WO2014132704A1 - Nitrogenated aromatic ring n-oxide-borane complex - Google Patents

Nitrogenated aromatic ring n-oxide-borane complex Download PDF

Info

Publication number
WO2014132704A1
WO2014132704A1 PCT/JP2014/051137 JP2014051137W WO2014132704A1 WO 2014132704 A1 WO2014132704 A1 WO 2014132704A1 JP 2014051137 W JP2014051137 W JP 2014051137W WO 2014132704 A1 WO2014132704 A1 WO 2014132704A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
nmr
mhz
group
substituents
Prior art date
Application number
PCT/JP2014/051137
Other languages
French (fr)
Japanese (ja)
Inventor
洋一郎 國信
金井 求
友明 西田
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Priority to JP2015502804A priority Critical patent/JPWO2014132704A1/en
Publication of WO2014132704A1 publication Critical patent/WO2014132704A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds

Definitions

  • the present invention relates to a novel nitrogen-containing aromatic ring N-oxide-borane complex such as a pyridine N-oxide borane complex. More specifically, the present invention relates to a nitrogen-containing aromatic ring N-oxide-borane complex having the property of emitting intense light not only in a solution state but also in a solid state.
  • Luminescent organic compounds are used in a wide range of fields such as biomarking materials, organic electronics materials, chemical sensors, and organic lasers, and research and development of new luminescent materials are being actively conducted.
  • fluorescent organic compounds that emit light when irradiated with X-rays, ultraviolet rays, or visible light can be used for organic fluorescent paints in addition to the above applications, and thus are expected to have various usefulness as industrial materials.
  • a cyclic complex obtained by chelating an 8-aminoquinoline derivative and difluoroboron exhibits luminescence (Japanese Patent Laid-Open No. 2000-138096) Chemische Berichte, 102, pp.4025-4031, 1964).
  • This cyclic complex has a light emitting property and can be used as an electroluminescent material, but the chelate of difluoroboron is stabilized by two nitrogen atoms in the molecule, and the amino group at the 8-position of the quinoline skeleton is stabilized and It is considered essential for the emission characteristics.
  • a compound having a nitrogen-containing aromatic ring N-oxide structure such as pyridine N-oxide and a difluoroboron having an electron-withdrawing group such as a trifluoromethyl group.
  • the complex obtained by reacting with the derivative simply and in high yield has high stability, and can be purified by, for example, silica gel column chromatography, and the complex is not only in the solution state but also in the solid state. It was found that strong fluorescence can be emitted.
  • the present invention has been completed based on the above findings.
  • R 1 represents an alkyl group having at least one fluorine atom, or an aryl group having at least one fluorine atom on the ring
  • ring A is a single group containing 1 to 3 ring nitrogen atoms.
  • Cyclic aromatic ring the monocyclic aromatic ring may have one or more substituents, and two or more adjacent substituents may be bonded to each other to form a ring
  • ring A is a polycyclic ring containing a monocyclic aromatic ring containing 1 to 3 ring nitrogen atoms (one of the ring nitrogen atoms forming an N-oxide) as a partial structure.
  • An aromatic ring (the polycyclic aromatic ring may contain one or more ring-constituting heteroatoms in a ring other than the monocyclic aromatic ring, and has one or more substituents on the ring. And two or more adjacent substituents may be bonded to each other to form a ring).
  • an alkyl group, or the compound is an aryl group having two or more fluorine atoms on the ring having R 1 is 2 or more fluorine atoms;
  • R 1 is a perfluoroalkyl group Or the above compound, which is a perfluoroaryl group (provided that at least one of the fluorine atoms on the ring may be substituted with a perfluoroalkyl group);
  • R 1 is a trifluoromethyl group, a pentafluorophenyl group,
  • a compound as described above is provided that is a tetrafluoro (trifluoromethyl) phenyl group.
  • ring A is a 5- or 6-membered aromatic ring containing 1 or 2 ring-constituting nitrogen atoms (the aromatic ring has 1 or 2 or more substituents).
  • the two or more adjacent substituents may be bonded to each other to form a ring);
  • the ring A is a pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring, A pyrrole ring or an imidazole ring (the pyridine ring, pyrimidine ring, pyridazine ring, pyrrole ring or imidazole ring may have one or more substituents, and two or more adjacent substituents are
  • the ring A is a quinoline ring, isoquinoline ring, naphthyridine ring, phthalazine ring, quinoxaline ring, quinazoline ring, cinnoline ring, pteridine ring, carboline ring, phenanthridine ring, acridine ring, or phenanthroline ring (
  • the ring may have one or two or more substituents, and two or more adjacent substituents may be bonded to each other to form a ring).
  • the present invention provides a fluorescent agent containing the above compound. Furthermore, the use of the above compounds as fluorescent agents is also provided by the present invention.
  • the compound of the present invention has a property of emitting strong fluorescence not only in a solution state but also in a solid state.
  • the compound of the present invention can be easily synthesized from a readily available raw material with a high yield.
  • the compound is not decomposed even when ordinary isolation and purification means such as silica gel column chromatography and recrystallization are applied. It has a high stability. It is also possible to provide a compound having an optimal fluorescent color by appropriately selecting the ring structure. Therefore, the compound of the present invention is extremely useful as a fluorescent agent, and can be used for various applications such as biomarkers, organic electronics materials, chemical sensors, organic lasers, and organic fluorescent paints.
  • R 1 represents an alkyl group having at least one fluorine atom or an aryl group having at least one fluorine atom on the ring.
  • alkyl group any of a branched chain, a ring, or a combination thereof may be used.
  • an alkyl group having about 1 to 6 carbon atoms can be used.
  • the alkyl group may contain any number of double bonds or triple bonds in the alkyl chain.
  • aryl group in addition to the phenyl group, a polycyclic aryl group can be used.
  • a polycyclic aryl group for example, a bicyclic to tetracyclic aryl group can be used, and more specifically, a naphthyl group, an anthryl group, a phenanthryl group, a pyrenyl group, a naphthacenyl group, and the like can be given.
  • aryl group includes a heteroaryl group containing a ring-forming heteroatom, for example, a pyridyl group or a quinolyl group is included in an aryl group.
  • an alkyl group or an aryl group includes an alkyl group or an aryl group having one or more substituents.
  • the type of the substituent is not particularly limited, and for example, any substituent such as an alkyl group, an alkoxy group, an aryl group, a hydroxyl group, a halogen atom, a carboxyl group, an alkoxycarbonyl group, a nitro group, or an amino group can be used.
  • one or more other substituents for example, a hydroxyl group or a halogen atom may be present in the alkyl group or aryl group as a substituent.
  • Examples of such include a fluoroalkyl group, a hydroxyalkyl group, a fluorophenyl group, a toluyl group, a benzyl group, and the like, but the types of substituents are not limited to these specific examples.
  • the type of the alkyl group having at least one fluorine atom represented by R 1 is not particularly limited, but for example, an alkyl group having two or more fluorine atoms is preferable, and all the hydrogen atoms on the alkyl group (one alkyl group is one). In the case of having the above substituents, it is preferable that all hydrogen atoms other than the substituents) are substituted with fluorine atoms. Particularly preferred is a perfluoroalkyl group in which all hydrogen atoms on the alkyl group are replaced with fluorine atoms. Examples of the perfluoroalkyl group include a trifluoromethyl group and a pentafluoroethyl group.
  • a phenyl group having at least one fluorine atom on the ring represented by R 1 for example, a phenyl group having at least one fluorine atom on the ring can be used, and preferably two or more fluorine atoms are used. Any phenyl group on the ring can be used. It is preferable that all hydrogen atoms on the ring of the phenyl group (when the phenyl group has one or more substituents on the ring, all hydrogen atoms other than the substituents) are substituted with fluorine atoms. Particularly preferred is a perfluorophenyl group in which all hydrogen atoms on the ring of the phenyl group are replaced by fluorine atoms.
  • perfluoroalkyl groups for example, trifluoromethyl group
  • all the hydrogen atoms other than the perfluoroalkyl group are substituted with fluorine atoms.
  • perfluoroalkyl groups for example, trifluoromethyl group
  • all the hydrogen atoms other than the perfluoroalkyl group are substituted with fluorine atoms.
  • a tetrafluoro (trifluoromethyl) phenyl group and a trifluorobis (trifluoromethyl) phenyl group are exemplified, but a 2,3,5,6-tetrafluoro-4-trifluoromethylphenyl group and the like are further exemplified. preferable.
  • ring A represents a monocyclic aromatic ring containing 1 to 3 ring-constituting nitrogen atoms, or a polycyclic aromatic ring containing N-oxide as a partial structure.
  • a cyclic aromatic ring is shown.
  • examples of ring A include a 5- or 6-membered aromatic ring containing 1 to 3 ring nitrogen atoms.
  • examples of the ring A include, but are not limited to, a pyridine ring, a pyrimidine ring, a pyridazine ring, a pyrazine ring, a triazine ring, a pyrrole ring, and an imidazole ring.
  • the aromatic ring may have one or two or more substituents, and two or more adjacent substituents may be bonded to each other to form a ring. Of these, a pyridine ring is preferred.
  • ring A is a polycyclic aromatic ring containing the above monocyclic aromatic ring forming an N-oxide as a partial structure
  • ring A is, for example, one or two rings forming an N-oxide
  • the polycyclic aromatic ring containing the monocyclic aromatic ring containing 1 to 3 ring nitrogen atoms as a partial structure one of the ring nitrogen atoms of the monocyclic aromatic ring serving as the partial structure is N-oxide.
  • the monocyclic aromatic ring containing 1 to 3 ring-constituting nitrogen atoms as a partial structure is preferably a pyridine ring, a pyrimidine ring, a pyridazine ring or a pyrazine ring, more preferably a pyridine ring.
  • the polycyclic aromatic ring is preferably a bicyclic, tricyclic or tetracyclic aromatic ring.
  • An aromatic ring other than the above-mentioned 5- or 6-membered aromatic ring that forms a partial structure may contain one or more ring-constituting heteroatoms.
  • a nitrogen atom or an oxygen atom is preferable.
  • ring A for example, a quinoline ring, isoquinoline ring, naphthyridine ring, phthalazine ring, quinoxaline ring, quinazoline ring, cinnoline ring, pteridine ring, carboline ring, phenanthridine ring, acridine ring, or phenanthroline ring
  • the ring may have one or two or more substituents, and two or more adjacent substituents may be bonded to each other to form a ring.
  • the above aromatic ring may have one or two or more substituents, and two or more adjacent substituents on the ring may be bonded to each other to form a ring.
  • the type of the substituent is not particularly limited, and for example, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryl group, a hydroxyl group, a halogen atom, a carboxyl group, an alkoxycarbonyl group, a nitro group, an amino group, or a partially saturated or saturated group.
  • Any substituent such as a heterocyclic group for example, a 5-membered or 6-membered heterocyclic group such as morpholinyl group, piperidinyl group, piperazinyl group, pyrrolidino group
  • a heterocyclic group for example, a 5-membered or 6-membered heterocyclic group such as morpholinyl group, piperidinyl group, piperazinyl group, pyrrolidino group
  • one or more other substituents for example, a hydroxyl group, a halogen atom, etc.
  • Examples thereof include a fluoroalkyl group, a hydroxyalkyl group, a fluorophenyl group, a toluyl group, a benzyl group, a diphenylamino group, a styryl group, and a phenylethynyl group. It is not limited to this specific example.
  • Examples of the case where two or more adjacent substituents on the ring are bonded to each other to form a ring include, for example, the case where two adjacent alkyl groups on the ring are bonded to each other to form a 5- to 7-membered ring
  • One or more substituents may be further present on the ring thus formed.
  • substituent for example, those exemplified above can be used.
  • Preferred examples of ring A in the compound of the present invention include an unsubstituted pyridine ring, isoquinoline ring, quinoline ring, acridine ring, benzonaphthalene ring and the like, as well as 1 to 3 substituents (the substituent is a phenyl group, naphthyl ring).
  • Particularly preferred ring A is exemplified below, but ring A is not limited to these specific ring structures.
  • rings A are exemplified below, but ring A is not limited to these specific ring structures. Further, these rings A are exemplified as the ring A to which R 1 is CF 3 : —O—BF 2 —CF 3, but are not limited to those to which this group is bonded.
  • the compound of the present invention may have optical isomers or diastereoisomers depending on the type of substituent, and any such isomers are included in the scope of the present invention.
  • the compound of the present invention may exist as a hydrate or solvate, and may exist in the form of a salt depending on the type of substituent, and these substances are also included in the scope of the present invention.
  • the compounds of the present invention are generally obtained as crystals, any crystal polymorphism is also encompassed within the scope of the present invention.
  • the compound of the present invention is generally prepared by treating a salt of a trifluoroborate compound substituted with R 1 to be introduced (such as a potassium salt of R 1 BF 3 ) with boron trifluoride / diethyl ether complex and then ring A.
  • a salt of a trifluoroborate compound substituted with R 1 to be introduced such as a potassium salt of R 1 BF 3
  • boron trifluoride / diethyl ether complex can be produced in a high yield by reacting an N-oxide compound corresponding to the above.
  • the reaction with the boron trifluoride-diethyl ether complex is usually completed in an inert solvent such as dichloromethane at room temperature within a few minutes to an hour.
  • the reaction with the N-oxide compound is similarly completed in about 1 hour to several days at room temperature in an inert solvent such as dichloromethane.
  • the N-oxide compound and the salt of R 1 BF 3 which are raw material compounds are
  • the obtained compound can be isolated by usual separation and purification operations such as silica gel column chromatography and recrystallization.
  • the production method of the compound included in the general formula (I) of the present invention is specifically shown in the examples of the present specification. Those skilled in the art refer to this example and appropriately select the raw material compounds and reaction conditions. Thus, the compound included in the general formula (I) can be easily synthesized.
  • the compound of the present invention has a property of emitting strong fluorescence not only in a solution state but also in a solid state.
  • fluorescence refers to an aspect of light emission, in which X-rays, ultraviolet rays, and / or visible light are absorbed to absorb electrons to excite electrons, which are in a ground state. It means a phenomenon in which excess energy is released as electromagnetic waves when returning, and should not be interpreted in a limited way in any sense, but in the broadest sense.
  • Fluorescence measurement in the solid state can be generally performed using an absolute PL quantum yield measurement device C-9920-02 (multichannel detector PMA-11, Hamamatsu Photonics Co., Ltd.).
  • the present invention is not limited to the apparatus and method.
  • the compound of the present invention has the above-mentioned fluorescence characteristics and is a stable compound, and therefore can be suitably used as a fluorescent agent.
  • a fluorescent agent for example, biomarkers, organic electronics materials, chemical sensors, organic lasers, Alternatively, it can be used for applications such as organic fluorescent paints, but is not limited to the specific applications described above, and needless to say, can be applied to various applications.
  • Example 1 Compound 1
  • boron trifluoride-diethyl ether complex (67.5 ⁇ l, 0.550 mmol) was added dropwise to a suspension of potassium trifluoro (trifluoromethyl) borate (96.8 mg, 0.550 mmol) in dichloromethane (1 mL). Stir at room temperature for 20 minutes. 4-phenylpyridine N-oxide (85.6 mg, 0.500 mmol) was added to the reaction solution, and the mixture was stirred for 1 hour. The reaction solution was diluted with a dichloromethane / acetone (1: 1) solution, insoluble matters were filtered off, and the insoluble matters were washed with a dichloromethane-acetone (1: 1) solution.
  • Example 2 The following compounds were prepared in the same manner as in Example 1. Compounds 12 and 13 were purified by recrystallization using ethyl acetate.
  • Example 3 The fluorescence characteristics of the compounds obtained in Examples 1 and 2 were evaluated. Table 1 shows the measurement results in acetonitrile.
  • Example 4 The following compounds were prepared in the same manner as in Example 1.
  • Example 5 The fluorescence characteristics of the compounds obtained in Examples 1 and 2 were evaluated. Table 2 shows the measurement results of optical properties in tetrahydrofuran (THF) and acetonitrile (MeCN).
  • Example 6 The fluorescence characteristics of the compounds obtained in Example 1, Example 2, and Example 4 were evaluated. Table 3 shows the measurement results of optical properties in the solid state.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

A compound represented by formula (I) [wherein R1 represents an alkyl group having a fluorine atom, or an aryl group having a fluorine atom on the ring thereof; and the ring A represents a monocyclic aromatic ring containing 1 to 3 ring-constituting nitrogen atoms or a polycyclic aromatic ring containing the aforementioned aromatic ring as a partial structure thereof], which has high luminous efficiency in a solution state as well as a solid state and is chemically stable.

