WO2014131143A1 - 具有电压和负载放电测试功能的蓄电池智能监测和维护装置 - Google Patents

具有电压和负载放电测试功能的蓄电池智能监测和维护装置 Download PDF

Info

Publication number
WO2014131143A1
WO2014131143A1 PCT/CN2013/001436 CN2013001436W WO2014131143A1 WO 2014131143 A1 WO2014131143 A1 WO 2014131143A1 CN 2013001436 W CN2013001436 W CN 2013001436W WO 2014131143 A1 WO2014131143 A1 WO 2014131143A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
circuit
voltage
discharge
load
Prior art date
Application number
PCT/CN2013/001436
Other languages
English (en)
French (fr)
Inventor
王晓秋
Original Assignee
Wang Xiaoqiu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Xiaoqiu filed Critical Wang Xiaoqiu
Publication of WO2014131143A1 publication Critical patent/WO2014131143A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/04Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
    • H02H5/042Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature using temperature dependent resistors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements

Definitions

  • the invention relates to a battery monitoring and maintenance device with voltage and load discharge test function.
  • the voltage and load discharge final voltage and discharge current of the battery can be tested under the offline or online state of the battery.
  • the battery monitoring device with internal resistance measurement function has higher cost; and the existing device for judging the state of the battery by the discharge discharge test battery discharge voltage, the working power of the internal control circuit is powered by the battery itself, when The smart battery equipped with this device is installed in a power system with advanced battery management (ABM) function.
  • ABS advanced battery management
  • UPS uninterruptible power supply systems
  • the battery works for a long time in a small current discharge state. Affect the life of the battery;
  • a smart battery discharging circuit is not overtemperature protection device, when the electronic switching device is out of control in the discharge circuit, the consequences could be catastrophic to the battery power supply system.
  • the invention relates to a battery intelligent monitoring and maintenance device with voltage and load discharge test function, characterized in that the working power supply circuit of the control circuit is composed of a power supply circuit powered by the battery itself and a power supply circuit with a priority power supply function from the outside; When there is no external power supply, the operating power of the device control circuit is provided by the battery itself. When there is an external power supply, the operating power of the device control circuit is provided by an external power source; the device has a temperature protection device in the discharge circuit. When the switching device in the discharge circuit is out of control and the discharge load exceeds the temperature value tolerated by the over-temperature protection device, the over-temperature protection device will cut off the discharge circuit.
  • the device can be installed independently on all batteries and make it a smart battery; this smart battery can be used to control the battery offline or in the online state under the control of the processor control program of the device itself. And the load discharge test, when the measured voltage and the end voltage of the load discharge test are compared with the preset values in the processor program to find an abnormality, the acoustic and optical alarm indicating circuit will alarm.
  • the device is provided with two identical RS485 data communication interfaces that are externally powered and isolated from the main circuit of the device, and one of the interfaces of any one of the devices can be connected to either interface of the other device. If a sampling resistor or current sensor that measures the discharge current is added to the discharge loop, the load discharge current of the battery can be measured.
  • the battery intelligent monitoring and maintenance device with voltage and load discharge test functions is operated by a battery discharge control circuit with a processor as the control core, a discharge circuit for controlling battery discharge with an electronic switching device, a battery voltage detection circuit, and a control circuit.
  • the power circuit, the externally powered RS485 communication interface circuit isolated from the device control circuit, and the sound and light alarm indicating circuit are composed.
  • the battery current detecting circuit is added to the discharging circuit.
  • the battery discharge control circuit with the processor as the control core, the circuit for controlling the battery discharge with the electronic switching device, the battery voltage detecting circuit, the battery current detecting circuit and the sound and light alarm indicating circuit constitute the main circuit of the present invention.
  • the features of the present invention are as follows: First, in the battery discharge control circuit and the discharge circuit with the processor as the control core, 'one or more parallel power electronic switch MOSFETs or the drain terminals of the IGBTs are connected in series with one end of the resistive load' The other end of the load resistor is connected to one end of the over-temperature protection device, the other end of the over-temperature protection device is connected to the positive pole of the battery, the source terminal of the MOSFET or TGBT is connected to the negative terminal of the battery, and the drain and source terminals of the MOSFET or IGBT are Connect a protective snubber capacitor across.
  • the MOSFET or IGBT and the load resistor and over-temperature protection device constitute a discharge circuit of the battery.
