WO2014129470A1 - Energy management assist device and energy management assist program - Google Patents

Energy management assist device and energy management assist program Download PDF

Info

Publication number
WO2014129470A1
WO2014129470A1 PCT/JP2014/053802 JP2014053802W WO2014129470A1 WO 2014129470 A1 WO2014129470 A1 WO 2014129470A1 JP 2014053802 W JP2014053802 W JP 2014053802W WO 2014129470 A1 WO2014129470 A1 WO 2014129470A1
Authority
WO
WIPO (PCT)
Prior art keywords
supply
facility
demand
resource
demand system
Prior art date
Application number
PCT/JP2014/053802
Other languages
French (fr)
Japanese (ja)
Inventor
吉雄 丹下
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2015501465A priority Critical patent/JP5761476B2/en
Publication of WO2014129470A1 publication Critical patent/WO2014129470A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00001Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the display of information or by user interaction, e.g. supervisory control and data acquisition systems [SCADA] or graphical user interfaces [GUI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/40Display of information, e.g. of data or controls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the present invention relates to a technology for supporting the operation of a facility for supplying energy for a supply and demand system having a resource supply facility for supplying resources such as electric power and gas and a resource consumer facility for demanding resources.
  • Non-Patent Document 1 a technique for optimizing a system by expressing a problem such as system control and circuit analysis by a first-order predicate logical expression and solving this is known (for example, Non-Patent Document 1). .
  • a quantifier represented by a universal symbol ( ⁇ ) or an existence symbol ( ⁇ ), and a logical symbol represented by a product ( ⁇ ) or a sum ( ⁇ ) of a polynomial equality or inequality of other variables The first order predicate logical expressions are obtained by combining the logical expressions combined using.
  • a variable bound by a quantifier is called a bound variable
  • a variable not bound by a quantifier is called a free variable.
  • optimization is achieved by eliminating the bound variable and deriving a logical expression that the free variable should satisfy.
  • the control system analysis / design apparatus formulates the input control problem as a linear matrix inequality (LMI) or a bilinear matrix inequality (BMI). Then, the constraints such as the design specifications expressed as LMI or BMI are transformed into constraints of the form in which inequalities are connected with logical sums, the control system is converted into a first-order predicate logical expression, and the variable with the quantifier is The control system is analyzed from the deleted formula.
  • LMI linear matrix inequality
  • BMI bilinear matrix inequality
  • optimal power flow calculation is generally known (for example, Non-Patent Document 2).
  • the optimal power flow calculation in a supply system in which the power generation equipment and the load equipment are connected by a supply path, the desired power is generated while minimizing the fuel cost consumed by the power generation equipment according to the load of the load equipment. Perform optimization.
  • the prior art is an optimization technique when resource supply facilities and their capacities are specifically set.
  • the problems such as how much capacity each equipment should have or how the supply and demand system should be configured Cannot be used effectively.
  • the object of the present invention is to provide a means that can be widely used effectively when considering the efficient operation of resource supply facilities.
  • a first aspect of the present invention consumes energy for a resource supply facility for supplying resources, a resource consumer facility for demanding resources supplied from the resource supply facility, and a supply and demand system having a resource supply path.
  • An energy management support device for supporting the operation of equipment, wherein when the supply / demand system model of the supply / demand system and the equipment capacity information indicating the equipment capacity of the resource supply equipment and the supply path are input, the supply / demand system model and Based on the equipment capability information, a formula group generating unit that generates a formula group consisting of a plurality of formulas representing the objective function and constraint conditions of the optimization problem for the supply and demand system represented by the supply and demand system model, and the formula group generating unit From the generated mathematical expression group, a first-order predicate logical expression generation unit that generates a first-order predicate logical expression, and a quantifier elimination method, the generated first-order predicate logical expression is processed, A limit symbol elimination unit that obtains a formula representing the relationship between the total demand in the resource
  • a second aspect of the present invention consumes energy for a resource supply facility for supplying resources, a resource consumer facility for demanding resources supplied from the resource supply facility, and a supply and demand system having a resource supply path.
  • An energy management support program for causing an information processing device to execute energy management support processing for supporting operation of equipment, wherein the equipment represents a supply and demand system model of the supply and demand system, the resource supply equipment, and the equipment capacity of the supply path
  • a formula group consisting of a plurality of formulas representing an objective function and constraint conditions of an optimization problem for the supply and demand system represented by the supply and demand system model is generated based on the supply and demand system model and the equipment capability information
  • a first-order predicate logical expression is generated from the generated mathematical formula group, and the generated first-order predicate logical expression is processed by the quantifier elimination method.
  • a third aspect of the present invention is the total demand amount in the resource consumer facility and the total energy consumption in the resource supply facility obtained as a result of processing in the limit symbol elimination unit in the visualization unit of the energy management support apparatus.
  • the actual value at the time of operation is further displayed, and the ideal operation using the conventional optimal operation technology The calculated value at the time is further displayed.
  • a partial total demand amount and a partial demand amount for some resources of the supply and demand system It is characterized by obtaining an expression representing the relationship with the total partial supply amount of resources.
  • FIG. 1 is a diagram for explaining an outline of a method for optimizing the operation of a supply facility for supplying resources by the energy management support apparatus according to the present invention.
  • the energy management support apparatus 1 includes a supply and demand system model M that represents how the supply and demand system is configured, and equipment capacity information C that represents the facility capacity of the supply facilities and supply paths in the supply and demand system.
  • the relationship between the total demand amount of the customer facility that demands the resource and the total energy consumption amount of the supply facility is output and displayed as a graph.
  • the user refers to the graph displayed and displayed to optimize the operation of the supply facility.
  • FIG. 2 is a configuration diagram of the energy management support apparatus 1 according to the present embodiment.
  • the energy management support apparatus 1 shown in FIG. 2 includes a formula group generation unit 11, a first-order predicate logical expression generation unit 12, a quantifier elimination unit 13, and a visualization unit 14, and is based on information input from the input / output device 5. Then, a graph representing the relationship between the demand amount in the customer facility and the energy consumption in the supply facility is created and output to the input / output device 5.
  • the energy management support device 1 receives the supply / demand system model M and the facility capacity information C of the supply system from the input / output device 5.
  • the information which the energy management assistance apparatus 1 receives from the input / output device 5 is demonstrated concretely.
  • FIG. 3 is a diagram illustrating the supply and demand system model M.
  • the supply and demand system model M in the case where two power generation facilities are provided will be described.
  • the user of the energy management support device 1 sets a supply and demand system model to be optimized through input means such as a keyboard and a pointing device of the input / output device 5. Specifically, the power generation amount in the power generation facility as the supply facility, the load amount in the load facility as the customer facility, the voltage phase of the bus directly connected to the power generation facility and the load facility, and the impedance of the line between the buses are set.
  • the power generation amount of the power generation facility 1 is P1 [MW]
  • the power generation amount of the power generation facility 2 is P2 [MW]
  • the load amount of the load facility is L [MW].
  • the voltage phase of the bus 1 directly connected to the power generation facility 1 is ⁇ 1 [rad]
  • the voltage phase of the bus 2 directly connected to the power generation facility 2 is ⁇ 2 [rad]
  • the voltage phase of the bus 3 directly connected to the load facility is ⁇ 3 [rad].
  • the impedances of the buses 1 to 3, 2 to 3, and 1 to 2 are j0.1 [pu], respectively.
  • the supply and demand system model M uses, for example, a specific configuration of the supply and demand system such as the number of installed power generation facilities and each physical quantity (P1, P2, ⁇ 1 to ⁇ 3, j0.1, etc.) in XML (Extensible Markup Language) format
  • the input / output device 5 may set the supply and demand system model M illustrated in FIG. 3 based on the input information. Or it is good also as a structure which a user draws the supply-and-demand system model M shown in FIG. 3 using software, such as Visio (trademark) and MATLAB (trademark).
  • FIG. 4 is a diagram illustrating the facility capacity information C of the supply system and the supply route.
  • the facility capability information C corresponding to the supply and demand system model M of FIG. 3 is illustrated.
  • the user of the energy management support device 1 sets the equipment capability information C through the input means of the input / output device 5 as in the case of the supply and demand system model M.
  • the equipment capability information C an equation or an inequality that represents the supply capability of the supply facility and the supply path, which is necessary for determining the objective function and the constraint condition of the optimization problem, is set.
  • the facility capacity information C sets an expression representing the fuel cost of each power generation facility and the upper limit of the tidal current between the buses.
  • the fuel cost C1 [$ / MWh] per hour of the power generation facility 1 is expressed by the following equation as a function of the power generation amount P1.
  • C1 (P1) 0.01P1 2 + 14P1 + 100 (1)
  • the fuel cost C2 [$ / MWh] per hour of the power generation facility 2 is expressed by the following equation as a function of the power generation amount P2.
  • C2 (P2) 0.02P2 2 + 16P2 + 80 (2)
  • the upper limit of the tidal current between the bus 1 and the bus 3 in FIG. 3 is expressed by the following inequality. ( ⁇ 1- ⁇ 3) /0.1 ⁇ 240/P0 (3)
  • P0 is the reference power in the supply system. From the condition that the power flow from the power generation facility 1 to the load facility ( ⁇ 1 ⁇ 3) /0.1 ⁇ P0 and the output distribution is performed so that this does not exceed the capacity 240 [MW] of the supply path, The inequality is obtained.
  • the facility capability information C allows the user to sequentially input the upper and lower limits of the supply of the power generation equipment that is the supply system, the energy consumption, and the upper and lower limits of the power flow of the bus that is the supply path.
  • a configuration may be adopted in which the formula shown in FIG. 4 is established using necessary information. Or it can also be set as the structure which makes a user input the formula shown in FIG. 4 directly.
  • the energy management support device 1 is configured to receive the supply / demand system model M in FIG. 3 and the facility capability information C in FIG. 4 from the input / output device 5, but is not limited thereto.
  • the energy management support device 1 sets the supply / demand system model M and the facility capability information C itself, and only receives information necessary for setting the supply / demand system model M and the facility capability information C from the input / output device 5. It can also be configured.
  • the energy management support apparatus 1 When the energy management support apparatus 1 receives the information illustrated in FIG. 3 or FIG. 4 from the input / output apparatus 5, the energy management support apparatus 1 sets the objective function and constraint conditions of the optimization problem based on the information, and from the set objective function and constraint conditions Generate a first order predicate formula. Then, by simplifying the generated first-order predicate logical expression by the quantifier elimination method, the total demand amount in the load facility (load amount L in the above example) and the total consumed energy in the power generation facility (in the above example, the fuel cost) And a graph is created. The created graph is output and displayed on the input / output device 5.
  • the formula group generation unit 11 represents the objective function and the constraint condition of the optimization problem for the set supply and demand system model from the information input via the input / output device 5 as illustrated in FIGS. 3 and 4. Generate a mathematical expression group consisting of a plurality of mathematical expressions.
  • FIG. 5 is a diagram illustrating a formula group generated by the formula group generation unit 11 in the present embodiment.
  • the mathematical formula group including the objective function of the optimization problem and the formula representing the definition is referred to as a “first mathematical formula group”, and the formula representing the constraint condition of the optimization problem is used.
  • the following formula group will be described as a “second formula group”.
  • the first mathematical formula group is a total value of the fuel costs of the power generation facilities 1 and 2 in FIG. 3, a function E (objective function Obj1) representing the total cost, and a variable C1 (P1) included in E , C2 (P2).
  • the objective function Obj1 is defined by the total fuel cost of the power generation facilities 1 and 2, it is expressed by the following equation.
  • the objective function Obj1 is generated from the supply and demand system model M among the information input via the input / output device 5.
  • the formula generated from the supply and demand system model M is shown with (*) mark.
  • the second mathematical formula group shows the supply capacity for each of the two power generation facilities (power generation facilities 1 and 2) and the two supply paths (bus 1 to bus 3, bus 2 to bus 3) in FIG. It consists of a group of mathematical expressions to be defined. In the example shown in FIG. 5, it is comprised from the numerical formula group which defines the power generation capability of each power generation equipment, supply-and-demand balance, and a tidal current.
  • the first to third constraints Rst1 to Rst3 are derived from the fact that the sum of the currents flowing into the buses of the supply and demand system is zero according to Kirchhoff's first law. Specifically, Rst1 to Rst3 represent the sum of currents flowing into the buses 1 to 3, respectively, and are expressed as follows. As indicated by (*) in FIG. 5, the first to third constraint conditions Rst1 to Rst3 are generated from the supply and demand system model M illustrated in FIG.
  • the constraint condition Rst4 determined from the upper limit of the tidal current between the bus 1 and the bus 3 is the same as the equation (3) described above with reference to FIG. 4, and the above equation (3) is the facility of FIG. According to the tidal upper limit of capability information C.
  • the constraint conditions Rst5 to Rst7 are generated based on the fact that the power generation amount of the power generation facilities 1 and 2 and the load amount of the load facility are not negative. Specifically, using the variables P1, P2, and L input from the input / output device 5, the following equations are generated respectively.
  • Rst5: P1 ⁇ 0
  • Rst6: P2 ⁇ 0
  • Rst7: L ⁇ 0
  • Cnt1 and Cnt2 representing the conditions of the reference voltage P0 and the bus 3
  • formulas representing the reference voltage and the voltage phase of the bus 3 are generated, respectively.
  • the following equations are generated using the variables P0 and ⁇ 3 input from the input / output device 5.
  • the first-order predicate logical expression generation unit 12 combines the first and second mathematical expression groups in FIG. 5 to generate a first-order predicate logical expression.
  • FIG. 6 is a diagram illustrating the first-order predicate logical expression generated by the first-order predicate logical expression generation unit 12 in the present embodiment.
  • the formula group generation unit 11 of the energy management support apparatus 1 is configured to supply and supply system model M input through the input / output device 5 and the facility capability information of the supply facility and the supply route. From C, first and second mathematical formula groups are generated. The first and second mathematical formula groups represent the objective function and constraint conditions of the optimization problem, respectively.
  • the first-order predicate logical expression generation unit 12 enables operation of a supply system that satisfies the total demand amount (load amount L) of the load facility from the first and second mathematical expression groups representing the objective function and the constraint condition. A condition is derived, and thereby a relationship between L and the total energy consumption (total cost E) is obtained.