Description

含窒素芳香環N-オキシド-ボラン錯体Nitrogen-containing aromatic ring N-oxide-borane complex
 本発明はピリジンN-オキシドボラン錯体などの新規な含窒素芳香環N-オキシド-ボラン錯体に関する。より具体的には、本発明は、溶液状態のみならず固体状態においても強く発光する性質を有する含窒素芳香環N-オキシド-ボラン錯体に関するものである。 The present invention relates to a novel nitrogen-containing aromatic ring N-oxide-borane complex such as a pyridine N-oxide borane complex. More specifically, the present invention relates to a nitrogen-containing aromatic ring N-oxide-borane complex having the property of emitting intense light not only in a solution state but also in a solid state.
 発光性有機化合物は、生体標識材料、有機エレクトロニクス材料、化学センサー、及び有機レーザーなど幅広い分野で用いられており、新たな発光性材料の開発研究が盛んに行われている。とりわけX線や紫外線、又は可視光線の照射により発光する蛍光性有機化合物は上記の用途のほか有機蛍光塗料などにも利用可能であることから工業材料として多様な有用性が期待されている。 Luminescent organic compounds are used in a wide range of fields such as biomarking materials, organic electronics materials, chemical sensors, and organic lasers, and research and development of new luminescent materials are being actively conducted. In particular, fluorescent organic compounds that emit light when irradiated with X-rays, ultraviolet rays, or visible light can be used for organic fluorescent paints in addition to the above applications, and thus are expected to have various usefulness as industrial materials.
 しかしながら、一般に発光性有機材料として用いられる分子は強固で平面性の高い分子が多いことから、溶液中では分子同士の接触や相互の干渉が少なく強く発光するものの、結晶状態などの固体状態では放出される電磁波のエネルギーが近傍の平面分子の影響を受けて減衰し、発光効率が著しく低下してしまう場合が多い。発光性有機材料は固体状態で用いられることも多いことから、溶液のみならず固体状態でも強い発光を示す材料の開発は重要な課題である。 However, since many molecules that are generally used as light-emitting organic materials are strong and have a high level of planarity, they emit light strongly in the solution with little contact and mutual interference, but they are emitted in the solid state such as the crystalline state. In many cases, the energy of the electromagnetic wave is attenuated by the influence of nearby planar molecules and the luminous efficiency is significantly reduced. Since a light-emitting organic material is often used in a solid state, development of a material that exhibits strong light emission not only in a solution but also in a solid state is an important issue.
 一方、ピリジンN-オキシド誘導体とボランとの錯体に関していくつかの報告があるが、この錯体は一般的に化学的に不安定であることから工業材料としては利用されていない。例えば、ピリジン-Nオキシド-BF3錯体及びキノリン-Nオキシド-BF3錯体が報告されており(Chemistry of Heterocyclic Compounds, 34, pp.941-949, 1999)、これらの錯体は比較的安定であるとされているが、工業材料として十分な安定性を有するものではない。また、上記刊行物にはこれらの錯体が蛍光性の物質であるとの教示もない。 On the other hand, there are some reports on complexes of pyridine N-oxide derivatives and borane, but these complexes are generally not chemically useful because they are chemically unstable. For example, pyridine-N oxide-BF 3 complexes and quinoline-N oxide-BF 3 complexes have been reported (Chemistry of Heterocyclic Compounds, 34, pp. 941-949, 1999), and these complexes are relatively stable. However, it does not have sufficient stability as an industrial material. Also, there is no teaching in the above publication that these complexes are fluorescent substances.
 ピリジンN-オキシド構造を部分構造として有するキノリンN-オキシド化合物に関して、8-アミノキノリン誘導体とジフルオロボロンとをキレート結合させた環状錯体が発光を示すとの報告がある(特開2000-138096号公報、Chemische Berichte, 102, pp.4025-4031, 1964)。この環状錯体は発光性を有しており電界発光材料として使用できるが、分子内の2つの窒素原子によりジフルオロボロンのキレートが安定化されており、キノリン骨格の8位のアミノ基が安定化及び発光特性に必須であると考えられる。 Regarding a quinoline N-oxide compound having a pyridine N-oxide structure as a partial structure, there is a report that a cyclic complex obtained by chelating an 8-aminoquinoline derivative and difluoroboron exhibits luminescence (Japanese Patent Laid-Open No. 2000-138096) Chemische Berichte, 102, pp.4025-4031, 1964). This cyclic complex has a light emitting property and can be used as an electroluminescent material, but the chelate of difluoroboron is stabilized by two nitrogen atoms in the molecule, and the amino group at the 8-position of the quinoline skeleton is stabilized and It is considered essential for the emission characteristics.
特開2000-138096号公報JP 2000-138096 A
 本発明の課題は、溶液状態のみならず固体状態においても高い発光効率を有し、化学的に安定な化合物を提供することにある。
 また、本発明の別の課題は、上記の特性を有し、かつ低分子量で容易に製造可能な化合物を提供することにある。
An object of the present invention is to provide a chemically stable compound having high luminous efficiency not only in a solution state but also in a solid state.
Another object of the present invention is to provide a compound having the above-mentioned characteristics and capable of being easily produced with a low molecular weight.
 本発明者らは上記の課題を解決すべく鋭意研究を行った結果、ピリジンN‐オキシドなどの含窒素芳香環N-オキシド構造を有する化合物とトリフルオロメチル基などの電子吸引基を有するジフルオロボロン誘導体とを反応させることにより簡便かつ高収率に得られる錯体が高い安定性を有しており、例えばシリカゲルカラムクロマトグラフィーによっても精製可能であること、及びこの錯体が溶液状態のみならず固体状態において強い蛍光を発することができることを見出した。本発明は上記の知見に基づいて完成されたものである。 As a result of intensive studies to solve the above problems, the present inventors have found that a compound having a nitrogen-containing aromatic ring N-oxide structure such as pyridine N-oxide and a difluoroboron having an electron-withdrawing group such as a trifluoromethyl group. The complex obtained by reacting with the derivative simply and in high yield has high stability, and can be purified by, for example, silica gel column chromatography, and the complex is not only in the solution state but also in the solid state. It was found that strong fluorescence can be emitted. The present invention has been completed based on the above findings.
 すなわち、本発明により、以下の一般式(I):
Figure JPOXMLDOC01-appb-C000002
〔式中、R1は少なくとも1個のフッ素原子を有するアルキル基、又は少なくとも1個のフッ素原子を環上に有するアリール基を示し、環Aは1ないし3個の環構成窒素原子を含む単環式芳香環(該単環式芳香環は1又は2個以上の置換基を有していてもよく、2個以上の隣接する置換基は互いに結合して環を形成していてもよい)を示すか、又は環Aは1ないし3個の環構成窒素原子を含む単環式芳香環(該環構成窒素原子のうちの1つがN-オキシドを形成する)を部分構造として含む多環式芳香環(該多環式芳香環は該単環式芳香環以外の環に1個以上の環構成ヘテロ原子を含んでいてもよく、環上には1個又は2個以上の置換基を有していてもよく、2個以上の隣接する置換基は互いに結合して環を形成していてもよい)を示す〕で表される化合物が提供される。
That is, according to the present invention, the following general formula (I):
Figure JPOXMLDOC01-appb-C000002
[Wherein, R 1 represents an alkyl group having at least one fluorine atom, or an aryl group having at least one fluorine atom on the ring, and ring A is a single group containing 1 to 3 ring nitrogen atoms. Cyclic aromatic ring (the monocyclic aromatic ring may have one or more substituents, and two or more adjacent substituents may be bonded to each other to form a ring) Or ring A is a polycyclic ring containing a monocyclic aromatic ring containing 1 to 3 ring nitrogen atoms (one of the ring nitrogen atoms forming an N-oxide) as a partial structure. An aromatic ring (the polycyclic aromatic ring may contain one or more ring-constituting heteroatoms in a ring other than the monocyclic aromatic ring, and has one or more substituents on the ring. And two or more adjacent substituents may be bonded to each other to form a ring).
 本発明の好ましい態様によれば、R1が2個以上のフッ素原子を有するアルキル基、又は2個以上のフッ素原子を環上に有するアリール基である上記の化合物;R1がパーフルオロアルキル基又はパーフルオロアリール基(ただし環上のフッ素原子のうちの少なくとも1個はパーフルオロアルキル基で置換されていてもよい)である上記の化合物;R1がトリフルオロメチル基、ペンタフルオロフェニル基、又はテトラフルオロ(トリフルオロメチル)フェニル基である上記の化合物が提供される。 According to a preferred embodiment of the present invention, an alkyl group, or the compound is an aryl group having two or more fluorine atoms on the ring having R 1 is 2 or more fluorine atoms; R 1 is a perfluoroalkyl group Or the above compound, which is a perfluoroaryl group (provided that at least one of the fluorine atoms on the ring may be substituted with a perfluoroalkyl group); R 1 is a trifluoromethyl group, a pentafluorophenyl group, Alternatively, a compound as described above is provided that is a tetrafluoro (trifluoromethyl) phenyl group.
 また、本発明の別の好ましい態様によれば、環Aが1個又は2個の環構成窒素原子を含む5又は6員の芳香環(該芳香環は1個又は2個以上の置換基を有していてもよく、2個以上の隣接する置換基は互いに結合して環を形成していてもよい)である上記の化合物;環Aがピリジン環、ピリミジン環、ピリダジン環、ピラジン環、ピロール環、又はイミダゾール環(該ピリジン環、ピリミジン環、ピリダジン環、ピロール環、又はイミダゾール環は1個又は2個以上の置換基を有していてもよく、2個以上の隣接する置換基は互いに結合して環を形成していてもよい)である上記の化合物;環AがN-オキシドを形成する1個又は2個の環構成窒素原子を含む5又は6員の芳香環を部分構造として含む2環式、3環式、又は4環式芳香環(該縮合環は1個又は2個以上の置換基を有していてもよく、2個以上の隣接する置換基は互いに結合して環を形成していてもよく、上記部分構造の芳香環以外の環に1個以上の環構成ヘテロ原子を含んでいてもよい)である上記の化合物;環Aがキノリン環、イソキノリン環、ナフチリジン環、フタラジン環、キノキサリン環、キナゾリン環、シンノリン環、プテリジン環、カルボリン環、フェナントリジン環、アクリジン環、又はフェナントロリン環(該環は1個又は2個以上の置換基を有していてもよく、2個以上の隣接する置換基は互いに結合して環を形成していてもよい)である上記の化合物が提供される。 According to another preferred embodiment of the present invention, ring A is a 5- or 6-membered aromatic ring containing 1 or 2 ring-constituting nitrogen atoms (the aromatic ring has 1 or 2 or more substituents). The two or more adjacent substituents may be bonded to each other to form a ring); the ring A is a pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring, A pyrrole ring or an imidazole ring (the pyridine ring, pyrimidine ring, pyridazine ring, pyrrole ring or imidazole ring may have one or more substituents, and two or more adjacent substituents are The above compounds, which may be bonded to each other to form a ring; a partial structure of a 5- or 6-membered aromatic ring containing one or two ring-constituting nitrogen atoms in which ring A forms an N-oxide Bicyclic, tricyclic, or tetracyclic aromatic rings (the fused ring has one or more substituents) Two or more adjacent substituents may be bonded to each other to form a ring, and the ring other than the aromatic ring of the partial structure may contain one or more ring-constituting heteroatoms. The ring A is a quinoline ring, isoquinoline ring, naphthyridine ring, phthalazine ring, quinoxaline ring, quinazoline ring, cinnoline ring, pteridine ring, carboline ring, phenanthridine ring, acridine ring, or phenanthroline ring ( The ring may have one or two or more substituents, and two or more adjacent substituents may be bonded to each other to form a ring). The
 別の観点からは、本発明により、上記の化合物を含む蛍光剤が提供される。さらに、上記の化合物の蛍光剤としての使用も本発明により提供される。 From another viewpoint, the present invention provides a fluorescent agent containing the above compound. Furthermore, the use of the above compounds as fluorescent agents is also provided by the present invention.
 本発明の化合物は溶液状態のみならず固体状態において強い蛍光を発する性質を有している。また、本発明の化合物は容易に入手可能な原料から簡便に収率よく合成することができ、例えばシリカゲルカラムクロマトグラフィーや再結晶などの通常の単離及び精製手段を適用しても分解しない程度の高い安定性を有している。また、環構造を適宜選択することにより至適な蛍光色を有する化合物を提供することも可能である。従って、本発明の化合物は蛍光剤として極めて有用であり、生体標識材料、有機エレクトロニクス材料、化学センサー、有機レーザー、及び有機蛍光塗料などの多様な用途に利用することができる。 The compound of the present invention has a property of emitting strong fluorescence not only in a solution state but also in a solid state. In addition, the compound of the present invention can be easily synthesized from a readily available raw material with a high yield. For example, the compound is not decomposed even when ordinary isolation and purification means such as silica gel column chromatography and recrystallization are applied. It has a high stability. It is also possible to provide a compound having an optimal fluorescent color by appropriately selecting the ring structure. Therefore, the compound of the present invention is extremely useful as a fluorescent agent, and can be used for various applications such as biomarkers, organic electronics materials, chemical sensors, organic lasers, and organic fluorescent paints.
 上記一般式(I)において、R1は少なくとも1個のフッ素原子を有するアルキル基、又は少なくとも1個のフッ素原子を環上に有するアリール基を示す。 In the above general formula (I), R 1 represents an alkyl group having at least one fluorine atom or an aryl group having at least one fluorine atom on the ring.
 アルキル基としては、分枝鎖、又は環上、あるいはそれらの組み合わせからなるアルキル基のいずれを用いてもよい。好ましくは炭素数1~6個程度のアルキル基を用いることができる。アルキル基はアルキル鎖中に二重結合又は三重結合を任意の個数含んでいてもよい。アリール基としては、フェニル基のほか、多環式アリール基を用いることができる。多環式アリール基としては、例えば2ないし4環式のアリール基を用いることができ、より具体的にはナフチル基、アントリル基、フェナントリル基、ピレニル基、ナフタセニル基などを挙げることができるが、これらに限定されることはない。該アリール基の環構成炭素原子のうちの1個又は2個以上がヘテロ原子(窒素原子、酸素原子、又はイオウ原子など)で置き換えられていてもよい。本明細書においてアリール基の用語は環構成ヘテロ原子を含むヘテロアリール基を包含しており、例えばピリジル基又はキノリル基などはアリール基に包含される。 As the alkyl group, any of a branched chain, a ring, or a combination thereof may be used. Preferably, an alkyl group having about 1 to 6 carbon atoms can be used. The alkyl group may contain any number of double bonds or triple bonds in the alkyl chain. As the aryl group, in addition to the phenyl group, a polycyclic aryl group can be used. As the polycyclic aryl group, for example, a bicyclic to tetracyclic aryl group can be used, and more specifically, a naphthyl group, an anthryl group, a phenanthryl group, a pyrenyl group, a naphthacenyl group, and the like can be given. It is not limited to these. One or more of the ring-constituting carbon atoms of the aryl group may be replaced with a hetero atom (such as a nitrogen atom, an oxygen atom, or a sulfur atom). In the present specification, the term aryl group includes a heteroaryl group containing a ring-forming heteroatom, for example, a pyridyl group or a quinolyl group is included in an aryl group.