  • the feature "first" of the present invention is re-described as: one or more parallel power electronic switching transistors MOSFET or in a battery discharge control circuit and a discharging circuit with a processor as a control core
  • the drain end of the IGBT is connected in series with one end of the resistive load, the other end of the load resistor is connected to one end of the over-temperature protection device, the other end of the over-temperature protection device is connected to the positive pole of the battery, the source terminal of the MOSFET or IGBT and a current sampling resistor Connect the other end of the current sampling resistor to the negative terminal of the battery.
  • a drain and a source of the M0SFET or the IGBT are connected across a protection snubber capacitor, and a current capacitor is connected across the current sampling resistor.
  • the MOSFET or IGBT and its snubber capacitor, load resistor, overtemperature protection device, current sampling resistor and its filter capacitor constitute the discharge circuit of the battery.
  • the A/D converter converts the analog signal on the voltage divider resistor into a digital signal.
  • the programmable processor reads the binary digit and multiplies the ratio of the two divider resistors.
  • the voltage value of the battery under test can be calculated.
  • the control power supply circuit of such a device is composed of a power supply circuit that is powered by the battery itself and a power supply circuit that has a priority power supply function from the outside.
  • the power supply circuit powered by the battery is composed of a DC/DC converter and an anti-backflow diode.
  • the positive output of the DC/DC converter is connected to the anode of the reverse current diode;
  • the external power supply circuit with priority power supply function is It consists of one AC/DC or DC/DC converter and another anti-backflow diode, or a small battery and another anti-backflow diode. Their positive output is also connected to the anode of the anti-backflow diode;
  • the cathode of the anti-backflow diode is commonly connected to the positive terminal of the device processor control power supply.
  • an AC/DC or DC/DC converter or small battery from an external power source gives priority to the battery's DC/DC converter to power the processor's processor control power supply circuit, from external AC/DC Or the cathode terminal voltage of the anti-backflow diode connected in series with the DC/DC converter or the cathode terminal voltage of the anti-backflow diode connected in series with the small battery is higher than the voltage from the anode terminal of the anti-backflow diode connected in series with the DCZDC converter.
  • each device is provided with two identical RS485 data communication interfaces that are externally powered and isolated from the main circuit of the device.
  • the device can be installed independently on all the batteries. In the battery equipped with such a device, the control program of the device itself with a timer can be periodically operated regardless of whether it is communicated with the host computer or not. The battery under offline or online conditions is tested for load discharge.
  • the voltage measurement circuit can measure the voltage across the battery in real time.
  • the program can be controlled periodically.
  • Electronic switch tube M0SFET or IGBT to store electricity
  • the cell is discharged through a resistive load, and the voltage measuring circuit can measure the voltage at the end of the discharge, that is, the end voltage of the discharge.
  • the over-temperature protection device is a temperature protection device with a conduction resistance of milliohms in the case of over-current and over-temperature.
  • the on-resistance increases, even infinity, when over-temperature When the device is internally disconnected.
  • the invention realizes the voltage and load discharge test of the battery by installing the monitoring and maintenance device with the voltage and load discharge test function to realize the purpose of accurately determining the quality of the battery, thereby improving the reliability of the battery system.
  • 1 is a main circuit of the first embodiment.
  • Figure 2 is the operating power circuit of the processor control circuit.
  • Figure 3 shows an RS485 communication interface circuit that is externally powered and has two identical channels and is isolated from the main circuit.
  • This embodiment is a scheme for measuring only the battery voltage and the load discharge end voltage without measuring the load discharge current.
  • Fig. 1 is a main circuit of this embodiment.
  • Figure 2 is the operating power circuit of the processor control circuit.
  • Figure 3 shows an RS485 communication interface circuit that is externally powered and has two identical channels and is isolated from the main circuit.
  • the control circuit with A/D converter as a core in the device is in the box;
  • BATTERY is the battery under test, and the gate G of the power electronic switch M is connected to the control circuit, and the leakage is
  • the extreme D is connected in series with one end of the load resistor R1, the other end of the load resistor R1 is connected to one end of the over-temperature protection device TP, and the other end is connected to the positive pole P of the battery, and the source terminal E of the power electronic switch M is connected to the battery
  • the negative pole N, the capacitor C1 is an absorbing protection capacitor connected across the M drain and the source.
  • the battery BATTERY, the load discharge resistor Rl, the M0SFET tube M, the capacitor C1, and the temperature protection device TP constitute a discharge circuit.
  • the resistors R l and R2 form a voltage dividing circuit.
