WO2014132467A1 - Carbon nanocage and intermediate thereof, and methods respectively for producing said carbon nanocage and said intermediate - Google Patents

Carbon nanocage and intermediate thereof, and methods respectively for producing said carbon nanocage and said intermediate Download PDF

Info

Publication number
WO2014132467A1
WO2014132467A1 PCT/JP2013/072775 JP2013072775W WO2014132467A1 WO 2014132467 A1 WO2014132467 A1 WO 2014132467A1 JP 2013072775 W JP2013072775 W JP 2013072775W WO 2014132467 A1 WO2014132467 A1 WO 2014132467A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
same
different
group
rings
Prior art date
Application number
PCT/JP2013/072775
Other languages
French (fr)
Japanese (ja)
Inventor
健一郎 伊丹
泰知 瀬川
克磨 松井
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to JP2015502708A priority Critical patent/JPWO2014132467A1/en
Publication of WO2014132467A1 publication Critical patent/WO2014132467A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/24Preparation of ethers by reactions not forming ether-oxygen bonds by elimination of halogens, e.g. elimination of HCl

Definitions

  • the present invention relates to a carbon nanocage, an intermediate thereof, and a production method thereof.
  • a carbon nanotube having a structure in which a two-dimensional graphene sheet is wound in a cylindrical shape a ring-shaped carbon nanotube made of the carbon nanotube, and the like are known.
  • Carbon nanotubes have extremely high mechanical strength, can withstand high temperatures, and have excellent properties such as efficient electron emission when voltage is applied. Applications in various fields such as life science are expected.
  • CPP cycloparaphenylene
  • the present inventors have succeeded in synthesizing various cycloparaphenylene compounds by using a cyclocyclophenylene precursor using a cyclohexane ring as a bent portion (Patent Documents 1 and 2, Non-Patent Document 1).
  • This cycloparaphenylene compound was difficult to synthesize because benzene, which was originally a flat surface, was distorted in a ring shape, but due to the successful elimination of strain at the synthesis stage using a unique method, various sizes and shapes were obtained. This made it possible to synthesize cycloparaphenylene compounds.
  • This cycloparaphenylene compound is the shortest partial skeleton of linear carbon nanotubes, and is an ideal building block for complete chemical synthesis of linear carbon nanotubes with controlled thickness and side structure.
  • the above-mentioned cycloparaphenylene compound is a building block for the complete chemical synthesis of linear carbon nanotubes, but it is a branching carbon nanotube that is expected to be applied to the electronics field as the smallest transistor, logic gate, etc.
  • an object of the present invention is to provide a method for easily synthesizing a carbon nanocage that can be a junction unit of branched carbon nanotubes.
  • the present inventors applied a synthesis method of a cycloparaphenylene compound and used a specific three-pronged unit as a starting material, so that a carbon nanocage that is a cage compound was obtained. It was found that it can be synthesized. Specifically, a specific trigeminal unit is homocoupled, or a specific trigeminal unit and another unit are cross-coupled to synthesize a box-shaped compound having no strain, and the cyclohexane ring part of this compound is synthesized. It has been found that carbon nanocages having strains and uniformly curved arches can be synthesized by aromatization.
  • the present invention has been completed as a result of further research based on such knowledge. That is, the present invention includes the configurations of items 1 to 10 below.
  • R 2 is the same or different and each represents a general formula (IIa-1):
  • Item 2 The box-shaped compound according to Item 1, which is a compound represented by:
  • Item 3.8 is a cage compound (A) in which two or more rings are linked by a single bond, The rings have sp2 hybrid carbon atoms present in the rings bonded to each other, (1) Formula:
  • a method for producing a cage compound comprising (3) 6 or more divalent aromatic hydrocarbon groups which may have a substituent, A box-shaped compound (B) in which eight or more rings are linked by a single bond, The rings are bonded to each other with sp2 hybrid carbon atoms or sp3 hybrid carbon atoms present in the ring, (1) Formula:
  • R 3 is the same or different and each represents a hydrogen atom or hydroxyl-protecting group
  • R 4 is the same or different and each represents a divalent aromatic hydrocarbon group optionally having a substituent
  • Y is the same or different and each represents a halogen atom or general formula (III-1):
  • Item 4 The production method according to Item 3, comprising a coupling step of coupling the compound (III) represented by the formula:
  • Item 5.8 is a cage compound in which at least eight rings are linked by a single bond, The rings have sp2 hybrid carbon atoms present in the rings bonded to each other, (1) Formula:
  • a cage compound comprising 2 to 4 groups represented by the formula (2) and (2) 6 or more divalent aromatic hydrocarbon groups which may have a substituent.
  • R 1 is the same or different and each represents a general formula (Ia-1):
  • Item 7. The cage compound according to Item 6, wherein R 4 is a group having a bond at the para position.
  • Item 8. The cage compound according to any one of Items 5 to 7, wherein the total number of rings is 8 to 22.
  • Item 9.8 is a box-shaped compound (B) in which not less than 9.8 rings are linked by a single bond, The rings are bonded to each other with sp2 hybrid carbon atoms or sp3 hybrid carbon atoms present in the ring, (1) Formula:
  • R 3 is the same or different and each represents a hydrogen atom or hydroxyl-protecting group
  • R 4 is the same or different and each represents a divalent aromatic hydrocarbon group optionally having a substituent
  • Y is the same or different and each represents a halogen atom or general formula (III-1):
  • R 5 is the same or different and each represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 5 is bonded to each other to form a ring with adjacent —O—B—O—. May be.
  • R 3 is the same or different and each represents a hydrogen atom or hydroxyl-protecting group
  • R 4 is the same or different and each represents a divalent aromatic hydrocarbon group optionally having a substituent
  • Y is the same or different and each represents a halogen atom or general formula (III-1):
  • R 5 is the same or different and each represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 5 is bonded to each other to form a ring with adjacent —O—B—O—. May be.
  • a carbon nanocage that is a cage compound can be synthesized by a simple technique using a commercially available compound. As described above, this carbon nanocage is expected as a junction unit of branched carbon nanotubes, and precise bottom-up synthesis of branched carbon nanotubes is expected.
  • this carbon nanocage can change the space existing inside depending on the number of rings constituting it, and can incorporate guest molecules here.
  • the size (diameter) of the internal space can be changed according to the number of rings as follows.
  • this carbon nanocage is excellent in handleability (for example, it is a white solid that dissolves well in most organic solvents and does not decompose even at a high temperature of 300 ° C. or higher).
  • Carbon nanocages absorb light well and have strong fluorescence (for example, in the case of [6, 6, 6] cage, it absorbs one photon, absorbs two photons, and has strong blue fluorescence.
  • [4] .4.4] Cages and [5.5.5] cages absorb one photon and have strong blue fluorescence.
  • the carbon nanocage synthesized by the present invention is not only expected as a junction unit of branched carbon nanotubes, but also an organic EL material, an organic transistor material, an optical recording material, a high-density optical storage, a living body It can be used in various applications such as fluorescence imaging of molecules, photosensors for guest molecules.
  • 2 ''',5''' - didecyl -p- is a plot of P i versus q 0 solution of Sepuchifeniru.
  • a value of q 0 was obtained from the curve fit of FIG. [4.4.4] Absorption and fluorescence spectra of cages, [5.5.5] cages and [6.6.6] cages.
  • the solid line is the absorption spectrum of the [4.4.4] cage, [5.5.5] cage, and [6.6.6] cage in order from the left, and the broken line is [6.6 in order from the left. .6] Fluorescence spectra of cage, [5.5.5] cage and [4.4.4] cage.
  • Example 1 is a drawing showing the structure of a trisubstituted benzene of protected tribromobenzene obtained in Example 1-3 by thermal vibration ellipsoid drawing software (ORTEP). Note that hydrogen atoms are omitted. It is drawing which shows the structure of the [4.4.4] cage obtained in Example 3-2 by thermal vibration ellipsoid drawing software (ORTEP).
  • A overall appearance
  • the cage compound (A) of the present invention is a cage compound (A) in which 8 or more rings are linked by a single bond, The rings have sp2 hybrid carbon atoms present in the rings bonded to each other, (1) Formula:
  • the number of units (1) possessed by the cage compound (A) of the present invention is 2 to 4, preferably 2 or 4, and more preferably 2. In the case of having two units (1), the cage compound (A) of the present invention has three uniform arches having strain.
  • the divalent aromatic hydrocarbon group as the unit (3) possessed by the cage compound (A) of the present invention is a divalent group having an aromatic ring, and 2 constituting this aromatic ring.
  • Each of the hydrogen atoms bonded to one carbon atom is a group formed by elimination one by one.
  • bonded with carbon which comprises this aromatic ring may be the derivative group (divalent derivative group) substituted by the functional group.
  • the cage compound (A) of the present invention may have a plurality of different aromatic hydrocarbon groups.
  • Examples of the aromatic ring include not only a benzene ring but also a ring obtained by condensing a plurality of benzene rings (benzene condensed ring), a ring obtained by condensing a benzene ring and other rings (hereinafter, a plurality of benzene rings are condensed). And a ring obtained by condensing a benzene ring with another ring may be simply referred to as a “fused ring”).
  • Examples of the condensed ring include a pentalene ring, an indene ring, a naphthalene ring, an anthracene ring, a tetracene ring, a pentacene ring, a pyrene ring, a perylene ring, a triphenylene ring, an azulene ring, a heptalene ring, a biphenylene ring, an indacene ring, an acenaphthylene ring, Examples include a fluorene ring, a phenalene ring, a phenanthrene ring, and the like.
  • the substituent that the aromatic hydrocarbon group may have is not particularly limited, but a functional group that can impart a function that cannot be imparted by a hydrocarbon-only cyclic compound is preferable.
  • a halogen atom is preferable.
  • a chlorine atom is more preferable because it is introduced from the time of manufacturing raw materials and is not particularly likely to become a reaction point during the manufacturing process.
  • the unit (3) of the cage compound (A) of the present invention is a group having a divalent 6-membered aromatic ring or a divalent 6-membered heteroaromatic ring among the above rings, A group having a bond at the para position is preferred.
  • the ring forming the unit (3) is preferably a single ring or a condensed ring, and more preferably a single ring.
  • the unit (3) of the cage compound (A) of the present invention is preferably a divalent aromatic hydrocarbon group, particularly preferably a phenylene group (particularly 1,4-phenylene group) and a naphthylene group. (Especially 1,5-naphthylene group or 2,6-naphthylene group), more preferably phenylene group (especially 1,4-phenylene group).
  • the cage compound (A) of the present invention has at least one condensed ring as the unit (3)
  • the cage compound of the present invention can be a chiral cage compound. This is useful in that the chiral fullerene can be more efficiently included.
  • the number of such units (3) is 6 or more, preferably 6 to 98, more preferably 6 to 48, still more preferably 6 to 28, and more.
  • the number is preferably 6 to 18, particularly preferably 6, 12, 15, or 18. That is, the number of units (3) is preferably a multiple of three.
  • the total number of rings is the total number of units (1) and units (3), which is 8 or more, preferably 8 to 100, more preferably 8 to The number is 50, more preferably 8 to 30, more preferably 8 to 22, particularly preferably 8, 14, 17, 20, or 22.
  • Such a cage compound (A) of the present invention is excellent in handleability (for example, it is a white solid which dissolves well in most organic solvents and does not decompose even at a high temperature of 300 ° C. or higher). Also, it absorbs light well and has strong fluorescence (for example, in the case of [6.6.6] cage, it absorbs one photon, absorbs two photons, and has strong blue fluorescence.
  • the cage compound (A) of the present invention is not only expected as a junction unit of branched carbon nanotubes, but also organic EL materials, organic transistor materials, optical recording materials, high-density optical storage, and biomolecular fluorescence. It can be used for various applications such as imaging and optical sensors for guest molecules.
  • cage compound (A) of the present invention that satisfies such conditions include, for example, the general formula (Ia):
  • R 1 is the same or different and each represents a general formula (Ia-1):
  • R 4 is the same or different and each is a divalent aromatic hydrocarbon group optionally having a substituent; n is the same or different and each is an integer of 0 or more.) It is a bivalent group shown by these. ] (Ia) etc. which are shown by these are mentioned.
  • This compound has three arches that are uniformly curved by uniformly distorting a plurality of linked rings.
  • R 4 is the same or different and each is a divalent aromatic hydrocarbon group which may have a substituent. What was mentioned above is employable as a divalent aromatic hydrocarbon group and the substituent which it may have. The preferred specific examples can also be the same. That is, R 4 preferably has a bond at the para position, and is a divalent aromatic hydrocarbon group, particularly a phenylene group (especially 1,4-phenylene group) and a naphthylene group (especially 1,4).
  • 5-naphthylene group or 2,6-naphthylene group) and phenylene group (especially 1,4-phenylene group) are preferable, and when having a substituent, a halogen atom, particularly a chlorine atom is preferable as the substituent.
  • n is the same or different and each is an integer of 0 or more. When both n are 0, they do not have any R 4 , that is, R 1 is a 4,4′-biphenylene group.
  • n is preferably an integer of 0 to 31, more preferably an integer of 0 to 14, still more preferably an integer of 0 to 8, more preferably an integer of 0 to 4, and particularly preferably an integer of 1 to 4.
  • Etc. and one or more of these can be employed.
  • Etc. are preferable.
  • the cage compound (A) of the present invention represented by the general formula (Ia) has a substantially spherical nanospace at the center and can incorporate guest molecules therein.
  • a [6.6.6] cage in which each R 1 is linked with six 1,4-phenylene groups the diameter is about 1.84 nm, and each R 1 has five 1,4-phenylene groups.
  • its diameter at the linked [5.5.5] cage about 1.58 nm the diameter is in also R 1 is either 1,4 phenylene group linked four [4.4.4] cage about It is 1.30 nm, and R 1 can be appropriately selected according to the size of the required nanospace.
  • Such a cage compound of the present invention is a novel compound not described in any literature.
  • the cage compound (A) of the present invention can be obtained through a conversion step of converting the cyclohexane ring part of the box compound (B) of the present invention into a benzene ring.
  • a general oxidation reaction can be performed.
  • Specific examples thereof include, for example, a method of heating (acid-treating) the box-shaped compound (B) of the present invention in the presence of an acid, and a reaction with an oxidizing agent in the presence of oxygen (air atmosphere, oxygen atmosphere, etc.).
  • the method etc. to make are also mentioned.
  • a dehydrogenation reaction or the like is usually applied, and the cyclohexane ring part of the box-shaped compound (B) of the present invention is chemically changed (aromatized) to a benzene ring, whereby the cage-shaped compound (A) of the present invention Can be synthesized.
  • R 1 is the same as described above, and preferred specific examples are also the same.
  • the specific method thereof is not particularly limited, but for example, the following method is preferable.
  • ( ⁇ ) A method in which the box compound (B) of the present invention and an acid are dissolved in a solvent, and then the resulting solution is heated and reacted.
  • ( ⁇ ) A method in which the box compound (B) of the present invention is dissolved in a solvent, and then the mixture obtained by mixing the resulting solution and an acid is heated to react.
  • the acid is not particularly limited, but is preferably a strong acid or a salt thereof used for a catalyst or the like.
  • sulfuric acid, sodium hydrogen sulfate, methanesulfonic acid, p-toluenesulfonic acid, tungstophosphoric acid, tungstosilicic acid, molybdophosphoric acid, molybdosilicic acid, boron trifluoride ethylate, tin tetrachloride and the like can be mentioned. These can be used alone or in combination of two or more.
  • the amount of the acid used varies depending on the production conditions and the like, but is an excess amount relative to the box-shaped compound (B) of the present invention. Specifically, from the viewpoint of yield, it is preferably 10 to 100 mol, more preferably 20 to 50 mol, per 1 mol of the box-shaped compound (B) of the present invention.
  • an oxidizing agent can be used in combination.
  • the oxidizing agent that can be used is not particularly limited, and examples thereof include chloranils such as o-chloranil and p-chloranil; 1,4-benzoquinone, 3,5-di-t-butyl-1,2-benzoquinone, 9, Quinones such as 10-fenvanthrenequinone and 2,3-dichloro-5,6-dicyano-p-benzoquinone; metal oxidizing agents such as CuCl 2 and K 2 S 2 O 8 can be used.
  • chloranil is preferable from the viewpoint of yield, and o-chloranil is more preferable.
  • the amount used is preferably 1 to 10 mol, more preferably 3 to 7 mol, per 1 mol of the box-shaped compound (B) of the present invention, from the viewpoint of yield.
  • the solvent used in the acid treatment reaction may be a nonpolar solvent or a polar solvent.
  • alkanes such as hexane, heptane, and octane
  • haloalkanes such as methylene chloride, chloroform, carbon tetrachloride, and ethylene chloride
  • benzenes such as benzene, toluene, xylene (m-xylene, etc.), mesitylene, and pentamethylbenzene
  • Halobenzenes such as chlorobenzene and bromobenzene
  • ethers such as diethyl ether and anisole; dimethyl sulfoxide and the like.
  • the said solvent can be used individually by 1 type or in combination of 2 or more types.
  • the reaction intermediate from the raw material to the cage compound (A) of the present invention may have low solubility in one solvent used. Alternatively, it may be added in advance or in the middle of the reaction.
  • the heating temperature in the conversion step is usually preferably 50 ° C. or higher, more preferably 80 ° C. or higher, and more preferably 100 ° C. or higher from the viewpoint of yield, when either method ( ⁇ ) or ( ⁇ ) is adopted. Further preferred is 120 ° C. or higher. Moreover, when using a solvent, it is preferable to set it as the boiling point or less of the said solvent to be used.
  • the heating means includes an oil bath, an aluminum block thermostatic bath, a heat gun, a burner, and microwave irradiation.
  • a known microwave reaction apparatus used for microwave reaction can be used.
  • reflux cooling may be used in combination.
  • the reaction atmosphere in the acid treatment is not particularly limited, but is preferably an inert gas atmosphere, and may be an argon gas atmosphere, a nitrogen gas atmosphere, or the like. An air atmosphere can also be used.
  • a purification step can be provided as necessary after the conversion step. That is, it can be subjected to general post-treatment such as solvent (solvent) removal (when a solvent is used), washing, chromatographic separation, and the like.
  • the obtained cage compound of the present invention is usually amorphous (non-crystalline) after the conversion step, it can be crystallized by utilizing a conventionally known recrystallization method of an organic compound.
  • the organic solvent used in the crystallization operation may be included in the cage constituting the molecule.
  • the cage compound obtained by the method for producing a cage compound of the present invention is a compound having the properties as described in [1]. According to this production method, a variety of cage compounds such as Compound (Ia) can be synthesized by employing various box compounds as raw materials.
  • box-shaped compound The box-shaped compound of the present invention is an intermediate positioned as a starting material for the conversion step in the above-described method for producing a cage compound of the present invention.
  • the point having the unit (2) and the number of the units (3) are different from the cage compound of the present invention.
  • the number of units (1) possessed by the box-shaped compound (B) of the present invention is 2 to 4, preferably 2 or 4, and more preferably 2.
  • the box-shaped compound (B) of this invention has three arches which do not have a distortion.
  • the number of units (2) possessed by the box-type compound (B) of the present invention is six. Thereby, a box-shaped compound is obtained without distortion. And the cage compound of this invention is obtained by using for the above-mentioned conversion process.
  • the divalent aromatic hydrocarbon group as the unit (3) that the box-shaped compound (B) of the present invention may have, the same ones as described above can be adopted. The same applies to preferred embodiments. That is, the unit (3) that the box-shaped compound (B) of the present invention may have is a group having a divalent 6-membered aromatic ring or a divalent 6-membered heteroaromatic ring, A group having a bond at the para position is preferred.
  • the ring forming the unit (3) is preferably a single ring or a condensed ring, and more preferably a single ring.
  • the unit (3) which the box-shaped compound (B) of the present invention may have is preferably a divalent aromatic hydrocarbon group, particularly preferably a phenylene group (especially 1,4-phenylene). Group) and naphthylene group (especially 1,5-naphthylene group or 2,6-naphthylene group), more preferably phenylene group (especially 1,4-phenylene group).
  • the number of such units (3) is 0 or more, preferably 0 to 92, more preferably 0 to 42, still more preferably 0 to 22,
  • the number is preferably 0 to 12, particularly preferably 0, 6, 9, or 12. That is, the number of units (3) is preferably a multiple of three.
  • the total number of rings is the total number of units (1) to (3), which is 8 or more, preferably 8 to 100, more preferably 8 to 50. More preferably, it is 8-30, more preferably 8-22, and particularly preferably 8, 14, 17, 20, or 22.
  • box-shaped compound (B) of the present invention that satisfies such conditions include, for example, the general formula (IIa):
  • R 2 is the same or different and each represents a general formula (IIa-1):
  • R 3 is the same or different and each represents a hydrogen atom or a hydroxyl-protecting group; R 4 and n are the same as defined above.
  • It is a bivalent group shown by these.
  • (IIa) etc. which are shown by these.
  • R 3 is a hydrogen atom or a hydroxyl-protecting group.
  • the hydroxyl-protecting group is not particularly limited, but is an alkoxyalkyl group (methoxymethyl group (—CH 2 —O—CH 3 , hereinafter sometimes referred to as “-MOM”)); alkanoyl Group (eg, acetyl group, propionyl group, etc.); silyl group (eg, trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, etc.); tetrahydropyranyl group (THP); alkyl group (eg, methyl group, ethyl group) Etc.); a benzyl group and the like are mentioned, an alkoxyalkyl group is preferred, and a methoxymethyl group is more preferred.
  • alkoxyalkyl group is preferred, and a methoxymethyl group is more preferred.
  • the above protecting group (particularly an alkoxyalkyl group, especially a methoxymethyl group) is substituted with a hydrogen atom forming an alcohol (hydroxyl group), and functions as an alcohol protecting group.
  • an alkoxyalkyl group particularly a methoxymethyl group, can be obtained by reacting chloromethyl methyl ether (Cl—CH 2 —O—CH 3 ) with an alcohol that forms a protecting group.
  • R 3 is preferably an alkoxyalkyl group, particularly a methoxymethyl group.
  • box-shaped compound (B) of the present invention represented by the general formula (IIa) that satisfies the above conditions, specifically,
  • Such a box-shaped compound of the present invention is a novel compound not described in any literature.
  • box-shaped compound is: General formula (III):
  • R 3 and R 4 are the same as described above; m is the same or different and each is an integer of 0 or more; Y is the same or different and each represents a halogen atom or a general formula (III-1):
  • R 5 is the same or different and each represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 5 is bonded to each other to form a ring with adjacent —O—B—O—. May be.
  • R 3 is a hydrogen atom or a hydroxyl-protecting group, and the hydroxyl-protecting group can be the same as described above. Moreover, a preferable specific example can also be made the same. That is, an alkoxyalkyl group is preferable, and a methoxymethyl group is more preferable.
  • R 4 is a divalent aromatic hydrocarbon group which may have a substituent, and can be the same as described above. Moreover, a preferable specific example can also be made the same. That is, R 4 preferably has a bond at the para position, and is a divalent aromatic hydrocarbon group, particularly a phenylene group (especially 1,4-phenylene group) and a naphthylene group (especially 1,4). 5-naphthylene group or 2,6-naphthylene group) and phenylene group (especially 1,4-phenylene group) are preferable, and when having a substituent, a halogen atom, particularly a chlorine atom is preferable as the substituent.
  • M is an integer of 0 or more, and can be the same as above. Moreover, a preferable specific example can also be made the same. That is, an integer of 0 to 16 is preferable, an integer of 0 to 8 is more preferable, an integer of 0 to 5 is more preferable, an integer of 0 to 3 is more preferable, and an integer of 1 to 3 is particularly preferable.
  • Y is the same or different and each is a halogen atom or general formula (III-1):
  • R 5 is the same or different and each represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 5 is bonded to each other to form a ring with adjacent —O—B—O—. May be.) It is group shown by these.
  • the halogen atom in Y in the general formula (III) is not limited, and examples thereof include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Of these, a bromine atom is preferable from the viewpoint of yield and the like.
  • the group represented by the general formula (III-1) may be hereinafter referred to as “boronic acid or an ester group thereof”, and R 5 is a hydrogen atom or an alkyl group.
  • the alkyl group has 1 to 10 carbon atoms, preferably 1 to 8 carbon atoms, and more preferably 1 to 5 carbon atoms.
  • Two R 5 may be the same or different.
  • R 5 is an alkyl group, the carbon atoms constituting each alkyl group may be bonded to each other to form a ring together with a boron atom and an oxygen atom.
  • Such compound (III) can be synthesized by various methods. For example, in the case of a compound in which a trifurcated benzene ring and a cyclohexane ring are bonded via another ring, General formula (IIIa):
  • the terminal of the compound (IIIa) is a halogen atom
  • the terminal of the compound (IV) is preferably a boronic acid or an ester group thereof
  • the compound ( The end of IV) is preferably a halogen atom
  • Compound (IV) is a known compound and can be synthesized by a known method.
  • the compound (10) described in the pamphlet of WO2011 / 052948 can be used, and can be synthesized according to or according to the synthesis method of the compound (10).
  • the matter described in the pamphlet of WO2011 / 052948 is cited as a reference in this specification.
  • Compound (IIIa) and compound (IV) are reacted, and the ratio is preferably from 1 to 100 mol of compound (IV) to 1 mol of compound (IIIa) from the viewpoint of yield and the like. 50 moles are more preferred, and 5 to 20 moles are even more preferred.
  • the reaction is usually performed in the presence of a catalyst, and a palladium-based catalyst is preferably used.
  • a palladium-based catalyst include metal palladium and known palladium compounds as catalysts for synthesis of organic compounds (including polymer compounds).
  • a palladium-based catalyst (palladium compound) used in the Suzuki-Miyaura coupling reaction can be used.
  • Pd (PPh 3 ) 4 (Ph is a phenyl group)
  • palladium acetate Pd (OAc) 2
  • tris (dibenzylideneacetone) dipalladium (0)
  • Pd 2 (dba) 3 tris (dibenzylideneacetone) dipalladium (0) chloroform complex
  • Pd 2 (dba) 3 , Pd (PPh 3 ) 4 , (1,1′-bis (diphenylphosphino) ferrocene) dichloropalladium (II) and the like are preferable.
  • the amount used is usually preferably 0.001 to 1 mol, preferably 0.005 to 0.005 mol per mol of the starting compound (IIIa) from the viewpoint of yield. 1 mole is more preferred.
  • some of the palladium-based catalysts described above contain a ligand, but a phosphorus ligand that can be coordinated to a palladium atom can also be used separately from the palladium-based catalyst.
  • a phosphorus ligand include triphenylphosphine, tri- (o, m, p) -tolylphosphine, tris (2,6-dimethoxyphenyl) phosphine, and tris [2- (diphenylphosphino) ethyl] phosphine.
  • the amount used is usually preferably 0.001 to 1 mol, preferably 0.005 to 0.1 mol per mol of the starting compound (IIIa) from the viewpoint of yield. Mole is more preferred.
  • a base can be used as necessary.
  • the base is not particularly limited as long as it is a compound that can form an art complex on a boron atom in the Suzuki-Miyaura coupling reaction. Specifically, potassium fluoride, cesium fluoride, sodium hydroxide, potassium hydroxide, sodium methoxide, sodium bicarbonate, potassium bicarbonate, sodium carbonate, potassium carbonate, cesium carbonate, silver carbonate, potassium phosphate, acetic acid Sodium, potassium acetate, calcium acetate, etc. are mentioned. Of these, potassium carbonate is preferred.
  • the amount of the base used is usually preferably about 0.1 to 50 mol, more preferably 0.5 to 20 mol, per 1 mol of the starting compound (IIIa).
  • the reaction is usually performed in the presence of a reaction solvent.
  • the reaction solvent include aromatic hydrocarbons such as toluene, xylene and benzene; esters such as methyl acetate, ethyl acetate and butyl acetate; ethers such as diethyl ether, tetrahydrofuran, dioxane, dimethoxyethane and diisopropyl ether; Halogenated hydrocarbons such as methyl, chloroform, dichloromethane, dichloroethane, dibromoethane; ketones such as acetone and methyl ethyl ketone; amides such as dimethylformamide and dimethylacetamide; nitriles such as acetonitrile; methanol, ethanol, isopropyl alcohol, and the like
  • alcohols include dimethyl sulfoxide. These may be used alone or in combination of two or more. Of these, dimethylformamide and the like are preferable in
  • the reaction temperature is usually selected from the range of 0 ° C. or higher and lower than the boiling temperature of the reaction solvent.
  • the reaction atmosphere is not particularly limited, but is preferably an inert gas atmosphere, and may be an argon gas atmosphere, a nitrogen gas atmosphere, or the like. An air atmosphere can also be used.
  • the reaction between the compound (IIIa) and the compound (V) is preferably performed in the presence of an organic alkyl metal compound.
  • the organic alkali metal compound is not particularly limited, but an organic lithium compound is preferable, and ethyl lithium, n-propyl lithium, isopropyl lithium, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, pentyl lithium, hexyl lithium, Examples include cyclohexyl lithium and phenyl lithium. Of these, n-butyllithium and the like are preferable.
  • the amount of the organic alkali metal compound used is preferably 0.8 to 5 mol, more preferably 0.9 to 3.0 mol, per 1 mol of compound (III) for each reaction.
  • reaction solvent examples include aromatic hydrocarbons such as toluene, xylene and benzene; esters such as methyl acetate, ethyl acetate and butyl acetate; ethers such as diethyl ether, tetrahydrofuran, dioxane, dimethoxyethane and diisopropyl ether; Halogenated hydrocarbons such as methyl, chloroform, dichloromethane, dichloroethane, dibromoethane; ketones such as acetone and methyl ethyl ketone; amides such as dimethylformamide and dimethylacetamide; nitriles such as acetonitrile; methanol, ethanol, isopropyl alcohol, and the like
  • alcohols include dimethyl sulfoxide. These may be used alone or in combination of two or more. Of these, ethers such as diethyl
  • the reaction temperature is usually selected from the range below the boiling point temperature of the reaction solvent.
  • the reaction atmosphere is not particularly limited, but is preferably an inert gas atmosphere, and may be an argon gas atmosphere, a nitrogen gas atmosphere, or the like. An air atmosphere can also be used.
  • the hydroxyl group of the cyclohexane ring is preferably protected by a known method.
  • the compound (III) of the present invention can also be obtained by repeating the reaction and the protection three times.
  • the terminal of compound (III) is preferably a halogen atom.
  • the reaction is usually carried out in the presence of a catalyst, and the catalyst is preferably a nickel catalyst.
  • the nickel catalyst is not particularly limited, but a zero-valent Ni salt or a divalent Ni salt is preferable. These can be used alone or in combination of two or more. These mean both those charged as reagents and those produced in the reaction.
  • the zero-valent Ni salt is not particularly limited, but bis (1,5-cyclooctadiene) nickel (0) (Ni (cod) 2 ), bis (triphenylphosphine) nickel dicarbonyl, nickel carbonyl, etc. Is mentioned.
  • divalent Ni salt examples include nickel acetate (II), nickel trifluoroacetate (II), nickel nitrate (II), nickel chloride (II), nickel bromide (II), nickel (II) acetyl. Acetonate, nickel (II) perchlorate, nickel (II) citrate, nickel (II) oxalate, nickel (II) cyclohexanebutyrate, nickel (II) benzoate, nickel (II) stearate, nickel stearate ( II), nickel sulfamine (II), nickel carbonate (II), nickel thiocyanate (II), nickel trifluoromethanesulfonate (II), bis (1,5-cyclooctadiene) nickel (II), bis (4- Diethylaminodithiobenzyl) nickel (II), nickel cyanide (II), fluoride Neckel (II), nickel boride (II), nickel borate (II),
  • the zero-valent Ni salt and the divalent Ni salt a compound in which a ligand is coordinated in advance may be used.
  • the amount of the nickel catalyst used is usually 0.01 to 50 mol, preferably 0.1 to 10 mol, more preferably 0.1 to 10 mol, based on 1 mol of the starting compound (III).
  • the amount is 0.5 to 5 mol, particularly preferably 1 to 3 mol.
  • a ligand capable of coordinating to nickel can be used together with the nickel catalyst.
  • the ligand include carboxylic acid, amide, phosphine, oxime, sulfonic acid, 1,3-diketone, Schiff base, oxazoline, diamine, carbon monoxide, and carbene.
  • a ligand can be used alone or in combination of two or more.
  • Coordination atoms in the above ligand are a nitrogen atom, a phosphorus atom, an oxygen atom, a sulfur atom, etc., and these ligands include a monodentate ligand having only one coordination atom and a polydentate having two or more.
  • bidentate ligands are bidentate ligands.
  • carbon monoxide and carbene are ligands having a carbon atom as a coordination atom. Any known or commercially available ligand can be used.
  • the amount used is usually 0.01 to 50 mol, preferably 0.1 to 10 mol, more preferably 0.5 mol, relative to 1 mol of the starting compound (III). -5 mol, particularly preferably 1-3 mol.
  • the reaction is usually performed in the presence of a reaction solvent.
  • the reaction solvent include aliphatic hydrocarbons (hexane, cyclohexane, heptane, etc.), aliphatic halogenated hydrocarbons (dichloromethane, chloroform, carbon tetrachloride, dichloroethane, etc.), aromatic hydrocarbons (benzene, toluene, Xylene, chlorobenzene, etc.), ethers (diethyl ether, dibutyl ether, dimethoxyethane (DME), cyclopentyl methyl ether (CPME), tert-butyl methyl ether, tetrahydrofuran, dioxane, etc.), esters (ethyl acetate, ethyl propionate, etc.) ), Acid amides (dimethylformamide (DMF), dimethylacetamide (DMA), N-methylpyrrolidone (1-methyl-2
  • the reaction temperature is usually selected from the range of 0 ° C. or higher and lower than the boiling temperature of the reaction solvent.
  • the reaction atmosphere is not particularly limited, but is preferably an inert gas atmosphere, and may be an argon gas atmosphere, a nitrogen gas atmosphere, or the like. An air atmosphere can also be used.
  • the compound (III) whose terminal is a halogen atom is preferably reacted with the compound (III) whose terminal is a boronic acid or an ester group thereof.
  • the compound (III) and the compound (IV) are reacted, but the ratio is 0.8 to 5.0 mol with respect to 1 mol with respect to one mol from the viewpoint of yield and the like. Is preferable, and 0.9 to 3.0 mol is more preferable.
  • the reaction is usually performed in the presence of a catalyst, and preferably a palladium-based catalyst is used. What has been described above can be used. In this step, palladium acetate or the like is preferable.
  • the amount used thereof is usually preferably 0.01 to 1 mol with respect to 1 mol of any compound (III) as a raw material from the viewpoint of yield, and 0.05 More preferred is ⁇ 0.5 mol.
  • phosphorus ligands can also be used.
  • phosphorus ligand those described above can be used.
  • 2- (dicyclohexylphosphino) -2 ′, 6′-dimethoxy-1,1′-biphenyl (S-Phos) and the like are used. preferable.
  • the amount used is preferably 0.01 to 2 mol, preferably 0.05 to 1.0 mol, relative to 1 mol of the starting compound (III) from the viewpoint of yield. Mole is more preferred.
  • a base in addition to the palladium catalyst, a base can be used as necessary.
  • the base those described above can be used, and sodium hydroxide is preferable.
  • the amount of the base used is usually preferably about 0.1 to 50 mol, more preferably 0.5 to 20 mol, relative to 1 mol of the starting compound (III).
  • reaction is usually performed in the presence of a reaction solvent.
  • a reaction solvent those usable in the synthesis method of compound (III) can be used as they are, but dioxane, toluene and the like are preferable.
  • the reaction temperature is usually selected from the range of 0 ° C. or higher and lower than the boiling temperature of the reaction solvent.
  • the reaction atmosphere is not particularly limited, but is preferably an inert gas atmosphere, and may be an argon gas atmosphere, a nitrogen gas atmosphere, or the like. An air atmosphere can also be used.
  • TLC Thin layer chromatography
  • E. Merck silica gel 60 F254 precoated plates (0.25 mm). The chromatogram was analyzed with a UV lamp (254 nm). Flash column chromatography was performed using E. Merck silica gel 60 (230-400 mesh).
  • Preparative thin layer chromatography (PTLC) was performed using Wako Gel (registered trademark) B5-F silica-coated plate (0.75 mm).
  • Recycle preparative gel permeation chromatography (GPC) was performed using a JAI LC-9204 measuring instrument equipped with JAIGEL-1H / JAIGEL-2H rows using chloroform as the eluent.
  • n-BuLi is n-butyllithium; THF is tetrahydrofuran.
  • 1-bromo-4-chlorobenzene 31.6 g, 165 mmol was added and dry tetrahydrofuran (THF) (250 mL, 600 mM) was added.
  • THF dry tetrahydrofuran
  • a solution of n-butyllithium in hexane 103 mL, 1.6 M, 165 mmol was added at ⁇ 78 ° C. over 30 minutes.
  • 1,4-cyclohexanedione monoethylene ketal (23.4 g, 150 mmol) was added as a solid, and the mixture was further stirred at -78 ° C for 1 hour to obtain intermediate compound (25). .
  • 3M hydrochloric acid solution 100 mL was added and stirred for 1 day. The mixture was neutralized with saturated aqueous NaHCO 3 solution, extracted with ethyl acetate (EtOAc), washed with brine, dried over Na 2 SO 4 and concentrated in vacuo.
  • i-Pr 2 NEt is diisopropylethylamine; MOM is a methoxymethyl group.
  • 4- (4-chlorophenyl) -4-hydroxycyclohexanone (26) (15.7 g, 69.9 mmol) obtained in Synthesis Example 2 and dry CH 2 Cl 2 (70 mL, 1 M), diisopropylethylamine (24.4 mL, 140 mmol), chloromethyl methyl ether (10.6 mL, 140 mmol) were added.
  • MOM, B (pin) and KOAc are the same as above; dba is dibenzylideneacetone; X-Phos is 2- (dicyclohexylphosphino) -2 ′, 4 ′, 6′-tri-isopropyl-1, 1'-biphenyl.
  • Benzene tri-substituted product (34) (157 mg, 122 ⁇ mol), palladium (II) acetate (Pd (OAc) 2 ) (2.4 mg, 11 ⁇ mol), 2- (dicyclohexylphosphino) -2 ′, 6′-dimethoxy- 1,1′-biphenyl (S-Phos) (8.8 mg, 21 ⁇ mol) and K 3 PO 4 (209 mg, 985 ⁇ mol) were added, and the flask was evacuated and filled with nitrogen three times. Next, dry dioxane (47 mL) and degassed water (3 mL) were added to the flask. The reaction mixture was stirred at 100 ° C. for 40 hours.
  • Example 3-6 the box compound (36) (10.5 mg, 5.77 ⁇ mol) obtained in Example 2-2 or Example 2-3 was used, and NaHSO 4 .H 2 O (26.9 mg, 195 ⁇ mol), o-chloranil (10.7 mg, 43.5 ⁇ mol), dry m-xylene (2.5 mL), and dry dimethyl sulfoxide (DMSO) (0.5 mL), reacted at 150 ° C. for 48 hours to be the target compound [4.4.4] The cage was obtained as a white solid (1.8 mg, 29%).
  • Example 3-7 [Wherein, MOM and DMSO are the same as above. ]
  • the box-shaped compound (37) obtained in Example 2-4 (13.2 mg, 6.44 ⁇ mol) was used, and NaHSO 4 .H 2 O (27.6 mg, 200 ⁇ mol), o-chloranil (11.7 mg, 47.6 ⁇ mol), dry m-xylene (3.0 mL), and dry dimethyl sulfoxide (DMSO) (0.5 mL), reacted at 150 ° C. for 48 hours to be the target compound [5.5.5] Cage was obtained as a white solid (4.3 mg, 52%).
  • ⁇ (2) value is 1,4 of the previous report (Kennedy, SM; Lytle, FE Anal. Chem. 1986, 58, 2643.) as a standard substance measured under the same conditions (chloroform solution, 20 mM). Calibration was based on the value of bis (2-methylstyryl) benzene (bis-MSB). Since there was no report of a value at a wavelength shorter than 537 nm, a GaN single crystal (thickness 280 ⁇ m, semi-insulating) manufactured by Shinyo Co., Ltd. was measured together with a bis-MSB solution.
  • the ⁇ (2) spectral shape of the previously reported GaN is expressed by the theoretical formula of the GaN TPA spectral shape (Sheik-Bahae, M .; Hutchings, DC; Hagan, DJ; Van Stryland, EW IEEE J. Quantum Electron. 1991, 27, 1296.), and ⁇ (2) value of bis-MSB at wavelengths of 484 to 537 nm is shown at 540 to 600 nm in the previous report (Detailed procedure is in preparation to be presented elsewhere.) The calibration was performed based on the calibrated spectrum of GaN while keeping the average of the ⁇ - (2) values of bis-MSB.
  • 1,4-bis (2,5-dimethoxy-4- ⁇ 2- [4- (N-methyl) pyridine-1-iumyl] ethenyl ⁇ phenyl) butadiyne is used as a standard compound.
  • Alignment of ⁇ (2) values in Triflate (MPPBT) (Kamada, K .; Iwase, Y .; Sakai, K .; Kondo, K .; Ohta, KJ Phys. Chem. C 2009, 113, 11469.) Measured to check sex.
  • a sample solution (0.57 mm) of [6.6.6] carbon nanocage in spectroscopic grade chloroform was prepared in an air atmosphere.
  • Example 2 X-ray crystal structure analysis Using a CCD single crystal automatic X-ray structure analyzer “Saturn” (trade name) manufactured by Rigaku Corporation, obtained in Example 1-3 which is a precursor of the cage compound of the present invention X-ray structural analysis of the protected tribromobenzene tri-substituted product and the [4, 4, 4] cage obtained in Example 3-2 was performed. Single crystals were obtained by slowly adding diethyl ether (Et 2 O) vapor to a THF solution at room temperature. As a result, it was shown that all of the protected tribromobenzene tri-substituted products obtained in Example 1-3 had a cis structure (FIG. 6).
  • Et 2 O diethyl ether
  • the cage compound of the present invention had a beautiful cage structure (FIG. 7A).
  • two THF molecules and one diethyl ether (Et 2 O) molecule were incorporated into the cage (FIG. 8).
  • Et 2 O diethyl ether
  • FIG. 7B The packing structure showed that the [4.4.4] cage was tightly packed (FIG. 7 (c)).
  • Example 3-1 the [6.6.6] cage obtained in Example 3-1
  • Example 3-3 the [5.5.5] cage obtained in Example 3-3
  • Example 3-2 the obtained in Example 3-2 [4.4. 4]
  • FIG. 10 shows the frontier molecular orbitals of the [6.6.6] cage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The purpose of the present invention is to provide a method for synthesizing a carbon nanocage, which can be used as a connection unit for a branched carbon nanotube, in a simple manner. A box-shaped compound (B) in which 8 or more rings are bonded through single bonds, wherein sp2 hybrid carbon atoms or sp3 hybrid carbon atoms which exist in each of the rings are bonded to each other in each of the rings, said box-shaped compound (B) having 2 to 4 specific groups, 6 1,4-cyclohexylene groups each of which may have a substituent and 0 or more bivalent aromatic hydrocarbon groups each of which may have a substituent. A cyclohexane ring moiety in the box-shaped compound is converted to a benzene ring, thereby producing a carbon nanocage which can be used as a connection unit for a branched carbon nanotube.

