WO2016051553A1 - Energy management assist device and energy management assist program - Google Patents

Energy management assist device and energy management assist program Download PDF

Info

Publication number
WO2016051553A1
WO2016051553A1 PCT/JP2014/076263 JP2014076263W WO2016051553A1 WO 2016051553 A1 WO2016051553 A1 WO 2016051553A1 JP 2014076263 W JP2014076263 W JP 2014076263W WO 2016051553 A1 WO2016051553 A1 WO 2016051553A1
Authority
WO
WIPO (PCT)
Prior art keywords
logical expression
calculation unit
feature calculation
logical
expression
Prior art date
Application number
PCT/JP2014/076263
Other languages
French (fr)
Japanese (ja)
Inventor
智志 桐生
吉雄 丹下
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2016545369A priority Critical patent/JP6065167B2/en
Priority to PCT/JP2014/076263 priority patent/WO2016051553A1/en
Publication of WO2016051553A1 publication Critical patent/WO2016051553A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Definitions

  • the present invention relates to a technology for supporting analysis of a supply and demand system having resource supply facilities for supplying resources such as power and gas and resource demand facilities for consuming resources and consuming energy.
  • BEMS Building Energy Management System
  • the power consumption characteristics of the heat source device may differ depending on the device.
  • the power consumption characteristic of the heat source apparatus which comprises an air-conditioning system may receive to the influence of the temperature of external air, and may change. For this reason, energy saving can be realized by adjusting the heat load distribution for each device when operating the air conditioning system.
  • the distribution taking into account the fluctuation of the outside air temperature the distribution taking into consideration the optimum value of the power consumption of the entire system, and the equipment It is also considered beneficial to consider allocations that avoid operating limits.
  • Non-Patent Document 1 a technique for obtaining a logical expression representing the relationship between the amount of demand for resources and the energy consumption using the limited symbol elimination method and visualizing this (for example, Non-Patent Document 1) .
  • the present invention analyzes a supply and demand system having a resource supply facility for supplying resources and a resource demand facility for consuming resources and consuming energy by extracting and presenting information necessary for the user in an appropriate manner.
  • an energy management support apparatus for supporting analysis of a supply and demand system consisting of resource demand facilities and supply facilities.
  • a feature calculation unit for generating an output logical expression including a description of a predetermined feature to be represented on a graph representing the relationship between the demand amount of resources and the energy consumption;
  • An imaging unit that generates an image including a graph representing the predetermined feature based on the output logical expression output by the feature calculation unit;
  • a first intermediate logical expression obtained by processing the first first-order predicate logical expression according to a finite symbol elimination method is generated.
  • a limited symbol elimination unit to be output to the feature calculation unit, And the feature calculation unit generates the output logical expression based on the first intermediate logical expression.
  • a second aspect of the present invention is an energy management support program for causing an information processing apparatus to execute an energy management support process for supporting analysis of a supply and demand system consisting of demand facilities and supply facilities of resources, ⁇
  • a first first-order predicate logical expression is generated based on the input logical expression
  • generating an output logical expression including a description of a predetermined feature to be represented on a graph representing the relationship between the demand amount of resources and the energy consumption
  • Generating a first intermediate logic expression by processing the first first-order logic expression by a definite symbol elimination method The output logical expression is generated based on the first intermediate logical expression, and an image including a graph representing the predetermined feature is generated based on the output logical expression.
  • a supply and demand system having a resource supply facility for supplying resources and a resource demand facility for consuming resources and consuming energy by extracting and presenting information necessary for the user in an appropriate manner Contributing to the analysis of
  • FIG. 39 is a diagram for describing a method of obtaining the second logical expression R line (L, P) from the logical expression obtained by the operation of FIG. 37 by the feature calculation unit in the third embodiment. It is a figure which illustrates the graph produced by visualizing the second logical expression R line (L, P). It is a figure explaining the arithmetic processing which a feature calculation part performs in a 4th embodiment.
  • FIG. 1 illustrates the expression of the change range of the power consumption characteristic and external temperature in 5th Embodiment about the refrigerator which comprises the supply-and-demand system model shown in FIG. It is a figure explaining the relationship between the external temperature in 5th Embodiment, and the power consumption characteristic of a refrigerator. It is a figure which illustrates the 1st logical formula which showed the relation between the demand of thermal load and power consumption in an example. It is a figure which shows the graph which visualized logical-formula sys3 (L, P) of FIG. It is a figure explaining the arithmetic processing which a feature calculation part performs in a 5th embodiment.
  • 51 is a diagram for describing calculation processing further performed by the feature calculation unit on the logical expression ⁇ effect1 (L, P, P ′) in FIG. It is a figure explaining the arithmetic processing which a limited symbol deletion part implements. It is a figure explaining the arithmetic processing which a feature calculation part performs in order to obtain logical expression Reffect2 (L, P). It is a figure explaining the arithmetic processing which a feature calculation part further performs with respect to logical-expression effect effect2 (L, P, P ') of FIG. It is a figure explaining the arithmetic processing which a limited symbol deletion part implements.
  • Feature calculating section in the fifth embodiment is a diagram illustrating a method of generating a formula R effect3 (L, P) representing the lower limit of the first logical expression ⁇ sys3 (L, P). It is a figure explaining the arithmetic processing which a feature calculation part further performs using logical expression Reffect3 (L, P) produced
  • FIG. 73 is a diagram for describing calculation processing performed by the feature calculation unit to obtain the maximum value of the heat load demand amount using the logical expression R L-range (L) in FIG. 62.
  • FIG. 68 is a diagram for describing calculation processing performed by the feature calculation unit to obtain the maximum value of power consumption using the logical expression R P-range (L) in FIG. 67. It is a figure which illustrates the graph which visualized and produced
  • FIG. 7th Embodiment It is a figure which illustrates the power consumption characteristic in 7th Embodiment about the refrigerator which comprises the supply-and-demand system model shown in FIG. It is a figure explaining the relationship between the external temperature in 7th Embodiment, and the power consumption characteristic of a refrigerator. It is a figure which illustrates the 1st logical formula which showed the relation between the demand of thermal load and power consumption in an example. It is a figure which shows the graph which visualized logical expression sys sys4 (L, P). It is a figure which illustrates the graph which visualized two logical expressions in a 7th embodiment.
  • FIG. 1 is a diagram for explaining an outline of a method for supporting analysis of a supply and demand system composed of demand facilities and supply facilities of resources by the energy management support apparatus 1 according to the present invention.
  • the energy management support apparatus 1 receives an input of the logical expression ⁇ sys .
  • the energy management support apparatus 1 eliminates the variable by the limited symbol elimination as necessary based on the inputted logical expression sys sys and removes the variable to visualize the relationship between the demand amount of the resource in the supply and demand system and the power consumption as the graph G
  • An image 50 is generated.
  • the energy management support apparatus 1 outputs the generated image 50 to display means such as a monitor (not shown) in FIG.
  • the energy management support device 1 of FIG. 1 is used, for example, in the operation of an air conditioning system, to adjust the heat load distribution for each device in consideration of the power consumption characteristics of each heat source device and the influence of the temperature of the outside air.
  • FIG. 2 is a block diagram of an energy management support apparatus according to the present invention.
  • the energy management support apparatus 1 includes a feature calculation unit 11, a limited symbol elimination unit 12, and an imaging unit 13.
  • Feature calculation unit 11 a logical expression input based on (hereinafter, the first referred to as a logical expression) [psi sys, said logical expression that contains a description of the features to be represented on the graph G (in the following , Second logical formula) R image is generated and output.
  • the feature calculation unit 11 inputs the first-order predicate logical expression ⁇ ** to the limiting symbol elimination unit 12 at least once.
  • the limiting symbol elimination unit 12 When the limiting symbol elimination unit 12 receives the first-order predicate logical expression ⁇ ** from the feature calculation unit 11, the limiting symbol elimination unit 12 processes the first-order predicate logical expression according to the limiting symbol elimination method, and features the obtained expression R ** . It is output to the calculation unit 11.
  • the feature calculation unit 11 outputs the second logical expression R image to the imaging unit 13 when the second logical expression R image is generated using the expression R ** input from the limiting symbol deletion unit 12.
  • the imaging unit 13 generates the image 50 including the graph G using the second logical expression R image and causes the monitor or the like to output the image 50.
  • the present invention is not limited to this.
  • the function may be distributed to a plurality of information processing apparatuses, and the above process may be executed by an energy management support system including a plurality of information processing apparatuses.
  • each part constituting the energy management support apparatus 1 of FIG. 2 may be configured by a program.
  • a control program for executing the above method is stored in advance in a memory of an information processing apparatus or the like, and a control unit not shown in FIG. By performing the operation, the same function / effect can be obtained.
  • the energy management support device 1 of the present invention it is necessary for the user to determine the optimum heat load distribution in the air conditioning system with reference to the graph G in the image 50.
  • Information is extracted and presented in a way that is easy for the user to use. In the following, it will be specifically described what information is to be extracted and how to extract the extracted information in a graph G to be presented to the user.
  • First Embodiment Before describing the configuration and operation of the energy management support apparatus 1 according to the present embodiment, first, an analysis target of the energy management support apparatus 1 according to the present embodiment will be described.
  • FIG. 3 is a diagram illustrating a demand-supply system model that the energy management support apparatus 1 according to the present embodiment analyzes.
  • refrigerators 1 to 4 as heat source equipment are provided to supply the thermal load L [kW] required by the air conditioning target space in the air conditioning system. Have.
  • Power consumption of power supplies power of P [kW] against four refrigerator 1-4, refrigerator 1-4, P 1 ⁇ P 4 respectively from the power supply receives a supply [kW] Do.
  • the four refrigerators 1 to 4 respectively supply heat loads of L 1 to L 4 [kW] to the air conditioning target space, and the power demand of the air conditioning target space is L [kW].
  • FIG. 4 is a diagram illustrating the expressions of the change range of the power consumption characteristic and the outside air temperature in the present embodiment for the refrigerators 1 to 4 constituting the supply and demand grid model shown in FIG.
  • the power consumption characteristics of the refrigerators 1 to 4 during operation are as shown in the formula group (1-1) in FIG.
  • the respective refrigerators 1 to 4 have different sensitivities to the outside air temperature.
  • refrigerating machine 1-3 is a function of the power P 1 ⁇ P 3 is the outside air temperature T, it can be seen that the power consumption P 1 ⁇ P 3 is dependent on the outside air temperature.
  • the refrigerator 4, the power consumption P 4 is not a function of the outside air temperature T, and I'm not dependent on the outside air temperature.
  • the power consumption characteristics of the refrigerators 1 to 4 at the time of stop are as shown in the formula group (1-3) in FIG.
  • FIG. 5 is a view for explaining the relationship between the outside air temperature T and the power consumption characteristics of the refrigerators 1 to 4 in the present embodiment.
  • FIG. 5 (a) shows the power consumption characteristics of each of the refrigerators 1 to 4 when the outside air temperature T is 25 [.degree. C.] which is the lower limit
  • FIG. 5 (b) shows the upper limit of the outside air temperature T. Indicates that it is 35 [° C.].
  • T 25 ° C.
  • FIG. 6 is a diagram illustrating a first logical expression showing the relationship between the demand L of the heat load and the power consumption P in the above example.
  • the specific contents of the logical formula sys sys (L, P) are described partially for convenience, both in the following description and in FIG. 6, and the drawings referred to in the following description and explanation will be described. The same is true.
  • the logical expression shown in FIG. 6 is generated by generating a first-order predicate logical expression based on the expression (groups) (1-1) to (1-4) shown in FIG. sys Find sys (L, P).
  • the method of obtaining the logical formula sys sys (L, P) in FIG. 6 uses a known technique, and thus the description thereof is omitted here.
  • FIG. 7 is a diagram visualizing the logical expression ⁇ sys (L, P) of FIG.
  • Gray area A_pusai sys in FIG 7 (L, P) is a region satisfying the first logical expression [psi sys in FIG 6 (L, P).
  • the first logical expression ⁇ sys (L, P) in FIG. 7 to graph representing a region satisfying the further region A_ ⁇ sys (L, P) the lower limit of Highlight it.
  • FIG. 8 is a diagram for explaining the calculation process performed by the feature calculation unit 11 in the present embodiment.
  • the feature calculation unit 11 uses the parameter P ′ to generate the logical expression “P ′ + 1.5 ⁇ P” (1-5).
  • the feature calculation unit 11 replaces the power consumption P of the input first logical expression ⁇ sys (L, P) with P ′, and the logical expression obtained by the replacement and the logical expression (1-5) Combine to create the following logical expression ⁇ min1 (L, P, P ′).
  • the lower limit value of P in the first logical expression is a predetermined value or more (1.5 [kW in the embodiment Or more) an area having a large value is identified.
  • FIG. 9 is a diagram for explaining the calculation processing which the feature calculation unit 11 further performs on the logical expression ⁇ min1 (L, P, P ′) of FIG.
  • the feature calculation unit 11 adds the existing symbol “ ⁇ ” to the parameter P ′ of the logical expression ⁇ min1 (L, P, P ′) in FIG. 8 (“ ⁇ P ′” in FIG. 9, (1-6 ), Generate the following first-order predicate logical expression ⁇ min1 (L, P, P ′) (1-5).
  • FIG. 10 is a diagram for explaining the arithmetic processing performed by the limiting symbol eraser 12.
  • the restriction symbol elimination unit 12 receives the logical expression ⁇ min1 (L, P, P ′) of FIG. 9 from the feature calculation unit 11, as shown in FIG. 10, the logical expression ⁇ min1 (L, P, P Perform restriction symbol elimination for '). From the logical expression R min1 (L, P) thus obtained, the parameter P ′ to which the feature calculation unit 11 has added the presence symbol “ ⁇ ” in the calculation process of FIG. 9 is deleted.
  • FIG. 11 is a diagram illustrating a result of visualizing a region which is satisfied by the logical expression R min1 (L, P) obtained by the restrictive symbol elimination.
  • the area A_R min1 (L, P) is an area that takes a value larger than a lower limit of the power consumption P of the first logical formula sys sys (L, P) by a predetermined value (1.5 [kW] in the embodiment) or more. It corresponds to In other words, among the areas satisfying the first logical formula sys sys (L, P), the area A_R min1 in FIG. L, P) are excluded.
  • the feature calculation unit 11 performs the following calculation on the basis of the input first logical expression sys sys (L, P) of FIG. 6 separately from the above-described calculation processing. Then, a logical expression R min2 (L, P) representing an area taking the power consumption P in the first logical expression sys sys (L, P) or more is obtained.
  • FIG. 12 is a diagram for explaining calculation processing performed by the feature calculation unit 11 to obtain the logical expression R min2 (L, P).
  • the feature calculation unit 11 generates a logical expression “P ′ ⁇ P” (1-8) using the parameter P ′ based on the first logical expression sys sys (L, P) in FIG. Similar to the operation processing described in FIG. 8, the feature calculation unit 11 performs logical operation on the generated logical expression and an expression in which the parameter P of the first logical expression sys sys (L, P) is replaced with P ′. Combine to generate a logical expression.
  • the logical product of the logical expression (1-8) and the logical expression sys sys (L, P ′) obtained by substitution identifies an area having a value equal to or more than the lower limit value of P in the first logical expression.
  • the logical expression ⁇ min2 (L, P, P ′) generated here is as follows.
  • FIG. 13 is a diagram for explaining the calculation processing that the feature calculation unit 11 further performs on the logical expression ⁇ min2 (L, P, P ′) in FIG.
  • the feature calculation unit 11 performs the same processing as the calculation described above with reference to FIG. That is, the feature calculation unit 11, a logical expression [psi min2 of FIG. 12 (L, P, P') to impart existential quantifier " ⁇ " for the parameter P'of the following first-order logic formulas phi min2 (L , P, P ').
  • FIG. 14 is a diagram for explaining the arithmetic processing performed by the limiting symbol eraser 12.
  • FIG. 15 is a diagram illustrating a result of visualizing a region which is satisfied by the logical expression R min2 (L, P) obtained by the restrictive symbol elimination.
  • the region A_R min2 (L, P) corresponds to the region above the lower limit of the first logical expression sys sys (L, P).
  • FIG. 16 shows regions A_R min1 (L, P) and R min2 (L, P) that satisfy the two logical expressions R min1 (L, P) obtained by the calculation of the feature calculation unit 11 and the limiting symbol elimination unit 12.
  • fill region A_R min2 (L, P) is a diagram showing a result of superimposed.
  • the lower limit of the power consumption P is 1.5 kW for the area A_R min1 (L, P) than the area A_R min2 (L, P). large.
  • the feature calculation unit 11 extracts a region to be emphasized in the graph.
  • FIG. 17 is a diagram for describing a method of generating the second logical expression R min (L, P) by the feature calculation unit 11 in the present embodiment.
  • the feature calculation unit 11 calculates two equations (1-7) and (1-9) obtained by the above arithmetic processing, that is, logical equations R min1 (L, P) and R min2 (L , P) and XOR the exclusive OR to obtain a logical expression R min (L, P).
  • the feature calculation unit 11 outputs the above logical expression R min (L, P) to the imaging unit 13 as a second logical expression. Based on the second logical expression R min (L, P) input from the feature calculation unit 11, the imaging unit 13 generates a graph representing the relationship between the heat load demand amount L and the power consumption P.
  • FIG. 18 is a diagram illustrating the highlighting of the lower limit of the power consumption P represented on the graph based on the second logical expression R min (L, P).
  • the region A_R min (L, P) satisfying the second logical expression R min (L, P) obtained by the above series of arithmetic processing has a predetermined width (in the embodiment, 1.) in the lower limit of the first logical expression. 5 min [kW]), is displayed in a color different from that of the region satisfy the first logical expression A_ ⁇ sys (L, P).
  • the user can easily view the lower limit of the power consumption P via the display means such as a monitor on which the image 50 including the graph G1 of FIG. 18 is output.
  • the first logical expression is represented by the parameters L and P. From this, as a method of highlighting the lower limit of power consumption P, for example, a method of plotting and displaying the lower limit on a graph by changing L and finding the minimum value of P corresponding to each is also displayed. Conceivable.
  • the lower limit of P can not necessarily be expressed strictly. That is, a certain coordinate (L, P) to be highlighted is not necessarily located on the pixel of the image 50. In this case, the pixel closer to the P direction on the pixel is selected to highlight the pixel, and the lower limit can not be accurately represented on the graph.
  • a graph G1 is generated in which the lower limit of the power consumption P is highlighted with respect to the input first logical expression.
  • a graph G2 is generated in which the upper limit of the power consumption P is highlighted with respect to the input first logical expression.
  • the supply and demand system model to be analyzed by the energy management support apparatus 1, the characteristic equation thereof, and the change range of the outside air temperature are as shown in FIG. 3 to FIG. Further, since the first logical expression sys sys (L, P) input to the energy management support apparatus 1 is also as shown in FIG. 6 and FIG. 7, the description thereof will be omitted here.
  • FIG. 19 is a diagram for explaining the calculation process performed by the feature calculation unit 11 in the present embodiment.
  • the feature calculation unit 11 receives an input of the first logical expression sys sys (L, P)
  • the feature calculation unit 11 uses the parameter P ′ to set the logical expression “P ⁇ P′ ⁇ 1.5. "(2-1) is generated.
  • the feature calculation unit 11 combines the generated logical expression (2-1) with an expression obtained by replacing the parameter P of the first logical expression sys sys (L, P) with P ′ by logical multiplication.
  • the upper limit of P in the first logical expression is not less than a predetermined value (1.5 [in the embodiment, The region having a small value is identified.
  • FIG. 20 is a diagram for explaining calculation processing further performed by the feature calculation unit 11 on the generated logical expression ⁇ max1 (L, P, P ′) of FIG.
  • the feature calculation unit 11 adds the existence symbol “ ⁇ ” to the parameter P ′ of the logical expression ⁇ max1 (L, P, P ′) in FIG. 19, and the following first-order predicate logical expression ⁇ max1 (L, P , P ′) are generated.
  • FIG. 21 is a diagram for explaining the arithmetic processing performed by the limiting symbol eraser 12.
  • the limiting symbol elimination unit 12 receives the logical expression ⁇ max1 (L, P, P ′) of FIG. 20 from the feature calculation unit 11, as shown in FIG. 21, the logical expression ⁇ max1 (L, P, P Perform restriction symbol elimination on '). From the logical expression R max1 (L, P) thus obtained, the parameter P ′ to which the feature calculation unit 11 has added the presence symbol “ ⁇ ” in the calculation process of FIG. 20 is deleted.
  • FIG. 22 is a diagram illustrating the result of visualizing a region satisfied by the logical expression R max1 (L, P) obtained by the elimination of the restrictive symbol.
  • the feature calculation unit 11 further performs the following operation based on the input first logical expression ⁇ sys (L, P) in FIG. Then, a logical expression R max2 (L, P) representing a region taking an upper limit value or less of the power consumption P in the first logical expression sys sys (L, P) is obtained.
  • FIG. 23 is a diagram for explaining calculation processing performed by the feature calculation unit 11 to obtain R max2 (L, P).
  • the feature calculation unit 11 generates a logical expression “P ⁇ P ′” (2-3) using the parameter P ′ based on the first logical expression sys sys (L, P) in FIG.
  • the feature calculation unit 11 combines the generated logical expression and an expression in which the parameter P is replaced with P ′ in the first logical expression sys sys (L, P), as in the above embodiment, Generate a logical expression.
  • the logical product of the logical expression (2-3) and the logical expression ⁇ sys (L, P ′) obtained by substitution identifies an area having a value equal to or less than the upper limit value of P in the first logical expression.
  • the logical expression ⁇ max2 (L, P, P ′) generated here is as follows.
  • FIG. 24 is a diagram for explaining the calculation processing which the feature calculation unit 11 further performs on the logical expression ⁇ max2 (L, P, P ′) of FIG.
  • the feature calculation unit 11 assigns the existence symbol “ ⁇ ” to the parameter P ′ of the logical expression ⁇ max2 (L, P, P ′) in FIG. 23, and the following first-order predicate logical expression ⁇ max2 (L, P , P ′) are generated.
  • FIG. 25 is a diagram for explaining the arithmetic processing performed by the limiting symbol eraser 12.
  • Quantifier elimination unit 12 logical expression phi max2 of Figure 24 from feature calculation block 11 the (L, P, P') is input, similarly to the foregoing embodiment and the like, logical expression entered phi max2 ( Perform the limited symbol elimination for L, P, P ′). From the logical expression R max2 (L, P) thus obtained, the parameter P ′ to which the feature calculating unit 11 has added the presence symbol “ ⁇ ” in the calculation processing of FIG. 24 is deleted.
  • FIG. 26 is a diagram illustrating the result of visualizing a region satisfied by the logical expression R max2 (L, P) obtained by the elimination of the restrictive symbol.
  • the region A_R max2 (L, P) corresponds to the region below the upper limit of the first logical expression sys sys (L, P).
  • FIG. 27 shows regions A_R max1 (L, P) and R max2 (L, P) that satisfy the two logical expressions R max1 (L, P) obtained by the calculation of the feature calculation unit 11 and the limited symbol elimination unit 12.
  • fill region A_R max2 (L, P) is a diagram showing a result of superimposed.
  • the lower limit of the power consumption P is 1.5 kW for the area A_R max1 (L, P) than the area A_R max2 (L, P). small.
  • the feature calculation unit 11 extracts a region to be emphasized in the graph.
  • FIG. 28 is a diagram for describing a method for the feature calculation unit 11 to obtain the second logical expression R max (L, P) in the present embodiment.
  • the feature calculation unit 11 calculates two equations (2-2) and (2-4) obtained by the above arithmetic processing, that is, logical equations R max1 (L, P) and R max2 (L , P) and XOR the exclusive OR to obtain a logical expression R max (L, P).
  • the feature calculation unit 11 outputs the above logical expression R max (L, P) to the imaging unit 13 as a second logical expression.
  • the imaging unit 13 generates a graph representing the relationship between the heat load demand amount L and the power consumption P based on the second logical expression R max (L, P) input from the feature calculation unit 11.
  • FIG. 29 is a diagram illustrating highlighting of the upper limit of the power consumption P represented on the graph by the second logical expression R max (L, P).
