WO2014132007A1 - Hydrolienne modulaire a flux devie a configurations multiples - Google Patents

Hydrolienne modulaire a flux devie a configurations multiples Download PDF

Info

Publication number
WO2014132007A1
WO2014132007A1 PCT/FR2014/050453 FR2014050453W WO2014132007A1 WO 2014132007 A1 WO2014132007 A1 WO 2014132007A1 FR 2014050453 W FR2014050453 W FR 2014050453W WO 2014132007 A1 WO2014132007 A1 WO 2014132007A1
Authority
WO
WIPO (PCT)
Prior art keywords
modular
support
flow
energy
configuration
Prior art date
Application number
PCT/FR2014/050453
Other languages
English (en)
Inventor
Daniel BOULENGER
Frédéric Mourier
Original Assignee
Edie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Edie filed Critical Edie
Publication of WO2014132007A1 publication Critical patent/WO2014132007A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/14Casings, housings, nacelles, gondels or the like, protecting or supporting assemblies there within
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/97Mounting on supporting structures or systems on a submerged structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/70Shape
    • F05B2250/71Shape curved
    • F05B2250/711Shape curved convex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/70Shape
    • F05B2250/71Shape curved
    • F05B2250/712Shape curved concave
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to a deflected flow modular water turbine with multiple configurations.
  • a tidal turbine therefore generally comprises a support, a mobile energy transformer located in this support and a generator of electrical energy driven by said energy transformer.
  • a first problem is the configuration of places that varies greatly from one site to another.
  • the orientation of the tidal stream is essential since the tide phenomenon reverses the direction of the current and even depending on the power of the tide, the orientation can vary with varying degrees of orientation.
  • the best place will be on the surface of the body of water so from a floating support for capturing surface currents.
  • the tidal turbine must be able to be positioned at the bottom and the surface with all the intermediate positions to cover all the water heights depending on the location of energy capture and stream current.
  • the tidal turbines are, moreover, subjected to many constraints because they are placed in a hostile environment. Thus, the tidal turbines undergo the mechanical shocks of the various objects carried by the currents and the winds, and can undergo the actions of jams formed or even constitute obstacles generating jams.
  • energy transformers are moving parts that must not harm living organisms and move in these currents, including fish.
  • DE 20 2008 010396 discloses a tidal turbine which perfectly illustrates the drawbacks of existing tidal turbines, namely the acceleration of the flow of current through a throat which directs the flow towards the energy transformer. Indeed, in this case the energy transformer receives directly all objects carried by the currents whether in inland waters, estuary or sea.
  • Patent DE 24 51 751 describes an arrangement with a drain which also ensures the deviation of the current but also that of the transported objects, so that the theory is attractive but the reality in the natural environment is quite different.
  • Patent application EP 2,395,231 is also known which describes an arrangement of blades with a wing profile of a tidal turbine, which is very advantageous from the point of view of efficiency, with a transfer of the primary flow impacting the leading edge of the blades towards the others. blades in secondary flow.
  • This dual action arrangement is very favorable in all situations of low or high current.
  • This arrangement is also very respectful of fish in the broad sense and organisms that move in the currents because the fluid circulates without any blind housing likely to trap or injure said fish and organisms.
  • the blades remain exposed and the assembly must be mounted on a specific frame. If the operators wish to take full advantage of the energy of the currents, it is appropriate that the proposed turbine is easily industrializable, that is to say that the tidal turbine can include modules perfectly adapted to the different configurations but only requiring that a very limited adaptation for each of these configurations, making said tidal turbine very versatile. You have to be able to associate these modules with a bridge stack, to combine them, to juxtapose them in a multiple way, to arrange them vertically or horizontally, at the bottom as well as at the surface, or even at any intermediate depth.
  • the tidal turbine according to the invention meets this demand while very strongly limiting the impacts of the objects carried by the currents.
  • said tidal turbine can also be speed-controlled in an easy way to further limit the impact on wildlife fauna currents.
  • FIG. 1 is a perspective view of a tidal turbine according to the present invention in its basic form
  • 3A a perspective view of a first arrangement, in double juxtaposition forming a module
  • FIG. 3B a longitudinal sectional view of the arrangement of FIG. 3A, perpendicular to the axis of rotation of the energy transformer,
  • FIG. 3C a schematic perspective view of the first module arrangement, mounted on a mast,
  • FIG. 4 a sectional view of a second arrangement, with a module mounted on a structure such as a bridge stack,
  • Figure 5 a view of a third arrangement, placed at the bottom of a bed of a current
  • Figure 6 an exploded view of a third arrangement, floating type.
  • the basic tidal turbine according to the present invention comprises a support 10, an energy transformer 12 integrated in said support and means 14 for fixing said support.
  • the support 10 may be made of composite materials or metal resistant to corrosion of the medium like all the other constituent parts of said tidal turbine.
  • This support 10 is monolithic and comprises at least one box 16 comprising in a manner similar to that of a boat a bow 18, a stern 20 and a housing 22 for accommodating said energy transformer 12.
  • This box 16 as shown in the section of Figure 2, is in the form of a substantially triangular longitudinal section, with an active face 24-1 and a passive side 24-2.
  • the active face 24-1 comprises two slopes 26, an upstream slope 26-1 and a downstream slope 26-2. These slopes are at least for one of them, preferably in the form of S very open.
  • the passive side 24-2 is substantially flat.
  • the bow 18 is delimited by the upstream portion of the passive face 24-2 and the upstream slope 26-1 of the active face 24-1.