 本明細書において、アルキル基又はアリール基という場合には、1又は2個以上の置換基を有するアルキル基又はアリール基を包含する。置換基の種類は特に限定されず、例えばアルキル基、アルコキシ基、アリール基、水酸基、ハロゲン原子、カルボキシル基、アルコキシカルボニル基、ニトロ基、又はアミノ基など任意の置換基を用いることができ、また、置換基としてのアルキル基やアリール基などには他の置換基(例えば水酸基やハロゲン原子など)が1又は2個以上存在していてもよい。このような例として、フルオロアルキル基、ヒドロキシアルキル基、フルオロフェニル基、トルイル基、ベンジル基などを例示することができるが、置換基の種類はこれらの特定の例に限定されることはない。 In this specification, an alkyl group or an aryl group includes an alkyl group or an aryl group having one or more substituents. The type of the substituent is not particularly limited, and for example, any substituent such as an alkyl group, an alkoxy group, an aryl group, a hydroxyl group, a halogen atom, a carboxyl group, an alkoxycarbonyl group, a nitro group, or an amino group can be used. In addition, one or more other substituents (for example, a hydroxyl group or a halogen atom) may be present in the alkyl group or aryl group as a substituent. Examples of such include a fluoroalkyl group, a hydroxyalkyl group, a fluorophenyl group, a toluyl group, a benzyl group, and the like, but the types of substituents are not limited to these specific examples.
 R1が示す少なくとも1個のフッ素原子を有するアルキル基の種類は特に限定されないが、例えば2個以上のフッ素原子を有するアルキル基が好ましく、アルキル基上の全ての水素原子(アルキル基が1個以上の置換基を有する場合には、その置換基以外の全ての水素原子)がフッ素原子で置換されていることが好ましい。特に好ましいのはアルキル基上の全ての水素原子がフッ素原子で置き換えられたパーフルオロアルキル基である。パーフルオロアルキル基としては、例えば、トリフルオロメチル基、ペンタフルオロエチル基などが例示される。 The type of the alkyl group having at least one fluorine atom represented by R 1 is not particularly limited, but for example, an alkyl group having two or more fluorine atoms is preferable, and all the hydrogen atoms on the alkyl group (one alkyl group is one). In the case of having the above substituents, it is preferable that all hydrogen atoms other than the substituents) are substituted with fluorine atoms. Particularly preferred is a perfluoroalkyl group in which all hydrogen atoms on the alkyl group are replaced with fluorine atoms. Examples of the perfluoroalkyl group include a trifluoromethyl group and a pentafluoroethyl group.
 R1が示す少なくとも1個のフッ素原子を環上に有するアリール基としては、例えば少なくとも1個のフッ素原子を環上に有するフェニル基などを用いることができ、好ましくは2個以上のフッ素原子を環上に有するフェニル基を用いることができる。フェニル基の環上の全ての水素原子(フェニル基が環上に1個以上の置換基を有する場合には、その置換基以外の全ての水素原子)がフッ素原子で置換されている場合が好ましく、特に好ましいのはフェニル基の環上の全ての水素原子がフッ素原子で置き換えられたパーフルオロフェニル基である。また、フェニル基の環上に1又は2個以上のパーフルオロアルキル基(例えばトリフルオロメチル基)が存在しており、該パーフルオロアルキル基以外の水素原子が全てフッ素原子で置換された場合も特に好ましい。例えば、テトラフルオロ(トリフルオロメチル)フェニル基やトリフルオロビス(トリフルオロメチル)フェニル基などが例示されるが、2,3,5,6-テトラフルオロ-4-トリフルオロメチルフェニル基などがさらに好ましい。 As the aryl group having at least one fluorine atom on the ring represented by R 1 , for example, a phenyl group having at least one fluorine atom on the ring can be used, and preferably two or more fluorine atoms are used. Any phenyl group on the ring can be used. It is preferable that all hydrogen atoms on the ring of the phenyl group (when the phenyl group has one or more substituents on the ring, all hydrogen atoms other than the substituents) are substituted with fluorine atoms. Particularly preferred is a perfluorophenyl group in which all hydrogen atoms on the ring of the phenyl group are replaced by fluorine atoms. Also, there may be one or more perfluoroalkyl groups (for example, trifluoromethyl group) on the ring of the phenyl group, and all the hydrogen atoms other than the perfluoroalkyl group are substituted with fluorine atoms. Particularly preferred. For example, a tetrafluoro (trifluoromethyl) phenyl group and a trifluorobis (trifluoromethyl) phenyl group are exemplified, but a 2,3,5,6-tetrafluoro-4-trifluoromethylphenyl group and the like are further exemplified. preferable.
 上記一般式(I)において、環Aは1ないし3個の環構成窒素原子を含む単環式芳香環を示すか、又はN-オキシドを形成する上記単環式芳香環を部分構造として含む多環式芳香環を示す。
 環Aが単環式芳香環の場合、環Aとして、例えば1個ないし3個の環構成窒素原子を含む5又は6員の芳香環を挙げることができる。より具体的には、環Aとしてピリジン環、ピリミジン環、ピリダジン環、ピラジン環、トリアジン環、ピロール環、又はイミダゾール環などを挙げることができるが、これらに限定されることはない。該芳香環は1個又は2個以上の置換基を有していてもよく、2個以上の隣接する置換基は互いに結合して環を形成していてもよい。これらのうち、ピリジン環が好ましい。
In the general formula (I), ring A represents a monocyclic aromatic ring containing 1 to 3 ring-constituting nitrogen atoms, or a polycyclic aromatic ring containing N-oxide as a partial structure. A cyclic aromatic ring is shown.
When ring A is a monocyclic aromatic ring, examples of ring A include a 5- or 6-membered aromatic ring containing 1 to 3 ring nitrogen atoms. More specifically, examples of the ring A include, but are not limited to, a pyridine ring, a pyrimidine ring, a pyridazine ring, a pyrazine ring, a triazine ring, a pyrrole ring, and an imidazole ring. The aromatic ring may have one or two or more substituents, and two or more adjacent substituents may be bonded to each other to form a ring. Of these, a pyridine ring is preferred.
 また、環Aが、N-オキシドを形成する上記単環式芳香環を部分構造として含む多環式芳香環である場合、環Aとして、例えばN-オキシドを形成する1個又は2個の環構成窒素原子を含む5又は6員の芳香環を部分構造として含む2環式、3環式、又は4環式芳香環を挙げることができる。1個ないし3個の環構成窒素原子を含む上記単環式芳香環を部分構造として含む多環式芳香環において、部分構造となる単環式芳香環の環構成窒素原子の1つがN-オキシドを形成する。部分構造である1ないし3個の環構成窒素原子を含む単環式芳香環としてはピリジン環、ピリミジン環、ピリダジン環、又はピラジン環が好ましく、ピリジン環がより好ましい。多環式芳香環としては2環式、3環式、又は4環式芳香環が好ましい。部分構造となる上記の5又は6員の芳香環以外の芳香環は1個以上の環構成ヘテロ原子を含んでいてもよい。環構成ヘテロ原子としては、窒素原子又は酸素原子が好ましい。より具体的には、環Aとして、例えばキノリン環、イソキノリン環、ナフチリジン環、フタラジン環、キノキサリン環、キナゾリン環、シンノリン環、プテリジン環、カルボリン環、フェナントリジン環、アクリジン環、又はフェナントロリン環などを挙げることができるが、これらに限定されることはない。該環は1個又は2個以上の置換基を有していてもよく、2個以上の隣接する置換基は互いに結合して環を形成していてもよい。 In addition, when ring A is a polycyclic aromatic ring containing the above monocyclic aromatic ring forming an N-oxide as a partial structure, for example, ring A is, for example, one or two rings forming an N-oxide Mention may be made of a bicyclic, tricyclic or tetracyclic aromatic ring containing a 5- or 6-membered aromatic ring containing a constituent nitrogen atom as a partial structure. In the polycyclic aromatic ring containing the monocyclic aromatic ring containing 1 to 3 ring nitrogen atoms as a partial structure, one of the ring nitrogen atoms of the monocyclic aromatic ring serving as the partial structure is N-oxide. Form. The monocyclic aromatic ring containing 1 to 3 ring-constituting nitrogen atoms as a partial structure is preferably a pyridine ring, a pyrimidine ring, a pyridazine ring or a pyrazine ring, more preferably a pyridine ring. The polycyclic aromatic ring is preferably a bicyclic, tricyclic or tetracyclic aromatic ring. An aromatic ring other than the above-mentioned 5- or 6-membered aromatic ring that forms a partial structure may contain one or more ring-constituting heteroatoms. As the ring-constituting hetero atom, a nitrogen atom or an oxygen atom is preferable. More specifically, as ring A, for example, a quinoline ring, isoquinoline ring, naphthyridine ring, phthalazine ring, quinoxaline ring, quinazoline ring, cinnoline ring, pteridine ring, carboline ring, phenanthridine ring, acridine ring, or phenanthroline ring However, it is not limited to these. The ring may have one or two or more substituents, and two or more adjacent substituents may be bonded to each other to form a ring.
 上記の芳香環は1個又は2個以上の置換基を有していてもよく、環上における2個以上の隣接する置換基は互いに結合して環を形成していてもよい。置換基の種類は特に限定されず、例えばアルキル基、アルケニル基、アルキニル基、アルコキシ基、アリール基、水酸基、ハロゲン原子、カルボキシル基、アルコキシカルボニル基、ニトロ基、アミノ基、又は部分飽和若しくは飽和のヘテロ環基(例えばモルホリニル基、ピペリジニル基、ピペラジニル基、ピロリジノ基などの5員又は6員のヘテロ環基)など任意の置換基を用いることができる。また、置換基としてのアルキル基やアリール基などには他の置換基(例えば水酸基やハロゲン原子など)が1又は2個以上存在していてもよい。このような例として、フルオロアルキル基、ヒドロキシアルキル基、フルオロフェニル基、トルイル基、ベンジル基、ジフェニルアミノ基、スチリル基、又はフェニルエチニル基などを例示することができるが、置換基の種類はこれらの特定の例に限定されることはない。環上における2個以上の隣接する置換基が互いに結合して環を形成する場合としては、例えば、環上における隣接する2個のアルキル基が互いに結合して5ないし7員環を形成する場合などを挙げることができ、このようにして形成される環の環上にはさらに1個以上の置換基が存在していてもよい。置換基としては、例えば上記に例示したものなどを用いることができる。 The above aromatic ring may have one or two or more substituents, and two or more adjacent substituents on the ring may be bonded to each other to form a ring. The type of the substituent is not particularly limited, and for example, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryl group, a hydroxyl group, a halogen atom, a carboxyl group, an alkoxycarbonyl group, a nitro group, an amino group, or a partially saturated or saturated group. Any substituent such as a heterocyclic group (for example, a 5-membered or 6-membered heterocyclic group such as morpholinyl group, piperidinyl group, piperazinyl group, pyrrolidino group) can be used. Further, one or more other substituents (for example, a hydroxyl group, a halogen atom, etc.) may be present in the alkyl group or aryl group as a substituent. Examples thereof include a fluoroalkyl group, a hydroxyalkyl group, a fluorophenyl group, a toluyl group, a benzyl group, a diphenylamino group, a styryl group, and a phenylethynyl group. It is not limited to this specific example. Examples of the case where two or more adjacent substituents on the ring are bonded to each other to form a ring include, for example, the case where two adjacent alkyl groups on the ring are bonded to each other to form a 5- to 7-membered ring One or more substituents may be further present on the ring thus formed. As the substituent, for example, those exemplified above can be used.
 本発明の化合物における環Aの好ましい例としては、無置換のピリジン環、イソキノリン環、キノリン環、アクリジン環、ベンゾナフタレン環などのほか、1ないし3個の置換基(置換基はフェニル基、ナフチル基、アルコキシ基、アミノ基、アルケニル基、アルキニル基などを挙げることができ、これらの基はさらにアリール基又はアルキル基などで置換されていてもよい)で置換されたピリジン環、イソキノリン環、キノリン環、アクリジン環、ベンゾナフタレン環などを挙げることができるが、これらに限定されることはない。特に好ましい環Aを以下に例示するが、環Aはこれらの特定の環構造に限定されることはない。 Preferred examples of ring A in the compound of the present invention include an unsubstituted pyridine ring, isoquinoline ring, quinoline ring, acridine ring, benzonaphthalene ring and the like, as well as 1 to 3 substituents (the substituent is a phenyl group, naphthyl ring). Group, alkoxy group, amino group, alkenyl group, alkynyl group and the like, and these groups may be further substituted with an aryl group or an alkyl group), a pyridine ring, an isoquinoline ring, a quinoline Examples thereof include, but are not limited to, a ring, an acridine ring, and a benzonaphthalene ring. Particularly preferred ring A is exemplified below, but ring A is not limited to these specific ring structures.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 別の好ましい環Aを以下に例示するが、環Aはこれらの特定の環構造に限定されることはない。また、これらの環AはR1がCF3である基:-O-BF2-CF3が結合した環Aとして例示するが、この基が結合したものに限定されることはない。
Figure JPOXMLDOC01-appb-C000004
Other preferred rings A are exemplified below, but ring A is not limited to these specific ring structures. Further, these rings A are exemplified as the ring A to which R 1 is CF 3 : —O—BF 2 —CF 3, but are not limited to those to which this group is bonded.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 本発明の化合物には置換基の種類により光学異性体又はジアステレオ異性体が存在する場合があるが、このような任意の異性体はいずれも本発明の範囲に包含される。また、本発明の化合物は水和物又は溶媒和物として存在する場合があり、置換基の種類によっては塩の形態で存在する場合もあるが、これらの物質も本発明の範囲に包含される。さらに、本発明の化合物は一般的には結晶として得られるが、任意の結晶多型も本発明の範囲に包含される。 The compound of the present invention may have optical isomers or diastereoisomers depending on the type of substituent, and any such isomers are included in the scope of the present invention. In addition, the compound of the present invention may exist as a hydrate or solvate, and may exist in the form of a salt depending on the type of substituent, and these substances are also included in the scope of the present invention. . Furthermore, although the compounds of the present invention are generally obtained as crystals, any crystal polymorphism is also encompassed within the scope of the present invention.
 本発明の化合物は、一般的には導入すべきR1で置換されたトリフルオロボレート化合物の塩(R1BF3のカリウム塩など)を三フッ化ホウ素・ジエチルエーテル錯体で処理した後に環Aに対応するN-オキシド化合物を反応させることにより収率よく製造することができる。三フッ化ホウ素・ジエチルエーテル錯体との反応は通常はジクロロメタンなどの不活性溶媒中で室温で数分から1時間程度で完了する。N-オキシド化合物との反応は同様にジクロロメタンなどの不活性溶媒中で室温下に1時間から数日程度で完了する。原料化合物であるN-オキシド化合物及びR1BF3の塩は公知であるか、容易に入手可能な原料化合物から公知の方法により製造することが可能である。 The compound of the present invention is generally prepared by treating a salt of a trifluoroborate compound substituted with R 1 to be introduced (such as a potassium salt of R 1 BF 3 ) with boron trifluoride / diethyl ether complex and then ring A. Can be produced in a high yield by reacting an N-oxide compound corresponding to the above. The reaction with the boron trifluoride-diethyl ether complex is usually completed in an inert solvent such as dichloromethane at room temperature within a few minutes to an hour. The reaction with the N-oxide compound is similarly completed in about 1 hour to several days at room temperature in an inert solvent such as dichloromethane. The N-oxide compound and the salt of R 1 BF 3 which are raw material compounds are known, or can be produced by a known method from readily available raw material compounds.