  • the first-order predicate logical expression generation unit 12 combines the first mathematical expression group representing the objective function and the second mathematical expression group representing the constraint condition by the logical product “ ⁇ ”. Then, an existence symbol “ ⁇ ” indicating that the variables P0, P1, P2, ⁇ 1, ⁇ 2, and ⁇ 3 indicating the state of the supply system exist is assigned.
  • the expression (a) in FIG. 6 is a first-order predicate logical expression generated in this way.
  • the quantifier elimination unit 13 obtains an expression in which the quantifier included in the logical expression generated by the first-order predicate logical expression generation unit 12 is deleted.
  • the formula processing method by the limit symbol erasing unit 13 will be specifically described with reference to FIG.
  • FIG. 7 is a diagram for explaining the processing of the first-order predicate logical expression performed by the quantifier elimination unit 13 in the present embodiment.
  • the limit symbol erasing unit 13 deletes the limit symbol from the equation (b) in FIG. 6, and calculates the total demand amount, the load amount L in the above example, the total energy consumption amount, and the total cost E in the above example. Get the relational expression. Since the method of deleting the quantifier from the first-order predicate logical expression such as the expression (b) in FIG. 6 is a known technique, the details thereof are omitted here.
  • the visualization unit 14 graphs the relationship between the total demand amount (load amount L) in the load facility and the total energy consumption (total cost E) in the power generation facility from the formula ans1 of FIG. 7 obtained by the limit symbol elimination unit 13. Then, the output means such as
  • FIG. 8 is a diagram illustrating an example of a graph output from the visualization unit 14 to the input / output device 5 in the present embodiment.
  • FIG. 8 illustrates a case where the mathematical formula of FIG. 7 obtained by solving the formula (b) of FIG. 6 is graphed.
  • the horizontal axis is the load amount L [MW] of the load facility in FIG. 3, and the vertical axis is the total fuel cost E (P1, P2) [$ / MWh] of the power generation facilities 1 and 2 in FIG. is there.
  • the first order predicate logical expression is generated from the objective function and the constraint condition of the optimization problem, and the quantifier is deleted from the generated logical expression,
  • the relationship between the load amount L (total demand amount) of the load facility and the total fuel cost, that is, the total cost E (total energy consumption in the power generation facility) is output and displayed as a graph.
  • the first-order predicate logical expression represents the state of the supply system by combining the first and second mathematical formula groups with a logical product so that a condition for enabling the operation of the supply system satisfying the load L is derived. Creates a variable with an existence symbol.
  • the load amount L of the load facility and the total energy consumption E (total cost) of the power generation facility are changed by changing the input information. It is different in that the change in the relationship between the two can be confirmed.
  • FIG. 9 is a diagram showing another example of the supply and demand system model M. As shown in FIG. 9, three power generation facilities are provided, and a supply facility and a supply route are added to the supply and demand system model of FIG.
  • the power generation facility 3 is added, the power generation amount is P3 [MW], the voltage phase of the bus 4 directly connected to the power generation facility 3 is ⁇ 4 [rad], and the impedances of the buses 3 to 4 are j0. 1 [pu].
  • the energy management support apparatus 1 temporarily stores the graph of FIG. 8 or the formula ans1 of FIG. 7 in a memory or the like, generates a formula group based on the changed information, Build a first-order predicate formula. Then, a graph is output from an expression obtained by processing the first order predicate logical expression by the quantifier elimination method, and can be compared with the graph of FIG.
  • FIG. 10 is a diagram illustrating facility capacity information C corresponding to the supply and demand system model M of FIG.
  • the fuel cost C3 per hour of the power generation facility 3 is expressed by the following formula as a function of the power generation amount P3 of the power generation facility 3.
  • C3 (P3) 0.01P3 2 + 18P3 + 60
  • the upper limit of the tidal current between the bus 3 and the bus 4 is expressed by the following inequality. ( ⁇ 4- ⁇ 3) /0.1 ⁇ 240/P0
  • the other three equations are as described with reference to FIG.
  • the energy management support apparatus 1 When the energy management support apparatus 1 receives the input of the supply and demand system model M in FIG. 9 and the facility capability information C in FIG. 10 from the input / output device 5, the energy management support apparatus 1 executes the same processing as in the above embodiment. That is, the objective function and constraint conditions of the optimization problem are set according to the input information, a first-order predicate logical expression is generated from the set objective function and constraint conditions, and this is processed by the quantifier elimination method. . Thereby, the relationship between the load amount L (total demand amount) in the load facility and the total cost E (total energy consumption) in the power generation facility is obtained, a graph is created, and output is displayed on the input / output device 5.
  • FIG. 11 is a diagram illustrating a formula group generated by the formula group generation unit 11 in the present embodiment.
  • a mathematical expression group consisting of an expression representing an objective function of an optimization problem and a definition related thereto and a mathematical expression group consisting of an expression representing a constraint condition are defined as a first mathematical expression group and a second mathematical expression group, respectively.
  • the total value of the fuel cost of the power generation facility is set as the total cost E, and this is set as the objective function Obj1 as in the above embodiment.
  • the cost C3 (P3) of the added power generation facility 3 is added to the objective function Obj1.
  • the generation of the objective function Obj1 from the supply and demand system model M in FIG. 9 is the same as in the above embodiment. Also in FIG. 11, formulas generated from the supply and demand system model M are indicated with (*) marks.
  • C1 (P1), C2 (P2) and C3 (P3) included in the objective function Obj1 the definitions of C1 (P1) and C2 (P2) are the same as in the above embodiment.
  • C3 (P3) is added.
  • Formulas representing these variables are set from the equipment capability information C.
  • C2 (P2) 0.02P2 2 + 16P2 + 80
  • C3 (P3) 0.01P3 2 + 18P3 + 60
  • the mathematical formulas modified with respect to the second mathematical formula group generated in the above embodiment are the constraint conditions Rst2 and Rst3. , Rst4, Rst6 and Rst9.
  • the other mathematical expressions are the same as the mathematical expressions generated in the above-described embodiment of FIG.
  • the second and fourth constraint conditions Rst2 and Rst4 are derived when the sum of the currents flowing into the buses 2 and 4 is zero, respectively.
  • the third term for the corresponding constraint conditions Rst2 and Rst3 in FIG. Has been added.
  • the constraint condition Rst3 is derived from the fact that the sum of the currents flowing into the bus 4 directly connected to the added power generation facility 3 is zero, and is a constraint condition newly added to the mathematical formula group of FIG. Specifically, it is expressed as follows.
  • the constraint condition Rst6 is expressed by the following inequality by the upper limit of the tidal current between the bus 4 and the bus 3 in FIG. Note that the constraint condition Rst5 due to the upper limit of the flow between the bus 1 and the bus 3 is the same as the fourth constraint Rst4 in FIG.
  • the constraint conditions Rst7 and Rst8 are the same as the fifth and sixth constraint conditions Rst5 and Rst6 in FIG.
  • a constraint condition Rst9 is added as a conditional expression based on the fact that the power generation amount of the power generation facility is not negative.
  • Rst9: P3 ⁇ 0 Note that the constraint condition Rst10 due to the fact that the load amount of the load facility is not negative is the same as the seventh constraint condition Rst7 in FIG.
  • Constraint conditions Cnt1 and Cnt2 representing the conditions of the reference voltage P0 and the bus 3 are the same as the constraint conditions Cnt1 and Cnt2 shown in FIG.
  • the first-order predicate logical expression generation unit 12 of the energy management support device 1 generates a first-order predicate logical expression from the mathematical formula group of FIG.
  • FIG. 12 is a diagram illustrating the first-order predicate logical expression generated by the first-order predicate logical expression generation unit 12 in the present embodiment.
  • the first-order predicate logical expression generation unit 12 derives a condition that enables operation of the supply system so as to satisfy the load amount L of the load facility, from the first and second mathematical expression groups, similarly to the above-described embodiment. Thereby, the relationship between L and total energy consumption (total cost E) is obtained.
  • the first mathematical expression group representing the objective function and the second mathematical expression group representing the constraint condition are combined with the logical product “ ⁇ ” to represent the state of the supply system.
  • An existence symbol “ ⁇ ” indicating that a variable exists is assigned.
  • the expression (c) in FIG. 12 is a first-order predicate logical expression generated in this way.
  • the first-order predicate logical expression ⁇ is expressed by the expression (d) It is expressed in Similar to the above embodiment, in the formula (d), for convenience, the denominator is paid for each of the formula group in FIG. .
  • the quantifier elimination unit 13 obtains a symbol obtained by erasing the quantifier included in the first-order predicate logical expression ⁇ shown in FIG.
  • FIG. 13 is a diagram for explaining processing of the first-order predicate logical expression performed by the quantifier elimination unit 13 in the present embodiment.
  • FIG. 13 shows ans1 obtained by erasing the quantifier from the formula (d) of FIG. 12 using a known technique by the quantifier elimination method.
  • a relational expression between the load amount L of the load facility and the total cost E of the supply facility is obtained.
  • the relational expression ans1 between L and E will be omitted here for the sake of simplicity.
  • the visualization unit 14 obtains the relationship between the total demand amount (load amount L) in the load facility and the total energy consumption (total cost E) in the power generation facility from the formula in FIG. 13 obtained by the limit symbol elimination unit 13. Is used as a graph and output and displayed on output means such as a monitor of the input / output device 5.
  • FIG. 14 is a diagram illustrating an example of a graph output from the visualization unit 14 to the input / output device 5 in the present embodiment.
  • the horizontal axis represents the load amount L [MW] of the load facility, and the vertical axis represents the total fuel cost E [$ / MWh] per hour of the power generation facility.
  • the load amount L that can be supplied to the load facility by the power generation facility as the supply system is 700 [MW] in FIG. When added, it can be seen that it increases to 950 [MW].
  • the lower limit of the total cost E is lower than that in FIG.
  • the lower limit of the total cost E is 1400 [MW] in the case of two power generation facilities in FIG. 8, whereas the power generation facility in FIG. In the case of three units, it is 1200 [MW].
  • the range of the total cost E is wider than that in FIG.
  • the total cost can vary greatly compared to the case where there are two power generation facilities.
  • the graph shown in FIG. 8 is temporarily held in a storage unit such as a memory, and the visualization unit 14 arranges the graph shown in FIG. It is good also as a structure output-displayed on a monitor etc.
  • a means for making it easier for the user of the energy management support apparatus 1 to make a comparative study between the case where the power generation facility is composed of two units and the case where the power generation facility is composed of three units can be provided.
  • the relationship between the load amount (total demand amount) L of the load facility and the total fuel cost, that is, the total cost (total energy consumption in the power generation facility) E Display output as a graph.
  • a graph corresponding to the newly input information is created and displayed.
  • the previously created graph may be temporarily stored and compared with this.
  • a first-order predicate logical expression is generated from the input supply and demand system model M and facility capacity information C, and this is processed by the quantifier elimination method.
  • the graph showing the relationship between L and the total energy consumption E (total cost) of the power generation equipment is output.
  • the present embodiment is different in that the actual operation value and the calculated value by the conventional optimum operation are further displayed.
  • FIG. 15 is a diagram for explaining an outline of a method for optimizing the operation of a supply facility for supplying resources by the energy management support apparatus according to the present invention.
  • data representing the operation result value and the calculated value by the conventional optimum operation is input to the energy management support apparatus.
  • FIG. 16 is a configuration diagram of the energy management support apparatus 1 according to the present embodiment.
  • a measuring apparatus 20 and an optimum operation apparatus 21 are shown.
  • the input / output device 5 Based on the result information input from the measuring device 20 and the calculated value input from the optimum operation device 21, the input / output device 5 outputs the operation result value / calculated value D to the energy management support device 1.
  • FIG. 17 is a diagram illustrating an example of a graph output from the visualization unit 14 to the input / output device 5 in the present embodiment.
  • the relationship between the load amount (total demand amount) L of the load facility and the total fuel cost, that is, the total cost (total energy consumption in the power generation facility) E is output as a graph.
  • the operation result value / calculated value D data input from the input / output device 5 are plotted in an overlapping manner.
  • the operation result value is plotted with a circle and the calculated value is plotted with a cross mark. Since the calculated value is lower than the operation result value at the same load amount L, it can be said that optimization (energy saving) is achieved.
  • the current operation results and the calculated value when optimization (energy saving) is achieved by the conventional optimum operation technology are compared with the theoretically possible area. Based on this, it becomes easy to evaluate the validity of the optimization (energy saving) effect.
  • the energy management support apparatus 1 compares the current operation results with theoretically possible areas before operating the optimum operation apparatus, and determines in advance whether there is room for improvement for energy saving. By examining it, it is possible to support a user who determines whether or not to introduce the optimum operation technology.
  • the energy management support apparatus 1 shows how good the ideal operation obtained by the conventional optimum operation technology is after the operation of the optimum operation device compared to the conventional operation.
  • ⁇ Fourth Embodiment> In the above, the total demand and total supply of resources in the supply and demand system were visualized, but the partial total demand for some resources in the supply and demand system and the partial supply for some resources. An expression expressing the relationship with the total supply amount can also be obtained. For example, in FIG.
  • visualization can be performed by generating a first-order predicate logical expression and applying the quantifier elimination method. Specifically, in the equipment capacity information C, a constraint condition that the supply amount of a specific facility is a fixed value is provided, and a variable indicating the total supply amount of the remaining two units is set as the total cost E. .
  • the energy management support apparatus 1 performs visualization for optimization of the supply system that supplies power
  • the present invention is not limited to this.
  • the above-described method can be applied to a supply system that supplies resources such as hot and cold heat, steam, and gas.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, all the constituent elements shown in the embodiments may be appropriately combined. Furthermore, constituent elements over different embodiments may be appropriately combined. It goes without saying that various modifications and applications are possible without departing from the spirit of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present invention provides a means which can be widely and effectively uti lized when efficient operation of a resource supply facility is considered. An energy management assist device (1), wherein a numerical expression group generation unit (11) generates, upon input of a supply-and-demand system model (M) and facility capacity information (C) representing the facility capacity of a power generation facility and a supply channel, a numerical expression group comprising a plurality of numerical expressions representing the objective function and the constraint condition of an optimization problem regarding a supply-and-demand system represented by the supply-and-demand system model (M), the numerical expression group being generated on the basis of the supply-and-demand system model (M) and the facility capacity information (C). A first-order predicate logic expression generation unit (12) generates a first-order predicate logic expression from the numerical expression group generated by the numerical expression group generation unit (11). A quantifier elimination unit (13) processes the generated first-order predicate logic expression by a quantifier elimination method to obtain an expression representing the relationship between a load amount (L) in a load facility and the total energy consumption (E) in the power generation facility. A visualization unit (14) visualizes the relational expression obtained as the result of processing by the quantifier elimination unit (13).