  • the stern 20 is delimited by the downstream part of the passive face 24-2 and the downstream slope 26-2 of the active face 24-1.
  • bow 18 and stern 20 at least consist of closed volumes, forming the at least one box 16, in this case, in the basic mode, two caissons 16-1 upstream and 16-2 downstream.
  • the housing 22 of the energy transformer is interposed between the bow 18 and the stern 20, more particularly between the caissons 16-1 upstream and 16-2 downstream.
  • This housing 22 home receives the energy transformer 12.
  • This energy transformer 12 preferably comprises a rotor 28 comprising a first plate 30-1 and a second plate 30-2 with at least two blades 32, in this case three blades, interposed between these two plates and able to rotate around a central ZZ 'axis.
  • Each blade has a wing profile with a leading edge 34 and a trailing edge 36. The leading edge is disposed in the immediate vicinity of the outer periphery of each plate and said trailing edge is oriented inwardly and offset relative to the axis ZZ 'of rotation of a given distance.
  • These non-contiguous blades generate a recirculation passage 38, as shown.
  • the axis ZZ ' is disposed in the housing 22 of reception so that the blades 32 are at least partially projecting relative to the active face 24-1 of the support 10 and more particularly to the bow 18.
  • the shape this bow directs the current flow to the blades and more particularly to the leading edge of said blades.
  • the shape is adapted so that the current remains laminar and plated, following perfectly the profile of the bow, in the manner of the air flows on an airplane wing, as well as the stern. Therefore, it is understood that the active blade 32, in the case shown, is subject to the action of the current while the other blades 32 are in the housing 22 home and do not come undergoing braking from the current , or at least they undergo a negative action very limited because of this card.
  • the offset of the trailing edges with respect to the axis ZZ ' ensure a recirculation in the recirculation passage 38 with an improvement in efficiency.
  • the rotor blades 32 are protected from objects flowing in the current.
  • the fish are naturally deviated towards the outside of the support and therefore of the boxes. Any fish that may be diverted or swim in the stream and that pass between the blades will not be damaged by the fact that there is a continuity of the flow of water.
  • it is noted that it is possible to position upstream of the rotor blades, deflector flaps 40, adjustable in incidence. These flaps 40 with baffles have an adjustable incidence which makes it possible to vary the flow of the current which has a speed Vc and therefore its power so as to maintain the rotor at a speed Vr, such that Vr Vc.
  • This basic tidal turbine with its support 10 can be used alone but also can be twinned with another tidal turbine of the same type because of its passive, substantially flat face 24-2, see FIGS.
  • any suitable connecting means may be suitable, in particular bolting, so as to benefit from sufficient mechanical strength, this attachment being within the reach of those skilled in the art.
  • the two prows 18 of each of the juxtaposed tidal turbines constitute a bow. This bow ensures a division of the flow and rejects the objects laterally away from the blades downstream, while allowing to direct the stream of divided current to the blades of each of the turbines.
  • the two tidal turbines can be arranged horizontally but also vertically as shown in FIG. 3C, which shows an arrangement on a vertical mast 42, implanted at the bottom of the current bed, for example. In this case, the mast 42 is positioned upstream of the housing 22 home.
  • the axes ZZ 'of the rotor of the energy transformer and longitudinal of the mast are parallel and oriented vertically.
  • the module thus arranged is preferably rotatably mounted relative to said mast, which allows a perfect self-orientation of said module relative to the direction of the current
  • the angle ⁇ between the slope 26-1 upstream of the bow 18 and the passive side 24-2 is preferably between 10 and 50 ° while the angle ⁇ downstream between the slope 26-2 downstream of the stern 20 and the passive face is between 5 and 30 ° .
  • each support 10 is fixed on one side of the bridge stack. It is necessary to take into account the turbulence generated by said stack in order to place the support in a vein of flow as laminar as possible.
  • Such a module of two tidal turbines is not orientable and remains reserved for rivers not undergoing the effects of tide for example.
  • An arrangement such as that of Figure 5 is very stable current stream bottoms for laying on the bottom a single support or a module with two turbines (not shown) secured to feet 46 resting on said bottom.
  • An additional anchorage (not shown) ensures the maintenance.
  • the boxes are filled with a ballast so as to maintain said support or module, stable at the bottom, by a strongly negative buoyancy.
  • the different arrangements do not require any modification of the support but only different fixing means, this being within the abilities of those skilled in the art as a function of the location of attachment and the type of attachment.
  • the support 10, the energy transformer 12 and the fixing means 14 are supplemented by a current generator, not shown because it is perfectly known and has no specificity related to the present invention, installed in a box. 16 and able to transform the mechanical energy into electrical energy, this so as to constitute a full-fledged water turbine.
  • This floating autonomous unit 48 comprises a floating frame 50 including a head 52 housing two generators 54-1 and 54-2 of current whose shafts 56-1 and 56-2 motor are driven by at least one energy transformer 12.
  • the boxes are floating and filled by safety with a material 58 with high buoyancy and closed porosity such as a porosity closed foam so as to make the whole unsinkable even in case of accidental degradation of a box .
  • a mass 60 at the bottom of the chassis ensures the ballast and stability of the unit which is actually self-orienting with respect to the direction of the current.
  • the modules can be superimposed in height forming a vertical line of modules. All the energy transformers support the modules on one side attacking one of the generators and all the energy transformers of the module supports on the other side attacking the other generator.
  • the tidal turbine proposed by the present invention addresses the problems outlined in the preamble, including versatility from the same support.

