、特に、ホロー軸66との第1連結部70Aが脆弱部とされ、かつ特定の変化として、連結軸70とホロー軸66との相対滑りが発生するような構成を採用したことから、ヨー駆動システム14の各部材を過大トルクから保護することができるだけでなく、連結軸70自体も、(脆弱部を有し、かつ特定の変化が生じたとしても)必ずしも即交換としなくてもよい構成となっている。
In addition to these basic functions and effects, in the above-described embodiment, as described above, in particular, the first connecting portion 70A with the hollow shaft 66 is a fragile portion, and as a specific change, the connecting shaft 70 and the hollow shaft Since the configuration in which relative slip to 66 occurs is adopted, not only can each member of the yaw drive system 14 be protected from excessive torque, but also the connecting shaft 70 itself (having a weak portion and Even if a specific change occurs, it does not necessarily have to be replaced immediately.
また、上記実施形態では、連結軸70とホロー軸66との第1連結部70Aが、締まり嵌めにより連結される構成としたため、該締まり嵌めによる連結軸70とホロー軸66のそれぞれの弾性変形を維持する構成とすることにより、滑っている途中においても、第1連結部70Aにおいて第1所定値S1相当のトルクの伝達を維持することができる。したがって、例えば、単純にクラッチ等を切って減速装置内の動力の伝達を完全に絶ち切る手法と比較して、ナセル12が無秩序にふらつくこと(ブレーキの機能なく風に任せるまま方向が定まらない状態となること)をより防止できる。
In the above embodiment, since the first connecting portion 70A between the connecting shaft 70 and the hollow shaft 66 is connected by an interference fit, each elastic deformation of the connection shaft 70 and the hollow shaft 66 due to the interference fit is prevented. By adopting such a configuration, it is possible to maintain the transmission of torque corresponding to the first predetermined value S1 in the first connecting portion 70A even during the slipping. Therefore, for example, the nacelle 12 fluctuates in a disorderly manner compared to a method in which the transmission of power in the reduction gear is completely cut off by simply disengaging the clutch or the like (the state in which the direction is not determined while leaving to the wind without the function of the brake) Can be further prevented.
また、上記実施形態においては、ホロー軸66の内周と回転方向に係合するブッシュ(筒状部材)63を備え、連結軸70は、該ブッシュ63と締まり嵌めにて連結される構成としている。これにより、多くのメリットが得られる。すなわち、もしホロー軸66の内部に、連結軸70を直接締まり嵌めによって連結しようとした場合には、特に、一度ホロー軸66から取り出した連結軸70を再度ホロー軸66内に挿入して連結し直す場合に、締まり嵌めによる連結を行いながら組み付けを行うことになり、多大な困難を伴う。しかしながら、本実施形態に係る連結軸70は、第2連結部70Bにおいては、スプラインにて継リング部材79とブッシュ63とを回転方向に係合しているだけであるため、例えば、取り出しに当たっては、「連結軸70およびブッシュ63のアッセンブリA1」を、止め輪77ごとそっくり引き抜くことで、容易に連結軸70を取り出すことができる(図3参照)。
In the above embodiment, the bush (tubular member) 63 that engages with the inner periphery of the hollow shaft 66 in the rotational direction is provided, and the connecting shaft 70 is connected to the bush 63 by an interference fit. . This provides many benefits. That is, if the connection shaft 70 is to be directly connected to the inside of the hollow shaft 66 by interference fitting, the connection shaft 70 once taken out from the hollow shaft 66 is inserted into the hollow shaft 66 again and connected. When repairing, assembly is performed while performing connection by interference fitting, which entails great difficulty. However, since the connecting shaft 70 according to the present embodiment merely engages the joint ring member 79 and the bush 63 in the rotational direction by splines in the second connecting portion 70B, for example, when taking out the connecting shaft 70 The connecting shaft 70 can be easily removed by pulling out the “assembly A1 of the connecting shaft 70 and the bush 63” together with the retaining ring 77 (see FIG. 3).
そして、引き抜いて検査した結果、連結軸70に特に異常がなくて再組み付けする場合も、また、何らかの異常が見付かって新品と交換する場合も、前段側ケーシング45に組み付けてあるホロー軸66の内部に、該アッセンブリA1を、再びキー69を用いて(隙間嵌めにて)止め輪77によって係止されるまで、ホロー軸66の中空構造の一端部66Aから組み込めばよい。したがって、再組み付けや交換が非常に容易である。何よりも、連結軸70は、工場内で、予め「適正な締まり嵌めで」製造できるので、第1所定値S1の管理(滑り出すトルクの管理)を極めて正確に実現することができる。
As a result of pulling out and inspecting, even when the connecting shaft 70 is not particularly abnormal and reassembled, or when any abnormality is found and replaced with a new one, the inside of the hollow shaft 66 assembled to the front casing 45 In addition, the assembly A1 may be assembled from the one end 66A of the hollow structure of the hollow shaft 66 until it is locked by the retaining ring 77 again (with a clearance fit) using the key 69. Therefore, reassembly and replacement are very easy. Above all, since the connecting shaft 70 can be manufactured in advance “with an appropriate interference fit” in the factory, the management of the first predetermined value S1 (management of the torque that starts to slide) can be realized extremely accurately.