Description

カーボンナノケージ及びその中間体、並びにこれらの製造方法Carbon nanocages and intermediates thereof, and production methods thereof
 本発明は、カーボンナノケージ及びその中間体、並びにこれらの製造方法に関する。 The present invention relates to a carbon nanocage, an intermediate thereof, and a production method thereof.
 従来、炭素原子を含むナノ構造体としては、2次元のグラフェンシートを筒状に巻いた構造を有するカーボンナノチューブ、このカーボンナノチューブからなる輪状カーボンナノチューブ等が知られている。 Conventionally, as a nanostructure containing a carbon atom, a carbon nanotube having a structure in which a two-dimensional graphene sheet is wound in a cylindrical shape, a ring-shaped carbon nanotube made of the carbon nanotube, and the like are known.
 カーボンナノチューブは、機械的強度も極めて高く、高温にも耐えうること、そして、電圧をかけると効率よく電子を放出する等の優れた性質を有していることから、化学分野、電子工学分野、生命科学分野等の様々な分野への応用が期待されている。 Carbon nanotubes have extremely high mechanical strength, can withstand high temperatures, and have excellent properties such as efficient electron emission when voltage is applied. Applications in various fields such as life science are expected.
 カーボンナノチューブの製造方法としては、アーク放電法、レーザー・ファネス法及び化学気相成長法等が知られている。しかし、これらの製造方法では、様々な太さと長さのカーボンナノチューブが混合物という形でしか得られないという問題がある。 As a method for producing a carbon nanotube, an arc discharge method, a laser fanes method, a chemical vapor deposition method, and the like are known. However, these production methods have a problem that carbon nanotubes of various thicknesses and lengths can be obtained only in the form of a mixture.
 近年、カーボンナノチューブのように、炭素原子の連続的な結合により、一定以上の長さを有する管状のナノ構造体ではなく、輪状のナノ構造体が検討されつつある。例えば、シクロパラフェニレン(CPP)は、ベンゼンをパラ位で環状につなげたシンプルで美しい分子であり、近年、非常に特異な構造や性質を有することが明らかになってきている。特に、このCPPは、構成するベンゼン環の数によって径が異なり、その性質も異なり、また、作り分けをすることができれば、異なる径を有するカーボンナノチューブへの展開が期待されるため、ベンゼン環の数の異なるCPPを完全に作り分けることが求められている。しかしながら、CPPは、混合物として得る手法は知られているものの、選択合成に成功した例は非常に少ない。 Recently, instead of tubular nanostructures having a certain length or longer due to continuous bonding of carbon atoms such as carbon nanotubes, annular nanostructures are being studied. For example, cycloparaphenylene (CPP) is a simple and beautiful molecule in which benzene is cyclically linked at the para position, and in recent years, it has become clear that it has a very unique structure and properties. In particular, this CPP has different diameters depending on the number of benzene rings constituting it, its properties are different, and if it can be made separately, it can be expected to develop into carbon nanotubes having different diameters. There is a demand for completely creating different numbers of CPPs. However, although CPP is known as a method for obtaining a mixture, there are very few examples of successful selective synthesis.
 本発明者らは、シクロヘキサン環を屈曲部として用いた輪状のシクロパラフェニレン前駆体として用いる手法により、様々なシクロパラフェニレン化合物の合成に成功した(特許文献1~2、非特許文献1)。このシクロパラフェニレン化合物は、本来平面であるベンゼンがリング状にひずんでいることから合成は困難であったが、独自の手法により合成段階におけるひずみの解消に成功したことで、様々な大きさや形状のシクロパラフェニレン化合物の合成を可能にした。 The present inventors have succeeded in synthesizing various cycloparaphenylene compounds by using a cyclocyclophenylene precursor using a cyclohexane ring as a bent portion ( Patent Documents 1 and 2, Non-Patent Document 1). This cycloparaphenylene compound was difficult to synthesize because benzene, which was originally a flat surface, was distorted in a ring shape, but due to the successful elimination of strain at the synthesis stage using a unique method, various sizes and shapes were obtained. This made it possible to synthesize cycloparaphenylene compounds.
国際公開第2011/099588号パンフレットInternational Publication No. 2011/099588 Pamphlet 国際公開第2011/111719号パンフレットInternational Publication No. 2011-111719 Pamphlet
 このシクロパラフェニレン化合物は、直線型カーボンナノチューブの最短部分骨格であり、太さや側面構造を制御した直線型カーボンナノチューブの完全化学合成に向けた理想的なビルディングブロックである。 This cycloparaphenylene compound is the shortest partial skeleton of linear carbon nanotubes, and is an ideal building block for complete chemical synthesis of linear carbon nanotubes with controlled thickness and side structure.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 一方、上記のシクロパラフェニレン化合物は、直線型カーボンナノチューブの完全化学合成に向けたビルディングブロックであるものの、最小のトランジスタ、論理ゲート等としてエレクトロニクス分野への応用が期待されている分岐型カーボンナノチューブの接合ユニットになり得るカーボンナノゲージについてはいまだ合成法がなく、分岐型カーボンナノチューブの完全化学合成についてはいまだ指針の目途すら立っていない。 On the other hand, the above-mentioned cycloparaphenylene compound is a building block for the complete chemical synthesis of linear carbon nanotubes, but it is a branching carbon nanotube that is expected to be applied to the electronics field as the smallest transistor, logic gate, etc. There is still no synthesis method for carbon nanogauge that can be a bonding unit, and there is still no guideline for complete chemical synthesis of branched carbon nanotubes.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 このような観点から、本発明は、分岐型カーボンナノチューブの接合ユニットになり得るカーボンナノケージを簡便に合成する方法を提供することを目的とする。 From such a viewpoint, an object of the present invention is to provide a method for easily synthesizing a carbon nanocage that can be a junction unit of branched carbon nanotubes.
 上記の課題に鑑み鋭意研究を重ねた結果、本発明者らは、シクロパラフェニレン化合物の合成手法を応用し、出発原料として特定の三叉ユニットを用いることで、カゴ形化合物であるカーボンナノケージを合成できることを見出した。具体的には、特定の三叉ユニットをホモカップリングさせるか、特定の三叉ユニットと他のユニットとをクロスカップリングさせてひずみのない箱状の化合物を合成し、この化合物が有するシクロヘキサン環部を芳香族化することによりひずみを有し、一様に湾曲したアーチを有するカーボンナノケージを合成できることを見出した。本発明は、このような知見に基づき、さらに研究を重ねた結果、完成されたものである。すなわち、本発明は、以下の項1~10の構成を包含する。 As a result of intensive studies in view of the above problems, the present inventors applied a synthesis method of a cycloparaphenylene compound and used a specific three-pronged unit as a starting material, so that a carbon nanocage that is a cage compound was obtained. It was found that it can be synthesized. Specifically, a specific trigeminal unit is homocoupled, or a specific trigeminal unit and another unit are cross-coupled to synthesize a box-shaped compound having no strain, and the cyclohexane ring part of this compound is synthesized. It has been found that carbon nanocages having strains and uniformly curved arches can be synthesized by aromatization. The present invention has been completed as a result of further research based on such knowledge. That is, the present invention includes the configurations of items 1 to 10 below.
 項1.8個以上の環が単結合で連結した箱形化合物(B)であって、
該環同士は、環中に存在するsp2混成炭素原子又はsp3混成炭素原子同士が結合しており、
(1)式:
A box-shaped compound (B) in which at least 1.8 rings are linked by a single bond,
The rings are bonded to each other with sp2 hybrid carbon atoms or sp3 hybrid carbon atoms present in the ring,
(1) Formula:
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
で示される基が2~4個、
(2)置換基を有していてもよい1,4-シクロヘキシレン基が6個、及び
(3)置換基を有していてもよい2価の芳香族炭化水素基が0個以上
からなる、箱形化合物。
2 to 4 groups represented by
(2) consisting of 6 optionally substituted 1,4-cyclohexylene groups and (3) 0 or more divalent aromatic hydrocarbon groups optionally having substituents , Box-shaped compounds.
 項2.一般式(IIa): Item 2. Formula (IIa):
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
[式中、Rは同じか又は異なり、それぞれ、一般式(IIa-1): [Wherein R 2 is the same or different and each represents a general formula (IIa-1):
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(式中、Rは同じか又は異なり、それぞれ水素原子又は水酸基の保護基;Rは同じか又は異なり、それぞれ置換基を有していてもよい2価の芳香族炭化水素基;nは同じか又は異なり、それぞれ0以上の整数である。)
で示される2価の基である。]
で示される化合物である、項1に記載の箱形化合物。
(Wherein R 3 is the same or different, and each represents a hydrogen atom or a hydroxyl-protecting group; R 4 is the same or different, and each is a divalent aromatic hydrocarbon group optionally having a substituent; The same or different, each being an integer of 0 or more.)
It is a bivalent group shown by these. ]
Item 2. The box-shaped compound according to Item 1, which is a compound represented by:
 項3.8個以上の環が単結合で連結したカゴ形化合物(A)であって、
該環同士は、環中に存在するsp2混成炭素原子同士が結合しており、
(1)式:
Item 3.8 is a cage compound (A) in which two or more rings are linked by a single bond,
The rings have sp2 hybrid carbon atoms present in the rings bonded to each other,
(1) Formula:
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
で示される基が2~4個、及び
(3)置換基を有していてもよい2価の芳香族炭化水素基が6個以上
からなる、カゴ形化合物の製造方法であって、
8個以上の環が単結合で連結した箱形化合物(B)であって、
該環同士は、環中に存在するsp2混成炭素原子又はsp3混成炭素原子同士が結合しており、
(1)式:
And (3) a method for producing a cage compound, comprising (3) 6 or more divalent aromatic hydrocarbon groups which may have a substituent,
A box-shaped compound (B) in which eight or more rings are linked by a single bond,
The rings are bonded to each other with sp2 hybrid carbon atoms or sp3 hybrid carbon atoms present in the ring,
(1) Formula:
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
で示される基が2~4個、
(2)置換基を有していてもよい1,4-シクロヘキシレン基が6個、及び
(3)置換基を有していてもよい2価の芳香族炭化水素基が0個以上
からなる、箱形化合物が有するシクロヘキサン環部をベンゼン環に変換する変換工程
を備える、製造方法。
2 to 4 groups represented by
(2) consisting of 6 optionally substituted 1,4-cyclohexylene groups and (3) 0 or more divalent aromatic hydrocarbon groups optionally having substituents The manufacturing method provided with the conversion process which converts the cyclohexane ring part which a box-shaped compound has into a benzene ring.
 項4.前記変換工程の前に、さらに、
一般式(III):
Item 4. Before the conversion step,
General formula (III):
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
[式中、Rは同じか又は異なり、それぞれ水素原子又は水酸基の保護基;Rは同じか又は異なり、それぞれ置換基を有していてもよい2価の芳香族炭化水素基;mは同じか又は異なり、それぞれ0以上の整数;Yは同じか又は異なり、それぞれハロゲン原子、又は一般式(III-1): [Wherein R 3 is the same or different and each represents a hydrogen atom or hydroxyl-protecting group; R 4 is the same or different and each represents a divalent aromatic hydrocarbon group optionally having a substituent; The same or different, each an integer greater than or equal to 0; Y is the same or different and each represents a halogen atom or general formula (III-1):
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(式中、Rは同じか又は異なり、それぞれ水素原子又は炭素数1~10のアルキル基であり、Rは互いに結合して、隣接する-O-B-O-とともに環を形成してもよい。)
で示される基である。]
で示される化合物(III)をカップリングさせるカップリング工程
を備える、項3に記載の製造方法。
(Wherein R 5 is the same or different and each represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 5 is bonded to each other to form a ring with adjacent —O—B—O—. May be.)
It is group shown by these. ]
Item 4. The production method according to Item 3, comprising a coupling step of coupling the compound (III) represented by the formula:
 項5.8個以上の環が単結合で連結したカゴ形化合物であって、
該環同士は、環中に存在するsp2混成炭素原子同士が結合しており、
(1)式:
Item 5.8 is a cage compound in which at least eight rings are linked by a single bond,
The rings have sp2 hybrid carbon atoms present in the rings bonded to each other,
(1) Formula:
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
で示される基が2~4個、及び
(2)置換基を有していてもよい2価の芳香族炭化水素基が6個以上
からなる、カゴ形化合物。
A cage compound comprising 2 to 4 groups represented by the formula (2) and (2) 6 or more divalent aromatic hydrocarbon groups which may have a substituent.
 項6.一般式(Ia): Item 6. Formula (Ia):
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
[式中、Rは同じか又は異なり、それぞれ、一般式(Ia-1): [Wherein, R 1 is the same or different and each represents a general formula (Ia-1):
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(式中、Rは同じか又は異なり、それぞれ置換基を有していてもよい2価の芳香族炭化水素基;nは同じか又は異なり、それぞれ0以上の整数である。)
で示される2価の基である。]
で示される化合物である、項5に記載のカゴ形化合物。
(In the formula, R 4 is the same or different and each is a divalent aromatic hydrocarbon group optionally having a substituent; n is the same or different and each is an integer of 0 or more.)
It is a bivalent group shown by these. ]
Item 6. The cage compound according to Item 5, which is a compound represented by:
 項7.Rが、いずれもパラ位に結合手を有する基である、項6に記載のカゴ形化合物。 Item 7. Item 7. The cage compound according to Item 6, wherein R 4 is a group having a bond at the para position.
 項8.環の総数が8~22個である、項5~7のいずれかに記載のカゴ形化合物。 Item 8. Item 8. The cage compound according to any one of Items 5 to 7, wherein the total number of rings is 8 to 22.
 項9.8個以上の環が単結合で連結した箱形化合物(B)であって、
該環同士は、環中に存在するsp2混成炭素原子又はsp3混成炭素原子同士が結合しており、
(1)式:
Item 9.8 is a box-shaped compound (B) in which not less than 9.8 rings are linked by a single bond,
The rings are bonded to each other with sp2 hybrid carbon atoms or sp3 hybrid carbon atoms present in the ring,
(1) Formula:
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
で示される基が2~4個、
(2)置換基を有していてもよい1,4-シクロヘキシレン基が6個、及び
(3)置換基を有していてもよい2価の芳香族炭化水素基が0個以上
からなる、箱形化合物の製造方法であって、
一般式(III):
2 to 4 groups represented by
(2) consisting of 6 optionally substituted 1,4-cyclohexylene groups and (3) 0 or more divalent aromatic hydrocarbon groups optionally having substituents A method for producing a box-shaped compound comprising:
General formula (III):
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
[式中、Rは同じか又は異なり、それぞれ水素原子又は水酸基の保護基;Rは同じか又は異なり、それぞれ置換基を有していてもよい2価の芳香族炭化水素基;mは同じか又は異なり、それぞれ0以上の整数;Yは同じか又は異なり、それぞれハロゲン原子、又は一般式(III-1): [Wherein R 3 is the same or different and each represents a hydrogen atom or hydroxyl-protecting group; R 4 is the same or different and each represents a divalent aromatic hydrocarbon group optionally having a substituent; The same or different, each an integer greater than or equal to 0; Y is the same or different and each represents a halogen atom or general formula (III-1):
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
(式中、Rは同じか又は異なり、それぞれ水素原子又は炭素数1~10のアルキル基であり、Rは互いに結合して、隣接する-O-B-O-とともに環を形成してもよい。)
で示される基である。]
で示される化合物(III)をカップリングさせるカップリング工程
を備える、製造方法。
(Wherein R 5 is the same or different and each represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 5 is bonded to each other to form a ring with adjacent —O—B—O—. May be.)
It is group shown by these. ]
The manufacturing method provided with the coupling process which couples compound (III) shown by these.
 項10.一般式(III): Item 10. General formula (III):
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
[式中、Rは同じか又は異なり、それぞれ水素原子又は水酸基の保護基;Rは同じか又は異なり、それぞれ置換基を有していてもよい2価の芳香族炭化水素基;mは同じか又は異なり、それぞれ0以上の整数;Yは同じか又は異なり、それぞれハロゲン原子、又は一般式(III-1): [Wherein R 3 is the same or different and each represents a hydrogen atom or hydroxyl-protecting group; R 4 is the same or different and each represents a divalent aromatic hydrocarbon group optionally having a substituent; The same or different, each an integer greater than or equal to 0; Y is the same or different and each represents a halogen atom or general formula (III-1):
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
(式中、Rは同じか又は異なり、それぞれ水素原子又は炭素数1~10のアルキル基であり、Rは互いに結合して、隣接する-O-B-O-とともに環を形成してもよい。)
で示される基である。]
で示される化合物。
(Wherein R 5 is the same or different and each represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 5 is bonded to each other to form a ring with adjacent —O—B—O—. May be.)
It is group shown by these. ]
A compound represented by
 本発明によれば、市販の化合物を用いて、簡便な手法により、カゴ形化合物であるカーボンナノケージを合成することができる。このカーボンナノケージは、上述のとおり、分岐型カーボンナノチューブの接合ユニットとして期待されており、分岐型カーボンナノチューブの精密ボトムアップ合成が期待される。 According to the present invention, a carbon nanocage that is a cage compound can be synthesized by a simple technique using a commercially available compound. As described above, this carbon nanocage is expected as a junction unit of branched carbon nanotubes, and precise bottom-up synthesis of branched carbon nanotubes is expected.
 また、このカーボンナノケージは、構成する環の数によって内部に存在する空間を変えることができ、ここにゲスト分子を取り込むことができる。例としては、以下のように、環の数によって内部空間のサイズ(直径)を変えることができる。 Also, this carbon nanocage can change the space existing inside depending on the number of rings constituting it, and can incorporate guest molecules here. As an example, the size (diameter) of the internal space can be changed according to the number of rings as follows.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 さらに、このカーボンナノケージは、取扱い性に優れる(例えば、白色固体でほとんどの有機溶媒によく溶解し、300℃以上という高温でも分解しない)。また、カーボンナノケージは、光をよく吸収し、強い蛍光を有する(例えば、[6,6,6]ケージの場合は1光子吸収、2光子吸収し、強い青色蛍光を有する。また、[4.4.4]ケージ及び[5.5.5]ケージの場合は1光子吸収し、強い青色蛍光を有する。)。カーボンナノケージのサイズを調整することにより、所望の光物性を得ることもできる。 Furthermore, this carbon nanocage is excellent in handleability (for example, it is a white solid that dissolves well in most organic solvents and does not decompose even at a high temperature of 300 ° C. or higher). Carbon nanocages absorb light well and have strong fluorescence (for example, in the case of [6, 6, 6] cage, it absorbs one photon, absorbs two photons, and has strong blue fluorescence. [4] .4.4] Cages and [5.5.5] cages absorb one photon and have strong blue fluorescence. By adjusting the size of the carbon nanocage, desired optical properties can also be obtained.
 このような観点から、本発明で合成されたカーボンナノケージは、分岐型カーボンナノチューブの接合ユニットとして期待されるのみならず、有機EL材料、有機トランジスタ材料、光記録材料、高密度光ストレージ、生体分子の蛍光イメージング、ゲスト分子の光センサー等様々な用途に用いることができる。 From such a viewpoint, the carbon nanocage synthesized by the present invention is not only expected as a junction unit of branched carbon nanotubes, but also an organic EL material, an organic transistor material, an optical recording material, a high-density optical storage, a living body It can be used in various applications such as fluorescence imaging of molecules, photosensors for guest molecules.
異なる入射パワー(上から順に、P = 0.04、0.12、0.21、0.30 mW)を有する573 nmでのクロロホルム(0.57 mM)中、実施例3で得た[6.6.6]カーボンナノケージ(1)のオープンアパーチャーZ-スキャン・トレースである。理論曲線とよくフィットしている。横軸はサンプル位置Zであり、縦軸は焦点(Z = 0)から遠く離れた(|Z| >> ZR)正規化透過率である。各トレースは、読みやすくするために0.02にシフトしている。[6.6.6] carbon nanocages (1) obtained in Example 3 in chloroform (0.57 mM) at 573 nm with different incident powers (P = 0.04, 0.12, 0.21, 0.30 mW in order from the top). ) Open aperture Z-scan trace. Fits well with theoretical curves. The horizontal axis is the sample position Z, and the vertical axis is the normalized transmittance far from the focal point (Z = 0) (| Z | >> Z R ). Each trace has been shifted to 0.02 for readability. 異なる入射パワー(上から順に、Pi = 0.05、0.14、0.24、0.34 mW)を有する510 nmでのクロロホルム中、2''',5'''-ジデシル-p-セプチフェニル(15 mM)のオープンアパーチャーZ-スキャン・トレースである。理論曲線とよくフィットしている。横軸はサンプル位置Zであり、縦軸は焦点(Z = 0)から遠く離れた(|Z| >> ZR)正規化透過率である。各トレースは、読みやすくするために0.02にシフトしている。Opening 2 ''',5'''-didecyl-p-septiphenyl (15 mM) in chloroform at 510 nm with different incident powers (P i = 0.05, 0.14, 0.24, 0.34 mW in order from top) Aperture Z-scan trace. Fits well with theoretical curves. The horizontal axis is the sample position Z, and the vertical axis is the normalized transmittance far from the focal point (Z = 0) (| Z | >> Z R ). Each trace has been shifted to 0.02 for readability. [6.6.6]ケージの溶液のPi対q0のプロットである。q0の値は曲線が図1のカーブフィットから得られた。[6.6.6] is a plot of P i versus q 0 solution of the cage. A value of q 0 was obtained from the curve fit of FIG. 2''',5'''-ジデシル-p-セプチフェニルの溶液のPi対q0のプロットである。q0の値は曲線が図2のカーブフィットから得られた。2 ''',5''' - didecyl -p- is a plot of P i versus q 0 solution of Sepuchifeniru. A value of q 0 was obtained from the curve fit of FIG. [4.4.4]ケージ、[5.5.5]ケージ及び[6.6.6]ケージの吸収及び蛍光スペクトルである。実線は、左から順に、[4.4.4]ケージ、[5.5.5]ケージ及び[6.6.6]ケージの吸収スペクトルであり、破線は、左から順に、[6.6.6]ケージ、[5.5.5]ケージ及び[4.4.4]ケージの蛍光スペクトルである。[4.4.4] Absorption and fluorescence spectra of cages, [5.5.5] cages and [6.6.6] cages. The solid line is the absorption spectrum of the [4.4.4] cage, [5.5.5] cage, and [6.6.6] cage in order from the left, and the broken line is [6.6 in order from the left. .6] Fluorescence spectra of cage, [5.5.5] cage and [4.4.4] cage. 熱振動楕円体作画ソフト(ORTEP)による、実施例1-3で得た保護化したトリブロモベンゼンの3置換体の構造を示す図面である。なお、水素原子は省略されている。1 is a drawing showing the structure of a trisubstituted benzene of protected tribromobenzene obtained in Example 1-3 by thermal vibration ellipsoid drawing software (ORTEP). Note that hydrogen atoms are omitted. 熱振動楕円体作画ソフト(ORTEP)による、実施例3-2で得た[4.4.4]ケージの構造を示す図面である。それぞれ、(a):全体の外観、(b):上から見た概観、(c):パッキングモード構造である。なお、全ての図において、水素原子、テトラヒドロフラン分子、ジエチルエーテル分子は省略されている。It is drawing which shows the structure of the [4.4.4] cage obtained in Example 3-2 by thermal vibration ellipsoid drawing software (ORTEP). (A): overall appearance, (b): overview viewed from above, (c): packing mode structure, respectively. In all the figures, hydrogen atoms, tetrahydrofuran molecules, and diethyl ether molecules are omitted. 熱振動楕円体作画ソフト(ORTEP)による、実施例3-2で得た[4.4.4]ケージの構造を示す図面である。なお、水素原子は省略されている。It is drawing which shows the structure of the [4.4.4] cage obtained in Example 3-2 by thermal vibration ellipsoid drawing software (ORTEP). Note that hydrogen atoms are omitted. [4.4.4]ケージ、[5.5.5]ケージ及び[6.6.6]ケージの構造を示す図面である。It is drawing which shows the structure of a [4.4.4] cage, a [5.5.5] cage, and a [6.6.6] cage. [6.6.6]ケージのフロンティア分子軌道である。[6.6.6] Cage frontier molecular orbitals.
 [1]カゴ形化合物(A)
 本発明のカゴ形化合物(A)は、8個以上の環が単結合で連結したカゴ形化合物(A)であって、
該環同士は、環中に存在するsp2混成炭素原子同士が結合しており、
(1)式:
[1] Basket compound (A)
The cage compound (A) of the present invention is a cage compound (A) in which 8 or more rings are linked by a single bond,
The rings have sp2 hybrid carbon atoms present in the rings bonded to each other,
(1) Formula:
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
で示される基が2~4個、及び
(3)置換基を有していてもよい2価の芳香族炭化水素基が6個以上
からなる、カゴ形化合物である。
And (3) a cage compound comprising 6 or more divalent aromatic hydrocarbon groups which may have a substituent.
 本発明のカゴ形化合物(A)が有するユニット(1)の数は2~4個であり、2個又は4個が好ましく、2個がより好ましい。ユニット(1)を2個有する場合、本発明のカゴ形化合物(A)は、ひずみを有する一様なアーチを3本有する。 The number of units (1) possessed by the cage compound (A) of the present invention is 2 to 4, preferably 2 or 4, and more preferably 2. In the case of having two units (1), the cage compound (A) of the present invention has three uniform arches having strain.
 本発明のカゴ形化合物(A)が有するユニット(3)としての2価の芳香族炭化水素基は、言い方を変えれば、芳香環を備える2価の基であり、この芳香環を構成する2つの炭素原子に結合する水素原子をそれぞれ、1つずつ脱離させてなる基である。なお、この芳香環を構成する炭素に結合する水素原子が、官能基により置換された誘導体基(2価の誘導体基)であってもよい。なお、本発明のカゴ形化合物(A)は、異なる複数の芳香族炭化水素基を有していてもよい。 In other words, the divalent aromatic hydrocarbon group as the unit (3) possessed by the cage compound (A) of the present invention is a divalent group having an aromatic ring, and 2 constituting this aromatic ring. Each of the hydrogen atoms bonded to one carbon atom is a group formed by elimination one by one. In addition, the hydrogen atom couple | bonded with carbon which comprises this aromatic ring may be the derivative group (divalent derivative group) substituted by the functional group. The cage compound (A) of the present invention may have a plurality of different aromatic hydrocarbon groups.
 上記芳香環としては、ベンゼン環だけでなく、複数のベンゼン環を縮合した環(ベンゼン縮合環)、ベンゼン環と他の環を縮合させた環等も挙げられる(以下、複数のベンゼン環を縮合した環及びベンゼン環と他の環を縮合させた環をまとめて、単に「縮合環」と言うことがある)。上記縮合環としては、例えば、ペンタレン環、インデン環、ナフタレン環、アントラセン環、テトラセン環、ペンタセン環、ピレン環、ペリレン環、トリフェニレン環、アズレン環、ヘプタレン環、ビフェニレン環、インダセン環、アセナフチレン環、フルオレン環、フェナレン環、フェナントレン環等が挙げられる。 Examples of the aromatic ring include not only a benzene ring but also a ring obtained by condensing a plurality of benzene rings (benzene condensed ring), a ring obtained by condensing a benzene ring and other rings (hereinafter, a plurality of benzene rings are condensed). And a ring obtained by condensing a benzene ring with another ring may be simply referred to as a “fused ring”). Examples of the condensed ring include a pentalene ring, an indene ring, a naphthalene ring, an anthracene ring, a tetracene ring, a pentacene ring, a pyrene ring, a perylene ring, a triphenylene ring, an azulene ring, a heptalene ring, a biphenylene ring, an indacene ring, an acenaphthylene ring, Examples include a fluorene ring, a phenalene ring, a phenanthrene ring, and the like.
 また、上記の芳香族炭化水素基が有していてもよい置換基としては、特に限定されないが、炭化水素のみの環状化合物では付与できない機能を付与できる官能基が好ましく、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等);炭素数1~6のアルキル基、炭素数1~12のアルコキシ基等の置換基を有していてもよいアリール基(4-メトキシフェニル基等)、炭素数1~12のアルコキシ基、ヒドロキシ基、ボリル基、シリル基、アミノ基等が挙げられる。これらのなかでも、ハロゲン原子が好ましい。また、製造原料の時点から導入し、製造工程の途中で特に反応点となりにくい点から塩素原子がより好ましい。 In addition, the substituent that the aromatic hydrocarbon group may have is not particularly limited, but a functional group that can impart a function that cannot be imparted by a hydrocarbon-only cyclic compound is preferable. Atoms, chlorine atoms, bromine atoms, iodine atoms, etc.); aryl groups optionally having substituents such as alkyl groups having 1 to 6 carbon atoms and alkoxy groups having 1 to 12 carbon atoms (4-methoxyphenyl groups, etc.) ), An alkoxy group having 1 to 12 carbon atoms, a hydroxy group, a boryl group, a silyl group, an amino group, and the like. Among these, a halogen atom is preferable. In addition, a chlorine atom is more preferable because it is introduced from the time of manufacturing raw materials and is not particularly likely to become a reaction point during the manufacturing process.
 本発明のカゴ形化合物(A)が有するユニット(3)としては、上記の環のなかでも、2価の6員芳香環又は2価の6員複素芳香環を備える基であって、いずれも、パラ位に結合手を有する基が好ましい。 The unit (3) of the cage compound (A) of the present invention is a group having a divalent 6-membered aromatic ring or a divalent 6-membered heteroaromatic ring among the above rings, A group having a bond at the para position is preferred.
 また、ユニット(3)を形成する環としては、単環又は縮合環が好ましく、単環がより好ましい。 The ring forming the unit (3) is preferably a single ring or a condensed ring, and more preferably a single ring.
 これらのなかでも、本発明のカゴ形化合物(A)が有するユニット(3)は、好ましくは2価の芳香族炭化水素基、特に好ましくはフェニレン基(特に1,4-フェニレン基)及びナフチレン基(特に1,5-ナフチレン基又は2,6-ナフチレン基)であり、より好ましくはフェニレン基(特に1,4-フェニレン基)である。 Among these, the unit (3) of the cage compound (A) of the present invention is preferably a divalent aromatic hydrocarbon group, particularly preferably a phenylene group (particularly 1,4-phenylene group) and a naphthylene group. (Especially 1,5-naphthylene group or 2,6-naphthylene group), more preferably phenylene group (especially 1,4-phenylene group).
 なお、本発明のカゴ形化合物(A)が有するユニット(3)として、縮合環を1個以上有する場合、本発明のカゴ形化合物をキラルなカゴ形化合物とすることができる。これにより、より効率的にキラルフラーレンを包摂することができる点で有用である。 When the cage compound (A) of the present invention has at least one condensed ring as the unit (3), the cage compound of the present invention can be a chiral cage compound. This is useful in that the chiral fullerene can be more efficiently included.
 本発明のカゴ形化合物(A)において、このようなユニット(3)の数は、6個以上、好ましくは6~98個、より好ましくは6~48個、さらに好ましくは6~28個、より好ましくは6~18個、特に好ましくは6個、12個、15個又は18個である。つまり、ユニット(3)の数は3の倍数であることが好ましい。 In the cage compound (A) of the present invention, the number of such units (3) is 6 or more, preferably 6 to 98, more preferably 6 to 48, still more preferably 6 to 28, and more. The number is preferably 6 to 18, particularly preferably 6, 12, 15, or 18. That is, the number of units (3) is preferably a multiple of three.
 また、本発明のカゴ形化合物(A)において、環の総数は、ユニット(1)とユニット(3)との合計数であり、8個以上、好ましくは8~100個、より好ましくは8~50個、さらに好ましくは8~30個、より好ましくは8~22個、特に好ましくは8個、14個、17個、20個、又は22個である。 In the cage compound (A) of the present invention, the total number of rings is the total number of units (1) and units (3), which is 8 or more, preferably 8 to 100, more preferably 8 to The number is 50, more preferably 8 to 30, more preferably 8 to 22, particularly preferably 8, 14, 17, 20, or 22.
