WO2014129702A1 - Method for manufacturing lithium-thionyl chloride battery with excellent voltage performance and method for evaluating same - Google Patents

Method for manufacturing lithium-thionyl chloride battery with excellent voltage performance and method for evaluating same Download PDF

Info

Publication number
WO2014129702A1
WO2014129702A1 PCT/KR2013/004022 KR2013004022W WO2014129702A1 WO 2014129702 A1 WO2014129702 A1 WO 2014129702A1 KR 2013004022 W KR2013004022 W KR 2013004022W WO 2014129702 A1 WO2014129702 A1 WO 2014129702A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
thionyl chloride
chloride battery
lithium metal
film
Prior art date
Application number
PCT/KR2013/004022
Other languages
French (fr)
Korean (ko)
Inventor
김유석
박상선
김범수
Original Assignee
주식회사 비츠로셀
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 비츠로셀 filed Critical 주식회사 비츠로셀
Publication of WO2014129702A1 publication Critical patent/WO2014129702A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0563Liquid materials, e.g. for Li-SOCl2 cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium thionyl chloride battery, and more particularly, to a method for manufacturing a lithium thionyl chloride battery having excellent voltage performance by improving a minimum drop voltage and an evaluation method thereof.
  • Lithium-thionyl chloride batteries are small and light, have a larger capacity and higher voltage than conventional manganese and alkaline batteries, and are being used as a power source for various electronic devices.
  • lithium thionyl chloride batteries have very low self-discharge even after storage for more than 5 years, and thus have a good storage capacity, and have excellent characteristics even at low temperatures (-20 ° C. to -32 ° C.).
  • the lithium-thiionyl chloride battery having such an advantage also causes lithium chloride (LiCl), which is a non-conducting film formed on the surface of lithium, to be formed on the surface of lithium when used for a long time, resulting in an increase in internal resistance and a decrease in initial voltage delay and operation voltage This problem occurred.
  • LiCl lithium chloride
  • the commercialized technology that suppressed the growth of the non-conductive film as described above is firstly a cathode treatment technology coated with a cyanoacrylate-based polymer, secondly a cathode surface control technology using an electrolyte additive, and thirdly, a separator binder composition is utilized. There is a technique.
  • TMV transient minimum voltage
  • Background art related to the present invention is a military battery pack having a lithium ion secondary battery to which the lithium metal oxide disclosed in the Republic of Korea Patent Publication No. 10-2010-0116973 (published on November 2, 2010).
  • An object of the present invention is to form a film formed by the reaction of lithium metal and SO 2 Cl 2 electrolyte on the surface of the lithium electrode of a lithium-thiionyl chloride battery to improve the lowest drop voltage (TMV) characteristics and impedance characteristics lithium-chloride It is to provide a method for producing a thionyl battery and an evaluation method thereof.
  • a method of manufacturing a lithium-thionyl chloride battery including a lithium metal in a method of manufacturing a lithium-thionyl chloride battery including a lithium electrode and a SOCl 2 electrolyte. Doing; Forming a film formed on the surface of the lithium metal by reaction of the lithium metal and the SO 2 Cl 2 electrolyte solution; And forming the lithium metal on which the film is formed as an electrode.
  • a method for evaluating a lithium-thionyl chloride battery comprising: a method for evaluating a lithium-thionyl chloride battery including a lithium electrode and a SOCl 2 electrolyte, as described above. Preparing a lithium-thionyl chloride battery by one of the methods; Storing the prepared lithium thionyl chloride battery at 60 ° C .; And evaluating the lithium-thionyl chloride battery.
  • the present invention by forming a film formed by the reaction of lithium metal and SO 2 Cl 2 electrolyte on the surface of the lithium electrode of a lithium- thionyl chloride battery, it is possible to improve the lowest drop voltage (TMV) characteristics and impedance characteristics, and the initial operating voltage It is possible to provide a method for producing a lithium-thionyl chloride battery having excellent performance and an evaluation method thereof.
  • TMV drop voltage
  • Example 1, 2 and 3 are flowcharts schematically showing a method of manufacturing a lithium-thiionyl chloride battery according to Example 1, Example 2 and Comparative Example of the present invention, respectively.
  • 10 to 12 are scanning electron microscope (SEM) photographs of lithium foil, which is a lithium-thionyl chloride battery anode prepared according to Examples 1, 2 and Comparative Examples of the present invention, respectively.
  • FIGS. 1 and 2 are flow charts schematically showing a method of manufacturing a lithium-thionyl chloride battery according to Examples 1 and 2 of the present invention, respectively,
  • Figure 3 is a lithium- thionyl chloride according to a comparative example of the present invention It is a flowchart which shows the manufacturing method of a battery schematically.
  • an aluminum-based or gallium-based compound is dissolved in the SO 2 Cl 2 electrolyte.
  • the aluminum compound may be AlCl 3
  • the gallium compound may be GaCl 3
  • the aluminum and gallium compounds are not limited thereto.
  • the lithium metal is generally in the form of a lithium foil.
  • the film is at least one of a roll coating method, a blade coating method, a spray coating method, a spin coating method, and a dip coating method on the lithium metal SO 2 Cl 2 electrolyte It is preferable to form by coating by the coating method of, but the method of forming a film is not limited to this.
  • the film may be formed by supporting the lithium metal in the SO 2 Cl 2 electrolyte, but the method of forming the film is not limited thereto.
  • the lithium metal may be supported on the SO 2 Cl 2 electrolyte for 24 hours to 170 hours to form a film.
  • the thickness of the formed film is not thin and dense, so that the effect of improving the lowest drop voltage (TMV) is insignificant.
  • TMV lowest drop voltage
  • the film formed of SO 2 Cl 2 the film will no longer grow when a film of a certain thickness is formed. If the surface treatment is performed on the lithium metal SO 2 Cl 2 electrolyte for about 24 to 170 hours, Further surface treatment is not significant because the initial voltage delay phenomenon is not remarkably improved even if it performs more than that.
  • the film formed on the surface of the lithium metal may include at least one of lithium metal, that is, LiCl, Li 2 O, and Li 2 S, which are reactants of the lithium foil and the SO 2 Cl 2 electrolyte.
  • the lithium metal may be used as a negative electrode of a lithium- thionyl chloride battery.
  • the SO 2 Cl 2 electrolyte does not dissolve an aluminum compound or a gallium compound.
  • the lithium metal is generally in the form of a lithium foil.
  • Forming a film on the surface of the lithium metal (S120), the film is at least any one of a spray roll coating method, blade coating method, spray coating method, spin coating method, and dip coating method to the lithium metal SO 2 Cl 2 electrolyte It is preferable to form by coating by one coating method, but the method of forming a film is not limited to this.
  • the film may be formed by dip coating the lithium metal on the SO 2 Cl 2 electrolyte, but the method of forming the film is not limited thereto.
  • the lithium metal may be supported on the SO 2 Cl 2 electrolyte for 24 hours to 170 hours to form a film.
  • the film formed on the surface of the lithium metal may include at least one of lithium metal, that is, LiCl, Li 2 O, and Li 2 S, which are reactants of the lithium foil and the SO 2 Cl 2 electrolyte.
  • the lithium metal may be used as a negative electrode of a lithium- thionyl chloride battery.
  • the method of manufacturing a lithium-thionyl chloride battery according to a comparative example of the present invention includes preparing a lithium metal (S310) and forming the lithium metal as an electrode (S330). do.
  • a film is not formed in the surface of lithium metal.
  • the lithium metal is generally in the form of a lithium foil.
  • the lithium metal may be used as a negative electrode of a lithium-thionyl chloride battery.
  • a lithium-thionyl chloride battery prepared according to Examples 1, 2 and Comparative Examples of the present invention storing the prepared lithium- thionyl chloride battery at 72 °C and the lithium- Evaluating the thionyl chloride cell.
  • the reason for storage at 72 ° C is to convert the high temperature acceleration to evaluate the lowest drop voltage (TMV) experiment.
  • Storage for 9 days at 72 °C can be calculated as the same as storage for 1 year at room temperature. For example, storage at 72 ° C. for 90 days is equivalent to a cell stored at room temperature for 10 years. Since the minimum drop voltage (TMV) decreases (deteriorates) with a longer storage period, the lowest drop voltage (TMV) can be observed under severe conditions when evaluated after high temperature acceleration storage.
  • the lithium-thionyl chloride battery is preferably stored for a period of 9 days or more.
  • the generation of the lowest drop voltage (TMV) is insignificant, and thus the minimum drop voltage (TMV) improved by the present invention cannot be observed.
  • the discharge characteristics of the lithium thionyl chloride battery may be measured.
  • the impedance of the lithium-thionyl chloride battery can be measured.
  • the minimum drop voltage (TMV: Transient Minimum Voltage) was measured as 3.3V.
  • the lowest drop voltage (TMV) was measured to be 3.4V.
  • the lowest drop voltage (TMV) was measured to be 1.7V.
  • a lithium-thionyl chloride battery Li / SOCl 2
  • a SO 2 Cl 2 electrolyte on a lithium metal surface is subjected to the interaction between lithium metal and SOCl 2 .
  • a film is formed later, whereby the lowest drop voltage is formed at a low voltage. If the minimum drop voltage is low, the initial operation of the equipment may not be performed depending on the temperature conditions.
  • a film such as LiCl, Li 2 O, Li 2 S is formed on the surface of the lithium metal using a simple chemical reaction between the lithium metal and the SO 2 Cl 2 electrolyte solution.
  • the formed film can raise the TMV of the Li / SOCl 2 battery to Li / SO 2 Cl 2 level (3.3V or more).
  • the value was measured to be 250 ⁇ or less.
  • the impedance of the lithium-thionyl chloride battery according to Example 2 of the present invention was measured to be 250 ⁇ or less.
  • the impedance of the lithium thionyl chloride battery according to the comparative example of the present invention was measured, and the value was measured to be 3800 ⁇ or more.
  • a lithium-thionyl chloride battery Li / SOCl 2
  • Li / SOCl 2 a lithium-thionyl chloride battery that does not react with a SO 2 Cl 2 electrolyte on a lithium metal surface
  • the film was formed later, and the impedance was measured to be high. Accordingly, the lowest drop voltage TMV is measured low.
  • a film such as LiCl, Li 2 O, Li 2 S is formed on the surface of the lithium metal using a simple chemical reaction between the lithium metal and the SO 2 Cl 2 electrolyte solution.
  • the formed film may lower the impedance of the Li / SOCl 2 battery to Li / SO 2 Cl 2 level (250 or less).
  • 10 to 12 are scanning electron microscope (SEM) photographs of lithium foil, which is a lithium-thionyl chloride battery anode prepared according to Examples 1, 2, and Comparative Examples of the present invention, respectively.
  • Example 1 and Comparative Examples are not distinguished on a scanning electron microscope (SEM), and are formed densely as in the photograph.
  • SEM scanning electron microscope
  • Example 2 coated with a lithium salt added SO 2 Cl 2 electrolyte a salt was deposited on the surface of lithium to change the shape of the surface, but the effect of improving the minimum drop voltage (TMV) was the same as that of Example 1. Therefore, it can be judged from the scanning micrograph that the suppression of the lowest drop voltage (TMV) contributed to the film formed by the chemical reaction of SO 2 Cl 2 and lithium regardless of the change in the shape of the lithium surface.
  • a film formed by the reaction of lithium metal and SO 2 Cl 2 electrolyte on the surface of the lithium electrode of a lithium- thionyl chloride battery to improve the minimum voltage drop (TMV) characteristics, impedance characteristics and excellent voltage performance
  • TMV minimum voltage drop