  • the region A_R max (L, P) satisfying the second logical expression R max (L, P) obtained by the series of arithmetic processing described above has a predetermined width (in the embodiment, 1) from the upper limit of the first logical expression. 5 min [kW]), is displayed in a color different from that of the region satisfy the first logical expression A_ ⁇ sys (L, P).
  • the user can easily view the upper limit of the power consumption P through the display means such as a monitor on which the image 50 including the graph G2 of FIG. 29 is output.
  • the same effect as that of the first embodiment can be obtained. That is, a formula representing a fixed width (1.5 [kW] in the embodiment) from the upper limit is obtained by formula processing, and highlighting is performed based on this, thereby ensuring correct visibility of the user while ensuring user's visibility.
  • the upper limit of P is highlighted. In addition, even when the display is enlarged, it is possible to prevent the deterioration of the image quality.
  • the user can easily visually confirm an area that does not appear on the graph only by visualizing the first logical expression, which is the lower limit or the upper limit of the power consumption.
  • the area drawn with dots and lines is enlarged and highlighted in the axial direction of the graph.
  • the supply and demand grid model to be analyzed by the energy management support apparatus 1 is the same as that of the first and second embodiments, as shown in FIG.
  • characteristic formulas and the like of the respective refrigerators 1 to 4 constituting the supply and demand grid model are different from those in the above embodiment.
  • FIG. 30 is a diagram illustrating the expressions of the change range of the power consumption characteristic and the outside air temperature in the present embodiment for the refrigerators 1 to 4 constituting the supply and demand grid model shown in FIG.
  • Formula group (3-1) showing power consumption characteristics at the time of operation of refrigerators 1 to 4 shown in FIG. 30, formula group (3-2) indicating upper and lower limits of heat load of refrigerators 1 to 4 at stop
  • the mathematical expression group (3-3) representing the power consumption characteristics differs from FIG. 4 in that all four refrigerators 1 to 4 are represented by the same characteristic formula.
  • FIG. 31 is a view for explaining the relationship between the outside air temperature T and the power consumption characteristics of the refrigerators 1 to 4 in the present embodiment.
  • FIG. 31 (a) shows the power consumption characteristic of each of the refrigerators 1 to 4 when the outside air temperature T is 25 ° C., which is the lower limit thereof.
  • FIG. 32 is a diagram exemplifying a logical expression showing the relationship between the demand L of the heat load and the power consumption P in the above example.
  • the logical formula sys sys2 (L, P) shown in FIG. 32 is known based on the characteristic formulas (3-1) to (3-3) shown in FIG. 30 and the formula of the outside air temperature as well as the logical formula in FIG. It can be obtained by performing the elimination of the definite symbol for the first-order predicate logical expression using the technique of
  • FIG. 33 is a diagram for explaining the calculation process performed by the feature calculation unit 11 in the present embodiment.
  • the feature calculation unit 11 When receiving the input of the first logical expression sys sys2 (L, P) in FIG. 32, the feature calculation unit 11 generates a logical expression (3-4) using the parameter P ′.
  • the feature calculation unit 11 replaces the power consumption P of the input first logical expression ⁇ sys2 (L, P) with P ′, and the logical expression (3-4) and the expression obtained by the replacement are logical products Combine to create the following formula line line1 (L, P, P ′).
  • the logical product of the logical expression sys sys2 (L, P ′) obtained by substitution with the logical expression (3-4) and the power consumption direction of the first logical expression has a predetermined range of magnitude (in the embodiment, It is expanding by ⁇ 1.5 [kW]).
  • FIG. 34 is a diagram for explaining the calculation processing that the feature calculation unit 11 further performs on the logical expression line line1 (L, P, P ′) in FIG.
  • the feature calculation unit 11 adds the existence symbol “ ⁇ ” to the parameter P ′ of the logical expression line line1 (L, P, P ′) in FIG. 33 to add the following first-order predicate logical expression ⁇ line1 (L, P , P ′) are generated.
  • FIG. 35 is a diagram for explaining the arithmetic processing performed by the limiting symbol eraser 12.
  • the restriction symbol elimination unit 12 applies restriction symbols to the logical expression ⁇ line1 (L, P, P ′).
  • R line1 (L, P) obtained in this manner, the parameter P ′ to which the feature calculation unit 11 adds the presence symbol “ ⁇ ” in the calculation process of FIG. 34 is deleted.
  • FIG. 36 is a diagram for explaining the arithmetic processing further performed by the feature calculation unit 11 on the logical expression R line1 (L, P) (3-5) obtained by the elimination of the restrictive symbol.
  • the feature calculation unit 11 further uses the parameter L ′ with respect to the logical expression R line1 (L, P) (3-5) of FIG. 35 received from the limiting symbol erase unit 12 to generate the logical expression “L ⁇ 4 ⁇ Generate L'L + 4 "(3-6).
  • the feature calculation unit 11 substitutes the heat load demand amount L of the logical expression R line1 (L, P) input from the limiting symbol elimination unit 12 with L ′, and obtains an expression and a logical expression (3-5 And) by logical multiplication to create the following logical formula line line (L, L ′, P).
  • the logical product of the logical expression (3-6) and the logical expression R line1 (L ′, P) obtained by substitution is the heat load of the logical expression R line1 (L, P) obtained by the limitation symbol elimination of FIG.
  • the range of the demand direction is expanded by a predetermined size ( ⁇ 4 [kW] in the embodiment).
  • FIG. 37 is a diagram for explaining the calculation processing which the feature calculation unit 11 further performs on the logical expression line line (L, L ′, P) in FIG.
  • the feature calculation unit 11 adds the existing symbol “ ⁇ ” to the parameter L ′ of the logical expression line line (L, L ′, P) in FIG. 36 to add the following first-order predicate logical expression ⁇ line (L, L) ', P) is generated.
  • FIG. 38 is a diagram for explaining how the feature calculation unit 11 obtains the second logical expression R line (L, P) from the logical expression obtained by the operation of FIG. 37 in the present embodiment.
  • the feature calculation unit 11 passes the first-order predicate logical expression ⁇ line (L, L ′, P) obtained in FIG.
  • the restriction symbol elimination unit 12 performs restriction symbol elimination on the logical expression.
  • the parameter L ′ set by the feature calculation unit 11 is deleted from the logical expression R line (L, P) obtained by the restriction symbol deletion.
  • the characteristic calculation unit 11 When the feature calculation unit 11 receives the above-mentioned logical expression R line (L, P) from the limiting symbol elimination unit 12, the characteristic calculation unit 11 outputs this to the imaging unit 13 as a second logical expression.
  • the imaging unit 13 generates a graph representing the relationship between the heat load demand amount L and the power consumption P based on the second logical expression R line (L, P) input from the feature calculation unit 11.
  • FIG. 39 is a diagram illustrating a graph G3 generated by visualizing the second logical expression R line (L, P). As shown in FIG. 39, the region A_R line (L, P) satisfying the second logical expression is compared with the first logical expression sys sys2 (L, P) by the above-described process, in the vertical axis direction and in the horizontal direction. The area is enlarged in the axial direction.
  • the power consumption characteristics (efficiency) of the four refrigerators 1 to 4 are the same.
  • the logical expression sys sys2 (L, P) in FIG. 32 is visualized as it is, it may be difficult to use for analysis.
  • the logical expression 2 sys2 (L, P) visually recognize the relationship between the heat load demand amount L and the power consumption P It may be difficult.
  • the power consumption P on the vertical axis is expanded by ⁇ 1.5 [kW]
  • the demand amount L of the thermal load on the horizontal axis is expanded by ⁇ 4 [kW]
  • the enlargement range can be appropriately set according to the resolution of the image 50 and the like. Even if the second logical expression R is represented by a point or a line by expanding the second logical expression R in the vertical axis direction or the horizontal axis direction in the appropriately set expansion range, the user It is possible to generate a graph that accurately represents the relationship between the power consumption P and the demand amount L of the heat load while securing the visibility of the above.
  • a second area is generated based on the first logical expression, in which it is difficult for the user to confirm the first logical expression as viewed when the first logical expression is visualized as it is. Visualization is performed using the logical expression of to make it easy to use for analysis.
  • the user can intuitively grasp whether the energy saving allowance is large or not from the graph showing the relationship between the demand amount L of the heat load and the power consumption P.
  • the energy management support apparatus 1 generates a graph G4 in which an area where the room for energy saving is at least a predetermined level is highlighted in the first logical expression.
  • the supply and demand grid model to be analyzed by the energy management support apparatus 1 is as shown in FIG.
  • the characteristic formula and the change range of the outside air temperature are as shown in FIG. 4 and FIG.
  • the first logical expression input to the energy management support device 1 is the logical expression sys sys (L, P) shown in FIG. 6, the description will be omitted here.
  • FIG. 40 is a diagram for explaining the calculation process performed by the feature calculation unit 11 in the present embodiment.
  • the feature calculation unit 11 When receiving the input of the first logical expression sys sys (L, P) shown in FIG. 6, the feature calculation unit 11 generates a logical expression (4-1) using the parameter P ′.
  • the feature calculation unit 11 is obtained by replacing the parameter P with P ′ in the generated logical expression (4-1), the first logical expression sys sys (L, P), and the first logical expression. Combine the formula sys sys (L, P ′) with a logical formula to obtain the following logical formula.
  • a predetermined value 75 [kW] in the embodiment
  • FIG. 41 is a diagram for explaining calculation processing further performed by the feature calculation unit 11 on the generated logical expression room room1 (L, P, P ′) of FIG.
  • the feature calculation unit 11 adds the existing symbol “ ⁇ ” to the parameters P and P ′ of the logical expression room room1 (L, P, P ′) in FIG. 40 ((4-2) in FIG. 41), First-order predicate formula ⁇ room1 (L, P, P ′) is generated.
  • FIG. 42 is a diagram for explaining the arithmetic processing performed by the limiting symbol eraser 12.
  • Quantifier elimination unit 12 logical expression phi room1 in Figure 42 from the feature calculating unit 11 when (L, P, P') is input, as shown in FIG. 42, the logical expression ⁇ room1 (L, P, P Perform restriction symbol elimination on '). From the logical expression R room1 (L) obtained thereby, the parameters P and P ′ to which the feature calculation unit 11 has added the presence symbol “ ⁇ ” in the calculation processing of FIG. 41 are deleted.
  • FIG. 43 is a diagram for describing a method of obtaining the second logical expression R room (L, P) from the logical expression obtained by the operation of FIG. 42 by the feature calculation unit 11 in the present embodiment.
  • the feature calculation unit 11 logically combines the equation (4-3) obtained by deleting the parameters P and P 'in FIG. 42 with the first logical expression sys sys (L, P) We obtain the formula R room (L, P) of
  • the feature calculation unit 11 outputs the above-described logical expression R room (L, P) to the imaging unit 13 as a second logical expression.
  • the imaging unit 13 generates a graph representing the relationship between the heat load demand amount L and the power consumption P based on the second logical expression R room (L, P) input from the feature calculation unit 11.
  • FIG. 44 is a diagram illustrating a graph G4 generated by visualizing the second logical expression R room (L, P).
  • the area A_ ⁇ sys (L, P) satisfied by the area of the first logical expression and the area A_R room (L, P) satisfied by the second logical expression are displayed in color doing.
  • Fifth Embodiment In the fourth embodiment described above, a region where there is a certain amount or more of the energy saving room is extracted and highlighted so that the user can easily grasp it intuitively. On the other hand, in the present embodiment, the user can easily grasp how much power consumption can be reduced intuitively.
  • FIG. 45 is a diagram illustrating a supply and demand grid model that the energy management support apparatus 1 according to the present embodiment analyzes.
  • three refrigerators 1 to 3 are provided as heat source devices for supplying a heat load to the air conditioning target space in the air conditioning system.
  • the power supply supplies power of P [kW] to the three refrigerators 1 to 3, and the three refrigerators 1 to 3 receive power from the power supply and receive P 1 to P 3 [kW] respectively. Consume power.
  • the three refrigerators 1 to 3 supply thermal loads of L 1 to L 3 [kW] to the air conditioning target space, respectively, and the power demand of the air conditioning target space is L [kW].
  • FIG. 46 is a diagram illustrating the expressions of the change range of the power consumption characteristic and the outside air temperature in the present embodiment for the refrigerators 1 to 3 constituting the supply and demand grid model shown in FIG.
  • FIG. 47 is a view for explaining the relationship between the outside air temperature T and the power consumption characteristics of the refrigerators 1 to 3 in the present embodiment.
  • FIG. 47 (a) shows the power consumption characteristics of each of the refrigerators 1 to 3 when the outside air temperature T is 25 ° C. and
  • FIG. 27 (b) is 35 ° C.
  • room for energy saving is determined by the following method to visualize it.
  • FIG. 48 is a diagram illustrating a first logical expression representing the relationship between the demand L of the heat load and the power consumption P in the above example.
  • the logical expression sys sys3 (L, P) shown in FIG. 48 is obtained by generating a first-order predicate logical expression using the group of expressions shown in FIG. 46, and deleting a limiting symbol from the expression by limiting symbol elimination.
  • FIG. 49 is a diagram visualizing the logical expression sys sys3 (L, P) in FIG. Region A_ ⁇ sys3 (L, P) are color-coded in FIG. 49, the first logical expression ⁇ sys3 (L, P) is a region satisfying.
  • FIG. 50 is a diagram for explaining the calculation process performed by the feature calculation unit 11 in the present embodiment.
  • the feature calculation unit 11 When receiving the input of the first logical expression ⁇ sys3 (L, P) in FIG. 48, the feature calculation unit 11 generates a logical expression “P ′ ⁇ P” (5-5) using the parameter P ′. .
  • the feature calculation unit 11 replaces the power consumption P of the input first logical expression ⁇ sys3 (L, P) with P ′, and the logical expression obtained by the replacement and the logical expression (5-5) Combine to create the following logical expression effect effect1 (L, P, P ′).
  • ⁇ sys3 (L, P ′) obtained by the logical expression (5-5) and substitution an area where the parameter P is larger than P ′ is specified among the areas satisfying the first logical expression.
  • FIG. 51 is a diagram for explaining the calculation processing that the feature calculation unit 11 further performs on the logical expression ⁇ effect1 (L, P, P ′) in FIG.
  • the feature calculation unit 11 adds the existence symbol “ ⁇ ” to the parameter P ′ of the logical expression effect effect1 (L, P, P ′) of FIG. 50, and the following first-order predicate logical expression ⁇ effect1 (L, P , P ′) are generated.
  • FIG. 52 is a diagram for explaining the arithmetic processing performed by the limiting symbol eraser 12.
  • the feature calculation unit 11 is a logic representing an area that takes “a value larger than the first logical formula 3 sys3 (L, P) in FIG.
  • the equation R effect1 (L, P) is obtained.
  • FIG. 53 is a diagram for explaining calculation processing performed by the feature calculation unit 11 to obtain the logical expression R effect2 (L, P).
  • the feature calculation unit 11 generates a logical expression “P ⁇ P ′” (5-7) using the parameter P ′ based on the first logical expression sys sys3 (L, P) in FIG.
  • the feature calculation unit 11 creates the logical formula effect effect2 (L, P, P ′) by the same method as when creating the logical formula effect effect1 (L, P, P ′) in FIG. That is, the feature calculation unit 11 substitutes the power consumption P of the input first logical expression sys sys3 (L, P) with P ′, and the expression obtained by the substitution and the logical expression (5-7) are logically Combining by products, the following logical formula ⁇ effect 2 (L, P, P ′) is created. From the region satisfying the first logical expression, the region having the parameter P of P ′ or more is specified by the logical expression sys sys3 (L, P ′) obtained by the logical expression (5-7) and the substitution.
  • FIG. 54 is a diagram for explaining the calculation processing that the feature calculation unit 11 further performs on the logical expression ⁇ effect2 (L, P, P ′) in FIG.
  • Feature calculation unit 11 a logical expression phi Effect1 in FIG 51 (L, P, P') in the same manner as when generated, and generates a logical expression ⁇ effect2 (L, P, P' ). That is, the feature calculation unit 11 adds the existence symbol “ ⁇ ” to the parameter P ′ of the generated logical expression effect effect2 (L, P, P ′) of FIG. 53, and the following first-order predicate logical expression ⁇ effect 2 Generate (L, P, P ').
  • FIG. 55 is a diagram for explaining the arithmetic processing performed by the limiting symbol eraser 12.
  • the limited symbol elimination unit 12 performs limited symbol elimination in the same manner as in FIG. 52 to obtain the logical expression R effect2 (L, P). That is, when the logical expression ⁇ effect2 (L, P, P ′) of FIG. 54 is input from the feature calculation unit 11, the restriction symbol erasing unit 12 performs the restriction symbol erasing on the input logical expression. From the obtained logical expression R effect2 (L, P), the parameter P ′ to which the feature calculating unit 11 has added the existence symbol “ ⁇ ” in the calculation processing of FIG. 54 is deleted.
  • the two logical expressions R effect1 (L, P) and R effect 2 (L, P) obtained by the above method are respectively larger than the lower limit value of the power consumption of the first logical expression 3 sys 3 (L, P)
  • the area represents the area above the lower limit value. From this, in the first embodiment, the lower limit value of the first logical expression sys sys3 (L, P) is extracted by the same method as the method of extracting the region of a certain width from the lower limit of power consumption. .
  • FIG. 56 is a diagram for describing a method for the feature calculation unit 11 to generate a logical expression R effect3 (L, P) representing the lower limit value of the first logical expression sys sys3 (L, P) in the present embodiment. .
  • the feature calculation unit 11 calculates two expressions (5-6) and (5-8) obtained by the above arithmetic processing, that is, logical expressions R effect1 (L, P) and R effect 2 (L effect , P), XOR the exclusive OR.
  • FIG. 57 is a diagram for explaining calculation processing further performed by the feature calculation unit 11 using the logical expression R effect3 (L, P) generated in FIG.
  • the feature calculation unit 11 generates a logical expression R effect3 (L, P′ ⁇ P) in which the parameter P of the generated equation (5-9) is replaced with P′ ⁇ P. Then, the power consumption P of the logical expression R effect3 (L, P′-P) generated by the substitution and the first logical expression sys sys3 (L, P) is replaced with P ′, and the expression sys sys3 obtained by the substitution By combining L and P ′) with a logical product, the following logical formula effect effect (L, P, P ′) is created.
  • FIG. 58 is a diagram for explaining the calculation processing that the feature calculation unit 11 further performs on the logical expression effect effect (L, P, P ′) in FIG.
  • the feature calculation unit 11 adds the existence symbol “ ⁇ ” to the parameter P ′ of the logical expression effect effect (L, P, P ′) in FIG. 57, and the following first-order predicate logical expression effect effect (L, P , P ′) are generated.
  • FIG. 59 is a diagram for explaining the arithmetic processing performed by the limiting symbol eraser 12.
  • the restriction symbol elimination unit 12 When the restriction symbol elimination unit 12 receives the logical expression effect effect (L, P, P ′) of FIG. 58 from the feature calculation unit 11, as shown in FIG. 59, the restriction symbol elimination unit 12 outputs the logical expression ⁇ effect (L, P, P The restriction symbol elimination is performed for '' to obtain a logical expression R effect (L, P). From the obtained logical expression R effect (L, P), the parameter P ′ to which the feature calculation unit 11 has added the presence symbol “ ⁇ ” in the calculation process of FIG. 58 is deleted.
  • the logical expression R effect (L, P) (5-10) obtained by the elimination of limited symbols is a reducible amount of P corresponding to L of the first logical expression sys sys 3 (L, P), ie, P It represents how much from the lower limit to the upper limit.
  • the feature calculation unit 11 receives the logical expression R effect (L, P) obtained by the restriction symbol deletion of FIG. 59 from the restriction symbol deletion unit 12 and outputs this as a second logical expression to the imaging unit 13. Based on the second logical expression R effect (L, P) input from the feature calculation unit 11, the imaging unit 13 is a graph representing the relationship between the heat load demand L and the power consumption P that can be reduced.
  • FIG. 60 is a diagram exemplifying reducible power consumption displayed on the graph by the second logical expression R effect (L, P).
  • the horizontal axis represents the amount of thermal load demand L [kW]
  • the vertical axis represents the power consumption that can be reduced, that is, the room for saving energy P [kW].
  • the region A_R effect (L, P) in FIG. 60 allows the user to increase the room for energy saving by setting how much demand L of the power of the space to be air-conditioned in FIG. Makes it easy to grasp how much energy saving room P is available. This contributes to effective analysis.
  • Sixth Embodiment In the first to fifth embodiments described above, when the first logical formula ⁇ ** input to the energy management support device 1 is visualized as it is, it is difficult to intuitively recognize an area where confirmation is not easy or intuitively. Information visualization is done. On the other hand, in the present embodiment, when visualizing the first logical formula ⁇ ** , the range of the vertical axis and the horizontal axis of the graph is appropriately determined based on the respective maximum value and minimum value. Draw a graph of the appropriate size by setting it.
  • the maximum value and the minimum value of the power consumption P of the first logical expression and the demand amount L of the thermal load are determined by the energy management support device 1 according to the present embodiment, and the first logical expression is visualized based thereon Explain how to do
  • the supply-and-demand system model which the energy management support apparatus 1 makes analysis object is as showing in FIG.
  • the power consumption characteristic formula of the supply and demand grid model, the change range of the outside air temperature, and the like are also as described with reference to FIGS. 4 and 5.
  • the first logical expression sys sys (L, P) input to the energy management support apparatus 1 is also as shown in FIGS. 6 and 7, and is as described above.
  • FIG. 61 is a diagram for explaining calculation processing performed by the feature calculation unit 11 to obtain the maximum value and the minimum value of the heat load demand amount L in the present embodiment.
  • the feature calculation unit 11 adds the existing symbol “ ⁇ ” to the parameter P, and A rank predicate logical expression ⁇ L-range (L, P) is generated.
  • FIG. 62 is a diagram for explaining the arithmetic processing performed by the limiting symbol eraser 12.
  • the restriction symbol erasing unit 12 When the logical expression ⁇ L-range (L, P) of FIG. 61 is input from the feature calculation unit 11, the restriction symbol erasing unit 12 performs the restriction symbol erasing on the input logical expression. From the obtained logical expression R L-range (L) (6-1), the parameter P to which the feature calculating unit 11 has added the presence symbol “ ⁇ ” in the calculation process of FIG. 61 is deleted.
  • the equation obtained as a result of performing the elimination of limited symbols is not limited to a linear equation for the parameter L as in the equation (6-1), but may be a quadratic or higher equation. Therefore, when the feature calculation unit 11 receives the logical expression R L-range (L) from the limiting symbol elimination unit 12, the feature calculation unit 11 further performs the following arithmetic processing.
  • FIG. 63 is a diagram for explaining calculation processing further performed by the feature calculation unit 11 in order to obtain the minimum value of the heat load demand amount L using the logical expression R L-range (L).
  • FIG. 64 is a diagram for explaining the logical expression ⁇ L-min (L, L min ).
  • FIG. 64 (a) is a diagram for explaining the logical expression "L ⁇ L range ⁇ R L-range (L)" (6-2) of FIG. 63, and
  • FIG. 64 (b) is a logic of FIG. It is a figure explaining Formula "R L-range (L min )" (6-3).
  • the logical expression (6-3) indicates that L min does not fall outside the range of L satisfying the expression (6-1), that is, the expression in the upper part of FIG.
  • the feature calculation unit 11 assigns a universal symbol “ ⁇ ” to the parameter L with respect to the generated logical expression- L ⁇ min (L, L min ), and performs the following first-order predicate logic
  • ⁇ L-min (L, L min ) is generated.
  • the restriction symbol elimination unit 12 receives the above-mentioned logical expression ⁇ L-min (L, L min ) (6-4) from the feature calculation unit 11, as shown in the lower part of FIG. We perform the restriction elimination on the equation ⁇ L-min (L, L min ) (6-4).
  • the limited symbol elimination as shown in the following equation (6-5), the minimum value L min “0” can be obtained for the heat load demand amount L.
  • FIG. 65 is a diagram for explaining calculation processing performed by the feature calculation unit 11 to obtain the maximum value of the heat load demand amount L using the logical expression R L-range (L) of FIG.
  • the feature calculation unit 11 generates the logical expression in the upper part of FIG. 65 based on the same idea as the logical expression ⁇ L-min (L, L min ) described above with reference to FIGS. 63 and 64. Do.