 得られた化合物はシリカゲルカラムクロマトグラフィーや再結晶などの通常の分離・精製操作により単離することができる。本明細書の実施例に本発明の一般式(I)に包含される化合物の製造方法を具体的に示したので、当業者はこの実施例を参照し、原料化合物及び反応条件を適宜選択することにより、一般式(I)に包含される化合物を容易に合成することができる。 The obtained compound can be isolated by usual separation and purification operations such as silica gel column chromatography and recrystallization. The production method of the compound included in the general formula (I) of the present invention is specifically shown in the examples of the present specification. Those skilled in the art refer to this example and appropriately select the raw material compounds and reaction conditions. Thus, the compound included in the general formula (I) can be easily synthesized.
 本発明の化合物は溶液状態のみならず固体状態において強い蛍光を発する性質を有している。本明細書において「蛍光」という用語は、発光の一態様として、X線、紫外線、及び/又は可視光線が照射された際にそのエネルギーを吸収することで電子が励起し、それが基底状態に戻る際に余分なエネルギーを電磁波として放出する現象を意味しており、いかなる意味においても限定的に解釈してはならず、最も広義に解釈しなければならない。固体状態での蛍光測定は一般的には絶対PL量子収率測定装置 C-9920-02(マルチチャンネル検出器 PMA-11、浜松ホトニクス株式会社)などを使用して行うことができるが、この特定の装置及び方法に限定されるわけではない。 The compound of the present invention has a property of emitting strong fluorescence not only in a solution state but also in a solid state. In this specification, the term “fluorescence” refers to an aspect of light emission, in which X-rays, ultraviolet rays, and / or visible light are absorbed to absorb electrons to excite electrons, which are in a ground state. It means a phenomenon in which excess energy is released as electromagnetic waves when returning, and should not be interpreted in a limited way in any sense, but in the broadest sense. Fluorescence measurement in the solid state can be generally performed using an absolute PL quantum yield measurement device C-9920-02 (multichannel detector PMA-11, Hamamatsu Photonics Co., Ltd.). However, the present invention is not limited to the apparatus and method.
 本発明の化合物は、上記の蛍光特性を有しており、安定な化合物であることから蛍光剤として好適に使用することができ、例えば、生体標識材料、有機エレクトロニクス材料、化学センサー、有機レーザー、又は有機蛍光塗料などの用途に利用することができるが、上記の特定の用途に限定されることはなく、多様な用途に応用できることは言うまでもない。 The compound of the present invention has the above-mentioned fluorescence characteristics and is a stable compound, and therefore can be suitably used as a fluorescent agent. For example, biomarkers, organic electronics materials, chemical sensors, organic lasers, Alternatively, it can be used for applications such as organic fluorescent paints, but is not limited to the specific applications described above, and needless to say, can be applied to various applications.
 以下、本発明を実施例によりさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。
例1:化合物1
Figure JPOXMLDOC01-appb-C000006
Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to the following examples.
Example 1: Compound 1
Figure JPOXMLDOC01-appb-C000006
 アルゴン雰囲気下、トリフルオロ(トリフルオロメチル)ホウ酸カリウム (96.8 mg, 0.550 mmol)のジクロロメタン(1 mL)懸濁液に三フッ化ホウ素・ジエチルエーテル錯体(67.5 μl, 0.550 mmol)を滴下し、室温で20分攪拌した。反応液に4-フェニルピリジンN-オキシド(85.6 mg, 0.500 mmol)を加え、1時間攪拌した。ジクロロメタン/アセトン(1:1)溶液で反応液を希釈し、不溶物を濾別後、ジクロロメタン-アセトン(1:1)溶液で不溶物を洗浄した。濾液と洗浄液とを合わせて減圧濃縮し、得られた粗生成物をシリカゲルクロマトグラフィー(ジクロロメタン-アセトン = 100:0 → 99:1)によって精製し、4-フェニルピリジンN-オキシド-BF2CF3錯体(122 mg, 84% yield)を白色固体として得た。 Under argon atmosphere, boron trifluoride-diethyl ether complex (67.5 μl, 0.550 mmol) was added dropwise to a suspension of potassium trifluoro (trifluoromethyl) borate (96.8 mg, 0.550 mmol) in dichloromethane (1 mL). Stir at room temperature for 20 minutes. 4-phenylpyridine N-oxide (85.6 mg, 0.500 mmol) was added to the reaction solution, and the mixture was stirred for 1 hour. The reaction solution was diluted with a dichloromethane / acetone (1: 1) solution, insoluble matters were filtered off, and the insoluble matters were washed with a dichloromethane-acetone (1: 1) solution. The filtrate and washings were combined and concentrated under reduced pressure, and the resulting crude product was purified by silica gel chromatography (dichloromethane-acetone = 100: 0 → 99: 1) to give 4-phenylpyridine N-oxide-BF 2 CF 3 The complex (122 mg, 84% yield) was obtained as a white solid.
m.p.: 165℃; 1H NMR (400 MHz, Acetone-d6) δ 7.61-7.68 (m, 3H), 7.98-8.05 (m, 2H), 8.38-8.43 (m, 2H), 8.87 (d, J = 7.2 Hz, 2H); 13C NMR (100 MHz, Acetone-d6) δ 125.8, 128.8, 130.6, 132.5, 135.1, 143.4, 154.1; 19F NMR (370 MHz, Acetone-d6) δ -161.2 (q, J = 44.7 Hz, 2F), -75.3 (q, J = 29.8 Hz, 3F); 11B NMR (130 MHz, Acetone-d6) δ -0.15 (m); ESI-MS: 312 (M+Na+). mp: 165 ° C; 1 H NMR (400 MHz, Acetone-d 6 ) δ 7.61-7.68 (m, 3H), 7.98-8.05 (m, 2H), 8.38-8.43 (m, 2H), 8.87 (d, J = 7.2 Hz, 2H); 13 C NMR (100 MHz, Acetone-d 6 ) δ 125.8, 128.8, 130.6, 132.5, 135.1, 143.4, 154.1; 19 F NMR (370 MHz, Acetone-d 6 ) δ -161.2 ( q, J = 44.7 Hz, 2F), -75.3 (q, J = 29.8 Hz, 3F); 11 B NMR (130 MHz, Acetone-d 6 ) δ -0.15 (m); ESI-MS: 312 (M + Na + ).
例2
 例1の方法と同様にして以下の化合物を製造した。化合物12及び13については酢酸エチルを用いた再結晶により精製を行った。
Example 2
The following compounds were prepared in the same manner as in Example 1. Compounds 12 and 13 were purified by recrystallization using ethyl acetate.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
化合物2
m.p.: 128 ℃; 1H NMR (400 MHz, Acetone-d6) δ 7.56-7.65 (m, 3H), 7.86-7.91 (m, 2H), 8.23 (dd, J = 8.1 and 6.3 Hz, 1H), 8.75-8.81 (m, 1H), 8.82-8.87 (m, 1H), 9.10 (s, 1H); 13C NMR (100 MHz, Acetone-d6) δ 128.4, 128.9, 130.5, 131.2, 134.0, 140.7, 141.1, 141.6, 142.3; 19F NMR (370 MHz, Acetone-d6) δ -161.0 (q, J = 47.7 Hz, 2F), -75.2 (q, J = 29.8 Hz, 3F); 11B NMR (130 MHz, CD3CN) δ -0.76 (m); ESI-MS: 312 (M+Na+).
Compound 2
mp: 128 ° C; 1 H NMR (400 MHz, Acetone-d 6 ) δ 7.56-7.65 (m, 3H), 7.86-7.91 (m, 2H), 8.23 (dd, J = 8.1 and 6.3 Hz, 1H), 8.75-8.81 (m, 1H), 8.82-8.87 (m, 1H), 9.10 (s, 1H); 13 C NMR (100 MHz, Acetone-d 6 ) δ 128.4, 128.9, 130.5, 131.2, 134.0, 140.7, 141.1, 141.6, 142.3; 19 F NMR (370 MHz, Acetone-d 6 ) δ -161.0 (q, J = 47.7 Hz, 2F), -75.2 (q, J = 29.8 Hz, 3F); 11 B NMR (130 MHz, CD 3 CN) δ -0.76 (m); ESI-MS: 312 (M + Na + ).
化合物3
m.p.: 130℃; 1H NMR (400 MHz, Acetone-d6) δ 7.52-7.63 (m, 3H), 7.81-7.87 (m, 2H), 8.08 (ddd, J = 8.1, 6.3 and 1.3 Hz, 1H), 8.17 (dd, J = 8.1 and 1.8 Hz, 1H), 8.51 (td, J = 7.9 and 1.3 Hz, 1H), 8.95 (d, J = 6.7 Hz, 1H); 13C NMR (100 MHz, Acetone-d6) δ 127.3, 129.2, 130.8, 130.9, 131.1, 131.9, 142.6, 144.1, 154.0; 19F NMR (370 MHz, Acetone-d6) δ -159.1 (q, J = 41.7 Hz, 2F), -75.5 (q, J = 23.8 Hz, 3F); 11B NMR (130 MHz, CD3CN) δ 0.46 (m); ESI-MS: 312 (M+Na+).
Compound 3
mp: 130 ° C; 1 H NMR (400 MHz, Acetone-d 6 ) δ 7.52-7.63 (m, 3H), 7.81-7.87 (m, 2H), 8.08 (ddd, J = 8.1, 6.3 and 1.3 Hz, 1H ), 8.17 (dd, J = 8.1 and 1.8 Hz, 1H), 8.51 (td, J = 7.9 and 1.3 Hz, 1H), 8.95 (d, J = 6.7 Hz, 1H); 13 C NMR (100 MHz, Acetone -d 6 ) δ 127.3, 129.2, 130.8, 130.9, 131.1, 131.9, 142.6, 144.1, 154.0; 19 F NMR (370 MHz, Acetone-d 6 ) δ -159.1 (q, J = 41.7 Hz, 2F),- 75.5 (q, J = 23.8 Hz, 3F); 11 B NMR (130 MHz, CD 3 CN) δ 0.46 (m); ESI-MS: 312 (M + Na + ).
化合物4
m.p.: 139℃; 1H NMR (400 MHz, Acetone-d6) δ 7.60 (ddd, J = 7.6, 4.7 and 1.1 Hz, 1H), 8.02 (td, J = 7.9 and 1.8 Hz, 1H), 8.17 (td, J = 7.0 and 2.2 Hz, 1H), 8.39 (dd, J = 8.1 and 0.9 Hz, 1H), 8.54-8.64 (m, 2H), 8.79-8.84 (m, 1H), 8.95 (d, J = 6.7 Hz, 1H); 13C NMR (100 MHz, Acetone-d6) δ 126.6, 127.8, 128.2, 131.1, 137.3, 142.8, 144.1, 148.3, 150.9, 152.0; 19F NMR (370 MHz, Acetone-d6) δ -159.6 (q, J = 47.7 Hz, 2F), -75.6 (q, J = 35.8 Hz, 3F); 11B NMR (130 MHz, CD3CN) δ 0.46 (m); ESI-MS: 313 (M+Na+).
Compound 4
mp: 139 ° C; 1 H NMR (400 MHz, Acetone-d 6 ) δ 7.60 (ddd, J = 7.6, 4.7 and 1.1 Hz, 1H), 8.02 (td, J = 7.9 and 1.8 Hz, 1H), 8.17 ( td, J = 7.0 and 2.2 Hz, 1H), 8.39 (dd, J = 8.1 and 0.9 Hz, 1H), 8.54-8.64 (m, 2H), 8.79-8.84 (m, 1H), 8.95 (d, J = 6.7 Hz, 1H); 13 C NMR (100 MHz, Acetone-d 6 ) δ 126.6, 127.8, 128.2, 131.1, 137.3, 142.8, 144.1, 148.3, 150.9, 152.0; 19 F NMR (370 MHz, Acetone-d 6 ) δ -159.6 (q, J = 47.7 Hz, 2F), -75.6 (q, J = 35.8 Hz, 3F); 11 B NMR (130 MHz, CD 3 CN) δ 0.46 (m); ESI-MS: 313 (M + Na + ).
化合物5
m.p.: 149 ℃; 1H NMR (400 MHz, Acetone-d6) δ 8.01-8.08 (m, 1H), 8.15 (dd, J = 8.5 and 6.3 Hz, 1H), 8.23-8.30 (m, 1H), 8.43 (d, J = 8.5 Hz, 1H), 8.62 (d, J = 8.5 Hz, 1H), 9.12 (d, J = 8.5 Hz, 1H), 9.29 (d, J = 5.8 Hz, 1H); 13C NMR (100 MHz, Acetone-d6) δ 119.3, 122.3, 130.1, 131.3, 131.5, 136.0, 139.6, 143.9, 145.1; 19F NMR (370 MHz, Acetone-d6) δ -160.4 (q, J = 41.7 Hz, 2F), -75.5 (q, J = 35.8 Hz, 3F); 11B NMR (130 MHz, CD3CN) δ 0.92 (m); ESI-MS: 286 (M+Na+).
Compound 5
mp: 149 ° C; 1 H NMR (400 MHz, Acetone-d 6 ) δ 8.01-8.08 (m, 1H), 8.15 (dd, J = 8.5 and 6.3 Hz, 1H), 8.23-8.30 (m, 1H), 8.43 (d, J = 8.5 Hz, 1H), 8.62 (d, J = 8.5 Hz, 1H), 9.12 (d, J = 8.5 Hz, 1H), 9.29 (d, J = 5.8 Hz, 1H); 13 C NMR (100 MHz, Acetone-d 6 ) δ 119.3, 122.3, 130.1, 131.3, 131.5, 136.0, 139.6, 143.9, 145.1; 19 F NMR (370 MHz, Acetone-d 6 ) δ -160.4 (q, J = 41.7 Hz, 2F), -75.5 (q, J = 35.8 Hz, 3F); 11 B NMR (130 MHz, CD 3 CN) δ 0.92 (m); ESI-MS: 286 (M + Na + ).
化合物6
m.p.: 151 ℃; 1H NMR (400 MHz, Acetone-d6) δ 8.02-8.08 (m, 1H), 8.15-8.22 (m, 1H), 8.34 (d, J = 8.5 Hz, 1H), 8.49-8.62 (m, 3H), 9.77 (s, 1H); 13C NMR (100 MHz, Acetone-d6) δ 127.2, 128.3, 128.6, 130.3, 132.2, 135.6, 136.6, 136.6, 146.1; 19F NMR (370 MHz, Acetone-d6) δ -160.8 (q, J = 41.7 Hz, 2F), -75.2 (q, J = 29.8 Hz, 3F); 11B NMR (130 MHz, CD3CN) δ 0.76 (m); ESI-MS: 286 (M+Na+).
Compound 6
mp: 151 ° C; 1 H NMR (400 MHz, Acetone-d 6 ) δ 8.02-8.08 (m, 1H), 8.15-8.22 (m, 1H), 8.34 (d, J = 8.5 Hz, 1H), 8.49- 8.62 (m, 3H), 9.77 (s, 1H); 13 C NMR (100 MHz, Acetone-d 6 ) δ 127.2, 128.3, 128.6, 130.3, 132.2, 135.6, 136.6, 136.6, 146.1; 19 F NMR (370 MHz, Acetone-d 6 ) δ -160.8 (q, J = 41.7 Hz, 2F), -75.2 (q, J = 29.8 Hz, 3F); 11 B NMR (130 MHz, CD 3 CN) δ 0.76 (m) ; ESI-MS: 286 (M + Na + ).
化合物7
m.p.: 166 ℃; 1H NMR (400 MHz, Acetone-d6) δ 7.85-7.92 (m, 1H), 7.94-8.01 (m, 1H), 8.12 (d, J = 8.5 Hz, 1H), 8.19 (d, J = 8.1 Hz, 1H), 8.21-8.27 (m, 2H), 9.08 (d, J = 8.1 Hz, 1H), 9.29 (d, J = 6.3 Hz, 1H), 10.04 (d, J = 8.5 Hz, 1H); 13C NMR (100 MHz, Acetone-d6) δ 123.3, 124.1, 125.5, 129.2, 130.1, 130.5, 132.2, 132.6, 133.1, 137.1, 138.9, 143.4, 145.6; 19F NMR (370 MHz, Acetone-d6) δ -159.0 (q, J = 41.7 Hz, 2F), -75.0 (q, J = 29.8 Hz, 3F); 11B NMR (130 MHz, CD3CN) δ 1.07 (m); ESI-MS: 336 (M+Na+).
Compound 7
mp: 166 ° C; 1 H NMR (400 MHz, Acetone-d 6 ) δ 7.85-7.92 (m, 1H), 7.94-8.01 (m, 1H), 8.12 (d, J = 8.5 Hz, 1H), 8.19 ( d, J = 8.1 Hz, 1H), 8.21-8.27 (m, 2H), 9.08 (d, J = 8.1 Hz, 1H), 9.29 (d, J = 6.3 Hz, 1H), 10.04 (d, J = 8.5 Hz, 1H); 13 C NMR (100 MHz, Acetone-d 6 ) δ 123.3, 124.1, 125.5, 129.2, 130.1, 130.5, 132.2, 132.6, 133.1, 137.1, 138.9, 143.4, 145.6; 19 F NMR (370 MHz , Acetone-d 6 ) δ -159.0 (q, J = 41.7 Hz, 2F), -75.0 (q, J = 29.8 Hz, 3F); 11 B NMR (130 MHz, CD 3 CN) δ 1.07 (m); ESI-MS: 336 (M + Na + ).
化合物8
m.p.: 186 ℃; 1H NMR (400 MHz, Acetone-d6) δ 7.95-8.01 (m, 2H), 8.38 (ddd, J = 9.0, 6.7 and 1.3 Hz, 2H), 8.54 (d, J = 8.5 Hz, 2H), 8.82 (d, J = 9.4 Hz, 2H), 9.85 (s, 1H); 13C NMR (100 MHz, Acetone-d6) δ 119.2, 127.6, 128.8, 130.5, 138.1, 141.1, 145.8; 19F NMR (370 MHz, Acetone-d6) δ -156.9 (q, J = 44.7 Hz, 2F), -74.9 (q, J = 29.8 Hz, 3F); 11B NMR (130 MHz, CD3CN) δ 1.22 (m); ESI-MS: 336 (M+Na+).
Compound 8
mp: 186 ° C; 1 H NMR (400 MHz, Acetone-d 6 ) δ 7.95-8.01 (m, 2H), 8.38 (ddd, J = 9.0, 6.7 and 1.3 Hz, 2H), 8.54 (d, J = 8.5 Hz, 2H), 8.82 (d, J = 9.4 Hz, 2H), 9.85 (s, 1H); 13 C NMR (100 MHz, Acetone-d 6 ) δ 119.2, 127.6, 128.8, 130.5, 138.1, 141.1, 145.8 ; 19 F NMR (370 MHz, Acetone-d 6 ) δ -156.9 (q, J = 44.7 Hz, 2F), -74.9 (q, J = 29.8 Hz, 3F); 11 B NMR (130 MHz, CD 3 CN ) δ 1.22 (m); ESI-MS: 336 (M + Na + ).
化合物9
m.p.: 210 ℃; 1H NMR (400 MHz, Acetone-d6) δ 7.42-7.51 (m, 3H), 7.55 (d, J = 16.6 Hz, 1H), 7.77 (dd, J = 7.9 and 1.6 Hz, 2H), 7.95 (d, J = 16.2 Hz, 1H), 8.20-8.25 (m, 2H), 8.73 (d, J = 7.2 Hz, 2H); 13C NMR (100 MHz, Acetone-d6) δ 123.8, 124.9, 128.9, 129.9, 131.1, 136.3, 141.0, 143.1, 151.6; 19F NMR (370 MHz, Acetone-d6) δ -161.3 (q, J = 42.8 Hz, 2F), -75.3 (q, J = 27.0 Hz, 3F); 11B NMR (130 MHz, CD3CN) δ 0.61 (m); ESI-MS: 338 (M+Na+).
Compound 9
mp: 210 ° C; 1 H NMR (400 MHz, Acetone-d 6 ) δ 7.42-7.51 (m, 3H), 7.55 (d, J = 16.6 Hz, 1H), 7.77 (dd, J = 7.9 and 1.6 Hz, 2H), 7.95 (d, J = 16.2 Hz, 1H), 8.20-8.25 (m, 2H), 8.73 (d, J = 7.2 Hz, 2H); 13 C NMR (100 MHz, Acetone-d 6 ) δ 123.8 , 124.9, 128.9, 129.9, 131.1, 136.3, 141.0, 143.1, 151.6; 19 F NMR (370 MHz, Acetone-d 6 ) δ -161.3 (q, J = 42.8 Hz, 2F), -75.3 (q, J = 27.0 Hz, 3F); 11 B NMR (130 MHz, CD 3 CN) δ 0.61 (m); ESI-MS: 338 (M + Na + ).