Description

エネルギーマネジメント支援装置及びエネルギーマネジメント支援プログラムEnergy management support device and energy management support program
 本発明は、電力、ガス等の資源を供給する資源供給設備と資源を需要する資源需要家設備とを有する需給系統を対象として、エネルギーを供給する設備の運転を支援する技術に関する。 The present invention relates to a technology for supporting the operation of a facility for supplying energy for a supply and demand system having a resource supply facility for supplying resources such as electric power and gas and a resource consumer facility for demanding resources.
 従来より、システム制御や回路解析等の問題を一階述語論理式で表現すること、また、これを解くことで、システムの最適化を図る技術が知られている(例えば、非特許文献1)。 2. Description of the Related Art Conventionally, a technique for optimizing a system by expressing a problem such as system control and circuit analysis by a first-order predicate logical expression and solving this is known (for example, Non-Patent Document 1). .
 具体的には、全称記号(∀)や存在記号(∃)で表される限定記号と、他変数の多項式の等式や不等式を積(∧)や和(∨)で表される論理記号とを用いて結合した論理式を組み合わせて、一階述語論理式を得る。論理式に現れる変数のうち、限定記号で束縛される変数を束縛変数と呼び、限定記号で束縛されない変数を自由変数と呼ぶ。一階述語論理式のうち、束縛変数を消去して、自由変数が満たすべき論理式を導くことで、最適化を図る。 Specifically, a quantifier represented by a universal symbol (∀) or an existence symbol (∃), and a logical symbol represented by a product (∧) or a sum (∨) of a polynomial equality or inequality of other variables The first order predicate logical expressions are obtained by combining the logical expressions combined using. Among variables appearing in a logical expression, a variable bound by a quantifier is called a bound variable, and a variable not bound by a quantifier is called a free variable. In the first order predicate logical expression, optimization is achieved by eliminating the bound variable and deriving a logical expression that the free variable should satisfy.
 公知の技術として、限定記号消去法を用いて制御系設計や制御系解析を行う技術についても開示されている(例えば、特許文献1)。これによれば、制御系解析・設計装置は、入力された制御の問題に対し、線形行列不等式(LMI)または双線形行列不等式(BMI)として定式化する。そして、LMIまたはBMIとして表現された設計仕様等の制約を、不等式を論理和でつなげた形の制約に変形して、制御系を一階述語論理式に変換し、限定記号の付いた変数を消去した式から、制御系を解析する。 As a known technique, a technique for performing control system design and control system analysis using a limit symbol elimination method is also disclosed (for example, Patent Document 1). According to this, the control system analysis / design apparatus formulates the input control problem as a linear matrix inequality (LMI) or a bilinear matrix inequality (BMI). Then, the constraints such as the design specifications expressed as LMI or BMI are transformed into constraints of the form in which inequalities are connected with logical sums, the control system is converted into a first-order predicate logical expression, and the variable with the quantifier is The control system is analyzed from the deleted formula.
 特に、電力系統の運用を最適化する技術については、最適潮流計算が一般的に知られている(例えば、非特許文献2)。最適潮流計算によれば、発電設備と負荷設備が供給経路で結ばれている供給系統において、負荷設備の負荷に応じて、発電設備が消費する燃料費を最小にしつつ所望の電力を発生させるための最適化を行う。 In particular, as for the technology for optimizing the operation of the electric power system, optimal power flow calculation is generally known (for example, Non-Patent Document 2). According to the optimal power flow calculation, in a supply system in which the power generation equipment and the load equipment are connected by a supply path, the desired power is generated while minimizing the fuel cost consumed by the power generation equipment according to the load of the load equipment. Perform optimization.
特開平11-328239号公報JP 11-328239 A
 従来技術によれば、現存する供給系統について、どのように運用すれば最適化を図ることができるかを求めることは可能である。すなわち、従来技術は、具体的に資源供給設備やその能力が設定されている場合の最適化技術である。言い換えると、従来技術は、資源供給設備を効率的に運用するには、各設備の能力としてはどの程度とすべきか、あるいは、需給系統をどのような構成とすべきか、といった問題を検討する際には有効に活用することができない。 According to the prior art, it is possible to determine how the existing supply system can be optimized. That is, the prior art is an optimization technique when resource supply facilities and their capacities are specifically set. In other words, in the conventional technology, in order to efficiently operate the resource supply equipment, when examining the problems such as how much capacity each equipment should have or how the supply and demand system should be configured Cannot be used effectively.
 さらに、従来の最適運用術を導入する前には、通常事前の検討が必要だが、現状の運用実績がどの程度であり、より省エネルギーのための改善の余地があるか予め知る手段がなく、導入すべきか否かの判断が困難であり、投資対効果の面でリスクがあった。
さらに、従来の最適運用技術によって求められた理想的な運用が、従来の運用と比べて、どれほど良い結果なのかを評価する際、差や改善割合などで評価する方法はあったが、その差や改善割合がどれほど妥当なものなのかを客観的に評価することは困難である。例えば、改善割合が0.01%未満など不十分である場合に、従来の最適運用技術に不備があるためなのか、需給系統の運用限界によるためなのか、切り分けることは困難である。
In addition, prior to the introduction of conventional optimal operation techniques, it is usually necessary to consider in advance, but there is no way to know in advance how much the current operation results are and there is room for improvement for further energy saving. It was difficult to determine whether or not to do so, and there was a risk in terms of return on investment.
Furthermore, when evaluating how good the ideal operation required by the conventional optimal operation technology is compared to the conventional operation, there was a method of evaluating by difference or improvement ratio, etc. It is difficult to objectively evaluate how reasonable the improvement rate is. For example, when the improvement rate is insufficient, such as less than 0.01%, it is difficult to determine whether the conventional optimal operation technique is deficient or due to the operation limit of the supply and demand system.
 本発明は、資源供給設備の効率的な運用を検討する際に広く有効に活用することのできる手段を提供することを目的とする。 The object of the present invention is to provide a means that can be widely used effectively when considering the efficient operation of resource supply facilities.
 本発明の第1の観点は、資源を供給する資源供給設備、該資源供給設備から供給される資源を需要する資源需要家設備及び資源の供給経路を有する需給系統を対象として、エネルギーを消費する設備の運転を支援するエネルギーマネジメント支援装置であって、前記需給系統の需給系統モデルと、前記資源供給設備及び前記供給経路の設備能力を表す設備能力情報が入力されると、該需給系統モデル及び設備能力情報に基づいて、該需給系統モデルが表す需給系統についての最適化問題の目的関数及び制約条件を表す複数の数式からなる数式群を生成する数式群生成部と、前記数式群生成部において生成した数式群より、一階述語論理式を生成する一階述語論理式生成部と、限定記号消去法より、前記生成した一階述語論理式を処理して、前記資源需要家設備における総需要量と前記資源供給設備における総消費エネルギーとの関係を表す式を得る限定記号消去部と、前記限定記号消去部において処理した結果得られる関係式を可視化する可視化部と、を有することを特徴とする。 A first aspect of the present invention consumes energy for a resource supply facility for supplying resources, a resource consumer facility for demanding resources supplied from the resource supply facility, and a supply and demand system having a resource supply path. An energy management support device for supporting the operation of equipment, wherein when the supply / demand system model of the supply / demand system and the equipment capacity information indicating the equipment capacity of the resource supply equipment and the supply path are input, the supply / demand system model and Based on the equipment capability information, a formula group generating unit that generates a formula group consisting of a plurality of formulas representing the objective function and constraint conditions of the optimization problem for the supply and demand system represented by the supply and demand system model, and the formula group generating unit From the generated mathematical expression group, a first-order predicate logical expression generation unit that generates a first-order predicate logical expression, and a quantifier elimination method, the generated first-order predicate logical expression is processed, A limit symbol elimination unit that obtains a formula representing the relationship between the total demand in the resource consumer equipment and the total energy consumption in the resource supply facility, and a visualization unit that visualizes the relational expression obtained as a result of processing in the limit symbol elimination unit It is characterized by having.
 本発明の第2の観点は、資源を供給する資源供給設備、該資源供給設備から供給される資源を需要する資源需要家設備及び資源の供給経路を有する需給系統を対象として、エネルギーを消費する設備の運転を支援するエネルギーマネジメント支援処理を情報処理装置に実行させるためのエネルギーマネジメント支援プログラムであって、前記需給系統の需給系統モデルと、前記資源供給設備及び前記供給経路の設備能力を表す設備能力情報が入力されると、該需給系統モデル及び設備能力情報に基づいて、該需給系統モデルが表す需給系統についての最適化問題の目的関数及び制約条件を表す複数の数式からなる数式群を生成し、前記生成した数式群より、一階述語論理式を生成し、限定記号消去法より、前記生成した一階述語論理式を処理して、前記資源需要家設備における総需要量と前記資源供給設備における総消費エネルギーとの関係を表す式を得、前記限定記号消去部において処理した結果得られる関係式を可視化する、ことを特徴とする。 A second aspect of the present invention consumes energy for a resource supply facility for supplying resources, a resource consumer facility for demanding resources supplied from the resource supply facility, and a supply and demand system having a resource supply path. An energy management support program for causing an information processing device to execute energy management support processing for supporting operation of equipment, wherein the equipment represents a supply and demand system model of the supply and demand system, the resource supply equipment, and the equipment capacity of the supply path When capability information is input, a formula group consisting of a plurality of formulas representing an objective function and constraint conditions of an optimization problem for the supply and demand system represented by the supply and demand system model is generated based on the supply and demand system model and the equipment capability information Then, a first-order predicate logical expression is generated from the generated mathematical formula group, and the generated first-order predicate logical expression is processed by the quantifier elimination method. Obtaining a formula representing the relationship between the total demand in the resource consumer equipment and the total energy consumption in the resource supply equipment, and visualizing the relational expression obtained as a result of processing in the limit symbol elimination unit And
 本発明の第3の観点は、前記エネルギーマネジメント支援装置の前記可視化部において、前記限定記号消去部において処理した結果得られる、前記資源需要家設備における総需要量と前記資源供給設備における総消費エネルギーとの関係を表す式の可視化結果に加え、前記資源需要家設備における総需要量と前記資源供給設備における総消費エネルギーについて運用時の実績値をさらに表示し、また従来の最適運用技術による理想運用時の計算値をさらに表示することを特徴とする。 A third aspect of the present invention is the total demand amount in the resource consumer facility and the total energy consumption in the resource supply facility obtained as a result of processing in the limit symbol elimination unit in the visualization unit of the energy management support apparatus. In addition to the visualization result of the expression that expresses the relationship between the total demand amount and the total energy consumption of the resource supply facility, the actual value at the time of operation is further displayed, and the ideal operation using the conventional optimal operation technology The calculated value at the time is further displayed.
 本発明の第4の観点は、前記エネルギーマネジメント支援装置の前記一階述語論理式生成部および前記限定記号消去部において前記需給系統の一部の資源についての部分的な需要量合計と一部の資源についての部分的な供給量合計との関係を表す式を得ることを特徴とする。 According to a fourth aspect of the present invention, in the first-order predicate logical expression generation unit and the quantifier elimination unit of the energy management support device, a partial total demand amount and a partial demand amount for some resources of the supply and demand system It is characterized by obtaining an expression representing the relationship with the total partial supply amount of resources.
 本発明によれば、資源供給設備の効率的な運用を検討する際に広く有効に活用することのできる技術が提供される。 According to the present invention, there is provided a technology that can be widely and effectively used when considering efficient operation of resource supply facilities.
エネルギーマネジメント支援装置により資源供給設備の運用の最適化を図る方法の概要を説明する図である。It is a figure explaining the outline | summary of the method of optimizing operation | use of a resource supply facility by an energy management assistance apparatus. 第1の実施形態に係るエネルギーマネジメント支援装置の構成図である。It is a block diagram of the energy management assistance apparatus which concerns on 1st Embodiment. 需給系統モデルを例示する図である。It is a figure which illustrates a supply-and-demand system model. 図3の需給系統モデルに対応する設備能力情報を例示する図である。It is a figure which illustrates the equipment capability information corresponding to the supply-and-demand system model of FIG. 第1の実施形態において数式群生成部が生成する数式群を例示する図である。It is a figure which illustrates the numerical formula group which a numerical formula group production | generation part produces | generates in 1st Embodiment. 第1の実施形態において一階述語論理式生成部が生成する一階述語論理式について説明する図である。It is a figure explaining the first order predicate logical expression which a first order predicate logical expression generation part generates in a 1st embodiment. 第1の実施形態において限定記号消去部が行う一階述語論理式の処理について説明する図である。It is a figure explaining the process of the first order predicate logic formula which a quantifier elimination part performs in 1st Embodiment. 第1の実施形態において可視化部が出力するグラフの例を示す図である。It is a figure which shows the example of the graph which a visualization part outputs in 1st Embodiment. 需給系統モデルの他の例を示す図である。It is a figure which shows the other example of a supply-and-demand system model. 図9の需給系統モデルに対応する設備能力情報を例示する図である。It is a figure which illustrates the equipment capability information corresponding to the supply-and-demand system model of FIG. 第2の実施形態において数式群生成部が生成する数式群を例示する図である。It is a figure which illustrates the numerical formula group which a numerical formula group production | generation part produces | generates in 2nd Embodiment. 第2の実施形態において一階述語論理式生成部が生成する一階述語論理式について説明する図である。It is a figure explaining the first order predicate logical expression which a first order predicate logical expression generation part generates in a 2nd embodiment. 第2の実施形態において限定記号消去部が行う一階述語論理式の処理について説明する図である。It is a figure explaining the process of the 1st-order predicate logical formula which the quantifier elimination part in 2nd Embodiment performs. 第2の実施形態において可視化部出力するグラフの例を示す図である。It is a figure which shows the example of the graph output in a visualization part in 2nd Embodiment. 第3の実施形態においてエネルギーマネジメント支援装置により資源供給設備の運用の最適化を図る方法の概要を説明する図である。It is a figure explaining the outline | summary of the method of optimizing operation | use of a resource supply equipment with an energy management assistance apparatus in 3rd Embodiment. 第3の実施形態に係るエネルギーマネジメント支援装置の構成図である。It is a block diagram of the energy management assistance apparatus which concerns on 3rd Embodiment. 第3の実施形態において可視化部出力するグラフの例を示す図である。It is a figure which shows the example of the graph output in a visualization part in 3rd Embodiment.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明に係るエネルギーマネジメント支援装置により、資源を供給する供給設備の運用の最適化を図る方法の概要を説明する図である。図1に示すとおり、エネルギーマネジメント支援装置1は、需給系統がどのように構成されているかを表す需給系統モデルMと、需給系統のうち、供給設備や供給経路の設備能力を表す設備能力情報Cとから、資源を需要する需要家設備の総需要量と供給設備の総消費エネルギー量との関係をグラフにして出力表示する。利用者は、出力表示されるグラフを参照して、供給設備の運用の最適化を図る。 FIG. 1 is a diagram for explaining an outline of a method for optimizing the operation of a supply facility for supplying resources by the energy management support apparatus according to the present invention. As shown in FIG. 1, the energy management support apparatus 1 includes a supply and demand system model M that represents how the supply and demand system is configured, and equipment capacity information C that represents the facility capacity of the supply facilities and supply paths in the supply and demand system. Thus, the relationship between the total demand amount of the customer facility that demands the resource and the total energy consumption amount of the supply facility is output and displayed as a graph. The user refers to the graph displayed and displayed to optimize the operation of the supply facility.