  • the value corresponding to the maximum value L max belongs to the region where L satisfies (R L-range (L max )).
  • the logical expression (6-7) at the top of FIG. 65 corresponds to this.
  • the logical expression ⁇ L-max (L, L max ) in the upper part of FIG. 65 is described by two logical expressions (6-6) and (6-7) of the heat load demand L and its maximum value L max. To meet the conditions.
  • the feature calculation unit 11 adds a universal symbol “ ⁇ ” to the parameter L with respect to the above logical expression ⁇ L ⁇ max (L, L max ), and the following first-order predicate logic Generate the equation ⁇ L -max (L, L max ).
  • FIG. 66 is a diagram for explaining calculation processing performed by the feature calculation unit 11 to obtain the maximum value and the minimum value of the power consumption P in the present embodiment.
  • the feature calculation unit 11 adds the existing symbol “ ⁇ ” to the parameter L, and A rank predicate logical expression ⁇ P-range (L, P) is generated.
  • FIG. 67 is a diagram for explaining the arithmetic processing performed by the limiting symbol eraser 12.
  • the limited symbol elimination unit 12 performs limited symbol elimination on the logical expression ⁇ P-range (L, P) of FIG. 66 input from the feature calculation unit 11. From the obtained logical expression R P-range (P) (6-10), the parameter L to which the feature calculation unit 11 has added the presence symbol “ ⁇ ” in the calculation process of FIG. 66 is deleted.
  • the expression obtained as a result of performing the elimination of the restricted symbol is not limited to the linear expression for the parameter P as in the expression (6-10), and 2 It may be the following equation or more. Therefore, when the feature calculation unit 11 receives the logical expression R P-range (P) from the limiting symbol elimination unit 12, the feature calculation unit 11 further performs the following arithmetic processing.
  • FIG. 68 is a diagram for explaining calculation processing performed by the feature calculation unit 11 to obtain the minimum value of the power consumption P using the logical expression R P-range (P).
  • the above equation (6-11) is generated based on the same idea as the above ⁇ L-min (L, L min ). That is, assuming that the minimum value P min of the power consumption P, if the value of P is smaller than P min (P ⁇ P min ), the corresponding value P is in the region where the logical expression R P-range (P) satisfies It does not belong ( ⁇ R P-range (P)). At the same time, the value corresponding to the minimum value P min belongs to the region that P satisfies ( RP-range (P min )). Formula (6-11) is generated based on these two conditions.
  • the feature calculation unit 11 uses the universal symbol “ ⁇ ” for the parameter P with respect to the generated logical expression ⁇ P-min (P, P min ) (6-11). To generate the following first-order predicate logical expression ⁇ P ⁇ min (P, P min ).
  • FIG. 69 is a diagram for describing calculation processing performed by the feature calculation unit 11 to obtain the maximum value of the power consumption P using the logical expression R P-range (L) in FIG.
  • the characteristic calculation unit 11 compares the logical expression R P-range (P) in FIG. 67 with the logical expression ⁇ P -max (P, P in the upper part of FIG. 69) under the condition that the power consumption P and its maximum value P max satisfy. Generate max ).
  • the maximum value P max of the power consumption P if the value of P is larger than P max (P> P max ), the corresponding value P does not belong to the region that the logical expression R P-range (P) satisfies ( ⁇ R P-range (P)). Also, the value R P-range (P max ) corresponding to the maximum value P max belongs to the region that the logical expression satisfies (R P-range (P max )).
  • the logical expression (6-14) is generated based on these two conditions.
  • the feature calculation unit 11 assigns a universal symbol “ ⁇ ” to the parameter P with respect to the generated logical expression ⁇ P -max (P, P max ) (6-14), The following first-order predicate logical expression ⁇ P -max (P, P max ) is generated.
  • the restriction symbol elimination unit 12 receives the above-mentioned ⁇ P -max (P, P max ) (6-15) from the feature calculation unit 11, as shown in the lower part of FIG. Perform the limited symbol elimination for P-max (P, P max ) (6-15). With the elimination of the limitation symbol, the maximum value P max "2909097/10000" can be obtained with respect to the power consumption P, as shown in the following equation (6-16).
  • the equations (6-5), (6-9), (6-13), and (6-16), ie, the heat load demand amount L and the power consumption P, respectively, are obtained.
  • the minimum and maximum values of are determined.
  • the feature calculation unit 11 passes the obtained values to the imaging unit 13 together with the first logical expression sys sys (L, P).
  • the imaging unit 13 determines the drawing range of the graph based on the maximum value and the minimum value of each of the heat load demand L and the power consumption P, and represents the relationship between the heat load demand L and the power consumption P.
  • An image 50 (see FIG. 1 and the like) including a graph is generated.
  • FIG. 70 is a diagram illustrating a graph G6 generated by visualizing the first logical expression sys sys (L, P) using the calculation results of FIG. 61 to FIG.
  • the area A_ ⁇ sys (L, P) satisfying the logical expression sys sys (L, P) is drawn at an appropriate size. Therefore, the user can more easily use the visualization result, which contributes to efficient analysis.
  • the convenience of the user is improved in the case where visualization is performed on a first logical expression input to the energy management support apparatus 1, that is, a supply and demand grid model.
  • the user's convenience is improved when visualization is performed on two or more demand-supply system models.
  • FIG. 71 is a diagram illustrating power consumption characteristics in the present embodiment for the refrigerators 1 to 4 constituting the supply and demand grid model shown in FIG.
  • the power consumption characteristics of the refrigerators 1 to 4 during operation are as shown in the mathematical expression group (7-1) in FIG.
  • the power consumption characteristics of the refrigerators 1 to 4 at the time of stop are as shown in the formula group (7-3) in FIG.
  • the refrigerator 1 and the refrigerator 4 show the same characteristics.
  • the change range of the outside air temperature T is the same as that of the above embodiment, and 25 ⁇ T ⁇ 35, and therefore, the description is omitted in FIG.
  • FIG. 72 is a diagram for explaining the relationship between the outside air temperature T and the power consumption characteristics of the refrigerators 1 to 4 in the present embodiment.
  • FIG. 72 (a) shows the power consumption characteristics of each of the refrigerators 1 to 4 when the outside air temperature T is 25 [° C.] which is the lower limit
  • FIG. 72 (b) shows the outside air temperature T being the upper limit Indicates that it is 35 [° C].
  • FIG. 73 is a diagram exemplifying a first logical expression showing the relationship between the demand L of the heat load and the power consumption P in the above-mentioned example.
  • FIG. 74 is a diagram visualizing the above-mentioned logical expression ⁇ sys4 (L, P). On the graph of FIG. 74, a region A_ ⁇ sys4 (L, P) that the logical expression sys sys4 (L, P) input to the energy management support device 1 satisfies is displayed.
  • the user When analyzing with reference to the visualized graph, the user not only analyzes a certain demand-supply system model but also compares two or more demand-supply system models, and which model is preferable etc. There is also something to consider.
  • the characteristics of the two refrigerators 1 and 4 are the same, and as shown in FIG. 4 and FIG.
  • the regions which the respective units meet are also different.
  • the regions satisfied by each are simultaneously visualized in a form easy for the user to check.
  • FIG. 75 is a diagram exemplifying a graph visualizing two logical expressions in the present embodiment.
  • the present invention is not limited to this.
  • the same effect can be obtained by applying to the case where it is desired to compare the second logical expressions obtained according to the above embodiment.
  • the energy management support apparatus 1 images the graph showing the relationship between the demand amount L of the heat load of the space to be air-conditioned and the power consumption P is described.
  • the present invention is not limited to this, and can be used for analysis of various other demand-supply system models.

Landscapes

  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An energy management assist device for assisting the analysis of a supply and demand system comprising a resource demand facility and supply facility, wherein a feature computation unit 11, upon reception of the input of an input logical expression expressing a relationship between a resource demand amount and energy consumption, generates a first first-order predicate logical expression on the basis of the input logical expression, while generating an output logical expression including a description of a predetermined feature to be expressed on a graph expressing the relationship of the resource demand amount and energy consumption. An imaging unit 13, on the basis of the output logical expression output by the feature computation unit 11, generates an image 50 including the graph expressing the predetermined feature. A quantifier elimination unit 12, in response to the input of the first first-order predicate logical expression from the feature computation unit 11, generates and outputs a first intermediate logical expression obtained by processing the first first-order predicate logical expression by quantifier elimination method to the feature computation unit 11. The feature computation unit 11 generates an output logical expression on the basis of the first intermediate logical expression.

Description

エネルギーマネジメント支援装置及びエネルギーマネジメント支援プログラムEnergy management support device and energy management support program
 本発明は、電力、ガス等の資源を供給する資源供給設備と資源を需要してエネルギーを消費する資源需要設備とを有する需給系統について、その解析を支援する技術に関する。 The present invention relates to a technology for supporting analysis of a supply and demand system having resource supply facilities for supplying resources such as power and gas and resource demand facilities for consuming resources and consuming energy.
 近年、環境問題や燃料費高等の影響もあり、オフィスビル等を対象としたBEMS(Building Energy Management System、ビルエネルギー管理システム)等の空調システムの制御による省エネへの取り組みが注目されている。 In recent years, due to environmental problems and high fuel costs, efforts to save energy by controlling an air conditioning system such as a Building Energy Management System (BEMS) for office buildings and the like are attracting attention.
 空調システムでは、冷凍機等の熱源機器を複数用いるのが通常である。ここで、熱源機器の消費電力特性は、機器により異なる場合がある。また、空調システムを構成する熱源機器の消費電力特性は、外気の温度の影響を受けて変化する場合がある。このため、空調システムを運用する際に機器ごとの熱負荷配分を調整することで、省エネを実現することができる。 In an air conditioning system, it is usual to use a plurality of heat source devices such as a refrigerator. Here, the power consumption characteristics of the heat source device may differ depending on the device. Moreover, the power consumption characteristic of the heat source apparatus which comprises an air-conditioning system may receive to the influence of the temperature of external air, and may change. For this reason, energy saving can be realized by adjusting the heat load distribution for each device when operating the air conditioning system.
 機器ごとの熱負荷配分の調整方法に関しては、従来においては、外気温度の予測を利用して、数理最適化空調システム内の最適な熱負荷配分を決定する手法が開発されてきた。 With regard to the method of adjusting the heat load distribution for each device, conventionally, a method has been developed to determine the optimum heat load distribution in the mathematically optimized air conditioning system by using the prediction of the outside air temperature.
 しかし、予測した外気温度において最も省エネとなる熱負荷配分を考慮するだけでなく、例えば、外気温度の変動を考慮した配分や、システム全体の消費電力の最適値を考慮した配分、また、機器の運転限界を回避した配分等を考慮することも、有益と考えられる。 However, in addition to considering the thermal load distribution that will save the most energy at the predicted outside air temperature, for example, the distribution taking into account the fluctuation of the outside air temperature, the distribution taking into consideration the optimum value of the power consumption of the entire system, and the equipment It is also considered beneficial to consider allocations that avoid operating limits.
 ここで、エネルギーマネジメントにおいて、限定記号消去法を用いて、資源の需要量と消費エネルギーとの関係を表す論理式を得てこれを可視化する技術が知られている(例えば、非特許文献1)。 Here, in energy management, there is known a technique for obtaining a logical expression representing the relationship between the amount of demand for resources and the energy consumption using the limited symbol elimination method and visualizing this (for example, Non-Patent Document 1) .
 上記の空調システムの運用を支援する技術についても知られている(例えば、非特許文献2)。これによれば、消費電力特性が異なる機器で構築した空調システムに対し、限定記号消去法を使用して空調対象空間が要求する熱負荷需要と消費電力との関係を表す論理式を作成する技術が知られている。こうして作成した論理式を使用することで、外気温度の変動範囲に対応した消費電力の変動範囲や、機器ごとに熱負荷を調整した場合のシステム全体の消費電力の変化を表示する機能が実現される。また、GUI(Graphical User Interface)操作で運転限界からの余裕と省エネ効果との間でバランスを調整する機能についても実現される。したがって、空調システムのオペレータは、その運用に際して、外気温度の変動やシステム全体の消費電力の最適値を考慮した熱負荷配分や、機器の運転限界を回避した熱負荷配分を実現することが可能となる。 It is also known about the technique which supports operation of said air conditioning system (for example, nonpatent literature 2). According to this, for the air conditioning system constructed with devices having different power consumption characteristics, a technique for creating a logical expression representing the relationship between the heat load demand and the power consumption required by the air conditioning target space using the limited symbol elimination method It has been known. By using the logical expression created in this way, the function to display the fluctuation range of the power consumption corresponding to the fluctuation range of the outside air temperature and the change of the power consumption of the entire system when the heat load is adjusted for each device is realized. Ru. In addition, the function of adjusting the balance between the margin from the operation limit and the energy saving effect is also realized by the GUI (Graphical User Interface) operation. Therefore, the operator of the air conditioning system can realize the heat load distribution considering the fluctuation of the outside air temperature and the optimum value of the power consumption of the whole system and the heat load distribution avoiding the operation limit of the equipment in the operation. Become.
 上記のとおり、公知のエネルギーマネジメント支援技術を用いることで、ある空調システムに対し、どれだけの省エネを実現できるかが可視化される。更には、資源の需要量と消費エネルギーとの関係を可視化したグラフの中から、空調システムのオペレータ等のユーザにとって必要な情報を抽出して、適切な方法で提示できることが望ましい。 As described above, it is possible to visualize how much energy saving can be realized for a certain air conditioning system by using a known energy management support technology. Furthermore, it is desirable that information necessary for a user such as an air conditioning system operator can be extracted from a graph visualizing the relationship between the resource demand amount and the energy consumption and presented in an appropriate manner.
 本発明は、ユーザにとって必要な情報を抽出して適切な方法で提示することにより、資源を供給する資源供給設備と資源を需要してエネルギーを消費する資源需要設備とを有する需給系統についての解析に資する技術を提供することを目的とする。 The present invention analyzes a supply and demand system having a resource supply facility for supplying resources and a resource demand facility for consuming resources and consuming energy by extracting and presenting information necessary for the user in an appropriate manner. To provide technology that contributes to
 本発明の第1の観点は、資源の需要設備と供給設備とからなる需給系統の解析を支援するエネルギーマネジメント支援装置であって、
・前記資源の需要量と前記資源を供給する際に消費するエネルギーとの関係を表す入力論理式の入力を受け付け、前記入力論理式に基づいて、第一の一階述語論理式を生成するとともに、前記資源の需要量及び消費エネルギーの関係を表すグラフ上に表すべき所定の特徴の記述を含む出力論理式を生成する特徴計算部、
・前記特徴計算部が出力した前記出力論理式に基づき、前記所定の特徴を表したグラフを含む画像を生成する画像化部、
・前記特徴計算部から第一の一階述語論理式が入力されると、限定記号消去法により前記第一の一階述語論理式を処理して得られる第一の中間論理式を生成し、該特徴計算部に出力する限定記号消去部、
を備え、前記特徴計算部は、前記第一の中間論理式に基づいて前記出力論理式を生成することを特徴とする。
According to a first aspect of the present invention, there is provided an energy management support apparatus for supporting analysis of a supply and demand system consisting of resource demand facilities and supply facilities.
Receiving an input logical expression representing a relationship between the demand amount of the resource and the energy consumed when supplying the resource, and generating a first first-order predicate logical expression based on the input logical expression A feature calculation unit for generating an output logical expression including a description of a predetermined feature to be represented on a graph representing the relationship between the demand amount of resources and the energy consumption;
An imaging unit that generates an image including a graph representing the predetermined feature based on the output logical expression output by the feature calculation unit;
When a first first-order logical expression is input from the feature calculation unit, a first intermediate logical expression obtained by processing the first first-order predicate logical expression according to a finite symbol elimination method is generated. A limited symbol elimination unit to be output to the feature calculation unit,
And the feature calculation unit generates the output logical expression based on the first intermediate logical expression.
 本発明の第2の観点は、資源の需要設備と供給設備とからなる需給系統の解析を支援するエネルギーマネジメント支援処理を情報処理装置に実行させるためのエネルギーマネジメント支援プログラムであって、
・前記資源の需要量と前記資源を供給する際に消費するエネルギーとの関係を表す入力論理式の入力を受け付けると、前記入力論理式に基づいて、第一の一階述語論理式を生成するとともに、前記資源の需要量及び消費エネルギーの関係を表すグラフ上に表すべき所定の特徴の記述を含む出力論理式を生成し、
・第一の一階述語論理式を限定記号消去法により処理することで第一の中間論理式を生成し、
・前記第一の中間論理式に基づいて前記出力論理式を生成し、該出力論理式に基づき、前記所定の特徴を表したグラフを含む画像を生成する
ことを特徴とする。
A second aspect of the present invention is an energy management support program for causing an information processing apparatus to execute an energy management support process for supporting analysis of a supply and demand system consisting of demand facilities and supply facilities of resources,
· When an input logical expression representing a relationship between the demand amount of the resource and the energy consumed when supplying the resource is received, a first first-order predicate logical expression is generated based on the input logical expression And generating an output logical expression including a description of a predetermined feature to be represented on a graph representing the relationship between the demand amount of resources and the energy consumption,
· Generating a first intermediate logic expression by processing the first first-order logic expression by a definite symbol elimination method,
The output logical expression is generated based on the first intermediate logical expression, and an image including a graph representing the predetermined feature is generated based on the output logical expression.