  • R1 and R2 are connected in series and then connected to the positive (P) negative (N) poles of the battery BATTERY, respectively, and then the voltage on the resistor R3 is filtered by the capacitor C2 and then sent.
  • Resistor R2, R3 capacitor C2 constitutes a voltage detection circuit.
  • Buzzer Bu7, zer, LED V and LTV form an alarm indication circuit.
  • the BATTERY P INPUT port is the positive terminal of the battery. After passing through the DC/DC converter and the anti-backflow diode D1, the battery is supplied to the power supply VCC required by the processor control circuit.
  • the AC or DC INPUT input port is an external AC or DC power supply supplied to the processor control circuit via an AC/DC converter with transformer Tr or (or ) DC/DC converter and anti-backflow diode D2.
  • the required power supply VCC In order to allow the externally supplied power supply to supply power to the processor control circuit in preference to the battery, the voltage output from the D2 cathode terminal is higher than the voltage output from the D1 anode terminal, so that the processor control inside the device is provided with external power supply.
  • the circuit will barely consume The electrical energy of the battery does not affect the life of the battery.
  • Gl, G2 are the same ground as the isolated RS485 communication interface circuit in Figure 3.
  • the ADM2483BRW is an isolated RS485 dedicated interface chip.
  • RS485_TX/RX, CPU_TXD and CPUJ «D are interfaces connected to the processor control circuit.
  • the internal circuit power supply shares VCC with the processor control circuit power supply; RS485-Al, RS485-B1 and RS485-A2, RS485_B2 are connected to the host computer.
  • Ports, VDD1, Gl and VDD2, G2 are externally powered DC power supplies: RS485-Al, RS485-Bl, VDDK Gl and RS485-A2, RS485-B2, VDD2, G2 are called two identical on the device The externally powered RS485 communication interface. The purpose of providing these two identical interfaces on the device is to facilitate serial connection to similar devices on other batteries into a bus structure.
  • the voltages at both ends of the battery can be measured in real time through the R2, R3, C2, and A/D converter circuits, and the other In respect, the program can periodically control the electronic switch tube M to discharge the battery through the resistive load R1, and measure it! "The voltage applied to the A/D converter, the CPU control circuit can measure the voltage at the end of the discharge, that is, the discharge end voltage.
  • This embodiment is a scheme for measuring battery voltage, load discharge end voltage, and load discharge current.
  • Fig. 4 is a main circuit of this embodiment.
  • Figure 2 is the operating power circuit of the processor control circuit.
  • Figure 3 shows an RS485 communication interface circuit that is externally powered and has two identical channels and is isolated from the main circuit.
  • the "operation power supply circuit of the processor control circuit" and the "two-way identical RS485 communication interface circuit supplied from the outside" of the present embodiment are the same as those of the first embodiment.
  • the control circuit with A/D converter as a core in the device is in the box; BATTERY is the battery under test, and the gate G of the power electronic switch M is connected to the control circuit, and the drain is connected.
  • the extreme D is connected in series with one end of the load resistor R1, the other end of the load resistor R1 is connected to one end of the over-temperature protection device TP, and the other end is connected to the positive pole P of the battery, and the source terminal E of the power electronic switch M is connected to the current sampling.
  • the converter constitutes a discharge current detecting circuit; the capacitor C1 is an absorbing protection capacitor connected across the M drain and the source.
  • the battery BATTERY, the load discharge resistor R M0SFET tube M, the capacitor C1, and the temperature protection device TP constitute a discharge circuit.
  • the resistors R1 and R2 form a voltage dividing circuit.
  • R1 and R2 are connected in series and then connected to the positive (P) negative (N) poles of the battery BATTERY, respectively, and then the voltage on the resistor R3 is filtered by the capacitor C2 and then sent to the square.
  • the resistors R2, R3, capacitor C2 and A/D converter form a voltage detection circuit.
  • Buzzer Buzzes LEDs V and LTV form an alarm indication circuit.
  • RS485—TX/RX, CPU.TXD and CPU_RXD are the three connection ports that the processor control circuit is connected to the RS485 communication interface circuit in Figure 3.
  • the "operation power supply circuit of the processor control circuit" and the "two-way identical RS485 communication interface circuit supplied from the outside" of the present embodiment are the same as those of the first embodiment, that is, FIG. 2 and FIG. 3 are in this embodiment. The effect is the same as in the first embodiment.
  • the voltages at both ends of the battery can be measured in real time through the R2, R3, C2, and A/D converter circuits, and the other In terms of the program, the electronic switch tube M can be periodically controlled to discharge the battery through the resistive load R1.
  • the voltage measurement circuit, the A/D converter and the processor can measure the voltage value at the end of the discharge, that is, the discharge end voltage.
  • the CPU control circuit can calculate the battery load discharge current.
  • the corresponding alarm indicator V, LTV on the device will flash, and the buzzer BUZZER has Sound alarm. If the change in voltage across the battery after the end of discharge is measured, the internal resistance of the battery can be calculated using Ohm's law.