 以下に、図1のエネルギーマネジメント支援装置1について、資源として電力を需要・供給する需給系統を対象として最適化を図る場合を例に、具体的に説明する。
<第1の実施形態>
 図2は、本実施形態に係るエネルギーマネジメント支援装置1の構成図である。図2に示すエネルギーマネジメント支援装置1は、数式群生成部11、一階述語論理式生成部12、限定記号消去部13及び可視化部14を有し、入出力装置5から入力された情報に基づき、需要家設備における需要量と供給設備における消費エネルギーとの関係を表すグラフを作成し、入出力装置5に出力する。
Hereinafter, the energy management support device 1 in FIG. 1 will be specifically described by taking as an example a case where optimization is aimed at a supply and demand system that supplies and supplies power as a resource.
<First Embodiment>
FIG. 2 is a configuration diagram of the energy management support apparatus 1 according to the present embodiment. The energy management support apparatus 1 shown in FIG. 2 includes a formula group generation unit 11, a first-order predicate logical expression generation unit 12, a quantifier elimination unit 13, and a visualization unit 14, and is based on information input from the input / output device 5. Then, a graph representing the relationship between the demand amount in the customer facility and the energy consumption in the supply facility is created and output to the input / output device 5.
 エネルギーマネジメント支援装置1は、入出力装置5から、需給系統モデルM及び供給系統の設備能力情報Cを受け付ける。まず、図3及び図4を参照して、エネルギーマネジメント支援装置1が入出力装置5から受け付ける情報について、具体的に説明する。 The energy management support device 1 receives the supply / demand system model M and the facility capacity information C of the supply system from the input / output device 5. First, with reference to FIG.3 and FIG.4, the information which the energy management assistance apparatus 1 receives from the input / output device 5 is demonstrated concretely.
 図3は、需給系統モデルMを例示する図である。ここでは、発電設備を2基備える場合の需給系統モデルMについて説明する。 FIG. 3 is a diagram illustrating the supply and demand system model M. Here, the supply and demand system model M in the case where two power generation facilities are provided will be described.
 エネルギーマネジメント支援装置1の利用者は、入出力装置5のキーボードやポインティングデバイス等の入力手段を通じて、最適化の対象となる需給系統モデルを設定する。具体的には、供給設備である発電設備における発電量、需要家設備である負荷設備の負荷量、発電設備や負荷設備に直結する母線の電圧位相及び母線間の線路のインピーダンスを設定する。 The user of the energy management support device 1 sets a supply and demand system model to be optimized through input means such as a keyboard and a pointing device of the input / output device 5. Specifically, the power generation amount in the power generation facility as the supply facility, the load amount in the load facility as the customer facility, the voltage phase of the bus directly connected to the power generation facility and the load facility, and the impedance of the line between the buses are set.
 図3に示す例では、発電設備1の発電量をP1[MW]、発電設備2の発電量をP2[MW]、負荷設備の負荷量をL[MW]とする。発電設備1に直結する母線1の電圧位相をθ1[rad]、発電設備2に直結する母線2の電圧位相をθ2[rad]、負荷設備に直結する母線3の電圧位相をθ3[rad]とする。そして、母線1~母線3、母線2~母線3、母線1~母線2の線路のインピーダンスを、それぞれj0.1[pu]とする。 In the example shown in FIG. 3, the power generation amount of the power generation facility 1 is P1 [MW], the power generation amount of the power generation facility 2 is P2 [MW], and the load amount of the load facility is L [MW]. The voltage phase of the bus 1 directly connected to the power generation facility 1 is θ1 [rad], the voltage phase of the bus 2 directly connected to the power generation facility 2 is θ2 [rad], and the voltage phase of the bus 3 directly connected to the load facility is θ3 [rad]. To do. The impedances of the buses 1 to 3, 2 to 3, and 1 to 2 are j0.1 [pu], respectively.
 需給系統モデルMは、例えば、XML(Extensible Markup Language)形式により、発電設備の設置基数等の需給系統の具体的な構成や各物理量(P1、P2、θ1~θ3、j0.1等)を利用者が順に設定していき、入力された情報に基づき、入出力装置5が図3に示す需給系統モデルMを作図する構成としてもよい。あるいは、Visio(登録商標)やMATLAB(登録商標)等のソフトウェアを利用して、利用者が図3に示す需給系統モデルMを作図する構成としてもよい。 The supply and demand system model M uses, for example, a specific configuration of the supply and demand system such as the number of installed power generation facilities and each physical quantity (P1, P2, θ1 to θ3, j0.1, etc.) in XML (Extensible Markup Language) format Alternatively, the input / output device 5 may set the supply and demand system model M illustrated in FIG. 3 based on the input information. Or it is good also as a structure which a user draws the supply-and-demand system model M shown in FIG. 3 using software, such as Visio (trademark) and MATLAB (trademark).
 図4は、供給系統及び供給経路の設備能力情報Cを例示する図である。図4においては、図3の需給系統モデルMに対応する設備能力情報Cを例示している。 FIG. 4 is a diagram illustrating the facility capacity information C of the supply system and the supply route. In FIG. 4, the facility capability information C corresponding to the supply and demand system model M of FIG. 3 is illustrated.
 エネルギーマネジメント支援装置1の利用者は、需給系統モデルMの場合と同様に、入出力装置5の入力手段を介して設備能力情報Cを設定する。具体的には、設備能力情報Cとして、最適化問題の目的関数や制約条件を決定するために必要とされる、供給設備及び供給経路の供給能力を表す等式や不等式の設定を行う。実施例では、設備能力情報Cは、各発電設備の燃料費及び母線間の潮流上限を表す式を設定する。 The user of the energy management support device 1 sets the equipment capability information C through the input means of the input / output device 5 as in the case of the supply and demand system model M. Specifically, as the equipment capability information C, an equation or an inequality that represents the supply capability of the supply facility and the supply path, which is necessary for determining the objective function and the constraint condition of the optimization problem, is set. In the embodiment, the facility capacity information C sets an expression representing the fuel cost of each power generation facility and the upper limit of the tidal current between the buses.
 図4に示す例では、発電設備1の1時間あたりの燃料費C1[$/MWh]は、発電量P1の関数として以下の式で表される。
C1(P1)=0.01P1+14P1+100…(1)
同様に、発電設備2の1時間あたりの燃料費C2[$/MWh]については、発電量P2の関数として以下の式で表される。
C2(P2)=0.02P2+16P2+80…(2)
 図3の母線1と母線3との間の潮流上限については、以下の不等式で表される。
(θ1-θ3)/0.1≦240/P0・・・(3)
なお、上記不等式において、P0とは、供給系統における基準電力である。発電設備1から負荷設備への潮流(θ1-θ3)/0.1×P0であり、これが供給経路の容量240[MW]を超えないように出力配分を行う、という条件より、(3)の不等式が求まる。
In the example shown in FIG. 4, the fuel cost C1 [$ / MWh] per hour of the power generation facility 1 is expressed by the following equation as a function of the power generation amount P1.
C1 (P1) = 0.01P1 2 + 14P1 + 100 (1)
Similarly, the fuel cost C2 [$ / MWh] per hour of the power generation facility 2 is expressed by the following equation as a function of the power generation amount P2.
C2 (P2) = 0.02P2 2 + 16P2 + 80 (2)
The upper limit of the tidal current between the bus 1 and the bus 3 in FIG. 3 is expressed by the following inequality.
(Θ1-θ3) /0.1≦240/P0 (3)
In the above inequality, P0 is the reference power in the supply system. From the condition that the power flow from the power generation facility 1 to the load facility (θ1−θ3) /0.1×P0 and the output distribution is performed so that this does not exceed the capacity 240 [MW] of the supply path, The inequality is obtained.
 設備能力情報Cは、例えば、供給系統である発電設備の供給の上限及び下限、消費エネルギーや、供給経路である母線の潮流の上限及び下限を利用者に順に入力させ、入出力装置5が、必要な情報を用いて図4に示す式を立てる構成としてもよい。あるいは、利用者に直接的に図4に示す式を入力させる構成とすることもできる。 For example, the facility capability information C allows the user to sequentially input the upper and lower limits of the supply of the power generation equipment that is the supply system, the energy consumption, and the upper and lower limits of the power flow of the bus that is the supply path. A configuration may be adopted in which the formula shown in FIG. 4 is established using necessary information. Or it can also be set as the structure which makes a user input the formula shown in FIG. 4 directly.
 なお、実施例では、エネルギーマネジメント支援装置1は、入出力装置5より、図3の需給系統モデルMや図4の設備能力情報Cを受け取る構成としているが、これに限定されるものではない。例えば、エネルギーマネジメント支援装置1が需給系統モデルMや設備能力情報C自体の設定を行い、入出力装置5からは、需給系統モデルMや設備能力情報Cの設定に必要な情報を受け取るのみとする構成とすることもできる。 In the embodiment, the energy management support device 1 is configured to receive the supply / demand system model M in FIG. 3 and the facility capability information C in FIG. 4 from the input / output device 5, but is not limited thereto. For example, the energy management support device 1 sets the supply / demand system model M and the facility capability information C itself, and only receives information necessary for setting the supply / demand system model M and the facility capability information C from the input / output device 5. It can also be configured.
 エネルギーマネジメント支援装置1は、図3や図4に例示する情報を入出力装置5から受け取ると、これに基づき、最適化問題の目的関数及び制約条件を設定し、設定した目的関数及び制約条件より、一階述語論理式を生成する。そして、生成した一階述語論理式を限定記号消去法で簡略化することにより、負荷設備における総需要量(上記の例では負荷量L)と発電設備における総消費エネルギー(上記の例では燃料費の合計すなわち総コスト)との関係を求め、グラフを作成する。作成したグラフは、入出力装置5に出力表示させる。 When the energy management support apparatus 1 receives the information illustrated in FIG. 3 or FIG. 4 from the input / output apparatus 5, the energy management support apparatus 1 sets the objective function and constraint conditions of the optimization problem based on the information, and from the set objective function and constraint conditions Generate a first order predicate formula. Then, by simplifying the generated first-order predicate logical expression by the quantifier elimination method, the total demand amount in the load facility (load amount L in the above example) and the total consumed energy in the power generation facility (in the above example, the fuel cost) And a graph is created. The created graph is output and displayed on the input / output device 5.
 図2のエネルギーマネジメント支援装置1の各部の動作について、具体的に説明する。 The operation of each part of the energy management support apparatus 1 in FIG. 2 will be specifically described.
 数式群生成部11は、図3及び図4に例示するような、入出力装置5を介して入力される情報より、設定された需給系統モデルについての最適化問題の目的関数及び制約条件を表す複数の数式からなる数式群を生成する。 The formula group generation unit 11 represents the objective function and the constraint condition of the optimization problem for the set supply and demand system model from the information input via the input / output device 5 as illustrated in FIGS. 3 and 4. Generate a mathematical expression group consisting of a plurality of mathematical expressions.
 図5は、本実施形態において数式群生成部11が生成する数式群を例示する図である。ここでは、図5に例示する数式群のうち、最適化問題の目的関数及びこれに関する定義を表す式からなる数式群を「第1の数式群」とし、最適化問題の制約条件を表す式からなる数式群を「第2の数式群」とし、それぞれの数式群について説明する。 FIG. 5 is a diagram illustrating a formula group generated by the formula group generation unit 11 in the present embodiment. Here, among the mathematical formula groups illustrated in FIG. 5, the mathematical formula group including the objective function of the optimization problem and the formula representing the definition is referred to as a “first mathematical formula group”, and the formula representing the constraint condition of the optimization problem is used. The following formula group will be described as a “second formula group”.
 まず、第1の数式群は、図3の発電設備1、2の燃料費の合計値を総コストとし、総コストを表す関数E(目的関数Obj1)と、Eに含まれる変数C1(P1)、C2(P2)を定義する式から構成される。 First, the first mathematical formula group is a total value of the fuel costs of the power generation facilities 1 and 2 in FIG. 3, a function E (objective function Obj1) representing the total cost, and a variable C1 (P1) included in E , C2 (P2).
 目的関数Obj1は、発電設備1、2の燃料費の合計値で定義されることから、以下の式で表される。
Obj1:=E=C1(P1)+C2(P2)
ここで、目的関数Obj1については、入出力装置5を介して入力された情報のうち、需給系統モデルMより生成する。図5においては、需給系統モデルMより生成する数式に(*)印を付して示している。
Since the objective function Obj1 is defined by the total fuel cost of the power generation facilities 1 and 2, it is expressed by the following equation.
Obj1: = E = C1 (P1) + C2 (P2)
Here, the objective function Obj1 is generated from the supply and demand system model M among the information input via the input / output device 5. In FIG. 5, the formula generated from the supply and demand system model M is shown with (*) mark.
 目的関数Obj1に含まれる変数C1(P1)、C2(P2)の定義については、図4の設備能力情報Cより設定され、上記の(1)(2)式のとおりである。
C1(P1)==0.01P1+14P1+100
C2(P2)=0.02P2+16P2+80
 次に、第2の数式群は、図3の2基の発電設備(発電設備1、2)と2つの供給経路(母線1~母線3、母線2~母線3)のそれぞれについての供給能力を定義する数式群から構成される。図5に示す例では、各発電設備の発電能力、需給バランス、潮流を定義する数式群から構成される。
The definitions of the variables C1 (P1) and C2 (P2) included in the objective function Obj1 are set from the equipment capability information C in FIG.
C1 (P1) == 0.01P1 2 + 14P1 + 100
C2 (P2) = 0.02P2 2 + 16P2 + 80
Next, the second mathematical formula group shows the supply capacity for each of the two power generation facilities (power generation facilities 1 and 2) and the two supply paths (bus 1 to bus 3, bus 2 to bus 3) in FIG. It consists of a group of mathematical expressions to be defined. In the example shown in FIG. 5, it is comprised from the numerical formula group which defines the power generation capability of each power generation equipment, supply-and-demand balance, and a tidal current.
 第1乃至第3の制約条件Rst1~Rst3については、キルヒホッフの第1法則より、需給系統の各母線に流れ込む電流の総和がゼロであることにより導出される。具体的には、Rst1~Rst3は、それぞれ母線1~3に流れ込む電流の総和を表し、以下のとおりに表される。図5において(*)印で示すとおり、第1乃至第3の制約条件Rst1~Rst3は、図3に例示する需給系統モデルMより生成する。 The first to third constraints Rst1 to Rst3 are derived from the fact that the sum of the currents flowing into the buses of the supply and demand system is zero according to Kirchhoff's first law. Specifically, Rst1 to Rst3 represent the sum of currents flowing into the buses 1 to 3, respectively, and are expressed as follows. As indicated by (*) in FIG. 5, the first to third constraint conditions Rst1 to Rst3 are generated from the supply and demand system model M illustrated in FIG.
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000003
 