 本発明によれば、ユーザにとって必要な情報を抽出して適切な方法で提示することにより、資源を供給する資源供給設備と資源を需要してエネルギーを消費する資源需要設備とを有する需給系統についての解析に資する。 According to the present invention, a supply and demand system having a resource supply facility for supplying resources and a resource demand facility for consuming resources and consuming energy by extracting and presenting information necessary for the user in an appropriate manner Contributing to the analysis of
エネルギーマネジメント支援装置により資源の需要設備と供給設備とから構成される需給系統についての解析を支援する方法の概要を説明する図である。It is a figure explaining the outline of the method of supporting analysis about the demand-and-supply system comprised from the demand facility and supply facility of resources by energy management support device. エネルギーマネジメント支援装置の構成図である。It is a block diagram of an energy management support device. 第1の実施形態に係るエネルギーマネジメント支援装置が解析を行う需給系統モデルを例示する図である。It is a figure which illustrates the demand-and-supply system model which the energy management support device concerning a 1st embodiment analyzes. 図3に示す需給系統モデルを構成する冷凍機についての第1の実施形態における消費電力特性及び外気温度の変化範囲の式を例示する図である。It is a figure which illustrates the formula of the change range of the power consumption characteristic in 1st Embodiment about the refrigerator which comprises the supply-and-demand system model shown in FIG. 3, and external temperature. 第1の実施形態における外気温度と冷凍機の消費電力特性との関係を説明する図である。It is a figure explaining the relationship between the external temperature in 1st Embodiment, and the power consumption characteristic of a refrigerator. 設例における熱負荷の需要量と消費電力Pとの関係を示した第一の論理式を例示する図である。It is a figure which illustrates the first logical expression which showed the relation between the demand of heat load and power consumption P in an example. 図6の論理式を可視化したグラフを示す図である。It is a figure which shows the graph which visualized the logical expression of FIG. 第1の実施形態において特徴計算部が行う演算処理について説明する図である。It is a figure explaining the arithmetic processing which a feature calculation part performs in a 1st embodiment. 特徴計算部が図8の論理式ψmin1(L,P,P´)に対して更に行う演算処理について説明する図である。It is a figure explaining the arithmetic processing which a feature calculation part further performs with respect to logical formula ψ min1 (L, P, P ') of FIG. 限定記号消去部が実施する演算処理について説明する図である。It is a figure explaining the arithmetic processing which a limited symbol deletion part implements. 限定記号消去により得られる論理式Rmin1(L,P)が満たす領域を可視化した結果を例示する図である。It is a figure which illustrates the result of visualizing the field which logical expression Rmin1 (L, P) obtained by limited symbol elimination fills. 特徴計算部が論理式Rmin2(L,P)を得るために行う演算処理について説明する図である。It is a figure explaining the arithmetic processing which a feature calculation part performs in order to obtain logical expression Rmin2 (L, P). 特徴計算部が図12の論理式ψmin2(L,P,P´)に対して更に行う演算処理について説明する図である。It is a figure explaining the arithmetic processing which a feature calculation part further performs with respect to logical formula ψ min2 (L, P, P ') of FIG. 限定記号消去部が実施する演算処理について説明する図である。It is a figure explaining the arithmetic processing which a limited symbol deletion part implements. 限定記号消去により得られる論理式Rmin2(L,P)が満たす領域を可視化した結果を例示する図である。It is a figure which illustrates the result of visualizing the field which logical expression Rmin2 (L, P) obtained by limited symbol elimination fills. 第1の実施形態において特徴計算部及び限定記号消去部の演算により得られた2つの論理式を満たす領域重ね合わせた結果を示す図である。It is a figure which shows the result of area | region superposition | stacking which satisfy | fills two logical expressions obtained by calculation of a feature calculation part and a limited symbol elimination part in 1st Embodiment. 第1の実施形態において特徴計算部が第二の論理式Rmin(L,P)を生成する方法について説明する図である。It is a figure explaining the method a characteristic calculation part produces | generates 2nd logical expression Rmin (L, P) in 1st Embodiment. 第二の論理式Rmin(L,P)に基づきグラフ上に表される消費電力の下限の強調表示を例示する図である。It is a figure which illustrates highlighting of the lower limit of the power consumption represented on a graph based on 2nd logical expression Rmin (L, P). 第2の実施形態において特徴計算部が行う演算処理について説明する図である。It is a figure explaining the arithmetic processing which a feature calculation part performs in a 2nd embodiment. 特徴計算部が生成した図18の論理式ψmax1(L,P,P´)に対して更に行う演算処理について説明する図である。It is a figure explaining the arithmetic processing further performed with respect to logical-expression (chi) max1 (L, P, P ') of FIG. 18 which the feature calculation part produced | generated. 限定記号消去部が実施する演算処理について説明する図である。It is a figure explaining the arithmetic processing which a limited symbol deletion part implements. 限定記号消去により得られる論理式Rmax1(L,P)が満たす領域を可視化した結果を例示する図である。It is a figure which illustrates the result of visualizing the field which logical expression Rmax1 (L, P) obtained by limited symbol elimination fills. 特徴計算部がRmax2(L,P)を得るために行う演算処理について説明する図である。It is a figure explaining the arithmetic processing which a feature calculation part performs in order to obtain Rmax2 (L, P). 特徴計算部が図23の論理式ψmax2(L,P,P´)に対して更に行う演算処理について説明する図である。It is a figure explaining the arithmetic processing which a feature calculation part further performs with respect to logical-expression (chi) max2 (L, P, P ') of FIG. 限定記号消去部が実施する演算処理について説明する図である。It is a figure explaining the arithmetic processing which a limited symbol deletion part implements. 限定記号消去により得られる論理式Rmax2(L,P)が満たす領域を可視化した結果を例示する図である。It is a figure which illustrates the result of visualizing the field which logical expression Rmax2 (L, P) obtained by limited symbol elimination fills. 第2の実施形態において特徴計算部及び限定記号消去部の演算により得られた2つの論理式を満たす領域を重ね合わせた結果を示す図である。It is a figure which shows the result of having overlap | superposed the area | region which satisfy | fills two logical formulas obtained by calculation of a feature calculation part and a limited symbol elimination part in 2nd Embodiment. 第2の実施形態において特徴計算部が第二の論理式Rmax(L,P)を求める方法について説明する図である。It is a figure explaining the method to which a feature calculation part calculates | requires 2nd logical expression Rmax (L, P) in 2nd Embodiment. 第二の論理式Rmax(L,P)によりグラフ上に表される消費電力の上限の強調表示を例示する図である。It is a figure which illustrates highlighting of the upper limit of the power consumption represented on a graph by 2nd logical expression Rmax (L, P). 図3に示す需給系統モデルを構成する冷凍機についての第3の実施形態における消費電力特性及び外気温度の変化範囲の式を例示する図である。It is a figure which illustrates the expression of the change range of the power consumption characteristic and outside temperature in 3rd Embodiment about the refrigerator which comprises the supply-and-demand system model shown in FIG. 第3の実施形態における外気温度と冷凍機の消費電力特性との関係を説明する図である。It is a figure explaining the relationship between the external temperature in 3rd Embodiment, and the power consumption characteristic of a refrigerator. 設例における熱負荷の需要量と消費電力との関係を示した論理式を例示する図である。It is a figure which illustrates the logical expression which showed the relation between the demand of thermal load and power consumption in an example. 第3の実施形態において特徴計算部が行う演算処理について説明する図である。It is a figure explaining the arithmetic processing which a feature calculation part performs in a 3rd embodiment. 特徴計算部が図33の論理式ψline1(L,P,P´)に対して更に行う演算処理について説明する図である。It is a figure explaining the arithmetic processing which a feature calculation part further performs with respect to logical formula ψ line1 (L, P, P ') of FIG. 限定記号消去部が実施する演算処理について説明する図である。It is a figure explaining the arithmetic processing which a limited symbol deletion part implements. 特徴計算部が限定記号消去により得られる論理式Rline1(L,P)に対して更に行う演算処理について説明する図である。It is a figure explaining the arithmetic processing which a feature calculation part performs further to logical expression Rline1 (L, P) obtained by restriction mark elimination. 特徴計算部が図36の論理式ψline(L,L´,P)に対して更に行う演算処理について説明する図である。It is a figure explaining the arithmetic processing which a feature calculation part further performs with respect to logical formula ψ line (L, L ', P) of FIG. 第3の実施形態において特徴計算部が図37の演算で得られた論理式から第二の論理式Rline(L,P)を得る方法について説明する図である。FIG. 39 is a diagram for describing a method of obtaining the second logical expression R line (L, P) from the logical expression obtained by the operation of FIG. 37 by the feature calculation unit in the third embodiment. 第二の論理式Rline(L,P)を可視化して生成したグラフを例示する図である。It is a figure which illustrates the graph produced by visualizing the second logical expression R line (L, P). 第4の実施形態において特徴計算部が行う演算処理について説明する図である。It is a figure explaining the arithmetic processing which a feature calculation part performs in a 4th embodiment. 特徴計算部が図40の論理式ψroom1(L,P,P´)に対して更に行う演算処理について説明する図である。It is a figure explaining the arithmetic processing which a feature calculation part further performs with respect to logical formula ψ room1 (L, P, P ') of FIG. 限定記号消去部が実施する演算処理について説明する図である。It is a figure explaining the arithmetic processing which a limited symbol deletion part implements. 第4の実施形態において特徴計算部が図42の演算で得られた論理式から第二の論理式Rroom(L,P)を得る方法について説明する図である。It is a figure explaining the method to which 2nd logical expression Rroom (L, P) is obtained from the logical expression which the feature calculation part obtained by calculation of FIG. 42 in 4th Embodiment. 第二の論理式Rroom(L,P)を可視化して生成したグラフを例示する図である。It is a figure which illustrates the graph produced by visualizing the second logical expression R room (L, P). 第5の実施形態に係るエネルギーマネジメント支援装置が解析を行う需給系統モデルを例示する図である。It is a figure which illustrates the demand-and-supply system model which the energy management support device concerning a 5th embodiment analyzes. 図45に示す需給系統モデルを構成する冷凍機についての第5の実施形態における消費電力特性及び外気温度の変化範囲の式を例示する図である。It is a figure which illustrates the expression of the change range of the power consumption characteristic and external temperature in 5th Embodiment about the refrigerator which comprises the supply-and-demand system model shown in FIG. 第5の実施形態における外気温度と冷凍機の消費電力特性との関係を説明する図である。It is a figure explaining the relationship between the external temperature in 5th Embodiment, and the power consumption characteristic of a refrigerator. 設例における熱負荷の需要量と消費電力との関係を示した第一の論理式を例示する図である。It is a figure which illustrates the 1st logical formula which showed the relation between the demand of thermal load and power consumption in an example. 図48の論理式ψsys3(L,P)を可視化したグラフを示す図である。It is a figure which shows the graph which visualized logical-formula sys3 (L, P) of FIG. 第5の実施形態において特徴計算部が行う演算処理について説明する図である。It is a figure explaining the arithmetic processing which a feature calculation part performs in a 5th embodiment. 特徴計算部が図50の論理式ψeffect1(L,P,P´)に対して更に行う演算処理について説明する図である。FIG. 51 is a diagram for describing calculation processing further performed by the feature calculation unit on the logical expression ψ effect1 (L, P, P ′) in FIG. 限定記号消去部が実施する演算処理について説明する図である。It is a figure explaining the arithmetic processing which a limited symbol deletion part implements. 特徴計算部が論理式Reffect2(L,P)を得るために行う演算処理について説明する図である。It is a figure explaining the arithmetic processing which a feature calculation part performs in order to obtain logical expression Reffect2 (L, P). 特徴計算部が図53の論理式ψeffect2(L,P,P´)に対して更に行う演算処理について説明する図である。It is a figure explaining the arithmetic processing which a feature calculation part further performs with respect to logical-expression effect effect2 (L, P, P ') of FIG. 限定記号消去部が実施する演算処理について説明する図である。It is a figure explaining the arithmetic processing which a limited symbol deletion part implements. 第5の実施形態において特徴計算部が第一の論理式ψsys3(L,P)の下限値を表す論理式Reffect3(L,P)を生成する方法について説明する図である。Feature calculating section in the fifth embodiment is a diagram illustrating a method of generating a formula R effect3 (L, P) representing the lower limit of the first logical expression ψ sys3 (L, P). 特徴計算部が図56で生成した論理式Reffect3(L,P)を用いて更に行う演算処理について説明する図である。It is a figure explaining the arithmetic processing which a feature calculation part further performs using logical expression Reffect3 (L, P) produced | generated in FIG. 特徴計算部が図57の論理式ψeffect(L,P,P´)に対して更に行う演算処理について説明する図である。It is a figure explaining the arithmetic processing which a feature calculation part further performs with respect to logical formula effect effect (L, P, P ') of FIG. 限定記号消去部が実施する演算処理について説明する図である。It is a figure explaining the arithmetic processing which a limited symbol deletion part implements. 第二の論理式Reffect(L,P)によりグラフ上に表示した削減可能な消費電力を例示する図である。It is a figure which illustrates the reducible power consumption displayed on the graph by 2nd logical formula Reffect (L, P). 第6の実施形態において特徴計算部が熱負荷の需要量の最大値及び最小値を求めるために行う演算処理について説明する図である。It is a figure explaining the arithmetic processing which a characteristic calculation part performs in order to obtain the maximum value and minimum value of the demand of thermal load in a 6th embodiment. 限定記号消去部が実施する演算処理について説明する図である。It is a figure explaining the arithmetic processing which a limited symbol deletion part implements. 特徴計算部が論理式RL-range(L)を用いて熱負荷の需要量の最小値を求めるために更に行う演算処理について説明する図である。It is a figure explaining the arithmetic processing which a feature calculation part further performs in order to obtain the minimum of the demand of heat load using logical expression R L-range (L). 論理式ψL-min(L,Lmin)について説明する図である。It is a figure explaining logical expression 論理L-min (L, Lmin ). 特徴計算部が図62の論理式RL-range(L)を用いて熱負荷の需要量の最大値を求めるために行う演算処理について説明する図である。FIG. 73 is a diagram for describing calculation processing performed by the feature calculation unit to obtain the maximum value of the heat load demand amount using the logical expression R L-range (L) in FIG. 62. 第6の実施形態において特徴計算部が消費電力の最大値及び最小値を求めるために行う演算処理について説明する図である。It is a figure explaining the arithmetic processing which a feature calculation part performs in order to obtain | require the maximum value and minimum value of power consumption in 6th Embodiment. 限定記号消去部が実施する演算処理について説明する図である。It is a figure explaining the arithmetic processing which a limited symbol deletion part implements. 特徴計算部が論理式RP-range(P)を用いて消費電力の最小値を求めるために行う演算処理について説明する図である。It is a figure explaining the arithmetic processing which a feature calculation part performs in order to obtain the minimum value of power consumption using logical expression RP-range (P). 特徴計算部が図67の論理式RP-range(L)を用いて消費電力の最大値を求めるために行う演算処理について説明する図である。FIG. 68 is a diagram for describing calculation processing performed by the feature calculation unit to obtain the maximum value of power consumption using the logical expression R P-range (L) in FIG. 67. 演算結果を利用して第一の論理式を可視化し生成したグラフを例示する図である。It is a figure which illustrates the graph which visualized and produced | generated the 1st logical formula using the calculation result. 図3に示す需給系統モデルを構成する冷凍機についての第7の実施形態における消費電力特性を例示する図である。It is a figure which illustrates the power consumption characteristic in 7th Embodiment about the refrigerator which comprises the supply-and-demand system model shown in FIG. 第7の実施形態における外気温度と冷凍機の消費電力特性との関係を説明する図である。It is a figure explaining the relationship between the external temperature in 7th Embodiment, and the power consumption characteristic of a refrigerator. 設例における熱負荷の需要量と消費電力との関係を示した第一の論理式を例示する図である。It is a figure which illustrates the 1st logical formula which showed the relation between the demand of thermal load and power consumption in an example. 論理式ψsys4(L,P)を可視化したグラフを示す図である。It is a figure which shows the graph which visualized logical expression sys sys4 (L, P). 第7の実施形態における2つの論理式を可視化したグラフを例示する図である。It is a figure which illustrates the graph which visualized two logical expressions in a 7th embodiment.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明に係るエネルギーマネジメント支援装置1により、資源の需要設備と供給設備とから構成される需給系統についての解析を支援する方法の概要を説明する図である。図1に示すように、エネルギーマネジメント支援装置1は、論理式ψsysの入力を受け付ける。エネルギーマネジメント支援装置1は、入力された論理式ψsysに基づき、必要に応じて限定記号消去により変数を消去して、需給系統における資源の需要量と消費電力との関係を可視化したグラフGを含む画像50を生成する。エネルギーマネジメント支援装置1は、生成した画像50を図1においては不図示のモニタ等の表示手段に出力させる。 FIG. 1 is a diagram for explaining an outline of a method for supporting analysis of a supply and demand system composed of demand facilities and supply facilities of resources by the energy management support apparatus 1 according to the present invention. As shown in FIG. 1, the energy management support apparatus 1 receives an input of the logical expression ψ sys . The energy management support apparatus 1 eliminates the variable by the limited symbol elimination as necessary based on the inputted logical expression sys sys and removes the variable to visualize the relationship between the demand amount of the resource in the supply and demand system and the power consumption as the graph G An image 50 is generated. The energy management support apparatus 1 outputs the generated image 50 to display means such as a monitor (not shown) in FIG.
 図1のエネルギーマネジメント支援装置1は、例えば空調システムの運用において、熱源機器ごとの消費電力特性及びその外気の温度の影響を考慮した、機器ごとの熱負荷配分を調整するために用いられる。 The energy management support device 1 of FIG. 1 is used, for example, in the operation of an air conditioning system, to adjust the heat load distribution for each device in consideration of the power consumption characteristics of each heat source device and the influence of the temperature of the outside air.
 図2は、本発明に係るエネルギーマネジメント支援装置の構成図である。図2に示すように、本発明に係るエネルギーマネジメント支援装置1は、特徴計算部11、限定記号消去部12及び画像化部13を有する。 FIG. 2 is a block diagram of an energy management support apparatus according to the present invention. As shown in FIG. 2, the energy management support apparatus 1 according to the present invention includes a feature calculation unit 11, a limited symbol elimination unit 12, and an imaging unit 13.
 特徴計算部11は、入力された論理式(以下においては、第一の論理式ともいう)ψsysに基づいて、上記のグラフG上に表すべき特徴の記述を含んだ論理式(以下においては、第二の論理式ともいう)Rimageを生成し、出力する。特徴計算部11は、第二の論理式Rimageの生成に際し、少なくとも一回は、一階述語論理式φ**を限定記号消去部12に入力する。 Feature calculation unit 11, a logical expression input based on (hereinafter, the first referred to as a logical expression) [psi sys, said logical expression that contains a description of the features to be represented on the graph G (in the following , Second logical formula) R image is generated and output. When generating the second logical expression R image , the feature calculation unit 11 inputs the first-order predicate logical expression φ ** to the limiting symbol elimination unit 12 at least once.
 限定記号消去部12は、特徴計算部11から一階述語論理式φ**が入力されると、限定記号消去法により一階述語論理式を処理して、得られた式R**を特徴計算部11に出力する。 When the limiting symbol elimination unit 12 receives the first-order predicate logical expression φ ** from the feature calculation unit 11, the limiting symbol elimination unit 12 processes the first-order predicate logical expression according to the limiting symbol elimination method, and features the obtained expression R ** . It is output to the calculation unit 11.
 特徴計算部11は、限定記号消去部12から入力された式R**を利用して第二の論理式Rimageを生成すると、これを画像化部13に出力する。 The feature calculation unit 11 outputs the second logical expression R image to the imaging unit 13 when the second logical expression R image is generated using the expression R ** input from the limiting symbol deletion unit 12.
 画像化部13は、第二の論理式Rimageを用いて、グラフGを含む画像50を生成し、モニタ等に出力させる。 The imaging unit 13 generates the image 50 including the graph G using the second logical expression R image and causes the monitor or the like to output the image 50.
 なお、上記の説明においては、1台の情報処理装置に全ての構成の機能を備える場合を例示するが、これに限定されるものではない。例えば、複数台の情報処理装置に機能を分散させる構成とし、複数台の情報処理装置から構成されるエネルギーマネジメント支援システムにより、上記の処理を実行する構成とすることもできる。 Although the above description exemplifies the case where one information processing apparatus is provided with the functions of all the configurations, the present invention is not limited to this. For example, the function may be distributed to a plurality of information processing apparatuses, and the above process may be executed by an energy management support system including a plurality of information processing apparatuses.
 また、図2のエネルギーマネジメント支援装置1を構成する各部の全体または一部については、プログラムで構成されることとしてもよい。エネルギーマネジメント支援装置1の構成がプログラムからなる場合、例えば情報処理装置のメモリ等に上記の方法を実行する制御プログラムを予め記憶させておき、これを図2においては不図示の制御部が読み出して実行することにより、同様の作用・効果を奏する。 Further, all or a part of each part constituting the energy management support apparatus 1 of FIG. 2 may be configured by a program. When the configuration of the energy management support apparatus 1 is a program, for example, a control program for executing the above method is stored in advance in a memory of an information processing apparatus or the like, and a control unit not shown in FIG. By performing the operation, the same function / effect can be obtained.
 このように、本発明に係るエネルギーマネジメント支援装置1によれば、ユーザが画像50中のグラフGを参照して、空調システム内の最適な熱負荷配分を決定するとき等に、ユーザにとって必要な情報を抽出して、これをユーザが利用し易い方法で提示する。以下に、どのような情報をどのようにして抽出するか、また、抽出した情報をどのようにグラフGに表してユーザに提示するか等について、具体的に説明する。
<第1の実施形態>
 本実施形態に係るエネルギーマネジメント支援装置1の構成及び動作について説明する前に、まず、本実施形態に係るエネルギーマネジメント支援装置1の解析対象について説明する。
As described above, according to the energy management support device 1 of the present invention, it is necessary for the user to determine the optimum heat load distribution in the air conditioning system with reference to the graph G in the image 50. Information is extracted and presented in a way that is easy for the user to use. In the following, it will be specifically described what information is to be extracted and how to extract the extracted information in a graph G to be presented to the user.
First Embodiment
Before describing the configuration and operation of the energy management support apparatus 1 according to the present embodiment, first, an analysis target of the energy management support apparatus 1 according to the present embodiment will be described.
 図3は、本実施形態に係るエネルギーマネジメント支援装置1が解析を行う需給系統モデルを例示する図である。 FIG. 3 is a diagram illustrating a demand-supply system model that the energy management support apparatus 1 according to the present embodiment analyzes.
 図3に示すように、本実施形態における需給系統モデルでは、空調システム内の空調対象空間が需要する熱負荷L[kW]を供給するために、熱源機器である冷凍機1~4を4台備えている。 As shown in FIG. 3, in the supply and demand grid system model in the present embodiment, four refrigerators 1 to 4 as heat source equipment are provided to supply the thermal load L [kW] required by the air conditioning target space in the air conditioning system. Have.
 電源は、4台の冷凍機1~4に対してP[kW]の電力を供給し、冷凍機1~4は、それぞれ電源から供給を受けてP~P[kW]の電力を消費する。4台の冷凍機1~4は、空調対象空間にそれぞれL~L[kW]の熱負荷を供給し、空調対象空間の電力需要量は、L[kW]である。 Power consumption of power supplies power of P [kW] against four refrigerator 1-4, refrigerator 1-4, P 1 ~ P 4 respectively from the power supply receives a supply [kW] Do. The four refrigerators 1 to 4 respectively supply heat loads of L 1 to L 4 [kW] to the air conditioning target space, and the power demand of the air conditioning target space is L [kW].
 図4は、図3に示す需給系統モデルを構成する冷凍機1~4についての本実施形態における消費電力特性及び外気温度の変化範囲の式を例示する図である。 FIG. 4 is a diagram illustrating the expressions of the change range of the power consumption characteristic and the outside air temperature in the present embodiment for the refrigerators 1 to 4 constituting the supply and demand grid model shown in FIG.
 稼動時における冷凍機1~4の消費電力特性は、図4の数式群(1-1)に示すとおりである。ここで、冷凍機i(i=1、2、3、4)の空調対象空間に供給する熱負荷(=空調対象空間の熱負荷の需要量)L[kW]、冷凍機iの消費電力をP[kW]、外気温度をT[℃]としており、以下においても同様とする。 The power consumption characteristics of the refrigerators 1 to 4 during operation are as shown in the formula group (1-1) in FIG. Here, the heat load (= the demand amount of the heat load of the air conditioning target space) Li [kW] to be supplied to the air conditioning target space of the refrigerator i (i = 1, 2, 3, 4), the power consumption of the refrigerator i P i [kW], the outside air temperature T [° C.], and so on.
Figure JPOXMLDOC01-appb-M000001
・・・(1-1)  
Figure JPOXMLDOC01-appb-M000001
... (1-1)
 数式群(1-1)に示すように、各冷凍機1~4は、それぞれ外気温度に対する感度が異なっている。数式群(1-1)より、冷凍機1~3は、消費電力P~Pが外気温度Tの関数であり、消費電力P~Pが外気温度に依存することがわかる。また、冷凍機4は、消費電力Pは外気温度Tの関数ではなく、外気温度に依存しない。 As shown in Formula group (1-1), the respective refrigerators 1 to 4 have different sensitivities to the outside air temperature. From Equation group (1-1), refrigerating machine 1-3 is a function of the power P 1 ~ P 3 is the outside air temperature T, it can be seen that the power consumption P 1 ~ P 3 is dependent on the outside air temperature. Further, the refrigerator 4, the power consumption P 4 is not a function of the outside air temperature T, and I'm not dependent on the outside air temperature.
 冷凍機1~4の熱負荷の上下限を表す式は、図4の数式群(1-2)に示すとおりである。 The formulas representing the upper and lower limits of the heat load of the refrigerators 1 to 4 are as shown in the formula group (1-2) of FIG.
Figure JPOXMLDOC01-appb-M000002
・・・(1-2)
Figure JPOXMLDOC01-appb-M000002
... (1-2)
 そして、停止時における冷凍機1~4の消費電力特性は、図4の数式群(1-3)に示すとおりである。以下の数式群(1-3)は、論理記号である論理積「∧」を用いて冷凍機iが空調対象空間に供給する熱負荷(空調対象空間の熱負荷の需要量)Lが「0[kW]」である場合、冷凍機iの消費電力Pは「0[kW]」となることを論理式で表している。 The power consumption characteristics of the refrigerators 1 to 4 at the time of stop are as shown in the formula group (1-3) in FIG. The following formula group (1-3), (demand of the heat load of the space to be air-conditioned) refrigerator i is heat load supplied to the space to be air-conditioned using a logical "∧" is a logic symbol L i is " In the case of 0 [kW], the logical expression indicates that the power consumption P i of the refrigerator i is “0 [kW]”.
Figure JPOXMLDOC01-appb-M000003
・・・(1-3)
Figure JPOXMLDOC01-appb-M000003
... (1-3)
 外気温度Tの変化範囲を表す式は、図4に示すとおり、
25≦T≦35…(1-4)
である。
The equation representing the change range of the outside air temperature T is, as shown in FIG.
25 ≦ T ≦ 35 (1-4)
It is.
 図5は、本実施形態における外気温度Tと冷凍機1~4の消費電力特性との関係を説明する図である。図5(a)は、外気温度Tが、その下限である25[℃]であるときの各冷凍機1~4の消費電力特性を、図5(b)は、外気温度Tが、その上限である35[℃]であるときのそれを示す。 FIG. 5 is a view for explaining the relationship between the outside air temperature T and the power consumption characteristics of the refrigerators 1 to 4 in the present embodiment. FIG. 5 (a) shows the power consumption characteristics of each of the refrigerators 1 to 4 when the outside air temperature T is 25 [.degree. C.] which is the lower limit, and FIG. 5 (b) shows the upper limit of the outside air temperature T. Indicates that it is 35 [° C.].
 図5に示す例では、外気温度がT=25℃のときとT=35のときとでは、冷凍機3及び4の消費電力特性(効率)が逆転している。このように、各冷凍機1~4の最適な熱負荷配分を決定するには、各機器の消費電力特性のみでなく、外気温度についても考慮することが望ましい。 In the example shown in FIG. 5, the power consumption characteristics (efficiency) of the refrigerators 3 and 4 are reversed between when the outside air temperature is T = 25 ° C. and when T = 35. Thus, in order to determine the optimal heat load distribution of each of the refrigerators 1 to 4, it is desirable to consider not only the power consumption characteristics of each device but also the outside air temperature.
 図6は、上記の設例における熱負荷の需要量Lと消費電力Pとの関係を示した第一の論理式を例示する図である。論理式ψsys(L,P)の具体的な内容については、都合上、以下の説明においても図6においても、一部省略して記載しており、以下の説明及び説明において参照する図面についても、同様とする。 FIG. 6 is a diagram illustrating a first logical expression showing the relationship between the demand L of the heat load and the power consumption P in the above example. The specific contents of the logical formula sys sys (L, P) are described partially for convenience, both in the following description and in FIG. 6, and the drawings referred to in the following description and explanation will be described. The same is true.
 なお、記号の「:=」は式の定義を表すものとする。 The symbol “: =” represents the definition of the expression.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 図4に示す数式(群)(1-1)~(1-4)に基づき一階述語論理式を生成し、限定記号消去により式から限定記号を消去することにより、図6に示す論理式ψsys(L,P)が求まる。図6の論理式ψsys(L,P)を求める方法については、公知の技術を用いているので、ここでは説明を省略する。 The logical expression shown in FIG. 6 is generated by generating a first-order predicate logical expression based on the expression (groups) (1-1) to (1-4) shown in FIG. sys Find sys (L, P). The method of obtaining the logical formula sys sys (L, P) in FIG. 6 uses a known technique, and thus the description thereof is omitted here.
 図7は、図6の論理式ψsys(L,P)を可視化したグラフを示す図である。図7中の灰色の領域A_ψsys(L,P)は、図6の第一の論理式ψsys(L,P)を満たす領域である。 FIG. 7 is a diagram visualizing the logical expression ψ sys (L, P) of FIG. Gray area A_pusai sys in FIG 7 (L, P) is a region satisfying the first logical expression [psi sys in FIG 6 (L, P).
 本実施形態に係るエネルギーマネジメント支援装置1では、図7の第一の論理式ψsys(L,P)を満たす領域を表したグラフに対し、更に、領域A_ψsys(L,P)の下限を強調表示する。まず、エネルギーマネジメント支援装置1において、第一の論理式ψsys(L,P)に対してどのような演算処理を実施して、消費電力Pの下限を強調表示したグラフを生成するかについて、具体的に説明する。 In the energy management support apparatus 1 according to the present embodiment, the first logical expression ψ sys (L, P) in FIG. 7 to graph representing a region satisfying the further region A_ψ sys (L, P) the lower limit of Highlight it. First, in the energy management support apparatus 1, what arithmetic processing is performed on the first logical expression sys sys (L, P) to generate a graph highlighting the lower limit of the power consumption P, This will be described specifically.
 図8は、本実施形態において特徴計算部11が行う演算処理について説明する図である。 FIG. 8 is a diagram for explaining the calculation process performed by the feature calculation unit 11 in the present embodiment.