Abstract

L'objet de l'invention est une hydrolienne modulaire à flux dévié, à configurations multiples comprenant un support (10), un transformateur (12) d'énergie intégré dans ledit support, caractérisée en ce que le support (10) est monolithique et comprend au moins un caisson (16) comportant une proue (18), une poupe (20) et un logement (22) d'accueil dudit transformateur (12) d'énergie disposé entre ladite proue et ladite poupe.

Description

HYDROLIENNE MODULAIRE A FLUX DEVIE A CONFIGURATIONS MULTIPLES
La présente invention concerne une hydrolienne modulaire à flux dévié, à configurations multiples.
Le captage des forces engendrées par les flux de fluides et notamment les courants marins ou fluviaux reste très difficile avec un rendement suffisant pour rendre rentable cette source inépuisable de puissance.
Ces forces ainsi captées permettent de transformer cette énergie mécanique en énergie électrique par exemple.
Une hydrolienne comprend donc généralement un support, un transformateur d'énergie mobile situé dans ce support et une génératrice d'énergie électrique entraînée par ledit transformateur d'énergie.
Un premier problème est la configuration des lieux qui varie très fortement d'un site à un autre.
Ainsi, dans un fleuve, trouvera-t-on un fond plat sur lequel peut reposer l'hydrolienne mais dans tel autre fleuve, le courant sera de forte puissance au droit des piles d'un pont ou d'un ouvrage et ce sera le lieu imposé de capture de la force hydrolienne.
En mer, en estuaire, l'orientation de l'hydrolienne est primordiale puisque le phénomène des marées inverse le sens du courant et même en fonction de la puissance de la marée, l'orientation peut varier avec des degrés d'orientation divers.
Dans d'autres situations encore, le meilleur lieu sera en surface du plan d'eau donc à partir d'un support flottant pour capter des courants de surface.
On note donc que l'hydrolienne doit pouvoir être positionnée au fond et à la surface avec toutes les positions intermédiaires pour couvrir toutes les hauteurs d'eau en fonction du lieu de captage de l'énergie et de la veine de courant.
Les hydroliennes sont, de plus, soumises à de nombreuses contraintes car elle sont placées dans un milieu hostile. Ainsi, les hydroliennes subissent les chocs mécaniques des objets divers transportés par les courants et les vents, et peuvent subir les actions des embâcles formées ou même constituer des obstacles générateurs d'embâcles. De plus, les transformateurs d'énergie sont des pièces mobiles qui ne doivent pas porter atteinte aux organismes vivants et se déplaçant dans ces courants, notamment les poissons. On connaît ainsi le brevet DE 20 2008 010396 qui décrit une hydrolienne qui illustre parfaitement les inconvénients des hydroliennes existantes à savoir l'accélération du flux de courant par un avaloir qui dirige l'écoulement vers le transformateur d'énergie. En effet, dans ce cas le transformateur d'énergie reçoit directement tous les objets charriés par les courants que ce soit en eaux intérieures, en estuaire ou en mer.
La déviation du flux de courant en forme de bouche à section se réduisant est à proscrire. Un brevet DE 24 51 751 décrit un agencement avec un avaloir qui assure là aussi la déviation du courant mais aussi celle des objets transportés, si bien que la théorie est attractive mais que la réalité en milieu naturel est tout autre.
Dans le document GB 2 486 911, il est décrit des hydroliennes auto-orientables avec des carters et des transformateurs d'énergie sous forme de roues à aube, de type connu, dont les extrémités des aubes débordent du carter afin de bénéficier du courant dévié et de protéger en partie lesdites roues des objets transportés par le courant. Ces hydroliennes sont agencées en modules multiples associés à un même câble pour capter le courant à différentes hauteur d'eau.