なお、アッセンブリA1を隙間嵌めにてホロー軸66内に挿入する構成は、フレッティングが発生する虞があるが、万一、ホロー軸66とブッシュ63との間でフレッティング等が生じていて引き抜きが困難となったとしても、本実施形態では、連結軸70の端部に形成した抜きタップ穴70Tを利用して図示せぬジグを用いて容易に連結軸70を引き抜くことができる。
Note that the configuration in which the assembly A1 is inserted into the hollow shaft 66 with a clearance fit may cause fretting. However, in the unlikely event that fretting occurs between the hollow shaft 66 and the bush 63, the assembly A1 is pulled out. Even if it becomes difficult, in this embodiment, the connecting shaft 70 can be easily pulled out using a jig (not shown) using the tap hole 70T formed at the end of the connecting shaft 70.
さらに、上記実施形態では、連結軸70が、ホロー軸66の一端部66Aの近傍と連結されると共に、該ホロー軸66の他端部66Bから突出した部分で偏心揺動型の遊星歯車減速機構44の入力軸(次段の部材)73と連結される構成としてある。このため、連結軸70の全長L2を長めに確保することができ、「捻り変形」を活用した荷重等配効果を得ることができる。
Further, in the above-described embodiment, the connecting shaft 70 is connected to the vicinity of the one end portion 66A of the hollow shaft 66, and the eccentric rocking type planetary gear speed reduction mechanism at the portion protruding from the other end portion 66B of the hollow shaft 66. 44 input shafts (next stage members) 73 are connected. For this reason, the full length L2 of the connecting shaft 70 can be secured longer, and a load distribution effect utilizing "twist deformation" can be obtained.
この作用効果は、公知ではないため、少し詳細に説明する。
Since this effect is not known, it will be explained in a little more detail.
前述したように、一般に強い風が吹いているときには、モータ22の反負荷側に設けられた図示せぬブレーキ装置によってヨー駆動システム14の各回転要素は回転不能の状態とされ、ナセル12が強い風によって無制御状態で旋回してしまうのを防止している。
As described above, when a strong wind is blowing, generally, each rotating element of the yaw drive system 14 is made non-rotatable by a brake device (not shown) provided on the non-load side of the motor 22 and the nacelle 12 is strong. This prevents the wind from turning in an uncontrolled state.
したがって、従来のヨー駆動システムでは、実際には、ナセル12が動くことによって駆動系のバックラッシが最初に詰められた減速装置(便宜上、第1の減速装置G1とする)が「1台のみ」で該旋回歯車28のそれ以上の回転を阻止しようとしてしまうため、他の減速装置G2~G4の出力ピニオン24は、旋回歯車28とのバックラッシが詰められない状態のままとなってしまい、旋回歯車28側からの風力負荷を受けることができないという問題が生じていた。
Therefore, in the conventional yaw drive system, the reduction gear (first reduction gear G1 for the sake of convenience) in which the backlash of the drive system is initially packed by moving the nacelle 12 is “only one”. In order to prevent further rotation of the swivel gear 28, the output pinions 24 of the other reduction gears G 2 to G 4 remain in a state where backlash with the swivel gear 28 is not filled, and the swivel gear 28. There was a problem that the wind load from the side could not be received.
しかしながら、本実施形態によれば、先ず、最初にバックラッシが詰められた第1の減速装置G1の出力ピニオン24に旋回歯車28から第2所定値S2以上の荷重が掛かると、この荷重によって、連結軸70が捻れ変形する。このため、出力ピニオン24は、(ブレーキ装置によって減速装置G1~G4の各回転要素の回転が基本的に止められている状況であるにも拘わらず)連結軸70の当該捻れ変形によって、そのまま回転を続けることができ、旋回歯車28もそのまま追随して回転を続けることができる。
However, according to the present embodiment, first, when a load greater than or equal to the second predetermined value S2 is applied from the swivel gear 28 to the output pinion 24 of the first reduction gear G1 first packed with backlash, the connection is caused by this load. The shaft 70 is twisted and deformed. Therefore, the output pinion 24 rotates as it is due to the torsional deformation of the connecting shaft 70 (although the rotation of the rotating elements of the speed reducers G1 to G4 is basically stopped by the brake device). The swivel gear 28 can also follow the rotation and continue to rotate.
この結果、従来ならば第1の減速装置G1のみに掛かり続けた旋回歯車28側からの荷重の一部が、第2の減速装置G2にも振り分けられるようになる。そして、第2の減速装置G2でも、また、第3の減速装置G3も、捻れ変形が可能であるため、最終的には各減速装置G1~G4のそれぞれの連結軸70がほぼ等しい反力を受け持つ状態となるように、各減速装置G1~G4の連結軸70での捻れ変形がバランスする。
As a result, a part of the load from the swivel gear 28 side that is conventionally applied only to the first reduction gear G1 is also distributed to the second reduction gear G2. Since the second reduction gear G2 and the third reduction gear G3 can also be torsionally deformed, the connecting shafts 70 of the respective reduction gears G1 to G4 eventually have substantially the same reaction force. The torsional deformation at the connecting shaft 70 of each of the reduction gears G1 to G4 is balanced so as to be in charge.
これは、要するならば、例えば、本実施形態のように4個の減速装置G1~G4によってヨー駆動システム14が構成されている場合には、実質的に(従来と比べて)風力負荷をほぼ1/4に減じたことと同様な作用効果を得ることができることを意味するものである。逆に言うならば、連結軸70とホロー軸66が相対回転を開始してしまう風力負荷(第1所定値S1の決定に関わる風力負荷)を、ほぼ4倍に引き上げることができるということでもある。
If necessary, for example, when the yaw drive system 14 is configured by four reduction gears G1 to G4 as in the present embodiment, the wind load is substantially reduced (compared to the conventional case). This means that it is possible to obtain the same effect as that reduced to ¼. In other words, the wind load that causes the connecting shaft 70 and the hollow shaft 66 to start relative rotation (wind load related to the determination of the first predetermined value S1) can be increased almost four times. .