 特徴計算部11は、図6の第一の論理式ψsys(L,P)の入力を受け付けると、パラメータP´を用いて、論理式「P´+1.5≦P」(1-5)を生成する。 When receiving the input of the first logical expression sys sys (L, P) in FIG. 6, the feature calculation unit 11 uses the parameter P ′ to generate the logical expression “P ′ + 1.5 ≦ P” (1-5). Generate
 特徴計算部11は、入力された第一の論理式ψsys(L,P)の消費電力PをP´で置換し、置換により得られる式と論理式(1-5)とを論理積で結合して、以下の論理式ψmin1(L,P,P´)を作成する。論理式(1-5)と置換により得られる論理式ψsys(L,P´)の論理積により、第一の論理式においてPの下限値から所定値以上(実施例では1.5[kW]以上)大きい値をとる領域が特定される。 The feature calculation unit 11 replaces the power consumption P of the input first logical expression ψ sys (L, P) with P ′, and the logical expression obtained by the replacement and the logical expression (1-5) Combine to create the following logical expression ψ min1 (L, P, P ′). By the logical product of the logical expression (1-5) and the logical expression sys sys (L, P ′) obtained by substitution, the lower limit value of P in the first logical expression is a predetermined value or more (1.5 [kW in the embodiment Or more) an area having a large value is identified.
 なお、記号の「==」は同値な式であることを表すものとする。 The symbol “==” represents that it is an equivalent expression.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 図9は、特徴計算部11が図8の論理式ψmin1(L,P,P´)に対して更に行う演算処理について説明する図である。 FIG. 9 is a diagram for explaining the calculation processing which the feature calculation unit 11 further performs on the logical expression ψ min1 (L, P, P ′) of FIG.
 特徴計算部11は、図8の論理式ψmin1(L,P,P´)のパラメータP´に対して存在記号「∃」を付与し(図9の「∃P´」、(1-6)参照)、以下の一階述語論理式φmin1(L,P,P´)(1-5)を生成する。 The feature calculation unit 11 adds the existing symbol “∃” to the parameter P ′ of the logical expression ψ min1 (L, P, P ′) in FIG. 8 (“∃ P ′” in FIG. 9, (1-6 ), Generate the following first-order predicate logical expression φ min1 (L, P, P ′) (1-5).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 図10は、限定記号消去部12が実施する演算処理について説明する図である。 FIG. 10 is a diagram for explaining the arithmetic processing performed by the limiting symbol eraser 12.
 限定記号消去部12は、特徴計算部11から図9の論理式φmin1(L,P,P´)が入力されると、図10に示すように、論理式φmin1(L,P,P´)に対し限定記号消去を実施する。これにより得られる論理式Rmin1(L,P)からは、図9の演算処理において特徴計算部11が存在記号「∃」を付与したパラメータP´が消去されている。 When the restriction symbol elimination unit 12 receives the logical expression φ min1 (L, P, P ′) of FIG. 9 from the feature calculation unit 11, as shown in FIG. 10, the logical expression φ min1 (L, P, P Perform restriction symbol elimination for '). From the logical expression R min1 (L, P) thus obtained, the parameter P ′ to which the feature calculation unit 11 has added the presence symbol “∃” in the calculation process of FIG. 9 is deleted.
Figure JPOXMLDOC01-appb-M000007
・・・(1-7)   
Figure JPOXMLDOC01-appb-M000007
... (1-7)
 図11は、限定記号消去により得られる論理式Rmin1(L,P)が満たす領域を可視化した結果を例示する図である。 FIG. 11 is a diagram illustrating a result of visualizing a region which is satisfied by the logical expression R min1 (L, P) obtained by the restrictive symbol elimination.
 領域A_Rmin1(L,P)は、第一の論理式ψsys(L,P)の消費電力Pの下限から所定値(実施例では1.5[kW])以上大きい値をとる領域がこれに相当する。言い換えると、第一の論理式ψsys(L,P)を満たす領域のうち、消費電力Pの下限から1.5[kW]に満たない範囲にある領域については、図11の領域A_Rmin1(L,P)からは除外されている。 The area A_R min1 (L, P) is an area that takes a value larger than a lower limit of the power consumption P of the first logical formula sys sys (L, P) by a predetermined value (1.5 [kW] in the embodiment) or more. It corresponds to In other words, among the areas satisfying the first logical formula sys sys (L, P), the area A_R min1 in FIG. L, P) are excluded.
 特徴計算部11は、上記の演算処理とは別に、入力された図6の第一の論理式ψsys(L,P)に基づき、以下の演算を行う。そして、第一の論理式ψsys(L,P)における消費電力Pの下限値以上をとる領域を表す論理式Rmin2(L,P)を求める。 The feature calculation unit 11 performs the following calculation on the basis of the input first logical expression sys sys (L, P) of FIG. 6 separately from the above-described calculation processing. Then, a logical expression R min2 (L, P) representing an area taking the power consumption P in the first logical expression sys sys (L, P) or more is obtained.
 図12は、特徴計算部11が論理式Rmin2(L,P)を得るために行う演算処理について説明する図である。 FIG. 12 is a diagram for explaining calculation processing performed by the feature calculation unit 11 to obtain the logical expression R min2 (L, P).
 特徴計算部11は、図6の第一の論理式ψsys(L,P)に基づき、パラメータP´を用いて、論理式「P´≦P」(1-8)を生成する。特徴計算部11は、図8で説明した演算処理と同様に、生成した論理式と、第一の論理式ψsys(L,P)のパラメータPをP´で置換した式とを論理積で結合して論理式を生成する。論理式(1-8)と置換により得られる論理式ψsys(L,P´)の論理積により、第一の論理式においてPの下限値以上の値をとる領域が特定される。ここで生成する論理式ψmin2(L,P,P´)は、以下のとおりである。 The feature calculation unit 11 generates a logical expression “P ′ ≦ P” (1-8) using the parameter P ′ based on the first logical expression sys sys (L, P) in FIG. Similar to the operation processing described in FIG. 8, the feature calculation unit 11 performs logical operation on the generated logical expression and an expression in which the parameter P of the first logical expression sys sys (L, P) is replaced with P ′. Combine to generate a logical expression. The logical product of the logical expression (1-8) and the logical expression sys sys (L, P ′) obtained by substitution identifies an area having a value equal to or more than the lower limit value of P in the first logical expression. The logical expression ψ min2 (L, P, P ′) generated here is as follows.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 図13は、特徴計算部11が図12の論理式ψmin2(L,P,P´)に対して更に行う演算処理について説明する図である。特徴計算部11は、先の図9で説明した演算と同様の処理を行う。すなわち、特徴計算部11は、図12の論理式ψmin2(L,P,P´)のパラメータP´に対して存在記号「∃」を付与し、以下の一階述語論理式φmin2(L,P,P´)を生成する。 FIG. 13 is a diagram for explaining the calculation processing that the feature calculation unit 11 further performs on the logical expression ψ min2 (L, P, P ′) in FIG. The feature calculation unit 11 performs the same processing as the calculation described above with reference to FIG. That is, the feature calculation unit 11, a logical expression [psi min2 of FIG. 12 (L, P, P') to impart existential quantifier "∃" for the parameter P'of the following first-order logic formulas phi min2 (L , P, P ').
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 図14は、限定記号消去部12が実施する演算処理について説明する図である。 FIG. 14 is a diagram for explaining the arithmetic processing performed by the limiting symbol eraser 12.
 限定記号消去部12は、特徴計算部11から図13の論理式φmin2(L,P,P´)が入力されると、先に図10を参照して説明した場合と同様に、入力された論理式φmin2(L,P,P´)に対して限定記号消去を実施する。これにより得られる論理式Rmin2(L,P)からは、図13の演算処理において特徴計算部11が存在記号「∃」を付与したパラメータP´が消去されている。 When the logical expression φ min2 (L, P, P ′) of FIG. 13 is input from the feature calculation unit 11, the limiting symbol elimination unit 12 is input, as in the case described above with reference to FIG. The restriction symbol elimination is performed on the logical expression φ min2 (L, P, P ′). From the logical expression R min2 (L, P) obtained thereby, the parameter P ′ to which the feature calculating unit 11 has added the presence symbol “記号” in the calculation processing of FIG. 13 is deleted.
Figure JPOXMLDOC01-appb-M000010
・・・(1-9)
Figure JPOXMLDOC01-appb-M000010
... (1-9)
 図15は、限定記号消去により得られる論理式Rmin2(L,P)が満たす領域を可視化した結果を例示する図である。領域A_Rmin2(L,P)は、第一の論理式ψsys(L,P)の下限以上の領域がこれに相当する。 FIG. 15 is a diagram illustrating a result of visualizing a region which is satisfied by the logical expression R min2 (L, P) obtained by the restrictive symbol elimination. The region A_R min2 (L, P) corresponds to the region above the lower limit of the first logical expression sys sys (L, P).
 図16は、特徴計算部11及び限定記号消去部12の演算により得られた2つの論理式Rmin1(L,P)を満たす領域A_Rmin1(L,P)及びRmin2(L,P)を満たす領域A_Rmin2(L,P)を重ね合わせた結果を示す図である。 FIG. 16 shows regions A_R min1 (L, P) and R min2 (L, P) that satisfy the two logical expressions R min1 (L, P) obtained by the calculation of the feature calculation unit 11 and the limiting symbol elimination unit 12. fill region A_R min2 (L, P) is a diagram showing a result of superimposed.
 上述のとおり、図8の論理式(1-5)により、領域A_Rmin1(L,P)は、領域A_Rmin2(L,P)よりも1.5[kW]分だけ消費電力Pの下限が大きい。このことを利用して、特徴計算部11は、グラフにおいて強調したい領域を抽出する。 As described above, according to the logical expression (1-5) in FIG. 8, the lower limit of the power consumption P is 1.5 kW for the area A_R min1 (L, P) than the area A_R min2 (L, P). large. Using this, the feature calculation unit 11 extracts a region to be emphasized in the graph.
 図17は、本実施形態において、特徴計算部11が第二の論理式Rmin(L,P)を生成する方法について説明する図である。 FIG. 17 is a diagram for describing a method of generating the second logical expression R min (L, P) by the feature calculation unit 11 in the present embodiment.
 図17に示すように、特徴計算部11は、上記の演算処理により求めた2つの式(1-7)と(1-9)、すなわち論理式Rmin1(L,P)とRmin2(L,P)とで排他的論理和XORをとり、論理式Rmin(L,P)を得る。 As shown in FIG. 17, the feature calculation unit 11 calculates two equations (1-7) and (1-9) obtained by the above arithmetic processing, that is, logical equations R min1 (L, P) and R min2 (L , P) and XOR the exclusive OR to obtain a logical expression R min (L, P).
Figure JPOXMLDOC01-appb-M000011
・・・(1-10)
Figure JPOXMLDOC01-appb-M000011
... (1-10)
 式(1-10)においては、第一の論理式ψsys(L,P)のPの下限から1.5[kW]の領域、すなわち、論理式(1-5)で設定した幅に相当する領域が抽出されている。 In the formula (1-10), it corresponds to the range from the lower limit of P of the first logical formula sys sys (L, P) to 1.5 [kW], that is, the width set in the logical formula (1-5) Area is extracted.
 特徴計算部11は、上記の論理式Rmin(L,P)を第二の論理式として、画像化部13に出力する。画像化部13は、特徴計算部11から入力された第二の論理式Rmin(L,P)に基づき、熱負荷の需要量Lと消費電力Pの関係を表したグラフを生成する。 The feature calculation unit 11 outputs the above logical expression R min (L, P) to the imaging unit 13 as a second logical expression. Based on the second logical expression R min (L, P) input from the feature calculation unit 11, the imaging unit 13 generates a graph representing the relationship between the heat load demand amount L and the power consumption P.
 図18は、第二の論理式Rmin(L,P)に基づきグラフ上に表される消費電力Pの下限の強調表示を例示する図である。 FIG. 18 is a diagram illustrating the highlighting of the lower limit of the power consumption P represented on the graph based on the second logical expression R min (L, P).
 図18においては、エネルギーマネジメント支援装置1にて求めた第二の論理式Rmin(L,P)と共に、熱負荷の需要量Lと消費電力Pとの関係を表す第一の論理式ψsys(L,P)をグラフG1に表している。 In FIG. 18, together with the second logical formula R min (L, P) determined by the energy management support device 1, a first logical formula sys sys representing the relationship between the heat load demand L and the power consumption P. (L, P) is represented in the graph G1.
 上記の一連の演算処理により求めた第二の論理式Rmin(L,P)を満たす領域A_Rmin(L,P)は、第一の論理式の下限から所定の幅(実施例では1.5[kW])の分、第一の論理式を満たす領域A_ψsys(L,P)とは異なる色で表示されている。ユーザは、図18のグラフG1を含む画像50が出力されているモニタ等の表示手段を介して、消費電力Pの下限を容易に視認することが可能となる。 The region A_R min (L, P) satisfying the second logical expression R min (L, P) obtained by the above series of arithmetic processing has a predetermined width (in the embodiment, 1.) in the lower limit of the first logical expression. 5 min [kW]), is displayed in a color different from that of the region satisfy the first logical expression A_ψ sys (L, P). The user can easily view the lower limit of the power consumption P via the display means such as a monitor on which the image 50 including the graph G1 of FIG. 18 is output.
 なお、第一の論理式は、パラメータLとPとで表されるものである。このことから、消費電力Pの下限を強調表示する方法としては、例えばLを変化させ、それぞれに対応するPの最小値を求めていくことにより、グラフ上に下限をプロットして表示する方法も考えられる。しかし、このようなビットマップ形式で画像を生成した場合には、画像50の解像度によっては、厳密にPの下限を表現できるとは限らない。すなわち、強調表示したいある座標(L,P)は、必ずしも画像50の画素上には位置しない。この場合は、画素上のP方向に近い方の画素を選択してその画素を強調表示することとなり、グラフ上に下限が正確に表すことができない。これに対し、上記の実施形態においては、下限から所定(実施例では1.5[kW])の範囲だけ拡大させて強調表示すべき領域を表す数式を求めることにより、かかる事態を回避している。これにより、本実施形態によれば、ユーザの視認性を確保しつつ、正確に消費電力Pの下限を強調表示することができる。 The first logical expression is represented by the parameters L and P. From this, as a method of highlighting the lower limit of power consumption P, for example, a method of plotting and displaying the lower limit on a graph by changing L and finding the minimum value of P corresponding to each is also displayed. Conceivable. However, when an image is generated in such a bitmap format, depending on the resolution of the image 50, the lower limit of P can not necessarily be expressed strictly. That is, a certain coordinate (L, P) to be highlighted is not necessarily located on the pixel of the image 50. In this case, the pixel closer to the P direction on the pixel is selected to highlight the pixel, and the lower limit can not be accurately represented on the graph. On the other hand, in the above embodiment, such a situation is avoided by obtaining an equation representing an area to be highlighted by expanding the range from the lower limit by a predetermined range (1.5 [kW] in the example). There is. Thus, according to the present embodiment, it is possible to highlight the lower limit of the power consumption P accurately while securing the visibility of the user.
 更には、グラフのある領域を拡大表示する場合、ビットマップ形式で画像を生成する場合には、画像が粗くなってしまう、という問題がある。これに対し、本実施形態による消費電力Pの下限を強調表示する方法によれば、図18の画像の一部を拡大表示する場合であっても、画質を劣化させることなく、適切に消費電力Pの下限の強調表示が可能である。
<第2の実施形態>
 上記の実施形態においては、入力された第一の論理式に対し、消費電力Pの下限を強調表示したグラフG1を生成している。これに対し、本実施形態においては、入力された第一の論理式に対し、消費電力Pの上限を強調表示したグラフG2を生成する。
Furthermore, when an area in a graph is enlarged and displayed, when the image is generated in a bitmap format, there is a problem that the image becomes rough. On the other hand, according to the method of highlighting the lower limit of the power consumption P according to the present embodiment, the power consumption can be properly consumed without degrading the image quality even when a part of the image in FIG. Highlighting of the lower limit of P is possible.
Second Embodiment
In the above embodiment, a graph G1 is generated in which the lower limit of the power consumption P is highlighted with respect to the input first logical expression. On the other hand, in the present embodiment, a graph G2 is generated in which the upper limit of the power consumption P is highlighted with respect to the input first logical expression.
 以下に、本実施形態に係るエネルギーマネジメント支援装置1により第一の論理式における消費電力Pの上限を強調表示したグラフG2を生成する方法について説明する。 Hereinafter, a method of generating the graph G2 in which the upper limit of the power consumption P in the first logical expression is highlighted by the energy management support apparatus 1 according to the present embodiment will be described.
 本実施形態においても、エネルギーマネジメント支援装置1が解析対象とする需給系統モデル及びその特性式や外気温度の変化範囲等については、図3~図5に示すとおりである。また、エネルギーマネジメント支援装置1に入力される第一の論理式ψsys(L,P)についても図6や図7に示すとおりであるので、ここでは、これらの説明については省略する。 Also in the present embodiment, the supply and demand system model to be analyzed by the energy management support apparatus 1, the characteristic equation thereof, and the change range of the outside air temperature are as shown in FIG. 3 to FIG. Further, since the first logical expression sys sys (L, P) input to the energy management support apparatus 1 is also as shown in FIG. 6 and FIG. 7, the description thereof will be omitted here.
 図19は、本実施形態において特徴計算部11が行う演算処理について説明する図である。上記の実施形態と同様に、特徴計算部11は、第一の論理式ψsys(L,P)の入力を受け付けると、パラメータP´を用いて、論理式「P≦P´-1.5」(2-1)を生成する。 FIG. 19 is a diagram for explaining the calculation process performed by the feature calculation unit 11 in the present embodiment. As in the above embodiment, when the feature calculation unit 11 receives an input of the first logical expression sys sys (L, P), the feature calculation unit 11 uses the parameter P ′ to set the logical expression “P ≦ P′−1.5. "(2-1) is generated.
 特徴計算部11は、生成した論理式(2-1)と第一の論理式ψsys(L,P)のパラメータPをP´に置換して得られる式とを、論理積で結合する。論理式(2-1)と置換により得られる論理式ψsys(L,P´)との論理積により、第一の論理式においてPの上限値から所定値以上(実施例では1.5[kW]以上)小さい値をとる領域が特定される。 The feature calculation unit 11 combines the generated logical expression (2-1) with an expression obtained by replacing the parameter P of the first logical expression sys sys (L, P) with P ′ by logical multiplication. By the logical product of the logical expression (2-1) and the logical expression sys sys (L, P ′) obtained by substitution, the upper limit of P in the first logical expression is not less than a predetermined value (1.5 [in the embodiment, The region having a small value is identified.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 図20は、特徴計算部11が、生成した図19の論理式ψmax1(L,P,P´)に対して更に行う演算処理について説明する図である。特徴計算部11は、図19の論理式ψmax1(L,P,P´)のパラメータP´に対して存在記号「∃」を付与し、以下の一階述語論理式φmax1(L,P,P´)を生成する。 FIG. 20 is a diagram for explaining calculation processing further performed by the feature calculation unit 11 on the generated logical expression ψ max1 (L, P, P ′) of FIG. The feature calculation unit 11 adds the existence symbol “∃” to the parameter P ′ of the logical expression ψ max1 (L, P, P ′) in FIG. 19, and the following first-order predicate logical expression φ max1 (L, P , P ′) are generated.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 図21は、限定記号消去部12が実施する演算処理について説明する図である。 FIG. 21 is a diagram for explaining the arithmetic processing performed by the limiting symbol eraser 12.
 限定記号消去部12は、特徴計算部11から図20の論理式φmax1(L,P,P´)が入力されると、図21に示すように、論理式φmax1(L,P,P´)に対して限定記号消去を実施する。これにより得られる論理式Rmax1(L,P)からは、図20の演算処理において特徴計算部11が存在記号「∃」を付与したパラメータP´が消去されている。 When the limiting symbol elimination unit 12 receives the logical expression φ max1 (L, P, P ′) of FIG. 20 from the feature calculation unit 11, as shown in FIG. 21, the logical expression φ max1 (L, P, P Perform restriction symbol elimination on '). From the logical expression R max1 (L, P) thus obtained, the parameter P ′ to which the feature calculation unit 11 has added the presence symbol “∃” in the calculation process of FIG. 20 is deleted.
Figure JPOXMLDOC01-appb-M000014
・・・(2-2)
Figure JPOXMLDOC01-appb-M000014
... (2-2)
 図22は、限定記号消去により得られる論理式Rmax1(L,P)が満たす領域を可視化した結果を例示する図である。 FIG. 22 is a diagram illustrating the result of visualizing a region satisfied by the logical expression R max1 (L, P) obtained by the elimination of the restrictive symbol.
 領域A_Rmax1(L,P)は、第一の論理式ψsys(L,P)の消費電力Pの上限から所定値(実施例では1.5[kW])以下の値をとる領域がこれに相当する。言い換えると、第一の領域ψsys(L,P)を満たす領域のうち、消費電力Pの上限から1.5[kW]に満たない範囲にある領域については、図22の領域A_Rmax1(L,P)からは除外されている。 In the area A_R max1 (L, P), an area having a value equal to or less than a predetermined value (1.5 [kW] in the embodiment) from the upper limit of the power consumption P of the first logical formula sys sys (L, P) It corresponds to In other words, among the areas satisfying the first area sys sys (L, P), the area A_R max1 (L in FIG. , P) are excluded.
 特徴計算部11は、更に、入力された図6の第一の論理式ψsys(L,P)に基づき、以下の演算を行う。そして、第一の論理式ψsys(L,P)における消費電力Pの上限値以下をとる領域を表す論理式Rmax2(L,P)を求める。 The feature calculation unit 11 further performs the following operation based on the input first logical expression ψ sys (L, P) in FIG. Then, a logical expression R max2 (L, P) representing a region taking an upper limit value or less of the power consumption P in the first logical expression sys sys (L, P) is obtained.
 図23は、特徴計算部11がRmax2(L,P)を得るために行う演算処理について説明する図である。 FIG. 23 is a diagram for explaining calculation processing performed by the feature calculation unit 11 to obtain R max2 (L, P).
 特徴計算部11は、図6の第一の論理式ψsys(L,P)に基づき、パラメータP´を用いて、論理式「P≦P´」(2-3)を生成する。 The feature calculation unit 11 generates a logical expression “P ≦ P ′” (2-3) using the parameter P ′ based on the first logical expression sys sys (L, P) in FIG.
 特徴計算部11は、上記の実施形態と同様に、生成した論理式と、第一の論理式ψsys(L,P)においてパラメータPをP´で置換した式とを論理積で結合し、論理式を生成する。論理式(2-3)と置換により得られる論理式ψsys(L,P´)の論理積により、第一の論理式においてPの上限値以下の値をとる領域が特定される。ここで生成する論理式ψmax2(L,P,P´)は、以下のとおりである。 The feature calculation unit 11 combines the generated logical expression and an expression in which the parameter P is replaced with P ′ in the first logical expression sys sys (L, P), as in the above embodiment, Generate a logical expression. The logical product of the logical expression (2-3) and the logical expression ψsys (L, P ′) obtained by substitution identifies an area having a value equal to or less than the upper limit value of P in the first logical expression. The logical expression ψ max2 (L, P, P ′) generated here is as follows.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 図24は、特徴計算部11が図23の論理式ψmax2(L,P,P´)に対して更に行う演算処理について説明する図である。特徴計算部11は、図23の論理式ψmax2(L,P,P´)のパラメータP´に対して存在記号「∃」を付与し、以下の一階述語論理式φmax2(L,P,P´)を生成する。 FIG. 24 is a diagram for explaining the calculation processing which the feature calculation unit 11 further performs on the logical expression ψ max2 (L, P, P ′) of FIG. The feature calculation unit 11 assigns the existence symbol “∃” to the parameter P ′ of the logical expression ψ max2 (L, P, P ′) in FIG. 23, and the following first-order predicate logical expression φ max2 (L, P , P ′) are generated.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 図25は、限定記号消去部12が実施する演算処理について説明する図である。 FIG. 25 is a diagram for explaining the arithmetic processing performed by the limiting symbol eraser 12.