 このような本発明のカゴ形化合物(A)は、取扱い性に優れる(例えば、白色固体でほとんどの有機溶媒によく溶解し、300℃以上という高温でも分解しない)。また、光をよく吸収し、強い蛍光を有する(例えば、[6.6.6]ケージの場合は1光子吸収、2光子吸収し、強い青色蛍光を有する。また、[4.4.4]ケージ及び[5.5.5]ケージの場合は1光子吸収し、強い青色蛍光を有する。)。このため、本発明のカゴ形化合物(A)は、分岐型カーボンナノチューブの接合ユニットとして期待されるのみならず、有機EL材料、有機トランジスタ材料、光記録材料、高密度光ストレージ、生体分子の蛍光イメージング、ゲスト分子の光センサー等様々な用途に用いることができる。 Such a cage compound (A) of the present invention is excellent in handleability (for example, it is a white solid which dissolves well in most organic solvents and does not decompose even at a high temperature of 300 ° C. or higher). Also, it absorbs light well and has strong fluorescence (for example, in the case of [6.6.6] cage, it absorbs one photon, absorbs two photons, and has strong blue fluorescence. Also, [4.4.4] The cage and [5.5.5] cages absorb one photon and have strong blue fluorescence.) Therefore, the cage compound (A) of the present invention is not only expected as a junction unit of branched carbon nanotubes, but also organic EL materials, organic transistor materials, optical recording materials, high-density optical storage, and biomolecular fluorescence. It can be used for various applications such as imaging and optical sensors for guest molecules.
 このような条件を満たす本発明のカゴ形化合物(A)としては、例えば、一般式(Ia): Examples of the cage compound (A) of the present invention that satisfies such conditions include, for example, the general formula (Ia):
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
[式中、Rは同じか又は異なり、それぞれ、一般式(Ia-1): [Wherein, R 1 is the same or different and each represents a general formula (Ia-1):
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
(式中、Rは同じか又は異なり、それぞれ置換基を有していてもよい2価の芳香族炭化水素基;nは同じか又は異なり、それぞれ0以上の整数である。)
で示される2価の基である。]
で示される化合物(Ia)等が挙げられる。
(In the formula, R 4 is the same or different and each is a divalent aromatic hydrocarbon group optionally having a substituent; n is the same or different and each is an integer of 0 or more.)
It is a bivalent group shown by these. ]
(Ia) etc. which are shown by these are mentioned.
 この化合物は、複数の連結している環が一様にひずむことにより、一様に湾曲した3本のアーチを有する。 This compound has three arches that are uniformly curved by uniformly distorting a plurality of linked rings.
 一般式(Ia)において、Rは同じか又は異なり、それぞれ置換基を有していてもよい2価の芳香族炭化水素基である。2価の芳香族炭化水素基、有していてもよい置換基は上記したものを採用できる。好ましい具体例も同様とすることができる。つまり、Rは、いずれも、パラ位に結合手を有することが好ましく、また、2価の芳香族炭化水素基、特にフェニレン基(特に1,4-フェニレン基)及びナフチレン基(特に1,5-ナフチレン基又は2,6-ナフチレン基)、さらにフェニレン基(特に1,4-フェニレン基)が好ましく、置換基を有する場合、置換基としてはハロゲン原子、特に塩素原子が好ましい。 In the general formula (Ia), R 4 is the same or different and each is a divalent aromatic hydrocarbon group which may have a substituent. What was mentioned above is employable as a divalent aromatic hydrocarbon group and the substituent which it may have. The preferred specific examples can also be the same. That is, R 4 preferably has a bond at the para position, and is a divalent aromatic hydrocarbon group, particularly a phenylene group (especially 1,4-phenylene group) and a naphthylene group (especially 1,4). 5-naphthylene group or 2,6-naphthylene group) and phenylene group (especially 1,4-phenylene group) are preferable, and when having a substituent, a halogen atom, particularly a chlorine atom is preferable as the substituent.
 一般式(Ia)において、nは同じか又は異なり、それぞれ0以上の整数である。nがいずれも0の場合は、Rをいずれも有さない、つまり、Rが4,4’-ビフェニレン基である。nは、いずれも、0~31の整数が好ましく、0~14の整数がより好ましく、0~8の整数がさらに好ましく、0~4の整数がより好ましく、1~4の整数が特に好ましい。 In general formula (Ia), n is the same or different and each is an integer of 0 or more. When both n are 0, they do not have any R 4 , that is, R 1 is a 4,4′-biphenylene group. n is preferably an integer of 0 to 31, more preferably an integer of 0 to 14, still more preferably an integer of 0 to 8, more preferably an integer of 0 to 4, and particularly preferably an integer of 1 to 4.
 このような条件を満たす好ましいRとしては、具体的には、 As preferable R 1 satisfying such conditions, specifically,
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
等が挙げられ、これらの1種又は2種以上を採用することができる。 Etc., and one or more of these can be employed.
 以上のような条件を満たす一般式(Ia)で示される本発明のカゴ形化合物(A)としては、具体的には、 As the cage compound (A) of the present invention represented by the general formula (Ia) that satisfies the above conditions, specifically,
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
等が好適に挙げられる。 Etc. are preferable.
 このような一般式(Ia)で示される本発明のカゴ形化合物(A)は、中心部に略球状のナノ空間を有しており、内部にゲスト分子を取り込むことができる。例えば、Rがいずれも1,4-フェニレン基が6個連結した[6.6.6]ケージにおいてはその直径は約1.84nm、Rがいずれも1,4-フェニレン基が5個連結した[5.5.5]ケージにおいてはその直径は約1.58nm、Rがいずれも1,4-フェニレン基が4個連結した[4.4.4]ケージにおいてはその直径は約1.30nmであり、必要なナノ空間のサイズに応じて適宜Rを選択することができる。 The cage compound (A) of the present invention represented by the general formula (Ia) has a substantially spherical nanospace at the center and can incorporate guest molecules therein. For example, in a [6.6.6] cage in which each R 1 is linked with six 1,4-phenylene groups, the diameter is about 1.84 nm, and each R 1 has five 1,4-phenylene groups. its diameter at the linked [5.5.5] cage about 1.58 nm, the diameter is in also R 1 is either 1,4 phenylene group linked four [4.4.4] cage about It is 1.30 nm, and R 1 can be appropriately selected according to the size of the required nanospace.
 このような本発明のカゴ形化合物は、文献未記載の新規化合物である。 Such a cage compound of the present invention is a novel compound not described in any literature.
 [2]カゴ形化合物(A)の製造方法
 本発明のカゴ形化合物(A)は、例えば、下記反応式1:
[2] Method for producing cage compound (A) The cage compound (A) of the present invention can be produced, for example, by the following reaction formula 1:
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
[式中、Rは後述する;Rは前記に同じである。]
により得られる。
[Wherein R 2 will be described later; R 1 is the same as defined above. ]
Is obtained.
 つまり、本発明のカゴ形化合物(A)は、本発明の箱形化合物(B)が有するシクロヘキサン環部をベンゼン環に変換する変換工程を経ることにより得られる。 That is, the cage compound (A) of the present invention can be obtained through a conversion step of converting the cyclohexane ring part of the box compound (B) of the present invention into a benzene ring.
 例えば、一般的な酸化反応を施すことができる。その具体例としては、例えば、酸の存在下、本発明の箱形化合物(B)を加熱する(酸処理する)方法の他、酸素存在下(空気雰囲気、酸素雰囲気等)酸化剤等と反応させる方法等も挙げられる。これにより、通常、脱水素反応等が適用され、本発明の箱形化合物(B)が有するシクロヘキサン環部を、ベンゼン環に化学変化(芳香化)させて、本発明のカゴ形化合物(A)を合成することができる。つまり、変換前の本発明の箱形化合物(B)が有する、シクロヘキサン環部におけるOR(Rは後述する)も脱離され、且つ脱水素反応も進行して、本発明のカゴ形化合物(A)が得られる。 For example, a general oxidation reaction can be performed. Specific examples thereof include, for example, a method of heating (acid-treating) the box-shaped compound (B) of the present invention in the presence of an acid, and a reaction with an oxidizing agent in the presence of oxygen (air atmosphere, oxygen atmosphere, etc.). The method etc. to make are also mentioned. As a result, a dehydrogenation reaction or the like is usually applied, and the cyclohexane ring part of the box-shaped compound (B) of the present invention is chemically changed (aromatized) to a benzene ring, whereby the cage-shaped compound (A) of the present invention Can be synthesized. That is, OR 3 (R 3 will be described later) in the cyclohexane ring part of the box-shaped compound (B) of the present invention before conversion is also eliminated, and the dehydrogenation reaction proceeds, whereby the cage-shaped compound of the present invention. (A) is obtained.
 また、Rは後述する。Rは上述と同様であり、好ましい具体例も同様である。 R 2 will be described later. R 1 is the same as described above, and preferred specific examples are also the same.
 上記酸処理を行う場合、その具体的な方法等は、特に限定されないが、例えば、以下の方法等が好ましい。
(α)本発明の箱形化合物(B)と酸とを溶媒に溶解させた後、得られた溶液を加熱して反応させる方法。
(β)本発明の箱形化合物(B)を溶媒に溶解させた後、得られた溶液と酸とを混合して得られた混合物を加熱して反応させる方法。
In the case of performing the acid treatment, the specific method thereof is not particularly limited, but for example, the following method is preferable.
(Α) A method in which the box compound (B) of the present invention and an acid are dissolved in a solvent, and then the resulting solution is heated and reacted.
(Β) A method in which the box compound (B) of the present invention is dissolved in a solvent, and then the mixture obtained by mixing the resulting solution and an acid is heated to react.
 なお、上記変換工程を行う場合、無溶媒による酸処理とすることもできる。 In addition, when performing the said conversion process, it can also be set as the acid treatment by a non-solvent.
 上記酸は、特に限定されないが、触媒等に使用される強酸又はその塩が好ましい。例えば、硫酸、硫酸水素ナトリウム、メタンスルホン酸、パラトルエンスルホン酸、タングストリン酸、タングストケイ酸、モリブドリン酸、モリブドケイ酸、三フッ化ホウ素エチラート、四塩化スズ等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。 The acid is not particularly limited, but is preferably a strong acid or a salt thereof used for a catalyst or the like. For example, sulfuric acid, sodium hydrogen sulfate, methanesulfonic acid, p-toluenesulfonic acid, tungstophosphoric acid, tungstosilicic acid, molybdophosphoric acid, molybdosilicic acid, boron trifluoride ethylate, tin tetrachloride and the like can be mentioned. These can be used alone or in combination of two or more.
 また、上記(α)の方法、(β)の方法のいずれの場合においても、上記酸の使用量は、製造条件等により異なるが、本発明の箱形化合物(B)に対して過剰量とすることが好ましく、具体的には、収率の観点から、本発明の箱形化合物(B)1モルに対して、10~100モルが好ましく、20~50モルがより好ましい。 Further, in any of the methods (α) and (β), the amount of the acid used varies depending on the production conditions and the like, but is an excess amount relative to the box-shaped compound (B) of the present invention. Specifically, from the viewpoint of yield, it is preferably 10 to 100 mol, more preferably 20 to 50 mol, per 1 mol of the box-shaped compound (B) of the present invention.
 この変換工程においては、上述のように、本発明の箱形化合物を酸と反応させるだけでなく、酸化剤を併用することもできる。使用できる酸化剤としては、特に制限されないが、例えば、o-クロラニル、p-クロラニル等のクロラニル類;1,4-ベンゾキノン、3,5-ジ-t-ブチル-1,2-ベンゾキノン、9,10-フェンバントレンキノン、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン等のキノン類;CuCl、K等の金属酸化剤等が使用できる。これらのなかでも、収率の観点から、クロラニル類が好ましく、o-クロラニルがより好ましい。 In this conversion step, as described above, not only the box-shaped compound of the present invention is reacted with an acid, but also an oxidizing agent can be used in combination. The oxidizing agent that can be used is not particularly limited, and examples thereof include chloranils such as o-chloranil and p-chloranil; 1,4-benzoquinone, 3,5-di-t-butyl-1,2-benzoquinone, 9, Quinones such as 10-fenvanthrenequinone and 2,3-dichloro-5,6-dicyano-p-benzoquinone; metal oxidizing agents such as CuCl 2 and K 2 S 2 O 8 can be used. Among these, chloranil is preferable from the viewpoint of yield, and o-chloranil is more preferable.
 酸化剤を使用する場合、その使用量は、収率の観点から、本発明の箱形化合物(B)1モルに対して、1~10モルが好ましく、3~7モルがより好ましい。 When an oxidizing agent is used, the amount used is preferably 1 to 10 mol, more preferably 3 to 7 mol, per 1 mol of the box-shaped compound (B) of the present invention, from the viewpoint of yield.
 また、酸処理の反応に用いられる溶媒は、非極性溶媒であっても極性溶媒であってもよい。例えば、ヘキサン、ヘプタン、オクタン等のアルカン類;塩化メチレン、クロロホルム、四塩化炭素、塩化エチレン等のハロアルカン類;ベンゼン、トルエン、キシレン(m-キシレン等)、メシチレン、ペンタメチルベンゼン等のベンゼン類;クロルベンゼン、ブロムベンゼン等のハロベンゼン類;ジエチルエーテル、アニソール等のエーテル類;ジメチルスルホキシド等が挙げられる。上記溶媒は、1種単独であるいは2種以上を組み合わせて用いることができる。溶媒を用いる場合において、原材料から本発明のカゴ形化合物(A)に至るまでの反応中間体が、使用した1の溶媒に対して低い溶解性となることがあり、この場合、他の溶媒を、予め、又は反応の途中から、添加してもよい。 Further, the solvent used in the acid treatment reaction may be a nonpolar solvent or a polar solvent. For example, alkanes such as hexane, heptane, and octane; haloalkanes such as methylene chloride, chloroform, carbon tetrachloride, and ethylene chloride; benzenes such as benzene, toluene, xylene (m-xylene, etc.), mesitylene, and pentamethylbenzene; Halobenzenes such as chlorobenzene and bromobenzene; ethers such as diethyl ether and anisole; dimethyl sulfoxide and the like. The said solvent can be used individually by 1 type or in combination of 2 or more types. In the case of using a solvent, the reaction intermediate from the raw material to the cage compound (A) of the present invention may have low solubility in one solvent used. Alternatively, it may be added in advance or in the middle of the reaction.
 変換工程における加熱温度は、(α)及び(β)のいずれの方法を採用した場合においても、収率の観点から、通常、50℃以上が好ましく、80℃以上がより好ましく、100℃以上がさらに好ましく、120℃以上が特に好ましい。また、溶媒を用いる場合は、使用する上記溶媒の沸点以下とすることが好ましい。 The heating temperature in the conversion step is usually preferably 50 ° C. or higher, more preferably 80 ° C. or higher, and more preferably 100 ° C. or higher from the viewpoint of yield, when either method (α) or (β) is adopted. Further preferred is 120 ° C. or higher. Moreover, when using a solvent, it is preferable to set it as the boiling point or less of the said solvent to be used.
 加熱手段としては、オイルバス、アルミブロック恒温槽、ヒートガン、バーナー、マイクロ波の照射等が挙げられる。マイクロ波を照射する場合には、マイクロ波反応に使用される公知のマイクロ波反応装置を用いることができる。加熱の際には還流冷却を併用してもよい。 The heating means includes an oil bath, an aluminum block thermostatic bath, a heat gun, a burner, and microwave irradiation. In the case of irradiation with microwaves, a known microwave reaction apparatus used for microwave reaction can be used. In heating, reflux cooling may be used in combination.
 また、上記酸処理における反応雰囲気は、特に限定されないが、好ましくは不活性ガス雰囲気であり、アルゴンガス雰囲気、窒素ガス雰囲気等とすることができる。なお、空気雰囲気とすることもできる。 The reaction atmosphere in the acid treatment is not particularly limited, but is preferably an inert gas atmosphere, and may be an argon gas atmosphere, a nitrogen gas atmosphere, or the like. An air atmosphere can also be used.
 更に、本発明のカゴ形化合物の製造方法においては、上記変換工程の後に、必要に応じて、精製工程を備えることができる。即ち、溶媒(溶剤)除去(溶媒を使用した場合)、洗浄、クロマト分離等といった一般的な後処理に供することができる。特に変換工程の後、得られる本発明のカゴ形化合物は、通常、アモルファス(非結晶)であるので、従来から公知の有機化合物の再結晶法を利用して、結晶化させることができる。結晶化物においては、結晶化操作において用いた有機溶媒が、分子を構成するカゴの内部に包含されることがある。 Furthermore, in the method for producing a cage compound of the present invention, a purification step can be provided as necessary after the conversion step. That is, it can be subjected to general post-treatment such as solvent (solvent) removal (when a solvent is used), washing, chromatographic separation, and the like. In particular, since the obtained cage compound of the present invention is usually amorphous (non-crystalline) after the conversion step, it can be crystallized by utilizing a conventionally known recrystallization method of an organic compound. In the crystallized product, the organic solvent used in the crystallization operation may be included in the cage constituting the molecule.
 本発明のカゴ形化合物の製造方法により得られるカゴ形化合物は、[1]で説明したような性質を有する化合物である。この製造方法によれば、原料となる箱形化合物を種々採用することにより、化合物(Ia)等、種々様々なカゴ形化合物を合成することができる。 The cage compound obtained by the method for producing a cage compound of the present invention is a compound having the properties as described in [1]. According to this production method, a variety of cage compounds such as Compound (Ia) can be synthesized by employing various box compounds as raw materials.
 [3]箱形化合物
 本発明の箱形化合物は、上記の本発明のカゴ形化合物の製造方法において、変換工程に供する出発原料として位置づけられる中間体であり、具体的には、8個以上の環が単結合で連結した箱形化合物(B)であって、
該環同士は、環中に存在するsp2混成炭素原子又はsp3混成炭素原子同士が結合しており、
(1)式:
[3] Box-shaped compound The box-shaped compound of the present invention is an intermediate positioned as a starting material for the conversion step in the above-described method for producing a cage compound of the present invention. A box-shaped compound (B) in which rings are connected by a single bond,
The rings are bonded to each other with sp2 hybrid carbon atoms or sp3 hybrid carbon atoms present in the ring,
(1) Formula:
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
で示される基が2~4個、
(2)置換基を有していてもよい1,4-シクロヘキシレン基が6個、及び
(3)置換基を有していてもよい2価の芳香族炭化水素基が0個以上
からなる、箱形化合物である。
2 to 4 groups represented by
(2) consisting of 6 optionally substituted 1,4-cyclohexylene groups and (3) 0 or more divalent aromatic hydrocarbon groups optionally having substituents A box-shaped compound.
 つまり、ユニット(2)を有する点、ユニット(3)の数が、本発明のカゴ形化合物との違いである。 That is, the point having the unit (2) and the number of the units (3) are different from the cage compound of the present invention.
 本発明の箱形化合物(B)が有するユニット(1)の数は2~4個であり、2個又は4個が好ましく、2個がより好ましい。ユニット(1)を2個有する場合、本発明の箱形化合物(B)は、ひずみを有さないアーチを3本有する。 The number of units (1) possessed by the box-shaped compound (B) of the present invention is 2 to 4, preferably 2 or 4, and more preferably 2. When it has two units (1), the box-shaped compound (B) of this invention has three arches which do not have a distortion.
 本発明の箱型化合物(B)が有するユニット(2)の数は6個である。これにより、ひずみなく箱形化合物が得られる。そして、上述の変換工程に供することにより、本発明のカゴ形化合物が得られる。 The number of units (2) possessed by the box-type compound (B) of the present invention is six. Thereby, a box-shaped compound is obtained without distortion. And the cage compound of this invention is obtained by using for the above-mentioned conversion process.
 本発明の箱形化合物(B)が有していてもよいユニット(3)としての2価の芳香族炭化水素基は、上述したものと同様のものを採用できる。好ましい具体例も同様である。つまり、本発明の箱形化合物(B)が有していてもよいユニット(3)としては、2価の6員芳香環又は2価の6員複素芳香環を備える基であって、いずれも、パラ位に結合手を有する基が好ましい。 As the divalent aromatic hydrocarbon group as the unit (3) that the box-shaped compound (B) of the present invention may have, the same ones as described above can be adopted. The same applies to preferred embodiments. That is, the unit (3) that the box-shaped compound (B) of the present invention may have is a group having a divalent 6-membered aromatic ring or a divalent 6-membered heteroaromatic ring, A group having a bond at the para position is preferred.
 また、ユニット(3)を形成する環としては、単環又は縮合環が好ましく、単環がより好ましい。 The ring forming the unit (3) is preferably a single ring or a condensed ring, and more preferably a single ring.
 これらのなかでも、本発明の箱形化合物(B)が有していてもよいユニット(3)は、好ましくは2価の芳香族炭化水素基、特に好ましくはフェニレン基(特に1,4-フェニレン基)及びナフチレン基(特に1,5-ナフチレン基又は2,6-ナフチレン基)であり、より好ましくはフェニレン基(特に1,4-フェニレン基)である。 Among these, the unit (3) which the box-shaped compound (B) of the present invention may have is preferably a divalent aromatic hydrocarbon group, particularly preferably a phenylene group (especially 1,4-phenylene). Group) and naphthylene group (especially 1,5-naphthylene group or 2,6-naphthylene group), more preferably phenylene group (especially 1,4-phenylene group).
 本発明の箱形化合物(B)において、このようなユニット(3)の数は、0個以上、好ましくは0~92個、より好ましくは0~42個、さらに好ましくは0~22個、より好ましくは0~12個、特に好ましくは0個、6個、9個又は12個である。つまり、ユニット(3)の数は3の倍数であることが好ましい。 In the box-shaped compound (B) of the present invention, the number of such units (3) is 0 or more, preferably 0 to 92, more preferably 0 to 42, still more preferably 0 to 22, The number is preferably 0 to 12, particularly preferably 0, 6, 9, or 12. That is, the number of units (3) is preferably a multiple of three.
 また、本発明の箱形化合物(B)において、環の総数は、ユニット(1)~(3)の合計数であり、8個以上、好ましくは8~100個、より好ましくは8~50個、さらに好ましくは8~30個、より好ましくは8~22個、特に好ましくは8個、14個、17個、20個、又は22個である。 In the box-shaped compound (B) of the present invention, the total number of rings is the total number of units (1) to (3), which is 8 or more, preferably 8 to 100, more preferably 8 to 50. More preferably, it is 8-30, more preferably 8-22, and particularly preferably 8, 14, 17, 20, or 22.
 このような条件を満たす本発明の箱形化合物(B)としては、例えば、一般式(IIa): Examples of the box-shaped compound (B) of the present invention that satisfies such conditions include, for example, the general formula (IIa):
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
[式中、Rは同じか又は異なり、それぞれ、一般式(IIa-1): [Wherein R 2 is the same or different and each represents a general formula (IIa-1):
(式中、Rは同じか又は異なり、それぞれ水素原子又は水酸基の保護基;R及びnは前記に同じである。)
で示される2価の基である。]
で示される化合物(IIa)等が挙げられる。
(Wherein R 3 is the same or different and each represents a hydrogen atom or a hydroxyl-protecting group; R 4 and n are the same as defined above.)
It is a bivalent group shown by these. ]
(IIa) etc. which are shown by these.
 この一般式(IIa)のように、2個のシクロヘキサン環を有することにより、ひずみなく、2個のベンゼン環に結合することができ、その結果、化合物(IIa)は、3本のアーチを有する。 Like this general formula (IIa), by having two cyclohexane rings, it can couple | bond with two benzene rings without distortion, As a result, compound (IIa) has three arches .
 上記一般式(IIa-1)において、Rは水素原子又は水酸基の保護基である。水酸基の保護基としては、特に制限されるわけではないが、アルコキシアルキル基(メトキシメチル基(-CH-O-CH、以下、「-MOM」と表記する場合がある)等);アルカノイル基(例えば、アセチル基、プロピオニル基等);シリル基(例えば、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基等);テトラヒドロピラニル基(THP);アルキル基(例えばメチル基、エチル基等);ベンジル基等が挙げられ、アルコキシアルキル基が好ましく、メトキシメチル基がより好ましい。 In the above general formula (IIa-1), R 3 is a hydrogen atom or a hydroxyl-protecting group. The hydroxyl-protecting group is not particularly limited, but is an alkoxyalkyl group (methoxymethyl group (—CH 2 —O—CH 3 , hereinafter sometimes referred to as “-MOM”)); alkanoyl Group (eg, acetyl group, propionyl group, etc.); silyl group (eg, trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, etc.); tetrahydropyranyl group (THP); alkyl group (eg, methyl group, ethyl group) Etc.); a benzyl group and the like are mentioned, an alkoxyalkyl group is preferred, and a methoxymethyl group is more preferred.
 上記保護基(特にアルコキシアルキル基、なかでもメトキシメチル基)は、アルコール(水酸基)を形成する水素原子と置換されて、アルコールの保護基として機能する。 The above protecting group (particularly an alkoxyalkyl group, especially a methoxymethyl group) is substituted with a hydrogen atom forming an alcohol (hydroxyl group), and functions as an alcohol protecting group.
 また、保護基のなかでも、アルコキシアルキル基、特にメトキシメチル基は、保護基を形成させるアルコールにクロロメチルメチルエーテル(Cl-CH-O-CH)を反応させることにより得られる。 Among the protecting groups, an alkoxyalkyl group, particularly a methoxymethyl group, can be obtained by reacting chloromethyl methyl ether (Cl—CH 2 —O—CH 3 ) with an alcohol that forms a protecting group.
 また、上記一般式(IIa-1)において、4個のRは同一であっても異なっていてもよい。本発明のカゴ形化合物の製造方法を採用する場合には、Rはアルコキシアルキル基、特にメトキシメチル基が好ましい。 In the general formula (IIa-1), four R 3 s may be the same or different. When the method for producing a cage compound of the present invention is employed, R 3 is preferably an alkoxyalkyl group, particularly a methoxymethyl group.
 このような条件を満たすRとしては、具体的には、 Specifically, as R 2 satisfying such conditions,
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
[式中、MOMはメトキシメチル基である。]
等が挙げられる。
[Wherein, MOM is a methoxymethyl group. ]
Etc.
 以上のような条件を満たす一般式(IIa)で示される本発明の箱形化合物(B)としては、具体的には、 As the box-shaped compound (B) of the present invention represented by the general formula (IIa) that satisfies the above conditions, specifically,
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
[式中、MOMはメトキシメチル基である。]
等が挙げられる。
[Wherein, MOM is a methoxymethyl group. ]
Etc.
 このような本発明の箱形化合物は、文献未記載の新規化合物である。 Such a box-shaped compound of the present invention is a novel compound not described in any literature.
 [4]箱形化合物の製造方法
 本発明において、箱形化合物は、
一般式(III):
[4] Method for producing box-shaped compound In the present invention, the box-shaped compound is:
General formula (III):
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
[式中、R及びRは前記に同じ;mは同じか又は異なり、それぞれ0以上の整数;Yは同じか又は異なり、それぞれハロゲン原子、又は一般式(III-1): [Wherein R 3 and R 4 are the same as described above; m is the same or different and each is an integer of 0 or more; Y is the same or different and each represents a halogen atom or a general formula (III-1):
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
(式中、Rは同じか又は異なり、それぞれ水素原子又は炭素数1~10のアルキル基であり、Rは互いに結合して、隣接する-O-B-O-とともに環を形成してもよい。)
で示される基である。]
で示される化合物(III)をカップリングさせるカップリング工程
により得られる。この後、上述の変換工程を経ることにより本発明のカゴ形化合物が得られる。
(Wherein R 5 is the same or different and each represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 5 is bonded to each other to form a ring with adjacent —O—B—O—. May be.)
It is group shown by these. ]
It is obtained by a coupling step of coupling the compound (III) represented by Thereafter, the cage compound of the present invention is obtained through the above-described conversion step.
 <化合物(III)>
 カップリング工程において、原料として使用する化合物(III)において、Rは水素原子又は水酸基の保護基であり、水酸基の保護基は上記と同様とすることができる。また、好ましい具体例も同様とすることができる。つまり、アルコキシアルキル基が好ましく、メトキシメチル基がより好ましい。
<Compound (III)>
In the compound (III) used as a raw material in the coupling step, R 3 is a hydrogen atom or a hydroxyl-protecting group, and the hydroxyl-protecting group can be the same as described above. Moreover, a preferable specific example can also be made the same. That is, an alkoxyalkyl group is preferable, and a methoxymethyl group is more preferable.
 また、Rは置換基を有していてもよい2価の芳香族炭化水素基であり、上記と同様とすることができる。また、好ましい具体例も同様とすることができる。つまり、Rは、いずれも、パラ位に結合手を有することが好ましく、また、2価の芳香族炭化水素基、特にフェニレン基(特に1,4-フェニレン基)及びナフチレン基(特に1,5-ナフチレン基又は2,6-ナフチレン基)、さらにフェニレン基(特に1,4-フェニレン基)が好ましく、置換基を有する場合、置換基としてはハロゲン原子、特に塩素原子が好ましい。 R 4 is a divalent aromatic hydrocarbon group which may have a substituent, and can be the same as described above. Moreover, a preferable specific example can also be made the same. That is, R 4 preferably has a bond at the para position, and is a divalent aromatic hydrocarbon group, particularly a phenylene group (especially 1,4-phenylene group) and a naphthylene group (especially 1,4). 5-naphthylene group or 2,6-naphthylene group) and phenylene group (especially 1,4-phenylene group) are preferable, and when having a substituent, a halogen atom, particularly a chlorine atom is preferable as the substituent.
 mは、いずれも0以上の整数であり、上記と同様とすることができる。また、好ましい具体例も同様とすることができる。つまり、0~16の整数が好ましく、0~8の整数がより好ましく、0~5の整数がさらに好ましく、0~3の整数がより好ましく、1~3の整数が特に好ましい。 M is an integer of 0 or more, and can be the same as above. Moreover, a preferable specific example can also be made the same. That is, an integer of 0 to 16 is preferable, an integer of 0 to 8 is more preferable, an integer of 0 to 5 is more preferable, an integer of 0 to 3 is more preferable, and an integer of 1 to 3 is particularly preferable.
 Yは同じか又は異なり、それぞれハロゲン原子、又は一般式(III-1): Y is the same or different and each is a halogen atom or general formula (III-1):
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
(式中、Rは同じか又は異なり、それぞれ水素原子又は炭素数1~10のアルキル基であり、Rは互いに結合して、隣接する-O-B-O-とともに環を形成してもよい。)
で示される基である。
(Wherein R 5 is the same or different and each represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 5 is bonded to each other to form a ring with adjacent —O—B—O—. May be.)
It is group shown by these.
 一般式(III)の中のYにおけるハロゲン原子は、いずれも制限はなく、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。なかでも、収率等の観点から、臭素原子が好ましい。 The halogen atom in Y in the general formula (III) is not limited, and examples thereof include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Of these, a bromine atom is preferable from the viewpoint of yield and the like.
 また、一般式(III-1)で示される基は、以下、「ボロン酸又はそのエステル基」と言うこともあるが、Rは、水素原子又はアルキル基である。このアルキル基の炭素数は、1~10であり、好ましくは1~8であり、より好ましくは1~5である。また、2つのRは同一であっても異なっていてもよい。また、Rがアルキル基である場合には、それぞれのアルキル基を構成する炭素原子が、互いに結合してホウ素原子及び酸素原子とともに環を形成してもよい。 Further, the group represented by the general formula (III-1) may be hereinafter referred to as “boronic acid or an ester group thereof”, and R 5 is a hydrogen atom or an alkyl group. The alkyl group has 1 to 10 carbon atoms, preferably 1 to 8 carbon atoms, and more preferably 1 to 5 carbon atoms. Two R 5 may be the same or different. When R 5 is an alkyl group, the carbon atoms constituting each alkyl group may be bonded to each other to form a ring together with a boron atom and an oxygen atom.