Abstract

一种具有电压和负载放电测试功能的蓄电池智能监测和维护装置,其可以在蓄电池离线或在线状态下对蓄电池进行电压和负载放电终了电压、放电电流进行测试。该装置的控制电源电路由蓄电池自身供电的电源电路和来自外部的具有优先供电功能的电源电路组成;该装置的放电电路中串有过温保护器件,当放电电路中的开关器件失控而导致放电负载超过过温保护器件容忍的温度值时,过温保护器件将切断放电电路。

Description

具有电压和负载放电测试功能的蓄电池智能监测和维护装置 所属技术领域
本发明涉及一种具有电压和负载放电测试功能的蓄电池监测和维护装置' 尤其能在蓄电池离线或在线状态 下对蓄电池进行电压和负载放电终了电压、 放电电流进行测试。
背景技术
目前公知的各种离线 (蓄电池与充电器断开) 或在线 (蓄电池与充电器闭合) 的蓄电池监测和维护装置绝 大部分是从测量蓄电池的电压和内阻来判别蓄电池的状态, 但是当蓄电池在浮充状态下以及由于蓄电池内 阻的非线性特性, 只根据测量蓄电池的实时电压和内阻的结果, 有时不能准确地判断蓄电池的状态' 而且 测量蓄电池内阻比测量电压技术要求高, 因此有内阻测量功能的蓄电池监测装置, 其成本较高; 而目前已 有的通过负载放电测试蓄电池放电终了电压来判断蓄电池状态的装置, 其内部控制电路的工作电源是由蓄 电池自身供电的, 当装有这种装置的智能蓄电池安装在有先进电池管理 (ABM ) 功能的电源系统, 如有些 不间断电源系统 (UPS ) 中时, 蓄电池大部分时间工作在长时间小电流放电的状态, 这会影响到蓄电池的 寿命; 另外, 目前已有的智能蓄电池中的放电电路中没有过温保护装置, 当放电电路中的电子开关器件失 控时, 将会给蓄电池供电系统带来灾难性的后果。
发明内容
本发明涉及一种具有电压和负载放电测试功能的蓄电池智能监测和维护装置, 其特征是控制电路的工作电 源电路由蓄电池自身供电的电源电路和来自外部的具有优先供电功能的电源电路组成; 当没有外部电源 时, 该装置控制电路的工作电源由蓄电池自身提供, 当有外部电源时, 该装置控制电路的工作电源由来自 外部的电源提供; 这种装置的放电电路中串有过温保护器件, 当放电电路中的开关器件失控而导致放电负 载超过过温保护器件容忍的温度值时, 过温保护器件将切断放电电路。 这种装置可以独立地安装在所有蓄 电池上, 并使其成为智能蓄电池; 这种智能蓄电池在装置本身带 时器的处理器控制程序的控制下, 可以 对蓄电池在离线或在在线状态下进行电压和负载放电测试, 当测量的电压和负载放电测试的终了电压与处 理器程序中预先设定的值比较发现异常时, 声、 光报警指示电路将告警。 这种装置上设有两个完全相同的 由外部供电的且与该装置主电路隔离的 RS485数据通讯接口, 且任何一个装置中的一个接口可以连接另一 个装置的任一个接口。 如果在放电回路中增加测量放电电流的取样电阻或电流传感器, 则可以测量蓄电池 的负载放电电流。
本发明所采用的技术方案
这种具有电压和负载放电测试功能的蓄电池智能监测和维护装賈由以处理器为控制核心的蓄电池放电控 制电路、 以电子开关器件控制蓄电池放电的放电电路、 蓄电池电压检测电路、 控制电路的工作电源电路、 外部供电的与该装置控制电路隔离的 RS485通讯接口电路、 声、 光报警指示电路组成。 当需要测量放电电 流时, 则在放电电路中增加蓄电池电流检测电路。 以处理器为控制核心的蓄电池放电控制电路、 以电子开 关器件控制蓄电池放电的电路、 蓄电池电压检测电路、 蓄电池电流检测电路和声、 光报警指示电路构成本 发明的主电路。 本发明的特征是: 第一, 在以处理器为控制核心的蓄电池放电控制电路和放电电路中' 一 个或多个并联的功率电子开关管 M0SFET或 IGBT的漏极端与电阻负载的一端串联连接' 负载电阻的另一端 连接到过温保护器件的一端, 过温保护器件的另一端连接到蓄电池的正极, M0SFET或 TGBT的源极端连接 到蓄电池的负极, M0SFET或 IGBT的漏极和源极两端跨接一保护吸收电容。 M0SFET或 IGBT和负载电阻、 过温保护器件构成蓄电池的放电电路。 如果增加蓄电池负载放电电流检测电路, 本发明的特征 "第一"重 新描述为: 在以处理器为控制核心的蓄电池放电控制电路和放电电路中, 一个或多个并联的功率电子开关 管 M0SFET或 IGBT的漏极端与电阻负载的一端串联连接, 负载电阻的另一端连接到过温保护器件的一端, 过温保护器件的另一端连接到蓄电池的正极, M0SFET或 IGBT的源极端与一电流取样电阻的一端连接' 电 流取样电阻的另一端连接到蓄电池的负极。 M0SFET或 IGBT的漏极和源极两端跨接一保护吸收电容, 电流 取样电阻两端跨接一滤波电容。 M0SFET或 IGBT及其吸收电容、 负载电阻、 过温保护器件、 电流取样电阻 及其滤波电容构成蓄电池的放电电路。 