 限定記号消去部12は、特徴計算部11から図24の論理式φmax2(L,P,P´)が入力されると、上記の実施形態等と同様に、入力された論理式φmax2(L,P,P´)に対して限定記号消去を実施する。これにより得られる論理式Rmax2(L,P)からは、図24の演算処理において特徴計算部11が存在記号「∃」を付与したパラメータP´が消去されている。 Quantifier elimination unit 12, logical expression phi max2 of Figure 24 from feature calculation block 11 the (L, P, P') is input, similarly to the foregoing embodiment and the like, logical expression entered phi max2 ( Perform the limited symbol elimination for L, P, P ′). From the logical expression R max2 (L, P) thus obtained, the parameter P ′ to which the feature calculating unit 11 has added the presence symbol “∃” in the calculation processing of FIG. 24 is deleted.
Figure JPOXMLDOC01-appb-M000017
・・・(2-4)
Figure JPOXMLDOC01-appb-M000017
... (2-4)
 図26は、限定記号消去により得られる論理式Rmax2(L,P)が満たす領域を可視化した結果を例示する図である。領域A_Rmax2(L,P)は、第一の論理式ψsys(L,P)の上限以下の領域がこれに相当する。 FIG. 26 is a diagram illustrating the result of visualizing a region satisfied by the logical expression R max2 (L, P) obtained by the elimination of the restrictive symbol. The region A_R max2 (L, P) corresponds to the region below the upper limit of the first logical expression sys sys (L, P).
 図27は、特徴計算部11及び限定記号消去部12の演算により得られた2つの論理式Rmax1(L,P)を満たす領域A_Rmax1(L,P)及びRmax2(L,P)を満たす領域A_Rmax2(L,P)を重ね合わせた結果を示す図である。 FIG. 27 shows regions A_R max1 (L, P) and R max2 (L, P) that satisfy the two logical expressions R max1 (L, P) obtained by the calculation of the feature calculation unit 11 and the limited symbol elimination unit 12. fill region A_R max2 (L, P) is a diagram showing a result of superimposed.
 上述のとおり、図19の論理式(2-1)により、領域A_Rmax1(L,P)は、領域A_Rmax2(L,P)よりも1.5[kW]分だけ消費電力Pの下限が小さい。このことを利用して、特徴計算部11は、グラフにおいて強調したい領域を抽出する。 As described above, according to the logical expression (2-1) in FIG. 19, the lower limit of the power consumption P is 1.5 kW for the area A_R max1 (L, P) than the area A_R max2 (L, P). small. Using this, the feature calculation unit 11 extracts a region to be emphasized in the graph.
 図28は、本実施形態において、特徴計算部11が第二の論理式Rmax(L,P)を求める方法について説明する図である。 FIG. 28 is a diagram for describing a method for the feature calculation unit 11 to obtain the second logical expression R max (L, P) in the present embodiment.
 図28に示すように、特徴計算部11は、上記の演算処理により求めた2つの式(2-2)と(2-4)、すなわち論理式Rmax1(L,P)とRmax2(L,P)とで排他的論理和XORをとり、論理式Rmax(L,P)を得る。 As shown in FIG. 28, the feature calculation unit 11 calculates two equations (2-2) and (2-4) obtained by the above arithmetic processing, that is, logical equations R max1 (L, P) and R max2 (L , P) and XOR the exclusive OR to obtain a logical expression R max (L, P).
Figure JPOXMLDOC01-appb-M000018
・・・(2-5)
Figure JPOXMLDOC01-appb-M000018
... (2-5)
 式(2-5)においては、第一の論理式ψsys(L,P)の消費電力Pの上限から1.5[kW]の領域、すなわち、論理式(2-1)で設定した幅に相当する領域が抽出されている。 In the formula (2-5), the range from the upper limit of the power consumption P of the first logical formula sys sys (L, P) to 1.5 [kW], that is, the width set by the logical formula (2-1) The region corresponding to is extracted.
 特徴計算部11は、上記の論理式Rmax(L,P)を第二の論理式として、画像化部13に出力する。画像化部13は、特徴計算部11から入力された第二の論理式Rmax(L,P)に基づき、熱負荷の需要量Lと消費電力Pの関係を表したグラフを生成する。 The feature calculation unit 11 outputs the above logical expression R max (L, P) to the imaging unit 13 as a second logical expression. The imaging unit 13 generates a graph representing the relationship between the heat load demand amount L and the power consumption P based on the second logical expression R max (L, P) input from the feature calculation unit 11.
 図29は、第二の論理式Rmax(L,P)によりグラフ上に表される消費電力Pの上限の強調表示を例示する図である。 FIG. 29 is a diagram illustrating highlighting of the upper limit of the power consumption P represented on the graph by the second logical expression R max (L, P).
 図29においては、エネルギーマネジメント支援装置1にて求めた第二の論理式Rmax(L,P)と共に、熱負荷の需要量Lと消費電力Pとの関係を表す第一の論理式ψsys(L,P)をグラフG2に表している。 In FIG. 29, together with the second logical formula R max (L, P) determined by the energy management support device 1, a first logical formula sys sys representing the relationship between the heat load demand L and the power consumption P. (L, P) is represented in the graph G2.
 上記の一連の演算処理により求めた第二の論理式Rmax(L,P)を満たす領域A_Rmax(L,P)は、第一の論理式の上限から所定の幅(実施例では1.5[kW])の分、第一の論理式を満たす領域A_ψsys(L,P)とは異なる色で表示されている。ユーザは、図29のグラフG2を含む画像50が出力されているモニタ等の表示手段を介して、消費電力Pの上限を容易に視認することが可能となる。 The region A_R max (L, P) satisfying the second logical expression R max (L, P) obtained by the series of arithmetic processing described above has a predetermined width (in the embodiment, 1) from the upper limit of the first logical expression. 5 min [kW]), is displayed in a color different from that of the region satisfy the first logical expression A_ψ sys (L, P). The user can easily view the upper limit of the power consumption P through the display means such as a monitor on which the image 50 including the graph G2 of FIG. 29 is output.
 本実施形態によっても、上記第1の実施形態と同様の効果を得ることができる。すなわち、数式処理により上限から一定の幅(実施例では1.5[kW])を表す数式を求め、これに基づき強調表示を行うことで、ユーザの視認性を確保しつつ、正確に消費電力Pの上限を強調表示している。また、拡大表示した場合であっても画質の劣化を防ぐことが可能である。 Also according to this embodiment, the same effect as that of the first embodiment can be obtained. That is, a formula representing a fixed width (1.5 [kW] in the embodiment) from the upper limit is obtained by formula processing, and highlighting is performed based on this, thereby ensuring correct visibility of the user while ensuring user's visibility. The upper limit of P is highlighted. In addition, even when the display is enlarged, it is possible to prevent the deterioration of the image quality.
 なお、上記第1の実施形態や本実施形態による画像の生成方法のように、第二の論理式を求めてグラフG2の描画を行うことで、例えば、図7に示すように、第一の論理式のみを可視化した場合には、グラフG1上に現れない領域を描画することも可能となる。このことは、例えば図29の(a)の領域と図7の対応する箇所を比較することにより、容易に確認できる。
<第3の実施形態>
 上記の第1及び第2の実施形態においては、それぞれ第一の論理式のうちの消費電力Pの下限及び上限から一定の幅の領域を抽出してその領域を表す第二の論理式を求め、これに基づき下限及び上限を強調表示している。これにより、ユーザは、消費電力の下限や上限であって、第一の論理式を可視化しただけではグラフ上に現れない領域を視覚的に容易に確認することが可能となる。これに対し、本実施形態においては、第一の論理式が満たす領域を可視化する際に、点や線で描かれる領域についてはグラフの軸方向に拡大して強調表示する。
Note that, as in the image generation method according to the first embodiment or the present embodiment, by drawing the graph G2 by obtaining the second logical expression, for example, as shown in FIG. When only the logical expression is visualized, it is possible to draw an area which does not appear on the graph G1. This can be easily confirmed, for example, by comparing the area of (a) of FIG. 29 with the corresponding part of FIG.
Third Embodiment
In the first and second embodiments described above, a region having a certain width is extracted from the lower limit and the upper limit of the power consumption P in the first logical equation, respectively, and the second logical equation representing the region is determined. Based on this, the lower limit and the upper limit are highlighted. As a result, the user can easily visually confirm an area that does not appear on the graph only by visualizing the first logical expression, which is the lower limit or the upper limit of the power consumption. On the other hand, in the present embodiment, when visualizing the area that the first logical expression satisfies, the area drawn with dots and lines is enlarged and highlighted in the axial direction of the graph.
 以下に、本実施形態に係るエネルギーマネジメント支援装置1による第一の論理式に対して各種の演算処理を実施して第二の論理式を生成し、生成した第二の論理式に基づき所望のグラフを含む画像50を得る方法について、具体的に説明する。 Hereinafter, various operations are performed on the first logical expression by the energy management support apparatus 1 according to the present embodiment to generate a second logical expression, and a desired second logical expression is generated based on the generated second logical expression. A method of obtaining an image 50 including a graph will be specifically described.
 本実施形態においては、エネルギーマネジメント支援装置1が解析対象とする需給系統モデルは、第1及び第2の実施形態のそれと同様であり、図3に示すとおりである。但し、需給系統モデルを構成する各冷凍機1~4の特性式等については、上記の実施形態とは異なっている。 In the present embodiment, the supply and demand grid model to be analyzed by the energy management support apparatus 1 is the same as that of the first and second embodiments, as shown in FIG. However, characteristic formulas and the like of the respective refrigerators 1 to 4 constituting the supply and demand grid model are different from those in the above embodiment.
 図30は、図3に示す需給系統モデルを構成する冷凍機1~4についての本実施形態における消費電力特性及び外気温度の変化範囲の式を例示する図である。 FIG. 30 is a diagram illustrating the expressions of the change range of the power consumption characteristic and the outside air temperature in the present embodiment for the refrigerators 1 to 4 constituting the supply and demand grid model shown in FIG.
 図30に示す冷凍機1~4の稼動時の消費電力特性を表す数式群(3-1)、冷凍機1~4の熱負荷の上下限を表す数式群(3-2)、停止時の消費電力特性を表す数式群(3-3)は、4台の冷凍機1~4の全てが、同じ特性式で表される点で図4と異なる。 Formula group (3-1) showing power consumption characteristics at the time of operation of refrigerators 1 to 4 shown in FIG. 30, formula group (3-2) indicating upper and lower limits of heat load of refrigerators 1 to 4 at stop The mathematical expression group (3-3) representing the power consumption characteristics differs from FIG. 4 in that all four refrigerators 1 to 4 are represented by the same characteristic formula.
Figure JPOXMLDOC01-appb-M000019
・・・(3-1)
Figure JPOXMLDOC01-appb-M000019
... (3-1)
Figure JPOXMLDOC01-appb-M000020
・・・(3-2)
Figure JPOXMLDOC01-appb-M000020
... (3-2)
Figure JPOXMLDOC01-appb-M000021
・・・(3-3)
Figure JPOXMLDOC01-appb-M000021
... (3-3)
 外気温度T[℃]を表す式は、「T=25」である。 The equation representing the outside air temperature T [° C.] is “T = 25”.
 図31は、本実施形態における外気温度Tと冷凍機1~4の消費電力特性との関係を説明する図である。図31(a)は、外気温度Tがその下限である25[℃]であるときの各冷凍機1~4の消費電力特性を示す。 FIG. 31 is a view for explaining the relationship between the outside air temperature T and the power consumption characteristics of the refrigerators 1 to 4 in the present embodiment. FIG. 31 (a) shows the power consumption characteristic of each of the refrigerators 1 to 4 when the outside air temperature T is 25 ° C., which is the lower limit thereof.
 図31に示すように、4台の冷凍機の消費電力特性(効率)は、T=25[℃]の場合(図31(a)のch_25_1~ch_25_4)
 図32は、上記の設例における熱負荷の需要量Lと消費電力Pとの関係を示した論理式を例示する図である。
As shown in FIG. 31, the power consumption characteristics (efficiency) of the four refrigerators are in the case of T = 25 [° C.] (ch_25_1 to ch_25_4 of FIG. 31 (a))
FIG. 32 is a diagram exemplifying a logical expression showing the relationship between the demand L of the heat load and the power consumption P in the above example.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 図32に示す論理式ψsys2(L,P)は、図30に示す特性式(3-1)乃至(3-3)及び外気温度の式に基づき、図6の論理式と同様に、公知の技術を用いて、一階述語論理式に対し限定記号消去を実施することにより、求めることができる。 The logical formula sys sys2 (L, P) shown in FIG. 32 is known based on the characteristic formulas (3-1) to (3-3) shown in FIG. 30 and the formula of the outside air temperature as well as the logical formula in FIG. It can be obtained by performing the elimination of the definite symbol for the first-order predicate logical expression using the technique of
 図33は、本実施形態において特徴計算部11が行う演算処理について説明する図である。特徴計算部11は、図32の第一の論理式ψsys2(L,P)の入力を受け付けると、パラメータP´を用いて、論理式(3-4)を生成する。 FIG. 33 is a diagram for explaining the calculation process performed by the feature calculation unit 11 in the present embodiment. When receiving the input of the first logical expression sys sys2 (L, P) in FIG. 32, the feature calculation unit 11 generates a logical expression (3-4) using the parameter P ′.
 特徴計算部11は、入力された第一の論理式ψsys2(L,P)の消費電力PをP´で置換し、置換により得られる式と論理式(3-4)とを論理積で結合して、以下の論理式ψline1(L,P,P´)を作成する。論理式(3-4)と置換により得られる論理式ψsys2(L,P´)の論理積は、第一の論理式の消費電力方向について、その範囲を所定の大きさ(実施例では、±1.5[kW])分だけ拡大している。 The feature calculation unit 11 replaces the power consumption P of the input first logical expression ψ sys2 (L, P) with P ′, and the logical expression (3-4) and the expression obtained by the replacement are logical products Combine to create the following formula line line1 (L, P, P ′). The logical product of the logical expression sys sys2 (L, P ′) obtained by substitution with the logical expression (3-4) and the power consumption direction of the first logical expression has a predetermined range of magnitude (in the embodiment, It is expanding by ± 1.5 [kW]).
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 図34は、特徴計算部11が図33の論理式ψline1(L,P,P´)に対して更に行う演算処理について説明する図である。特徴計算部11は、図33の論理式ψline1(L,P,P´)のパラメータP´に対して存在記号「∃」を付与して以下の一階述語論理式φline1(L,P,P´)を生成する。 FIG. 34 is a diagram for explaining the calculation processing that the feature calculation unit 11 further performs on the logical expression line line1 (L, P, P ′) in FIG. The feature calculation unit 11 adds the existence symbol “∃” to the parameter P of the logical expression line line1 (L, P, P ′) in FIG. 33 to add the following first-order predicate logical expression φ line1 (L, P , P ′) are generated.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 図35は、限定記号消去部12が実施する演算処理について説明する図である。 FIG. 35 is a diagram for explaining the arithmetic processing performed by the limiting symbol eraser 12.
 限定記号消去部12は、特徴計算部11から図34の論理式φline1(L,P,P´)が入力されると、当該論理式φline1(L,P,P´)に対し限定記号消去を実施する。これにより得られるRline1(L,P)からは、図34の演算処理において特徴計算部11が存在記号「∃」を付与したパラメータP´が消去されている。 When the logical expression φ line1 (L, P, P ′) of FIG. 34 is input from the feature calculation unit 11, the restriction symbol elimination unit 12 applies restriction symbols to the logical expression φ line1 (L, P, P ′). Implement erase. From R line1 (L, P) obtained in this manner, the parameter P ′ to which the feature calculation unit 11 adds the presence symbol “∃” in the calculation process of FIG. 34 is deleted.
Figure JPOXMLDOC01-appb-M000025
・・・(3-5)
Figure JPOXMLDOC01-appb-M000025
... (3-5)
 図36は、特徴計算部11が、限定記号消去により得られる論理式Rline1(L,P)(3-5)に対して更に行う演算処理について説明する図である。 FIG. 36 is a diagram for explaining the arithmetic processing further performed by the feature calculation unit 11 on the logical expression R line1 (L, P) (3-5) obtained by the elimination of the restrictive symbol.
 特徴計算部11は、限定記号消去部12から受け取った図35の論理式Rline1(L,P)(3-5)に対し、更に、パラメータL´を用いて、論理式「L-4≦L´L+4」(3-6)を生成する。 The feature calculation unit 11 further uses the parameter L ′ with respect to the logical expression R line1 (L, P) (3-5) of FIG. 35 received from the limiting symbol erase unit 12 to generate the logical expression “L−4 ≦ Generate L'L + 4 "(3-6).
 特徴計算部11は、限定記号消去部12から入力された論理式Rline1(L,P)の熱負荷の需要量LをL´で置換し、置換により得られる式と論理式(3-5)とを論理積で結合して、以下の論理式ψline(L,L´,P)を作成する。論理式(3-6)と置換により得られる論理式Rline1(L´,P)の論理積は、図35の限定記号消去により得られた論理式Rline1(L,P)の熱負荷の需要量方向について、その範囲を所定の大きさ(実施例では、±4[kW])分だけ拡大する。 The feature calculation unit 11 substitutes the heat load demand amount L of the logical expression R line1 (L, P) input from the limiting symbol elimination unit 12 with L ′, and obtains an expression and a logical expression (3-5 And) by logical multiplication to create the following logical formula line line (L, L ′, P). The logical product of the logical expression (3-6) and the logical expression R line1 (L ′, P) obtained by substitution is the heat load of the logical expression R line1 (L, P) obtained by the limitation symbol elimination of FIG. The range of the demand direction is expanded by a predetermined size (± 4 [kW] in the embodiment).
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 図37は、特徴計算部11が図36の論理式ψline(L,L´,P)に対して更に行う演算処理について説明する図である。特徴計算部11は、図36の論理式ψline(L,L´,P)のパラメータL´に対して存在記号「∃」を付与して以下の一階述語論理式φline(L,L´,P)を生成する。 FIG. 37 is a diagram for explaining the calculation processing which the feature calculation unit 11 further performs on the logical expression line line (L, L ′, P) in FIG. The feature calculation unit 11 adds the existing symbol “∃” to the parameter L ′ of the logical expression line line (L, L ′, P) in FIG. 36 to add the following first-order predicate logical expression φ line (L, L) ', P) is generated.
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
 図38は、本実施形態において、特徴計算部11が図37の演算で得られた論理式から第二の論理式Rline(L,P)を得る方法について説明する図である。 FIG. 38 is a diagram for explaining how the feature calculation unit 11 obtains the second logical expression R line (L, P) from the logical expression obtained by the operation of FIG. 37 in the present embodiment.
 特徴計算部11は、図37で得られた一階述語論理式φline(L,L´,P)を限定記号消去部12に渡す。限定記号消去部12は、特徴計算部11から当該論理式が入力されると、これに対して限定記号消去を実施する。限定記号消去により得られる論理式Rline(L,P)からは、特徴計算部11にて設定したパラメータL´が消去されている。 The feature calculation unit 11 passes the first-order predicate logical expression φ line (L, L ′, P) obtained in FIG. When the logical expression is input from the feature calculation unit 11, the restriction symbol elimination unit 12 performs restriction symbol elimination on the logical expression. The parameter L ′ set by the feature calculation unit 11 is deleted from the logical expression R line (L, P) obtained by the restriction symbol deletion.
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
 特徴計算部11は、限定記号消去部12から上記の論理式Rline(L,P)を受け取ると、これを第二の論理式として、画像化部13に出力する。画像化部13は、特徴計算部11から入力された第二の論理式Rline(L,P)に基づき、熱負荷の需要量Lと消費電力Pの関係を表したグラフを生成する。 When the feature calculation unit 11 receives the above-mentioned logical expression R line (L, P) from the limiting symbol elimination unit 12, the characteristic calculation unit 11 outputs this to the imaging unit 13 as a second logical expression. The imaging unit 13 generates a graph representing the relationship between the heat load demand amount L and the power consumption P based on the second logical expression R line (L, P) input from the feature calculation unit 11.
 図39は、第二の論理式Rline(L,P)を可視化して生成したグラフG3を例示する図である。図39に示すように、第二の論理式を満たす領域A_Rline(L,P)は、上記の処理により、第一の論理式ψsys2(L,P)と比較すると、縦軸方向及び横軸方向に関し、領域が拡大されている。 FIG. 39 is a diagram illustrating a graph G3 generated by visualizing the second logical expression R line (L, P). As shown in FIG. 39, the region A_R line (L, P) satisfying the second logical expression is compared with the first logical expression sys sys2 (L, P) by the above-described process, in the vertical axis direction and in the horizontal direction. The area is enlarged in the axial direction.
 上記のとおり、本実施形態においては、4台の冷凍機1~4の消費電力特性(効率)が一致している。この場合、図32の論理式ψsys2(L,P)をそのまま可視化したとしても、解析に利用しにくい場合もある。例えば論理式ψsys2(L,P)を満たす領域のように、線状に広がるのみ、あるいは、点状に分布するのみである場合、熱負荷の需要量Lと消費電力Pの関係を視認しにくい場合がある。しかし、このような場合であっても、図39に示す例のように、適切にグラフの縦軸、横軸方向に領域を拡大して可視化することにより、ユーザにとっては可視化結果を利用しての解析が行い易くなる、という効果が得られる。例えば図39においては、(L,P)=(0,0)の点も領域に含まれることがグラフG3から判断できる。 As described above, in the present embodiment, the power consumption characteristics (efficiency) of the four refrigerators 1 to 4 are the same. In this case, even if the logical expression sys sys2 (L, P) in FIG. 32 is visualized as it is, it may be difficult to use for analysis. For example, in the case of a linear spread or a point-like distribution as in a region satisfying the logical expression 2 sys2 (L, P), visually recognize the relationship between the heat load demand amount L and the power consumption P It may be difficult. However, even in such a case, as in the example shown in FIG. 39, by appropriately enlarging and visualizing the region in the vertical axis direction and horizontal axis direction of the graph, it is possible for the user to use the visualization result. The effect is obtained that it is easy to analyze the For example, in FIG. 39, it can be determined from the graph G3 that the point of (L, P) = (0, 0) is also included in the area.
 上記においては、縦軸の消費電力Pについては±1.5[kW]分拡大し、横軸の熱負荷の需要量Lについては±4[kW]分拡大をしているが、これに限定されるものではない。上記第1及び第2の実施形態と同様に、画像50の解像度等に応じて、適切に拡大範囲を設定することができる。適切に設定した拡大範囲で第二の論理式Rの縦軸方向や横軸方向への拡大をすることで、第二の論理式Rが点や線で表される場合であっても、ユーザの視認性を確保しつつ、正確に消費電力Pと熱負荷の需要量Lの関係を表したグラフを生成できる。
<第4の実施形態>
 上記の第1乃至第3の実施形態においては、ユーザにとっては、第一の論理式をそのまま可視化した結果を見た場合には確認しにくい領域を、第一の論理式に基づき生成した第二の論理式を用いて可視化を行うことで、解析に利用し易くしている。これに対し、本実施形態においては、熱負荷の需要量Lと消費電力Pの関係を表したグラフから、省エネ余地が大きいか否かをユーザが直感的に把握し易くする。
In the above, the power consumption P on the vertical axis is expanded by ± 1.5 [kW], and the demand amount L of the thermal load on the horizontal axis is expanded by ± 4 [kW], but is limited to this It is not something to be done. Similar to the first and second embodiments, the enlargement range can be appropriately set according to the resolution of the image 50 and the like. Even if the second logical expression R is represented by a point or a line by expanding the second logical expression R in the vertical axis direction or the horizontal axis direction in the appropriately set expansion range, the user It is possible to generate a graph that accurately represents the relationship between the power consumption P and the demand amount L of the heat load while securing the visibility of the above.
Fourth Embodiment
In the first to third embodiments described above, a second area is generated based on the first logical expression, in which it is difficult for the user to confirm the first logical expression as viewed when the first logical expression is visualized as it is. Visualization is performed using the logical expression of to make it easy to use for analysis. On the other hand, in the present embodiment, the user can intuitively grasp whether the energy saving allowance is large or not from the graph showing the relationship between the demand amount L of the heat load and the power consumption P.