 このようなボロン酸又はそのエステル基としては、具体的には、 As such boronic acid or its ester group, specifically,
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
等が挙げられる。これにより、化合物(III)として末端がボロン酸又はそのエステル基である化合物と、末端がハロゲン原子である化合物とを反応させる際に、鈴木-宮浦カップリング反応により、カップリング反応を、より効率的に進行させることができる。 Etc. As a result, when reacting a compound having a terminal boronic acid or its ester group as a compound (III) with a compound having a halogen atom at the terminal, the coupling reaction is more efficient by the Suzuki-Miyaura coupling reaction. Can be advanced.
 このような条件を満たす化合物(III)としては、具体的には、 As the compound (III) satisfying such conditions, specifically,
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
[式中、MOMはメトキシメチル基;B(pin)は [Wherein MOM is a methoxymethyl group; B (pin) is
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
である]
等が挙げられる。
Is]
Etc.
 このような化合物(III)は、文献未記載の新規化合物である。 Such compound (III) is a novel compound not described in any literature.
 このような化合物(III)は、種々多様な方法により合成することができる。例えば、三つ又のベンゼン環とシクロヘキサン環とが、他の環を介して結合している化合物の場合、
一般式(IIIa):
Such compound (III) can be synthesized by various methods. For example, in the case of a compound in which a trifurcated benzene ring and a cyclohexane ring are bonded via another ring,
General formula (IIIa):
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
[式中、Y’は同じか又は異なり、それぞれハロゲン原子、又は一般式(III-2): [Wherein Y 'is the same or different and each represents a halogen atom or general formula (III-2):
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
(式中、Rは前記に同じである。)
である。]
で示される化合物(IIIa)と、化合物(IV)とを反応させることにより得られる。
(Wherein R 5 is the same as defined above.)
It is. ]
It can be obtained by reacting compound (IIIa) represented by formula (IV) with compound (IV).
 ただし、化合物(IIIa)の末端がハロゲン原子の場合は化合物(IV)の末端はボロン酸又はそのエステル基が好ましく、逆に化合物(IIIa)の末端がボロン酸又はそのエステル基の場合は化合物(IV)の末端はハロゲン原子が好ましい。 However, when the terminal of the compound (IIIa) is a halogen atom, the terminal of the compound (IV) is preferably a boronic acid or an ester group thereof, and conversely, when the terminal of the compound (IIIa) is a boronic acid or an ester group thereof, the compound ( The end of IV) is preferably a halogen atom.
 なお、化合物(IV)は、公知の化合物であり、公知の方法で合成ずることができる。具体的には、例えば、WO2011/052948号パンフレットに記載の化合物(10)を使用することができ、また、当該化合物(10)の合成方法に従って、又は準じて合成することができる。なお、WO2011/052948号パンフレットに記載の事項は、本明細書において、参照として引用される。 Compound (IV) is a known compound and can be synthesized by a known method. Specifically, for example, the compound (10) described in the pamphlet of WO2011 / 052948 can be used, and can be synthesized according to or according to the synthesis method of the compound (10). In addition, the matter described in the pamphlet of WO2011 / 052948 is cited as a reference in this specification.
 化合物(IIIa)と化合物(IV)とを反応させるが、その比は、収率等の観点から、化合物(IIIa)1モルに対して、化合物(IV)は1~100モルが好ましく、2~50モルがより好ましく、5~20モルがさらに好ましい。 Compound (IIIa) and compound (IV) are reacted, and the ratio is preferably from 1 to 100 mol of compound (IV) to 1 mol of compound (IIIa) from the viewpoint of yield and the like. 50 moles are more preferred, and 5 to 20 moles are even more preferred.
 反応は、通常、触媒の存在下で行われ、好ましくはパラジウム系触媒が使用される。このパラジウム系触媒としては、金属パラジウムをはじめ、有機化合物(高分子化合物を含む)等の合成用触媒として公知のパラジウム化合物等が挙げられる。本発明においては、鈴木-宮浦カップリング反応に使用されるパラジウム系触媒(パラジウム化合物)を用いることができる。具体的には、Pd(PPh(Phはフェニル基)、PdCl(PPh(Phはフェニル基)、酢酸パラジウム(Pd(OAc))、トリス(ジベンジリデンアセトン)二パラジウム(0)(Pd(dba))、トリス(ジベンジリデンアセトン)二パラジウム(0)クロロホルム錯体、ビス(ジベンジリデンアセトン)パラジウム(0)、ビス(トリt-ブチルホスフィノ)パラジウム(0)、及び(1,1’-ビス(ジフェニルホスフィノ)フェロセン)ジクロロパラジウム(II)等が挙げられる。本工程では、Pd(dba)、Pd(PPh、(1,1’-ビス(ジフェニルホスフィノ)フェロセン)ジクロロパラジウム(II)等が好ましい。 The reaction is usually performed in the presence of a catalyst, and a palladium-based catalyst is preferably used. Examples of the palladium-based catalyst include metal palladium and known palladium compounds as catalysts for synthesis of organic compounds (including polymer compounds). In the present invention, a palladium-based catalyst (palladium compound) used in the Suzuki-Miyaura coupling reaction can be used. Specifically, Pd (PPh 3 ) 4 (Ph is a phenyl group), PdCl 2 (PPh 3 ) 2 (Ph is a phenyl group), palladium acetate (Pd (OAc) 2 ), tris (dibenzylideneacetone) dipalladium (0) (Pd 2 (dba) 3 ), tris (dibenzylideneacetone) dipalladium (0) chloroform complex, bis (dibenzylideneacetone) palladium (0), bis (trit-butylphosphino) palladium (0) And (1,1′-bis (diphenylphosphino) ferrocene) dichloropalladium (II) and the like. In this step, Pd 2 (dba) 3 , Pd (PPh 3 ) 4 , (1,1′-bis (diphenylphosphino) ferrocene) dichloropalladium (II) and the like are preferable.
 本工程でパラジウム系触媒を用いる場合、その使用量は、収率の観点から、原料の化合物(IIIa)1モルに対して、通常、0.001~1モルが好ましく、0.005~0.1モルがより好ましい。 When a palladium catalyst is used in this step, the amount used is usually preferably 0.001 to 1 mol, preferably 0.005 to 0.005 mol per mol of the starting compound (IIIa) from the viewpoint of yield. 1 mole is more preferred.
 また、上記説明したパラジウム系触媒には、配位子が含まれているものもあるが、パラジウム系触媒と別途、パラジウム原子に配位し得る、リン配位子を使用することもできる。このリン配位子としては、例えば、トリフェニルホスフィン、トリ-(o,m,p)-トリルホスフィン、トリス(2,6-ジメトキシフェニル)ホスフィン、トリス[2-(ジフェニルホスフィノ)エチル]ホスフィン、ビス(2-メトキシフェニル)フェニルホスフィン、2-(ジ-t-ブチルホスフィノ)ビフェニル、2-(ジシクロヘキシルホスフィノ)ビフェニル、2-(ジフェニルホスフィノ)-2’-(N,N-ジメチルアミノ)ビフェニル、トリ-t-ブチルホスフィン、ビス(ジフェニルホスフィノ)メタン、1,2-ビス(ジフェニルホスフィノ)エタン、1,2-ビス(ジメチルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,5-ビス(ジフェニルホスフィノ)ペンタン、1,6-ビス(ジフェニルホスフィノ)ヘキサン、1,2-ビス(ジメチルホスフィノ)エタン、1,1’-ビス(ジフェニルホスフィノ)フェロセン(dppf)、ビス(2-ジフェニルホスフィノエチル)フェニルホスフィン、2-(ジシクロヘキシルホスフィノ)-2’,6’-ジメトキシ-1,1’-ビフェニル(S-Phos)、2-(ジシクロヘキシルホスフィノ)-2’,4’,6’-トリ-イソプロピル-1,1’-ビフェニル(X-Phos)、ビス(2-ジフェニルホスフィノフェニル)エーテル(DPEPhos)等が挙げられる。本工程では、1,1’-ビス(ジフェニルホスフィノ)フェロセン(dppf)等が好ましい。 In addition, some of the palladium-based catalysts described above contain a ligand, but a phosphorus ligand that can be coordinated to a palladium atom can also be used separately from the palladium-based catalyst. Examples of the phosphorus ligand include triphenylphosphine, tri- (o, m, p) -tolylphosphine, tris (2,6-dimethoxyphenyl) phosphine, and tris [2- (diphenylphosphino) ethyl] phosphine. Bis (2-methoxyphenyl) phenylphosphine, 2- (di-t-butylphosphino) biphenyl, 2- (dicyclohexylphosphino) biphenyl, 2- (diphenylphosphino) -2 ′-(N, N-dimethyl) Amino) biphenyl, tri-t-butylphosphine, bis (diphenylphosphino) methane, 1,2-bis (diphenylphosphino) ethane, 1,2-bis (dimethylphosphino) ethane, 1,3-bis (diphenyl) Phosphino) propane, 1,4-bis (diphenylphosphino) butane, 1,5-bis ( Phenylphosphino) pentane, 1,6-bis (diphenylphosphino) hexane, 1,2-bis (dimethylphosphino) ethane, 1,1′-bis (diphenylphosphino) ferrocene (dppf), bis (2- Diphenylphosphinoethyl) phenylphosphine, 2- (dicyclohexylphosphino) -2 ′, 6′-dimethoxy-1,1′-biphenyl (S-Phos), 2- (dicyclohexylphosphino) -2 ′, 4 ′, Examples include 6'-tri-isopropyl-1,1'-biphenyl (X-Phos), bis (2-diphenylphosphinophenyl) ether (DPEPhos), and the like. In this step, 1,1′-bis (diphenylphosphino) ferrocene (dppf) and the like are preferable.
 リン配位子を使用する場合、その使用量は、収率の観点から、原料の化合物(IIIa)1モルに対して、通常、0.001~1モルが好ましく、0.005~0.1モルがより好ましい。 When a phosphorus ligand is used, the amount used is usually preferably 0.001 to 1 mol, preferably 0.005 to 0.1 mol per mol of the starting compound (IIIa) from the viewpoint of yield. Mole is more preferred.
 また、上記パラジウム系触媒に加えて、必要に応じて、塩基を使用することもできる。この塩基は、鈴木-宮浦カップリング反応において、ホウ素原子上にアート錯体を形成し得る化合物であれば特に限定はされない。具体的には、フッ化カリウム、フッ化セシウム、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸銀、リン酸カリウム、酢酸ナトリウム、酢酸カリウム、酢酸カルシウム等が挙げられる。これらのうち、好ましくは、炭酸カリウム等である。この塩基の使用量は、原料の化合物(IIIa)1モルに対して、通常、0.1~50モル程度が好ましく、0.5~20モルがより好ましい。 In addition to the above palladium catalyst, a base can be used as necessary. The base is not particularly limited as long as it is a compound that can form an art complex on a boron atom in the Suzuki-Miyaura coupling reaction. Specifically, potassium fluoride, cesium fluoride, sodium hydroxide, potassium hydroxide, sodium methoxide, sodium bicarbonate, potassium bicarbonate, sodium carbonate, potassium carbonate, cesium carbonate, silver carbonate, potassium phosphate, acetic acid Sodium, potassium acetate, calcium acetate, etc. are mentioned. Of these, potassium carbonate is preferred. The amount of the base used is usually preferably about 0.1 to 50 mol, more preferably 0.5 to 20 mol, per 1 mol of the starting compound (IIIa).
 また、反応は、通常、反応溶媒の存在下で行われる。この反応溶媒としては、トルエン、キシレン、ベンゼン等の芳香族炭化水素類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジイソプロピルエーテル等のエーテル類;塩化メチル、クロロホルム、ジクロロメタン、ジクロロエタン、ジブロモエタン等のハロゲン化炭化水素類;アセトン、メチルエチルケトン等のケトン類;ジメチルホルムアミド、ジメチルアセトアミド等のアミド類、アセトニトリル等のニトリル類;メタノール、エタノール、イソプロピルアルコール等のアルコール類;ジメチルスルホキシド等が挙げられる。これらは、1種のみを用いてよいし、2種以上を組み合わせて用いてもよい。これらのうち、本発明では、ジメチルホルムアミド等が好ましい。 The reaction is usually performed in the presence of a reaction solvent. Examples of the reaction solvent include aromatic hydrocarbons such as toluene, xylene and benzene; esters such as methyl acetate, ethyl acetate and butyl acetate; ethers such as diethyl ether, tetrahydrofuran, dioxane, dimethoxyethane and diisopropyl ether; Halogenated hydrocarbons such as methyl, chloroform, dichloromethane, dichloroethane, dibromoethane; ketones such as acetone and methyl ethyl ketone; amides such as dimethylformamide and dimethylacetamide; nitriles such as acetonitrile; methanol, ethanol, isopropyl alcohol, and the like Examples of alcohols include dimethyl sulfoxide. These may be used alone or in combination of two or more. Of these, dimethylformamide and the like are preferable in the present invention.
 反応温度は、通常、0℃以上であり且つ上記反応溶媒の沸点温度以下である範囲から選択される。 The reaction temperature is usually selected from the range of 0 ° C. or higher and lower than the boiling temperature of the reaction solvent.
 また、反応雰囲気は、特に限定されないが、好ましくは不活性ガス雰囲気であり、アルゴンガス雰囲気、窒素ガス雰囲気等とすることができる。尚、空気雰囲気とすることもできる。 The reaction atmosphere is not particularly limited, but is preferably an inert gas atmosphere, and may be an argon gas atmosphere, a nitrogen gas atmosphere, or the like. An air atmosphere can also be used.
 また、本発明の化合物(III)は、化合物(IIIa)に対して、一般式(V): In addition, the compound (III) of the present invention is represented by the general formula (V) for the compound (IIIa):
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
[式中、R、R、m及びXは前記に同じである。]
で示される化合物(V)を反応させた後に水酸基の保護化を3回繰り返すことによっても得ることができる。
[Wherein, R 3 , R 4 , m and X are the same as defined above. ]
It can also be obtained by repeating the protection of the hydroxyl group three times after reacting the compound (V).
 この化合物(IIIa)と化合物(V)との反応は、有機アルキル金属化合物の存在下に行うことが好ましい。有機アルカリ金属化合物としては、特に制限されないが、有機リチウム化合物が好ましく、エチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、ペンチルリチウム、ヘキシルリチウム、シクロヘキシルリチウム、フェニルリチウム等が挙げられる。これらのうち、n-ブチルリチウム等が好ましい。 The reaction between the compound (IIIa) and the compound (V) is preferably performed in the presence of an organic alkyl metal compound. The organic alkali metal compound is not particularly limited, but an organic lithium compound is preferable, and ethyl lithium, n-propyl lithium, isopropyl lithium, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, pentyl lithium, hexyl lithium, Examples include cyclohexyl lithium and phenyl lithium. Of these, n-butyllithium and the like are preferable.
 有機アルカリ金属化合物の使用量は、反応のたびに、化合物(III)1モルに対して、0.8~5モルが好ましく、0.9~3.0モルがより好ましい。 The amount of the organic alkali metal compound used is preferably 0.8 to 5 mol, more preferably 0.9 to 3.0 mol, per 1 mol of compound (III) for each reaction.
 また、反応は、通常、いずれも反応溶媒の存在下で行われる。この反応溶媒としては、トルエン、キシレン、ベンゼン等の芳香族炭化水素類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジイソプロピルエーテル等のエーテル類;塩化メチル、クロロホルム、ジクロロメタン、ジクロロエタン、ジブロモエタン等のハロゲン化炭化水素類;アセトン、メチルエチルケトン等のケトン類;ジメチルホルムアミド、ジメチルアセトアミド等のアミド類、アセトニトリル等のニトリル類;メタノール、エタノール、イソプロピルアルコール等のアルコール類;ジメチルスルホキシド等が挙げられる。これらは、1種のみを用いてよいし、2種以上を組み合わせて用いてもよい。これらのうち、本発明では、ジエチルエーテル等のエーテル類が好ましい。 In addition, the reactions are usually performed in the presence of a reaction solvent. Examples of the reaction solvent include aromatic hydrocarbons such as toluene, xylene and benzene; esters such as methyl acetate, ethyl acetate and butyl acetate; ethers such as diethyl ether, tetrahydrofuran, dioxane, dimethoxyethane and diisopropyl ether; Halogenated hydrocarbons such as methyl, chloroform, dichloromethane, dichloroethane, dibromoethane; ketones such as acetone and methyl ethyl ketone; amides such as dimethylformamide and dimethylacetamide; nitriles such as acetonitrile; methanol, ethanol, isopropyl alcohol, and the like Examples of alcohols include dimethyl sulfoxide. These may be used alone or in combination of two or more. Of these, ethers such as diethyl ether are preferred in the present invention.
 反応温度は、通常、上記反応溶媒の沸点温度以下である範囲から選択される。 The reaction temperature is usually selected from the range below the boiling point temperature of the reaction solvent.
 また、反応雰囲気は、特に限定されないが、好ましくは不活性ガス雰囲気であり、アルゴンガス雰囲気、窒素ガス雰囲気等とすることができる。尚、空気雰囲気とすることもできる。 The reaction atmosphere is not particularly limited, but is preferably an inert gas atmosphere, and may be an argon gas atmosphere, a nitrogen gas atmosphere, or the like. An air atmosphere can also be used.
 この後、シクロヘキサン環が有する水酸基は、公知の方法で保護化することが好ましい。 Thereafter, the hydroxyl group of the cyclohexane ring is preferably protected by a known method.
 このように、反応及び保護化を3回繰り返すことにより、本発明の化合物(III)を得ることもできる。 Thus, the compound (III) of the present invention can also be obtained by repeating the reaction and the protection three times.
 <カップリング工程>
 ホモカップリング
 ホモカップリングさせる場合、化合物(III)の末端はハロゲン原子であることが好ましい。
<Coupling process>
In the case of homocoupling, the terminal of compound (III) is preferably a halogen atom.
 ホモカップリングさせる場合において、通常反応は触媒の存在下で行われるが、触媒としてはニッケル触媒が好ましい。 In the case of homocoupling, the reaction is usually carried out in the presence of a catalyst, and the catalyst is preferably a nickel catalyst.
 ニッケル触媒としては、特に限定されないが、0価のNiの塩又は2価のNiの塩が好ましい。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。これらは、試薬として投入するもの及び反応中で生成するものの両方を意味する。 The nickel catalyst is not particularly limited, but a zero-valent Ni salt or a divalent Ni salt is preferable. These can be used alone or in combination of two or more. These mean both those charged as reagents and those produced in the reaction.
 上記0価のNiの塩としては、特に制限されないが、ビス(1,5-シクロオクタジエン)ニッケル(0)(Ni(cod)2)、ビス(トリフェニルホスフィン)ニッケルジカルボニル、ニッケルカルボニル等が挙げられる。 The zero-valent Ni salt is not particularly limited, but bis (1,5-cyclooctadiene) nickel (0) (Ni (cod) 2 ), bis (triphenylphosphine) nickel dicarbonyl, nickel carbonyl, etc. Is mentioned.
 また、上記2価のNiの塩としては、酢酸ニッケル(II)、トリフルオロ酢酸ニッケル(II)、硝酸ニッケル(II)、塩化ニッケル(II)、臭化ニッケル(II)、ニッケル(II)アセチルアセトナート、過塩素酸ニッケル(II)、クエン酸ニッケル(II)、シュウ酸ニッケル(II)、シクロヘキサン酪酸ニッケル(II)、安息香酸ニッケル(II)、ステアリン酸ニッケル(II)、ステアリン酸ニッケル(II)、スルファミンニッケル(II)、炭酸ニッケル(II)、チオシアン酸ニッケル(II)、トリフルオロメタンスルホン酸ニッケル(II)、ビス(1,5-シクロオクタジエン)ニッケル(II)、ビス(4-ジエチルアミノジチオベンジル)ニッケル(II)、シアン化ニッケル(II)、フッ化ニッケル(II)、ホウ化ニッケル(II)、ホウ酸ニッケル(II)、次亜リン酸ニッケル(II)、硫酸アンモニウムニッケル(II)、水酸化ニッケル(II)、シクロペンタジエニルニッケル(II)、及びこれらの水和物、並びにこれらの混合物等が挙げられる。 Examples of the divalent Ni salt include nickel acetate (II), nickel trifluoroacetate (II), nickel nitrate (II), nickel chloride (II), nickel bromide (II), nickel (II) acetyl. Acetonate, nickel (II) perchlorate, nickel (II) citrate, nickel (II) oxalate, nickel (II) cyclohexanebutyrate, nickel (II) benzoate, nickel (II) stearate, nickel stearate ( II), nickel sulfamine (II), nickel carbonate (II), nickel thiocyanate (II), nickel trifluoromethanesulfonate (II), bis (1,5-cyclooctadiene) nickel (II), bis (4- Diethylaminodithiobenzyl) nickel (II), nickel cyanide (II), fluoride Neckel (II), nickel boride (II), nickel borate (II), nickel (II) hypophosphite, nickel sulfate (II) sulfate, nickel (II) hydroxide, cyclopentadienyl nickel (II), And hydrates thereof, and mixtures thereof.
 0価のNiの塩及び2価のNiの塩としては、配位子を事前に配位させた化合物を使用してもよい。 As the zero-valent Ni salt and the divalent Ni salt, a compound in which a ligand is coordinated in advance may be used.
 上記ニッケル触媒の使用量は、原料の化合物(III)1モルに対して、通常、試薬として投入するニッケル触媒の量が0.01~50モル、好ましくは0.1~10モル、より好ましくは0.5~5モルであり、特に好ましくは1~3モルである。 The amount of the nickel catalyst used is usually 0.01 to 50 mol, preferably 0.1 to 10 mol, more preferably 0.1 to 10 mol, based on 1 mol of the starting compound (III). The amount is 0.5 to 5 mol, particularly preferably 1 to 3 mol.
 本発明の製造方法において、ニッケル触媒とともに、ニッケル(ニッケル原子)に配位し得る配位子を用いることができる。この配位子としては、例えば、カルボン酸系、アミド系、ホスフィン系、オキシム系、スルホン酸系、1,3-ジケトン系、シッフ塩基系、オキサゾリン系、ジアミン系、一酸化炭素、カルベン系の配位子等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。上記配位子における配位原子は窒素原子、リン原子、酸素原子、硫黄原子等であり、これらの配位子には配位原子を1箇所のみ有する単座配位子と2箇所以上を有する多座配位子がある。また、一酸化炭素、カルベン系に関しては、炭素原子を配位原子とする配位子である。これらの配位子は、公知又は市販のものをいずれも使用することができる。 In the production method of the present invention, a ligand capable of coordinating to nickel (nickel atom) can be used together with the nickel catalyst. Examples of the ligand include carboxylic acid, amide, phosphine, oxime, sulfonic acid, 1,3-diketone, Schiff base, oxazoline, diamine, carbon monoxide, and carbene. And a ligand. These can be used alone or in combination of two or more. Coordination atoms in the above ligand are a nitrogen atom, a phosphorus atom, an oxygen atom, a sulfur atom, etc., and these ligands include a monodentate ligand having only one coordination atom and a polydentate having two or more. There are bidentate ligands. In addition, carbon monoxide and carbene are ligands having a carbon atom as a coordination atom. Any known or commercially available ligand can be used.
 上記配位子を使用する場合、その使用量は、原料の化合物(III)1モルに対して、通常、0.01~50モル、好ましくは0.1~10モル、より好ましくは0.5~5モルであり、特に好ましくは1~3モルである。 When the above ligand is used, the amount used is usually 0.01 to 50 mol, preferably 0.1 to 10 mol, more preferably 0.5 mol, relative to 1 mol of the starting compound (III). -5 mol, particularly preferably 1-3 mol.
 反応は、通常、反応溶媒の存在下で行われる。この反応溶媒としては、脂肪族炭化水素類(ヘキサン、シクロヘキサン、ヘプタン等)、脂肪族ハロゲン化炭化水素類(ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン等)、芳香族炭化水素類(ベンゼン、トルエン、キシレン、クロロベンゼン等)、エーテル類(ジエチルエーテル、ジブチルエーテル、ジメトキシエタン(DME)、シクロペンチルメチルエーテル(CPME)、tert-ブチルメチルエーテル、テトラヒドロフラン、ジオキサン等)、エステル類(酢酸エチル、プロピオン酸エチル等)、酸アミド類(ジメチルホルムアミド(DMF)、ジメチルアセタミド(DMA)、N-メチルピロリドン(1-メチル-2-ピロリジノン)(NMP)、ニトリル類(アセトニトリル、プロピオニトリル等)、ジメチルスルホキシド(DMSO)等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。 The reaction is usually performed in the presence of a reaction solvent. Examples of the reaction solvent include aliphatic hydrocarbons (hexane, cyclohexane, heptane, etc.), aliphatic halogenated hydrocarbons (dichloromethane, chloroform, carbon tetrachloride, dichloroethane, etc.), aromatic hydrocarbons (benzene, toluene, Xylene, chlorobenzene, etc.), ethers (diethyl ether, dibutyl ether, dimethoxyethane (DME), cyclopentyl methyl ether (CPME), tert-butyl methyl ether, tetrahydrofuran, dioxane, etc.), esters (ethyl acetate, ethyl propionate, etc.) ), Acid amides (dimethylformamide (DMF), dimethylacetamide (DMA), N-methylpyrrolidone (1-methyl-2-pyrrolidinone) (NMP), nitriles (acetonitrile, propionitrile, etc.), dimethyl Sulfoxide (DMSO) and the like. They may be used in combination of at least one kind alone or two kinds.
 反応温度は、通常、0℃以上であり且つ上記反応溶媒の沸点温度以下である範囲から選択される。 The reaction temperature is usually selected from the range of 0 ° C. or higher and lower than the boiling temperature of the reaction solvent.
 また、反応雰囲気は、特に限定されないが、好ましくは不活性ガス雰囲気であり、アルゴンガス雰囲気、窒素ガス雰囲気等とすることができる。なお、空気雰囲気とすることもできる。 The reaction atmosphere is not particularly limited, but is preferably an inert gas atmosphere, and may be an argon gas atmosphere, a nitrogen gas atmosphere, or the like. An air atmosphere can also be used.
 クロスカップリング
 クロスカップリングさせる場合、末端がハロゲン原子である化合物(III)と、末端がボロン酸又はそのエステル基である化合物(III)とを反応させることが好ましい。
In the case of cross-coupling , the compound (III) whose terminal is a halogen atom is preferably reacted with the compound (III) whose terminal is a boronic acid or an ester group thereof.
 クロスカップリングさせる場合、化合物(III)と化合物(IV)とを反応させるが、その比は、収率等の観点から、片方1モルに対して、もう片方は0.8~5.0モルが好ましく、0.9~3.0モルがより好ましい。 In the case of cross-coupling, the compound (III) and the compound (IV) are reacted, but the ratio is 0.8 to 5.0 mol with respect to 1 mol with respect to one mol from the viewpoint of yield and the like. Is preferable, and 0.9 to 3.0 mol is more preferable.
 反応は、通常、触媒の存在下で行われ、好ましくはパラジウム系触媒が使用される。上記説明したものを使用することができる。本工程では、酢酸パラジウム等が好ましい。 The reaction is usually performed in the presence of a catalyst, and preferably a palladium-based catalyst is used. What has been described above can be used. In this step, palladium acetate or the like is preferable.
 本工程でパラジウム系触媒を用いる場合、その使用量は、収率の観点から、原料のいずれかの化合物(III)1モルに対して、通常、0.01~1モルが好ましく、0.05~0.5モルがより好ましい。 When a palladium-based catalyst is used in this step, the amount used thereof is usually preferably 0.01 to 1 mol with respect to 1 mol of any compound (III) as a raw material from the viewpoint of yield, and 0.05 More preferred is ˜0.5 mol.
 また同様に、リン配位子を使用することもできる。このリン配位子としては、上記説明したものを使用できるが、本工程では、2-(ジシクロヘキシルホスフィノ)-2’,6’-ジメトキシ-1,1’-ビフェニル(S-Phos)等が好ましい。 Similarly, phosphorus ligands can also be used. As the phosphorus ligand, those described above can be used. In this step, 2- (dicyclohexylphosphino) -2 ′, 6′-dimethoxy-1,1′-biphenyl (S-Phos) and the like are used. preferable.
 リン配位子を使用する場合、その使用量は、収率の観点から、原料の化合物(III)1モルに対して、通常、0.01~2モルが好ましく、0.05~1.0モルがより好ましい。 When a phosphorus ligand is used, the amount used is preferably 0.01 to 2 mol, preferably 0.05 to 1.0 mol, relative to 1 mol of the starting compound (III) from the viewpoint of yield. Mole is more preferred.
 また同様に、上記パラジウム系触媒に加えて、必要に応じて、塩基を使用することもできる。この塩基は、上記説明したものを使用できるが、好ましくは、水酸化ナトリウム等である。この塩基の使用量は、原料の化合物(III)1モルに対して、通常、0.1~50モル程度が好ましく、0.5~20モルがより好ましい。 Similarly, in addition to the palladium catalyst, a base can be used as necessary. As the base, those described above can be used, and sodium hydroxide is preferable. The amount of the base used is usually preferably about 0.1 to 50 mol, more preferably 0.5 to 20 mol, relative to 1 mol of the starting compound (III).
 また、反応は、通常、反応溶媒の存在下で行われる。この反応溶媒としては、化合物(III)の合成方法において使用できるものをそのまま使用できるが、ジオキサン、トルエン等が好ましい。 The reaction is usually performed in the presence of a reaction solvent. As the reaction solvent, those usable in the synthesis method of compound (III) can be used as they are, but dioxane, toluene and the like are preferable.
 反応温度は、通常、0℃以上であり且つ上記反応溶媒の沸点温度以下である範囲から選択される。 The reaction temperature is usually selected from the range of 0 ° C. or higher and lower than the boiling temperature of the reaction solvent.
 また、反応雰囲気は、特に限定されないが、好ましくは不活性ガス雰囲気であり、アルゴンガス雰囲気、窒素ガス雰囲気等とすることができる。尚、空気雰囲気とすることもできる。 The reaction atmosphere is not particularly limited, but is preferably an inert gas atmosphere, and may be an argon gas atmosphere, a nitrogen gas atmosphere, or the like. An air atmosphere can also be used.
 以下、本発明について、実施例を挙げて具体的に説明するが、本発明は、これらの実施例に何ら制約されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
 特に断りのない限り、乾燥溶媒(ジメチルホルムアミド(DMF)とジメチルスルホキシド(DMSO))を含むすべての材料は、商業的供給業者から入手し、さらに精製することなく用いた。ただし、テトラヒドロフラン(THF)、ジクロロメタン、及びm-キシレンは、溶媒精製システム(ガラス輪郭)でろ過することにより精製した。全ての反応は、標準真空ライン及びシュレンク技法を用いて行った。後処理及び精製手順は、空気中で試薬グレードの溶媒を用いて行った。1,3,5-トリス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンゼンとシス-1,4-ビス(4-フェニル)-1-2,4-ビス(メトキシメチル)シクロヘキサンは、既報(Liu, Y.; Niu, F.; Lian, J.; Zheg, P.; Niu, H. Synth. Mat. 2010, 160, 2055.及びOmachi, H.; Matsuura, S.; Segawa, Y.; Itami, K. Angew. Chem. Int. Ed. 2010, 49, 10202.)に従って合成した。 Unless otherwise noted, all materials including dry solvents (dimethylformamide (DMF) and dimethyl sulfoxide (DMSO)) were obtained from commercial suppliers and used without further purification. However, tetrahydrofuran (THF), dichloromethane, and m-xylene were purified by filtration through a solvent purification system (glass outline). All reactions were performed using standard vacuum lines and Schlenk techniques. Work-up and purification procedures were performed in air using reagent grade solvents. 1,3,5-tris (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzene and cis-1,4-bis (4-phenyl) -1-2, 4-Bis (methoxymethyl) cyclohexane has been reported previously (Liu, Y .; Niu, F .; Lian, J .; Zheg, P .; Niu, H. Synth. Mat. 2010, 160, 2055. and Omachi, H. Matsuura, S .; Segawa, Y .; Itami, K. Angew. Chem. Int. Ed. 2010, 49, 10202.).
 薄層クロマトグラフィー(TLC)は、E. Merckシリカゲル60 F254プレコートプレート(0.25 mm)を用いて行った。クロマトグラムは、UVランプ(254 nm)で分析した。フラッシュカラムクロマトグラフィーは、E. Merckシリカゲル60(230-400メッシュ)を用いて行った。分取薄層クロマトグラフィー(PTLC)は、和光ゲル(登録商標)B5-Fシリカコートプレート(0.75 mm)を用いて行った。リサイクル分取ゲルパーミエーションクロマトグラフィー(GPC)は、溶出液としてクロロホルムを用いJAIGEL-1H/JAIGEL-2H列装備JAI LC-9204測定器を用いて行った。高分解能質量スペクトル(HRMS)はマトリックスとして9-ニトロアントラセンを用いて、JEOL JMS700(高速原子衝撃質量分析法、FAB-MS)又はブルカーダルトニクスウルトラフレックスIIIのTOF / TOF(MALDI-TOF-MS)から得た。融点はMPA100 Optimelt自動融点測定システムで測定した。核磁気共鳴(NMR)スペクトルは、JEOL JNM-ECA-600(1H 600 MHz、13C 150MHz)分光計で記録した。1H NMRの化学シフトはCHCl3(δ7.26 ppm)の相対的な百万分率(ppm)で表した。13C NMRの化学シフトはCDCl3(δ77.0 ppm)の相対的な百万分率(ppm)で表した。 Thin layer chromatography (TLC) was performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm). The chromatogram was analyzed with a UV lamp (254 nm). Flash column chromatography was performed using E. Merck silica gel 60 (230-400 mesh). Preparative thin layer chromatography (PTLC) was performed using Wako Gel (registered trademark) B5-F silica-coated plate (0.75 mm). Recycle preparative gel permeation chromatography (GPC) was performed using a JAI LC-9204 measuring instrument equipped with JAIGEL-1H / JAIGEL-2H rows using chloroform as the eluent. High resolution mass spectrum (HRMS) using 9-nitroanthracene as matrix, JEOL JMS700 (fast atom bombardment mass spectrometry, FAB-MS) or Bruker Daltonics Ultraflex III TOF / TOF (MALDI-TOF-MS) Obtained from. Melting points were measured with an MPA100 Optimelt automatic melting point system. Nuclear magnetic resonance (NMR) spectra were recorded on a JEOL JNM-ECA-600 ( 1 H 600 MHz, 13 C 150 MHz) spectrometer. 1 H NMR chemical shifts were expressed as relative parts per million (ppm) of CHCl 3 (δ 7.26 ppm). 13 C NMR chemical shifts were expressed in relative parts per million (ppm) of CDCl 3 (δ 77.0 ppm).
 合成例1:1,3,5-トリス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンゼンの合成 Synthesis Example 1: Synthesis of 1,3,5-tris (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzene
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
[式中、Phはフェニル基;KOAcは酢酸カリウム;DMFはジメチルホルムアミド;dppfは1,1’-ビス(ジフェニルホスフィノ)フェロセン;DMSOはジメチルスルホキシド;B(pin)は4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イルである。]
 上記の反応式に従い、常法により、1,3,5-トリス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンゼンを合成した(条件1:83%、条件2:78%)。