尤も、この動力伝達部材が「捻れ変形」することを積極的に利用して「荷重等配効果」を得るという構成は、本発明においては、必ずしも必須ではない。この構成を採用しない場合、特定の減速装置に掛かる風力負荷のみが早々に第1所定値を超え、滑りが発生してしまうという現象は生じ易くなるが、例えば、上記実施形態では、第1連結部70Aに滑りが発生することで、自動的に2番目(その後3番目…)に大きいバックラッシを有していた減速装置にも順に風力負荷が掛かるようになるため、結果として、全ての減速装置が滑った時点で荷重等配効果が得られることになる。
However, in the present invention, it is not always essential to obtain a “load equal distribution effect” by actively utilizing the “twist deformation” of the power transmission member. If this configuration is not adopted, the phenomenon that only the wind load applied to the specific speed reducer quickly exceeds the first predetermined value and slipping easily occurs. For example, in the above embodiment, the first connection Since the slippage occurs in the part 70A, the wind load is automatically applied to the reduction gears that have the second largest backlash (after that, the third ...), and as a result, all the reduction gears are obtained. At the time of slipping, a load equalizing effect is obtained.
また、本実施形態では、連結軸70は、第1連結部70Aと第2連結部70Bとの中間部70Cの外径d3が、各連結部70A、70Bでの外径d1、d2よりも小径とされている。そのため、同じ全長L2であっても前述した捻り変形をより大きく確保することができ、結果として、減速装置G1全体の小型化が実現できている。また、万一、連結軸70が折損してしまった場合に、この径の小さな中間部70Cを適当な挟み治具にて挟むことで、入力軸73側に残った連結軸70の残存部(図示略)を挟んで引き上げることも可能になる。
In the present embodiment, the connecting shaft 70 has an outer diameter d3 of an intermediate portion 70C between the first connecting portion 70A and the second connecting portion 70B smaller than the outer diameters d1 and d2 at the connecting portions 70A and 70B. It is said that. For this reason, even with the same overall length L2, the above-described twist deformation can be ensured to be larger, and as a result, the reduction gear G1 as a whole can be reduced in size. In the unlikely event that the connecting shaft 70 breaks, the remaining portion of the connecting shaft 70 remaining on the input shaft 73 side (by holding the intermediate portion 70C having a small diameter with an appropriate holding jig) It is also possible to pull it up with a not shown).
さらに、本実施形態では、特定の変化(相対滑り)が生じたことを、外部から検出可能な検出機構D1を備えるようにしたため、特定の変化が生じたか否かを、前段側ケーシング45を分解しなくても確認可能である。具体的には、相対滑りが発生したか否かは、減速装置G1上部のホロー軸66と一体化されたブッシュ63の端面63Aと連結軸70の端面70Dに跨がって径方向に跨がって描いた赤いマーキング(連続した印)にずれが生じているか否かを視認することによって確認することができる。メンテナンス時に、この視認によって連結軸70に特定の変化が生じていないことが確認できれば、該連結軸70をわざわざ取り出して検査する作業自体を省略することができる。この効果は、減速装置G1のメンテナンスを極めて狭いナセル12の空間内で行わなければならない事情を考慮した場合に、現実には非常に大きい。
Further, in the present embodiment, since the detection mechanism D1 that can detect from the outside that a specific change (relative slip) has occurred is provided, whether or not the specific change has occurred is disassembled in the front casing 45. It is possible to confirm without doing. Specifically, whether or not relative slip has occurred is determined by straddling the end surface 63A of the bush 63 integrated with the hollow shaft 66 on the upper part of the reduction gear G1 and the end surface 70D of the connecting shaft 70 in the radial direction. It can be confirmed by visually confirming whether or not there is a deviation in the red marking (continuous mark) drawn. If it can be confirmed during maintenance that the connecting shaft 70 has not undergone a specific change by this visual check, the operation of taking out and inspecting the connecting shaft 70 can be omitted. This effect is actually very large in consideration of the situation where the maintenance of the reduction gear G1 must be performed in a very narrow space of the nacelle 12.
また、本実施形態では、ホロー軸66の一端部66Aは、蓋部材67により塞がれているため、ホロー軸66内へのゴミ等の混入を防止しつつ、視認の容易性を維持することができる。特に、この実施形態では、蓋部材67が透明な部材で構成されているため、蓋部材67を取らなくても特定の変化の有無を確認できるため、利便性が特に高い。
In the present embodiment, the one end portion 66A of the hollow shaft 66 is closed by the lid member 67, so that it is possible to maintain the ease of visual recognition while preventing dust and the like from entering the hollow shaft 66. Can do. In particular, in this embodiment, since the lid member 67 is made of a transparent member, the presence or absence of a specific change can be confirmed without removing the lid member 67, so that the convenience is particularly high.
さらに、本実施形態では、ホロー軸66の空間P3および継リング部材79の空間P4は、当該減速装置G1の潤滑剤の封入される空間P1、P2とは、オイルシール71B、71B、71Dにより隔離されている構成としたため、連結軸70を引き上げたときに潤滑剤が滴ったりする虞がない。
Furthermore, in this embodiment, the space P3 of the hollow shaft 66 and the space P4 of the joint ring member 79 are separated from the spaces P1 and P2 in which the lubricant of the reduction gear G1 is sealed by the oil seals 71B, 71B, and 71D. Because of the above configuration, there is no possibility that the lubricant will drip when the connecting shaft 70 is pulled up.