 以下に、本実施形態に係るエネルギーマネジメント支援装置1が、第一の論理式において省エネ余地が所定以上である領域を強調表示したグラフG4を生成する方法について説明する。 Hereinafter, a method will be described in which the energy management support apparatus 1 according to the present embodiment generates a graph G4 in which an area where the room for energy saving is at least a predetermined level is highlighted in the first logical expression.
 本実施形態において、エネルギーマネジメント支援装置1が解析対象とする需給系統モデルは、図3に示すとおりである。そして、その特性式や外気温度の変化範囲等については、図4及び図5に示すとおりである。また、エネルギーマネジメント支援装置1に入力される第一の論理式は、図6に示す論理式ψsys(L,P)であるので、ここでは説明を省略する。 In the present embodiment, the supply and demand grid model to be analyzed by the energy management support apparatus 1 is as shown in FIG. The characteristic formula and the change range of the outside air temperature are as shown in FIG. 4 and FIG. Moreover, since the first logical expression input to the energy management support device 1 is the logical expression sys sys (L, P) shown in FIG. 6, the description will be omitted here.
 図40は、本実施形態において特徴計算部11が行う演算処理について説明する図である。特徴計算部11は、図6に示す第一の論理式ψsys(L,P)の入力を受け付けると、パラメータP´を用いて、論理式(4-1)を生成する。 FIG. 40 is a diagram for explaining the calculation process performed by the feature calculation unit 11 in the present embodiment. When receiving the input of the first logical expression sys sys (L, P) shown in FIG. 6, the feature calculation unit 11 generates a logical expression (4-1) using the parameter P ′.
 特徴計算部11は、生成した論理式(4-1)と、第一の論理式ψsys(L,P)と、第一の論理式のうち、パラメータPをP´に置換して得られる式ψsys(L,P´)とを論理式で結合し、以下の論理式を得る。論理式(4-1)、第一の論理式ψsys(L,P)及び置換により得られる論理式ψsys(L,P´)の論理積により、第一の論理式を満たすP及びP´について、PとP´との差が所定値(実施例では75[kW])以上である領域が特定される。 The feature calculation unit 11 is obtained by replacing the parameter P with P ′ in the generated logical expression (4-1), the first logical expression sys sys (L, P), and the first logical expression. Combine the formula sys sys (L, P ′) with a logical formula to obtain the following logical formula. Formulas (4-1), the first logical expression [psi sys (L, P) and the logical product of the resulting substitution formulas [psi sys (L, P'), P and P satisfy the first logical expression For ', an area in which the difference between P and P' is equal to or greater than a predetermined value (75 [kW] in the embodiment) is specified.
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
 図41は、特徴計算部11が、生成した図40の論理式ψroom1(L,P,P´)に対して更に行う演算処理について説明する図である。特徴計算部11は、図40の論理式ψroom1(L,P,P´)のパラメータP、P´に対して存在記号「∃」を付与し(図41の(4-2))、以下の一階述語論理式φroom1(L,P,P´)を生成する。 FIG. 41 is a diagram for explaining calculation processing further performed by the feature calculation unit 11 on the generated logical expression room room1 (L, P, P ′) of FIG. The feature calculation unit 11 adds the existing symbol “∃” to the parameters P and P ′ of the logical expression room room1 (L, P, P ′) in FIG. 40 ((4-2) in FIG. 41), First-order predicate formula φ room1 (L, P, P ′) is generated.
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000030
 図42は、限定記号消去部12が実施する演算処理について説明する図である。 FIG. 42 is a diagram for explaining the arithmetic processing performed by the limiting symbol eraser 12.
 限定記号消去部12は、特徴計算部11から図42の論理式φroom1(L,P,P´)が入力されると、図42に示すように、論理式φroom1(L,P,P´)に対して限定記号消去を実施する。これにより得られる論理式Rroom1(L)からは、図41の演算処理において特徴計算部11が存在記号「∃」を付与したパラメータP、P´が消去されている。 Quantifier elimination unit 12, logical expression phi room1 in Figure 42 from the feature calculating unit 11 when (L, P, P') is input, as shown in FIG. 42, the logical expression φ room1 (L, P, P Perform restriction symbol elimination on '). From the logical expression R room1 (L) obtained thereby, the parameters P and P ′ to which the feature calculation unit 11 has added the presence symbol “∃” in the calculation processing of FIG. 41 are deleted.
Figure JPOXMLDOC01-appb-M000031
・・・(4-3)
Figure JPOXMLDOC01-appb-M000031
... (4-3)
 図43は、本実施形態において、特徴計算部11が図42の演算で得られた論理式から第二の論理式Rroom(L,P)を得る方法について説明する図である。 FIG. 43 is a diagram for describing a method of obtaining the second logical expression R room (L, P) from the logical expression obtained by the operation of FIG. 42 by the feature calculation unit 11 in the present embodiment.
 特徴計算部11は、図42でパラメータP、P´を消去して得られた式(4-3)と第一の論理式ψsys(L,P)とを論理積で結合し、第二の論理式Rroom(L,P)を得る。 The feature calculation unit 11 logically combines the equation (4-3) obtained by deleting the parameters P and P 'in FIG. 42 with the first logical expression sys sys (L, P) We obtain the formula R room (L, P) of
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000032
 特徴計算部11は、上記の論理式Rroom(L,P)を第二の論理式として、画像化部13に出力する。画像化部13は、特徴計算部11から入力された第二の論理式Rroom(L,P)に基づき、熱負荷の需要量Lと消費電力Pとの関係を表したグラフを生成する。 The feature calculation unit 11 outputs the above-described logical expression R room (L, P) to the imaging unit 13 as a second logical expression. The imaging unit 13 generates a graph representing the relationship between the heat load demand amount L and the power consumption P based on the second logical expression R room (L, P) input from the feature calculation unit 11.
 図44は、第二の論理式Rroom(L,P)を可視化して生成したグラフG4を例示する図である。 FIG. 44 is a diagram illustrating a graph G4 generated by visualizing the second logical expression R room (L, P).
 図44のグラフG4においては、第一の論理式の領域の満たす領域A_ψsys(L,P)と、このうち第二の論理式が満たす領域A_Rroom(L,P)とを色分けして表示している。ユーザは、一定以上の省エネの余地がある領域(実施例では、75[kW]以上の省エネが可能な領域)、すなわち、所定値以上消費電力Pを削減可能な領域を直感的に把握することが可能となり、これにより、有効な解析に資する。
<第5の実施形態>
 上記の第4の実施形態においては、ユーザが直感的に把握し易いように、省エネ余地が一定以上ある領域を抽出して強調表示している。これに対し、本実施形態においては、消費電力をどれだけ削減できるかを、ユーザが直感的に把握し易くしている。
In the graph G4 of FIG. 44, the area A_ψ sys (L, P) satisfied by the area of the first logical expression and the area A_R room (L, P) satisfied by the second logical expression are displayed in color doing. The user intuitively grasps an area where there is room for energy saving above a certain level (in the embodiment, an area where energy saving over 75 [kW] is possible), that is, an area where the power consumption P can be reduced above a predetermined value. Can be used to contribute to effective analysis.
Fifth Embodiment
In the fourth embodiment described above, a region where there is a certain amount or more of the energy saving room is extracted and highlighted so that the user can easily grasp it intuitively. On the other hand, in the present embodiment, the user can easily grasp how much power consumption can be reduced intuitively.
 以下に、本実施形態に係るエネルギーマネジメント支援装置1が、第一の論理式において消費電力の削減余地がどれだけあるかを表示したグラフG5を生成する方法について説明する。まず、本実施形態に係るエネルギーマネジメント支援装置1の解析対象について説明する。 Hereinafter, a method of generating a graph G5 in which the energy management support apparatus 1 according to the present embodiment displays how much room for reduction of power consumption is present in the first logical expression will be described. First, an analysis target of the energy management support apparatus 1 according to the present embodiment will be described.
 図45は、本実施形態に係るエネルギーマネジメント支援装置1が解析を行う需給系統モデルを例示する図である。 FIG. 45 is a diagram illustrating a supply and demand grid model that the energy management support apparatus 1 according to the present embodiment analyzes.
 図45に示すように、本実施形態における需給系統モデルでは、空調システム内の空調対象空間に熱負荷を供給する熱源機器として、3台の冷凍機1~3を備えている。電源は、3台の冷凍機1~3に対してP[kW]の電力を供給し、3台の冷凍機1~3は、それぞれ電源から供給を受けてP~P[kW]の電力を消費する。3台の冷凍機1~3は、空調対象空間にそれぞれL~L[kW]の熱負荷を供給し、空調対象空間の電力の需要量は、L[kW]である。 As shown in FIG. 45, in the supply and demand grid system model in the present embodiment, three refrigerators 1 to 3 are provided as heat source devices for supplying a heat load to the air conditioning target space in the air conditioning system. The power supply supplies power of P [kW] to the three refrigerators 1 to 3, and the three refrigerators 1 to 3 receive power from the power supply and receive P 1 to P 3 [kW] respectively. Consume power. The three refrigerators 1 to 3 supply thermal loads of L 1 to L 3 [kW] to the air conditioning target space, respectively, and the power demand of the air conditioning target space is L [kW].
 図46は、図45に示す需給系統モデルを構成する冷凍機1~3についての本実施形態における消費電力特性及び外気温度の変化範囲の式を例示する図である。 FIG. 46 is a diagram illustrating the expressions of the change range of the power consumption characteristic and the outside air temperature in the present embodiment for the refrigerators 1 to 3 constituting the supply and demand grid model shown in FIG.
 冷凍機1~3それぞれの稼動時における消費電力特性を表す式は、図46の数式群(5-1)に示すとおりである。 Formulas representing the power consumption characteristics at the time of operation of each of the refrigerators 1 to 3 are as shown in the formula group (5-1) in FIG.
Figure JPOXMLDOC01-appb-M000033
・・・(5-1)
Figure JPOXMLDOC01-appb-M000033
... (5-1)
 冷凍機1~3の熱負荷の上下限の制約を表す式は、図46の数式群(5-2)に示すとおりである。 Formulas representing the upper and lower limits of the heat loads of the refrigerators 1 to 3 are as shown in the formula group (5-2) in FIG.
Figure JPOXMLDOC01-appb-M000034
・・・(5-2)
Figure JPOXMLDOC01-appb-M000034
... (5-2)
 冷凍機1~3の停止時における消費電力特性を表す式は、図46の数式群(5-3)に示すとおりである。 The equations representing the power consumption characteristics at the time of shutdown of the refrigerators 1 to 3 are as shown in the equation group (5-3) in FIG.
Figure JPOXMLDOC01-appb-M000035
・・・(5-3)
Figure JPOXMLDOC01-appb-M000035
... (5-3)
 外気温度Tの変化範囲を表す式は、図46に示すとおり、
25≦T≦35…(5-4)
である。
The equation representing the change range of the outside air temperature T is, as shown in FIG.
25 ≦ T ≦ 35 (5-4)
It is.
 図47は、本実施形態における外気温度Tと冷凍機1~3の消費電力特性との関係を説明する図である。図47(a)は、外気温度Tが25[℃]のとき、図27(b)は、35[℃]のときの各冷凍機1~3の消費電力特性を表す。 FIG. 47 is a view for explaining the relationship between the outside air temperature T and the power consumption characteristics of the refrigerators 1 to 3 in the present embodiment. FIG. 47 (a) shows the power consumption characteristics of each of the refrigerators 1 to 3 when the outside air temperature T is 25 ° C. and FIG. 27 (b) is 35 ° C.
 設例のように、空調対象空間が複数の冷凍機に対して熱負荷を需要する構成をとる場合や、各冷凍機の消費電力特性が外気温度による場合には、ユーザは、どのように冷凍機1~3を稼動させることでより省エネ効果が高まるかが、把握しにくいこともある。このため、本実施形態においては、以下の方法により省エネの余地を求め、これを可視化する。 As in the example, when the air conditioning target space has a configuration in which the heat load is required for a plurality of refrigerators, or when the power consumption characteristic of each refrigerator is due to the outside air temperature, the user It may be difficult to grasp whether energy saving effect will increase more by operating 1 to 3. For this reason, in the present embodiment, room for energy saving is determined by the following method to visualize it.
 図48は、上記の設例における熱負荷の需要量Lと消費電力Pとの関係を示した第一の論理式を例示する図である。 FIG. 48 is a diagram illustrating a first logical expression representing the relationship between the demand L of the heat load and the power consumption P in the above example.
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000036
 図48に示す論理式ψsys3(L,P)は、図46に示す数式群を用いて一階述語論理式を生成し、限定記号消去により式から限定記号を消去することにより求まる。 The logical expression sys sys3 (L, P) shown in FIG. 48 is obtained by generating a first-order predicate logical expression using the group of expressions shown in FIG. 46, and deleting a limiting symbol from the expression by limiting symbol elimination.
 図49は、図48の論理式ψsys3(L,P)を可視化したグラフを示す図である。図49においては色分けされている領域A_ψsys3(L,P)が、第一の論理式ψsys3(L,P)を満たす領域である。 FIG. 49 is a diagram visualizing the logical expression sys sys3 (L, P) in FIG. Region A_ψ sys3 (L, P) are color-coded in FIG. 49, the first logical expression ψ sys3 (L, P) is a region satisfying.
 図49のグラフでは、消費電力Pの削減の余地が大きそうか否かについてはある程度確認できても、実際に消費電力Pをどれだけ削減できるかについては、グラフからは把握しにくい。そこで、以下の演算により、消費電力をどれだけ削減できるかを求める。 In the graph of FIG. 49, although it can be confirmed to a certain extent whether or not the room for reduction of the power consumption P is large, it is difficult to grasp from the graph how much the power consumption P can actually be reduced. Therefore, how much power consumption can be reduced is determined by the following calculation.
 図50は、本実施形態において特徴計算部11が行う演算処理について説明する図である。 FIG. 50 is a diagram for explaining the calculation process performed by the feature calculation unit 11 in the present embodiment.
 特徴計算部11は、図48の第一の論理式ψsys3(L,P)の入力を受け付けると、パラメータP´を用いて、論理式「P´<P」(5-5)を生成する。 When receiving the input of the first logical expression ψ sys3 (L, P) in FIG. 48, the feature calculation unit 11 generates a logical expression “P ′ <P” (5-5) using the parameter P ′. .
 特徴計算部11は、入力された第一の論理式ψsys3(L,P)の消費電力PをP´で置換し、置換により得られる式と論理式(5-5)とを論理積で結合して、以下の論理式ψeffect1(L,P,P´)を作成する。論理式(5-5)と置換により得られる論理式ψsys3(L,P´)により、第一の論理式を満たす領域のうち、パラメータPがP´より大きい領域が特定される。 The feature calculation unit 11 replaces the power consumption P of the input first logical expression ψ sys3 (L, P) with P ′, and the logical expression obtained by the replacement and the logical expression (5-5) Combine to create the following logical expression effect effect1 (L, P, P ′). By the logical expression 論理 sys3 (L, P ′) obtained by the logical expression (5-5) and substitution, an area where the parameter P is larger than P ′ is specified among the areas satisfying the first logical expression.
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000037
 図51は、特徴計算部11が図50の論理式ψeffect1(L,P,P´)に対して更に行う演算処理について説明する図である。 FIG. 51 is a diagram for explaining the calculation processing that the feature calculation unit 11 further performs on the logical expression ψ effect1 (L, P, P ′) in FIG.
 特徴計算部11は、図50の論理式ψeffect1(L,P,P´)のパラメータP´に対して存在記号「∃」を付与し、以下の一階述語論理式φeffect1(L,P,P´)を生成する。 The feature calculation unit 11 adds the existence symbol “∃” to the parameter P ′ of the logical expression effect effect1 (L, P, P ′) of FIG. 50, and the following first-order predicate logical expression φ effect1 (L, P , P ′) are generated.
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000038
 図52は、限定記号消去部12が実施する演算処理について説明する図である。 FIG. 52 is a diagram for explaining the arithmetic processing performed by the limiting symbol eraser 12.
 限定記号消去部12は、特徴計算部11から図51の論理式φeffect1(L,P,P´)が入力されると、図52に示すように、入力された論理式に対し限定記号消去を実施する。得られる論理式Reffect1(L,P)からは、図51の演算処理において特徴計算部11が存在記号「∃」を付与したパラメータP´が消去されている。 When the logical expression φ effect1 (L, P, P ′) of FIG. 51 is input from the feature calculation unit 11, the restriction symbol erasing unit 12 erases the restriction symbol with respect to the input logical expression as shown in FIG. Conduct. From the obtained logical expression R effect1 (L, P), the parameter P ′ to which the feature calculation unit 11 has added the presence symbol “∃” in the calculation process of FIG. 51 is deleted.
Figure JPOXMLDOC01-appb-M000039
・・・(5-6)
Figure JPOXMLDOC01-appb-M000039
... (5-6)
 上記の図50~図52に示す演算処理により、特徴計算部11は、消費電力Pに関して「図48の第一の論理式ψsys3(L,P)よりも大きい値」をとる領域を表す論理式Reffect1(L,P)を得る。同様に、特徴計算部11は、図48の第一の論理式ψsys3(L,P)に基づき、更に以下の演算を行い、消費電力Pに関して「第一の論理式ψsys3(L,P)以上の値」をとる領域を表す論理式Reffect2(L,P)を求める。 According to the arithmetic processing shown in FIGS. 50 to 52 described above, the feature calculation unit 11 is a logic representing an area that takes “a value larger than the first logical formula 3 sys3 (L, P) in FIG. The equation R effect1 (L, P) is obtained. Similarly, feature calculation unit 11, based on the first logical expression [psi sys3 in FIG 48 (L, P), further performs the following calculation, "the first logical expression [psi sys3 (L respect power consumption P, P A logical expression R effect2 (L, P) representing an area having the above values is obtained.
 図53は、特徴計算部11が論理式Reffect2(L,P)を得るために行う演算処理について説明する図である。 FIG. 53 is a diagram for explaining calculation processing performed by the feature calculation unit 11 to obtain the logical expression R effect2 (L, P).
 特徴計算部11は、図48の第一の論理式ψsys3(L,P)に基づき、パラメータP´を用いて、論理式「P≦P´」(5-7)を生成する。 The feature calculation unit 11 generates a logical expression “P ≦ P ′” (5-7) using the parameter P ′ based on the first logical expression sys sys3 (L, P) in FIG.
 特徴計算部11は、図50で論理式ψeffect1(L,P,P´)を作成したときと同様の方法により、論理式ψeffect2(L,P,P´)を作成する。すなわち、特徴計算部11は、入力された第一の論理式ψsys3(L,P)の消費電力PをP´で置換し、置換により得られる式と論理式(5-7)とを論理積で結合して、以下の論理式ψeffect2(L,P,P´)を作成する。論理式(5-7)と置換により得られる論理式ψsys3(L,P´)により、第一の論理式を満たす領域のうち、パラメータPがP´以上である領域が特定される。 The feature calculation unit 11 creates the logical formula effect effect2 (L, P, P ′) by the same method as when creating the logical formula effect effect1 (L, P, P ′) in FIG. That is, the feature calculation unit 11 substitutes the power consumption P of the input first logical expression sys sys3 (L, P) with P ′, and the expression obtained by the substitution and the logical expression (5-7) are logically Combining by products, the following logical formula ψ effect 2 (L, P, P ′) is created. From the region satisfying the first logical expression, the region having the parameter P of P ′ or more is specified by the logical expression sys sys3 (L, P ′) obtained by the logical expression (5-7) and the substitution.
Figure JPOXMLDOC01-appb-M000040
Figure JPOXMLDOC01-appb-M000040
 図54は、特徴計算部11が図53の論理式ψeffect2(L,P,P´)に対して更に行う演算処理について説明する図である。 FIG. 54 is a diagram for explaining the calculation processing that the feature calculation unit 11 further performs on the logical expression ψ effect2 (L, P, P ′) in FIG.
 特徴計算部11は、図51で論理式φeffect1(L,P,P´)を生成したときと同様の方法により、論理式φeffect2(L,P,P´)を生成する。すなわち、特徴計算部11は、生成した図53の論理式ψeffect2(L,P,P´)のパラメータP´に対して存在記号「∃」を付与し、以下の一階述語論理式φeffect2(L,P,P´)を生成する。 Feature calculation unit 11, a logical expression phi Effect1 in FIG 51 (L, P, P') in the same manner as when generated, and generates a logical expression φ effect2 (L, P, P' ). That is, the feature calculation unit 11 adds the existence symbol “∃” to the parameter P ′ of the generated logical expression effect effect2 (L, P, P ′) of FIG. 53, and the following first-order predicate logical expression φ effect 2 Generate (L, P, P ').
Figure JPOXMLDOC01-appb-M000041
Figure JPOXMLDOC01-appb-M000041
 図55は、限定記号消去部12が実施する演算処理について説明する図である。 FIG. 55 is a diagram for explaining the arithmetic processing performed by the limiting symbol eraser 12.
 限定記号消去部12は、図52で実施したと同様の方法により、限定記号消去を行い、論理式Reffect2(L,P)を得る。すなわち、限定記号消去部12は、特徴計算部11から図54の論理式φeffect2(L,P,P´)が入力されると、入力された論理式に対し限定記号消去を実施する。得られる論理式Reffect2(L,P)からは図54の演算処理において特徴計算部11が存在記号「∃」を付与したパラメータP´が消去されている。 The limited symbol elimination unit 12 performs limited symbol elimination in the same manner as in FIG. 52 to obtain the logical expression R effect2 (L, P). That is, when the logical expression φ effect2 (L, P, P ′) of FIG. 54 is input from the feature calculation unit 11, the restriction symbol erasing unit 12 performs the restriction symbol erasing on the input logical expression. From the obtained logical expression R effect2 (L, P), the parameter P ′ to which the feature calculating unit 11 has added the existence symbol “∃” in the calculation processing of FIG. 54 is deleted.
Figure JPOXMLDOC01-appb-M000042
・・・(5-8)
Figure JPOXMLDOC01-appb-M000042
... (5-8)
 上記の方法により得られた2つの論理式Reffect1(L,P)及びReffect2(L,P)は、それぞれ第一の論理式ψsys3(L,P)の消費電力の下限値よりも大きい領域、下限値以上の領域を表している。このことから、上記第1の実施形態において、消費電力の下限から一定の幅の領域を抽出した方法と同様の方法により、第一の論理式ψsys3(L,P)の下限値を抽出する。 The two logical expressions R effect1 (L, P) and R effect 2 (L, P) obtained by the above method are respectively larger than the lower limit value of the power consumption of the first logical expression 3 sys 3 (L, P) The area represents the area above the lower limit value. From this, in the first embodiment, the lower limit value of the first logical expression sys sys3 (L, P) is extracted by the same method as the method of extracting the region of a certain width from the lower limit of power consumption. .
 図56は、本実施形態において、特徴計算部11が第一の論理式ψsys3(L,P)の下限値を表す論理式Reffect3(L,P)を生成する方法について説明する図である。 FIG. 56 is a diagram for describing a method for the feature calculation unit 11 to generate a logical expression R effect3 (L, P) representing the lower limit value of the first logical expression sys sys3 (L, P) in the present embodiment. .
 図56に示すように、特徴計算部11は、上記の演算処理により求めた2つの式(5-6)と(5-8)、すなわち論理式Reffect1(L,P)とReffect2(L,P)とで、排他的論理和XORをとる。 As shown in FIG. 56, the feature calculation unit 11 calculates two expressions (5-6) and (5-8) obtained by the above arithmetic processing, that is, logical expressions R effect1 (L, P) and R effect 2 (L effect , P), XOR the exclusive OR.
Figure JPOXMLDOC01-appb-M000043
・・・(5-9)
Figure JPOXMLDOC01-appb-M000043
... (5-9)
 式(5-9)においては、排他的論理XORにより、第一の論理式ψsys3(L,P)の下限値が抽出されている。 In Expression (5-9), the lower limit value of the first logical expression sys sys3 (L, P) is extracted by exclusive logic XOR.
 図57は、特徴計算部11が図56で生成した論理式Reffect3(L,P)を用いて更に行う演算処理について説明する図である。 FIG. 57 is a diagram for explaining calculation processing further performed by the feature calculation unit 11 using the logical expression R effect3 (L, P) generated in FIG.