[Wherein Ph is a phenyl group; KOAc is potassium acetate; DMF is dimethylformamide; dppf is 1,1′-bis (diphenylphosphino) ferrocene; DMSO is dimethyl sulfoxide; B (pin) is 4, 4, 5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl. ]
According to the above reaction formula, 1,3,5-tris (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzene was synthesized by a conventional method (Condition 1:83). %, Condition 2: 78%).
 実施例1-1:三つ又化合物(その1) Example 1-1 Tridentate Compound (Part 1)
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 磁気攪拌子付きの500 mLの丸底フラスコに、1,3,5-トリス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンゼン(2)(1.82 g、3.99 mmol)、シス-1,4-ビス(4-ブロモフェニル)-1,4-ビス(メトキシメトキシ)シクロヘキサン(3)(20.6 g、40.1 mmol)、PdCl2(dppf)・CH2Cl2(dppfは1,1’-ビス(ジフェニルホスフィノ)フェロセンである)(32.2 mg、39.4μmol)、及びK2CO3(5.53 g、40.0 mmol)を加え、フラスコを排気及びアルゴン充填を3回繰り返した。次に、このフラスコに乾燥ジメチルホルムアミド(DMF)(200 mL)を加えた。反応混合物を24時間90℃で攪拌した。室温まで冷却後、混合物を酢酸エチル(EtOAc)で抽出し、食塩水で洗浄し、Na2SO4で乾燥し、減圧下で濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/ EtOAc = 5:1~1:1)により精製し、目的物である三ツ又化合物(4)を白色固体として得た(2.91 g、53%)。
1H NMR (600 MHz, CDCl3) δ 2.10 (brs, 12H), 2.35 (brs, 12H), 3.41 (s, 9H), 3.43 (s, 9H), 4.44 (s, 6H), 4.48 (s, 6H), 7.33 (d, J = 8.6 Hz, 6H), 7.45 (d, J = 8.6 Hz, 6H), 7.52 (d, J = 8.1 Hz, 6H), 7.63 (d, J = 8.1 Hz, 6H), 7.73 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 32.9 (CH2), 56.0 (CH3), 77.8 (4°), 78.0 (4°), 92.1 (CH2), 92.2 (CH2), 121.6 (4°), 125.0 (CH), 127.2 (CH), 127.3 (CH), 128.7 (CH), 131.5 (CH), 140.2 (4°), 141.7 (4°); HRMS (FAB) m/z calcd for C72H81Br3O12Na [M+Na]+: 1397.3170, found 1397.3158; mp: 103.4-120.0℃。
To a 500 mL round bottom flask with a magnetic stir bar, add 1,3,5-tris (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzene (2) (1.82 g, 3.99 mmol), cis-1,4-bis (4-bromophenyl) -1,4-bis (methoxymethoxy) cyclohexane (3) (20.6 g, 40.1 mmol), PdCl 2 (dppf) · CH 2 Cl 2 (dppf is 1,1′-bis (diphenylphosphino) ferrocene) (32.2 mg, 39.4 μmol), and K 2 CO 3 (5.53 g, 40.0 mmol) are added, and the flask is evacuated and filled with argon. Repeated times. Next, dry dimethylformamide (DMF) (200 mL) was added to the flask. The reaction mixture was stirred at 90 ° C. for 24 hours. After cooling to room temperature, the mixture was extracted with ethyl acetate (EtOAc), washed with brine, dried over Na 2 SO 4 and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (hexane / EtOAc = 5: 1 to 1: 1) to obtain the target three-mut compound (4) as a white solid (2.91 g, 53%).
1 H NMR (600 MHz, CDCl 3 ) δ 2.10 (brs, 12H), 2.35 (brs, 12H), 3.41 (s, 9H), 3.43 (s, 9H), 4.44 (s, 6H), 4.48 (s, 6H), 7.33 (d, J = 8.6 Hz, 6H), 7.45 (d, J = 8.6 Hz, 6H), 7.52 (d, J = 8.1 Hz, 6H), 7.63 (d, J = 8.1 Hz, 6H) , 7.73 (s, 3H); 13 C NMR (150 MHz, CDCl 3 ) δ 32.9 (CH 2 ), 56.0 (CH 3 ), 77.8 (4 °), 78.0 (4 °), 92.1 (CH 2 ), 92.2 (CH 2 ), 121.6 (4 °), 125.0 (CH), 127.2 (CH), 127.3 (CH), 128.7 (CH), 131.5 (CH), 140.2 (4 °), 141.7 (4 °); HRMS ( FAB) m / z calcd for C 72 H 81 Br 3 O 12 Na [M + Na] + : 1397.3170, found 1397.3158; mp: 103.4-120.0 ° C.
 なお、各成分を以下のように変更した場合も同様に反応が進行した。 The reaction proceeded in the same manner when each component was changed as follows.
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
 合成例2:4-(4-クロロフェニル)-4-ヒドロキシシクロヘキサノンの合成 Synthesis Example 2: Synthesis of 4- (4-chlorophenyl) -4-hydroxycyclohexanone
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
[式中、n-BuLiはn-ブチルリチウム;THFはテトラヒドロフランである。]
 磁気攪拌子を含む500mLの丸底フラスコに1-ブロモ-4-クロロベンゼン(31.6 g、165 mmol)を加え、乾燥テトラヒドロフラン(THF)(250 mL、600 mM)を加えた。n-ブチルリチウムのヘキサン溶液(103 mL、1.6 M、165 mmol)を-78℃で30分間かけて加えた。-78℃で1時間撹拌した後、1,4-シクロヘキサンジオンモノエチレンケタール(23.4 g、150 mmol)を固体で添加し、さらに-78℃で1時間撹拌し、中間化合物(25)を得た。室温まで温めた後、3Mの塩酸溶液(100mL)を添加し、1日間攪拌した。混合物を飽和NaHCO3水溶液で中和し、酢酸エチル(EtOAc)で抽出し、食塩水で洗浄し、Na2SO4で乾燥し、減圧濃縮した。粗生成物を得た3回再結晶(CHCl3)で精製し、4-(4-クロロフェニル)-4-ヒドロキシシクロヘキサノン(26)を白色固体として得た(29.9 g、89%)。
化合物25のデータ:
1H NMR (600 MHz, CDCl3) δ 1.58 (s, 1H), 1.67-1.72 (m, 2H), 1.76-1.81 (m, 2H), 2.04-2.18 (m, 4H), 3.95-4.02 (m, 4H), 7.30 (d, 8.4 Hz, 2H), 7.45 (d, 8.4 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ 30.7 (CH2), 36.6 (CH2), 64.2 (CH2), 64.4 (CH2), 72.2 (4°), 108.2 (4°), 126.1 (CH), 128.3 (CH), 132.7 (4°), 147.0 (4°); mp: 153.3-155.2℃。
化合物26のデータ:
1H NMR (600 MHz, CDCl3) δ 2.03 (s, 1H), 2.11-2.19 (m, 2H), 2.20-2.29 (m, 2H), 2.31-2.39 (m, 2H), 2.85-2.95 (m, 2H), 7.34 (d, 9.0 Hz, 2H), 7.45 (d, 8.4 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ 37.2 (CH2), 38.5 (CH2), 71.8 (4°), 125.9 (CH), 128.6 (CH), 133.3 (4°), 145.6 (4°), 211.2 (4°); HRMS (FAB) m/z calcd for C12H12ClO2[M-H]-: 223.0526, found ; 223.0530; mp: 139.7-140.5℃。
[Wherein n-BuLi is n-butyllithium; THF is tetrahydrofuran. ]
To a 500 mL round bottom flask containing a magnetic stir bar, 1-bromo-4-chlorobenzene (31.6 g, 165 mmol) was added and dry tetrahydrofuran (THF) (250 mL, 600 mM) was added. A solution of n-butyllithium in hexane (103 mL, 1.6 M, 165 mmol) was added at −78 ° C. over 30 minutes. After stirring at -78 ° C for 1 hour, 1,4-cyclohexanedione monoethylene ketal (23.4 g, 150 mmol) was added as a solid, and the mixture was further stirred at -78 ° C for 1 hour to obtain intermediate compound (25). . After warming to room temperature, 3M hydrochloric acid solution (100 mL) was added and stirred for 1 day. The mixture was neutralized with saturated aqueous NaHCO 3 solution, extracted with ethyl acetate (EtOAc), washed with brine, dried over Na 2 SO 4 and concentrated in vacuo. The crude product was obtained and purified by recrystallization (CHCl 3 ) three times to give 4- (4-chlorophenyl) -4-hydroxycyclohexanone (26) as a white solid (29.9 g, 89%).
Data for Compound 25:
1 H NMR (600 MHz, CDCl 3 ) δ 1.58 (s, 1H), 1.67-1.72 (m, 2H), 1.76-1.81 (m, 2H), 2.04-2.18 (m, 4H), 3.95-4.02 (m , 4H), 7.30 (d, 8.4 Hz, 2H), 7.45 (d, 8.4 Hz, 2H); 13 C NMR (150 MHz, CDCl 3 ) δ 30.7 (CH 2 ), 36.6 (CH 2 ), 64.2 (CH 2 ), 64.4 (CH 2 ), 72.2 (4 °), 108.2 (4 °), 126.1 (CH), 128.3 (CH), 132.7 (4 °), 147.0 (4 °); mp: 153.3-155.2 ° C.
Data for Compound 26:
1 H NMR (600 MHz, CDCl 3 ) δ 2.03 (s, 1H), 2.11-2.19 (m, 2H), 2.20-2.29 (m, 2H), 2.31-2.39 (m, 2H), 2.85-2.95 (m , 2H), 7.34 (d, 9.0 Hz, 2H), 7.45 (d, 8.4 Hz, 2H); 13 C NMR (150 MHz, CDCl 3 ) δ 37.2 (CH 2 ), 38.5 (CH 2 ), 71.8 (4 °), 125.9 (CH), 128.6 (CH), 133.3 (4 °), 145.6 (4 °), 211.2 (4 °); HRMS (FAB) m / z calcd for C 12 H 12 ClO 2 [MH] - : 223.0526, found; 223.0530; mp: 139.7-140.5 ° C.
 合成例3:4-クロロフェニル-4-メトキシメトキシシクロヘキサノンの合成 Synthesis Example 3: Synthesis of 4-chlorophenyl-4-methoxymethoxycyclohexanone
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
[式中、i-Pr2NEtはジイソプロピルエチルアミン;MOMはメトキシメチル基である。]
 磁気攪拌子を含む200mLの丸底フラスコに合成例2で得た4-(4-クロロフェニル)-4-ヒドロキシシクロヘキサノン(26)(15.7 g、69.9 mmol)、乾燥CH2Cl2(70 mL、1 M)、ジイソプロピルエチルアミン(24.4 mL、140 mmol)、クロロメチルメチルエーテル(10.6 mL、140 mmol)を添加した。混合物を48時間室温で攪拌した後、飽和NH4Cl水溶液でクエンチし、CH2Cl2で抽出し、Na2SO4で乾燥させ、減圧濃縮した。粗生成物をカラムクロマトグラフィー(ヘキサン / 酢酸エチル(EtOAc)= 10:1~5:1)により精製し、4-(4-クロロフェニル)-4-メトキシメトキシシクロヘキサノン(27)を白色固体として得た(16.1 g、85%)。なお、シス及びトランス同位体は、1H NMRスペクトルにより同定した。
1H NMR (600 MHz, CDCl3) δ 2.12-2.20 (m, 2H), 2.32-2.38 (m, 2H), 2.39-2.46 (m, 2H), 2.86-2.95 (m, 2H), 3.43 (s, 3H), 4.52 (s, 2H), 7.35 (d, 9.0 Hz, 2H), 7.40 (d, 9.0 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ 36.3 (CH2), 37.2 (CH2), 56.6 (CH3), 92.9 (CH2), 127.4 (CH), 128.7 (CH), 133.7 (4°), 142.3 (4°), 211.0 (4°); HRMS (FAB) m/z calcd for C14H17ClO3Na [M+Na]+: 291.0764, found; 291.0768; mp: 66.2-67.8℃。
[Wherein i-Pr 2 NEt is diisopropylethylamine; MOM is a methoxymethyl group. ]
In a 200 mL round bottom flask containing a magnetic stir bar, 4- (4-chlorophenyl) -4-hydroxycyclohexanone (26) (15.7 g, 69.9 mmol) obtained in Synthesis Example 2 and dry CH 2 Cl 2 (70 mL, 1 M), diisopropylethylamine (24.4 mL, 140 mmol), chloromethyl methyl ether (10.6 mL, 140 mmol) were added. The mixture was stirred for 48 hours at room temperature, then quenched with saturated aqueous NH 4 Cl, extracted with CH 2 Cl 2 , dried over Na 2 SO 4 and concentrated in vacuo. The crude product was purified by column chromatography (hexane / ethyl acetate (EtOAc) = 10: 1 to 5: 1) to give 4- (4-chlorophenyl) -4-methoxymethoxycyclohexanone (27) as a white solid. (16.1 g, 85%). Cis and trans isotopes were identified by 1 H NMR spectrum.
1 H NMR (600 MHz, CDCl 3 ) δ 2.12-2.20 (m, 2H), 2.32-2.38 (m, 2H), 2.39-2.46 (m, 2H), 2.86-2.95 (m, 2H), 3.43 (s , 3H), 4.52 (s, 2H), 7.35 (d, 9.0 Hz, 2H), 7.40 (d, 9.0 Hz, 2H); 13 C NMR (150 MHz, CDCl 3 ) δ 36.3 (CH 2 ), 37.2 ( CH 2 ), 56.6 (CH 3 ), 92.9 (CH 2 ), 127.4 (CH), 128.7 (CH), 133.7 (4 °), 142.3 (4 °), 211.0 (4 °); HRMS (FAB) m / z calcd for C 14 H 17 ClO 3 Na [M + Na] + : 291.0764, found; 291.0768; mp: 66.2-67.8 ° C.
 合成例4:トリブロモベンゼンの1置換体の合成 Synthesis Example 4: Synthesis of monosubstituted tribromobenzene
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
[式中、MOM、n-BuLi及びi-Pr2MEtは前記に同じ;Et2Oはジエチルエーテルである。]
 磁気攪拌子を含む500 mLの丸底フラスコに、1,3,5-トリブロモベンゼン(7.87 g、25.0 mmol)、及び乾燥ジエチルエーテル(Et2O)(200 mL、75 mM)を加えた。この混合物にn-ブチルリチウムのヘキサン溶液(15.6 mL、1.6 M、25.0 mmol)を-78℃で加えた。-78℃で1時間撹拌した後、合成例3で得た4-クロロフェニル-4-メトキシメトキシシクロヘキサノン(27)(7.15 g、26.6 mmol)のジエチルエーテル(Et2O)溶液(25 mL)を添加し、得られた混合物をさらに-78℃で1時間撹拌した。混合物を室温まで温めた後、飽和NH4Cl水溶液でクエンチし、CH2Cl2で抽出し、Na2SO4で乾燥させ、減圧濃縮し,、中間化合物(28)を混合物として得た。
[Wherein MOM, n-BuLi and i-Pr 2 MEt are the same as above; Et 2 O is diethyl ether. ]
To a 500 mL round bottom flask containing a magnetic stir bar, 1,3,5-tribromobenzene (7.87 g, 25.0 mmol) and dry diethyl ether (Et 2 O) (200 mL, 75 mM) were added. To this mixture was added n-butyllithium in hexane (15.6 mL, 1.6 M, 25.0 mmol) at -78 ° C. After stirring at −78 ° C. for 1 hour, 4-chlorophenyl-4-methoxymethoxycyclohexanone (27) (7.15 g, 26.6 mmol) obtained in Synthesis Example 3 in diethyl ether (Et 2 O) (25 mL) was added. The resulting mixture was further stirred at −78 ° C. for 1 hour. The mixture was allowed to warm to room temperature and then quenched with saturated aqueous NH 4 Cl, extracted with CH 2 Cl 2 , dried over Na 2 SO 4 and concentrated in vacuo to give intermediate compound (28) as a mixture.
 磁気攪拌子を含む100 mLの丸底フラスコに、前記中間化合物(28)を含む混合物、乾燥CH2Cl2(50 mL、500 mM)、ジイソプロピルエチルアミン(17.4 mL、100 mmol)、及びクロロメチルメチルエーテル(7.6 mL、100 mmol)添加した。混合物を室温で48時間攪拌した後、飽和NH4Cl水溶液でクエンチし、CH2Cl2で抽出し、Na2SO4で乾燥させ、減圧濃縮した。粗生成物をカラムクロマトグラフィー(ヘキサン / 酢酸エチル(EtOAc)= 10:1~8:1)により精製し、トリブロモベンゼンの1置換体(29)を白色固体として得た(8.64 g、2ステップで63%)。また、目的物のトランス異性体も28%の収率で得た。なお、シス及びトランス同位体は、1H NMRスペクトルにより同定した。
化合物28のデータ
1H NMR (600 MHz, CDCl3) δ 1.75-2.03 (m, 5H, include OH), 2.18-2.41 (m, 4H), 3.34 (s, 3H), 4.37 (s, 2H), 7.38 (d, 9.0 Hz, 2H), 7.44 (d, 8.4 Hz, 2H), 7.45 (s, 2H), 7.54 (s, 1H); 13C NMR (150 MHz, CDCl3) δ 32.5 (CH2), 35.4 (CH2), 55.9 (CH3), 72.1 (4°), 77.7 (4°), 92.0 (CH2), 123.1 (4°), 127.1 (CH), 128.7 (CH), 128.8 (CH), 132.8 (CH), 133.9 (4°), 139.3 (4°), 151.0 (4°); HRMS (FAB) m/z calcd for C20H20Br2ClO3[M-H]-: 502.9447, found ; 502.9444; mp: 158.0-159.2℃。
化合物29のデータ
1H NMR (600 MHz, CDCl3) δ 1.71-2.45 (m, 8H), 3.37 (s, 3H), 3.41 (s, 3H), 4.39 (s, 2H), 4.44 (s, 2H), 7.32 (d, 8.4 Hz, 2H), 7.39 (d, 8.4 Hz, 2H), 7.47 (s, 2H), 7.56 (s, 1H); 13C NMR (150 MHz, CDCl3) δ 32.6 (CH2), 32.9 (CH2), 55.9 (CH3), 56.2 (CH3), 77.4 (4°), 77.6 (4°), 92.1 (CH2), 92.3 (CH2), 123.1 (4°), 128.4 (CH), 128.7 (CH), 133.3 (CH), 133.7 (4°); HRMS (FAB) m/z calcd for C22H25Br2ClO4Na [M+Na]+: 568.9706, found ; 568.9703; mp: 77.0-80.6℃。
In a 100 mL round bottom flask containing a magnetic stir bar, a mixture containing the intermediate compound (28), dry CH 2 Cl 2 (50 mL, 500 mM), diisopropylethylamine (17.4 mL, 100 mmol), and chloromethylmethyl Ether (7.6 mL, 100 mmol) was added. The mixture was stirred at room temperature for 48 hours before being quenched with saturated aqueous NH 4 Cl, extracted with CH 2 Cl 2 , dried over Na 2 SO 4 and concentrated in vacuo. The crude product was purified by column chromatography (hexane / ethyl acetate (EtOAc) = 10: 1 to 8: 1) to give the monosubstituted tribromobenzene (29) as a white solid (8.64 g, 2 steps) 63%). The desired trans isomer was also obtained in 28% yield. Cis and trans isotopes were identified by 1 H NMR spectrum.
Compound 28 data
1 H NMR (600 MHz, CDCl 3 ) δ 1.75-2.03 (m, 5H, include OH), 2.18-2.41 (m, 4H), 3.34 (s, 3H), 4.37 (s, 2H), 7.38 (d, 9.0 Hz, 2H), 7.44 (d, 8.4 Hz, 2H), 7.45 (s, 2H), 7.54 (s, 1H); 13 C NMR (150 MHz, CDCl 3 ) δ 32.5 (CH 2 ), 35.4 (CH 2 ), 55.9 (CH 3 ), 72.1 (4 °), 77.7 (4 °), 92.0 (CH 2 ), 123.1 (4 °), 127.1 (CH), 128.7 (CH), 128.8 (CH), 132.8 ( CH), 133.9 (4 °), 139.3 (4 °), 151.0 (4 °); HRMS (FAB) m / z calcd for C 20 H 20 Br 2 ClO 3 [MH] - : 502.9447, found; 502.9444; mp : 158.0-159.2 ℃.
Compound 29 data
1 H NMR (600 MHz, CDCl 3 ) δ 1.71-2.45 (m, 8H), 3.37 (s, 3H), 3.41 (s, 3H), 4.39 (s, 2H), 4.44 (s, 2H), 7.32 ( d, 8.4 Hz, 2H), 7.39 (d, 8.4 Hz, 2H), 7.47 (s, 2H), 7.56 (s, 1H); 13 C NMR (150 MHz, CDCl 3 ) δ 32.6 (CH 2 ), 32.9 (CH 2 ), 55.9 (CH 3 ), 56.2 (CH 3 ), 77.4 (4 °), 77.6 (4 °), 92.1 (CH 2 ), 92.3 (CH 2 ), 123.1 (4 °), 128.4 (CH ), 128.7 (CH), 133.3 (CH), 133.7 (4 °); HRMS (FAB) m / z calcd for C 22 H 25 Br 2 ClO 4 Na [M + Na] + : 568.9706, found; 568.9703; mp : 77.0-80.6 ℃.
 合成例5:トリブロモベンゼンの2置換体の合成(その1) Synthesis Example 5 Synthesis of disubstituted tribromobenzene (Part 1)
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
[式中、MOM、n-BuLi及びEt2Oは前記に同じである。]
 合成例4と同様に、合成例4で得たトリブロモベンゼンの1置換体(29)(8.23 g、15.0 mmol)と、合成例2で得た4-(4-クロロフェニル)-4-ヒドロキシシクロヘキサノン(26)(4.43 g、16.5 mmol)とを反応させ、トリブロモベンゼンの2置換体(30)を白色固体として得た(6.77 g、61%)。
1H NMR (600 MHz, CD2Cl2) δ 1.62-2.28 (m, 16H), 2.37 (s, 1H), 3.20 (s, 3H), 3.21 (s, 3H), 3.35 (s, 3H), 4.26 (s, 2H), 4.275 (s, 2H), 4.284 (s, 2H), 7.21 (d, 9.0 Hz, 2H), 7.25 (d, 9.0 Hz, 4H), 7.28 (d, 8.4 Hz, 4H), 7.31-7.37 (m, 5H); 13C NMR (150 MHz, CDCl3) δ 33.0 (CH2), 33.1 (CH2), 33.2 (CH2), 35.8 (CH2), 55.9 (CH3), 56.0 (CH3), 56.1 (CH3), 72.3 (4°), 77.8 (4°), 78.1 (4°), 92.2 (CH2), 92.26 (CH2), 92.28 (CH2), 122.8 (4°), 122.9 (CH), 127.8 (CH), 128.7 (CH), 128.8 (CH), 129.2 (CH), 133.6 (4°), 133.8 (4°), 140.4 (4°), 141.4 (4°), 145.8 (4°), 150.0 (4°); HRMS (FAB) m/z calcd for C36H43BrCl2O7Na [M+Na]+: 759.1467, found; 759.1474。
[Wherein, MOM, n-BuLi and Et 2 O are the same as above. ]
Similarly to Synthesis Example 4, the monosubstituted tribromobenzene (29) (8.23 g, 15.0 mmol) obtained in Synthesis Example 4 and 4- (4-chlorophenyl) -4-hydroxycyclohexanone obtained in Synthesis Example 2 (26) (4.43 g, 16.5 mmol) was reacted to give the tribromobenzene disubstituted product (30) as a white solid (6.77 g, 61%).
1 H NMR (600 MHz, CD 2 Cl 2 ) δ 1.62-2.28 (m, 16H), 2.37 (s, 1H), 3.20 (s, 3H), 3.21 (s, 3H), 3.35 (s, 3H), 4.26 (s, 2H), 4.275 (s, 2H), 4.284 (s, 2H), 7.21 (d, 9.0 Hz, 2H), 7.25 (d, 9.0 Hz, 4H), 7.28 (d, 8.4 Hz, 4H) , 7.31-7.37 (m, 5H); 13 C NMR (150 MHz, CDCl 3 ) δ 33.0 (CH 2 ), 33.1 (CH 2 ), 33.2 (CH 2 ), 35.8 (CH 2 ), 55.9 (CH 3 ) , 56.0 (CH 3 ), 56.1 (CH 3 ), 72.3 (4 °), 77.8 (4 °), 78.1 (4 °), 92.2 (CH 2 ), 92.26 (CH 2 ), 92.28 (CH 2 ), 122.8 (4 °), 122.9 (CH), 127.8 (CH), 128.7 (CH), 128.8 (CH), 129.2 (CH), 133.6 (4 °), 133.8 (4 °), 140.4 (4 °), 141.4 ( 4 °), 145.8 (4 °), 150.0 (4 °); HRMS (FAB) m / z calcd for C 36 H 43 BrCl 2 O 7 Na [M + Na] + : 759.1467, found; 759.1474.
 また、溶媒をテトラヒドロフランに変えたところ、同様に反応が進行した(18%)。 Also, when the solvent was changed to tetrahydrofuran, the reaction proceeded similarly (18%).
 合成例6:トリブロモベンゼンの2置換体の合成(その2) Synthesis Example 6: Synthesis of disubstituted product of tribromobenzene (part 2)
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
[式中、MOM及びi-Pr2NEtは前記に同じである。]
 合成例4と同様に、合成例5で得たトリブロモベンゼンの2置換体(30)(6.65 g、9.00 mmol)を用いて保護化し(乾燥CH2Cl2:333 mM、ジイソプロピルエチルアミン:60 mmol、クロロメチルメチルエーテル:60 mmol)、保護化したトリブロモベンゼンの2置換体(31)を白色固体として得た(6.56 g、93%)。
1H NMR (600 MHz, CDCl3) δ 1.59-2.50 (m, 16H), 3.34 (s, 6H), 3.36 (s, 6H), 4.36 (s, 4H), 4.38 (s, 4H), 7.28 (d, 8.4 Hz, 2H), 7.34 (d, 8.4 Hz, 2H), 7.40 (s, 2H), 7.46 (s, 1H); 13C NMR (150 MHz, CDCl3) δ 32.7 (CH2), 32.9 (CH2), 55.9 (CH3), 56.0 (CH3), 77.6 (4°), 77.7 (4°), 92.00 (CH2), 92.03 (CH2), 122.8 (4°), 124.1 (CH), 128.2 (CH), 128.5 (CH), 129.0 (CH), 133.5 (4°), 140.5 (4°), 145.3 (4°); HRMS (FAB) m/z calcd for C38H47BrCl2O8Na [M+Na]+: 805.1710, found ; 805.1698; mp: 129.8-132.5℃。
[Wherein, MOM and i-Pr 2 NEt are the same as above. ]
In the same manner as in Synthetic Example 4, protection was performed using the disubstituted bromobenzene (30) (6.65 g, 9.00 mmol) obtained in Synthetic Example 5 (dry CH 2 Cl 2 : 333 mM, diisopropylethylamine: 60 mmol). , Chloromethyl methyl ether: 60 mmol), and the protected tribromobenzene disubstituted product (31) was obtained as a white solid (6.56 g, 93%).
1 H NMR (600 MHz, CDCl 3 ) δ 1.59-2.50 (m, 16H), 3.34 (s, 6H), 3.36 (s, 6H), 4.36 (s, 4H), 4.38 (s, 4H), 7.28 ( d, 8.4 Hz, 2H), 7.34 (d, 8.4 Hz, 2H), 7.40 (s, 2H), 7.46 (s, 1H); 13 C NMR (150 MHz, CDCl 3 ) δ 32.7 (CH 2 ), 32.9 (CH 2 ), 55.9 (CH 3 ), 56.0 (CH 3 ), 77.6 (4 °), 77.7 (4 °), 92.00 (CH 2 ), 92.03 (CH 2 ), 122.8 (4 °), 124.1 (CH ), 128.2 (CH), 128.5 (CH), 129.0 (CH), 133.5 (4 °), 140.5 (4 °), 145.3 (4 °); HRMS (FAB) m / z calcd for C 38 H 47 BrCl 2 O 8 Na [M + Na] + : 805.1710, found; 805.1698; mp: 129.8-132.5 ° C.
 実施例1-2:トリブロモベンゼンの3置換体の合成(その1) Example 1-2: Synthesis of trisubstituted product of tribromobenzene (Part 1)
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
[式中、MOM、n-BuLi、Et2O及びTHFは前記に同じである。]
 合成例4及び5と同様に、合成例6で得た保護化したトリブロモベンゼンの2置換体(31)(6.26 g、8.00 mmol)と、合成例1で得た4-(4-クロロフェニル)-4-ヒドロキシシクロヘキサノン(27)(2.29 g、8.52 mmol)とを、ジエチルエーテル(Et2O):テトラヒドロフラン(THF)=2:1の混合溶媒中で反応させ(溶媒合計:50 mM、n-ブチルリチウム:8.00 mmol)、トリブロモベンゼンの3置換体(32)を白色固体として得た(5.62 g、72%)。
1H NMR (600 MHz, CD2Cl2) δ 1.53-2.34 (m, 25H, include OH), 3.16 (s, 6H), 3.21 (s, 3H), 3.35 (s, 6H), 4.20 (s, 4H), 4.28 (s, 2H), 4.29 (s, 4H), 7.13-7.36 (m, 15H); 13C NMR (150 MHz, CDCl3) δ 33.2 (CH2), 35.9 (CH2), 56.0 (CH3), 56.1 (CH3), 72.7 (4°), 77.9 (4°), 78.1 (4°), 78.4 (4°), 92.2 (CH2), 92.3 (CH2), 123.1 (CH), 124.7 (CH), 128.66 (CH), 128.72 (CH), 129.0 (CH), 133.5 (4°), 133.6 (4°), 140.8 (4°), 141.8 (4°), 143.0 (4°), 147.2 (4°); HRMS (FAB) m/z calcd for C52H65Cl3O11Na [M+Na]+: 995.3476, found ; 995.3488。
[Wherein, MOM, n-BuLi, Et 2 O and THF are the same as above. ]
In the same manner as in Synthesis Examples 4 and 5, the protected trisubstituted bromobenzene (31) obtained in Synthesis Example 6 (31) (6.26 g, 8.00 mmol) and 4- (4-chlorophenyl) obtained in Synthesis Example 1 were used. -4-hydroxycyclohexanone (27) (2.29 g, 8.52 mmol) was reacted in a mixed solvent of diethyl ether (Et 2 O): tetrahydrofuran (THF) = 2: 1 (total solvent: 50 mM, n− Butyllithium: 8.00 mmol), tribromobenzene trisubstituted product (32) was obtained as a white solid (5.62 g, 72%).
1 H NMR (600 MHz, CD 2 Cl 2 ) δ 1.53-2.34 (m, 25H, include OH), 3.16 (s, 6H), 3.21 (s, 3H), 3.35 (s, 6H), 4.20 (s, 4H), 4.28 (s, 2H), 4.29 (s, 4H), 7.13-7.36 (m, 15H); 13 C NMR (150 MHz, CDCl 3 ) δ 33.2 (CH 2 ), 35.9 (CH 2 ), 56.0 (CH 3 ), 56.1 (CH 3 ), 72.7 (4 °), 77.9 (4 °), 78.1 (4 °), 78.4 (4 °), 92.2 (CH 2 ), 92.3 (CH 2 ), 123.1 (CH ), 124.7 (CH), 128.66 (CH), 128.72 (CH), 129.0 (CH), 133.5 (4 °), 133.6 (4 °), 140.8 (4 °), 141.8 (4 °), 143.0 (4 ° ), 147.2 (4 °); HRMS (FAB) m / z calcd for C 52 H 65 Cl 3 O 11 Na [M + Na] + : 995.3476, found; 995.3488.
 また、溶媒をテトラヒドロフラン単独にしたところ、同様に反応が進行した(21%)。 When the solvent was tetrahydrofuran alone, the reaction proceeded in the same manner (21%).
 実施例1-3:トリブロモベンゼンの3置換体の合成(その2) Example 1-3: Synthesis of trisubstituted product of tribromobenzene (Part 2)
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
[式中、MOM及びi-Pr2NEtは前記に同じである。]
 合成例4及び6と同様に、実施例1-2で得たトリブロモベンゼンの3置換体(32)(5.35 g、5.50 mmol)を用いて保護化し(乾燥CH2Cl2:250 mM、ジイソプロピルエチルアミン:22.0 mmol、クロロメチルメチルエーテル:22.0 mmol)、保護化したトリブロモベンゼンの3置換体(33)を白色固体として得た(5.23 g、94%)。
1H NMR (600 MHz, CD2Cl2) δ 1.60-2.32 (br, 24H), 3.14 (s, 9H), 3.25 (s, 9H), 4.20 (s, 6H), 4.29 (s, 6H), 7.16 (d, 8.4 Hz, 6H), 7.21 (d, 7.2 Hz, 6H),7.32 (s, 3H); 13C NMR (150 MHz, CD2Cl2) δ 33.26 (CH2), 33.32 (CH2), 56.0 (CH3), 56.1 (CH3), 77.9 (4°), 78.4 (4°), 92.2 (CH2), 92.4 (CH2), 125.1 (CH), 128.7 (CH), 133.5 (4°), 142.1 (4°), 142.7 (4°); HRMS (FAB) m/z calcd for C54H69Cl3O12Na [M+Na]+: 1037.3752, found ; 1037.3751; mp: 115.8-117.2℃。
[Wherein, MOM and i-Pr 2 NEt are the same as above. ]
In the same manner as in Synthesis Examples 4 and 6, the trisubstituted benzene (32) (5.35 g, 5.50 mmol) obtained in Example 1-2 was used for protection (dry CH 2 Cl 2 : 250 mM, diisopropyl). Ethylamine: 22.0 mmol, chloromethyl methyl ether: 22.0 mmol), and a trisubstituted benzene (33) of protected tribromobenzene was obtained as a white solid (5.23 g, 94%).
1 H NMR (600 MHz, CD 2 Cl 2 ) δ 1.60-2.32 (br, 24H), 3.14 (s, 9H), 3.25 (s, 9H), 4.20 (s, 6H), 4.29 (s, 6H), 7.16 (d, 8.4 Hz, 6H), 7.21 (d, 7.2 Hz, 6H), 7.32 (s, 3H); 13 C NMR (150 MHz, CD 2 Cl 2 ) δ 33.26 (CH 2 ), 33.32 (CH 2 ), 56.0 (CH 3 ), 56.1 (CH 3 ), 77.9 (4 °), 78.4 (4 °), 92.2 (CH 2 ), 92.4 (CH 2 ), 125.1 (CH), 128.7 (CH), 133.5 ( 4 °), 142.1 (4 °), 142.7 (4 °); HRMS (FAB) m / z calcd for C 54 H 69 Cl 3 O 12 Na [M + Na] + : 1037.3752, found; 1037.3751; mp: 115.8 -117.2 ° C.
 実施例1-4:トリブロモベンゼンの3置換体の合成(その3) Example 1-4: Synthesis of trisubstituted product of tribromobenzene (Part 3)
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
[式中、MOM、B(pin)、KOAcは前記に同じ;dbaはジベンジリデンアセトン;X-Phosは2-(ジシクロヘキシルホスフィノ)-2’,4’,6’-トリ-イソプロピル-1,1’-ビフェニルである。]
 磁気攪拌子を含む100 mLのシュレンク管に、実施例1-3で得た保護化したトリブロモベンゼンの3置換体(33)(4.08 g、4.01 mmol)、ビス(ピナコレート)ジボロン(3.70 g、14.6 mmol)、Pd2(dba)3・CHCl3(dbaはジベンジリデンアセトン)(62.1 mg、60.0μmol)、2-(ジシクロヘキシルホスフィノ)-2’,4’,6’-トリ-イソプロピル-1,1’-ビフェニル(X-Phos)(144.3 mg、303μmol)、及び酢酸カリウム(KOAc)(3.54 g、36.1μmol)を添加し、フラスコの排気及び窒素充填を3回繰り返した。次に、このフラスコに乾燥ジオキサン(40 mL)を加えた。反応混合物を110℃で16時間撹拌した。混合物を室温まで冷却後、酢酸エチル(EtOAc)で抽出し、食塩水で洗浄し、Na2SO4で乾燥し、減圧濃縮した。粗生成物をGPCにより精製し、ボロン化したトリブロモベンゼンの3置換体(34)(4.81 g、93%)を白色固体として得た。
1H NMR (600 MHz, CDCl3) δ 1.33 (s, 36H), 1.73-2.45 (br, 24H), 3.25 (s, 9H), 3.37 (s, 9H), 4.27 (s, 6H), 4.38 (s, 6H), 7.36 (s, 3H), 7.39 (d, 7.2 Hz, 6H), 7.75 (d, 8.4 Hz, 6H); 13C NMR (150 MHz, CDCl3) δ 24.8 (CH3), 32.7 (CH2), 33.0 (CH2), 55.9 (CH3), 78.1 (4°), 78.2 (4°), 83.7 (4°), 91.9 (CH2), 92.1 (CH2), 124.4 (4°), 126.1 (CH), 128.2 (4°), 134.8 (CH); HRMS (FAB) m/z calcd for C72H105B3O18Na [M+Na]+: 1313.7509, found ; 1313.7521。
[Wherein, MOM, B (pin) and KOAc are the same as above; dba is dibenzylideneacetone; X-Phos is 2- (dicyclohexylphosphino) -2 ′, 4 ′, 6′-tri-isopropyl-1, 1'-biphenyl. ]
To a 100 mL Schlenk tube containing a magnetic stirrer, the trisubstituted benzene (33) (4.08 g, 4.01 mmol) protected in Example 1-3, bis (pinacolato) diboron (3.70 g, 14.6 mmol), Pd 2 (dba) 3 · CHCl 3 (dba is dibenzylideneacetone) (62.1 mg, 60.0 μmol), 2- (dicyclohexylphosphino) -2 ′, 4 ′, 6′-tri-isopropyl-1 1,1′-biphenyl (X-Phos) (144.3 mg, 303 μmol) and potassium acetate (KOAc) (3.54 g, 36.1 μmol) were added, and the flask was evacuated and filled with nitrogen three times. Next, dry dioxane (40 mL) was added to the flask. The reaction mixture was stirred at 110 ° C. for 16 hours. The mixture was cooled to room temperature, extracted with ethyl acetate (EtOAc), washed with brine, dried over Na 2 SO 4 and concentrated under reduced pressure. The crude product was purified by GPC to give the boronated tribromobenzene trisubstituted product (34) (4.81 g, 93%) as a white solid.
1 H NMR (600 MHz, CDCl 3 ) δ 1.33 (s, 36H), 1.73-2.45 (br, 24H), 3.25 (s, 9H), 3.37 (s, 9H), 4.27 (s, 6H), 4.38 ( s, 6H), 7.36 (s, 3H), 7.39 (d, 7.2 Hz, 6H), 7.75 (d, 8.4 Hz, 6H); 13 C NMR (150 MHz, CDCl 3 ) δ 24.8 (CH 3 ), 32.7 (CH 2 ), 33.0 (CH 2 ), 55.9 (CH 3 ), 78.1 (4 °), 78.2 (4 °), 83.7 (4 °), 91.9 (CH 2 ), 92.1 (CH 2 ), 124.4 (4 °), 126.1 (CH), 128.2 (4 °), 134.8 (CH); HRMS (FAB) m / z calcd for C 72 H 105 B 3 O 18 Na [M + Na] + : 1313.7509, found; 1313.7521.
 実施例1-5:トリブロモベンゼンの3置換体の合成(その4) Example 1-5: Synthesis of trisubstituted product of tribromobenzene (Part 4)
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
[式中、MOM及びB(pin)は前記に同じである。]
 磁気攪拌子を含む50 mLのシュレンク管に、実施例1-4で得たボロン化したトリブロモベンゼンの3置換体(34)(642 mg、497μmol)を加えた後、1,4-ジブロモベンゼン(1.08 g、4.58 mmol)、PdCl2(dppf)(dppfは1,1’-ビス(ジフェニルホスフィノ)フェロセン)(36.3 mg、44.5μmol)、K2CO3(432 mg、3.13 mmol)、及びAg2O(349 mg、1.51 mmol)を添加し、フラスコの排気及び窒素充填を3回繰り返した。次に、このフラスコに乾燥テトラヒドロフラン(THF)(22 mL)及び脱気水(2 mL)を加えた。反応混合物を60℃で36時間撹拌した。混合物を室温まで冷却後、酢酸エチル(EtOAc)で抽出し、食塩水で洗浄し、Na2SO4で乾燥し、減圧濃縮した。粗生成物をGPCにより精製し、目的化合物(35)を白色固体として得た(391 mg、57%)。
1H NMR (600 MHz, CDCl3) δ 1.75-2.61 (br, 14H), 3.28 (s, 9H), 3.41 (s, 9H), 4.33 (s, 6H), 4.44 (s, 6H), 7.33 (d, 8.4 Hz, 6H), 7.40 (s, 15H), 7.50 (d, 8.4 Hz, 6H); 13C NMR (150 MHz, CDCl3) δ 32.9 (CH2), 33.0 (CH2), 55.8 (CH3), 56.0 (CH3), 78 (4°), 78 (4°), 91.8 (CH2), 92.2 (CH2), 121.6 (4°), 124.7 (4°), 126.7 (CH), 127.1 (CH), 128.4 (CH), 131.8 (CH), 138.9 (4°), 139.1 (4°), 142.1 (4°); HRMS (FAB) m/z calcd for C72H81Br3O12Na [M+Na]+: 1401.3158, found ; 1401.3131; mp: 177.1-179.3℃。
[Wherein, MOM and B (pin) are the same as above. ]
To a 50 mL Schlenk tube containing a magnetic stirrer was added the boronated tribromobenzene tri-substituted product (34) (642 mg, 497 μmol) obtained in Example 1-4, and then 1,4-dibromobenzene. (1.08 g, 4.58 mmol), PdCl 2 (dppf) (dppf is 1,1′-bis (diphenylphosphino) ferrocene) (36.3 mg, 44.5 μmol), K 2 CO 3 (432 mg, 3.13 mmol), and Ag 2 O (349 mg, 1.51 mmol) was added and the flask was evacuated and filled with nitrogen three times. Next, dry tetrahydrofuran (THF) (22 mL) and degassed water (2 mL) were added to the flask. The reaction mixture was stirred at 60 ° C. for 36 hours. The mixture was cooled to room temperature, extracted with ethyl acetate (EtOAc), washed with brine, dried over Na 2 SO 4 and concentrated under reduced pressure. The crude product was purified by GPC to obtain the target compound (35) as a white solid (391 mg, 57%).
1 H NMR (600 MHz, CDCl 3 ) δ 1.75-2.61 (br, 14H), 3.28 (s, 9H), 3.41 (s, 9H), 4.33 (s, 6H), 4.44 (s, 6H), 7.33 ( d, 8.4 Hz, 6H), 7.40 (s, 15H), 7.50 (d, 8.4 Hz, 6H); 13 C NMR (150 MHz, CDCl 3 ) δ 32.9 (CH 2 ), 33.0 (CH 2 ), 55.8 ( CH 3 ), 56.0 (CH 3 ), 78 (4 °), 78 (4 °), 91.8 (CH 2 ), 92.2 (CH 2 ), 121.6 (4 °), 124.7 (4 °), 126.7 (CH) , 127.1 (CH), 128.4 (CH), 131.8 (CH), 138.9 (4 °), 139.1 (4 °), 142.1 (4 °); HRMS (FAB) m / z calcd for C 72 H 81 Br 3 O 12 Na [M + Na] + : 1401.3158, found; 1401.3131; mp: 177.1-179.3 ° C.
 なお、各成分を以下のように変更した場合も同様に反応が進行した。 The reaction proceeded in the same manner when each component was changed as follows.
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