なお、上記実施形態においては、モータ22、直交歯車減速機構40、第1、第2平行軸減速機構41、42及び遊星歯車減速機構44が動力伝達経路上でこの順に配置された減速装置G1(~G4)が示されていたが、本発明においては、ヨー減速システムの減速機構の具体的な構成は、特に上記構成に限定されない。
In the above embodiment, the reduction gear G1 (the motor 22, the orthogonal gear reduction mechanism 40, the first and second parallel shaft reduction mechanisms 41 and 42, and the planetary gear reduction mechanism 44 are arranged in this order on the power transmission path. In the present invention, the specific configuration of the deceleration mechanism of the yaw deceleration system is not particularly limited to the above configuration.
図5、図6に先の実施形態における直交歯車減速機構40、第1平行軸減速機構41、および第2平行軸減速機構42の代わりに、ウォーム減速機構110を採用した減速装置G1aの構成例を示す。他の3個の減速装置(図示略)も減速装置G1aと同様の構成とされている。
5 and 6, a configuration example of a reduction gear G1a adopting a worm reduction mechanism 110 instead of the orthogonal gear reduction mechanism 40, the first parallel axis reduction mechanism 41, and the second parallel axis reduction mechanism 42 in the previous embodiment. Indicates. The other three reduction gears (not shown) have the same configuration as the reduction gear G1a.
なお、この実施形態においては、モータは、紙面と直交する方向に取り付けられるが、この図5においては、モータ自体は表示されておらず、モータの取り付け孔114のみが表示されている。
In this embodiment, the motor is mounted in a direction perpendicular to the paper surface. However, in FIG. 5, the motor itself is not displayed, and only the motor mounting hole 114 is displayed.
ウォーム減速機構110は、ウォーム116とウォームギヤ118とで構成されている。ウォームギヤ118は、(該ウォーム減速機構110の出力軸である)ウォーム出力軸120と一体化されている。ウォーム出力軸120は、中空であり、先の実施形態における第2平行軸減速機構42のホロー軸66と同様の構成を有している。連結軸70は、先の実施形態と同様の連結構成にて、ウォーム出力軸120の内部に連結されている。また、連結軸70は、先の実施形態の連結軸70と同様の構成で次段の部材である第1単純遊星歯車減速機構130の太陽歯車132の回転軸133と連結されている。
The worm reduction mechanism 110 includes a worm 116 and a worm gear 118. The worm gear 118 is integrated with a worm output shaft 120 (which is an output shaft of the worm reduction mechanism 110). The worm output shaft 120 is hollow and has the same configuration as the hollow shaft 66 of the second parallel axis reduction mechanism 42 in the previous embodiment. The connection shaft 70 is connected to the inside of the worm output shaft 120 with the same connection configuration as in the previous embodiment. Further, the connecting shaft 70 is connected to the rotating shaft 133 of the sun gear 132 of the first simple planetary gear speed reduction mechanism 130 which is the next stage member with the same configuration as the connecting shaft 70 of the previous embodiment.
第1単純遊星歯車減速機構130は、太陽歯車132、遊星歯車134、および内歯歯車136を備え、太陽歯車132が入力部材、遊星歯車134を支持しているキャリヤ138が出力部材として機能している。
The first simple planetary gear reduction mechanism 130 includes a sun gear 132, a planetary gear 134, and an internal gear 136. The sun gear 132 functions as an input member, and the carrier 138 that supports the planetary gear 134 functions as an output member. Yes.
第1単純遊星歯車減速機構130の後段には第2単純遊星歯車減速機構140が連結されている。第2単純遊星歯車減速機構140は、前記キャリヤ138とスプライン139を介して連結された太陽歯車142、遊星歯車144、および内歯歯車146を備え、太陽歯車142が入力部材、遊星歯車144を支持しているキャリヤ148が出力部材として機能している。
The second simple planetary gear reduction mechanism 140 is connected to the subsequent stage of the first simple planetary gear reduction mechanism 130. The second simple planetary gear reduction mechanism 140 includes a sun gear 142, a planetary gear 144, and an internal gear 146 connected to the carrier 138 via a spline 139. The sun gear 142 supports the input member and the planetary gear 144. The carrier 148 functioning as an output member.
なお、この実施形態では、先の実施形態のオイルシール71Dに相当するオイルシールがなく、ホロー軸66の内部は、潤滑剤の封入される空間P5からは、隔離されていない。
In this embodiment, there is no oil seal corresponding to the oil seal 71D of the previous embodiment, and the interior of the hollow shaft 66 is not isolated from the space P5 in which the lubricant is enclosed.
この実施形態でも、ウォーム出力軸120、連結軸70が、先の実施形態のホロー出力軸66、連結軸70同様の構成を有していることから、先の実施形態と同様の作用効果が得られる。したがって先の実施形態と実質的に同一の部位に先の実施形態と同一の符号を付し、重複説明を省略する。
Also in this embodiment, since the worm output shaft 120 and the connecting shaft 70 have the same configuration as the hollow output shaft 66 and the connecting shaft 70 of the previous embodiment, the same effects as the previous embodiment are obtained. It is done. Accordingly, parts that are substantially the same as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and redundant description is omitted.
この実施形態では、ウォーム減速機構110の減速比は、30以上(好ましくは40以上)に設定されている。ウォーム減速機構110の減速比を30以上に設定すると、該ウォーム減速機構110自体が有するセルフロック機能(負荷側からの荷重によって回転しない機能)を「ブレーキ装置」として利用することができる。このため、先の実施形態では必須であったモータ22に付設されていたブレーキ装置を省略することができ、その分コストダウンが図れる。
In this embodiment, the reduction ratio of the worm reduction mechanism 110 is set to 30 or more (preferably 40 or more). When the reduction ratio of the worm reduction mechanism 110 is set to 30 or more, the self-lock function (function that does not rotate due to a load from the load side) of the worm reduction mechanism 110 itself can be used as a “brake device”. For this reason, the brake device attached to the motor 22 which was essential in the previous embodiment can be omitted, and the cost can be reduced accordingly.