化合物10
m.p.: 191 ℃; 1H NMR (400 MHz, Acetone-d6) δ 7.47-7.60 (m, 3H), 7.65-7.74 (m, 2H), 8.16-8.23 (m, 2H), 8.87 (d, J = 6.7 Hz, 2H); 13C NMR (100 MHz, Acetone-d6) δ 85.3, 102.4, 121.2, 129.7, 130.3, 131.6, 133.1, 137.5, 143.3; 19F NMR (370 MHz, Acetone-d6) δ -161.1 (q, J = 42.8 Hz, 2F), -75.4 (q, J = 27.0 Hz, 3F); 11B NMR (130 MHz, CD3CN) δ 0.61 (m); ESI-MS: 336 (M+Na+).
Compound 10
mp: 191 ° C; 1 H NMR (400 MHz, Acetone-d 6 ) δ 7.47-7.60 (m, 3H), 7.65-7.74 (m, 2H), 8.16-8.23 (m, 2H), 8.87 (d, J = 6.7 Hz, 2H); 13 C NMR (100 MHz, Acetone-d 6 ) δ 85.3, 102.4, 121.2, 129.7, 130.3, 131.6, 133.1, 137.5, 143.3; 19 F NMR (370 MHz, Acetone-d 6 ) δ -161.1 (q, J = 42.8 Hz, 2F), -75.4 (q, J = 27.0 Hz, 3F); 11 B NMR (130 MHz, CD 3 CN) δ 0.61 (m); ESI-MS: 336 ( M + Na + ).
化合物11
m.p.: 152 ℃; 1H NMR (400 MHz, Acetone-d6) δ 7.61-7.67 (m, 3H), 8.01 (dd, J = 6.9 and 2.9 Hz, 2H), 8.41 (d, J = 7.4 Hz, 2H), 8.85 (d, J = 6.9 Hz, 2H); 13C NMR (100 MHz, Acetone-d6) δ 125.9, 128.8, 130.6, 132.5, 135.1, 143.4, 154.1; 19F NMR (370 MHz, DMSO-d6) δ -158.4 (s, 2F), -136.5 (s, 2F), -84.1 (s, 3F); 11B NMR (130 MHz, DMSO-d6) δ 1.53 (s); ESI-MS: 362 (M+Na+).
Compound 11
mp: 152 ° C; 1 H NMR (400 MHz, Acetone-d 6 ) δ 7.61-7.67 (m, 3H), 8.01 (dd, J = 6.9 and 2.9 Hz, 2H), 8.41 (d, J = 7.4 Hz, 2H), 8.85 (d, J = 6.9 Hz, 2H); 13 C NMR (100 MHz, Acetone-d 6 ) δ 125.9, 128.8, 130.6, 132.5, 135.1, 143.4, 154.1; 19 F NMR (370 MHz, DMSO -d 6 ) δ -158.4 (s, 2F), -136.5 (s, 2F), -84.1 (s, 3F); 11 B NMR (130 MHz, DMSO-d 6 ) δ 1.53 (s); ESI-MS : 362 (M + Na + ).
化合物12
m.p.: 199 ℃; 1H NMR (400 MHz, Acetone-d6) δ 7.62-7.67 (m, 3H), 7.99-8.05 (m, 2H), 8.37-8.41 (m, 2H), 8.88 (d, J = 7.2 Hz, 2H); 13C NMR (100 MHz, Acetone-d6) δ 125.7, 128.8, 130.6, 132.4, 135.3, 143.6, 153.6; 19F NMR (370 MHz, Acetone-d6) δ -166.0 (td, J = 22.8 and 11.4 Hz, 2F), -159.5 (t, J = 19.9 Hz, 1F), -144.1--143.3 (br, 2F), -135.1 (td, J = 25.6 and 13.3 Hz, 2F);11B NMR (130 MHz, CD3CN) δ 4.28 (m).
Compound 12
mp: 199 ° C; 1 H NMR (400 MHz, Acetone-d 6 ) δ 7.62-7.67 (m, 3H), 7.99-8.05 (m, 2H), 8.37-8.41 (m, 2H), 8.88 (d, J = 7.2 Hz, 2H); 13 C NMR (100 MHz, Acetone-d 6 ) δ 125.7, 128.8, 130.6, 132.4, 135.3, 143.6, 153.6; 19 F NMR (370 MHz, Acetone-d 6 ) δ -166.0 ( td, J = 22.8 and 11.4 Hz, 2F), -159.5 (t, J = 19.9 Hz, 1F), -144.1--143.3 (br, 2F), -135.1 (td, J = 25.6 and 13.3 Hz, 2F) ; 11 B NMR (130 MHz, CD 3 CN) δ 4.28 (m).
m.p.: 203 ℃; 1H NMR (400 MHz, Acetone-d6) δ 7.60-7.68 (m, 3H), 7.98-8.06 (m, 2H), 8.42 (d, J = 7.2 Hz, 2H), 8.91 (d, J = 6.7 Hz, 2H); 13C NMR (100 MHz, Acetone-d6) δ 125.8, 128.8, 130.6, 132.4, 135.2, 143.6, 153.8; 19F NMR (370 MHz, Acetone-d6) δ -145.0--144.6 (m, 2F), -144.6--143.9 (br, 2F), -133.4 (s, 2F), -56.7 (t, J = 20.3 Hz, 3F); 11B NMR (130 MHz, CD3CN) δ 3.97 (m). mp: 203 ° C; 1 H NMR (400 MHz, Acetone-d 6 ) δ 7.60-7.68 (m, 3H), 7.98-8.06 (m, 2H), 8.42 (d, J = 7.2 Hz, 2H), 8.91 ( d, J = 6.7 Hz, 2H); 13 C NMR (100 MHz, Acetone-d 6 ) δ 125.8, 128.8, 130.6, 132.4, 135.2, 143.6, 153.8; 19 F NMR (370 MHz, Acetone-d 6 ) δ -145.0--144.6 (m, 2F), -144.6--143.9 (br, 2F), -133.4 (s, 2F), -56.7 (t, J = 20.3 Hz, 3F); 11 B NMR (130 MHz, CD 3 CN) δ 3.97 (m).
例3
 例1及び例2で得られた化合物について蛍光特性を評価した。アセトニトリル中での測定結果を表1に示す。
Example 3
The fluorescence characteristics of the compounds obtained in Examples 1 and 2 were evaluated. Table 1 shows the measurement results in acetonitrile.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
例4
  例1の方法と同様にして以下の化合物を製造した。
Example 4
The following compounds were prepared in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
化合物14
1H NMR (400 MHz, CD3CN) δ 7.02 (d, J = 9.0 Hz, 2H), 7.17-7.25 (m, 6H), 7.38 (d, J = 7.9 Hz, 2H), 7.40 (d, J = 7.9 Hz, 2H), 7.75 (d, J = 9.0 Hz, 2H), 8.03 (d, J = 7.2 Hz, 2H), 8.52 (d, J = 7.2 Hz, 2H); 13C NMR (100 MHz, CD3CN) δ 121.0, 123.9, 125.7, 126.2, 127.2, 130.0, 130.8, 142.7, 147.2, 152.5, 153.3; 19F NMR (368 MHz, CD3CN) δ -161.5 (q, J = 34.2 Hz, 2F), -75.8~-75.3 (m, 3F); 11B NMR (125 MHz, CD3CN) δ 0.61 (m); IR (KBr, ν / cm-1) 3125, 1584, 1485, 1335, 1298, 1213, 1073, 909, 818, 762; HRMS (ESI) Calcd for C24H18BF5N2NaO+[M+Na+] 479.1325, Found 479.1309.
Compound 14
1 H NMR (400 MHz, CD 3 CN) δ 7.02 (d, J = 9.0 Hz, 2H), 7.17-7.25 (m, 6H), 7.38 (d, J = 7.9 Hz, 2H), 7.40 (d, J = 7.9 Hz, 2H), 7.75 (d, J = 9.0 Hz, 2H), 8.03 (d, J = 7.2 Hz, 2H), 8.52 (d, J = 7.2 Hz, 2H); 13 C NMR (100 MHz, CD 3 CN) δ 121.0, 123.9, 125.7, 126.2, 127.2, 130.0, 130.8, 142.7, 147.2, 152.5, 153.3; 19 F NMR (368 MHz, CD 3 CN) δ -161.5 (q, J = 34.2 Hz, 2F ), -75.8 to -75.3 (m, 3F); 11 B NMR (125 MHz, CD 3 CN) δ 0.61 (m); IR (KBr, ν / cm -1 ) 3125, 1584, 1485, 1335, 1298, 1213, 1073, 909, 818, 762; HRMS (ESI) Calcd for C 24 H 18 BF 5 N 2 NaO + [M + Na + ] 479.1325, Found 479.1309.
化合物15
1H NMR (400 MHz, CD3CN) δ 4.00 (s, 3H), 7.61 (s, 1H), 7.77 (d, J = 9.5 Hz, 1H), 7.84 (dd, J = 8.5, 6.1 Hz, 1H), 8.45 (d, J = 9.5 Hz, 1H), 8.74 (d, J = 8.5 Hz, 1H), 8.89 (d, J = 6.1 Hz, 1H); 13C NMR (125 MHz, CD3CN) δ 57.2, 107.4, 120.9, 122.7, 129.0, 133.6, 135.3, 142.0, 142.2, 161.5; 19F NMR (368 MHz, CD3CN) δ -160.8 (q, J = 42.7 Hz, 2F), -75.8 (q, J = 28.5 Hz, 3F); 11B NMR (125 MHz, CD3CN) δ 1.07 (m); IR (KBr, ν / cm-1) 3131, 3101, 3025, 2963, 1899, 1719, 1339. 747, 724, 703; HRMS (ESI) Calcd for C11H9BF5NNaO2 +[M+Na+] 316.0539, Found 316.0526.
Compound 15
1 H NMR (400 MHz, CD 3 CN) δ 4.00 (s, 3H), 7.61 (s, 1H), 7.77 (d, J = 9.5 Hz, 1H), 7.84 (dd, J = 8.5, 6.1 Hz, 1H ), 8.45 (d, J = 9.5 Hz, 1H), 8.74 (d, J = 8.5 Hz, 1H), 8.89 (d, J = 6.1 Hz, 1H); 13 C NMR (125 MHz, CD 3 CN) δ 57.2, 107.4, 120.9, 122.7, 129.0, 133.6, 135.3, 142.0, 142.2, 161.5; 19 F NMR (368 MHz, CD 3 CN) δ -160.8 (q, J = 42.7 Hz, 2F), -75.8 (q, J = 28.5 Hz, 3F); 11 B NMR (125 MHz, CD 3 CN) δ 1.07 (m); IR (KBr, ν / cm -1 ) 3131, 3101, 3025, 2963, 1899, 1719, 1339.747 , 724, 703; HRMS (ESI) Calcd for C 11 H 9 BF 5 NNaO 2 + [M + Na + ] 316.0539, Found 316.0526.
化合物16
1H NMR (400 MHz, CD3CN) δ 2.58 (s, 3H), 7.87 (dd, J = 8.7, 6.2 Hz, 1H), 8.02 (d, J = 9.4 Hz, 1H), 8.06 (s, 1H), 8.46 (d, J = 9.4 Hz, 1H), 8.79 (d, J = 8.7 Hz, 1H), 9.00 (d, J = 6.2 Hz, 1H); 13C NMR (125 MHz, CD3CN) δ 21.6, 118.8, 122.1, 128.6, 131.8, 138.1, 138.4, 142.6, 143.2, 143.8; 19F NMR (368 MHz, CD3CN) δ -160.8 (q, J = 45.5 Hz, 2F), -75.8 (q, J = 31.3 Hz, 3F); 11B NMR (125 MHz, CD3CN) δ 1.07 (m); IR (KBr, ν / cm-1) 3104, 1590, 1520, 1435, 1382, 1330, 1278, 1221, 741, 689; HRMS (ESI) Calcd for C11H9BF5NNaO+[M+Na+] 300.0590, Found 300.0582.
Compound 16
1 H NMR (400 MHz, CD 3 CN) δ 2.58 (s, 3H), 7.87 (dd, J = 8.7, 6.2 Hz, 1H), 8.02 (d, J = 9.4 Hz, 1H), 8.06 (s, 1H ), 8.46 (d, J = 9.4 Hz, 1H), 8.79 (d, J = 8.7 Hz, 1H), 9.00 (d, J = 6.2 Hz, 1H); 13 C NMR (125 MHz, CD 3 CN) δ 21.6, 118.8, 122.1, 128.6, 131.8, 138.1, 138.4, 142.6, 143.2, 143.8; 19 F NMR (368 MHz, CD 3 CN) δ -160.8 (q, J = 45.5 Hz, 2F), -75.8 (q, J = 31.3 Hz, 3F); 11 B NMR (125 MHz, CD 3 CN) δ 1.07 (m); IR (KBr, ν / cm -1 ) 3104, 1590, 1520, 1435, 1382, 1330, 1278, 1221 , 741, 689; HRMS (ESI) Calcd for C 11 H 9 BF 5 NNaO + [M + Na + ] 300.0590, Found 300.0582.
化合物17
1H NMR (400 MHz, CD3CN) δ 7.96 (dd, J = 8.5, 6.3 Hz, 1H), 8.12 (dd, J = 9.4, 2.2 Hz, 1H), 8.35 (d, J = 2.2 Hz, 1H), 8.54 (d, J = 9.4 Hz, 1H), 8.83 (d, J = 8.5 Hz, 1H), 9.09 (d, J = 6.3 Hz, 1H); 13C NMR (125 MHz, CD3CN) δ 121.3, 123.6, 128.8, 132.3, 136.7, 137.1, 138.3, 143.3, 145.2; 19F NMR (368 MHz, CD3CN) δ -160.7 (q, J = 45.5 Hz, 2F), -68.3 (q, J = 28.5 Hz, 3F); 11B NMR (125 MHz, CD3CN) δ 0.92 (m); IR (KBr, ν / cm-1) 3127, 1588, 1518, 1379, 1205, 1172, 829, 812, 742, 690; HRMS (ESI) Calcd for C10H6BClF5NNaO+[M+Na+] 320.0043, Found 320.0055.
Compound 17
1 H NMR (400 MHz, CD 3 CN) δ 7.96 (dd, J = 8.5, 6.3 Hz, 1H), 8.12 (dd, J = 9.4, 2.2 Hz, 1H), 8.35 (d, J = 2.2 Hz, 1H ), 8.54 (d, J = 9.4 Hz, 1H), 8.83 (d, J = 8.5 Hz, 1H), 9.09 (d, J = 6.3 Hz, 1H); 13 C NMR (125 MHz, CD 3 CN) δ 121.3, 123.6, 128.8, 132.3, 136.7, 137.1, 138.3, 143.3, 145.2; 19 F NMR (368 MHz, CD 3 CN) δ -160.7 (q, J = 45.5 Hz, 2F), -68.3 (q, J = 28.5 Hz, 3F); 11 B NMR (125 MHz, CD 3 CN) δ 0.92 (m); IR (KBr, ν / cm -1 ) 3127, 1588, 1518, 1379, 1205, 1172, 829, 812, 742 , 690; HRMS (ESI) Calcd for C 10 H 6 BClF 5 NNaO + [M + Na + ] 320.0043, Found 320.0055.
化合物18
1H NMR (400 MHz, CD3CN) δ 7.95 (dd, J = 8.5, 6.0 Hz, 1H), 8.23-8.26 (m, 1H), 8.46 (d, J = 9.8 Hz, 1H), 8.53 (d, J = 2.2 Hz, 1H), 8.82 (d, J = 8.5 Hz, 1H), 9.10 (d, J = 6.0 Hz, 1H); 13C NMR (125 MHz, CD3CN) δ 121.3, 123.7, 125.4, 132.3, 132.7, 138.7, 139.4, 143.3, 145.5; 19F NMR (368 MHz, CD3CN) δ -160.7 (q, J = 45.5 Hz, 2F), -75.8 (q, J = 28.5 Hz, 3F); 11B NMR (125 MHz, CD3CN) δ 0.91 (m); IR (KBr, ν / cm-1) 3093, 1585, 1435, 1377, 1239, 1204, 1176, 804, 739, 691; HRMS (ESI) Calcd for C10H6BBrF5NNaO+[M+Na+] 363.9538, Found 363.9555.
Compound 18
1 H NMR (400 MHz, CD 3 CN) δ 7.95 (dd, J = 8.5, 6.0 Hz, 1H), 8.23-8.26 (m, 1H), 8.46 (d, J = 9.8 Hz, 1H), 8.53 (d , J = 2.2 Hz, 1H), 8.82 (d, J = 8.5 Hz, 1H), 9.10 (d, J = 6.0 Hz, 1H); 13 C NMR (125 MHz, CD 3 CN) δ 121.3, 123.7, 125.4 , 132.3, 132.7, 138.7, 139.4, 143.3, 145.5; 19 F NMR (368 MHz, CD 3 CN) δ -160.7 (q, J = 45.5 Hz, 2F), -75.8 (q, J = 28.5 Hz, 3F) 11 B NMR (125 MHz, CD 3 CN) δ 0.91 (m); IR (KBr, ν / cm -1 ) 3093, 1585, 1435, 1377, 1239, 1204, 1176, 804, 739, 691; HRMS ( ESI) Calcd for C 10 H 6 BBrF 5 NNaO + [M + Na + ] 363.9538, Found 363.9555.
化合物19
1H NMR (500 MHz, CD3CN) δ 4.01 (s, 3H), 8.01 (dd, J = 8.1, 6.2 Hz, 1H), 8.65 (m, 2H), 8.96 (d, J = 1.2 Hz, 1H), 9.05 (d, J = 8.1 Hz, 1H) 9.18 (d, J = 6.2 Hz, 1H); 13C NMR (100 MHz, CD3CN) δ 53.7, 120.0, 123.3, 131.2, 132.3, 132.8, 135.1, 141.3, 145.5, 146.7, 165.8; 19F NMR (368 MHz, CD3CN) δ -161.7 (q, J = 39.9 Hz, 2F), -76.9 (q, J = 34.2 Hz, 3F); 11B NMR (125 MHz, CD3CN) δ 0.92 (m); IR (KBr, ν / cm-1) 3052, 2965, 1587, 1389, 1368, 977, 794, 738, 692, 609; HRMS (ESI) Calcd for C12H9BF5NNaO3 +[M+Na+] 344.0488, Found 344.0494.
Compound 19
1 H NMR (500 MHz, CD 3 CN) δ 4.01 (s, 3H), 8.01 (dd, J = 8.1, 6.2 Hz, 1H), 8.65 (m, 2H), 8.96 (d, J = 1.2 Hz, 1H ), 9.05 (d, J = 8.1 Hz, 1H) 9.18 (d, J = 6.2 Hz, 1H); 13 C NMR (100 MHz, CD 3 CN) δ 53.7, 120.0, 123.3, 131.2, 132.3, 132.8, 135.1 , 141.3, 145.5, 146.7, 165.8; 19 F NMR (368 MHz, CD 3 CN) δ -161.7 (q, J = 39.9 Hz, 2F), -76.9 (q, J = 34.2 Hz, 3F); 11 B NMR (125 MHz, CD 3 CN) δ 0.92 (m); IR (KBr, ν / cm -1 ) 3052, 2965, 1587, 1389, 1368, 977, 794, 738, 692, 609; HRMS (ESI) Calcd for C 12 H 9 BF 5 NNaO 3 + [M + Na + ] 344.0488, Found 344.0494.
化合物20
1H NMR (400 MHz, CD3CN) δ 2.65 (s, 3H), 7.93 (dd, J = 8.2, 7.0 Hz, 1H), 8.12-8.18 (m, 1H), 8.18 (d, J = 8.2 Hz, 1H), 8.50 (d, J = 9.0 Hz, 1H), 8.70 (s, 1H), 8.99 (s, 1H); 13C NMR (100 MHz, CD3CN) δ 18.6, 118.9, 129.3, 131.1, 131.3, 133.5, 135.1, 137.9, 143.2, 145.6; 19F NMR (368 MHz, CD3CN) δ -161.8 (q, J = 45.5 Hz, 2F), -76.8 (q, J = 31.3 Hz, 3F); 11B NMR (125 MHz, CD3CN) δ 1.22 (m); IR (KBr, ν / cm-1) 3854, 3735, 3649, 3126, 1598, 1520, 1381, 1336, 1285, 732; HRMS (ESI) Calcd for C11H9BF5NNaO+ [M+Na+] 300.0590, Found 300.0580.
Compound 20
1 H NMR (400 MHz, CD 3 CN) δ 2.65 (s, 3H), 7.93 (dd, J = 8.2, 7.0 Hz, 1H), 8.12-8.18 (m, 1H), 8.18 (d, J = 8.2 Hz , 1H), 8.50 (d, J = 9.0 Hz, 1H), 8.70 (s, 1H), 8.99 (s, 1H); 13 C NMR (100 MHz, CD 3 CN) δ 18.6, 118.9, 129.3, 131.1, 131.3, 133.5, 135.1, 137.9, 143.2, 145.6; 19 F NMR (368 MHz, CD 3 CN) δ -161.8 (q, J = 45.5 Hz, 2F), -76.8 (q, J = 31.3 Hz, 3F); 11 B NMR (125 MHz, CD 3 CN) δ 1.22 (m); IR (KBr, ν / cm -1 ) 3854, 3735, 3649, 3126, 1598, 1520, 1381, 1336, 1285, 732; HRMS (ESI ) Calcd for C 11 H 9 BF 5 NNaO + [M + Na + ] 300.0590, Found 300.0580.
化合物21
1H NMR (400 MHz, CD3CN) δ 3.06 (s, 3H), 7.78-7.87 (m, 2H), 7.93 (d, J = 6.5 Hz, 1H), 8.11 (d, J = 7.6 Hz, 1H), 8.85 (d, J = 8.5 Hz, 1H), 9.05 (d, J = 6.5 Hz, 1H); 13C NMR (125 MHz, CD3CN) δ 23.9, 121.6, 129.0, 130.8, 132.1, 133.2, 139.2, 139.6, 145.2, 146.5; 19F NMR (368 MHz, CD3CN) δ -161.3 (q, J = 45.6 Hz, 2F), -76.1 (q, J = 31.3 Hz, 3F); 11B NMR (125 MHz, CD3CN) δ 0.92 (m); IR (KBr, ν / cm-1) 3127, 1524, 1211, 1163, 1078, 1022, 973, 896, 830, 755; HRMS (ESI) Calcd for C11H9BF5NNaO+ [M+Na+] 300.0590, Found 300.0589.
Compound 21