Abstract

The present invention provides a method for manufacturing a lithium-thionyl chloride battery having a lithium electrode and a SOCl2 electrolyte with excellent voltage performance, including the steps of: preparing lithium metal; and making the lithium electrode and the SOCl2 electrolyte react so as to form a coating on the surface of the lithium metal; and forming the coated lithium metal into an electrode, thereby improving the lowest voltage drop.

Description

전압성능이 우수한 리튬-염화 티오닐 전지의 제조방법 및 이의 평가방법Method for manufacturing lithium thionyl chloride battery having excellent voltage performance and evaluation method thereof
본 발명은 리튬-염화 티오닐 전지에 관한 것으로서, 더욱 상세하게는 최저 강하전압을 향상시켜 전압성능이 우수한 리튬-염화 티오닐 전지의 제조방법 및 이의 평가방법에 관한 것이다.The present invention relates to a lithium thionyl chloride battery, and more particularly, to a method for manufacturing a lithium thionyl chloride battery having excellent voltage performance by improving a minimum drop voltage and an evaluation method thereof.
리튬-염화 티오닐 전지는 소형이면서 가볍고, 일반 망간 전지, 알카라인 전지에 비하여 용량이 크고, 고전압을 얻을 수 있어 각종 전자기기의 전원으로 사용이 확대되고 있다. 특히, 리튬-염화 티오닐 전지는 5년 이상 저장 후 전지를 사용시에도 자가방전이 아주 적어 보존 용량이 양호하며, 저온(-20℃ ~ -32℃)에서도 우수한 특성을 갖고 있다.Lithium-thionyl chloride batteries are small and light, have a larger capacity and higher voltage than conventional manganese and alkaline batteries, and are being used as a power source for various electronic devices. In particular, lithium thionyl chloride batteries have very low self-discharge even after storage for more than 5 years, and thus have a good storage capacity, and have excellent characteristics even at low temperatures (-20 ° C. to -32 ° C.).
그러나, 이러한 장점을 갖는 리튬-염화 티오닐 전지도 장시간 저장 후 사용시에는 리튬 표면에 발생되는 부도체막인 염화리튬(LiCl)이 형성되어 내부저항이 증가되어 초기 전압지연 현상과 작동전압이 감소되는 현상이 발생되는 문제점이 존재하였다.However, the lithium-thiionyl chloride battery having such an advantage also causes lithium chloride (LiCl), which is a non-conducting film formed on the surface of lithium, to be formed on the surface of lithium when used for a long time, resulting in an increase in internal resistance and a decrease in initial voltage delay and operation voltage This problem occurred.
상기와 같은 부도체막의 성장을 억제시킨 상용화된 기술은 첫째로 시아노아크릴레이트(cyanoacrylate) 계열의 고분자를 코팅한 음극처리 기술, 둘째로 전해액 첨가제를 이용한 음극 표면제어 기술, 그리고 셋째로 세퍼레이터 바인더 조성를 활용한 기술이 있다. The commercialized technology that suppressed the growth of the non-conductive film as described above is firstly a cathode treatment technology coated with a cyanoacrylate-based polymer, secondly a cathode surface control technology using an electrolyte additive, and thirdly, a separator binder composition is utilized. There is a technique.
이들 기술은 초기전압지연시간을 수초 내지 수백초 이내로 단축하였으나 70℃이상의 고온저장 후 최저 강하전압(TMV: Transient Minimum Voltage)의 저하 현상은 개선하지 못하였다. 요구되는 전압보다 TMV가 낮으면, 장비의 초기구동이 되지 않는 문제를 야기시키게 된다.These technologies have shortened the initial voltage delay time from several seconds to several hundred seconds, but did not improve the drop in the transient minimum voltage (TMV) after high temperature storage above 70 ℃. If the TMV is lower than the required voltage, this will cause the equipment not to start up.
본 발명에 관련된 배경기술로는 대한민국 특허공개공보 제10-2010- 0116973호(2010.11.02. 공개)에 개시된 리튬금속산화물이 적용된 리튬이온2차전지를 구비하는 군용 축전지팩이 있다.Background art related to the present invention is a military battery pack having a lithium ion secondary battery to which the lithium metal oxide disclosed in the Republic of Korea Patent Publication No. 10-2010-0116973 (published on November 2, 2010).
본 발명의 목적은 리튬-염화 티오닐 전지의 리튬전극 표면에 리튬 금속과 SO2Cl2 전해액의 반응으로 형성된 피막을 형성하여 최저 강하전압(TMV) 특성 및 임피던스 특성을 향상시킬 수 있는 리튬-염화 티오닐 전지의 제조방법 및 이의 평가방법을 제공하는 것이다.An object of the present invention is to form a film formed by the reaction of lithium metal and SO 2 Cl 2 electrolyte on the surface of the lithium electrode of a lithium-thiionyl chloride battery to improve the lowest drop voltage (TMV) characteristics and impedance characteristics lithium-chloride It is to provide a method for producing a thionyl battery and an evaluation method thereof.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 리튬-염화 티오닐 전지의 제조방법은, 리튬 전극과 SOCl2 전해액을 구비하는 리튬-염화 티오닐 전지의 제조방법에 있어서, 리튬 금속을 마련하는 단계; 상기 리튬 금속 표면에 상기 리튬 금속과 SO2Cl2 전해액의 반응으로 형성된 피막을 형성하는 단계; 및 피막이 형성된 상기 리튬 금속을 전극으로 형성하는 단계;를 포함한다.According to an aspect of the present invention, there is provided a method of manufacturing a lithium-thionyl chloride battery, including a lithium metal in a method of manufacturing a lithium-thionyl chloride battery including a lithium electrode and a SOCl 2 electrolyte. Doing; Forming a film formed on the surface of the lithium metal by reaction of the lithium metal and the SO 2 Cl 2 electrolyte solution; And forming the lithium metal on which the film is formed as an electrode.
상기 목적을 달성하기 위한 본 발명의 다른 일 실시예에 따른 포함하는 리튬-염화 티오닐 전지의 평가방법은, 리튬 전극과 SOCl2 전해액을 구비하는 리튬-염화 티오닐 전지의 평가방법에 있어서, 전술한 어느 하나의 방법으로 리튬-염화 티오닐 전지를 마련하는 단계; 제조된 상기 리튬-염화 티오닐 전지를 60℃에서 저장하는 단계; 및 상기 리튬-염화 티오닐 전지를 평가하는 단계;를 포함한다.According to another aspect of the present invention, there is provided a method for evaluating a lithium-thionyl chloride battery, comprising: a method for evaluating a lithium-thionyl chloride battery including a lithium electrode and a SOCl 2 electrolyte, as described above. Preparing a lithium-thionyl chloride battery by one of the methods; Storing the prepared lithium thionyl chloride battery at 60 ° C .; And evaluating the lithium-thionyl chloride battery.