また図7、図8に、本発明の更に他の実施形態の一例を示す。この減速装置G1bの基本構造は、図1~図3の実施形態に係る減速装置G1と同様である。
7 and 8 show an example of still another embodiment of the present invention. The basic structure of the reduction gear G1b is the same as that of the reduction gear G1 according to the embodiment shown in FIGS.
異なるのは、先の実施形態では、ホロー軸66と連結軸70との間にブッシュ63が介在されていたが、本実施形態では、連結軸70は、ホロー軸66の内部に直接キー169にて連結されていることである。止め輪(77)も不要であるため、省略されている。
The difference is that the bush 63 is interposed between the hollow shaft 66 and the connecting shaft 70 in the previous embodiment. However, in this embodiment, the connecting shaft 70 is directly connected to the key 169 inside the hollow shaft 66. Are connected. Since the retaining ring (77) is also unnecessary, it is omitted.
ホロー軸66との第1連結部70Aが、キー169による連結であるため、ホロー軸66の一端部66Aからの連結軸70の出し入れは、先の実施形態と同様に「隙間嵌め」にて行われることから、容易である。しかし、キー169による連結とされているため、過大な風力負荷が掛かっても、この部分で相対滑りは発生しない。すなわち、この実施形態では、第1連結部70Aは脆弱部を構成していない。
Since the first connecting portion 70A with the hollow shaft 66 is connected with the key 169, the connecting shaft 70 is inserted into and removed from the one end portion 66A of the hollow shaft 66 by “gap fitting” as in the previous embodiment. It is easy. However, since it is connected by the key 169, even if an excessive wind load is applied, relative slip does not occur in this portion. That is, in this embodiment, 70 A of 1st connection parts do not comprise the weak part.
代わりにこの実施形態では、連結軸70は、ホロー軸66との第1連結部70Aの外径が先の実施形態と同様のd1、次段との第2連結部70Bの外径も先の実施形態と同様のd2であるのに対し、該第1連結部70Aと第2連結部70Bとの中間部70Caの外径がd3aであり、先の実施形態の外径d3よりもさらに若干小さく、この部分、すなわち第1、第2連結部70A、70Bの中間部70Caそのものが「脆弱部」となっている。つまり、過大な風力負荷が入力してきた場合には、該連結軸70自体の中間部70Caが、塑性変形するように構成されている。換言するならば、この実施形態では、連結軸(動力伝達部材)70の、特定の変化は、該連結軸70自体の塑性変形である。
Instead, in this embodiment, the connecting shaft 70 has the same outer diameter of the first connecting portion 70A with the hollow shaft 66 as that of the previous embodiment d1, and the outer diameter of the second connecting portion 70B with the next stage is also earlier. While d2 is the same as that of the embodiment, the outer diameter of the intermediate portion 70Ca between the first connection portion 70A and the second connection portion 70B is d3a, which is slightly smaller than the outer diameter d3 of the previous embodiment. This portion, that is, the intermediate portion 70Ca itself of the first and second connecting portions 70A and 70B is a “fragile portion”. That is, when an excessive wind load is input, the intermediate portion 70Ca of the connecting shaft 70 itself is configured to be plastically deformed. In other words, in this embodiment, the specific change of the connecting shaft (power transmission member) 70 is plastic deformation of the connecting shaft 70 itself.
この実施形態の場合も、特定の変化が生じたか否かは、先の実施形態と同様の構成により確認することができる。しかし、先の実施形態と異なり、特定の変化が生じたことが確認された場合には、連結軸70は即交換される。
Also in this embodiment, whether or not a specific change has occurred can be confirmed by the same configuration as in the previous embodiment. However, unlike the previous embodiment, when it is confirmed that a specific change has occurred, the connecting shaft 70 is immediately replaced.
前述したように、連結軸70の取り出しや、再組み付け、あるいは交換は、極めて容易である。また、実際問題として、連結軸70が塑性変形に至るほどの風力負荷が掛かるのは、そう頻繁にあることではなく、一方、「塑性変形するとすれば連結軸70である」という想定が可能であることから、予めストックしておくことも可能であるため、実用上は、それほど支障はなく、特に初期コスト(風力発電設備の建設コスト)を低減できる点で、図1~図3の実施形態と比べて優れる。
As described above, the connecting shaft 70 can be taken out, reassembled, or replaced very easily. Moreover, as a practical matter, it is not so often that the wind load is applied so that the connecting shaft 70 is plastically deformed. On the other hand, it is possible to assume that the connecting shaft 70 is the connecting shaft 70 if plastically deformed. Since it is possible to stock in advance, there is not much trouble in practical use, and the embodiment shown in FIGS. 1 to 3 is particularly effective in that the initial cost (construction cost of wind power generation equipment) can be reduced. Excellent compared to.
その他の点は、先の図1~図3の実施形態と同様であるため、図中で同一または類似する部分に同一の符号を付すに止め、重複説明を省略する。
Other points are the same as those in the embodiment shown in FIGS. 1 to 3, and therefore, the same or similar parts in the drawings are denoted by the same reference numerals, and redundant description is omitted.