On connaît aussi la demande de brevet EP 2 395 231 qui décrit un agencement de lames à profil alaire d'une hydrolienne, très avantageux du point de vue efficacité, avec un report du flux primaire impactant le bord d'attaque des lames vers les autres lames en flux secondaire. Cet agencement à double action est très favorable dans toutes les situations de courant faible ou fort. Cet agencement est également très respectueux des poissons au sens large et des organismes qui se déplacent dans les courants car le fluide circule sans aucun logement borgne susceptible d'emprisonner ou de blesser lesdits poissons et organismes.
Néanmoins, les lames restent exposées et l'ensemble doit être monté sur un bâti spécifique. Si les exploitants souhaitent profiter pleinement de l'énergie des courants, il convient que l'hydrolienne proposée soit aisément industrialisable, c'est-à-dire que l'hydrolienne puisse comprendre des modules parfaitement adaptés aux différentes configurations mais en ne nécessitant qu'une adaptation très limitée pour chacune de ces configurations, rendant ladite hydrolienne très polyvalente. Il faut pouvoir associer ces modules à une pile de pont, les jumeler, les juxtaposer de façon multiple, les disposer verticalement ou horizontalement, en fond comme en surface, voire à toute profondeur intermédiaire.
L'hydrolienne selon l'invention répond à cette demande tout en limitant très fortement les impacts des objets charriés par les courants. De plus, ladite hydrolienne peut aussi être régulée en vitesse de façon aisée afin de limiter encore plus fortement l'impact sur la faune des courants.
L'hydrolienne selon la présente invention est maintenant décrite en détail suivant un mode de réalisation particulier, non limitatif, ceci en regard des dessins annexés, dessins sur lesquels les différentes figures montrent :
Figure 1 : une vue en perspective d'une hydrolienne selon la présente invention dans sa forme de base,
Figure 2 : une vue en coupe longitudinale de l'hydrolienne de la figure 1, perpendiculairement à l'axe de rotation du transformateur d'énergie,
- Figure 3A : une vue en perspective d'un premier agencement, en juxtaposition double formant un module,
Figure 3B : une vue en coupe longitudinale de l'agencement de la figure 3A, perpendiculairement à l'axe de rotation du transformateur d'énergie,
Figure 3C : une vue en perspective schématique du premier agencement en module, monté sur mât,
Figure 4 : une vue en coupe d'un deuxième agencement, avec un module monté sur un ouvrage tel qu'une pile d'un pont,
Figure 5 : une vue d'un troisième agencement, posé au fond d'un lit d'un courant, Figure 6 : une vue éclatée d'un troisième agencement, de type flottant.
L'hydrolienne de base selon la présente invention comprend un support 10, un transformateur 12 d'énergie intégré dans ledit support et des moyens 14 de fixation dudit support.
Le support 10 peut être réalisé en matériaux composites ou en métal résistant à la corrosion du milieu comme toutes les autres parties constitutives de ladite hydrolienne.
Ce support 10 est monolithique et comprend au moins un caisson 16 comportant de façon analogue à celle d'un bateau une proue 18, une poupe 20 et un logement 22 d'accueil dudit transformateur 12 d'énergie. Ce caisson 16, comme représenté sur la coupe de la figure 2, se présente sous forme d'une section longitudinale sensiblement triangulaire, avec une face 24-1 active et une face 24-2 passive.
La face 24-1 active comprend deux pentes 26, une pente amont 26-1 et une pente aval 26-2. Ces pentes sont au moins pour l'une d'elles, de façon préférentielle, en forme de S très ouvert.
La face 24-2 passive est sensiblement plane.
La proue 18 est délimitée par la partie amont de la face 24-2 passive et la pente amont 26-1 de la face 24-1 active.
La poupe 20 est délimitée par la partie aval de la face 24-2 passive et la pente aval 26-2 de la face 24-1 active.
De façon avantageuse, la proue 18 et la poupe 20 pour le moins, sont constituées de volumes fermés, formant le au moins un caisson 16, en l'occurrence, dans le mode de base, deux caissons 16-1 amont et 16-2 aval.
Le logement 22 d'accueil du transformateur d'énergie est interposé entre la proue 18 et la poupe 20, plus particulièrement entre les caissons 16-1 amont et 16-2 aval.
Ce logement 22 d'accueil reçoit le transformateur 12 d'énergie.