본 발명에 따르면, 리튬-염화 티오닐 전지의 리튬전극 표면에 리튬 금속과 SO2Cl2 전해액의 반응으로 형성된 피막을 형성하여 최저 강하전압(TMV) 특성 및 임피던스 특성을 향상시킬 수 있으며 초기 작동 전압성능이 우수한 리튬-염화 티오닐 전지의 제조방법 및 이의 평가방법을 제공할 수 있다.According to the present invention, by forming a film formed by the reaction of lithium metal and SO 2 Cl 2 electrolyte on the surface of the lithium electrode of a lithium- thionyl chloride battery, it is possible to improve the lowest drop voltage (TMV) characteristics and impedance characteristics, and the initial operating voltage It is possible to provide a method for producing a lithium-thionyl chloride battery having excellent performance and an evaluation method thereof.
도 1, 도 2 및 도 3은 각각 본 발명의 실시예 1, 실시예 2 및 비교예에 따른 리튬-염화 티오닐 전지의 제조방법을 개략적으로 나타낸 흐름도이다.1, 2 and 3 are flowcharts schematically showing a method of manufacturing a lithium-thiionyl chloride battery according to Example 1, Example 2 and Comparative Example of the present invention, respectively.
도 4 내지 도 6는 각각 본 발명의 실시예 1, 실시예 2 및 비교예에 따라 제조된 리튬-염화 티오닐 전지의 방전 특성을 측정한 결과이다.4 to 6 are the results of measuring the discharge characteristics of the lithium thionyl chloride battery prepared according to Examples 1, 2 and Comparative Examples of the present invention, respectively.
도 7 내지 도 9는 각각 본 발명의 실시예 1, 실시예 2 및 비교예에 따라 제조된 리튬-염화 티오닐 전지의 임피던스(impedance)를 측정한 결과이다.7 to 9 are the results of measuring the impedance (impedance) of the lithium thionyl chloride battery prepared according to Examples 1, 2 and Comparative Examples of the present invention, respectively.
도 10 내지 도 12는 각각 본 발명의 실시예 1, 실시예 2 및 비교예에 따라 제조된 리튬-염화 티오닐 전지 음극인 리튬 호일의 주사전자현미경(SEM) 사진이다.10 to 12 are scanning electron microscope (SEM) photographs of lithium foil, which is a lithium-thionyl chloride battery anode prepared according to Examples 1, 2 and Comparative Examples of the present invention, respectively.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.Advantages and features of the present invention, and methods for achieving them will be apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, only the embodiments are to make the disclosure of the present invention complete, and the general knowledge in the technical field to which the present invention belongs. It is provided to fully convey the scope of the invention to those skilled in the art, and the present invention is defined only by the scope of the claims. Like reference numerals refer to like elements throughout.
이하, 도 1 내지 도 12를 참조하여, 본 발명의 실시예에 따른 리튬-염화 티오닐 전지의 제조방법 및 이의 평가방법에 대하여 상세하게 설명한다.Hereinafter, a method of manufacturing a lithium-thiionyl chloride battery and an evaluation method thereof according to embodiments of the present invention will be described in detail with reference to FIGS. 1 to 12.
도 1 및 도 2는 각각 본 발명의 실시예 1 및 실시예 2에 따른 리튬-염화 티오닐 전지의 제조방법을 개략적으로 나타낸 흐름도이고, 도 3은 본 발명의 비교예에 따른 리튬-염화 티오닐 전지의 제조방법을 개략적으로 나타낸 흐름도이다.1 and 2 are flow charts schematically showing a method of manufacturing a lithium-thionyl chloride battery according to Examples 1 and 2 of the present invention, respectively, Figure 3 is a lithium- thionyl chloride according to a comparative example of the present invention It is a flowchart which shows the manufacturing method of a battery schematically.
도 1을 참조하면, 본 발명의 실시예 1에 따른 리튬-염화 티오닐 전지의 제조방법(S100)은 리튬 금속을 마련하는 단계(S110), 상기 리튬 금속 표면에 상기 리튬 금속과 SO2Cl2 전해액의 반응으로 형성된 피막을 형성하는 단계(S120) 및 피막이 형성된 상기 리튬 금속을 전극으로 형성하는 단계(S130)를 포함한다.Referring to FIG. 1, in the method of manufacturing a lithium-thionyl chloride battery according to Example 1 of the present invention (S100), preparing a lithium metal (S110), the lithium metal and SO 2 Cl 2 are formed on a surface of the lithium metal. Forming a film formed by the reaction of the electrolyte (S120) and forming the lithium metal film formed as an electrode (S130).
본 발명의 실시예 1에 따르면, 상기 SO2Cl2 전해액에는 알루미늄계 또는 갈륨계 화합물을 용해된다. 구체적으로, 알루미늄계 화합물은 AlCl3일 수도 있고, 갈륨계 화합물은 GaCl3일 수 있으나, 알루미늄계 및 갈륨계 화합물이 이에 한정되는 것은 아니다. According to Example 1 of the present invention, an aluminum-based or gallium-based compound is dissolved in the SO 2 Cl 2 electrolyte. Specifically, the aluminum compound may be AlCl 3 , the gallium compound may be GaCl 3 , but the aluminum and gallium compounds are not limited thereto.
여기서, 상기 리튬 금속은 리튬 호일(Lithium foil)의 형태인 것이 일반적이다. 리튬 금속 표면에 피막을 형성하는 단계(S120)에서, 피막은 상기 리튬 금속에 SO2Cl2 전해액을 롤 코팅법, 블레이드 코팅법, 스프레이 코팅법, 스핀 코팅법, 및 딥 코팅법 중 적어도 어느 하나의 코팅법에 의해 코팅하여 형성되는 것이 바람직하나, 피막을 형성하는 방법은 이에 한정되지 않는다.Here, the lithium metal is generally in the form of a lithium foil. In the step of forming a film on the surface of the lithium metal (S120), the film is at least one of a roll coating method, a blade coating method, a spray coating method, a spin coating method, and a dip coating method on the lithium metal SO 2 Cl 2 electrolyte It is preferable to form by coating by the coating method of, but the method of forming a film is not limited to this.