以上説明したように、本発明においては、動力伝達部材のどの部分をどのような形態の脆弱部とするかについては、特に限定されない。例えば、第1連結部に代えて、あるいは第1連結部に加えて、第2連結部を脆弱部としてもよい。また、第1連結部または第2連結部を、キーによって連結する場合において、細めの塑性変形し易いキーを用いる等の手法も考えられる。この場合の特定の変化は、キーの塑性変形ということになる。
As described above, in the present invention, which part of the power transmission member is used as the weakened part is not particularly limited. For example, it is good also considering a 2nd connection part as a weak part instead of a 1st connection part or in addition to a 1st connection part. Moreover, when connecting the 1st connection part or the 2nd connection part with a key, the method of using the thin key which is easy to carry out plastic deformation is also considered. The specific change in this case is the plastic deformation of the key.
このように、脆弱部の形成は、必ずしも1ヶ所のみ、或いは1種類のみに限定される必要はない。脆弱部とするための構造が異なると、現れる特定の変化も変わってくるため、何らかの動力伝達部材の特定の変化が、他の部位の損傷等に必ず先立って生じるようにするには、複数の脆弱部を備えるのは有効である。この場合、特定の変化が同一の風力負荷で発生するように設定してもよく、敢えて若干ずらすようにしてもよい。例えば、図1~図3の構成において、第1連結部の締まり嵌めによる第1の脆弱部の形成に加え、連結部の中間部の強度を敢えて低めに設定して第2の脆弱部を形成しておき、癒着等の何らかの原因で、万一、第1連結部での相対滑りが適正に機能しなかったときに、それより少し高い設定値で、連結軸自体が塑性変形するような2段構成としておく構成としてもよい。
As described above, the formation of the fragile portion is not necessarily limited to only one place or only one type. If the structure for making the fragile part is different, the specific change that appears also changes, so in order to ensure that a specific change in any power transmission member occurs prior to damage to other parts, etc. It is effective to have a vulnerable part. In this case, the specific change may be set to occur at the same wind load, or may be deviated slightly. For example, in the configuration of FIGS. 1 to 3, in addition to forming the first weakened portion by the interference fitting of the first connecting portion, the second weakened portion is formed by setting the strength of the intermediate portion of the connecting portion to be lower. If the relative slip at the first connecting portion does not function properly due to some cause such as adhesion, the connecting shaft itself is plastically deformed at a slightly higher set value than that. A configuration having a stage configuration may be employed.
また、例示したように、減速装置の減速機構の構成も特に限定されず、例えば、偏心体を備えた偏心体軸を内歯歯車の軸心からオフセットした位置に複数有し、各偏心体軸の偏心体が同期して回転することで外歯歯車を揺動させるいわゆる振り分けタイプと称される偏心揺動型の遊星歯車減速機構を採用してもよい。また、ハイポイド減速機構に代えて、ベベル減速機構を採用してもよい。勿論これらの減速機構を組み合わせることも自由である。
Further, as illustrated, the configuration of the speed reduction mechanism of the speed reduction device is not particularly limited. For example, a plurality of eccentric body shafts having eccentric bodies are provided at positions offset from the axis of the internal gear, and each eccentric body shaft is provided. An eccentric oscillating planetary gear reduction mechanism called a so-called sort type that oscillates the external gear by rotating the eccentric members synchronously may be adopted. Further, a bevel reduction mechanism may be adopted instead of the hypoid reduction mechanism. Of course, it is also possible to combine these reduction mechanisms.
本発明は、ヨー駆動用の減速装置のほか、ピッチ駆動用の減速装置にも同様に適用可能である。
The present invention can be similarly applied to a reduction device for pitch drive in addition to a reduction device for yaw drive.
2013年2月28日に出願された日本国特許出願番号2013-040127の明細書、図面、及び特許請求の範囲における開示は、その全体がこの明細書中に参照によりそれぞれ援用されている。
The disclosures in the specification, drawings, and claims of Japanese Patent Application No. 2013-040127 filed on February 28, 2013 are each incorporated herein by reference in their entirety.
10…風力発電設備
11…円筒支柱
12…ナセル(発電室)
14…ヨー駆動システム
16…ピッチ駆動システム
18…ノーズコーン
20…風車ブレード
22…モータ
24…出力ピニオン
44…遊星歯車減速機構
66…ホロー軸
70…連結軸(動力伝達部材)
70A…第1連結部
70B…第2連結部
70C…中間部
73…入力軸
76…外歯歯車
78…内歯歯車
84…出力軸
G1~G4…減速装置 10 ... windpower generation equipment 11 ... cylindrical support 12 ... nacelle (power generation room)
DESCRIPTION OFSYMBOLS 14 ... Yaw drive system 16 ... Pitch drive system 18 ... Nose cone 20 ... Windmill blade 22 ... Motor 24 ... Output pinion 44 ... Planetary gear reduction mechanism 66 ... Hollow shaft 70 ... Connecting shaft (power transmission member)
70A ...1st connection part 70B ... 2nd connection part 70C ... Intermediate | middle part 73 ... Input shaft 76 ... External gear 78 ... Internal gear 84 ... Output shaft G1-G4 ... Reduction gear
11…円筒支柱
12…ナセル(発電室)
14…ヨー駆動システム
16…ピッチ駆動システム
18…ノーズコーン
20…風車ブレード
22…モータ
24…出力ピニオン
44…遊星歯車減速機構
66…ホロー軸
70…連結軸(動力伝達部材)
70A…第1連結部
70B…第2連結部
70C…中間部
73…入力軸
76…外歯歯車
78…内歯歯車
84…出力軸
G1~G4…減速装置 10 ... wind
DESCRIPTION OF
70A ...