 母線1と母線3との間の潮流上限より定まる制約条件Rst4については、先に図4を参照して説明した(3)式のとおりであり、上記の(3)式は、図4の設備能力情報Cの潮流上限による。
Figure JPOXMLDOC01-appb-M000003

The constraint condition Rst4 determined from the upper limit of the tidal current between the bus 1 and the bus 3 is the same as the equation (3) described above with reference to FIG. 4, and the above equation (3) is the facility of FIG. According to the tidal upper limit of capability information C.
Figure JPOXMLDOC01-appb-M000004
 
 制約条件Rst5~Rst7については、発電設備1、2の発電量及び負荷設備の負荷量が負でないことに基づき生成する。具体的には、入出力装置5から入力された変数P1、P2、Lを用いて、それぞれ以下の式を生成する。
Rst5:=P1≧0
Rst6:=P2≧0
Rst7:=L≧0
 基準電圧P0と母線3の条件を表す制約条件Cnt1、Cnt2には、それぞれ基準電圧、母線3の電圧位相を表す式を生成する。これらの制約条件についても、入出力装置5から入力された変数P0、θ3を用いて、以下の式を生成する。
Cnt1:=P0=1000
Cnt2:=θ3=0
 一階述語論理式生成部12は、図5の第1及び第2の数式群を結合して、一階述語論理式を生成する。
Figure JPOXMLDOC01-appb-M000004

The constraint conditions Rst5 to Rst7 are generated based on the fact that the power generation amount of the power generation facilities 1 and 2 and the load amount of the load facility are not negative. Specifically, using the variables P1, P2, and L input from the input / output device 5, the following equations are generated respectively.
Rst5: = P1 ≧ 0
Rst6: = P2 ≧ 0
Rst7: = L ≧ 0
For the constraint conditions Cnt1 and Cnt2 representing the conditions of the reference voltage P0 and the bus 3, formulas representing the reference voltage and the voltage phase of the bus 3 are generated, respectively. Also for these constraints, the following equations are generated using the variables P0 and θ3 input from the input / output device 5.
Cnt1: = P0 = 1000
Cnt2: = θ3 = 0
The first-order predicate logical expression generation unit 12 combines the first and second mathematical expression groups in FIG. 5 to generate a first-order predicate logical expression.
 図6は、本実施形態において一階述語論理式生成部12が生成する一階述語論理式について説明する図である。 FIG. 6 is a diagram illustrating the first-order predicate logical expression generated by the first-order predicate logical expression generation unit 12 in the present embodiment.
 先に図5を参照して説明したように、エネルギーマネジメント支援装置1の数式群生成部11は、入出力装置5を介して入力された需給系統モデルMと供給設備及び供給経路の設備能力情報Cとから、第1及び第2の数式群を生成する。第1及び第2の数式群は、それぞれ最適化問題の目的関数及び制約条件を表す。一階述語論理式生成部12は、目的関数及び制約条件を表す第1及び第2の数式群より、負荷設備の総需要量(負荷量L)を満たすような供給系統の運転を可能とする条件を導き、これにより、Lと総消費エネルギー量(総コストE)との関係を求める。 As described above with reference to FIG. 5, the formula group generation unit 11 of the energy management support apparatus 1 is configured to supply and supply system model M input through the input / output device 5 and the facility capability information of the supply facility and the supply route. From C, first and second mathematical formula groups are generated. The first and second mathematical formula groups represent the objective function and constraint conditions of the optimization problem, respectively. The first-order predicate logical expression generation unit 12 enables operation of a supply system that satisfies the total demand amount (load amount L) of the load facility from the first and second mathematical expression groups representing the objective function and the constraint condition. A condition is derived, and thereby a relationship between L and the total energy consumption (total cost E) is obtained.
 具体的には、一階述語論理式生成部12は、目的関数を表す第1の数式群と、制約条件を表す第2の数式群とを論理積「∧」で結合する。そして、供給系統の状態を表す変数P0、P1、P2、θ1、θ2及びθ3が存在することを表す存在記号「∃」を付与する。図6の(a)式は、このようにして生成される一階述語論理式である。 Specifically, the first-order predicate logical expression generation unit 12 combines the first mathematical expression group representing the objective function and the second mathematical expression group representing the constraint condition by the logical product “∧”. Then, an existence symbol “∃” indicating that the variables P0, P1, P2, θ1, θ2, and θ3 indicating the state of the supply system exist is assigned. The expression (a) in FIG. 6 is a first-order predicate logical expression generated in this way.
 (a)式に数式群生成部11が生成した図5の具体的な数式群を当てはめ、視認性を向上させるため、体裁を整えると、一階述語論理式φは、(b)式のように表される。なお、(b)式においては、便宜上、図5の数式群の式のそれぞれに対して、分母を払い、左辺に移項して項ごとにまとめる等の処理を施している。 When the specific mathematical formula group of FIG. 5 generated by the mathematical formula group generation unit 11 is applied to the formula (a) and the appearance is arranged to improve the visibility, the first-order predicate logical formula φ is expressed by the formula (b). It is expressed in In formula (b), for convenience, the denominator is paid for each formula in the formula group in FIG.
 限定記号消去部13は、一階述語論理式生成部12が生成した論理式中に含まれる限定記号を消去した式を得る。限定記号消去部13による数式処理方法については、図7を参照して具体的に説明する。 The quantifier elimination unit 13 obtains an expression in which the quantifier included in the logical expression generated by the first-order predicate logical expression generation unit 12 is deleted. The formula processing method by the limit symbol erasing unit 13 will be specifically described with reference to FIG.
 図7は、本実施形態において限定記号消去部13が行う一階述語論理式の処理について説明する図である。 FIG. 7 is a diagram for explaining the processing of the first-order predicate logical expression performed by the quantifier elimination unit 13 in the present embodiment.
 限定記号消去部13は、図6の(b)式から、限定記号を消去して、総需要量、上記の例では負荷量Lと、総消費エネルギー量、上記の例では総コストEとの関係式を得る。図6の(b)式のような一階述語論理式から限定記号を消去する方法については、公知の技術であるので、ここではその詳細については省略する。 The limit symbol erasing unit 13 deletes the limit symbol from the equation (b) in FIG. 6, and calculates the total demand amount, the load amount L in the above example, the total energy consumption amount, and the total cost E in the above example. Get the relational expression. Since the method of deleting the quantifier from the first-order predicate logical expression such as the expression (b) in FIG. 6 is a known technique, the details thereof are omitted here.
 得られるLとEの関係式ans1は、以下のとおりである。
ans1:=150×E-L-2200×L≧0and
((100×E-L-1400×L-18000≦0and
100×E-9×L+5400×L-1429200≦0and
L-100≧0and
L-412≦0or
50×E-L2-800×L-9000≦0and
L≧0and
(100×E-L-1400×L-18000≧0)or(L-100)≧0)and
(100×E-9×L2+5400×L-1429200≧0or(L-412)≦0))
 可視化部14は、限定記号消去部13が得た図7の式ans1より、負荷設備における総需要量(負荷量L)と発電設備における総消費エネルギー(総コストE)との関係をグラフにして、入出力装置5のモニタ等の出力手段に出力表示させる。図7の式ans1よりグラフを描画する技術については、公知の技術を用いている。
The obtained relational expression ans1 of L and E is as follows.
ans1: = 150 × E−L 2 −2200 × L ≧ 0 and
((100 × E L 2 -1400 × L-18000 ≦ 0and
100 × E-9 × L 2 + 5400 × L-1429200 ≦ 0and
L-100 ≧ 0and
L-412 ≦ 0or
50 × E-L2-800 × L-9000 ≦ 0and
L ≧ 0and
(100 × EL 2 -1400 × L-18000 ≧ 0) or (L-100) ≧ 0) and
(100 × E-9 × L2 + 5400 × L-1429200 ≧ 0 or (L-412) ≦ 0))
The visualization unit 14 graphs the relationship between the total demand amount (load amount L) in the load facility and the total energy consumption (total cost E) in the power generation facility from the formula ans1 of FIG. 7 obtained by the limit symbol elimination unit 13. Then, the output means such as a monitor of the input / output device 5 is output and displayed. A known technique is used as a technique for drawing a graph from the formula ans1 of FIG.
 図8は、本実施形態において可視化部14が入出力装置5に出力するグラフの例を示す図である。図8においては、図6の(b)式を解いて得られる、図7の数式をグラフ化した場合を例示する。横軸は、図3の負荷設備の負荷量L[MW]、縦軸は、図3の発電設備1、2の1時間あたりの燃料費の合計E(P1、P2)[$/MWh]である。 FIG. 8 is a diagram illustrating an example of a graph output from the visualization unit 14 to the input / output device 5 in the present embodiment. FIG. 8 illustrates a case where the mathematical formula of FIG. 7 obtained by solving the formula (b) of FIG. 6 is graphed. The horizontal axis is the load amount L [MW] of the load facility in FIG. 3, and the vertical axis is the total fuel cost E (P1, P2) [$ / MWh] of the power generation facilities 1 and 2 in FIG. is there.
 図8に示すグラフによれば、例えば、負荷設備の負荷量Lが約700[MW]を超えると、供給が不可能であることがわかる。 According to the graph shown in FIG. 8, for example, when the load amount L of the load facility exceeds about 700 [MW], it can be seen that the supply is impossible.
 また、負荷量Lが凡そ300~600[MW]の区間は燃料費の合計、すなわち発電設備の総コストEの幅が広いことから、最適化の余地が大きいことがわかる。 Also, it can be seen that there is a lot of room for optimization since the total fuel cost, that is, the total cost E of the power generation equipment, is wide in the section where the load L is about 300 to 600 [MW].
 このように、本実施形態に係るエネルギーマネジメント支援装置1によれば、最適化問題の目的関数と制約条件とから一階述語論理式を生成し、生成した論理式から限定記号を消去して、負荷設備の負荷量L(総需要量)と燃料費の合計すなわち総コストE(発電設備における総消費エネルギー)との関係をグラフにして出力表示させる。一階述語論理式は、負荷量Lを満たすような供給系統の運転を可能とする条件が導出されるよう、第1及び第2の数式群を論理積で結合し、供給系統の状態を表す変数に存在記号を付与して生成する。そして、このようにして得られた論理式から求まる負荷量Lと総コストEとの関係式をグラフにして可視化する。これにより、利用者は、所定の設備能力を有する供給系統・供給経路を備える需給系統における最適化を図ることができるだけでなく、どのような設備を設けることで最適化(省エネ)が図ることができるかについても、検討し易くなる。 Thus, according to the energy management support apparatus 1 according to the present embodiment, the first order predicate logical expression is generated from the objective function and the constraint condition of the optimization problem, and the quantifier is deleted from the generated logical expression, The relationship between the load amount L (total demand amount) of the load facility and the total fuel cost, that is, the total cost E (total energy consumption in the power generation facility) is output and displayed as a graph. The first-order predicate logical expression represents the state of the supply system by combining the first and second mathematical formula groups with a logical product so that a condition for enabling the operation of the supply system satisfying the load L is derived. Creates a variable with an existence symbol. Then, a relational expression between the load L and the total cost E obtained from the logical expression thus obtained is visualized as a graph. As a result, the user can not only optimize the supply and demand system having a supply system / supply path having a predetermined facility capacity, but also optimize (energy saving) by providing what kind of equipment. It becomes easy to consider whether it can be done.
 なお、上記の説明においては、1台の情報処理装置に全ての構成の機能を備える場合を例示するが、これに限定されるものではない。例えば、複数台の情報処理装置に機能を分散させる構成とし、複数台の情報処理装置から構成されるエネルギーマネジメント支援システムにより、上記の処理を実行する構成とすることもできる。 In the above description, a case where all information processing apparatuses are provided with functions of all configurations is illustrated, but the present invention is not limited to this. For example, it is also possible to adopt a configuration in which functions are distributed to a plurality of information processing devices, and the above-described processing is executed by an energy management support system including a plurality of information processing devices.
 また、図2のエネルギーマネジメント支援装置1を構成する各部の全体または一部については、プログラムで構成されることとしてもよい。エネルギーマネジメント支援装置1の構成がプログラムからなる場合、例えば情報処理装置のメモリ等に上記の方法を実行する制御プログラムを予め記憶させておき、これを図2においては不図示の制御部が読み出して実行することにより、同様の作用・効果を奏する。
<第2の実施形態>
 上記の実施形態においては、ある需給系統における最適化の検討を容易とするために、入力された需給系統モデルMや設備能力情報Cから一階述語論理式を生成し、これを限定記号消去法で処理して、グラフを出力している。これに対し、本実施形態においては、入力される情報が変更等された場合に、入力される情報の変更により、負荷設備の負荷量Lと発電設備の総消費エネルギーE(総コスト)との間の関係の変化を確認可能とする点で異なる。
Moreover, it is good also as comprising by a program about the whole or one part of each part which comprises the energy management assistance apparatus 1 of FIG. When the configuration of the energy management support apparatus 1 includes a program, for example, a control program for executing the above method is stored in advance in a memory or the like of the information processing apparatus, and this is read by a control unit (not shown in FIG. 2). By performing this, the same actions and effects can be achieved.
<Second Embodiment>
In the above embodiment, in order to facilitate the examination of optimization in a certain supply and demand system, a first-order predicate logical expression is generated from the input supply and demand system model M and facility capacity information C, and this is used as a quantifier elimination method. The graph is output. On the other hand, in this embodiment, when the input information is changed, the load amount L of the load facility and the total energy consumption E (total cost) of the power generation facility are changed by changing the input information. It is different in that the change in the relationship between the two can be confirmed.
 以下に、本実施形態に係るエネルギーマネジメント支援装置1の動作の詳細について、図面を参照して説明する。なお、本実施形態に係るエネルギーマネジメント支援装置1の構成については上記の実施形態と同様であり、図2に示すとおりであるので、ここでは説明を省略し、異なる点を中心に説明することとする。 Hereinafter, details of the operation of the energy management support apparatus 1 according to the present embodiment will be described with reference to the drawings. In addition, about the structure of the energy management assistance apparatus 1 which concerns on this embodiment, since it is the same as that of said embodiment and is as showing in FIG. 2, description is abbreviate | omitted here and it demonstrates focusing on a different point. To do.
 図9は、需給系統モデルMの他の例を示す図である。図示するように、図9においては、発電設備を3基備えており、図2の需給系統モデルに対して、供給設備及び供給経路を追加している。 FIG. 9 is a diagram showing another example of the supply and demand system model M. As shown in FIG. 9, three power generation facilities are provided, and a supply facility and a supply route are added to the supply and demand system model of FIG.
 具体的には、発電設備3が追加され、その発電量をP3[MW]、発電設備3に直結する母線4の電圧位相をθ4[rad]、母線3~母線4の線路のインピーダンスをj0.1[pu]とする。 Specifically, the power generation facility 3 is added, the power generation amount is P3 [MW], the voltage phase of the bus 4 directly connected to the power generation facility 3 is θ4 [rad], and the impedances of the buses 3 to 4 are j0. 1 [pu].
 例えば、エネルギーマネジメント支援装置1の利用者が、図2の需給系統モデルMを入力して図8のグラフを確認した後に、更に発電設備を1基追加した場合のLとEの関係を検討しようとしたとする。このような場合に、エネルギーマネジメント支援装置1は、図8のグラフあるいは図7の数式ans1等をメモリ等に一時的に保持しておき、変更後の情報に基づき、数式群を生成し、これより一階述語論理式を立てる。そして、一階述語論理式を限定記号消去法により処理して得られる式より、グラフを出力し、図8のグラフと比較を可能とする。 For example, let's examine the relationship between L and E when a user of the energy management support device 1 inputs a supply and demand system model M in FIG. 2 and confirms the graph in FIG. Suppose that. In such a case, the energy management support apparatus 1 temporarily stores the graph of FIG. 8 or the formula ans1 of FIG. 7 in a memory or the like, generates a formula group based on the changed information, Build a first-order predicate formula. Then, a graph is output from an expression obtained by processing the first order predicate logical expression by the quantifier elimination method, and can be compared with the graph of FIG.
 なお、図9のように、発電設備を1基追加した場合には、設備能力情報Cについても変更を加える必要がある。これについて、図10を参照して説明する。 In addition, as shown in FIG. 9, when one power generation facility is added, it is necessary to change the facility capacity information C. This will be described with reference to FIG.
 図10は、図9の需給系統モデルMに対応する設備能力情報Cを例示する図である。 FIG. 10 is a diagram illustrating facility capacity information C corresponding to the supply and demand system model M of FIG.
 図10に示すように、需給系統モデルMで追加された発電設備3に関して、発電設備3の1時間あたりの燃料費C3[$/MWh]を定義する数式と、発電設備3に直結する母線4と負荷設備に直結する母線3との間の潮流上限を定める式が追加されている。 As shown in FIG. 10, with respect to the power generation facility 3 added in the supply and demand system model M, a mathematical formula defining the fuel cost C3 [$ / MWh] per hour of the power generation facility 3 and the bus 4 directly connected to the power generation facility 3 And a formula for determining the upper limit of the tidal current between the bus 3 directly connected to the load facility.
 具体的には、発電設備3の1時間あたりの燃料費C3は、発電設備3の発電量P3の関数として、以下の式で表される。
C3(P3)=0.01P3+18P3+60
 また、母線3と母線4との間の潮流上限については、以下の不等式で表される。
(θ4-θ3)/0.1≦240/P0
他の3式については、図4を参照して述べたとおりである。
Specifically, the fuel cost C3 per hour of the power generation facility 3 is expressed by the following formula as a function of the power generation amount P3 of the power generation facility 3.
C3 (P3) = 0.01P3 2 + 18P3 + 60
Further, the upper limit of the tidal current between the bus 3 and the bus 4 is expressed by the following inequality.
(Θ4-θ3) /0.1≦240/P0
The other three equations are as described with reference to FIG.
 エネルギーマネジメント支援装置1は、入出力装置5から図9の需給系統モデルM及び図10の設備能力情報Cの入力を受け付けると、上記の実施形態と同様の処理を実行する。すなわち、入力された情報に応じて、最適化問題の目的関数及び制約条件を設定し、設定した目的関数及び制約条件より一階述語論理式を生成して、これを限定記号消去法で処理する。これにより、負荷設備における負荷量L(総需要量)と発電設備における総コストE(総消費エネルギー)との関係を求め、グラフを作成し、入出力装置5に出力表示させる。 When the energy management support apparatus 1 receives the input of the supply and demand system model M in FIG. 9 and the facility capability information C in FIG. 10 from the input / output device 5, the energy management support apparatus 1 executes the same processing as in the above embodiment. That is, the objective function and constraint conditions of the optimization problem are set according to the input information, a first-order predicate logical expression is generated from the set objective function and constraint conditions, and this is processed by the quantifier elimination method. . Thereby, the relationship between the load amount L (total demand amount) in the load facility and the total cost E (total energy consumption) in the power generation facility is obtained, a graph is created, and output is displayed on the input / output device 5.
 図11は、本実施形態において数式群生成部11が生成する数式群を例示する図である。上記の実施形態と同様に、最適化問題の目的関数及びこれに関する定義を表す式からなる数式群、及び制約条件を表す式からなる数式群を、それぞれ第1及び第2の数式群とする。 FIG. 11 is a diagram illustrating a formula group generated by the formula group generation unit 11 in the present embodiment. Similarly to the above-described embodiment, a mathematical expression group consisting of an expression representing an objective function of an optimization problem and a definition related thereto, and a mathematical expression group consisting of an expression representing a constraint condition are defined as a first mathematical expression group and a second mathematical expression group, respectively.
 まず、第1の数式群については、上記の実施形態と同様に、発電設備の燃料費の合計値を総コストEとし、これを目的関数Obj1とする。目的関数Obj1は、追加された発電設備3のコストC3(P3)が追加される。
Obj1=E=C1(P1)+C2(P2)+C3(P3)
目的関数Obj1を図9の需給系統モデルMより生成することについては、上記の実施形態と同様である。図11においても、需給系統モデルMより生成する数式には(*)印を付して示す。
First, for the first group of mathematical expressions, the total value of the fuel cost of the power generation facility is set as the total cost E, and this is set as the objective function Obj1 as in the above embodiment. The cost C3 (P3) of the added power generation facility 3 is added to the objective function Obj1.
Obj1 = E = C1 (P1) + C2 (P2) + C3 (P3)
The generation of the objective function Obj1 from the supply and demand system model M in FIG. 9 is the same as in the above embodiment. Also in FIG. 11, formulas generated from the supply and demand system model M are indicated with (*) marks.
 目的関数Obj1に含まれる変数C1(P1)、C2(P2)及びC3(P3)のうち、C1(P1)及びC2(P2)の定義は、上記の実施形態と同様である。ここでは、C3(P3)の定義が追加される。これらの変数を表す数式は、設備能力情報Cより設定する。
C1(P1)==0.01P1+14P1+100
C2(P2)=0.02P2+16P2+80
C3(P3)=0.01P3+18P3+60
 第2の数式群を構成する、12の数式Rst1~Rst10、Cnt1~Cnt2のうち、上記の実施形態において生成される第2の数式群に対して変更されている数式は、制約条件Rst2、Rst3、Rst4、Rst6及びRst9である。他の数式については、図5の上記の実施形態において生成される数式と同様であるので、ここでは説明を省略する。
Of the variables C1 (P1), C2 (P2) and C3 (P3) included in the objective function Obj1, the definitions of C1 (P1) and C2 (P2) are the same as in the above embodiment. Here, the definition of C3 (P3) is added. Formulas representing these variables are set from the equipment capability information C.
C1 (P1) == 0.01P1 2 + 14P1 + 100
C2 (P2) = 0.02P2 2 + 16P2 + 80
C3 (P3) = 0.01P3 2 + 18P3 + 60
Of the twelve mathematical formulas Rst1 to Rst10 and Cnt1 to Cnt2 constituting the second mathematical formula group, the mathematical formulas modified with respect to the second mathematical formula group generated in the above embodiment are the constraint conditions Rst2 and Rst3. , Rst4, Rst6 and Rst9. The other mathematical expressions are the same as the mathematical expressions generated in the above-described embodiment of FIG.
 第2及び第4の制約条件Rst2、Rst4は、それぞれ母線2、4に流れ込む電流の総和がゼロであることにより導出される。上記の実施形態に対して、発電設備3(及びこれに直結する母線4)が需給系統モデルMに追加されているため、それぞれ対応する図5の制約条件Rst2、Rst3に対して、第3項が追加されている。 The second and fourth constraint conditions Rst2 and Rst4 are derived when the sum of the currents flowing into the buses 2 and 4 is zero, respectively. In contrast to the above embodiment, since the power generation equipment 3 (and the bus 4 directly connected thereto) is added to the supply and demand system model M, the third term for the corresponding constraint conditions Rst2 and Rst3 in FIG. Has been added.
Figure JPOXMLDOC01-appb-M000005
 