Ce transformateur 12 d'énergie comprend de façon préférentiel un rotor 28 comportant une première platine 30-1 et une seconde platine 30-2 avec au moins deux pales 32, en l'occurrence trois pales, interposées entre ces deux platines et aptes à tourner autour d'un axe ZZ' central. Chaque pale présente un profil alaire avec un bord d'attaque 34 et un bord de fuite 36. Le bord d'attaque est disposé à proximité immédiate de la périphérie extérieure de chaque platine et ledit bord de fuite est orienté vers l'intérieur et décalé par rapport à l'axe ZZ' de rotation d'une distance donnée. Ces pales n'étant pas jointives génèrent un passage 38 de recirculation, ainsi que représenté.
L'axe ZZ' est disposé dans le logement 22 d'accueil de façon que les pales 32 se trouvent au moins partiellement en saillie par rapport à la face 24-1 active du support 10 et plus particulièrement à la proue 18. La forme de cette proue dirige le flux du courant vers les pales et plus particulièrement vers le bord d'attaque desdites pales. La forme est adaptée pour que le courant reste laminaire et plaqué, suivant parfaitement le profil de la proue, à la façon des flux d'air sur une aile d'avion, ainsi que la poupe. Dès lors, on comprend que la pale active 32, dans le cas représenté, est soumise à l'action du courant tandis que les autres pales 32 sont dans le logement 22 d'accueil et ne viennent pas subir de freinage de la part du courant, ou du moins elles subissent une action négative très limitée du fait de cette cartérisation.
Dans le mode de réalisation préférentiel, le décalage des bords de fuite par rapport à l'axe ZZ' assurent une recirculation dans le passage de recirculation 38 avec une amélioration du rendement.
On note aussi que les pales 32 du rotor sont protégées des objets circulant dans le courant. Les poissons sont naturellement déviés vers l'extérieur du support et donc des caissons. Les poissons éventuellement déviés ou qui nageraient dans le flux et qui viendraient à passer entre les pales, ne subiront aucun dommage du fait qu'il y a une continuité du flux d'eau. On note qu'il est possible de positionner en amont du rotor à pales, des volets 40 déflecteurs, réglables en incidence. Ces volets 40 à déflecteurs ont une incidence réglable qui permet de faire varier le flux du courant qui a une vitesse Vc et donc sa puissance de façon à maintenir le rotor à une vitesse Vr, telle que Vr = Vc.
Il y a donc une vitesse identique entre le rotor et le courant si bien que cette équivitesse interdit les chocs du fait d'un différentiel de vitesse entre pales et poissons ou entre pales et objets, supprimant les chocs.
Cette hydrolienne de base avec son support 10 peut être utilisée seule mais aussi peut être jumelée à une autre hydrolienne de même type du fait de sa face 24-2 passive, sensiblement plane, voir les figures 3.
Deux hydroliennes peuvent ainsi être juxtaposées par leurs faces 24-2 passives pour constituer un module, figure 3A.
Tout moyen de liaison adapté pourra convenir, notamment un boulonnage, de façon à bénéficier d'une résistance mécanique suffisante, cette fixation étant à la portée de l'homme de l'art. Des réserves dans les caissons, constituant une partie des moyens 14 de fixation, permettent de faire passer ces boulons sans nuire à l'étanchéité desdits caissons. C'est ainsi que, sur les figures 3A et 3B, les deux proues 18 de chacun des hydroliennes juxtaposées constituent une étrave. Cette étrave assure une division du flux et rejette les objets latéralement les écartant des pales en aval, tout en permettant de diriger la veine de courant divisée vers les pales de chacune des hydroliennes. Les deux hydroliennes peuvent être disposées horizontalement mais aussi verticalement comme montré sur la figure 3C, qui montre un agencement sur un mât vertical 42, implanté en fond de lit de courant par exemple. Dans ce cas, le mât 42 est positionné en amont du logement 22 d'accueil.
Dans ce cas, les axes ZZ' du rotor du transformateur d'énergie et longitudinal du mât sont parallèles et orientés verticalement.