 実施例2-1:箱形化合物の合成(その1) Example 2-1: Synthesis of Box-shaped Compound (Part 1)
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
[式中、MOMは前記に同じである。]
 磁気攪拌子付きの100mLの丸底フラスコに、実施例1-1で得た三つ又化合物(4)(139 mg、101μmol)、Ni(cod)2(codは1,5-シクロオクタジエン)(91.1 mg、331μmol)、及び2,2’-ビピリジル(52.6 mg、337μmol)を加えた。次に、このフラスコに乾燥ジメチルホルムアミド(DMF)(50 mL、2 mM)を加えた。反応混合物を24時間90℃で攪拌した。室温まで冷却後、混合物を酢酸エチル(EtOAc)で抽出し、食塩水で洗浄し、Na2SO4で乾燥し、減圧濃縮した。粗生成物をGPC及びPTLC(CHCl3)により精製し、[6.6.6]ケージ前駆体である箱形化合物(5)を白色固体として得た(13.6 mg、12%)。
1H NMR (600 MHz, CDCl3, 50℃) δ 2.13 (brs, 12H), 2.20 (brs, 12H), 2.35-2.48 (m, 24H), 3.41 (s, 18H), 3.43 (s, 18H), 4.47 (s, 24H), 7.48 (d, J = 8.4 Hz, 24H), 7.51 (d, J = 8.4 Hz, 12H), 7.55 (d, J = 8.4 Hz, 12H), 7.63 (d, J = 8.4 Hz, 12H), 7.76 (s, 6H); 13C NMR (150 MHz, CDCl3) δ 32.8 (CH2), 56.0 (CH3), 56.1 (CH3), 78.0 (4°), 92.17 (CH2), 92.24 (CH2), 124.7 (CH), 126.8 (CH), 127.0 (CH), 127.2 (CH), 127.5 (CH), 139.6 (4°), 139.9 (4°), 141.5 (4°); HRMS (FAB) m/z calcd for C144H162O24Na [M+Na]+: 2298.1348, found 2298.1353; mp: partially decomposed at 300℃。
[Wherein, MOM is the same as above. ]
In a 100 mL round bottom flask equipped with a magnetic stir bar, the trifurcated compound (4) obtained in Example 1-1 (139 mg, 101 μmol), Ni (cod) 2 (cod is 1,5-cyclooctadiene) (91.1 mg, 331 μmol) and 2,2′-bipyridyl (52.6 mg, 337 μmol) were added. Next, dry dimethylformamide (DMF) (50 mL, 2 mM) was added to the flask. The reaction mixture was stirred at 90 ° C. for 24 hours. After cooling to room temperature, the mixture was extracted with ethyl acetate (EtOAc), washed with brine, dried over Na 2 SO 4 and concentrated under reduced pressure. The crude product was purified by GPC and PTLC (CHCl 3 ) to give the [6.6.6] cage precursor box compound (5) as a white solid (13.6 mg, 12%).
1 H NMR (600 MHz, CDCl 3 , 50 ° C) δ 2.13 (brs, 12H), 2.20 (brs, 12H), 2.35-2.48 (m, 24H), 3.41 (s, 18H), 3.43 (s, 18H) , 4.47 (s, 24H), 7.48 (d, J = 8.4 Hz, 24H), 7.51 (d, J = 8.4 Hz, 12H), 7.55 (d, J = 8.4 Hz, 12H), 7.63 (d, J = 8.4 Hz, 12H), 7.76 (s, 6H); 13 C NMR (150 MHz, CDCl 3 ) δ 32.8 (CH 2 ), 56.0 (CH 3 ), 56.1 (CH 3 ), 78.0 (4 °), 92.17 ( CH 2 ), 92.24 (CH 2 ), 124.7 (CH), 126.8 (CH), 127.0 (CH), 127.2 (CH), 127.5 (CH), 139.6 (4 °), 139.9 (4 °), 141.5 (4 °); HRMS (FAB) m / z calcd for C 144 H 162 O 24 Na [M + Na] + : 2298.1348, found 2298.1353; mp: partially decomposed at 300 ° C.
 なお、各成分を以下のように変更した場合も同様に反応が進行した。 The reaction proceeded in the same manner when each component was changed as follows.
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000068
 実施例2-2:箱形化合物の合成(その2) Example 2-2: Synthesis of box-shaped compound (2)
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
[式中、MOMは前記に同じである。]
 磁気攪拌子を含む50 mLのシュレンク管に、実施例1-3で得たトリブロモベンゼンの3置換体(33)(103 mg、101μmol)、ビス(1,5-シクロオクタジエン)ニッケル(0)(Ni(cod)2)(83.4 mg、303μmol)、1,10-フェナントロリン(phen)(55.8 mg、310μmol)を添加した。次に、このフラスコに乾燥テトラヒドロフラン(THF)(25 mL)を加えた。反応混合物を還流下に40時間撹拌した。室温まで冷却した後、混合物をセライト(EtOAc)の短いパッドでろ過し、減圧濃縮した。粗生成物をGPC及びPTLC(酢酸エチル(EtOAc))で精製し、[4,4,4]ケージ前駆体である箱形化合物(36)を白色固体として得た(8.1 mg、8%)。
1H NMR (600 MHz, CDCl3) δ 1.28-1.50 (br, 12H), 2.06 (d, 12.0 Hz, 12H), 2.43 (td, 12.0 Hz, 2.4 Hz, 12H), 2.52-2.66 (br, 12H), 3.28 (s, 18H), 3.48 (s, 18H), 4.46 (s, 12H), 4.49 (s, 12H), 6.92 (br, 12H), 7.02 (br, 12H), 7.77 (s, 6H); 13C NMR (150 MHz, CDCl3) δ 32.2 (CH2), 34.2 (CH2), 55.4 (CH3), 56.5 (CH3), 77.8 (4°), 78.5 (4°), 91.3 (CH2), 92.6 (CH2), 125.6 (CH), 126.5 (CH), 127.5 (CH), 138.6 (4°), 128.8 (4°), 144.1 (4°); HRMS (FAB) m/z calcd for C108H138O24Na [M+Na]+: 1842.9509, found 1842.9461; mp: 237.3℃。
[Wherein, MOM is the same as above. ]
To a 50 mL Schlenk tube containing a magnetic stirrer, the trisubstituted bromobenzene compound obtained in Example 1-3 (33) (103 mg, 101 μmol), bis (1,5-cyclooctadiene) nickel (0 ) (Ni (cod) 2 ) (83.4 mg, 303 μmol) and 1,10-phenanthroline (phen) (55.8 mg, 310 μmol) were added. Next, dry tetrahydrofuran (THF) (25 mL) was added to the flask. The reaction mixture was stirred under reflux for 40 hours. After cooling to room temperature, the mixture was filtered through a short pad of celite (EtOAc) and concentrated in vacuo. The crude product was purified by GPC and PTLC (ethyl acetate (EtOAc)) to give the [4,4,4] cage precursor box compound (36) as a white solid (8.1 mg, 8%).
1 H NMR (600 MHz, CDCl 3 ) δ 1.28-1.50 (br, 12H), 2.06 (d, 12.0 Hz, 12H), 2.43 (td, 12.0 Hz, 2.4 Hz, 12H), 2.52-2.66 (br, 12H ), 3.28 (s, 18H), 3.48 (s, 18H), 4.46 (s, 12H), 4.49 (s, 12H), 6.92 (br, 12H), 7.02 (br, 12H), 7.77 (s, 6H) ; 13 C NMR (150 MHz, CDCl 3 ) δ 32.2 (CH 2 ), 34.2 (CH 2 ), 55.4 (CH 3 ), 56.5 (CH 3 ), 77.8 (4 °), 78.5 (4 °), 91.3 ( CH 2 ), 92.6 (CH 2 ), 125.6 (CH), 126.5 (CH), 127.5 (CH), 138.6 (4 °), 128.8 (4 °), 144.1 (4 °); HRMS (FAB) m / z calcd for C 108 H 138 O 24 Na [M + Na] + : 1842.9509, found 1842.9461; mp: 237.3 ° C.
 なお、各成分を以下のように変更した場合も同様に反応が進行した。 The reaction proceeded in the same manner when each component was changed as follows.
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000070
 実施例2-3:箱形化合物の合成(その3) Example 2-3: Synthesis of Box-shaped Compound (Part 3)
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
[式中、MOM及びB(pin)は前記に同じ;Pd(OAc)2は酢酸パラジウム(II);S-Phosは2-(ジシクロヘキシルホスフィノ)-2’,6’-ジメトキシ-1,1’-ビフェニルである。]
 磁気攪拌子を含む100 mLの丸底フラスコに実施例1-3で得たトリブロモベンゼンの3置換体(33)(104 mg、102μmol)、実施例1-4で得たボロン化したトリブロモベンゼンの3置換体(34)(157 mg、122μmol)、酢酸パラジウム(II)(Pd(OAc)2)(2.4 mg、11μmol)、2-(ジシクロヘキシルホスフィノ)-2’,6’-ジメトキシ-1,1’-ビフェニル(S-Phos)(8.8 mg、21μmol)、及びK3PO4(209 mg、985μmol)を添加し、フラスコの排気及び窒素充填を3回繰り返した。次に、このフラスコに乾燥ジオキサン(47 mL)及び脱気水(3mL)を加えた。反応混合物を100℃で40時間撹拌した。混合物を室温まで冷却後、酢酸エチル(EtOAc)で抽出し、食塩水で洗浄し、Na2SO4で乾燥し、減圧濃縮した。粗生成物をGPC及びPTLCで精製し、[4,4,4]ケージ前駆体である箱形化合物(36)を白色固体として得た(13.7 mg、7%)。
[Wherein, MOM and B (pin) are the same as above; Pd (OAc) 2 is palladium (II) acetate; S-Phos is 2- (dicyclohexylphosphino) -2 ′, 6′-dimethoxy-1,1 '-Biphenyl. ]
In a 100 mL round-bottom flask containing a magnetic stir bar, trisubstituted bromobenzene (33) (104 mg, 102 μmol) obtained in Example 1-3 and boronated tribromo obtained in Example 1-4 were obtained. Benzene tri-substituted product (34) (157 mg, 122 μmol), palladium (II) acetate (Pd (OAc) 2 ) (2.4 mg, 11 μmol), 2- (dicyclohexylphosphino) -2 ′, 6′-dimethoxy- 1,1′-biphenyl (S-Phos) (8.8 mg, 21 μmol) and K 3 PO 4 (209 mg, 985 μmol) were added, and the flask was evacuated and filled with nitrogen three times. Next, dry dioxane (47 mL) and degassed water (3 mL) were added to the flask. The reaction mixture was stirred at 100 ° C. for 40 hours. The mixture was cooled to room temperature, extracted with ethyl acetate (EtOAc), washed with brine, dried over Na 2 SO 4 and concentrated under reduced pressure. The crude product was purified by GPC and PTLC to give the [4,4,4] cage precursor box compound (36) as a white solid (13.7 mg, 7%).
 実施例2-4:箱形化合物の合成(その4) Example 2-4: Synthesis of Box-shaped Compound (Part 4)
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
[式中、MOM及びB(pin)は前記に同じである。]
 実施例2-3と同様に、実施例1-4で得たボロン化したトリブロモベンゼンの3置換体(34)(139 mg、101μmol)と、実施例1-5で得たトリブロモベンゼンの3置換体(35)(159 mg、123μmol)とを、触媒としてPdCl2(dppf)・CH2Cl2(dppfは1,1’-ビス(ジフェニルホスフィノ)フェロセンである)(7.7 mg、9.4μmol)、K2CO3(85.4 mg、618μmol)、乾燥トルエン(45 mL)及び脱気水(5 mL)の存在下、80℃で40時間反応させ、[5,5,5]ケージ前駆体である箱形化合物(37)を白色固体として得た(22.5 mg、11%)。
1H NMR (600 MHz, CDCl3) δ1.45 (t, 13.2 Hz, 12H), 2.13 (d, 12.6 Hz, 12H), 2.49 (t, 12.6 Hz, 12H), 2.69 (t, 12.6 Hz, 12H), 3.29 (s, 18H), 3.52 (s, 18H), 4.48 (s, 12H), 4.51 (s, 12H), 6.92 (d, 8.4 Hz, 12H), 6.99 (s, 12H), 7.07 (d, 8.4 Hz, 12H), 7.86 (s, 6H); 13C NMR (150 MHz, CDCl3) δ31.9 (XH2), 34.2 (CH2), 55.3 (CH3), 56.6 (CH3), 77.9 (4°), 78.5 (4°), 91.6 (CH2), 92.7 (CH2), 125.7 (CH), 126.7 (CH), 127.3 (CH), 127.5 (CH), 138.3 (4°), 139.0 (4°), 139.1 (4°), 144.3 (4°); HRMS (FAB) m/z calcd for C126H150O24Na [M+Na]+: 2071.0443, found 2071.0492; mp: 269.0℃。
[Wherein, MOM and B (pin) are the same as above. ]
Similar to Example 2-3, the boronated tribromobenzene tri-substituted product (34) (139 mg, 101 μmol) obtained in Example 1-4 and the tribromobenzene obtained in Example 1-5 were mixed. Trisubstituted product (35) (159 mg, 123 μmol) was used as a catalyst with PdCl 2 (dppf) .CH 2 Cl 2 (dppf is 1,1′-bis (diphenylphosphino) ferrocene) (7.7 mg, 9.4 mg). μmol), K 2 CO 3 (85.4 mg, 618 μmol), dry toluene (45 mL) and degassed water (5 mL) in the presence of 40 hours at 80 ° C. to give a [5,5,5] cage precursor A box compound (37) was obtained as a white solid (22.5 mg, 11%).
1 H NMR (600 MHz, CDCl 3 ) δ1.45 (t, 13.2 Hz, 12H), 2.13 (d, 12.6 Hz, 12H), 2.49 (t, 12.6 Hz, 12H), 2.69 (t, 12.6 Hz, 12H ), 3.29 (s, 18H), 3.52 (s, 18H), 4.48 (s, 12H), 4.51 (s, 12H), 6.92 (d, 8.4 Hz, 12H), 6.99 (s, 12H), 7.07 (d , 8.4 Hz, 12H), 7.86 (s, 6H); 13 C NMR (150 MHz, CDCl 3 ) δ31.9 (XH 2 ), 34.2 (CH 2 ), 55.3 (CH 3 ), 56.6 (CH 3 ), 77.9 (4 °), 78.5 (4 °), 91.6 (CH 2 ), 92.7 (CH 2 ), 125.7 (CH), 126.7 (CH), 127.3 (CH), 127.5 (CH), 138.3 (4 °), 139.0 (4 °), 139.1 (4 °), 144.3 (4 °); HRMS (FAB) m / z calcd for C 126 H 150 O 24 Na [M + Na] + : 2071.0443, found 2071.0492; mp: 269.0 ° C .
 実施例3-1:[6.6.6]ケージの合成 Example 3-1: [6.6.6] Cage synthesis
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
[式中、MOM及びDMSOは前記に同じである。]
 磁気攪拌子付きの20 mLのシュレンク管に実施例2-1で得た箱形化合物(5)(13.0 mg、5.71μmol)、NaHSO4・H2O(23.7 mg、172μmol)、o-クロラニル(6.96 mg、28.3μmol)、乾燥m-キシレン(2.5 mL)、及び乾燥ジメチルスルホキシド(DMSO)(0.5 mL)を加えた。反応混合物を空気下で24時間150℃で撹拌した。室温まで冷却後、混合物をCHCl3で抽出し、食塩水で洗浄し、Na2SO4で乾燥し、減圧下で濃縮した。粗生成物をPTLC(ヘキサン / CH2Cl2= 1:1)により精製し、目的化合物である[6.6.6]ケージ(1,8(1,3,5)2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20(1,4)-イコサベンゼナビシクロ[6.6.6]イコサフェン;1, 8 (1, 3, 5) 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 (1, 4)-icosabenzenabicyclo[6. 6. 6] icosaphane)(1)を白色固体として得た(6.0 mg、69%)。
[Wherein, MOM and DMSO are the same as above. ]
The box-shaped compound (5) obtained in Example 2-1 (13.0 mg, 5.71 μmol), NaHSO 4 .H 2 O (23.7 mg, 172 μmol), o-chloranil (20 μl) were placed in a 20 mL Schlenk tube with a magnetic stir bar. 6.96 mg, 28.3 μmol), dry m-xylene (2.5 mL), and dry dimethyl sulfoxide (DMSO) (0.5 mL) were added. The reaction mixture was stirred at 150 ° C. under air for 24 hours. After cooling to room temperature, the mixture was extracted with CHCl 3 , washed with brine, dried over Na 2 SO 4 and concentrated under reduced pressure. The crude product was purified by PTLC (hexane / CH 2 Cl 2 = 1: 1), and the target compound [6.6.6] cage (1,8 (1,3,5) 2,3,4, 5,6,7,9,10,11,12,13,14,15,16,17,18,19,20 (1,4) -icosabenzenavicyclo [6.6.6] icosaphene; 1 , 8 (1, 3, 5) 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 (1, 4)- icosabenzenabicyclo [6. 6. 6] icosaphane) (1) was obtained as a white solid (6.0 mg, 69%).
  1H NMR (600 MHz, CDCl3) δ 7.590 (d, J = 8.4 Hz, 12H), 7.593 (d, J = 8.6 Hz, 24H), 7.67 (d, J = 8.6 Hz, 12H), 7.69 (d, J = 8.6 Hz, 12H), 7.77 (d, J = 8.4 Hz, 12H), 7.85 (s, 6H); 13C NMR (150 MHz, CDCl3) δ124.6 (CH2), 127.08 (CH2), 127.13 (CH2), 127.4 (CH2), 127.5 (CH2), 127.7 (CH2), 127.8 (CH2), 138.3 (4°), 138.4 (4°), 138.8 (4°), 139.0 (4°), 139.3 (4°), 139.6 (4°), 141.5 (4°); HRMS (MALDI-TOF) m/z calcd for C120H78 [M]+: 1518.6104, found 1518.6111; mp: not decomposed nor melted over 300 ℃。 1 H NMR (600 MHz, CDCl 3 ) δ 7.590 (d, J = 8.4 Hz, 12H), 7.593 (d, J = 8.6 Hz, 24H), 7.67 (d, J = 8.6 Hz, 12H), 7.69 (d , J = 8.6 Hz, 12H), 7.77 (d, J = 8.4 Hz, 12H), 7.85 (s, 6H); 13 C NMR (150 MHz, CDCl 3 ) δ124.6 (CH 2 ), 127.08 (CH 2 ), 127.13 (CH 2 ), 127.4 (CH 2 ), 127.5 (CH 2 ), 127.7 (CH 2 ), 127.8 (CH 2 ), 138.3 (4 °), 138.4 (4 °), 138.8 (4 °), 139.0 (4 °), 139.3 (4 °), 139.6 (4 °), 141.5 (4 °); HRMS (MALDI-TOF) m / z calcd for C 120 H 78 [M] + : 1518.6104, found 1518.6111; mp : not decomposed nor melted over 300 ℃.
 実施例3-2:[4.4.4]ケージの合成 Example 3-2: [4.4.4] Cage synthesis
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
[式中、MOM及びDMSOは前記に同じである。]
 実施例3-1と同様に、実施例2-2又は実施例2-3で得た箱形化合物(36)(10.5 mg、5.77μmol)を用いて、NaHSO4・H2O(26.9 mg、195μmol)、o-クロラニル(10.7 mg、43.5μmol)、乾燥m-キシレン(2.5 mL)、及び乾燥ジメチルスルホキシド(DMSO)(0.5 mL)の存在下、150℃で48時間反応させ、目的化合物である[4.4.4]ケージを白色固体として得た(1.8 mg、29%)。
1H NMR (600 MHz, CDCl3) δ 7.468 (d, 8.4 Hz, 12H), 7.470 (d, 9.0 Hz, 12H), 7.52 (d, 9.0 Hz, 12H), 7.63 (d, 8.4 Hz, 12H), 7.65 (s, 6H); 13C NMR (150 MHz, CDCl3) δ124.9 (CH), 127.25 (CH), 127.30 (CH), 127.7 (CH), 127.8 (CH), 138.1 (4°), 138.2 (4°), 138.5 (4°), 139.0 (4°), 141.6 (4°); HRMS (MALDI-TOF) m/z calcd for C84H54 [M]+: 1062.4220, found ; 1062.4251。
[Wherein, MOM and DMSO are the same as above. ]
In the same manner as in Example 3-1, the box compound (36) (10.5 mg, 5.77 μmol) obtained in Example 2-2 or Example 2-3 was used, and NaHSO 4 .H 2 O (26.9 mg, 195 μmol), o-chloranil (10.7 mg, 43.5 μmol), dry m-xylene (2.5 mL), and dry dimethyl sulfoxide (DMSO) (0.5 mL), reacted at 150 ° C. for 48 hours to be the target compound [4.4.4] The cage was obtained as a white solid (1.8 mg, 29%).
1 H NMR (600 MHz, CDCl 3 ) δ 7.468 (d, 8.4 Hz, 12H), 7.470 (d, 9.0 Hz, 12H), 7.52 (d, 9.0 Hz, 12H), 7.63 (d, 8.4 Hz, 12H) , 7.65 (s, 6H); 13 C NMR (150 MHz, CDCl 3 ) δ124.9 (CH), 127.25 (CH), 127.30 (CH), 127.7 (CH), 127.8 (CH), 138.1 (4 °) , 138.2 (4 °), 138.5 (4 °), 139.0 (4 °), 141.6 (4 °); HRMS (MALDI-TOF) m / z calcd for C 84 H 54 [M] + : 1062.4220, found; 1062.4251 .
 実施例3-3:[5.5.5]ケージの合成 Example 3-3: Synthesis of [5.5.5] cage
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
[式中、MOM及びDMSOは前記に同じである。]
 実施例3-1及び実施例3-2と同様に、実施例2-4で得た箱形化合物(37)(13.2 mg、6.44μmol)を用いて、NaHSO4・H2O(27.6 mg、200μmol)、o-クロラニル(11.7 mg、47.6μmol)、乾燥m-キシレン(3.0 mL)、及び乾燥ジメチルスルホキシド(DMSO)(0.5 mL)の存在下、150℃で48時間反応させ、目的化合物である[5.5.5]ケージを白色固体として得た(4.3 mg、52%)。
1H NMR (600 MHz, CDCl3) δ7.53 (d, 9.0 Hz, 12H), 7.54 (d, 8.4 Hz, 36H), 7.60 (s, 12H), 7.61 (d, 9.0 Hz, 12H), 7.79 (s, 6H); 13C NMR (150 MHz, CDCl3) δ 124.6 (CH), 127.1 (CH), 127.3 (CH), 127.7 (CH), 127.8 (CH), 138.2 (4°), 138.3 (4°), 138.5 (4°), 139.0 (4°), 139.4 (4°), 141.4 (4°); HRMS (MALDI-TOF) m/z calcd for C102H66[M]+: 1290.5159, found ; 1290.5200。
[Wherein, MOM and DMSO are the same as above. ]
In the same manner as in Example 3-1 and Example 3-2, the box-shaped compound (37) obtained in Example 2-4 (13.2 mg, 6.44 μmol) was used, and NaHSO 4 .H 2 O (27.6 mg, 200 μmol), o-chloranil (11.7 mg, 47.6 μmol), dry m-xylene (3.0 mL), and dry dimethyl sulfoxide (DMSO) (0.5 mL), reacted at 150 ° C. for 48 hours to be the target compound [5.5.5] Cage was obtained as a white solid (4.3 mg, 52%).
1 H NMR (600 MHz, CDCl 3 ) δ7.53 (d, 9.0 Hz, 12H), 7.54 (d, 8.4 Hz, 36H), 7.60 (s, 12H), 7.61 (d, 9.0 Hz, 12H), 7.79 (s, 6H); 13 C NMR (150 MHz, CDCl 3 ) δ 124.6 (CH), 127.1 (CH), 127.3 (CH), 127.7 (CH), 127.8 (CH), 138.2 (4 °), 138.3 ( 4 °), 138.5 (4 °), 139.0 (4 °), 139.4 (4 °), 141.4 (4 °); HRMS (MALDI-TOF) m / z calcd for C 102 H 66 [M] + : 1290.5159, found; 1290.5200.
 実験例1:光物性
 UV/VIS吸収スペクトルは0.5 nmの分解能を持つShimadzu UV-3510分光計で記録した。発光スペクトルは、0.2 nmの分解能を持つHitachi F-4500分光計を用いて測定した。1 cm角の石英セル内の脱気したスペクトルグレードのクロロホルムで溶液を希釈して使用した。絶対蛍光量子収率は、マルチチャンネル分光器(PMA-11)を搭載したHamamatsu C9920-02キャリブレーション積分球システムで測定した。蛍光寿命は、USHOパルス窒素レーザー(10 Hzの繰り返し率の励起波長は337 nm)を搭載したピコ秒蛍光測定システムHamamatsu C4780で測定した。
Experimental Example 1: Photophysical UV / VIS absorption spectra were recorded with a Shimadzu UV-3510 spectrometer with a resolution of 0.5 nm. The emission spectrum was measured using a Hitachi F-4500 spectrometer with a resolution of 0.2 nm. The solution was diluted with degassed spectral grade chloroform in a 1 cm square quartz cell. The absolute fluorescence quantum yield was measured with a Hamamatsu C9920-02 calibration integrating sphere system equipped with a multi-channel spectrometer (PMA-11). The fluorescence lifetime was measured with a picosecond fluorescence measurement system Hamamatsu C4780 equipped with a USHO pulse nitrogen laser (excitation wavelength of 10 Hz repetition rate was 337 nm).
 [二光子吸収]
 二光子吸収(TPA)のスペクトルを、オープンアパーチャーZ-スキャン法を用いて測定した。previously.SAフェムト秒光パラメトリック増幅器(スペクトラ・フィジックスOPA-800)を、1kHzの繰り返し率で、光源として励起波長(484~692 nm)の広い範囲をスキャンした。パラメトリック増幅器の出力ビームを小さなアイリス(iris)を通過させ、ほぼガウス空間プロファイルが得られた。パルス幅は、自己相関器(一般的にはガウスパルスの半値幅で118 fs)により測定した。光学セットアップのレーリーレンジ(Rayleigh range)ZRは採用波長に応じて7~14 mmであった。試料溶液は、石英キュベット(経路長L = 2 mm)中に留まり、つまり、Zrより短く、「光学的に薄い状態」L << ZRを満足した(Sheik-Bahae, M.; Said, A. A.; Wei, T.-H.; Hagan, D. J.; Van Stryland, E. W. IEEE J. Quantum Electron. 1990, 26, 760.)。測定は、入射レーザーパワーPを各波長において0.05~0.35 mWの範囲内で変化させることによって、少なくとも4回繰り返した。測定の各セット前に、溶剤(分光等級のクロロホルム)を同じ条件下で測定し、Z-スキャン・トレースの鋭いディップとして現れる誘導ラマン効果等の不要な非線形光学効果の有無を確認した。軸上のピーク強度Iは焦点において180 GW cm-2未満であった。
[Two-photon absorption]
Two photon absorption (TPA) spectra were measured using the open aperture Z-scan method. A previously.SA femtosecond optical parametric amplifier (Spectra Physics OPA-800) was scanned over a wide range of excitation wavelengths (484 to 692 nm) as a light source at a repetition rate of 1 kHz. The output beam of the parametric amplifier was passed through a small iris and a nearly Gaussian spatial profile was obtained. The pulse width was measured by an autocorrelator (generally, the half width of a Gaussian pulse is 118 fs). The Rayleigh range Z R of the optical setup was 7-14 mm depending on the wavelength used. The sample solution stayed in the quartz cuvette (path length L = 2 mm), ie shorter than Zr and satisfied the “optically thin state” L << Z R (Sheik-Bahae, M .; Said, AA Wei, T.-H .; Hagan, DJ; Van Stryland, EW IEEE J. Quantum Electron. 1990, 26, 760.). Measurement, by the incident laser power P i is changed in the range of 0.05 ~ 0.35 mW at each wavelength was repeated at least 4 times. Before each set of measurements, the solvent (spectral grade chloroform) was measured under the same conditions to check for the presence of unwanted nonlinear optical effects such as the stimulated Raman effect that appeared as a sharp dip in the Z-scan trace. The on-axis peak intensity I 0 was less than 180 GW cm −2 at the focal point.
 典型的な記録されたZ-スキャントレースを図1及び2に示す。全ての記録されたZ-スキャントレースは、二光子吸収媒体(Kamada, K.; Matsunaga, K.; Yoshino, A.; Ohta, K. J. Opt. Soc. Am. B 2003, 20, 529.)を通して空間的及び時間的にガウスパルスの透過率の理論モデルとカーブフィッティングの手順で分析した。カーブフィッティングから、サンプルの二光子吸収q0= α(2)I0Lが得られた(α(2)はTPA係数である)。TPA処理から生じた観測信号を確認し、I0に対するq0の比例関係、つまりPiを確認した(図3及び4)。TPA断面σ(2)はσ(2)=Ephα(2)/Nの規則に基づいて算出した(Nはモル濃度から計算した試料中の分子の数密度であり、Ephは入射レーザー光の光子エネルギーである。最後に、σ(2)スペクトルは異なる波長の測定を繰り返すことで得た。 A typical recorded Z-scan trace is shown in FIGS. All recorded Z-scan traces are passed through a two-photon absorption medium (Kamada, K .; Matsunaga, K .; Yoshino, A .; Ohta, KJ Opt. Soc. Am. B 2003, 20, 529.) Analyzed with a theoretical model of Gaussian pulse transmittance and curve fitting procedure. From the curve fitting, the two-photon absorption q 0 = α (2) I 0 L of the sample was obtained (α (2) is the TPA coefficient). The observed signal resulting from the TPA process was confirmed, and the proportional relationship of q 0 to I 0 , that is, Pi was confirmed (FIGS. 3 and 4). The TPA cross section σ (2) was calculated based on the rule of σ (2) = E ph α (2) / N (N is the number density of molecules in the sample calculated from the molar concentration, and E ph is the incident laser Finally, σ (2) spectra were obtained by repeating measurements at different wavelengths.
 得られたσ(2)値は、同じ条件(クロロホルム溶液、20 mM)で測定された標準物質として既報(Kennedy, S. M.; Lytle, F. E. Anal. Chem. 1986, 58, 2643.)の1,4-ビス(2-メチルスチリル)ベンゼン(bis-MSB)の値に基づいて校正した。537 nmより短波長での値の報告がないため、bis-MSBの溶液とともに、GaN単結晶(新陽(株)製の厚さ280μm、半絶縁性)を測定した。まず、既報のGaNのα(2)スペクトル形状を、GaNのTPAスペクトル形状の理論式(Sheik-Bahae, M.; Hutchings, D. C.; Hagan, D. J.; Van Stryland, E. W. IEEE J. Quantum Electron. 1991, 27, 1296.)を用いて校正した後、波長484~537 nmでのbis-MSBのσ(2)の値を、既報(Detailed procedure is in preparation to be presented elsewhere.)の540~600 nmにおけるbis-MSBのσ(2)の値の平均と整合を取るようにしながらGaNの校正したスペクトルに基づいて校正した。さらに、600 nmより長い波長では、標準化合物として、1,4-ビス(2,5-ジメトキシ-4-{2-[4-(N-メチル)ピリジン-1-イウミル]エテニル}フェニル)ブタジイントリフラート(MPPBT)(Kamada, K.; Iwase, Y.; Sakai, K.; Kondo, K.; Ohta, K. J. Phys. Chem. C 2009, 113, 11469.)も参照のσ(2)値の整合性をチェックするために測定した。 The obtained σ (2) value is 1,4 of the previous report (Kennedy, SM; Lytle, FE Anal. Chem. 1986, 58, 2643.) as a standard substance measured under the same conditions (chloroform solution, 20 mM). Calibration was based on the value of bis (2-methylstyryl) benzene (bis-MSB). Since there was no report of a value at a wavelength shorter than 537 nm, a GaN single crystal (thickness 280 μm, semi-insulating) manufactured by Shinyo Co., Ltd. was measured together with a bis-MSB solution. First, the α (2) spectral shape of the previously reported GaN is expressed by the theoretical formula of the GaN TPA spectral shape (Sheik-Bahae, M .; Hutchings, DC; Hagan, DJ; Van Stryland, EW IEEE J. Quantum Electron. 1991, 27, 1296.), and σ (2) value of bis-MSB at wavelengths of 484 to 537 nm is shown at 540 to 600 nm in the previous report (Detailed procedure is in preparation to be presented elsewhere.) The calibration was performed based on the calibrated spectrum of GaN while keeping the average of the σ- (2) values of bis-MSB. Furthermore, at wavelengths longer than 600 nm, 1,4-bis (2,5-dimethoxy-4- {2- [4- (N-methyl) pyridine-1-iumyl] ethenyl} phenyl) butadiyne is used as a standard compound. Alignment of σ (2) values in Triflate (MPPBT) (Kamada, K .; Iwase, Y .; Sakai, K .; Kondo, K .; Ohta, KJ Phys. Chem. C 2009, 113, 11469.) Measured to check sex.
 分光等級クロロホルムの[6.6.6]カーボンナノケージの試料溶液(0.57 mM)を大気雰囲気下で調製した。直線状のオリゴパラフェニレン(oligoparaphenylene)である2''',5'''-ジデシル-1,1':4',1'':4'',1''':4''',1'':4'''',1''':4''''',1''''''-セプチフェニル(2''',5'''-ジデシル-p-セプチフェニル)のクロロホルム溶液(15 mM)をまた大気雰囲気下で調製した。劣化の兆候は、TPA測定の後、両方のサンプルに認められなかった。 A sample solution (0.57 mm) of [6.6.6] carbon nanocage in spectroscopic grade chloroform was prepared in an air atmosphere. 2 ′ ″, 5 ′ ″-didecyl-1, 1 ′: 4 ′, 1 ″: 4 ″, 1 ′ ″: 4 ′ ″, 1 which is a linear oligoparaphenylene '': 4 '' '', 1 '' ': 4' '' '', 1 '' '' ''-septiphenyl (2 '' ', 5' ''-didecyl-p-septiphenyl) in chloroform (15 mM) was also prepared under atmospheric conditions. No signs of deterioration were observed in both samples after TPA measurement.
 [吸収及び蛍光]
 実施例3-2で得た[4.4.4]ケージ、実施例3-3で得た[5.5.5]ケージ、実施例3-1で得た[6.6.6]ケージについて、吸収及び蛍光スペクトルを測定した。シクロパラフェニレンはサイズに関わらず同程度の吸収波長(特許文献1;338~339nm程度)を有するのに対し、カーボンナノケージの吸収波長は、ケージのサイズが大きくなるとともに、赤色シフトした。一方、興味深いことに、最大蛍光は、ケージのサイズが大きくなるとともに、青色シフトした。最大ピーク間のエネルギー差は、パラ置換ベンゼンの振動子強度(約1400~1500 cm-1)に対応していた。また、[6.6.6]ケージは、非常に高い蛍光量子収率(ΦF=0.87)で強い青色蛍光を示した。[6.6.6]ケージにおいて、蛍光寿命(τs=1.4 ns)と式(ΦF=kr×τs及びkr+knr=τs -1)とから求められる放射性(kr)及び非放射性(knr)の減衰速度定数は、それぞれ6.2×108 s-1及び9.4×107 s-1であった。これらの値は、12個のベンゼン環を有するシクロパラフェニレン([12]CPP)(4.0×108 s-1及び5.0×107 s-1)と匹敵する。結果を表5及び図5に示す。なお、図5において、実線は、左から順に、[4.4.4]ケージ、[5.5.5]ケージ及び[6.6.6]ケージの吸収スペクトルであり、破線は、左から順に、[6.6.6]ケージ、[5.5.5]ケージ及び[4.4.4]ケージの蛍光スペクトルである。
[Absorption and fluorescence]
[4.4.4] cage obtained in Example 3-2, [5.5.5] cage obtained in Example 3-3, [6.6.6] cage obtained in Example 3-1. The absorption and fluorescence spectra were measured. Cycloparaphenylene has the same absorption wavelength regardless of size (Patent Document 1; about 338 to 339 nm), whereas the absorption wavelength of the carbon nanocage shifted red as the cage size increased. Interestingly, however, maximum fluorescence shifted blue with increasing cage size. The energy difference between the maximum peaks corresponded to the oscillator strength of para-substituted benzene (about 1400-1500 cm -1 ). The [6.6.6] cage also showed strong blue fluorescence with a very high fluorescence quantum yield (Φ F = 0.87). In the [6.6.6] cage, radioactive (kr) and non-radioactive (knr) determined from the fluorescence lifetime (τ s = 1.4 ns) and the formula (Φ F = kr × τ s and kr + knr = τ s −1 ) ) Was 6.2 × 10 8 s −1 and 9.4 × 10 7 s −1 , respectively. These values are comparable to cycloparaphenylene with 12 benzene rings ([12] CPP) (4.0 × 10 8 s −1 and 5.0 × 10 7 s −1 ). The results are shown in Table 5 and FIG. In FIG. 5, the solid lines are the absorption spectra of the [4.4.4] cage, the [5.5.5] cage, and the [6.6.6] cage in order from the left, and the broken line is from the left. In order are the fluorescence spectra of the [6.6.6] cage, the [5.5.5] cage, and the [4.4.4] cage.
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000076
 実験例2:X線結晶構造解析
 リガク社製CCD単結晶自動X線構造解析装置「Saturn」(商品名)を用いて、本発明のカゴ形化合物の前駆体である実施例1-3で得た保護化したトリブロモベンゼンの3置換体と、実施例3-2で得た[4,4,4]ケージのX線構造解析を行った。単結晶は、THF溶液に、室温で、ジエチルエーテル(Et2O)蒸気をゆっくり添加することで得た。その結果、実施例1-3で得た保護化したトリブロモベンゼンの3置換体は、全てシス構造を有することが示された(図6)。また、本発明のカゴ形化合物は、美しいケージ型構造を有していた(図7(a))。また、2個のTHF分子と1個のジエチルエーテル(Et2O)分子がケージ内部に取り込まれていた(図8)。また、ベンゼン環のわずかなずれが、上から見た外観に示された(図7(b))。パッキング構造からは、[4.4.4]ケージ密接に充填されていることが示された(図7(c))。また、その結果を表6及び図6~7に示す。
Experimental Example 2: X-ray crystal structure analysis Using a CCD single crystal automatic X-ray structure analyzer “Saturn” (trade name) manufactured by Rigaku Corporation, obtained in Example 1-3 which is a precursor of the cage compound of the present invention X-ray structural analysis of the protected tribromobenzene tri-substituted product and the [4, 4, 4] cage obtained in Example 3-2 was performed. Single crystals were obtained by slowly adding diethyl ether (Et 2 O) vapor to a THF solution at room temperature. As a result, it was shown that all of the protected tribromobenzene tri-substituted products obtained in Example 1-3 had a cis structure (FIG. 6). Moreover, the cage compound of the present invention had a beautiful cage structure (FIG. 7A). In addition, two THF molecules and one diethyl ether (Et 2 O) molecule were incorporated into the cage (FIG. 8). Further, a slight shift of the benzene ring was shown in the appearance seen from above (FIG. 7B). The packing structure showed that the [4.4.4] cage was tightly packed (FIG. 7 (c)). The results are shown in Table 6 and FIGS.
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000077
 実験例3:計算機による研究
 SGI Altix4700システム上で実行したGaussian 09プログラムは、最適化、TD-DFT(B3LYP/6-31G(d))のために使用した。
Experimental example 3: Computer study The Gaussian 09 program run on the SGI Altix4700 system was used for optimization, TD-DFT (B3LYP / 6-31G (d)).
 その結果、実施例3-1で得た[6.6.6]ケージ、実施例3-3で得た[5.5.5]ケージ、実施例3-2で得た[4.4.4]ケージの結果を図9に示す。また、[6.6.6]ケージのフロンティア分子軌道を図10に示す。 As a result, the [6.6.6] cage obtained in Example 3-1, the [5.5.5] cage obtained in Example 3-3, and the obtained in Example 3-2 [4.4. 4] The results of the cage are shown in FIG. In addition, FIG. 10 shows the frontier molecular orbitals of the [6.6.6] cage.