Figure JPOXMLDOC01-appb-M000005
 
Figure JPOXMLDOC01-appb-M000006
 
 制約条件Rst3は、追加された発電設備3に直結する母線4に対して流れ込む電流の総和がゼロであることにより導出され、図5の数式群に対し、新たに追加される制約条件である。具体的には、以下のとおりに表される。
Figure JPOXMLDOC01-appb-M000006

The constraint condition Rst3 is derived from the fact that the sum of the currents flowing into the bus 4 directly connected to the added power generation facility 3 is zero, and is a constraint condition newly added to the mathematical formula group of FIG. Specifically, it is expressed as follows.
Figure JPOXMLDOC01-appb-M000007
 
 制約条件Rst6は、図9の母線4と母線3との間の潮流上限により、以下の不等式で表される。なお、母線1と母線3との間の潮流上限による制約条件Rst5は、図5の第4の制約条件Rst4と同様である。
Figure JPOXMLDOC01-appb-M000007

The constraint condition Rst6 is expressed by the following inequality by the upper limit of the tidal current between the bus 4 and the bus 3 in FIG. Note that the constraint condition Rst5 due to the upper limit of the flow between the bus 1 and the bus 3 is the same as the fourth constraint Rst4 in FIG.
 
 制約条件Rst7、Rst8は、図5の第5及び第6の制約条件Rst5、Rst6とそれぞれ同様である。発電設備の発電量が負でないことによる条件式としては、制約条件Rst9が追加される。
Rst9:=P3≧0
なお、負荷設備の負荷量が負でないことによる制約条件Rst10は、図5の第7の制約条件Rst7と同様である。