Claims (10)
- 風力発電設備に使用する減速装置であって、
動力伝達系の一部として、中空構造のホロー軸を備え、
該ホロー軸の内部に次段への動力伝達部材が連結され、
該ホロー軸は、ケーシングから前記中空構造の一端部が露出可能とされ、
前記動力伝達部材は、動力伝達系を構成する他の部材に比べて、動力の伝達に当たって特定の変化が生じやすい脆弱部とされ、かつ、
該動力伝達部材は、当該減速装置自体を前記風力発電設備に据え付けたまま、前記ホロー軸の前記一端部からケーシング外に取り出し可能とされている
ことを特徴とする風力発電設備に使用する減速装置。 A reduction gear used for wind power generation equipment,
As part of the power transmission system, it has a hollow hollow shaft,
A power transmission member to the next stage is connected to the inside of the hollow shaft,
The hollow shaft is capable of exposing one end of the hollow structure from the casing,
The power transmission member is a fragile portion that easily undergoes a specific change in power transmission compared to other members constituting the power transmission system, and
The power transmission member is capable of being taken out of the casing from the one end of the hollow shaft while the speed reducer itself is installed in the wind power generation equipment. . - 請求項1において、
前記動力伝達部材は、前記ホロー軸または該ホロー軸と一体化される部材との連結部が前記脆弱部とされ、
前記特定の変化は、該動力伝達部材と、前記ホロー軸または該ホロー軸と一体化される部材との間の相対滑りである
ことを特徴とする風力発電設備に使用する減速装置。 In claim 1,
In the power transmission member, a connecting portion with the hollow shaft or a member integrated with the hollow shaft is the fragile portion,
The specific change is a relative slip between the power transmission member and the hollow shaft or a member integrated with the hollow shaft. A reduction gear used for a wind power generation facility. - 請求項2において、
前記連結部が、締まり嵌めにより連結されている
ことを特徴とする風力発電設備に使用する減速装置。 In claim 2,
The speed reducing device used for wind power generation equipment, wherein the connecting portion is connected by an interference fit. - 請求項2または3において、
さらに、前記ホロー軸の内周と回転方向に係合する筒状部材を備え、
前記動力伝達部材は、該筒状部材と締まり嵌めにて連結される
ことを特徴とする風力発電設備に使用する減速装置。 In claim 2 or 3,
And a cylindrical member that engages with the inner periphery of the hollow shaft in the rotational direction,
The power transmission member is connected to the tubular member by an interference fit. A reduction gear used for wind power generation equipment. - 請求項1~4のいずれかにおいて、
前記動力伝達部材の前記特定の変化が、該動力伝達部材自体の塑性変形である
ことを特徴とする風力発電設備に使用する減速装置。 In any one of claims 1-4
The speed change device used for wind power generation equipment, wherein the specific change of the power transmission member is plastic deformation of the power transmission member itself. - 請求項1~5のいずれかにおいて、
前記動力伝達部材は、前記ホロー軸の前記一端部の近傍と連結されると共に、該ホロー軸の他端部から突出した部分において前記次段と連結される
ことを特徴とする風力発電設備に使用する減速装置。 In any one of claims 1 to 5
The power transmission member is connected to the vicinity of the one end of the hollow shaft and is connected to the next stage at a portion protruding from the other end of the hollow shaft. To reduce the speed. - 請求項6において、
前記動力伝達部材は、前記ホロー軸との連結部および前記次段との連結部の間の外径が、各連結部での外径よりも小径とされている
ことを特徴とする風力発電設備に使用する減速装置。 In claim 6,
The power transmission member is characterized in that the outer diameter between the connecting portion with the hollow shaft and the connecting portion with the next stage is smaller than the outer diameter at each connecting portion. Reducer to use for. - 請求項1~7のいずれかにおいて、
さらに、前記特定の変化が生じたことを、外部から検出可能な検出機構を備える
ことを特徴とする風力発電設備に使用する減速装置。 In any one of claims 1 to 7,
And a detection mechanism capable of detecting from the outside that the specific change has occurred. - 請求項1~8のいずれかにおいて、
前記ホロー軸の前記一端部は、蓋部材により塞がれている
ことを特徴とする風力発電設備に使用する減速装置。 In any one of claims 1 to 8,
The speed reducer used for wind power generation equipment, wherein the one end of the hollow shaft is closed by a lid member. - 請求項1~9のいずれかにおいて、
前記ホロー軸の内部は、当該減速装置の潤滑剤の封入される空間とは、シール部材により隔離されている
ことを特徴とする風力発電設備に使用する減速装置。 In any one of claims 1 to 9,
The inside of the hollow shaft is isolated from a space in which the lubricant of the reduction gear is enclosed by a seal member. A reduction gear used for wind power generation equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480005348.8A CN105008715B (en) | 2013-02-28 | 2014-01-23 | It is used in the deceleration device of wind power plant |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013040127A JP5938359B2 (en) | 2013-02-28 | 2013-02-28 | Reduction gear used for wind power generation equipment |
JP2013-040127 | 2013-02-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014132708A1 true WO2014132708A1 (en) | 2014-09-04 |
Family
ID=51427982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/051364 WO2014132708A1 (en) | 2013-02-28 | 2014-01-23 | Speed reduction device used in wind power generation facility |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5938359B2 (en) |
CN (1) | CN105008715B (en) |
WO (1) | WO2014132708A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04157241A (en) * | 1990-10-17 | 1992-05-29 | Sumitomo Heavy Ind Ltd | Rotation driving device with inscribed engagement type planetary gear speed regular having free wheel mechanism |
JP2001193809A (en) * | 2000-01-06 | 2001-07-17 | Sumitomo Heavy Ind Ltd | Rotary driving device and method for making the same |
JP2011231749A (en) * | 2010-04-30 | 2011-11-17 | Sumitomo Heavy Ind Ltd | Reduction gear for wind power generation equipment and installation method thereof |