Le module ainsi agencé est de préférence monté libre en rotation par rapport audit mât, ce qui permet une parfaite auto-orientation dudit module par rapport à la direction du courant Avantageusement, dans un support 10, l'angle a entre la pente 26-1 amont de la proue 18 et la face 24-2 passive est de préférence compris entre 10 et 50° tandis que l'angle β aval entre la pente 26-2 aval de la poupe 20 et la face passive est compris entre 5 et 30°. Ces valeurs combinées à la forme en S doivent permettre de conserver le flux laminaire et de maintenir le flux de courant le long du support et plus particulièrement des pentes amont et aval. Ainsi, l'étrave d'un module présente un angle compris entre 20 et 100°.
Dans le cas d'un module monté sur une pile de pont 44, voir figure 4, chaque support 10 est fixé d'un côté de la pile de pont. Il est nécessaire de tenir compte des turbulences engendrées par ladite pile afin de placer le support dans une veine d'écoulement le plus laminaire possible.
Ainsi, le choix est souvent soit en amont soit en recul vers l'aval là où le courant retrouve un écoulement plus laminaire.
Un tel module de deux hydroliennes n'est pas orientable et reste réservé aux fleuves ne subissant pas les effets de marée par exemple.
Un agencement tel que celui de la figure 5 vise les fonds de veine de courant très stables permettant de poser sur le fond un support unique ou un module à deux hydroliennes (non représenté) solidaire de pieds 46 reposant sur ledit fond.
Un ancrage complémentaire (non représenté) assure le maintien.
Dans cet agencement, les caissons sont emplis d'un lestage de façon à maintenir ledit support ou module, stable au fond, par une flottabilité fortement négative.
On constate que les différents agencements ne nécessitent aucune modification du support mais uniquement des moyens de fixation différents, ceci étant à la portée de l'homme de l'art en fonction du lieu de fixation et du type de fixation. Dans les modes de réalisation préférentiels décrits, le support 10, le transformateur d'énergie 12 et les moyens 14 de fixation sont complétés par une génératrice de courant, non représentée car parfaitement connue et sans spécificité liée à la présente invention, implantée dans un caisson 16 et apte à transformer l'énergie mécanique en énergie électrique, ceci de façon à constituer une hydrolienne à part entière.
Un agencement particulièrement avantageux est celui représenté sur la figure 6.
Dans ce cas, il s'agit d'une hydrolienne sous forme d'une unité 48 autonome flottante.
Cette unité 48 autonome flottante comprend un châssis 50 flottant dont une tête 52 abritant deux générateurs 54-1 et 54-2 de courant dont les arbres 56-1 et 56-2 moteur sont entraînés par au moins un transformateur 12 d'énergie d'un support 10 tel que décrit ci- avant, en l'occurrence il s'agit d'un module à deux supports juxtaposés.
Dans ce cas, les caissons sont flottants et emplis par sécurité d'un matériau 58 à forte flottabilité et à porosité fermée tel qu'une mousse à porosité fermée de façon à rendre l'ensemble insubmersible même en cas de dégradation accidentelle d'un caisson.
Une masse 60 en partie inférieure du châssis assure le lest et la stabilité de l'unité qui est de fait auto-orientable par rapport au sens du courant.
Les modules peuvent être superposés en hauteur formant une ligne verticale de modules. Tous les transformateurs d'énergie des supports des modules d'un côté attaquant une des génératrices et tous les transformateurs d'énergie des supports des modules de l'autre côté attaquant l'autre génératrice.
L'hydrolienne proposée par la présente invention répond aux problématiques exposées en préambule, notamment la polyvalence à partir d'un même support.
Le problème de la lutte contre les chocs des objets et autres embâcles charriés par le courant est également solutionné tout comme la protection du transformateur d'énergie. Une telle hydrolienne peut ainsi permettre le captage des forces de courant en tout lieu, à toute hauteur d'eau, en autonomie de façon isolée mais aussi de façon groupée par modules voire par série de modules.
De fait, le développement des énergies renouvelables est rendu beaucoup plus aisé par cette multiplicité d'agencements d'une hydrolienne selon l'invention d'une part et par la "standardisation" des éléments la constituant.