The constraint conditions Rst7 and Rst8 are the same as the fifth and sixth constraint conditions Rst5 and Rst6 in FIG. A constraint condition Rst9 is added as a conditional expression based on the fact that the power generation amount of the power generation facility is not negative.
Rst9: = P3 ≧ 0
Note that the constraint condition Rst10 due to the fact that the load amount of the load facility is not negative is the same as the seventh constraint condition Rst7 in FIG.
 基準電圧P0と母線3の条件を表す制約条件Cnt1、Cnt2については、図5に示す制約条件Cnt1、Cnt2と同様である。 Constraint conditions Cnt1 and Cnt2 representing the conditions of the reference voltage P0 and the bus 3 are the same as the constraint conditions Cnt1 and Cnt2 shown in FIG.
 エネルギーマネジメント支援装置1の一階述語論理式生成部12は、数式群生成部11が生成した図11の数式群より、一階述語論理式を生成する。 The first-order predicate logical expression generation unit 12 of the energy management support device 1 generates a first-order predicate logical expression from the mathematical formula group of FIG.
 図12は、本実施形態において一階述語論理式生成部12が生成する一階述語論理式について説明する図である。 FIG. 12 is a diagram illustrating the first-order predicate logical expression generated by the first-order predicate logical expression generation unit 12 in the present embodiment.
 一階述語論理式生成部12は、上記の実施形態と同様に、第1及び第2の数式群より、負荷設備の負荷量Lを満たすような供給系統の運転を可能とする条件を導き、これにより、Lと総消費エネルギー(総コストE)との関係を求める。 The first-order predicate logical expression generation unit 12 derives a condition that enables operation of the supply system so as to satisfy the load amount L of the load facility, from the first and second mathematical expression groups, similarly to the above-described embodiment. Thereby, the relationship between L and total energy consumption (total cost E) is obtained.
 具体的には、上記の実施形態と同様に、目的関数を表す第1の数式群と、制約条件を表す第2の数式群とを論理積「∧」で結合し、供給系統の状態を表す変数が存在することを表す存在記号「∃」を付与する。図12の(c)式は、このようにして生成される一階述語論理式である。 Specifically, similarly to the above-described embodiment, the first mathematical expression group representing the objective function and the second mathematical expression group representing the constraint condition are combined with the logical product “∧” to represent the state of the supply system. An existence symbol “∃” indicating that a variable exists is assigned. The expression (c) in FIG. 12 is a first-order predicate logical expression generated in this way.
 (c)式に数式群生成部11が生成した図11の具体的な数式群を当てはめ、視認性を向上させるため、体裁を整えると、一階述語論理式φは、(d)式のように表される。上記の実施形態と同様に、(d)式においては、便宜上、図11の数式群の式のそれぞれに対して、分母を払い、左辺に移項して項ごとにまとめる等の処理を施している。 When the specific mathematical expression group of FIG. 11 generated by the mathematical expression group generation unit 11 is applied to the expression (c) and the appearance is arranged to improve the visibility, the first-order predicate logical expression φ is expressed by the expression (d) It is expressed in Similar to the above embodiment, in the formula (d), for convenience, the denominator is paid for each of the formula group in FIG. .
 限定記号消去部13は、図12に示す一階述語論理式φ中に含まれる限定記号を消去した記号を得る。 The quantifier elimination unit 13 obtains a symbol obtained by erasing the quantifier included in the first-order predicate logical expression φ shown in FIG.
 図13は、本実施形態において限定記号消去部13が行う一階述語論理式の処理について説明する図である。 FIG. 13 is a diagram for explaining processing of the first-order predicate logical expression performed by the quantifier elimination unit 13 in the present embodiment.
 図13においては、限定記号消去法により図12の(d)式から限定記号を公知の技術を用いて消去して得られる式ans1を示す。上記の実施形態と同様に、限定記号を消去することで、負荷設備の負荷量Lと、供給設備の総コストEとの関係式を得る。LとEとの関係式ans1については、説明の簡単のため、ここでは説明を省略することとする。 FIG. 13 shows ans1 obtained by erasing the quantifier from the formula (d) of FIG. 12 using a known technique by the quantifier elimination method. Similarly to the above embodiment, by deleting the limit symbol, a relational expression between the load amount L of the load facility and the total cost E of the supply facility is obtained. The relational expression ans1 between L and E will be omitted here for the sake of simplicity.
 可視化部14は、限定記号消去部13が得た図13の式より、負荷設備における総需要量(負荷量L)と発電設備における総消費エネルギー(総コストE)との関係を、公知の技術を用いてグラフにし、入出力装置5のモニタ等の出力手段に出力表示させる。 The visualization unit 14 obtains the relationship between the total demand amount (load amount L) in the load facility and the total energy consumption (total cost E) in the power generation facility from the formula in FIG. 13 obtained by the limit symbol elimination unit 13. Is used as a graph and output and displayed on output means such as a monitor of the input / output device 5.
 図14は、本実施形態において可視化部14が入出力装置5に出力するグラフの例を示す図である。横軸は、負荷設備の負荷量L[MW]、縦軸は、発電設備の1時間あたりの燃料費の合計E[$/MWh]である。 FIG. 14 is a diagram illustrating an example of a graph output from the visualization unit 14 to the input / output device 5 in the present embodiment. The horizontal axis represents the load amount L [MW] of the load facility, and the vertical axis represents the total fuel cost E [$ / MWh] per hour of the power generation facility.
 図14に示すグラフによれば、例えば、供給系統である発電設備が負荷設備に供給可能な負荷量Lが、図8においては上限が700[MW]であったのに対し、発電設備3を追加した場合には、950[MW]にまで増加することがわかる。 According to the graph shown in FIG. 14, for example, the load amount L that can be supplied to the load facility by the power generation facility as the supply system is 700 [MW] in FIG. When added, it can be seen that it increases to 950 [MW].
 また、負荷量Lが500[MW]超の範囲においては、図8と比べて総コストEの下限が低下している。例えば、負荷量Lが600[MW]である場合の総コストEの下限値は、図8の発電設備が2基の場合では、1400[MW]であるのに対し、図14の発電設備が3基の場合では、1200[MW]である。これにより、この範囲においては、省エネの余地が増えていること、すなわち、発電設備が2基の場合と比べて更に総コストを抑えることが可能となっていることがわかる。 In the range where the load L is over 500 [MW], the lower limit of the total cost E is lower than that in FIG. For example, when the load L is 600 [MW], the lower limit of the total cost E is 1400 [MW] in the case of two power generation facilities in FIG. 8, whereas the power generation facility in FIG. In the case of three units, it is 1200 [MW]. Thereby, it can be seen that in this range, the room for energy saving is increased, that is, it is possible to further reduce the total cost as compared with the case of two power generation facilities.
 更には、負荷量Lが600[MW]~700[MW]付近の範囲においては、図8と比べて総コストEの幅が広がっている。これにより、この範囲においては、発電設備が2基の場合と比べて総コストが大きく変化しうることがわかる。 Further, in the range where the load L is in the vicinity of 600 [MW] to 700 [MW], the range of the total cost E is wider than that in FIG. Thus, it can be seen that in this range, the total cost can vary greatly compared to the case where there are two power generation facilities.
 前述のとおり、図8に示すグラフをメモリ等の記憶部に一時的に保持しておき、可視化部14が、例えば図14のグラフと並べて、あるいは重ねて図8のグラフを入出力装置5のモニタ等に出力表示する構成としてもよい。エネルギーマネジメント支援装置1の利用者に対し、発電設備が2基から構成される場合と3基から構成される場合の比較検討をより容易にするための手段を提供することができる。 As described above, the graph shown in FIG. 8 is temporarily held in a storage unit such as a memory, and the visualization unit 14 arranges the graph shown in FIG. It is good also as a structure output-displayed on a monitor etc. A means for making it easier for the user of the energy management support apparatus 1 to make a comparative study between the case where the power generation facility is composed of two units and the case where the power generation facility is composed of three units can be provided.
 このように、本実施形態に係るエネルギーマネジメント支援装置1によれば、負荷設備の負荷量(総需要量)Lと燃料費の合計すなわち総コスト(発電設備における総消費エネルギー)Eとの関係をグラフにして出力表示させる。入力される需給系統モデルMや設備能力情報Cに変更(追加、削除等を含む)があった場合には、新たに入力された情報に対応するグラフを作成して出力表示させる。先に作成したグラフを一時記憶させておき、これと比較させてもよい。利用者にとっては、従来のように、ある需給系統に対する最適化を図ることができるのみならず、どのように設備を変更することで最適化(省エネ)を図ることができるかについても、検討し易くなる。
<第3の実施形態>
 上記の実施形態においては、ある需給系統において、入力された需給系統モデルMや設備能力情報Cから一階述語論理式を生成し、これを限定記号消去法で処理して、負荷設備の負荷量Lと発電設備の総消費エネルギーE(総コスト)との間の関係を表すグラフを出力している。これに対し、本実施形態においては、運用の実績値ならびに従来の最適運用による計算値をさらに表示する点で異なる。
Thus, according to the energy management support device 1 according to the present embodiment, the relationship between the load amount (total demand amount) L of the load facility and the total fuel cost, that is, the total cost (total energy consumption in the power generation facility) E Display output as a graph. When there is a change (including addition, deletion, etc.) in the input / output system model M or the equipment capability information C, a graph corresponding to the newly input information is created and displayed. The previously created graph may be temporarily stored and compared with this. For users, as well as the conventional optimization of a supply and demand system, it is also considered how optimization (energy saving) can be achieved by changing the equipment. It becomes easy.
<Third Embodiment>
In the above-described embodiment, in a certain supply and demand system, a first-order predicate logical expression is generated from the input supply and demand system model M and facility capacity information C, and this is processed by the quantifier elimination method. The graph showing the relationship between L and the total energy consumption E (total cost) of the power generation equipment is output. On the other hand, the present embodiment is different in that the actual operation value and the calculated value by the conventional optimum operation are further displayed.
 以下に、本実施形態に係るエネルギーマネジメント支援装置1の動作の詳細について、図面を参照して説明する。なお、上記の実施形態と同一の部分の動作の詳細は上記の実施形態と同様であるため、異なる点を中心に説明することとする。 Hereinafter, details of the operation of the energy management support apparatus 1 according to the present embodiment will be described with reference to the drawings. The details of the operation of the same parts as those in the above embodiment are the same as those in the above embodiment, and therefore different points will be mainly described.
 図15は、本発明に係るエネルギーマネジメント支援装置により、資源を供給する供給設備の運用の最適化を図る方法の概要を説明する図である。図1に加えて、運用実績値ならびに従来の最適運用による計算値を表すデータが、エネルギーマネジメント支援装置へ入力される。 FIG. 15 is a diagram for explaining an outline of a method for optimizing the operation of a supply facility for supplying resources by the energy management support apparatus according to the present invention. In addition to FIG. 1, data representing the operation result value and the calculated value by the conventional optimum operation is input to the energy management support apparatus.
 図16は、本実施形態に係るエネルギーマネジメント支援装置1の構成図である。図16においては、図2に示すエネルギーマネジメント支援装置1に加えて、計測装置20および最適運用装置21を示す。計測装置20から入力された実績情報と最適運用装置21から入力された計算値に基づき、入出力装置5は、運用実績値・計算値Dをエネルギーマネジメント支援装置1へ出力する。 FIG. 16 is a configuration diagram of the energy management support apparatus 1 according to the present embodiment. In FIG. 16, in addition to the energy management support apparatus 1 shown in FIG. 2, a measuring apparatus 20 and an optimum operation apparatus 21 are shown. Based on the result information input from the measuring device 20 and the calculated value input from the optimum operation device 21, the input / output device 5 outputs the operation result value / calculated value D to the energy management support device 1.
 図17は、本実施形態において可視化部14が入出力装置5に出力するグラフの例を示す図である。負荷設備の負荷量(総需要量)Lと燃料費の合計すなわち総コスト(発電設備における総消費エネルギー)Eとの関係をグラフにして出力表示させる。上記実施形態と同様に出力された領域を表すグラフに加え、入出力装置5より入力された運用実績値・計算値Dの各データを、重ねてプロットする。運用実績値が丸印、計算値が十字印でプロットされており、同じ負荷量Lでは、計算値が運用実績値を下回っているため、最適化(省エネ)ができているといえる。 FIG. 17 is a diagram illustrating an example of a graph output from the visualization unit 14 to the input / output device 5 in the present embodiment. The relationship between the load amount (total demand amount) L of the load facility and the total fuel cost, that is, the total cost (total energy consumption in the power generation facility) E is output as a graph. In addition to the graph representing the output area as in the above embodiment, the operation result value / calculated value D data input from the input / output device 5 are plotted in an overlapping manner. The operation result value is plotted with a circle and the calculated value is plotted with a cross mark. Since the calculated value is lower than the operation result value at the same load amount L, it can be said that optimization (energy saving) is achieved.
 ただし、負荷量Lが400[MW]付近では実績値と計算値との差がほとんどなく、負荷量Lが大きくなるにつれて実績値と計算値との差が拡大する傾向にある。 However, when the load amount L is around 400 [MW], there is almost no difference between the actual value and the calculated value, and as the load amount L increases, the difference between the actual value and the calculated value tends to increase.
 従来の最適運用技術においては、このように負荷量Lによって最適化(省エネ)の効果が異なることについて合理的な説明ができなかった。 In the conventional optimum operation technology, it was impossible to rationally explain that the effect of optimization (energy saving) differs depending on the load L in this way.
 一方、図17においては、負荷設備の負荷量(総需要量)Lと燃料費の合計すなわち総コスト(発電設備における総消費エネルギー)Eとの関係を領域として示し、さらに運用実績値と計算値とを重ねて表示するため、従来の最適運用技術に不備があるためではなく、需給系統の運用限界によるために負荷量Lが400[MW]付近では実績値と計算値との差がほとんどないことが分かる。 On the other hand, in FIG. 17, the relationship between the load amount (total demand amount) L of the load facility and the total fuel cost, that is, the total cost (total energy consumption in the power generation facility) E is shown as an area, and the operation result value and the calculated value are also shown. Are displayed in a superimposed manner, not because there is a defect in the conventional optimum operation technology, but because of the operation limit of the supply and demand system, there is almost no difference between the actual value and the calculated value when the load amount L is around 400 [MW]. I understand that.
 このように、本実施形態に係るエネルギーマネジメント支援装置1においては、現状の運用実績や従来の最適運用技術で最適化(省エネ)を図った際の計算値と理論的にとりうる領域との比較に基づいて、最適化(省エネ)効果の妥当性を評価し易くなる。 As described above, in the energy management support apparatus 1 according to the present embodiment, the current operation results and the calculated value when optimization (energy saving) is achieved by the conventional optimum operation technology are compared with the theoretically possible area. Based on this, it becomes easy to evaluate the validity of the optimization (energy saving) effect.
 したがって、本実施形態に係るエネルギーマネジメント支援装置1は、最適運用装置の稼働前においては、現状の運用実績と理論的にとりうる領域とを比較し、省エネルギーのための改善余地があるかを事前に検討することで、最適運用技術の導入をすべきか否かの判断をするユーザに対し支援をすることができる。 Therefore, the energy management support apparatus 1 according to the present embodiment compares the current operation results with theoretically possible areas before operating the optimum operation apparatus, and determines in advance whether there is room for improvement for energy saving. By examining it, it is possible to support a user who determines whether or not to introduce the optimum operation technology.
 さらに、本実施形態に係るエネルギーマネジメント支援装置1は、最適運用装置の稼働後においては、従来の最適運用技術によって求められた理想的な運用が、従来の運用と比べてどれほど良い結果なのかを評価する際に、従来の最適運用技術に不備があるためなのか、需給系統の運用限界によるためなのかの切り分けを可能にすることでユーザに対し支援をすることができる。
<第4の実施形態>
 上記においては、需給系統における、資源の総需要量と総供給量について可視化を行ったが、記需給系統の一部の資源についての部分的な需要量合計と一部の資源についての部分的な供給量合計との関係を表す式を得ることもできる。例えば、図9において、3台ある供給設備のうち、特定の1台の設備については、運用を固定値とすることが予め想定される場合、残りの2台の供給量合計について、上記の実施例と同様、一階述語論理式を生成し、限定記号消去法を適用することで、可視化を行うことができる。具体的には、前記設備能力情報Cにおいて、特定の設備の供給量がある固定値であるという制約条件を設け、さらに残りの2台の供給量合計を表す変数を総コストEとすればよい。
Furthermore, the energy management support apparatus 1 according to the present embodiment shows how good the ideal operation obtained by the conventional optimum operation technology is after the operation of the optimum operation device compared to the conventional operation. When evaluating, it is possible to assist the user by identifying whether the conventional optimum operation technique is deficient or due to the operation limit of the supply and demand system.
<Fourth Embodiment>
In the above, the total demand and total supply of resources in the supply and demand system were visualized, but the partial total demand for some resources in the supply and demand system and the partial supply for some resources. An expression expressing the relationship with the total supply amount can also be obtained. For example, in FIG. 9, when it is assumed in advance that the operation of a specific one of the three supply facilities is set to a fixed value, the above-mentioned implementation is performed for the remaining two units. As in the example, visualization can be performed by generating a first-order predicate logical expression and applying the quantifier elimination method. Specifically, in the equipment capacity information C, a constraint condition that the supply amount of a specific facility is a fixed value is provided, and a variable indicating the total supply amount of the remaining two units is set as the total cost E. .
 他の詳細については、上記の実施形態と同様であるので、ここでは説明を省略する。 Other details are the same as those in the above-described embodiment, and the description is omitted here.
 上記においては、エネルギーマネジメント支援装置1が、電力を供給する供給系統について最適化のための視覚化を行う場合について説明しているが、これに限定されるものではない。例えば、温熱、冷熱、蒸気またはガス等の資源を供給する供給系統について上記の方法を適用することもできる。 In the above, the case where the energy management support apparatus 1 performs visualization for optimization of the supply system that supplies power is described, but the present invention is not limited to this. For example, the above-described method can be applied to a supply system that supplies resources such as hot and cold heat, steam, and gas.
 本発明は上述した実施形態そのままに限定されるものではく、実施段階でのその要旨を逸脱しない範囲で構成要素を変形して具体化することができる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成することができる。例えば、実施形態に示される全構成要素を適宜組み合わせても良い。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。このような、発明の趣旨を逸脱しない範囲内において種々の変形や応用が可能であることは言うまでもない。 The present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, all the constituent elements shown in the embodiments may be appropriately combined. Furthermore, constituent elements over different embodiments may be appropriately combined. It goes without saying that various modifications and applications are possible without departing from the spirit of the invention.
 1   エネルギーマネジメント支援装置
 5   入出力装置
 11  数式群生成部
 12  一階述語論理式生成部
 13  限定記号消去部
 14  可視化部
 20  計測装置
 21  最適運用装置
DESCRIPTION OF SYMBOLS 1 Energy management support apparatus 5 Input / output apparatus 11 Formula group generation part 12 First-order predicate logic expression generation part 13 Limit symbol elimination part 14 Visualization part 20 Measurement apparatus 21 Optimal operation apparatus

Claims (8)