1 H NMR (400 MHz, CD 3 CN) δ 3.06 (s, 3H), 7.78-7.87 (m, 2H), 7.93 (d, J = 6.5 Hz, 1H), 8.11 (d, J = 7.6 Hz, 1H ), 8.85 (d, J = 8.5 Hz, 1H), 9.05 (d, J = 6.5 Hz, 1H); 13 C NMR (125 MHz, CD 3 CN) δ 23.9, 121.6, 129.0, 130.8, 132.1, 133.2, 139.2, 139.6, 145.2, 146.5; 19 F NMR (368 MHz, CD 3 CN) δ -161.3 (q, J = 45.6 Hz, 2F), -76.1 (q, J = 31.3 Hz, 3F); 11 B NMR ( 125 MHz, CD 3 CN) δ 0.92 (m); IR (KBr, ν / cm -1 ) 3127, 1524, 1211, 1163, 1078, 1022, 973, 896, 830, 755; HRMS (ESI) Calcd for C 11 H 9 BF 5 NNaO + [M + Na + ] 300.0590, Found 300.0589.
化合物22
1H NMR (400 MHz, CD3CN) δ 7.35-7.39 (m, 1H), 7.42-7.47 (m, 3H), 7.55 (d, J = 16.6 Hz, 1H), 7.68 (d, J = 7.6 Hz, 2H), 7.89 (dd, J = 8.5, 6.1 Hz, 1H), 8.30 (s, 1H), 8.44 (d, J = 9.2 Hz, 1H), 8.54 (d, J = 9.2 Hz, 1H), 8.84 (d, J = 8.5 Hz, 1H), 8.99 (d, J = 6.1 Hz, 1H); 13C NMR (125 MHz, CD3CN) δ 119.5, 122.6, 126.7, 126.9, 128.1, 129.8, 129.9, 132.2, 134.0, 134.5, 137.4, 139.0, 140.6, 143.5, 143.9; 19F NMR (368 MHz, CD3CN) δ -161.7 (q, J = 45.5 Hz, 2F), -76.9~-76.7 (m, 3F); 11B NMR (125 MHz, CD3CN) δ 0.89 (m); IR (KBr, ν / cm-1) 1596, 1518, 1389, 1337, 1074, 1022, 964, 900, 825, 744; HRMS (ESI) Calcd for C18H13BF5NNaO+[M+Na+] 388.0903, Found 388.0897.
Compound 22
1 H NMR (400 MHz, CD 3 CN) δ 7.35-7.39 (m, 1H), 7.42-7.47 (m, 3H), 7.55 (d, J = 16.6 Hz, 1H), 7.68 (d, J = 7.6 Hz , 2H), 7.89 (dd, J = 8.5, 6.1 Hz, 1H), 8.30 (s, 1H), 8.44 (d, J = 9.2 Hz, 1H), 8.54 (d, J = 9.2 Hz, 1H), 8.84 (d, J = 8.5 Hz, 1H), 8.99 (d, J = 6.1 Hz, 1H); 13 C NMR (125 MHz, CD 3 CN) δ 119.5, 122.6, 126.7, 126.9, 128.1, 129.8, 129.9, 132.2 , 134.0, 134.5, 137.4, 139.0, 140.6, 143.5, 143.9; 19 F NMR (368 MHz, CD 3 CN) δ -161.7 (q, J = 45.5 Hz, 2F), -76.9 to -76.7 (m, 3F) 11 B NMR (125 MHz, CD 3 CN) δ 0.89 (m); IR (KBr, ν / cm -1 ) 1596, 1518, 1389, 1337, 1074, 1022, 964, 900, 825, 744; HRMS ( ESI) Calcd for C 18 H 13 BF 5 NNaO + [M + Na + ] 388.0903, Found 388.0897.
化合物23
1H NMR (400 MHz, CD3CN) δ 7.44-7.50 (m, 3H), 7.64-7.67 (m, 2H), 7.94 (dd, J = 8.5, 6.3 Hz, 1H), 8.23 (dd, J = 9.0, 1.6 Hz, 1H), 8.43 (d, J = 1.6 Hz, 1H), 8.56 (d, J = 9.0 Hz, 1H), 8.87 (d, J = 8.5 Hz, 1H), 9.07 (d, J = 5.4 Hz, 1H); 13C NMR (125 MHz, CD3CN) δ 87.7, 94.5, 119.8, 122.7, 123.1, 126.4, 129.8, 130.6, 131.6, 132.5, 132.8, 138.8, 139.0, 143.7, 145.2; 19F NMR (368 MHz, CD3CN) δ -161.7 (q, J = 39.9 Hz, 2F), -76.9~-76.7 (m, 3F); 11B NMR (125 MHz, CD3CN) δ 0.89 (m); IR (KBr, ν / cm-1) 3127, 2212, 1587, 1513, 1436, 1383, 1337, 1235, 757, 691; HRMS (ESI) Calcd for C18H11BF5NNaO+[M+Na+] 386.0746, Found 386.0761.
Compound 23
1 H NMR (400 MHz, CD 3 CN) δ 7.44-7.50 (m, 3H), 7.64-7.67 (m, 2H), 7.94 (dd, J = 8.5, 6.3 Hz, 1H), 8.23 (dd, J = 9.0, 1.6 Hz, 1H), 8.43 (d, J = 1.6 Hz, 1H), 8.56 (d, J = 9.0 Hz, 1H), 8.87 (d, J = 8.5 Hz, 1H), 9.07 (d, J = 5.4 Hz, 1H); 13 C NMR (125 MHz, CD 3 CN) δ 87.7, 94.5, 119.8, 122.7, 123.1, 126.4, 129.8, 130.6, 131.6, 132.5, 132.8, 138.8, 139.0, 143.7, 145.2; 19 F NMR (368 MHz, CD 3 CN) δ -161.7 (q, J = 39.9 Hz, 2F), -76.9 to -76.7 (m, 3F); 11 B NMR (125 MHz, CD 3 CN) δ 0.89 (m) ; IR (KBr, ν / cm -1 ) 3127, 2212, 1587, 1513, 1436, 1383, 1337, 1235, 757, 691; HRMS (ESI) Calcd for C 18 H 11 BF 5 NNaO + [M + Na + ] 386.0746, Found 386.0761.
化合物24
1H NMR (400 MHz, CD3CN) δ 3.69 (t, J = 4.7 Hz, 4H), 3.91 (t, J = 4.7 Hz, 4H), 7.00 (d, J = 7.3 Hz, 1H), 7.71-7.75 (m, 1H), 7.98-8.02 (m, 1H), 8.17 (d, J = 8.8 Hz, 1H), 8.36 (d, J = 8.8 Hz, 1H), 8.58 (d, J = 7.3 Hz, 1H); 13C NMR (125 MHz, CD3CN) δ 53.4, 66.9, 106.2, 119.3, 122.1, 127.0, 128.2, 134.8, 140.6, 143.4, 160.5; 19F NMR (368 MHz, CD3CN) δ -162.1 (q, J = 40.0 Hz, 2F), -76.9~-76.6 (m, 3F); 11B NMR (125 MHz, CD3CN) δ 0.90 (m); IR (KBr, ν / cm-1) 3113, 2868, 1369, 1335, 1312, 1243, 817, 685, 657, 620; HRMS (ESI) Calcd for C14H14BF5N2NaO2 +[M+Na+] 371.0961, Found 371.0973.
Compound 24
1 H NMR (400 MHz, CD 3 CN) δ 3.69 (t, J = 4.7 Hz, 4H), 3.91 (t, J = 4.7 Hz, 4H), 7.00 (d, J = 7.3 Hz, 1H), 7.71- 7.75 (m, 1H), 7.98-8.02 (m, 1H), 8.17 (d, J = 8.8 Hz, 1H), 8.36 (d, J = 8.8 Hz, 1H), 8.58 (d, J = 7.3 Hz, 1H ); 13 C NMR (125 MHz, CD 3 CN) δ 53.4, 66.9, 106.2, 119.3, 122.1, 127.0, 128.2, 134.8, 140.6, 143.4, 160.5; 19 F NMR (368 MHz, CD 3 CN) δ -162.1 (q, J = 40.0 Hz, 2F), -76.9 to -76.6 (m, 3F); 11 B NMR (125 MHz, CD 3 CN) δ 0.90 (m); IR (KBr, ν / cm -1 ) 3113 , 2868, 1369, 1335, 1312, 1243, 817, 685, 657, 620; HRMS (ESI) Calcd for C 14 H 14 BF 5 N 2 NaO 2 + [M + Na + ] 371.0961, Found 371.0973.
化合物25
1H NMR (400 MHz, CD3CN) δ 7.86-7.98 (m, 2H), 8.02 (ddd, J = 8.7, 7.2, 1.3 Hz, 1H), 8.13 (ddd, J = 8.7, 7.2, 1.3 Hz, 1H), 8.35 (d, J = 7.6 Hz, 1H), 8.60 (d, J = 8.5 Hz, 1H), 8.66-8.76 (m, 2H), 9.64 (s, 1H); 13C NMR (100 MHz, CD3CN) δ 120.3, 123.9, 124.4, 124.6, 127.6, 131.3, 131.9, 132.4, 132.8, 133.8, 135.7, 137.6, 148.3; 19F NMR (368 MHz, CD3CN) δ -160.21 (q, J = 39.9 Hz, 2F), -75.9~-75.3 (m, 3F); 11B NMR (125 MHz, CD3CN) δ 1.01 (m); IR (KBr, ν / cm-1) 3091, 1877, 1622, 1528, 1505, 1461, 1398, 1342, 1312, 1116; HRMS (ESI) Calcd for C14H9BF5NNaO+[M+Na+] 336.0590, Found 336.0606.
Compound 25
1 H NMR (400 MHz, CD 3 CN) δ 7.86-7.98 (m, 2H), 8.02 (ddd, J = 8.7, 7.2, 1.3 Hz, 1H), 8.13 (ddd, J = 8.7, 7.2, 1.3 Hz, 1H), 8.35 (d, J = 7.6 Hz, 1H), 8.60 (d, J = 8.5 Hz, 1H), 8.66-8.76 (m, 2H), 9.64 (s, 1H); 13 C NMR (100 MHz, CD 3 CN) δ 120.3, 123.9, 124.4, 124.6, 127.6, 131.3, 131.9, 132.4, 132.8, 133.8, 135.7, 137.6, 148.3; 19 F NMR (368 MHz, CD 3 CN) δ -160.21 (q, J = 39.9 Hz, 2F), -75.9 to -75.3 (m, 3F); 11 B NMR (125 MHz, CD 3 CN) δ 1.01 (m); IR (KBr, ν / cm -1 ) 3091, 1877, 1622, 1528, 1505, 1461, 1398, 1342, 1312, 1116; HRMS (ESI) Calcd for C 14 H 9 BF 5 NNaO + [M + Na + ] 336.0590, Found 336.0606.
化合物26
1H NMR (400 MHz, CD3CN) δ 2.24 (s, 3H), 7.41-7.47 (m, 2H), 7.53-7.59 (m, 3H), 7.81 (dd, J = 8.1, 6.7 Hz, 1H), 8.23 (d, J = 8.1 Hz, 1H), 8.69 (d, J = 6.7 Hz, 1H); 13C NMR (100 MHz, CD3CN) δ 20.1, 126.8, 129.3, 130.06, 130.13, 131.1, 140.7, 140.99, 141.02, 141.03, 143.9, 153.6; 19F NMR (368 MHz, CD3CN) δ -159.0 (q, J = 39.9 Hz, 2F), -76.0 (q, J = 28.5 Hz, 3F); 11B NMR (125 MHz, CD3CN) δ 0.46 (m); IR (KBr, ν / cm-1) 3140, 1599, 1478, 1453, 1338, 1243, 1173, 1072, 1025, 958; HRMS (ESI) Calcd for C13H11BF5NNaO+[M+Na+] 326.0746, Found 326.0758.
Compound 26
1 H NMR (400 MHz, CD 3 CN) δ 2.24 (s, 3H), 7.41-7.47 (m, 2H), 7.53-7.59 (m, 3H), 7.81 (dd, J = 8.1, 6.7 Hz, 1H) , 8.23 (d, J = 8.1 Hz, 1H), 8.69 (d, J = 6.7 Hz, 1H); 13 C NMR (100 MHz, CD 3 CN) δ 20.1, 126.8, 129.3, 130.06, 130.13, 131.1, 140.7 , 140.99, 141.02, 141.03, 143.9, 153.6; 19 F NMR (368 MHz, CD 3 CN) δ -159.0 (q, J = 39.9 Hz, 2F), -76.0 (q, J = 28.5 Hz, 3F); 11 B NMR (125 MHz, CD 3 CN) δ 0.46 (m); IR (KBr, ν / cm -1 ) 3140, 1599, 1478, 1453, 1338, 1243, 1173, 1072, 1025, 958; HRMS (ESI) Calcd for C 13 H 11 BF 5 NNaO + [M + Na + ] 326.0746, Found 326.0758.
化合物27
1H NMR (400 MHz, CD3CN) δ 8.26-8.40 (m, 2H), 8.42-8.51 (m, 2H), 9.64 (s, 1H), 9.80 (s, 1H); 13C NMR (100 MHz, CD3CN) δ 128.3, 129.2, 130.0, 131.0, 137.3, 138.8, 143.9, 155.4; 19F NMR (368 MHz, CD3CN) δ -160.4 (q, J = 45.5 Hz, 2F), -75.8 (q, J = 34.2 Hz, 3F); 11B NMR (125 MHz, CD3CN) δ 0.89 (m); IR (KBr, ν / cm-1) 3097, 1620, 1577, 1460, 1385, 1351, 1282, 1223, 937, 760.
Compound 27
1 H NMR (400 MHz, CD 3 CN) δ 8.26-8.40 (m, 2H), 8.42-8.51 (m, 2H), 9.64 (s, 1H), 9.80 (s, 1H); 13 C NMR (100 MHz , CD 3 CN) δ 128.3, 129.2, 130.0, 131.0, 137.3, 138.8, 143.9, 155.4; 19 F NMR (368 MHz, CD 3 CN) δ -160.4 (q, J = 45.5 Hz, 2F), -75.8 ( q, J = 34.2 Hz, 3F); 11 B NMR (125 MHz, CD 3 CN) δ 0.89 (m); IR (KBr, ν / cm -1 ) 3097, 1620, 1577, 1460, 1385, 1351, 1282 , 1223, 937, 760.
化合物28
1H NMR (400 MHz, CD3CN) δ 7.57-7.64 (m, 2H), 7.66-7.73 (m, 1H), 7.90 (dd, J = 6.7, 4.6 Hz, 1H), 8.18-8.24 (m, 2H), 8.99-9.05 (m, 1H), 9.22 (dd, J = 4.6, 1.6 Hz, 1H); 13C NMR (100 MHz, CD3CN) δ 122.7, 129.4, 130.6, 132.1, 134.1, 151.9, 160.2, 161.7; 19F NMR (368 MHz, CD3CN) δ -159.2 (q, J = 45.5 Hz, 2F), -75.9 (q, J = 34.2 Hz, 3F); 11B NMR (125 MHz, CD3CN) δ 0.61 (m); IR (KBr, ν / cm-1) 3119, 1600, 1552, 1497, 1466, 1247, 1188, 1089, 908, 841.
Compound 28
1 H NMR (400 MHz, CD 3 CN) δ 7.57-7.64 (m, 2H), 7.66-7.73 (m, 1H), 7.90 (dd, J = 6.7, 4.6 Hz, 1H), 8.18-8.24 (m, 2H), 8.99-9.05 (m, 1H), 9.22 (dd, J = 4.6, 1.6 Hz, 1H); 13 C NMR (100 MHz, CD 3 CN) δ 122.7, 129.4, 130.6, 132.1, 134.1, 151.9, 160.2, 161.7; 19 F NMR (368 MHz, CD 3 CN) δ -159.2 (q, J = 45.5 Hz, 2F), -75.9 (q, J = 34.2 Hz, 3F); 11 B NMR (125 MHz, CD 3 CN) δ 0.61 (m); IR (KBr, ν / cm -1 ) 3119, 1600, 1552, 1497, 1466, 1247, 1188, 1089, 908, 841.
化合物29
1H NMR (400 MHz, CD3CN) δ 5.87 (s, 2H), 7.30-7.41 (m, 5H), 7.67 (dd, J = 8.3, 6.3 Hz, 1H), 8.37 (s, 1H), 8.56 (d, J = 8.3 Hz, 1H), 8.57 (d, J = 6.3 Hz, 1H); 13C NMR (100 MHz, CD3CN) δ 51.3, 119.7, 128.8, 129.5, 130.0, 134.8, 136.4, 138.4, 138.5, 143.8, 149.9; 19F NMR (368 MHz, CD3CN) δ -160.5 (q, J = 45.5 Hz, 2F), -75.3 (q, J = 34.2 Hz, 3F); 11B NMR (125 MHz, CD3CN) δ 0.98 (m); IR (KBr, ν / cm-1) 3109, 1634, 1508, 1454, 1409, 1350, 1292, 1091, 896, 798.
Compound 29
1 H NMR (400 MHz, CD 3 CN) δ 5.87 (s, 2H), 7.30-7.41 (m, 5H), 7.67 (dd, J = 8.3, 6.3 Hz, 1H), 8.37 (s, 1H), 8.56 (d, J = 8.3 Hz, 1H), 8.57 (d, J = 6.3 Hz, 1H); 13 C NMR (100 MHz, CD 3 CN) δ 51.3, 119.7, 128.8, 129.5, 130.0, 134.8, 136.4, 138.4 , 138.5, 143.8, 149.9; 19 F NMR (368 MHz, CD 3 CN) δ -160.5 (q, J = 45.5 Hz, 2F), -75.3 (q, J = 34.2 Hz, 3F); 11 B NMR (125 MHz, CD 3 CN) δ 0.98 (m); IR (KBr, ν / cm -1 ) 3109, 1634, 1508, 1454, 1409, 1350, 1292, 1091, 896, 798.
化合物30
1H NMR (400 MHz, CD3CN) δ 7.52-7.61 (m, 4H), 7.68 (dd, J = 8.5, 6.7 Hz, 1H), 7.99-8.05 (m, 2H), 8.35 (d, J = 8.5 Hz, 1H), 8.56 (dd, J = 6.7, 0.9 Hz, 1H); 13C NMR (100 MHz, CD3CN) δ 97.1, 121.1, 124.2, 127.7, 128.0, 130.4, 133.2, 138.9, 142.7, 152.1, 165.8; 19F NMR (368 MHz, CD3CN) δ -160.4 (q, J = 45.5 Hz, 2F), -75.6 (q, J = 45.5 Hz, 3F); 11B NMR (125 MHz, CD3CN) δ 0.89 (m); IR (KBr, ν / cm-1) 3140, 1561, 1477, 1443, 1389, 1282, 1168, 1092, 904, 791; HRMS (ESI) Calcd for C14H9BF5NNaO2 +[M+Na+] 352.0539, Found 352.0552.
Compound 30
1 H NMR (400 MHz, CD 3 CN) δ 7.52-7.61 (m, 4H), 7.68 (dd, J = 8.5, 6.7 Hz, 1H), 7.99-8.05 (m, 2H), 8.35 (d, J = 8.5 Hz, 1H), 8.56 (dd, J = 6.7, 0.9 Hz, 1H); 13 C NMR (100 MHz, CD 3 CN) δ 97.1, 121.1, 124.2, 127.7, 128.0, 130.4, 133.2, 138.9, 142.7, 152.1, 165.8; 19 F NMR (368 MHz, CD 3 CN) δ -160.4 (q, J = 45.5 Hz, 2F), -75.6 (q, J = 45.5 Hz, 3F); 11 B NMR (125 MHz, CD 3 CN) δ 0.89 (m); IR (KBr, ν / cm -1 ) 3140, 1561, 1477, 1443, 1389, 1282, 1168, 1092, 904, 791; HRMS (ESI) Calcd for C 14 H 9 BF 5 NNaO 2 + [M + Na + ] 352.0539, Found 352.0552.
化合物31
1H NMR (400 MHz, CD3CN) δ 3.71 (s, 3H), 7.44-7.60 (m, 6H), 8.53 (s, 1H); 19F NMR (368 MHz, CD3CN) δ -162.5 (q, J = 39.9 Hz, 2F), -75.4 (q, J = 28.5 Hz, 3F); 11B NMR (125 MHz, CD3CN) δ 0.28 (m).
Compound 31
1 H NMR (400 MHz, CD 3 CN) δ 3.71 (s, 3H), 7.44-7.60 (m, 6H), 8.53 (s, 1H); 19 F NMR (368 MHz, CD 3 CN) δ -162.5 ( q, J = 39.9 Hz, 2F), -75.4 (q, J = 28.5 Hz, 3F); 11 B NMR (125 MHz, CD 3 CN) δ 0.28 (m).
化合物32
1H NMR (400 MHz, CD3CN) δ 3.57 (s, 3H), 3.93 (s, 3H), 7.57-7.63 (m, 5H), 7.69 (s, 1H), 7.90 (d, J = 8.1 Hz, 2H), 8.23 (d, J = 8.1 Hz, 2H); 19F NMR (368 MHz, CD3CN) δ -161.1 (q, J = 39.9 Hz, 2F), -75.8 (q, J = 45.5 Hz, 3F); 11B NMR (125 MHz, CD3CN) δ 0.31 (m).
Compound 32
1 H NMR (400 MHz, CD 3 CN) δ 3.57 (s, 3H), 3.93 (s, 3H), 7.57-7.63 (m, 5H), 7.69 (s, 1H), 7.90 (d, J = 8.1 Hz , 2H), 8.23 (d, J = 8.1 Hz, 2H); 19 F NMR (368 MHz, CD 3 CN) δ -161.1 (q, J = 39.9 Hz, 2F), -75.8 (q, J = 45.5 Hz , 3F); 11 B NMR (125 MHz, CD 3 CN) δ 0.31 (m).
例5
 例1及び例2で得られた化合物について蛍光特性を評価した。テトラヒドロフラン(THF)、およびアセトニトリル(MeCN)中での光物性測定結果を表2に示す。
Example 5
The fluorescence characteristics of the compounds obtained in Examples 1 and 2 were evaluated. Table 2 shows the measurement results of optical properties in tetrahydrofuran (THF) and acetonitrile (MeCN).
Figure JPOXMLDOC01-appb-T000010
 [1] 最長吸収波長 [2] 励起波長:270 nm [3] 励起波長:290 nm [4] 励起波長:310 nm [5] 相対量子収率の標準物質:2-アミノピリジン(aq.H2SO4、φ= 0.66) [6] 相対量子収率の標準物質:硫酸キニーネ(aq.H2SO4、φ= 0.55)
Figure JPOXMLDOC01-appb-T000010
[1] Longest absorption wavelength [2] Excitation wavelength: 270 nm [3] Excitation wavelength: 290 nm [4] Excitation wavelength: 310 nm [5] Relative quantum yield standard: 2-aminopyridine (aq.H 2 SO 4, φ F = 0.66) [6] Relative quantum yield reference material: quinine sulfate (aq.H 2 SO 4, φ F = 0.55)
例6
 例1、例2、及び例4で得られた化合物について蛍光特性を評価した。固体状態における光物性測定結果を表3に示す。
Example 6
The fluorescence characteristics of the compounds obtained in Example 1, Example 2, and Example 4 were evaluated. Table 3 shows the measurement results of optical properties in the solid state.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011