第二, 蓄电池电压检测电路中,有两个串联电阻组成分压电路,分压 电阻的两端再并联在蓄电池两极, 然后将连接蓄电池负极的分压电阻上的电压信号滤波, 再经过一限流电 阻送入 A/D模数转换器, A/D转换器将分压电阻上的模拟信号转换成数字信号, 可编程处理器读取二进制 数字, 再乘以两分压电阻的比值, 就可以计算出被测蓄电池的电压值。 第三, 这种装置的控制电源电路由 蓄电池自身供电的电源电路和来自外部的具有优先供电功能的电源电路组成。 由蓄电池供电的电源电路, 是由一个 DC/DC变换器和防倒流二极管组成, DC/DC变换器的正极输出端与放倒流二极管的阳极相连; 来自外部的具有优先供电功能的电源电路, 是由一个 AC/DC或 DC/DC变换器和另一防倒流二极管组成, 或者是一块小型电池和另一个防倒流二极管组成, 他们的正极输出端同样与防倒流二极管的阳极相连; 最 后将两个防倒流二极管的阴极共同连接到该装置处理器控制电源的正极。 为了当有外部电源时, 来自外部 电源的 AC/DC或 DC/DC变换器或小型电池优先于蓄电池的 DC/DC变换器给该装置的处理器控制电源电 路供电,来自外部的与 AC/DC或 DC/DC变换器串联的防倒流二极管的阴极端电压或与小型电池串联的防 倒流二极管的阴极端电压要高于来自蓄电池供电的与 DCZDC变换器串联的防倒流二极管阳极端的电压。 第四, 蓄电池电压和负载放电测试时的终了电压的两个报警指示灯与处理器的两个数字输入输出口相联, 一个蜂鸣器与处理器的一个数字输入输出口相联, 两个报警指示灯和蜂鸣器构成声、 光报警指示电路。 第 五,每个装置上都设置两个完全相同的由外部供电的且与该装置主电路隔离的 RS485数据通讯接口。第六, 这种装置可以独立的安装在所有蓄电池上, 在装有这种装置的蓄电池中, 无论与上位机通讯与否, 这种装 置本身带定时器的处理器的控制程序都可以定期对离线或在线状态下的蓄电池进行负载放电测试。
本方案中' 装有这种装置的蓄电池在离线或在在线状态时, 在处理器程序的控制下, 一方面通过电压测量 电路可以实时测量蓄电池两端的电压, 另一方面, 程序可以定期地控制电子开关管 M0SFET或 IGBT使蓄电 池通过电阻负载放电, 电压测量电路可以测量出放电结束瞬问的电压, 即放电终了电压。
本方案中, 过温保护器件是在不过流和不过温的情况下, 导通电阻为毫欧级的一种温度保护器件, 当过流 时, 导通电阻增大, 甚至无穷大, 当过温时, 器件内部自动断开。
本发明通过安装具有电压和负载放电测试功能的监测和维护装置使蓄电池智能化来实现对蓄电池的电压 和负载放电测试, 达到准确判断蓄电池好坏的目的, 从而提高蓄电池系统的可靠性。
附图说明
图 1是实施例一的主电路。
图 2是处理器控制电路的工作电源电路。
图 3是由外部供电的、 有两路完全相同的且与主电路隔离的 RS485通讯接口电路。
图 4是实施例二的主电路
下面结合附图和实施例进一步说明。
实施例一
本实施例是只测量蓄电池电压和负载放电终了电压, 而不测量负载放电电流的方案
图 1是本实施例的主电路。
图 2是处理器控制电路的工作电源电路。
图 3是由外部供电的、 有两路完全相同的且与主电路隔离的 RS485通讯接口电路。
具体实施方式
图 1中, 方框内是该装置中以某处理器为核心、 有 A/D转换器的控制电路; BATTERY是被测蓄电池, 功率 电子开关管 M的栅极 G与控制电路相连, 其漏极端 D与负载电阻 R1的一端串联连接, 负载电阻 R 1的另一 端连接到过温保护器件 TP的一端, 另一端再连接到蓄电池的正极 P, 功率电子开关管 M的源极端 E连接到 蓄电池的负极 N,电容 C1是连接在 M漏极和源极两端的吸收保护电容。蓄电池 BATTERY、负载放电电阻 Rl、 M0SFET管 M 、 电容 C1以及温度保护器件 TP构成放电电路。 电阻 R l、 R2组成分压电路, R1和 R2串联后 再分别连接到蓄电池 BATTERY的正 (P ) 负 (N ) 极两端, 然后将电阻 R3上的电压, 经电容 C2滤波后,再 送入方框内部的 A/D转换器。 电阻 R2、 R3电容 C2组成电压检测电路。 蜂鸣器 Bu7,zer、 发光二极管 V和 LTV构成报警指示电路。 RS485— TX/RX、 CPU XD和 CPU— RXD是处理器控制电路与图 3中 RS485通讯接口电 路相连接的 3个连接端口。