  1.  資源を供給する資源供給設備、該資源供給設備から供給される資源を需要する資源需要家設備及び資源の供給経路を有する需給系統を対象として、エネルギーを消費する設備の運転を支援するエネルギーマネジメント支援装置であって、
     前記需給系統の需給系統モデルと、前記資源供給設備及び前記供給経路の設備能力を表す設備能力情報が入力されると、該需給系統モデル及び設備能力情報に基づいて、該需給系統モデルが表す需給系統についての最適化問題の目的関数及び制約条件を表す複数の数式からなる数式群を生成する数式群生成部と、
     前記数式群生成部において生成した数式群より、一階述語論理式を生成する一階述語論理式生成部と、
     限定記号消去法より、前記生成した一階述語論理式を処理して、前記資源需要家設備における総需要量と前記資源供給設備における総消費エネルギーとの関係を表す式を得る限定記号消去部と、
     前記限定記号消去部において処理した結果得られる関係式を可視化する可視化部と、
     を有することを特徴とするエネルギーマネジメント支援装置。
    Energy management support that supports the operation of energy consuming facilities for resource supply facilities that supply resources, resource consumer facilities that demand resources supplied from the resource supply facilities, and supply and demand systems that have resource supply paths A device,
    When the supply and demand system model of the supply and demand system and the facility capacity information indicating the facility capacity of the resource supply facility and the supply path are input, the supply and demand represented by the supply and demand system model based on the supply and demand system model and the facility capacity information A formula group generation unit that generates a formula group composed of a plurality of formulas representing the objective function and constraint conditions of the optimization problem for the system;
    A first order predicate logical expression generation unit that generates a first order predicate logical expression from the mathematical expression group generated in the mathematical expression group generation unit;
    A limit symbol erasure unit that processes the generated first-order predicate logical expression from a limit symbol elimination method to obtain an expression representing the relationship between the total demand amount in the resource consumer facility and the total energy consumption in the resource supply facility; ,
    A visualization unit that visualizes a relational expression obtained as a result of processing in the limit symbol elimination unit;
    An energy management support device characterized by comprising:
  2.  前記数式群生成部は、前記目的関数として、前記資源供給設備の資源供給量及び該資源供給設備におけるエネルギー消費量の関係を表現する第1の数式群を生成し、前記制約条件として、該資源供給設備及び前記供給経路の供給能力を表現する第2の数式群を生成し、
     前記一階述語論理式生成部は、前記第1及び第2の数式群を論理積で結合し、該第1及び第2の数式群に含まれる前記資源供給系統の状態を表す変数が存在することを表す存在記号を付与することにより、前記一階述語論理式を生成する
     ことを特徴とする請求項1記載のエネルギーマネジメント支援装置。
    The formula group generation unit generates a first formula group that expresses a relationship between a resource supply amount of the resource supply facility and an energy consumption amount in the resource supply facility as the objective function, and the resource Generating a second set of mathematical expressions expressing the supply capacity of the supply facility and the supply path;
    The first-order predicate logical expression generation unit combines the first and second mathematical formula groups with a logical product, and there is a variable representing a state of the resource supply system included in the first and second mathematical formula groups. The energy management support apparatus according to claim 1, wherein the first-order predicate logical expression is generated by adding an existence symbol representing the fact.
  3.  前記需給系統モデル及び前記設備能力情報の変更を更に受け付けると、前記数式群生成部、前記一階述語論理式生成部、前記限定記号消去部及び前記可視化部は、該変更された需給系統モデル及び設備能力情報を用いて、上記の処理を実行し、該変更された需給系統モデル及び設備能力情報に対応する結果を出力させる
     ことを特徴とする請求項1または2に記載のエネルギーマネジメント支援装置。
    When further receiving a change in the supply and demand system model and the equipment capacity information, the formula group generation unit, the first-order predicate logical expression generation unit, the limit symbol elimination unit, and the visualization unit, the changed supply and demand system model and 3. The energy management support apparatus according to claim 1, wherein the processing is executed using equipment capacity information, and a result corresponding to the changed supply and demand system model and equipment capacity information is output.
  4.  前記需給系統モデル及び前記設備能力情報の変更を更に受け付けると、前記限定記号消去部において求めた前記関係式または前記可視化部において作成したグラフを一時的に保持する記憶部と、
     を更に備え、
     前記可視化部は、前記記憶部に保持する情報を利用して、前記変更された需給系統モデル及び設備能力情報に基づくグラフと、変更前のグラフとを出力表示させる
     ことを特徴とする請求項3記載のエネルギーマネジメント支援装置。
    When further receiving changes in the supply and demand system model and the equipment capacity information, a storage unit that temporarily holds the relational expression obtained in the limit symbol elimination unit or the graph created in the visualization unit;
    Further comprising
    The said visualization part outputs and displays the graph based on the said changed supply-and-demand system model and equipment capability information, and the graph before a change using the information hold | maintained at the said memory | storage part. The energy management support device described.
  5.  前記可視化部は、前記限定記号消去部において処理した結果得られる関係式の可視化結果に加え、前記資源需要家設備における総需要量と前記資源供給設備における総消費エネルギーを計測した実績データをさらに表示する
     ことを特徴とする請求項1乃至4記載のエネルギーマネジメント支援装置。
    The visualization unit further displays result data obtained by measuring the total demand amount in the resource consumer facility and the total energy consumption in the resource supply facility, in addition to the visualization result of the relational expression obtained as a result of processing in the limit symbol elimination unit The energy management support device according to any one of claims 1 to 4, wherein
  6.  前記可視化部は、前記限定記号消去部において処理した結果得られる関係式の可視化結果に加え、前記資源需要家設備における総需要量と前記資源供給設備における総消費エネルギーについて最適運用装置が計算した最適運用時の計算値をさらに表示する
     ことを特徴とする請求項1乃至5記載のエネルギーマネジメント支援装置。
    In addition to the visualization result of the relational expression obtained as a result of processing in the quantifier elimination unit, the visualization unit optimizes the optimum operation device calculated for the total demand amount in the resource consumer facility and the total energy consumption in the resource supply facility The energy management support device according to claim 1, further displaying a calculated value during operation.
  7.  前記数式群生成部は、前記需給系統の一部の資源についての情報を用いて前記数式群を生成し、
     前記限定記号消去部は、前記需給系統の一部の資源についての部分的な需要量合計と一部の資源についての部分的な供給量合計との関係を表す式を得る
     ことを特徴とする請求項1記載のエネルギーマネジメント支援装置。
    The formula group generation unit generates the formula group using information about a part of resources of the supply and demand system,
    The quantifier elimination unit obtains an expression representing a relationship between a partial demand amount for a part of resources in the supply and demand system and a partial supply amount for a part of resources. Item 1. An energy management support device according to item 1.
  8.  資源を供給する資源供給設備、該資源供給設備から供給される資源を需要する資源需要家設備及び資源の供給経路を有する需給系統を対象として、エネルギーを消費する設備の運転を支援するエネルギーマネジメント支援処理を情報処理装置に実行させるためのエネルギーマネジメント支援プログラムであって、
     前記需給系統の需給系統モデルと、前記資源供給設備及び前記供給経路の設備能力を表す設備能力情報が入力されると、該需給系統モデル及び設備能力情報に基づいて、該需給系統モデルが表す需給系統についての最適化問題の目的関数及び制約条件を表す複数の数式からなる数式群を生成し、
     前記生成した数式群より、一階述語論理式を生成し、
     限定記号消去法より、前記生成した一階述語論理式を処理して、前記資源需要家設備における総需要量と前記資源供給設備における総消費エネルギーとの関係を表す式を得、
     前記限定記号消去部において処理した結果得られる関係式を可視化する、
     ことを特徴とするエネルギーマネジメント支援プログラム。
    Energy management support that supports the operation of energy consuming facilities for resource supply facilities that supply resources, resource consumer facilities that demand resources supplied from the resource supply facilities, and supply and demand systems that have resource supply paths An energy management support program for causing an information processing apparatus to execute processing,
    When the supply and demand system model of the supply and demand system and the facility capacity information indicating the facility capacity of the resource supply facility and the supply path are input, the supply and demand represented by the supply and demand system model based on the supply and demand system model and the facility capacity information Generate a formula group consisting of a plurality of formulas representing the objective function and constraints of the optimization problem for the system,
    Generate a first-order predicate logical expression from the generated mathematical expression group,
    From the quantifier elimination method, the generated first-order predicate logical expression is processed to obtain an expression representing the relationship between the total demand amount in the resource consumer equipment and the total energy consumption in the resource supply equipment,
    Visualizing a relational expression obtained as a result of processing in the quantifier elimination unit,
    An energy management support program characterized by this.
PCT/JP2014/053802 2013-02-19 2014-02-18 Energy management assist device and energy management assist program WO2014129470A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015501465A JP5761476B2 (en) 2013-02-19 2014-02-18 Energy management support device and energy management support program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-030433 2013-02-19
JP2013030433 2013-02-19

Publications (1)

Publication Number Publication Date
WO2014129470A1 true WO2014129470A1 (en) 2014-08-28

Family

ID=51391259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053802 WO2014129470A1 (en) 2013-02-19 2014-02-18 Energy management assist device and energy management assist program

Country Status (2)

Country Link
JP (1) JP5761476B2 (en)
WO (1) WO2014129470A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051553A1 (en) * 2014-10-01 2016-04-07 富士電機株式会社 Energy management assist device and energy management assist program
WO2016075805A1 (en) * 2014-11-14 2016-05-19 富士電機株式会社 Optimum production allocation determination device, optimum production allocation determination method, and program therefor
US20160161926A1 (en) * 2014-01-30 2016-06-09 Fuji Electric Co., Ltd. Energy analysis apparatus and recording medium
JP2016218656A (en) * 2015-05-19 2016-12-22 アズビル株式会社 Energy-saving effect trial calculation apparatus and method
JP2017016181A (en) * 2015-06-26 2017-01-19 富士電機株式会社 System operation support device, system operation support method, and program of the same
CN110163443A (en) * 2019-05-27 2019-08-23 西南石油大学 Consider the micro- energy net Optimization Scheduling in the natural gas pressure regulating station of electric-gas integration requirement response
WO2022014448A1 (en) * 2020-07-13 2022-01-20 株式会社Ihi Operation assistance device and operation assistance program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6292338B1 (en) 2017-08-04 2018-03-14 富士電機株式会社 Operation support system, operation support apparatus, operation support method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004038618A (en) * 2002-07-04 2004-02-05 Fujitsu Ltd Analysis for pole assignment of control system, method, device and program for designing control system
JP2005129015A (en) * 2003-09-30 2005-05-19 Fujitsu Ltd Program and apparatus for determining model parameter in simulation
JP2006106817A (en) * 2004-09-30 2006-04-20 Fujitsu Ltd Model parameter computing accuracy judgement program and storage medium for storing the program
JP2007272478A (en) * 2006-03-30 2007-10-18 Fujitsu Ltd Model parameter determination program and determination device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8706650B2 (en) * 2009-01-14 2014-04-22 Integral Analytics, Inc. Optimization of microgrid energy use and distribution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004038618A (en) * 2002-07-04 2004-02-05 Fujitsu Ltd Analysis for pole assignment of control system, method, device and program for designing control system
JP2005129015A (en) * 2003-09-30 2005-05-19 Fujitsu Ltd Program and apparatus for determining model parameter in simulation
JP2006106817A (en) * 2004-09-30 2006-04-20 Fujitsu Ltd Model parameter computing accuracy judgement program and storage medium for storing the program
JP2007272478A (en) * 2006-03-30 2007-10-18 Fujitsu Ltd Model parameter determination program and determination device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHOICHI MUTO: "A State Repesentation Method for Diagnostic Problems of Power System", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN B, HEISEI 4 NEN 8 GATSU, vol. 112, no. 8, 20 August 1992 (1992-08-20), pages 701 - 710 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160161926A1 (en) * 2014-01-30 2016-06-09 Fuji Electric Co., Ltd. Energy analysis apparatus and recording medium
US10101713B2 (en) * 2014-01-30 2018-10-16 Fuji Electric Co., Ltd. Energy analysis apparatus and recording medium
WO2016051553A1 (en) * 2014-10-01 2016-04-07 富士電機株式会社 Energy management assist device and energy management assist program
JP6065167B2 (en) * 2014-10-01 2017-01-25 富士電機株式会社 Energy management support device and energy management support program
WO2016075805A1 (en) * 2014-11-14 2016-05-19 富士電機株式会社 Optimum production allocation determination device, optimum production allocation determination method, and program therefor
JPWO2016075805A1 (en) * 2014-11-14 2017-07-20 富士電機株式会社 Optimal production allocation determination device, optimal production allocation determination method and program thereof
JP2016218656A (en) * 2015-05-19 2016-12-22 アズビル株式会社 Energy-saving effect trial calculation apparatus and method
JP2017016181A (en) * 2015-06-26 2017-01-19 富士電機株式会社 System operation support device, system operation support method, and program of the same
CN110163443A (en) * 2019-05-27 2019-08-23 西南石油大学 Consider the micro- energy net Optimization Scheduling in the natural gas pressure regulating station of electric-gas integration requirement response
CN110163443B (en) * 2019-05-27 2022-09-09 西南石油大学 Natural gas pressure regulating station micro-energy network optimization scheduling method considering electricity-gas comprehensive demand response
WO2022014448A1 (en) * 2020-07-13 2022-01-20 株式会社Ihi Operation assistance device and operation assistance program

Also Published As

Publication number Publication date
JP5761476B2 (en) 2015-08-12
JPWO2014129470A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP5761476B2 (en) Energy management support device and energy management support program
Lertworasirikul et al. Inverse data envelopment analysis model to preserve relative efficiency values: The case of variable returns to scale
Wu et al. Measuring E-government performance of provincial government website in China with slacks-based efficiency measurement
US20070260432A1 (en) Layout design support system, method, and program
Guo et al. An integrated model for slack-based measure of super-efficiency in additive DEA
EP2178013A2 (en) Three-dimensional data generation device, method and program thereof
JP6496470B2 (en) Production plan support device, production plan support program and method
Gendron et al. Matheuristics based on iterative linear programming and slope scaling for multicommodity capacitated fixed charge network design
Dahlgren et al. An optimal multiple stopping approach to infrastructure investment decisions
Rácz et al. Productivity and efficiency measurement of the Danish centralized biogas power sector
Yokoyama et al. Model reduction by time aggregation for optimal design of energy supply systems by an MILP hierarchical branch and bound method
Pezzotta et al. A service engineering framework to design and configure product-service systems
Li et al. Hybrid differential evolution with a simplified quadratic approximation for constrained optimization problems
JP2011154439A (en) Optimization processing program, method, and apparatus
JP5458814B2 (en) Numerical processing program, method and apparatus
Théry et al. The extended resource task network: a framework for the combined scheduling of batch processes and CHP plants
Cao New proofs of generating functions for Rogers–Szegö polynomials
Iqbal et al. Optimal online k-min search
WO2016051553A1 (en) Energy management assist device and energy management assist program
Dębczyński et al. Scheduling jobs with mixed processing times, arbitrary precedence constraints and maximum cost criterion
Svaiter A partially inexact ADMM with o (1/n) asymptotic convergence rate, 𝒪 (1/n) complexity, and immediate relative error tolerance
Sun et al. An active set quasi-Newton method with projected search for bound constrained minimization
Xia et al. Effective decomposition and co-ordination algorithms for unit commitment and economic dispatch with security constraints
JP6547342B2 (en) Distributed processing controller
JP6724420B2 (en) Operation support device, operation support system, operation support method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501465

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14754729

Country of ref document: EP

Kind code of ref document: A1