다른 방법으로, 리튬 금속 표면에 피막을 형성하는 단계(S120)에서, 피막은 리튬 금속을 SO2Cl2 전해액에 담지하여 형성될 수도 있으나, 피막을 형성하는 방법은 이에 한정되지 않는다. 이 경우, 리튬 금속을 SO2Cl2 전해액에 24시간 이상 170시간 이하 동안 담지하여 피막을 형성할 수 있다. 리튬 금속을 SO2Cl2 전해액에 24시간 미만의 시간 동안 담지하는 경우에는 형성된 피막의 두께가 얇고 치밀하지 않아 최저 강하전압(TMV)을 향상시키는 효과가 미미 하다. SO2Cl2로 형성된 피막의 경우 일정 두께의 피막이 형성되면 피막이 더 이상 자라지 않기 때문에, 리튬 금속을 SO2Cl2 전해액에 24 ~ 170시간 정도 표면처리를 수행하면 저장시간에 따라 원하는 두께의 피막을 형성할 수 있으며, 그 이상을 수행하더라도 초기전압지연 현상이 주목할 만큼 개선되지 않기 때문에 더 이상의 표면처리는 큰 의미가 없다. Alternatively, in the step of forming a film on the surface of the lithium metal (S120), the film may be formed by supporting the lithium metal in the SO 2 Cl 2 electrolyte, but the method of forming the film is not limited thereto. In this case, the lithium metal may be supported on the SO 2 Cl 2 electrolyte for 24 hours to 170 hours to form a film. When lithium metal is immersed in SO 2 Cl 2 electrolyte for less than 24 hours, the thickness of the formed film is not thin and dense, so that the effect of improving the lowest drop voltage (TMV) is insignificant. In the case of the film formed of SO 2 Cl 2 , the film will no longer grow when a film of a certain thickness is formed. If the surface treatment is performed on the lithium metal SO 2 Cl 2 electrolyte for about 24 to 170 hours, Further surface treatment is not significant because the initial voltage delay phenomenon is not remarkably improved even if it performs more than that.
리튬 금속 표면에 형성되는 피막은 리튬 금속, 즉 리튬 호일과 SO2Cl2 전해액의 반응물인 LiCl, Li2O, Li2S 중 적어도 어느 하나 이상을 포함할 수 있다.The film formed on the surface of the lithium metal may include at least one of lithium metal, that is, LiCl, Li 2 O, and Li 2 S, which are reactants of the lithium foil and the SO 2 Cl 2 electrolyte.
피막이 형성된 상기 리튬 금속을 전극으로 형성하는 단계(S130)에서, 리튬 금속은 리튬-염화 티오닐 전지의 음극으로 사용될 수 있다.In the step of forming the lithium metal film formed as an electrode (S130), the lithium metal may be used as a negative electrode of a lithium- thionyl chloride battery.
도 2를 참조하면, 본 발명의 실시예 2에 따른 리튬-염화 티오닐 전지의 제조방법(S200)은 리튬 금속을 마련하는 단계(S210), 상기 리튬 금속 표면에 상기 리튬 금속과 SO2Cl2 전해액의 반응으로 형성된 피막을 형성하는 단계(S220) 및 피막이 형성된 상기 리튬 금속을 전극으로 형성하는 단계(S230)를 포함한다.Referring to FIG. 2, in the method of manufacturing a lithium-thionyl chloride battery according to Example 2 of the present invention (S200), preparing a lithium metal (S210), the lithium metal and SO 2 Cl 2 are formed on a surface of the lithium metal. Forming a film formed by the reaction of the electrolyte (S220) and forming the lithium metal film formed as an electrode (S230).
본 발명의 실시예 2에 따르면, 상기 SO2Cl2 전해액에는 실시예 1과는 다르게 알루미늄계 화합물 또는 갈륨계 화합물을 용해하지 않는다.According to Example 2 of the present invention, unlike the first embodiment, the SO 2 Cl 2 electrolyte does not dissolve an aluminum compound or a gallium compound.
여기에서도, 상기 리튬 금속은 리튬 호일(Lithium foil)의 형태인 것이 일반적이다. 리튬 금속 표면에 피막을 형성하는 단계(S120)에서, 피막은 상기 리튬 금속에 SO2Cl2 전해액을 스프레이 롤 코팅법, 블레이드 코팅법, 스프레이 코팅법, 스핀 코팅법, 및 딥 코팅법 중 적어도 어느 하나의 코팅법에 의해 코팅하여 형성되는 것이 바람직하나, 피막을 형성하는 방법은 이에 한정되지 않는다.Here, the lithium metal is generally in the form of a lithium foil. Forming a film on the surface of the lithium metal (S120), the film is at least any one of a spray roll coating method, blade coating method, spray coating method, spin coating method, and dip coating method to the lithium metal SO 2 Cl 2 electrolyte It is preferable to form by coating by one coating method, but the method of forming a film is not limited to this.
다른 방법으로, 리튬 금속 표면에 피막을 형성하는 단계(S120)에서, 피막은 리튬 금속을 SO2Cl2 전해액에 Dip coating을 통해 형성될 수도 있으나, 피막을 형성하는 방법은 이에 한정되지 않는다. 이 경우, 리튬 금속을 SO2Cl2 전해액에 24시간 이상 170시간 이하 동안 담지하여 피막을 형성할 수 있다. 리튬 금속 표면에 형성되는 피막은 리튬 금속, 즉 리튬 호일과 SO2Cl2 전해액의 반응물인 LiCl, Li2O, Li2S 중 적어도 어느 하나 이상을 포함할 수 있다.Alternatively, in the step (S120) of forming a film on the surface of the lithium metal, the film may be formed by dip coating the lithium metal on the SO 2 Cl 2 electrolyte, but the method of forming the film is not limited thereto. In this case, the lithium metal may be supported on the SO 2 Cl 2 electrolyte for 24 hours to 170 hours to form a film. The film formed on the surface of the lithium metal may include at least one of lithium metal, that is, LiCl, Li 2 O, and Li 2 S, which are reactants of the lithium foil and the SO 2 Cl 2 electrolyte.
피막이 형성된 상기 리튬 금속을 전극으로 형성하는 단계(S230)에서, 리튬 금속은 리튬-염화 티오닐 전지의 음극으로 사용될 수 있다.In the step (S230) of forming the lithium metal film formed as an electrode, the lithium metal may be used as a negative electrode of a lithium- thionyl chloride battery.
도 3을 참조하면, 본 발명의 비교예에 따른 리튬-염화 티오닐 전지의 제조방법(S300)은 리튬 금속을 마련하는 단계(S310) 및 상기 리튬 금속을 전극으로 형성하는 단계(S330)를 포함한다.Referring to FIG. 3, the method of manufacturing a lithium-thionyl chloride battery according to a comparative example of the present invention (S300) includes preparing a lithium metal (S310) and forming the lithium metal as an electrode (S330). do.
본 발명의 비교예에 따르면, 실시예 1 및 실시예 2와는 다르게 리튬 금속의 표면에 피막을 형성하지 않는다.According to the comparative example of this invention, unlike Example 1 and Example 2, a film is not formed in the surface of lithium metal.
여기에서도, 상기 리튬 금속은 리튬 호일(Lithium foil)의 형태인 것이 일반적이다. 상기 리튬 금속을 전극으로 형성하는 단계(S330)에서, 리튬 금속은 리튬-염화 티오닐 전지의 음극으로 사용될 수 있다.Here, the lithium metal is generally in the form of a lithium foil. In the step of forming the lithium metal as an electrode (S330), the lithium metal may be used as a negative electrode of a lithium-thionyl chloride battery.