JP2012092757A (en) * | 2010-10-27 | 2012-05-17 | Sumitomo Heavy Ind Ltd | Reduction gear for use in wind power generation equipment |
JP2012197773A (en) * | 2011-03-23 | 2012-10-18 | Sumitomo Heavy Ind Ltd | Speed increasing gear for wind turbine |
JP2012219637A (en) * | 2011-04-04 | 2012-11-12 | Sumitomo Heavy Ind Ltd | Drive device and deceleration device of wind turbine generator, and installing method of deceleration device to drive device of wind turbine generator |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3916337B2 (en) * | 1999-03-08 | 2007-05-16 | 住友重機械工業株式会社 | Geared motor with hollow pipe penetrated |
US7008348B2 (en) * | 2003-02-18 | 2006-03-07 | General Electric Company | Gearbox for wind turbine |
JP2004301234A (en) * | 2003-03-31 | 2004-10-28 | Sumitomo Heavy Ind Ltd | Orthogonal axis gear reducer |
GB0326951D0 (en) * | 2003-11-20 | 2003-12-24 | Hansen Transmissions Int | Gear transmission unit wit planetary gears |
CN202073985U (en) * | 2011-05-16 | 2011-12-14 | 株洲天桥起重机股份有限公司 | Device for connecting suspension speed reducer and actuating mechanism main shaft |
JP5727331B2 (en) * | 2011-08-29 | 2015-06-03 | 住友重機械工業株式会社 | Yaw reduction device and yaw drive system used for yaw drive system of wind power generation equipment |
-
2013
- 2013-02-28 JP JP2013040127A patent/JP5938359B2/en active Active
-
2014
- 2014-01-23 CN CN201480005348.8A patent/CN105008715B/en active Active
- 2014-01-23 WO PCT/JP2014/051364 patent/WO2014132708A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04157241A (en) * | 1990-10-17 | 1992-05-29 | Sumitomo Heavy Ind Ltd | Rotation driving device with inscribed engagement type planetary gear speed regular having free wheel mechanism |
JP2001193809A (en) * | 2000-01-06 | 2001-07-17 | Sumitomo Heavy Ind Ltd | Rotary driving device and method for making the same |
JP2011231749A (en) * | 2010-04-30 | 2011-11-17 | Sumitomo Heavy Ind Ltd | Reduction gear for wind power generation equipment and installation method thereof |
JP2012092757A (en) * | 2010-10-27 | 2012-05-17 | Sumitomo Heavy Ind Ltd | Reduction gear for use in wind power generation equipment |
JP2012197773A (en) * | 2011-03-23 | 2012-10-18 | Sumitomo Heavy Ind Ltd | Speed increasing gear for wind turbine |
JP2012219637A (en) * | 2011-04-04 | 2012-11-12 | Sumitomo Heavy Ind Ltd | Drive device and deceleration device of wind turbine generator, and installing method of deceleration device to drive device of wind turbine generator |
Also Published As
Publication number | Publication date |
---|---|
JP5938359B2 (en) | 2016-06-22 |
CN105008715B (en) | 2017-11-24 |
CN105008715A (en) | 2015-10-28 |
JP2014167289A (en) | 2014-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK2280191T4 (en) | Drive unit with overload protection to operate a dental ring, set of several such drive units and device containing such drive unit | |
CN102900813B (en) | Epicyclic train and corresponding manufacture method | |
JP5474866B2 (en) | Reduction gear used for wind power generation equipment | |
CN1948748B (en) | Device for driving a first part of a wind energy turbine with respect to a second part of the wind energy turbine | |
KR101297887B1 (en) | Wind turbine generator, gear transmission mechanism, and method of controlling engagement of gears | |
JP6022564B2 (en) | Wind turbine drive | |
US8574083B2 (en) | Power transmission device and joint unit of power transmission device | |
CN102287333A (en) | Gear set, wind turbine incorporating such a gear set and method of servicing a wind turbine | |
EP2270333A1 (en) | Planetary gear transmisssion unit with planet shaft locking mechanism | |
EP3660355B1 (en) | Hover-capable aircraft | |
WO2010047064A1 (en) | Nacelle rotating mechanism | |
JP5425700B2 (en) | Reduction device for wind power generation equipment and installation method thereof | |
RU2720600C2 (en) | Speed reducer with intermediate transmission line | |
EP2532887A2 (en) | Power transmission device of wind power generation equipment | |
EP3578459B1 (en) | Aircraft landing gear with adjustable lower portion and simplified directing device | |
US20190101206A1 (en) | Integrated slew drive | |
JP5654935B2 (en) | Driving device and reduction gear for wind power generation facility, and method for installing reduction gear in driving device for wind power generation equipment | |
JP5938359B2 (en) | Reduction gear used for wind power generation equipment | |
JP5524805B2 (en) | Reduction gear used for wind power generation equipment | |
JP5352510B2 (en) | Wind speed booster | |
JP5820298B2 (en) | Power transmission device and assembly method thereof | |
JP5537471B2 (en) | Power transmission device | |
EP2172673A1 (en) | A gear unit comprising one or more planetary stages | |
WO2011072601A1 (en) | Geared drive system with load sharing | |
JP5868736B2 (en) | Yaw drive system and yaw drive device for wind power generation equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14757518 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14757518 Country of ref document: EP Kind code of ref document: A1 |