图 2中, BATTERY P INPUT端口是蓄电池的正极端, 经过 DC/DC变换器和防倒流二极管 D1后将蓄电池提供 给处理器控制电路所需的电源 VCC。 AC or DC INPUT输入端口是指从外部提供来的交流或直流电源, 经过 带变压器 Tr隔离的 AC/DC 变换器或(or ) DC/DC变换器和防倒流二极管 D2后提供给处理器控制电路所需 的电源 VCC。 为了让外部提供来的电源具有优先于蓄电池给处理器控制电路供电, D2阴极端输出的电压要 高于 D1 阳极端输出的电压, 这样在有外部电源供电的情况下, 装置内部的处理器控制电路将几乎不消耗 蓄电池的电能, 从而不会影响到蓄电池的寿命。 Gl、 G2是与图 3 中隔离的 RS485通讯接口电路同一个地。 图 3中, ADM2483BRW是带隔离的 RS485专用接口芯片。 RS485_TX/RX、 CPU_TXD和 CPUJ«D是与处理器控 制电路相连的接口, 其内部电路电源与处理器控制电路电源共用 VCC; RS485一 Al、 RS485— B1和 RS485— A2、 RS485_B2是与上位机相连的端口, VDD1、 Gl和 VDD2、 G2是由外部供电的直流电源: RS485— Al、 RS485一 Bl、 VDDK Gl和 RS485— A2、 RS485一 B2、 VDD2、 G2在装置上被称为两个完全相同的由外部供电的 RS485通讯接 口。 在装置上设置这两个完全相同的接口的目的是便于与其它蓄电池上同类装置串接成总线结构。
本实施例中, 无论蓄电池 BATTERY处于离线状态还是在线状态, 在处理器程序控制电路的控制下, 一方面 通过 R2、 R3、 C2和 A/D转换器电路可以实时测量蓄电池两端的电压, 另一方面, 程序可以定期地控制电 子开关管 M, 使蓄电池通过电阻负载 R1放电, 通过测量!《上的电压、 再送入 A/D转换器, CPU控制电路 就可以测量出放电结束瞬间的电压值, 即放电终了电压。
本实施例中, 当发现蓄电池的实时电压或负载放电测试的终了电压超出处理器程序中预先设定的范围 时, 装置上相应的报警指示灯 V、 LTV将会闪烁, 同时蜂鸣器 BUZZER有声音报警。
实施例二
本实施例是测量蓄电池电压、 负载放电终了电压和负载放电电流的方案
图 4是本实施例的主电路。
图 2是处理器控制电路的工作电源电路。
图 3是由外部供电的、 有两路完全相同的且与主电路隔离的 RS485通讯接口电路。
本实施例的 "处理器控制电路的工作电源电路"和 "由外部供电的、 有两路完全相同的 RS485通讯接口电 路"与实施例一相同。
具体实施方式
图 4中, 方框内是该装置中以某处理器为核心、 有 A/D转换器的控制电路; BATTERY是被测蓄电池, 功率 电子开关管 M的栅极 G与控制电路相连, 其漏极端 D与负载电阻 R1的一端串联连接, 负载电阻 R1的另一 端连接到过温保护器件 TP的一端, 另一端再连接到蓄电池的正极 P, 功率电子开关管 M的源极端 E连接到 电流取样电阻 R4的一端, 电流取样电阻 R4的另一端连接到蓄电池的负极 N, R4上的电压经 C3滤波后送 入 A/D转换器的一个端口, 电流取样电阻 R4、 滤波电容 C3和 A/D转换器组成放电电流检测电路; 电容 C1 是连接在 M漏极和源极两端的吸收保护电容。 蓄电池 BATTERY、 负载放电电阻 R M0SFET管 M 、 电容 C1 以及温度保护器件 TP构成放电电路。 电阻 Rl、 R2组成分压电路, R1 和 R2 串联后再分别连接到蓄电池 BATTERY的正 (P) 负 (N)极两端, 然后将电阻 R3上的电压, 经电容 C2滤波后,再送入方框内部的 A/D转 换器。 电阻 R2、 R3、 电容 C2和 A/D转换器组成电压检测电路。 蜂鸣器 Buzzes 发光二极管 V和 LTV构成 报警指示电路。 RS485— TX/RX、 CPU.TXD和 CPU_RXD是处理器控制电路与图 3中 RS485通讯接口电路相连接 的 3个连接端口。 本实施例的 "处理器控制电路的工作电源电路"和 "由外部供电的、 有两路完全相同的 RS485通讯接口电 路"与实施例一相同, 即图 2和图 3在本实施例中的作用与在实施例一中相同。
本实施例中, 无论蓄电池 BATTERY处于离线状态还是在线状态, 在处理器程序控制电路的控制下, 一方面 通过 R2、 R3、 C2和 A/D转换器电路可以实时测量蓄电池两端的电压, 另一方面, 程序可以定期地控制电 子开关管 M, 使蓄电池通过电阻负载 R1放电, 通过电压测量电路、 A/D转换器和处理器就可以测量出放电 结束瞬间的电压值, 即放电终了电压。 通过测量取样电阻 R4上的电压, 再送入 A/D转换器, CPU控制电路 就可以计算出蓄电池负载放电电流。
本实施例中, 当发现蓄电池的实时电压或负载放电测试的终了电压超出处理器程序中预先设定的范围时, 装置上相应的报警指示灯 V、 LTV将会闪烁, 同时蜂鸣器 BUZZER有声音报警。 如果再测量在放电结束后蓄 电池两端电压的变化, 利用欧姆定律, 就可以计算出蓄电池的内阻。