Claims (9)

  1. 以下の一般式(I):
    Figure JPOXMLDOC01-appb-C000001
    〔式中、R1は少なくとも1個のフッ素原子を有するアルキル基、又は少なくとも1個のフッ素原子を環上に有するアリール基を示し、環Aは1ないし3個の環構成窒素原子を含む単環式芳香環(該単環式芳香環は1又は2個以上の置換基を有していてもよく、2個以上の隣接する置換基は互いに結合して環を形成していてもよい)を示すか、又は環Aは1ないし3個の環構成窒素原子を含む単環式芳香環(該環構成窒素原子のうちの1つがN-オキシドを形成する)を部分構造として含む多環式芳香環(該多環式芳香環は該単環式芳香環以外の環に1個以上の環構成ヘテロ原子を含んでいてもよく、環上には1個又は2個以上の置換基を有していてもよく、2個以上の隣接する置換基は互いに結合して環を形成していてもよい)を示す〕で表される化合物。
    The following general formula (I):
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, R 1 represents an alkyl group having at least one fluorine atom, or an aryl group having at least one fluorine atom on the ring, and ring A is a single group containing 1 to 3 ring nitrogen atoms. Cyclic aromatic ring (the monocyclic aromatic ring may have one or more substituents, and two or more adjacent substituents may be bonded to each other to form a ring) Or ring A is a polycyclic ring containing a monocyclic aromatic ring containing 1 to 3 ring nitrogen atoms (one of the ring nitrogen atoms forming an N-oxide) as a partial structure. An aromatic ring (the polycyclic aromatic ring may contain one or more ring-constituting heteroatoms in a ring other than the monocyclic aromatic ring, and has one or more substituents on the ring. And two or more adjacent substituents may be bonded to each other to form a ring).
  2. R1がパーフルオロアルキル基又はパーフルオロアリール基(ただし環上のフッ素原子のうちの少なくとも1個はパーフルオロアルキル基で置換されていてもよい)である請求項1に記載の化合物。 The compound according to claim 1, wherein R 1 is a perfluoroalkyl group or a perfluoroaryl group (however, at least one of the fluorine atoms on the ring may be substituted with a perfluoroalkyl group).
  3. R1がトリフルオロメチル基、ペンタフルオロフェニル基、又はテトラフルオロ(トリフルオロメチル)フェニル基である請求項1に記載の化合物。 The compound according to claim 1, wherein R 1 is a trifluoromethyl group, a pentafluorophenyl group, or a tetrafluoro (trifluoromethyl) phenyl group.
  4. 環Aが1個又は2個の環構成窒素原子を含む5又は6員の芳香環(該芳香環は1個又は2個以上の置換基を有していてもよく、2個以上の隣接する置換基は互いに結合して環を形成していてもよい)である請求項1ないし3のいずれか1項に記載の化合物。 Ring A is a 5- or 6-membered aromatic ring containing 1 or 2 ring-constituting nitrogen atoms (the aromatic ring may have one or more substituents, and two or more adjacent rings The compound according to any one of claims 1 to 3, wherein the substituents may be bonded to each other to form a ring.
  5. 環Aがピリジン環、ピリミジン環、ピリダジン環、ピラジン環、ピロール環、又はイミダゾール環(該ピリジン環、ピリミジン環、ピリダジン環、ピロール環、又はイミダゾール環は1個又は2個以上の置換基を有していてもよく、2個以上の隣接する置換基は互いに結合して環を形成していてもよい)である請求項4に記載の化合物。 Ring A is a pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring, pyrrole ring, or imidazole ring (the pyridine ring, pyrimidine ring, pyridazine ring, pyrrole ring, or imidazole ring has one or more substituents. The compound according to claim 4, wherein two or more adjacent substituents may be bonded to each other to form a ring.
  6. 環AがN-オキシドを形成する1個又は2個の環構成窒素原子を含む5又は6員の芳香環を部分構造として含む2環式、3環式、又は4環式芳香環(該縮合環は1個又は2個以上の置換基を有していてもよく、2個以上の隣接する置換基は互いに結合して環を形成していてもよく、上記部分構造の芳香環以外の環に1個以上の環構成ヘテロ原子を含んでいてもよい)である請求項1ないし3のいずれか1項に記載の化合物。 A bicyclic, tricyclic, or tetracyclic aromatic ring containing a 5- or 6-membered aromatic ring containing 1 or 2 ring-constituting nitrogen atoms as a partial structure, wherein ring A forms an N-oxide (the fused The ring may have one or more substituents, and two or more adjacent substituents may be bonded to each other to form a ring, and a ring other than the aromatic ring of the above partial structure The compound according to any one of claims 1 to 3, which may contain one or more ring-constituting heteroatoms.
  7. 環Aがキノリン環、イソキノリン環、ナフチリジン環、フタラジン環、キノキサリン環、キナゾリン環、シンノリン環、プテリジン環、カルボリン環、フェナントリジン環、アクリジン環、又はフェナントロリン環(該環は1個又は2個以上の置換基を有していてもよく、2個以上の隣接する置換基は互いに結合して環を形成していてもよい)である請求項6に記載の化合物。  Ring A is a quinoline ring, isoquinoline ring, naphthyridine ring, phthalazine ring, quinoxaline ring, quinazoline ring, cinnoline ring, pteridine ring, carboline ring, phenanthridine ring, acridine ring, or phenanthroline ring (one or two rings) The compound according to claim 6, which may have the above substituents, and two or more adjacent substituents may be bonded to each other to form a ring.
  8. 請求項1ないし7のいずれか1項に記載の化合物を含む蛍光剤。 A fluorescent agent comprising the compound according to claim 1.
  9. 請求項1ないし7のいずれか1項に記載の化合物を含む蛍光剤としての使用。
     