Claims (10)

  1. 8個以上の環が単結合で連結した箱形化合物(B)であって、
    該環同士は、環中に存在するsp2混成炭素原子又はsp3混成炭素原子同士が結合しており、
    (1)式:
    Figure JPOXMLDOC01-appb-C000001
    で示される基が2~4個、
    (2)置換基を有していてもよい1,4-シクロヘキシレン基が6個、及び
    (3)置換基を有していてもよい2価の芳香族炭化水素基が0個以上
    からなる、箱形化合物。
    A box-shaped compound (B) in which eight or more rings are linked by a single bond,
    The rings are bonded to each other with sp2 hybrid carbon atoms or sp3 hybrid carbon atoms present in the ring,
    (1) Formula:
    Figure JPOXMLDOC01-appb-C000001
    2 to 4 groups represented by
    (2) consisting of 6 optionally substituted 1,4-cyclohexylene groups and (3) 0 or more divalent aromatic hydrocarbon groups optionally having substituents , Box-shaped compounds.
  2. 一般式(IIa):
    Figure JPOXMLDOC01-appb-C000002
    [式中、3個のRは同じか又は異なり、それぞれ、一般式(IIa-1):
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは同じか又は異なり、それぞれ水素原子又は水酸基の保護基;Rは同じか又は異なり、それぞれ置換基を有していてもよい2価の芳香族炭化水素基;nは同じか又は異なり、それぞれ0以上の整数である。)
    で示される2価の基である。]
    で示される化合物である、請求項1に記載の箱形化合物。
    Formula (IIa):
    Figure JPOXMLDOC01-appb-C000002
    [In the formula, three R 2 are the same or different and are each represented by the general formula (IIa-1):
    Figure JPOXMLDOC01-appb-C000003
    (Wherein R 3 is the same or different, and each represents a hydrogen atom or a hydroxyl-protecting group; R 4 is the same or different, and each is a divalent aromatic hydrocarbon group optionally having a substituent; The same or different, each being an integer of 0 or more.)
    It is a bivalent group shown by these. ]
    The box-shaped compound of Claim 1 which is a compound shown by these.
  3. 8個以上の環が単結合で連結したカゴ形化合物(A)であって、
    該環同士は、環中に存在するsp2混成炭素原子同士が結合しており、
    (1)式:
    Figure JPOXMLDOC01-appb-C000004
    で示される基が2~4個、及び
    (3)置換基を有していてもよい2価の芳香族炭化水素基が6個以上
    からなる、カゴ形化合物の製造方法であって、
    8個以上の環が単結合で連結した箱形化合物(B)であって、
    該環同士は、環中に存在するsp2混成炭素原子又はsp3混成炭素原子同士が結合しており、
    (1)式:
    Figure JPOXMLDOC01-appb-C000005
    で示される基が2~4個、
    (2)置換基を有していてもよい1,4-シクロヘキシレン基が6個、及び
    (3)置換基を有していてもよい2価の芳香族炭化水素基が0個以上
    からなる、箱形化合物が有するシクロヘキサン環部をベンゼン環に変換する変換工程
    を備える、製造方法。
    A cage compound (A) in which eight or more rings are linked by a single bond,
    The rings have sp2 hybrid carbon atoms present in the rings bonded to each other,
    (1) Formula:
    Figure JPOXMLDOC01-appb-C000004
    And (3) a method for producing a cage compound, comprising (3) 6 or more divalent aromatic hydrocarbon groups which may have a substituent,
    A box-shaped compound (B) in which eight or more rings are linked by a single bond,
    The rings are bonded to each other with sp2 hybrid carbon atoms or sp3 hybrid carbon atoms present in the ring,
    (1) Formula:
    Figure JPOXMLDOC01-appb-C000005
    2 to 4 groups represented by
    (2) consisting of 6 optionally substituted 1,4-cyclohexylene groups and (3) 0 or more divalent aromatic hydrocarbon groups optionally having substituents The manufacturing method provided with the conversion process which converts the cyclohexane ring part which a box-shaped compound has into a benzene ring.
  4. 前記変換工程の前に、さらに、
    一般式(III):
    Figure JPOXMLDOC01-appb-C000006
    [式中、Rは同じか又は異なり、それぞれ水素原子又は水酸基の保護基;Rは同じか又は異なり、それぞれ置換基を有していてもよい2価の芳香族炭化水素基;mは同じか又は異なり、それぞれ0以上の整数;Yは同じか又は異なり、それぞれハロゲン原子、又は一般式(III-1):
    Figure JPOXMLDOC01-appb-C000007
    (式中、Rは同じか又は異なり、それぞれ水素原子又は炭素数1~10のアルキル基であり、Rは互いに結合して、隣接する-O-B-O-とともに環を形成してもよい。)
    で示される基である。]
    で示される化合物(III)をカップリングさせるカップリング工程
    を備える、請求項3に記載の製造方法。
    Before the conversion step,
    General formula (III):
    Figure JPOXMLDOC01-appb-C000006
    [Wherein R 3 is the same or different and each represents a hydrogen atom or hydroxyl-protecting group; R 4 is the same or different and each represents a divalent aromatic hydrocarbon group optionally having a substituent; The same or different, each an integer greater than or equal to 0; Y is the same or different and each represents a halogen atom or general formula (III-1):
    Figure JPOXMLDOC01-appb-C000007
    (Wherein R 5 is the same or different and each represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 5 is bonded to each other to form a ring with adjacent —O—B—O—. May be.)
    It is group shown by these. ]
    The manufacturing method of Claim 3 provided with the coupling process which couples compound (III) shown by these.
  5. 8個以上の環が単結合で連結したカゴ形化合物であって、
    該環同士は、環中に存在するsp2混成炭素原子同士が結合しており、
    (1)式:
    Figure JPOXMLDOC01-appb-C000008
    で示される基が2~4個、及び
    (2)置換基を有していてもよい2価の芳香族炭化水素基が6個以上
    からなる、カゴ形化合物。
    A cage compound in which eight or more rings are linked by a single bond,
    The rings have sp2 hybrid carbon atoms present in the rings bonded to each other,
    (1) Formula:
    Figure JPOXMLDOC01-appb-C000008
    A cage compound comprising 2 to 4 groups represented by the formula (2) and (2) 6 or more divalent aromatic hydrocarbon groups which may have a substituent.
  6. 一般式(Ia):
    Figure JPOXMLDOC01-appb-C000009
    [式中、Rは同じか又は異なり、それぞれ、一般式(Ia-1):
    Figure JPOXMLDOC01-appb-C000010
    (式中、Rは同じか又は異なり、それぞれ置換基を有していてもよい2価の芳香族炭化水素基;nは同じか又は異なり、それぞれ0以上の整数である。)
    で示される2価の基である。]
    で示される化合物である、請求項5に記載のカゴ形化合物。
    Formula (Ia):
    Figure JPOXMLDOC01-appb-C000009
    [Wherein, R 1 is the same or different and each represents a general formula (Ia-1):
    Figure JPOXMLDOC01-appb-C000010
    (In the formula, R 4 is the same or different and each is a divalent aromatic hydrocarbon group optionally having a substituent; n is the same or different and each is an integer of 0 or more.)
    It is a bivalent group shown by these. ]
    The cage compound according to claim 5, which is a compound represented by the formula:
  7. が、いずれもパラ位に結合手を有する基である、請求項6に記載のカゴ形化合物。 The cage compound according to claim 6, wherein each R 4 is a group having a bond at the para position.
  8. 環の総数が8~22個である、請求項5~7のいずれかに記載のカゴ形化合物。 The cage compound according to any one of claims 5 to 7, wherein the total number of rings is 8 to 22.
  9. 8個以上の環が単結合で連結した箱形化合物(B)であって、
    該環同士は、環中に存在するsp2混成炭素原子又はsp3混成炭素原子同士が結合しており、
    (1)式:
    Figure JPOXMLDOC01-appb-C000011
    で示される基が2~4個、
    (2)置換基を有していてもよい1,4-シクロヘキシレン基が6個、及び
    (3)置換基を有していてもよい2価の芳香族炭化水素基が0個以上
    からなる、箱形化合物の製造方法であって、
    一般式(III):
    Figure JPOXMLDOC01-appb-C000012
    [式中、Rは同じか又は異なり、それぞれ水素原子又は水酸基の保護基;Rは同じか又は異なり、それぞれ置換基を有していてもよい2価の芳香族炭化水素基;mは同じか又は異なり、それぞれ0以上の整数;Yは同じか又は異なり、それぞれハロゲン原子、又は一般式(III-1):
    Figure JPOXMLDOC01-appb-C000013
    (式中、Rは同じか又は異なり、それぞれ水素原子又は炭素数1~10のアルキル基であり、Rは互いに結合して、隣接する-O-B-O-とともに環を形成してもよい。)
    で示される基である。]
    で示される化合物(III)をカップリングさせるカップリング工程
    を備える、製造方法。
    A box-shaped compound (B) in which eight or more rings are linked by a single bond,
    The rings are bonded to each other with sp2 hybrid carbon atoms or sp3 hybrid carbon atoms present in the ring,
    (1) Formula:
    Figure JPOXMLDOC01-appb-C000011
    2 to 4 groups represented by
    (2) consisting of 6 optionally substituted 1,4-cyclohexylene groups and (3) 0 or more divalent aromatic hydrocarbon groups optionally having substituents A method for producing a box-shaped compound comprising:
    General formula (III):
    Figure JPOXMLDOC01-appb-C000012
    [Wherein R 3 is the same or different and each represents a hydrogen atom or hydroxyl-protecting group; R 4 is the same or different and each represents a divalent aromatic hydrocarbon group optionally having a substituent; The same or different, each an integer greater than or equal to 0; Y is the same or different and each represents a halogen atom or general formula (III-1):
    Figure JPOXMLDOC01-appb-C000013
    (Wherein R 5 is the same or different and each represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 5 is bonded to each other to form a ring with adjacent —O—B—O—. May be.)
    It is group shown by these. ]
    The manufacturing method provided with the coupling process which couples compound (III) shown by these.
  10. 一般式(III):
    Figure JPOXMLDOC01-appb-C000014
    [式中、Rは同じか又は異なり、それぞれ水素原子又は水酸基の保護基;Rは同じか又は異なり、それぞれ置換基を有していてもよい2価の芳香族炭化水素基;mは同じか又は異なり、それぞれ0以上の整数;Yは同じか又は異なり、それぞれハロゲン原子、又は一般式(III-1):
    Figure JPOXMLDOC01-appb-C000015
    (式中、Rは同じか又は異なり、それぞれ水素原子又は炭素数1~10のアルキル基であり、Rは互いに結合して、隣接する-O-B-O-とともに環を形成してもよい。)
    で示される基である。]
    で示される化合物。
    General formula (III):
    Figure JPOXMLDOC01-appb-C000014
    [Wherein R 3 is the same or different and each represents a hydrogen atom or hydroxyl-protecting group; R 4 is the same or different and each represents a divalent aromatic hydrocarbon group optionally having a substituent; The same or different, each an integer greater than or equal to 0; Y is the same or different and each represents a halogen atom or general formula (III-1):
    Figure JPOXMLDOC01-appb-C000015
    (Wherein R 5 is the same or different and each represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 5 is bonded to each other to form a ring with adjacent —O—B—O—. May be.)
    It is group shown by these. ]
    A compound represented by
PCT/JP2013/072775 2013-02-27 2013-08-26 Carbon nanocage and intermediate thereof, and methods respectively for producing said carbon nanocage and said intermediate WO2014132467A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015502708A JPWO2014132467A1 (en) 2013-02-27 2013-08-26 Carbon nanocages and intermediates thereof, and production methods thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-037820 2013-02-27
JP2013037820 2013-02-27