Claims

权 利 要 求 书
1.具有电压和负载放电测试功能的蓄电池智能监测和维护装置, 它可以在蓄电池离线或在线状态下对蓄电 池进行电压和负载放电终了电压、 放电电流进行测试, 其特征是这种装置控制电路的工作电源电路由蓄电 池自身供电的电源电路和来自外部的具有优先供电功能的电源电路组成; 当没有外部电源时, 该装置控制 电路的工作电源由蓄电池自身提供,当有外部电源时,该装置控制电路的工作电源由来自外部的电源提供; 这种装置的放电电路中串有过温保护器件, 当放电电路中的开关器件失控而导致放电负载超过过温保护器 件容忍的温度值时, 过温保护器件将切断放电电路。
2.根据权利要求 1所述的具有电压和负载放电测试功能的蓄电池智能监测和维护装置, 这种装置可以独立 地安装在所有蓄电池上, 并使其成为智能蓄电池; 这种智能蓄电池在装置本身带定时器的处理器控制程序 的控制下, 可以对蓄电池在离线或在在线状态下进行电压和负载放电测试, 当测量的电压和负载放电测试 的终了电压与处理器程序中预先设定的值比较发现异常时, 声、 光报警指示电路将告警。
3. 根据权利要求 1 所述的具有电压和负载放电测试功能的蓄电池智能监测和维护装置, 这种装置上设有 两个完全相同的由外部供电的且与该装置主电路隔离的 RS485数据通讯接口, 且任何一个装置中的一个接 口可以连接另一个装置的任一个接口。
4. 根据权利要求 1 所述的具有电压和负载放电测试功能的蓄电池智能监测和维护装置, 这种装置在放电 回路中增加测量放电电流的取样电阻或电流传感器, 则可以测量蓄电池的负载放电电流。
PCT/CN2013/001436 2013-02-27 2013-11-25 具有电压和负载放电测试功能的蓄电池智能监测和维护装置 WO2014131143A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310061005.0 2013-02-27
CN201310061005.0A CN103777145A (zh) 2013-02-27 2013-02-27 具有电压和负载放电测试功能的蓄电池智能监测和维护装置