다음, 본 발명의 실시예 1, 실시예 2 및 비교예에 따라 제조된 리튬-염화 티오닐 전지를 마련하는 단계, 제조된 상기 리튬-염화 티오닐 전지를 72℃에서 저장하는 단계 및 상기 리튬-염화 티오닐 전지를 평가하는 단계를 포함한다. 72℃ 저장을 하는 이유는 최저 강하전압(TMV) 실험 평가를 위해 고온가속 환산을 하기 위해서이다. 72℃에서 9일 동안 저장하는 것은 상온에서 1년 동안 저장하는 것과 동일하다고 계산할 수 있다. 예를 들어, 72℃에서 90일 동안 저장하면 10년 동안 상온에서 보관한 전지와 동일하다고 볼 수 있다. 최저 강하전압(TMV)은 보관 기간이 길수록 낮아(악화)지므로 고온가속 저장 후 평가를 하면 혹독한 조건에서의 최저 강하전압(TMV)을 관찰할 수 있다.Next, preparing a lithium-thionyl chloride battery prepared according to Examples 1, 2 and Comparative Examples of the present invention, storing the prepared lithium- thionyl chloride battery at 72 ℃ and the lithium- Evaluating the thionyl chloride cell. The reason for storage at 72 ° C is to convert the high temperature acceleration to evaluate the lowest drop voltage (TMV) experiment. Storage for 9 days at 72 ℃ can be calculated as the same as storage for 1 year at room temperature. For example, storage at 72 ° C. for 90 days is equivalent to a cell stored at room temperature for 10 years. Since the minimum drop voltage (TMV) decreases (deteriorates) with a longer storage period, the lowest drop voltage (TMV) can be observed under severe conditions when evaluated after high temperature acceleration storage.
상기 리튬-염화 티오닐 전지를 저장하는 단계에서, 리튬-염화 티오닐 전지는 9일 이상의 기간 동안 저장되는 것이 바람직하다. 리튬-염화 티오닐 전지를 72℃ 9일 미만의 시간 동안 저장하는 경우에는 최저 강하전압(TMV)의 발생이 미미하여 본 발명으로 개선된 최저 강하전압(TMV)을 관찰할 수 없게 되므로 바람직하지 않다. In the step of storing the lithium-thionyl chloride battery, the lithium-thionyl chloride battery is preferably stored for a period of 9 days or more. When the lithium-thionyl chloride battery is stored for less than 9 days at 72 ° C., the generation of the lowest drop voltage (TMV) is insignificant, and thus the minimum drop voltage (TMV) improved by the present invention cannot be observed.
상기 리튬-염화 티오닐 전지를 평가하는 단계에서는, 리튬-염화 티오닐 전지의 방전 특성을 측정할 수 있다. 또한, 리튬-염화 티오닐 전지의 임피던스(impedance)를 측정할 수 있다.In evaluating the lithium thionyl chloride battery, the discharge characteristics of the lithium thionyl chloride battery may be measured. In addition, the impedance of the lithium-thionyl chloride battery can be measured.
도 4 내지 도 6는 각각 본 발명의 실시예 1, 실시예 2 및 비교예에 따라 제조된 리튬-염화 티오닐 전지의 방전 특성을 측정한 결과이다.4 to 6 are the results of measuring the discharge characteristics of the lithium thionyl chloride battery prepared according to Examples 1, 2 and Comparative Examples of the present invention, respectively.
본 발명의 실시예 1에 따른 리튬-염화 티오닐 전지의 방전 특성을 측정한 결과, 최저 강하전압(TMV: Transient Minimum Voltage)은 3.3V로 측정되었다. 본 발명의 실시예 2에 따른 리튬-염화 티오닐 전지의 방전 특성을 측정한 결과, 최저 강하전압(TMV)은 3.4V로 측정되었다. 이에 비하여, 본 발명의 비교예에 따른 리튬-염화 티오닐 전지의 방전 특성을 측정한 결과, 최저 강하전압(TMV)은 1.7V로 측정되었다.As a result of measuring the discharge characteristics of the lithium-thionyl chloride battery according to Example 1 of the present invention, the minimum drop voltage (TMV: Transient Minimum Voltage) was measured as 3.3V. As a result of measuring the discharge characteristics of the lithium-thionyl chloride battery according to Example 2 of the present invention, the lowest drop voltage (TMV) was measured to be 3.4V. In contrast, as a result of measuring the discharge characteristics of the lithium thionyl chloride battery according to the comparative example of the present invention, the lowest drop voltage (TMV) was measured to be 1.7V.
상기 결과에서 볼 수 있듯이, 본 발명의 비교예에 따라 리튬 금속 표면에 SO2Cl2 전해액을 반응시키지 않은 리튬-염화 티오닐 전지(Li/SOCl2)는 리튬 금속과 SOCl2의 상호 화학작용에 의해 추후 피막을 형성하여 낮은 전압에서 최저 강하전압이 형성된다. 최저 강하전압이 낮으면 온도 조건에 따라 장비의 초기동작이 되지 않아 불량으로 인식되는 등의 단점을 가진다.As can be seen from the above results, according to a comparative example of the present invention, a lithium-thionyl chloride battery (Li / SOCl 2 ) that does not react with a SO 2 Cl 2 electrolyte on a lithium metal surface is subjected to the interaction between lithium metal and SOCl 2 . As a result, a film is formed later, whereby the lowest drop voltage is formed at a low voltage. If the minimum drop voltage is low, the initial operation of the equipment may not be performed depending on the temperature conditions.
반면, 본 발명의 실시예 1 및 실시예 2에 따라 리튬 금속 표면에 SO2Cl2 전해액을 반응시켜 Li 금속과 SO2Cl2의 상호 화학작용에 의해 피막을 형성할 경우에는, SOCl2 전지의 낮은 TMV와는 달리 TMV가 3.3V이상으로 높게 형성되며 TMV에 의해 발생하는 부작용은 미미하다.On the other hand, according to Examples 1 and 2 of the present invention, when the SO 2 Cl 2 electrolyte is reacted on the surface of the lithium metal to form a film by the interaction of Li metal and SO 2 Cl 2 , the SOCl 2 battery Unlike low TMV, TMV is formed higher than 3.3V and the side effects caused by TMV are minimal.
따라서, 본 발명의 실시예 1 및 실시예 2에 따르면, 리튬 금속과 SO2Cl2 전해액의 단순한 화학 반응을 이용하여 리튬 금속 표면에 LiCl, Li2O, Li2S 등의 피막을 형성하며, 형성된 피막이 Li/SOCl2 전지의 TMV를 Li/SO2Cl2 수준(3.3V 이상)으로 높일 수 있다.Therefore, according to Examples 1 and 2 of the present invention, a film such as LiCl, Li 2 O, Li 2 S is formed on the surface of the lithium metal using a simple chemical reaction between the lithium metal and the SO 2 Cl 2 electrolyte solution. The formed film can raise the TMV of the Li / SOCl 2 battery to Li / SO 2 Cl 2 level (3.3V or more).