Publications (1)

Publication Number Publication Date
WO2014132467A1 true WO2014132467A1 (en) 2014-09-04

Family

ID=51427761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072775 WO2014132467A1 (en) 2013-02-27 2013-08-26 Carbon nanocage and intermediate thereof, and methods respectively for producing said carbon nanocage and said intermediate

Country Status (2)

Country Link
JP (1) JPWO2014132467A1 (en)
WO (1) WO2014132467A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099588A1 (en) * 2010-02-12 2011-08-18 国立大学法人名古屋大学 Carbon nanoring, method for producing same, compound suitable as starting material for producing the carbon nanoring, and method for producing the compound
WO2011111719A1 (en) * 2010-03-08 2011-09-15 国立大学法人名古屋大学 Carbon nanoring and method for producing a ring-shaped compound suitable as a starting material for production of the same
WO2012121370A1 (en) * 2011-03-09 2012-09-13 国立大学法人名古屋大学 Cyclopolyarylene compound and method of manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099588A1 (en) * 2010-02-12 2011-08-18 国立大学法人名古屋大学 Carbon nanoring, method for producing same, compound suitable as starting material for producing the carbon nanoring, and method for producing the compound
WO2011111719A1 (en) * 2010-03-08 2011-09-15 国立大学法人名古屋大学 Carbon nanoring and method for producing a ring-shaped compound suitable as a starting material for production of the same
WO2012121370A1 (en) * 2011-03-09 2012-09-13 国立大学法人名古屋大学 Cyclopolyarylene compound and method of manufacturing same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
B.ZHANG ET AL.: "Nonplanar Aromatic Compounds. 9. Synthesis, Structure, and Aromaticity of 1:2, 13:14-Dibenzo[2]paracyclo[2](2,7)- pyrenophane-1,13-diene", ORGANIC LETTERS, vol. 10, no. 2, 2008, pages 273 - 276 *
K.MATSUI ET AL.: "Synthesis and properties of all-benzene carbon nanocages: a junction unit of branched carbon nanotubes", CHEMICAL SCIENCE, vol. 4, no. 1, 2013, pages 84 - 88 *
KATSUMA MATSUI ET AL.: "Carbon Nanocage no Gosei to Seishitsu", CSJ: THE CHEMICAL SOCIETY OF JAPAN KOEN YOKOSHU, vol. 93, no. 4, 8 March 2013 (2013-03-08), pages 1135 *
YASUTOMO SEGAWA: "Carbon Nanoring no Sentakuteki Gosei to Seishitsu", CSJ: THE CHEMICAL SOCIETY OF JAPAN KOEN YOKOSHU, vol. 93, no. 4, 8 March 2013 (2013-03-08), pages 1134 *

Also Published As

Publication number Publication date
JPWO2014132467A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
Shimizu et al. Alternating covalent bonding interactions in a one-dimensional chain of a phenalenyl-based singlet biradical molecule having Kekulé structures
JP5812583B2 (en) Triazine derivative, method for producing the same, and organic electroluminescent device comprising the same
US9029551B2 (en) Carbon nanoring, method for producing same, compound suitable as starting material for producing the carbon nanoring, and method for producing the compound
JP6086387B2 (en) Method for producing carbon nanotube
TW201323328A (en) Graphene nanoribbon precursors and monomers suitable for preparation thereof
TW201600499A (en) Ortho-terphenyls for the preparation of graphene nanoribbons
Chen et al. Synthesis of Circumpyrene by Alkyne Benzannulation of Brominated Dibenzo [hi, st] ovalene
WO2012169635A1 (en) Method for producing polycyclic aromatic compound substituted by aryl group
Feng et al. Naphthalene-based fluorophores: Synthesis characterization, and photophysical properties
Yang et al. Synthesis and properties of aggregation-induced emission enhancement compounds derived from triarylcyclopentadiene
CN107001926B (en) Aggregation-induced emission and aggregation-promoted photochromism of bis (diarylmethylene) -dihydroacenes
JP5713324B2 (en) Carbon nanoring and method for producing ring-shaped compound suitable as raw material for production thereof
WO2016050204A1 (en) Aggregation-induced emission and aggregation-promoted photochromism of bis(diarylmethylene) -dihydroacenes
Ueno et al. Electrophilic substitution of asymmetrically distorted benzenes within triptycene derivatives
WO2014132467A1 (en) Carbon nanocage and intermediate thereof, and methods respectively for producing said carbon nanocage and said intermediate
Zhang et al. syn-BN-heteroacene cored conjugated oligomers with finely tuned blue-violet luminescent properties
JP6449014B2 (en) Functional group-containing or non-containing cyclic compounds and methods for producing them
KR20200139098A (en) A curved aromatic compound and a method of production thereof
CN110938017A (en) Organic molecular material with long afterglow effect based on benzene ring unit and preparation method thereof
Yang Synthesis of Novel Polydiacetylenes Towards Topochemical Polymerization
Li et al. Synthesis and characterization of novel 2, 7-carbazole derivatives for blue light-emitting diodes
Ye et al. Synthesis of 9-ethynyl-9-fluorenol and its derivatives for crystallographic and optical properties study
KR20230108929A (en) Organoboron Compounds and Method for Manufacturing the same
JP5890728B2 (en) Method for producing pyrrolopyridine compound dimer
Chen et al. The synthesis and single and two-photon excited fluorescence of a new quasi-quadrupolar organoborane compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876610

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015502708

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876610

Country of ref document: EP

Kind code of ref document: A1