Claims

REVENDICATIONS
1. Hydrolienne modulaire à flux dévié, à configurations multiples comprenant un support (10), un transformateur (12) d'énergie intégré dans ledit support, caractérisée en ce que le support (10) est monolithique et comprend au moins un caisson (16) comportant une proue (18), une poupe (20) et un logement (22) d'accueil dudit transformateur (12) d'énergie disposé entre ladite proue et ladite poupe.
2. Hydrolienne modulaire à flux dévié, à configurations multiples selon la revendication 1, caractérisée en ce que ce caisson (16) présente une section longitudinale sensiblement triangulaire, avec une face (24-1) active et une face (24-2) passive.
3. Hydrolienne modulaire à flux dévié, à configurations multiples selon la revendication 2, caractérisée en ce que la face (24-1) active comprend deux pentes (26), une pente amont (26-1) et une pente aval (26-2), ces pentes sont en forme de S très ouvert de façon à conserver le flux laminaire et plaqué sur lesdites pentes.
4. Hydrolienne modulaire à flux dévié, à configurations multiples selon la revendication 2 ou 3, caractérisée en ce que la face (24-2) passive est sensiblement plane.
5. Hydrolienne modulaire à flux dévié, à configurations multiples selon l'une quelconque des revendications précédentes, caractérisée en ce que le transformateur (12) d'énergie comprend un rotor (28) comportant une première platine (30-1) et une seconde platine (30-2) avec au moins deux pales (32), interposées entre ces deux platines et apte à tourner autour d'un axe ZZ' central.
6. Hydrolienne modulaire à flux dévié, à configurations multiples selon la revendication 5, caractérisée en ce que chaque pale (32) présente un profil alaire avec un bord d'attaque (34) et un bord de fuite (36), ledit bord de fuite étant orienté vers l'intérieur et décalé par rapport à l'axe ZZ' de rotation, ces pales (32) générant un passage (38) de recirculation.
7. Hydrolienne modulaire à flux dévié, à configurations multiples selon la revendication 5 ou 6, caractérisée en ce que l'axe ZZ' est disposé dans le logement (22) d'accueil, les pales (32) se trouvant au moins partiellement en saillie par rapport à la face (24-1) active du support (10).
8. Hydrolienne modulaire à flux dévié, à configurations multiples selon l'une quelconque des revendications précédentes, caractérisée en ce que le support (10) comprend des moyens (14) de fixation dudit support.
9. Hydrolienne modulaire à flux dévié, à configurations multiples selon la revendication 8, caractérisée en ce que les moyens de fixation comprennent des pieds (46) destinés à reposer sur le fond.
10. Hydrolienne modulaire à flux dévié, à configurations multiples selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend une génératrice de courant associé au transformateur d'énergie de façon à convertir l'énergie mécanique en énergie électrique.
11. Module comprenant deux hydroliennes selon l'une quelconque des revendications 1 à 8 et 10, solidarisées entre elles par leur face passive (24-2).
12. Module selon la revendication 11, caractérisé en ce qu'il est monté sur un mât vertical (42).
13. Unité (48) autonome flottante comprenant au moins un module selon la revendication 11, un châssis (50) flottant avec une tête (52) abritant deux générateurs (54-1, 54-2) de courant avec chacun un arbre (56-1 et 56-2) moteur entraîné par au moins un transformateur (12) d'énergie d'un support (10).
14. Unité (48) autonome flottante selon la revendication 13, caractérisée en ce que chaque caisson (16) est flottant et empli d'un matériau (58) à forte flottabilité et à porosité fermé et en ce qu'elle comprend une masse (60) en partie inférieure du châssis (50) assurant le lest et la stabilité.
PCT/FR2014/050453 2013-03-01 2014-03-03 Hydrolienne modulaire a flux devie a configurations multiples WO2014132007A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1300469A FR3002786A1 (fr) 2013-03-01 2013-03-01 Dispositif de transformation d'energie hydrocinetique ou aerocinetique
FR1300469 2013-03-01

Publications (1)

Publication Number Publication Date
WO2014132007A1 true WO2014132007A1 (fr) 2014-09-04

Family

ID=49111239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/050453 WO2014132007A1 (fr) 2013-03-01 2014-03-03 Hydrolienne modulaire a flux devie a configurations multiples

Country Status (2)