도 7 내지 도 9는 각각 본 발명의 실시예 1, 실시예 2 및 비교예에 따라 제조된 리튬-염화 티오닐 전지의 임피던스(impedance)를 측정한 결과이다.7 to 9 are the results of measuring the impedance (impedance) of the lithium thionyl chloride battery prepared according to Examples 1, 2 and Comparative Examples of the present invention, respectively.
본 발명의 실시예 1에 따른 리튬-염화 티오닐 전지의 임피던스를 측정한 결과, 그 값이 250Ω이하로 측정되었다. 본 발명의 실시예 2에 따른 리튬-염화 티오닐 전지의 임피던스를 측정한 결과, 그 값이 250Ω이하로 측정되었다. 이에 비하여, 본 발명의 비교예에 따른 리튬-염화 티오닐 전지의 임피던스를 측정한 결과, 그 값이 3800Ω이상으로 측정되었다.As a result of measuring the impedance of the lithium-thionyl chloride battery according to Example 1 of the present invention, the value was measured to be 250 Ω or less. As a result of measuring the impedance of the lithium-thionyl chloride battery according to Example 2 of the present invention, the value was measured to be 250 Ω or less. In contrast, the impedance of the lithium thionyl chloride battery according to the comparative example of the present invention was measured, and the value was measured to be 3800 Ω or more.
상기 결과에서 볼 수 있듯이, 본 발명의 비교예에 따라 리튬 금속 표면에 SO2Cl2 전해액을 반응시키지 않은 리튬-염화 티오닐 전지(Li/SOCl2)는 리튬 금속과 SOCl2의 상호 화학작용에 의해 추후 피막을 형성하여 임피던스가 높게 측정되었다. 이에 따라서, 최저 강하전압(TMV)은 낮게 측정된다.As can be seen from the above results, according to a comparative example of the present invention, a lithium-thionyl chloride battery (Li / SOCl 2 ) that does not react with a SO 2 Cl 2 electrolyte on a lithium metal surface is subjected to the interaction between lithium metal and SOCl 2 . The film was formed later, and the impedance was measured to be high. Accordingly, the lowest drop voltage TMV is measured low.
반면, 본 발명의 실시예 1 및 실시예 2에 따라 리튬 금속 표면에 SO2Cl2 전해액을 반응시켜 Li 금속과 SO2Cl2의 상호 화학작용에 의해 피막을 형성할 경우에는, SOCl2 전지의 높은 임피던스와는 달리 임피던스가 낮게 측정되었다. 이에 따라서, 최저 강하전압은 높게 측정된다.On the other hand, according to Examples 1 and 2 of the present invention, when the SO 2 Cl 2 electrolyte is reacted on the surface of the lithium metal to form a film by the interaction of Li metal and SO 2 Cl 2 , the SOCl 2 battery Unlike high impedance, low impedance was measured. Accordingly, the lowest drop voltage is measured high.
따라서, 본 발명의 실시예 1 및 실시예 2에 따르면, 리튬 금속과 SO2Cl2 전해액의 단순한 화학 반응을 이용하여 리튬 금속 표면에 LiCl, Li2O, Li2S 등의 피막을 형성하며, 형성된 피막이 Li/SOCl2 전지의 임피던스를 Li/SO2Cl2 수준(250 이하)으로 낮출 수 있다.Therefore, according to Examples 1 and 2 of the present invention, a film such as LiCl, Li 2 O, Li 2 S is formed on the surface of the lithium metal using a simple chemical reaction between the lithium metal and the SO 2 Cl 2 electrolyte solution. The formed film may lower the impedance of the Li / SOCl 2 battery to Li / SO 2 Cl 2 level (250 or less).
[표 1]TABLE 1
Figure PCTKR2013004022-appb-I000001
Figure PCTKR2013004022-appb-I000001
도 10 내지 도 12는 각각 본 발명의 실시예 1, 실시예 2 및 비교예에 따라 제조된 리튬-염화 티오닐 전지 음극인 리튬 호일의 주사전자현미경(SEM, Scanning Electron Microscope) 사진이다.10 to 12 are scanning electron microscope (SEM) photographs of lithium foil, which is a lithium-thionyl chloride battery anode prepared according to Examples 1, 2, and Comparative Examples of the present invention, respectively.
실시예 1과 비교예의 리튬 표면에 형성된 피막의 종류 및 두께 등은 주사전자현미경(SEM) 상에서는 구분되지 않으며, 사진과 같이 치밀하게 형성되었다. 리튬염을 첨가한 SO2Cl2 전해액으로 코팅된 실시예 2는 리튬 표면에 염이 석출되어 표면의 형상변화가 생겼으나 최저 강하전압(TMV)의 개선 효과는 실시예 1과 동일하다. 따라서, 본 주사현미경 사진을 통해 최저 강하전압(TMV)의 억제는 리튬 표면의 형상 변화와 관계없이 SO2Cl2와 리튬의 화학반응에 의해 형성된 피막에 기여되었다고 판단할 수 있다.Kinds and thicknesses of the coatings formed on the lithium surfaces of Example 1 and Comparative Examples are not distinguished on a scanning electron microscope (SEM), and are formed densely as in the photograph. In Example 2 coated with a lithium salt added SO 2 Cl 2 electrolyte, a salt was deposited on the surface of lithium to change the shape of the surface, but the effect of improving the minimum drop voltage (TMV) was the same as that of Example 1. Therefore, it can be judged from the scanning micrograph that the suppression of the lowest drop voltage (TMV) contributed to the film formed by the chemical reaction of SO 2 Cl 2 and lithium regardless of the change in the shape of the lithium surface.
본 발명에 따르면, 리튬-염화 티오닐 전지의 리튬전극 표면에 리튬 금속과 SO2Cl2 전해액의 반응으로 형성된 피막을 형성하여 최저 강하전압(TMV) 특성 및 임피던스 특성을 향상시키며 전압성능이 우수한 리튬-염화 티오닐 전지의 제조방법 및 이의 평가방법을 제공할 수 있다.According to the present invention, by forming a film formed by the reaction of lithium metal and SO 2 Cl 2 electrolyte on the surface of the lithium electrode of a lithium- thionyl chloride battery to improve the minimum voltage drop (TMV) characteristics, impedance characteristics and excellent voltage performance A method for producing a thionyl chloride battery and an evaluation method thereof can be provided.
이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 기술자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형은 본 발명이 제공하는 기술 사상의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서, 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.Although the above has been described with reference to the embodiments of the present invention, various changes and modifications can be made at the level of those skilled in the art. Such changes and modifications can be said to belong to the present invention without departing from the scope of the technical idea provided by the present invention. Therefore, the scope of the present invention should be judged by the claims described below.