Publications (1)

Publication Number Publication Date
WO2014131143A1 true WO2014131143A1 (zh) 2014-09-04

Family

ID=50569617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001436 WO2014131143A1 (zh) 2013-02-27 2013-11-25 具有电压和负载放电测试功能的蓄电池智能监测和维护装置

Country Status (2)

Country Link
CN (1) CN103777145A (zh)
WO (1) WO2014131143A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10481211B2 (en) * 2014-01-15 2019-11-19 Lat Enterprises, Inc. State-of-charge indicator
CN108572319A (zh) * 2017-03-09 2018-09-25 深圳市三诺声智联股份有限公司 并联电池组检测装置及方法
CN109298337B (zh) * 2018-08-27 2021-06-08 东莞市北斗星电子科技有限公司 基于ups模块传输储电池零荷及其自动监控大数据终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1782729A (zh) * 2004-11-29 2006-06-07 三星Sdi株式会社 用于监控蓄电池组的设备和方法
CN102208696A (zh) * 2011-04-28 2011-10-05 常州格力博工具有限公司 一种大容量锂电池包
US20120185187A1 (en) * 2011-01-13 2012-07-19 Deeya Energy, Incorporated Communications system
CN202471921U (zh) * 2011-12-30 2012-10-03 广州泓淮电子科技有限公司 一种蓄电池测试仪

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403752A (zh) * 2011-04-12 2012-04-04 王晓秋 一种蓄电池放电控制电路及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1782729A (zh) * 2004-11-29 2006-06-07 三星Sdi株式会社 用于监控蓄电池组的设备和方法
US20120185187A1 (en) * 2011-01-13 2012-07-19 Deeya Energy, Incorporated Communications system
CN102208696A (zh) * 2011-04-28 2011-10-05 常州格力博工具有限公司 一种大容量锂电池包
CN202471921U (zh) * 2011-12-30 2012-10-03 广州泓淮电子科技有限公司 一种蓄电池测试仪

Also Published As

Publication number Publication date
CN103777145A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
WO2017152479A1 (zh) 蓄电池剩余容量及健康状态快速检测方法和装置
TWI395964B (zh) 電壓檢測電路、多電池單元之電池組保護電路及保護方法
TWI460451B (zh) 具有自我診斷功能之多通道轉換器、電池管理系統及自我診斷方法
TWI467887B (zh) 電池管理系統、方法及其非瞬態電腦可讀媒體
US20090273314A1 (en) Battery pack and control method
CN105429226A (zh) 大容量充放电电池管理系统
GB2551081A (en) Fault detection for battery management systems
US9800239B2 (en) Electronic circuit
WO2018171495A1 (zh) 电池管理系统及具有其的飞行控制系统和飞行器
CN107870283A (zh) Bms接线检测装置及方法
TW201606328A (zh) 電池殘量預測裝置及電池組
FR2983300B1 (fr) Systeme de mesure d'un courant de charge et de diagnostic d'une absence de charge ou d'une surcharge
CN104092260B (zh) 一种适用于蓄电池的大功率线性稳压电源
WO2014131143A1 (zh) 具有电压和负载放电测试功能的蓄电池智能监测和维护装置
JP2010080141A (ja) 多直列多並列電池パック
CN105738833B (zh) 一种诊断汽车电池健康状况的方法及诊断仪
CN102916387B (zh) 一种用于多口poe供电器输出分路的保护电路
CN104037466A (zh) 电池装置
CN105425159A (zh) 电池剩余电量的检测装置及方法
TW201308823A (zh) 電池電源管理系統與方法
RU2638912C2 (ru) Прибор для определения напряжения и способ определения напряжения аккумуляторной батареи
CN204214565U (zh) 线圈绕组温升检测电路、电磁铁控制装置、断路器
TWM593074U (zh) 電池裝置及電池裝置充電系統
CN106405408A (zh) 防直流倒方式操作失电的监测装置及其检测方法
TWI601358B (zh) Battery resistance information can be displayed uninterruptible power system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876411

Country of ref document: EP

Kind code of ref document: A1