Country Link
FR (1) FR3002786A1 (fr)
WO (1) WO2014132007A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105464880A (zh) * 2015-12-21 2016-04-06 浙江海洋学院 对称型半遮蔽式潮流能发电装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2451751A1 (de) 1974-10-31 1976-05-13 Louis L Lepoix Turbine zur umwandlung der energie eines stroemenden mediums in elektrische oder mechanische energie mit hoechstem wirkungsgrad
US6472768B1 (en) * 2000-09-26 2002-10-29 Darwin Aldis Salls Hydrokinetic generator
US20070020097A1 (en) * 2003-10-13 2007-01-25 Ursua Isidro U Turbine housing and floatation assembly
DE202008010396U1 (de) 2008-07-29 2009-12-10 Krauss, Gunter Strömungsenergieanlage
US20100135768A1 (en) * 2008-08-22 2010-06-03 Natural Power Concepts, Inc. Column structure with protected turbine
EP2395231A2 (fr) 2010-04-13 2011-12-14 Frederic Mourier Agencement de pales d'un mobile tournant tel qu'une hydrolienne
EP2439402A1 (fr) * 2009-06-05 2012-04-11 Energy Whaletailturbine, S.L. Dispositif submersible pour l'accouplement de turbines ou de roues hydrauliques en vue de l'exploitation énergétique d'un courant d'eau
GB2486911A (en) 2010-12-30 2012-07-04 Cameron Int Corp Generating energy from a current flowing in a body of water

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE810500C (de) * 1949-09-11 1951-08-09 Herbert Bosch Windturbine
WO2005005824A1 (fr) * 2003-07-10 2005-01-20 Serge Allaire Dispositif d'interaction avec un fluide se deplaçant par rapport au dispositif et vehicule comportant un tel dispositif

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2451751A1 (de) 1974-10-31 1976-05-13 Louis L Lepoix Turbine zur umwandlung der energie eines stroemenden mediums in elektrische oder mechanische energie mit hoechstem wirkungsgrad
US6472768B1 (en) * 2000-09-26 2002-10-29 Darwin Aldis Salls Hydrokinetic generator
US20070020097A1 (en) * 2003-10-13 2007-01-25 Ursua Isidro U Turbine housing and floatation assembly
DE202008010396U1 (de) 2008-07-29 2009-12-10 Krauss, Gunter Strömungsenergieanlage
US20100135768A1 (en) * 2008-08-22 2010-06-03 Natural Power Concepts, Inc. Column structure with protected turbine
EP2439402A1 (fr) * 2009-06-05 2012-04-11 Energy Whaletailturbine, S.L. Dispositif submersible pour l'accouplement de turbines ou de roues hydrauliques en vue de l'exploitation énergétique d'un courant d'eau
EP2395231A2 (fr) 2010-04-13 2011-12-14 Frederic Mourier Agencement de pales d'un mobile tournant tel qu'une hydrolienne
GB2486911A (en) 2010-12-30 2012-07-04 Cameron Int Corp Generating energy from a current flowing in a body of water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105464880A (zh) * 2015-12-21 2016-04-06 浙江海洋学院 对称型半遮蔽式潮流能发电装置
CN105464880B (zh) * 2015-12-21 2020-12-04 浙江海洋学院 对称型半遮蔽式潮流能发电装置

Also Published As

Publication number Publication date
FR3002786A1 (fr) 2014-09-05

Similar Documents

Publication Publication Date Title
US6472768B1 (en) Hydrokinetic generator
EP2320070B1 (fr) Roue annulaire mobile pour centrale hydroéléctrique
US20100013231A1 (en) Water Current Power Generation System
JP6055652B2 (ja) 水流発電システム用のサブシステム
US10309368B2 (en) Power generation apparatus utilizing water current energy
TW201606194A (zh) 用於水流電源產生系統的運輸及維護之系統及方法
US10100803B1 (en) Ocean wave-crest powered electrical generator in combination with pumped storage
KR101623709B1 (ko) 조류를 이용한 발전용 수차구조물
FR2948423A1 (fr) Hydrolienne modulaire
FR2980245A1 (fr) Dispositif de recuperation d'energie a partir des courants marins ou des cours d'eau
FR2997135A1 (fr) Hydrolienne flottante
WO2014132007A1 (fr) Hydrolienne modulaire a flux devie a configurations multiples
WO2016170116A1 (fr) Hydrolienne flottante autonome
US9284941B2 (en) Natural energy extraction apparatus
WO2007071161B1 (fr) Equipement generateur d'electricite fonctionnant a l'energie marine, a l'energie hydraulique et a l'energie eolienne
EP3058216A1 (fr) Centrale hydroélectrique flottante compacte
FR2867523A3 (fr) Dispositif modulable pour capter l'energie des courants marins ou fluviaux
EP3332115B1 (fr) Dispositif de production d'électricité a partir d'écoulements de fluide liquide
FR3026146A1 (fr) Digue marine generatrice a production continue et procedes associes
WO2012114001A1 (fr) Dispositif d'hydrolienne pour la production d'électricité.
FR3080412A1 (fr) Eolienne flottante a turbines jumelles et a axe vertical

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14717155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14717155

Country of ref document: EP

Kind code of ref document: A1