Claims (9)

  1. 리튬 전극과 SOCl2 전해액을 구비하는 리튬-염화 티오닐 전지의 제조방법에 있어서,In the production method of the thionyl chloride batteries, lithium having a lithium electrode and electrolyte solution SOCl 2
    리튬 금속을 마련하는 단계;Preparing a lithium metal;
    상기 리튬 금속 표면에 상기 리튬 금속과 SO2Cl2 전해액의 반응으로 피막을 형성하는 단계; 및Forming a film on the surface of the lithium metal by reaction of the lithium metal and the SO 2 Cl 2 electrolyte solution; And
    피막이 형성된 상기 리튬 금속을 전극으로 형성하는 단계;를 포함하는 리튬-염화 티오닐 전지의 제조방법.Forming a lithium metal film formed as an electrode; a manufacturing method of a lithium thionyl chloride battery comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 SO2Cl2 전해액에 알루미늄계 화합물 또는 갈륨계 화합물을 용해하는 단계를 더 포함하는 것을 특징으로 하는 리튬-염화 티오닐 전지의 제조방법.Method for producing a lithium-thiionyl chloride battery, characterized in that it further comprises the step of dissolving an aluminum compound or gallium compound in the SO 2 Cl 2 electrolyte.
  3. 제2항에 있어서,The method of claim 2,
    상기 알루미늄계 화합물은 AlCl3이고 갈륨계 화합물은 GaCl3인, 상기 것을 특징으로 하는 리튬-염화 티오닐 전지의 제조방법.The aluminum compound is AlCl 3 and the gallium compound is GaCl 3 , characterized in that for producing a lithium- thionyl chloride battery.
  4. 제1항에 있어서,The method of claim 1,
    상기 리튬 금속은 리튬 호일(Lithium foil)의 형태인 것을 특징으로 하는 리튬-염화 티오닐 전지의 제조방법.The lithium metal is a method of manufacturing a lithium-thionyl chloride battery, characterized in that the form of a lithium foil (Lithium foil).
  5. 제1항에 있어서,The method of claim 1,
    상기 리튬 금속 표면에 피막을 형성하는 단계에서,In the step of forming a film on the lithium metal surface,
    상기 피막은 상기 리튬 금속에 SO2Cl2 전해액을 롤 코팅법, 블레이드 코팅법, 스프레이 코팅법, 스핀 코팅법, 및 딥 코팅법 중 적어도 어느 하나의 코팅법에 의해 코팅하여 형성되는 것을 특징으로 하는 리튬-염화 티오닐 전지의 제조방법.The coating is formed by coating the lithium metal with SO 2 Cl 2 electrolyte by at least one coating method of a roll coating method, blade coating method, spray coating method, spin coating method, and dip coating method Method for producing lithium thionyl chloride battery.
  6. 제1항에 있어서,The method of claim 1,
    상기 리튬 금속 표면에 피막을 형성하는 단계에서,In the step of forming a film on the lithium metal surface,
    상기 리튬 금속을 SO2Cl2 전해액으로 표면처리 하여 형성되는 것을 특징으로 하는 리튬-염화 티오닐 전지의 제조방법.Method for producing a lithium- thionyl chloride battery, characterized in that formed by surface treatment of the lithium metal with SO 2 Cl 2 electrolyte.
  7. 제6항에 있어서,The method of claim 6,
    상기 리튬 금속 표면에 피막을 형성하는 단계에서,In the step of forming a film on the lithium metal surface,
    상기 리튬 금속을 SO2Cl2 전해액에 24시간 이상 170시간 이하 동안 담지하는 것을 특징으로 하는 리튬-염화 티오닐 전지의 제조방법.A method of manufacturing a lithium-thionyl chloride battery, wherein the lithium metal is supported on SO 2 Cl 2 electrolyte for 24 hours to 170 hours.
  8. 제2항에 있어서,The method of claim 2,
    상기 피막은 LiCl, Li2O, Li2S 중 적어도 어느 하나 이상을 포함하는 것을 특징으로 하는 리튬-염화 티오닐 전지의 제조방법.The film is a manufacturing method of a lithium- thionyl chloride battery, characterized in that it comprises at least one of LiCl, Li 2 O, Li 2 S.
  9. 리튬 전극과 SOCl2 전해액을 구비하는 리튬-염화 티오닐 전지의 평가방법에 있어서,In the evaluation method of the thionyl chloride batteries, lithium having a lithium electrode and electrolyte solution SOCl 2
    제1항 내지 제8항 중 적어도 어느 한 항에 기재된 방법으로 리튬-염화 티오닐 전지를 마련하는 단계;Providing a lithium-thionyl chloride battery by the method of at least one of claims 1 to 8;
    제조된 상기 리튬-염화 티오닐 전지를 60℃에서 저장하는 단계; 및Storing the prepared lithium thionyl chloride battery at 60 ° C .; And
    상기 리튬-염화 티오닐 전지를 평가하는 단계;를 포함하는 리튬-염화 티오닐 전지의 평가방법.Evaluating the lithium-thionyl chloride battery.
PCT/KR2013/004022 2013-02-22 2013-05-08 Method for manufacturing lithium-thionyl chloride battery with excellent voltage performance and method for evaluating same WO2014129702A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0019464 2013-02-22
KR1020130019464A KR101304544B1 (en) 2013-02-22 2013-02-22 Manufacturing method for lisocl2 battery with voltage performance