    Use as a fluorescent agent comprising the compound according to any one of claims 1 to 7.
PCT/JP2014/051137 2013-02-26 2014-01-21 Nitrogenated aromatic ring n-oxide-borane complex WO2014132704A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015502804A JPWO2014132704A1 (en) 2013-02-26 2014-01-21 Nitrogen-containing aromatic ring N-oxide-borane complex

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013035557 2013-02-26
JP2013-035557 2013-02-26

Publications (1)

Publication Number Publication Date
WO2014132704A1 true WO2014132704A1 (en) 2014-09-04

Family

ID=51427978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051137 WO2014132704A1 (en) 2013-02-26 2014-01-21 Nitrogenated aromatic ring n-oxide-borane complex

Country Status (2)

Country Link
JP (1) JPWO2014132704A1 (en)
WO (1) WO2014132704A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039597A1 (en) 2017-08-25 2019-02-28 国立研究開発法人科学技術振興機構 Organic optical material
CN113880870A (en) * 2020-07-01 2022-01-04 北京化工大学 Pyridine fluoroboron fluorescent dye compound and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138096A (en) * 1998-07-04 2000-05-16 Bayer Ag Electroluminescent assembly using boron chelate of 8- amino quinoline derivative

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138096A (en) * 1998-07-04 2000-05-16 Bayer Ag Electroluminescent assembly using boron chelate of 8- amino quinoline derivative

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANDREEV, V. P. ET AL.: "Intramolecular charge transfer processes in a series of styryl derivatives of pyridine and quinoline N-oxides", CHEMISTRY OF HETEROCYCLIC COMPOUNDS, vol. 34, no. 8, 1998, pages 941 - 949 *
KLEMM, L. H. ET AL.: "Chemistry of thienopyridines. XXIX. The Reissert-Henze reaction as a route to simple C-substituents alpha to the heteronitrogen atom", JOURNAL OF HETEROCYCLIC CHEMISTRY, vol. 20, no. 1, 1983, pages 213 - 17 *
KULEVSKY, N. ET AL.: "BX3; complexes of some pyridine N-oxides", JOURNAL OF INORGANIC AND NUCLEAR CHEMISTRY, vol. 27, no. 9, 1965, pages 2111 - 13 *
TAKAHASHI, SHIRO ET AL.: "Benzimidazole N-oxides. VII. Reactivity of 1,2-dimethylbenzimidazole 3-oxide", CHEMICAL & PHARMACEUTICAL BULLETIN, vol. 14, no. 11, 1966, pages 1219 - 27, XP055136814, DOI: doi:10.1248/cpb.14.1219 *
TOMOAKI NISHIDA ET AL.: "Hetero Hokozoku Kagobutsu no N-oxide-BF2CF3 Sakutai: Ichi Sentakuteki Trifluoromethyl-ka Hanno eno Riyo Oyobi sono Keiko Tokusei", SYMPOSIUM ON ORGANIC SYSTHESIS, vol. 104 TH, 28 October 2013 (2013-10-28), pages 40 - 41 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039597A1 (en) 2017-08-25 2019-02-28 国立研究開発法人科学技術振興機構 Organic optical material
JPWO2019039597A1 (en) * 2017-08-25 2020-10-01 国立研究開発法人科学技術振興機構 Organic optical material
JP7254298B2 (en) 2017-08-25 2023-04-10 国立研究開発法人科学技術振興機構 organic optical materials
CN113880870A (en) * 2020-07-01 2022-01-04 北京化工大学 Pyridine fluoroboron fluorescent dye compound and preparation method thereof
CN113880870B (en) * 2020-07-01 2024-01-09 北京化工大学 Pyridine fluorine boron fluorescent dye compound and preparation method thereof

Also Published As

Publication number Publication date
JPWO2014132704A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
WO2018071697A1 (en) Narrow band red phosphorescent tetradentate platinum (ii) complexes
EP3584850A1 (en) Organic electroluminescence element and electronic device
WO2018084189A1 (en) Method for producing iridium complex, iridium complex, and light-emitting material comprising said compound
JP6196554B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
TW201508001A (en) Light-emitting material, delayed fluorescence emitter, organic electroluminescence device and compound
WO2019240251A1 (en) Organic electroluminescent element and electronic equipment using same
JP6660782B2 (en) Organic EL material and organic EL device using the same
JPWO2014203840A1 (en) Red light emitting material, organic light emitting device and compound
Hung et al. Palladium catalyzed synthesis and physical properties of indolo [2, 3-b] quinoxalines
WO2013179645A1 (en) Organic-electroluminescent-element material, and organic electroluminescent element using same
WO2021015177A1 (en) Organic electroluminescent element and electronic device
JP2019509977A (en) Luminescent compound
CN110372756B (en) Bivalent platinum complex and preparation method and application thereof
KR20100116690A (en) Substituted bipyridyl compound and organic electroluminescent element
Francis et al. Achieving visible light excitation in carbazole-based Eu 3+–β-diketonate complexes via molecular engineering
KR20170124555A (en) Organic electroluminescent device
JP6732190B2 (en) Heteroleptic iridium complex, and light emitting material and organic light emitting device using the compound
WO2014132704A1 (en) Nitrogenated aromatic ring n-oxide-borane complex
TW201412764A (en) Material for organic electroluminescence element and organic electroluminescence element using the same
WO2020241580A1 (en) Organic electroluminescent element and electronic device
TW201332943A (en) Aromatic amine derivative and organic electroluminescence device using same
WO2012066686A1 (en) Transition metal complex and use of same
JP6420889B2 (en) Compound and organic electronic device using the same
WO2014203540A1 (en) Metal complex composition and method for producing metal complex
WO2021166552A1 (en) Organic electroluminescence element and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14757154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015502804

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14757154

Country of ref document: EP

Kind code of ref document: A1