Publications (1)

Publication Number Publication Date
WO2014129702A1 true WO2014129702A1 (en) 2014-08-28

Family

ID=49455200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004022 WO2014129702A1 (en) 2013-02-22 2013-05-08 Method for manufacturing lithium-thionyl chloride battery with excellent voltage performance and method for evaluating same

Country Status (2)

Country Link
KR (1) KR101304544B1 (en)
WO (1) WO2014129702A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102540475B1 (en) * 2022-08-09 2023-06-07 주식회사 비츠로셀 Battery including plasma-treated lithium electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632573B1 (en) * 2001-02-20 2003-10-14 Polyplus Battery Company Electrolytes with strong oxidizing additives for lithium/sulfur batteries
KR100570792B1 (en) * 2004-10-26 2006-04-13 주식회사 비츠로셀 Lisocl2 battery using additive and making method thereof
KR20120126304A (en) * 2011-05-11 2012-11-21 삼성코닝정밀소재 주식회사 Method for measuring an overcharge protection efficiency of rechargeable battery and Method of comparing the overcharge protection efficiency of additives for a rechargeable battery by using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012252951A (en) * 2011-06-06 2012-12-20 Hitachi Maxell Energy Ltd Nonaqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632573B1 (en) * 2001-02-20 2003-10-14 Polyplus Battery Company Electrolytes with strong oxidizing additives for lithium/sulfur batteries
KR100570792B1 (en) * 2004-10-26 2006-04-13 주식회사 비츠로셀 Lisocl2 battery using additive and making method thereof
KR20120126304A (en) * 2011-05-11 2012-11-21 삼성코닝정밀소재 주식회사 Method for measuring an overcharge protection efficiency of rechargeable battery and Method of comparing the overcharge protection efficiency of additives for a rechargeable battery by using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M. GABERSCEK ET AL.: "A.C. impedance studies of the anodic passivating layer in lithium-SOC12 batteries", JOURNAL OF POWER SOURCES, vol. 25, 1 February 1989 (1989-02-01), pages 123 - 131 *

Also Published As

Publication number Publication date
KR101304544B1 (en) 2013-09-10

Similar Documents

Publication Publication Date Title
US20200176198A1 (en) Electrolyte additives for zinc metal electrodes
JP5108205B2 (en) All solid-state lithium secondary battery
WO2011145882A2 (en) Cable-type secondary battery having a polymer current collector coated with metal
US20070020501A1 (en) Polyelectrolyte membranes as separator for battery and fuel cell applications
WO2013062334A1 (en) Cathode for secondary battery and secondary battery having same
WO2012002646A2 (en) Negative electrode for a cable-type secondary battery and cable-type secondary battery having same
WO2013055186A1 (en) Cable-type secondary battery
TW201301641A (en) Lithium-ion secondary battery, electrode for secondary battery, and electrolytic copper foil for secondary battery electrode
US20160013493A1 (en) Electrolytic copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2012138152A2 (en) Negative electrode active material for a lithium secondary battery, and method for preparing same
CN112805853A (en) Protected metallic zinc electrode and method for rechargeable zinc cells and batteries
KR20040092189A (en) Composite polymer electrolytes including single-ion conductor for lithium rechargeable battery and method for preparing the same
US11777081B2 (en) Multilayer assembly
CN106133966A (en) Electrolytic copper foil, comprise the collector body of this electrolytic copper foil, negative electrode and lithium battery
WO2014035189A1 (en) Cable-type packaging for secondary batteries and cable-type secondary batteries comprising same
KR101348810B1 (en) Separator for lithium-sulfur battery, method for manufacturing the same and lithium-sulfur battery including the same
US20140322598A1 (en) Nickel-iron battery with high power
JP2013133514A (en) Copper foil, electrode for secondary battery, secondary battery, and printed circuit board
CN111386618A (en) Lithium electrode, method for preparing same, and lithium secondary battery comprising same
WO2012053773A2 (en) Cathode for cable-type secondary battery and method for manufacturing same
US11367876B2 (en) Copper foil for secondary battery, method of manufacturing the same, and secondary battery including the same
JP2000173619A (en) Lithium-ion battery
WO2014129702A1 (en) Method for manufacturing lithium-thionyl chloride battery with excellent voltage performance and method for evaluating same
WO2019221410A1 (en) Negative electrode including electrode protective layer, and lithium secondary battery employing same
KR20210072922A (en) Electrolyte for lithium metal battery forming stable film and lithium metal battery comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875822

Country of ref document: EP

Kind code of ref document: A1