 特徴計算部11は、生成した式(5-9)のパラメータPをP´-Pで置換した論理式Reffect3(L,P´-P)を生成する。そして、置換により生成した論理式Reffect3(L,P´-P)と第一の論理式ψsys3(L,P)の消費電力PをP´で置換し、置換により得られる式ψsys3(L,P´)とを論理積で結合して、以下の論理式ψeffect(L,P,P´)を作成する。式(5-9)を置換した式Reffect3(L,P´-P)と第一の論理式ψsys3(L,P)の消費電力PをP´で置換した式ψsys3(L,P´)との論理積により、第一の論理式ψsys3(L,P)の消費電力PをP´で置換した式ψsys3(L,P´)を満たす領域のうち、P´の下限からPを減算しても依然第一の論理式に含まれる領域が特定される。 The feature calculation unit 11 generates a logical expression R effect3 (L, P′−P) in which the parameter P of the generated equation (5-9) is replaced with P′−P. Then, the power consumption P of the logical expression R effect3 (L, P′-P) generated by the substitution and the first logical expression sys sys3 (L, P) is replaced with P ′, and the expression sys sys3 obtained by the substitution By combining L and P ′) with a logical product, the following logical formula effect effect (L, P, P ′) is created. Wherein R effect3 (L, P'-P ) obtained by substituting equation (5-9) and the first logical expression [psi sys3 (L, P) formula was replaced with P'power consumption P of [psi sys3 (L, P the logical product of the '), the first logical expression [psi sys3 (L, P) wherein [psi sys3 (L a power consumption P was replaced by P'of, P') of the region that satisfies, from the lower limit of P' Even if P is subtracted, the area still included in the first logical expression is specified.
Figure JPOXMLDOC01-appb-M000044
Figure JPOXMLDOC01-appb-M000044
 図58は、特徴計算部11が図57の論理式ψeffect(L,P,P´)に対して更に行う演算処理について説明する図である。 FIG. 58 is a diagram for explaining the calculation processing that the feature calculation unit 11 further performs on the logical expression effect effect (L, P, P ′) in FIG.
 特徴計算部11は、図57の論理式ψeffect(L,P,P´)のパラメータP´に対して存在記号「∃」を付与し、以下の一階述語論理式ψeffect(L,P,P´)を生成する。 The feature calculation unit 11 adds the existence symbol “∃” to the parameter P ′ of the logical expression effect effect (L, P, P ′) in FIG. 57, and the following first-order predicate logical expression effect effect (L, P , P ′) are generated.
Figure JPOXMLDOC01-appb-M000045
Figure JPOXMLDOC01-appb-M000045
 図59は、限定記号消去部12が実施する演算処理について説明する図である。 FIG. 59 is a diagram for explaining the arithmetic processing performed by the limiting symbol eraser 12.
 限定記号消去部12は、特徴計算部11から図58の論理式ψeffect(L,P,P´)が入力されると、図59に示すように、論理式φeffect(L,P,P´)に対し限定記号消去を実施し、論理式Reffect(L,P)を得る。得られる論理式Reffect(L,P)からは、図58の演算処理において特徴計算部11が存在記号「∃」を付与したパラメータP´が消去されている。 When the restriction symbol elimination unit 12 receives the logical expression effect effect (L, P, P ′) of FIG. 58 from the feature calculation unit 11, as shown in FIG. 59, the restriction symbol elimination unit 12 outputs the logical expression φ effect (L, P, P The restriction symbol elimination is performed for '' to obtain a logical expression R effect (L, P). From the obtained logical expression R effect (L, P), the parameter P ′ to which the feature calculation unit 11 has added the presence symbol “∃” in the calculation process of FIG. 58 is deleted.
Figure JPOXMLDOC01-appb-M000046
・・・(5-10)
Figure JPOXMLDOC01-appb-M000046
... (5-10)
 限定記号消去により得られる論理式Reffect(L,P)(5-10)は、第一の論理式ψsys3(L,P)のLに対応するPの削減可能な量、すなわち、Pの下限から上限までどれだけあるかを表している。 The logical expression R effect (L, P) (5-10) obtained by the elimination of limited symbols is a reducible amount of P corresponding to L of the first logical expression sys sys 3 (L, P), ie, P It represents how much from the lower limit to the upper limit.
 特徴計算部11は、図59の限定記号消去により得られた論理式Reffect(L,P)を限定記号消去部12から受け取り、これを第二の論理式として画像化部13に出力する。画像化部13は、特徴計算部11から入力された第二の論理式Reffect(L,P)に基づき、熱負荷の需要量Lと削減可能な消費電力Pとの関係を表したグラフを生成する。 The feature calculation unit 11 receives the logical expression R effect (L, P) obtained by the restriction symbol deletion of FIG. 59 from the restriction symbol deletion unit 12 and outputs this as a second logical expression to the imaging unit 13. Based on the second logical expression R effect (L, P) input from the feature calculation unit 11, the imaging unit 13 is a graph representing the relationship between the heat load demand L and the power consumption P that can be reduced. Generate
 図60は、第二の論理式Reffect(L,P)により、グラフ上に表示した削減可能な消費電力を例示する図である。図60のグラフG5では、横軸に熱負荷の需要量L[kW]を、縦軸に削減可能な消費電力量、すなわち省エネ余地P[kW]をとる。 FIG. 60 is a diagram exemplifying reducible power consumption displayed on the graph by the second logical expression R effect (L, P). In the graph G5 of FIG. 60, the horizontal axis represents the amount of thermal load demand L [kW], and the vertical axis represents the power consumption that can be reduced, that is, the room for saving energy P [kW].
 図60の領域A_Reffect(L,P)により、ユーザは、図45の空調対象空間の電力の需要量Lをどのように設定すると省エネ余地が大きくなるか、また、ある需要量Lに対してはどの程度省エネ余地Pがあるか等を把握し易くなる。これにより、有効な解析に資する。
<第6の実施形態>
 上記の第1~第5の実施形態においては、エネルギーマネジメント支援装置1に入力される第一の論理式ψ**をそのまま可視化した場合には確認が容易でない領域や、直感的に把握しにくい情報の可視化を行っている。これに対し、本実施形態においては、第一の論理式ψ**を可視化する際に、グラフの縦軸及び横軸の範囲を、それぞれの最大値及び最小値を求めてこれに基づき適切に設定することにより、適切なサイズのグラフを描画する。
The region A_R effect (L, P) in FIG. 60 allows the user to increase the room for energy saving by setting how much demand L of the power of the space to be air-conditioned in FIG. Makes it easy to grasp how much energy saving room P is available. This contributes to effective analysis.
Sixth Embodiment
In the first to fifth embodiments described above, when the first logical formula ψ ** input to the energy management support device 1 is visualized as it is, it is difficult to intuitively recognize an area where confirmation is not easy or intuitively. Information visualization is done. On the other hand, in the present embodiment, when visualizing the first logical formula ψ ** , the range of the vertical axis and the horizontal axis of the graph is appropriately determined based on the respective maximum value and minimum value. Draw a graph of the appropriate size by setting it.
 以下に、本実施形態に係るエネルギーマネジメント支援装置1により第一の論理式の消費電力P及び熱負荷の需要量Lの最大値及び最小値を判断し、これに基づき第一の論理式の可視化を行う方法について説明する。 Hereinafter, the maximum value and the minimum value of the power consumption P of the first logical expression and the demand amount L of the thermal load are determined by the energy management support device 1 according to the present embodiment, and the first logical expression is visualized based thereon Explain how to do
 なお、本実施形態においては、エネルギーマネジメント支援装置1が解析対象とする需給系統モデルは、図3に示すとおりである。需給系統モデルの消費電力特性式や外気温度の変化範囲等についても、図4や図5を参照して説明したとおりである。そして、エネルギーマネジメント支援装置1に入力される第一の論理式ψsys(L,P)についても図6及び図7に示すとおりであり、先に説明したとおりである。 In addition, in this embodiment, the supply-and-demand system model which the energy management support apparatus 1 makes analysis object is as showing in FIG. The power consumption characteristic formula of the supply and demand grid model, the change range of the outside air temperature, and the like are also as described with reference to FIGS. 4 and 5. Then, the first logical expression sys sys (L, P) input to the energy management support apparatus 1 is also as shown in FIGS. 6 and 7, and is as described above.
 まず、グラフにおいては横軸に表される熱負荷の需要量Lの最大値及び最小値を求める方法を、図61~図65を参照して説明する。 First, a method of determining the maximum value and the minimum value of the heat load demand amount L represented on the horizontal axis in the graph will be described with reference to FIGS. 61 to 65.
 図61は、本実施形態において特徴計算部11が熱負荷の需要量Lの最大値及び最小値を求めるために行う演算処理について説明する図である。 FIG. 61 is a diagram for explaining calculation processing performed by the feature calculation unit 11 to obtain the maximum value and the minimum value of the heat load demand amount L in the present embodiment.
 特徴計算部11は、まず、図61に示すように、第一の論理式ψsys(L,P)の入力を受け付けると、パラメータPに対して存在記号「∃」を付与し、以下の一階述語論理式φL-range(L,P)を生成する。 First, as shown in FIG. 61, when the input of the first logical expression sys sys (L, P) is received, the feature calculation unit 11 adds the existing symbol “∃” to the parameter P, and A rank predicate logical expression φ L-range (L, P) is generated.
Figure JPOXMLDOC01-appb-M000047
Figure JPOXMLDOC01-appb-M000047
 図62は、限定記号消去部12が実施する演算処理について説明する図である。 FIG. 62 is a diagram for explaining the arithmetic processing performed by the limiting symbol eraser 12.
 限定記号消去部12は、特徴計算部11から図61の論理式φL-range(L,P)が入力されると、入力された論理式に対し限定記号消去を実施する。得られる論理式RL-range(L)(6-1)からは、図61の演算処理において特徴計算部11が存在記号「∃」を付与したパラメータPが消去されている。 When the logical expression φ L-range (L, P) of FIG. 61 is input from the feature calculation unit 11, the restriction symbol erasing unit 12 performs the restriction symbol erasing on the input logical expression. From the obtained logical expression R L-range (L) (6-1), the parameter P to which the feature calculating unit 11 has added the presence symbol “∃” in the calculation process of FIG. 61 is deleted.
Figure JPOXMLDOC01-appb-M000048
・・・(6-1)
Figure JPOXMLDOC01-appb-M000048
... (6-1)
 限定記号消去を実施した結果得られる式は、式(6-1)のようにパラメータLについての1次式であるとは限らず、2次以上の式である場合もある。そこで、特徴計算部11は、限定記号消去部12から論理式RL-range(L)を受け取ると、更に、以下の演算処理を実施する。 The equation obtained as a result of performing the elimination of limited symbols is not limited to a linear equation for the parameter L as in the equation (6-1), but may be a quadratic or higher equation. Therefore, when the feature calculation unit 11 receives the logical expression R L-range (L) from the limiting symbol elimination unit 12, the feature calculation unit 11 further performs the following arithmetic processing.
 図63は、特徴計算部11が論理式RL-range(L)を用いて熱負荷の需要量Lの最小値を求めるために更に行う演算処理について説明する図である。 FIG. 63 is a diagram for explaining calculation processing further performed by the feature calculation unit 11 in order to obtain the minimum value of the heat load demand amount L using the logical expression R L-range (L).
 特徴計算部11は、図62の論理式RL-range(L)に対し、熱負荷の需要量Lの最小値Lminが満たす条件より、図63の上段の論理式ψL-min(L,Lmin)を生成する。これについて、図64を参照して更に説明する。 Feature calculation unit 11 with respect to formulas R L-range (L) of FIG. 62, from the condition satisfying the minimum value L min of demand L of the thermal load, the logical expression of the upper part of FIG. 63 ψ L-min (L , L min ). This will be further described with reference to FIG.
 図64は、論理式ψL-min(L,Lmin)について説明する図である。図64(a)は、図63の論理式「L<Lrange⇒¬RL-range(L)」(6-2)を説明する図であり、図64(b)は、図64の論理式「RL-range(Lmin)」(6-3)を説明する図である。 FIG. 64 is a diagram for explaining the logical expression ψ L-min (L, L min ). FIG. 64 (a) is a diagram for explaining the logical expression "L <L range ¬R L-range (L)" (6-2) of FIG. 63, and FIG. 64 (b) is a logic of FIG. It is a figure explaining Formula "R L-range (L min )" (6-3).
 まず、図64(a)に示すように、論理式(6-2)は、Lが最小値Lminよりも小さい(L<Lmin)場合、対応するLは式(6-1)が満たす領域の範囲外である(¬RL-range(L))ことを表す。 First, as shown in FIG. 64 (a), in the logical expression (6-2), when L is smaller than the minimum value L min (L <L min ), the corresponding L is satisfied by the expression (6-1) It represents that it is out of the range of the range (¬R L-range (L)).
 そして、図64(b)に示すように、論理式(6-3)は、Lminが式(6-1)を満たすLの範囲外とならないことを表す
 すなわち、図63の上段の式
Then, as shown in FIG. 64 (b), the logical expression (6-3) indicates that L min does not fall outside the range of L satisfying the expression (6-1), that is, the expression in the upper part of FIG.
Figure JPOXMLDOC01-appb-M000049
Figure JPOXMLDOC01-appb-M000049
は、熱負荷の需要量L及びその最小値Lminが2つの論理式(6-2)及び(6-3)で記述される条件を満たすことを表している。 Indicates that the heat load demand amount L and its minimum value L min satisfy the conditions described in the two logical expressions (6-2) and (6-3).
 図63の中段に示すように、特徴計算部11は、生成した論理式ψL-min(L,Lmin)に対し、パラメータLに全称記号「∀」を付与して以下の一階述語論理式φL-min(L,Lmin)を生成する。 As shown in the middle part of FIG. 63, the feature calculation unit 11 assigns a universal symbol “∀” to the parameter L with respect to the generated logical expression- L−min (L, L min ), and performs the following first-order predicate logic The equation φ L-min (L, L min ) is generated.
Figure JPOXMLDOC01-appb-M000050
・・・(6-4)
Figure JPOXMLDOC01-appb-M000050
... (6-4)
 限定記号消去部12は、特徴計算部11から上記の論理式φL-min(L,Lmin)(6-4)が入力されると、図63の下段に示すように、入力された論理式φL-min(L,Lmin)(6-4)に対して限定記号消去を実施する。限定記号消去により、以下の式(6-5)に示すように、熱負荷の需要量Lに関し、最小値Lmin「0」が得られる。 When the restriction symbol elimination unit 12 receives the above-mentioned logical expression φ L-min (L, L min ) (6-4) from the feature calculation unit 11, as shown in the lower part of FIG. We perform the restriction elimination on the equation φ L-min (L, L min ) (6-4). By the limited symbol elimination, as shown in the following equation (6-5), the minimum value L min “0” can be obtained for the heat load demand amount L.
Figure JPOXMLDOC01-appb-M000051
・・・(6-5)
Figure JPOXMLDOC01-appb-M000051
... (6-5)
 図65は、特徴計算部11が図62の論理式RL-range(L)を用いて熱負荷の需要量Lの最大値を求めるために行う演算処理について説明する図である。 FIG. 65 is a diagram for explaining calculation processing performed by the feature calculation unit 11 to obtain the maximum value of the heat load demand amount L using the logical expression R L-range (L) of FIG.
 特徴計算部11は、図65の上段の論理式についても、先に図63及び図64を参照して説明した論理式ψL-min(L,Lmin)についてと同様の考え方に基づいて生成する。 The feature calculation unit 11 generates the logical expression in the upper part of FIG. 65 based on the same idea as the logical expression ψ L-min (L, L min ) described above with reference to FIGS. 63 and 64. Do.
 すなわち、まず、需要量Lの最大値Lmaxとすると、Lの値がLmaxよりも大きい(Lmax<L)場合は、対応するLは、論理式RL-range(L)が満たす領域に属しない(¬RL-range(L))。論理式で表すと、図65上段の論理式(6-6)がこれに該当する。 That is, first, when the maximum value L max of the demand L, the value of L is greater than L max (L max <L) when the corresponding L is a logical expression R L-range (L) satisfies region Does not belong to (¬R L-range (L)). When expressed as a logical expression, the logical expression (6-6) at the top of FIG. 65 corresponds to this.
 また、最大値Lmaxに対応する値はLが満たす領域に属する(RL-range(Lmax))。論理式で表すと、図65上段の論理式(6-7)がこれに該当する。 Also, the value corresponding to the maximum value L max belongs to the region where L satisfies (R L-range (L max )). In the logical expression, the logical expression (6-7) at the top of FIG. 65 corresponds to this.
 図65の上段の論理式ψL-max(L,Lmax)は、熱負荷の需要量L及びその最大値Lmaxが2つの論理式(6-6)及び(6-7)で記述される条件を満たすことを表している。 The logical expression ψ L-max (L, L max ) in the upper part of FIG. 65 is described by two logical expressions (6-6) and (6-7) of the heat load demand L and its maximum value L max. To meet the conditions.
Figure JPOXMLDOC01-appb-M000052
Figure JPOXMLDOC01-appb-M000052
 図65の中段に示すように、特徴計算部11は、上記の論理式ψL-max(L,Lmax)に対し、パラメータLに全称記号「∀」を付与して以下の一階述語論理式φL-max(L,Lmax)を生成する。 As shown in the middle part of FIG. 65, the feature calculation unit 11 adds a universal symbol “∀” to the parameter L with respect to the above logical expression ψ L−max (L, L max ), and the following first-order predicate logic Generate the equation φ L -max (L, L max ).
Figure JPOXMLDOC01-appb-M000053
・・・(6-8)
Figure JPOXMLDOC01-appb-M000053
... (6-8)
 限定記号消去部12は、特徴計算部11から上記のφL-max(L,Lmax)(6-8)が入力されると、図65の下段に示すように、入力された論理式に対して限定記号消去を実施する。限定記号消去により、以下の式(6-9)に示すように、熱負荷の需要量Lに関し、最大値Lmax「728」が得られる。 When the above-described φ L -max (L, L max ) (6-8) is input from the feature calculation unit 11 to the limiting symbol elimination unit 12, as shown in the lower part of FIG. In addition, implement the limited symbol elimination. With the elimination of the limiting symbol, the maximum value L max "728" can be obtained for the heat load demand amount L, as shown in the following equation (6-9).
Figure JPOXMLDOC01-appb-M000054
・・・(6-9)
Figure JPOXMLDOC01-appb-M000054
... (6-9)
 消費電力Pの最大値及び最小値を求める場合についても、上記の需要量Lの最大値及び最小値を求める場合と同様の考え方に基づき、以下の演算を行う。次に、グラフにおいては縦軸に表される消費電力Pの最大値及び最小値を求める方法について、図66~図69を参照して説明する。 Also in the case of obtaining the maximum value and the minimum value of the power consumption P, the following calculation is performed based on the same concept as the case of obtaining the maximum value and the minimum value of the demand amount L described above. Next, a method of determining the maximum value and the minimum value of the power consumption P represented on the vertical axis in the graph will be described with reference to FIGS. 66 to 69.
 図66は、本実施形態において特徴計算部11が消費電力Pの最大値及び最小値を求めるために行う演算処理について説明する図である。 FIG. 66 is a diagram for explaining calculation processing performed by the feature calculation unit 11 to obtain the maximum value and the minimum value of the power consumption P in the present embodiment.
 まず、特徴計算部11は、図66に示すように、第一の論理式ψsys(L,P)の入力を受け付けると、パラメータLに対して存在記号「∃」を付与し、以下の一階述語論理式φP-range(L,P)を生成する。 First, as shown in FIG. 66, when the input of the first logical expression sys sys (L, P) is received, the feature calculation unit 11 adds the existing symbol “∃” to the parameter L, and A rank predicate logical expression φ P-range (L, P) is generated.
Figure JPOXMLDOC01-appb-M000055
Figure JPOXMLDOC01-appb-M000055
 図67は、限定記号消去部12が実施する演算処理について説明する図である。 FIG. 67 is a diagram for explaining the arithmetic processing performed by the limiting symbol eraser 12.
 限定記号消去部12は、特徴計算部11から入力された図66の論理式φP-range(L,P)に対し、限定記号消去を実施する。得られる論理式RP-range(P)(6-10)からは、図66の演算処理において特徴計算部11が存在記号「∃」を付与したパラメータLが消去されている。 The limited symbol elimination unit 12 performs limited symbol elimination on the logical expression φ P-range (L, P) of FIG. 66 input from the feature calculation unit 11. From the obtained logical expression R P-range (P) (6-10), the parameter L to which the feature calculation unit 11 has added the presence symbol “∃” in the calculation process of FIG. 66 is deleted.
Figure JPOXMLDOC01-appb-M000056
・・・(6-10)
Figure JPOXMLDOC01-appb-M000056
... (6-10)
 上記の論理式(6-1)についてと同様に、限定記号消去を行った結果得られる式は、式(6-10)のようにパラメータPについての1次式であるとは限らず、2次以上の式である場合もある。そこで、特徴計算部11は、限定記号消去部12から論理式RP-range(P)を受け取ると、更に、以下の演算処理を実施する。 Similar to the above logical expression (6-1), the expression obtained as a result of performing the elimination of the restricted symbol is not limited to the linear expression for the parameter P as in the expression (6-10), and 2 It may be the following equation or more. Therefore, when the feature calculation unit 11 receives the logical expression R P-range (P) from the limiting symbol elimination unit 12, the feature calculation unit 11 further performs the following arithmetic processing.
 図68は、特徴計算部11が論理式RP-range(P)を用いて消費電力Pの最小値を求めるために行う演算処理について説明する図である。 FIG. 68 is a diagram for explaining calculation processing performed by the feature calculation unit 11 to obtain the minimum value of the power consumption P using the logical expression R P-range (P).
 特徴計算部11は、図67の論理式RP-range(P)に対し、消費電力P及びその最小値Pminが満たす条件より、図68の上段の論理式ψP-min(P,Pmin)を生成する。 Feature calculation unit 11 with respect to formulas R P-range (P) in FIG. 67, the power consumption P and from its minimum value P min is satisfied condition, logical expression of the upper part of FIG. 68 [psi P-min (P, P min ) is generated.
Figure JPOXMLDOC01-appb-M000057
・・・(6-11)
Figure JPOXMLDOC01-appb-M000057
... (6-11)
 上記の式(6-11)は、上記のψL-min(L,Lmin)と同様の考え方に基づき生成される。すなわち、消費電力Pの最小値Pminとすると、Pの値がPminよりも小さい(P<Pmin)場合は、対応する値Pは、論理式RP-range(P)が満たす領域に属しない(¬RP-range(P))。また、同時に、最小値Pminに対応する値は、Pが満たす領域に属する(RP-range(Pmin))。論理式(6-11)は、これら2つの条件に基づき生成される。 The above equation (6-11) is generated based on the same idea as the above ψ L-min (L, L min ). That is, assuming that the minimum value P min of the power consumption P, if the value of P is smaller than P min (P <P min ), the corresponding value P is in the region where the logical expression R P-range (P) satisfies It does not belong (¬R P-range (P)). At the same time, the value corresponding to the minimum value P min belongs to the region that P satisfies ( RP-range (P min )). Formula (6-11) is generated based on these two conditions.
 図68の中段に示すように、特徴計算部11は、特徴計算部11は、生成した論理式ψP-min(P,Pmin)(6-11)に対し、パラメータPに全称記号「∀」を付与して、以下の一階述語論理式φP-min(P,Pmin)を生成する。 As shown in the middle part of FIG. 68, the feature calculation unit 11 uses the universal symbol “∀” for the parameter P with respect to the generated logical expression ψ P-min (P, P min ) (6-11). To generate the following first-order predicate logical expression φ P−min (P, P min ).
Figure JPOXMLDOC01-appb-M000058
・・・(6-12)
Figure JPOXMLDOC01-appb-M000058
... (6-12)
 限定記号消去部12は、特徴計算部11から上記の論理式φP-min(P,Pmin)(6-12)が入力されると、図68の下段に示すように、入力された論理式φP-min(P,Pmin)(6-12)に対して限定記号消去を実施する。限定記号消去により、以下の式(6-13)に示すように、消費電力Pに関し、最小値Pmin「0」が得られる。 When the restriction symbol elimination unit 12 receives the above logical expression φ P-min (P, P min ) (6-12) from the feature calculation unit 11, as shown in the lower part of FIG. We perform the restriction elimination on the equation φ P-min (P, P min ) (6-12). By the limited symbol elimination, as shown in the following equation (6-13), the minimum value P min "0" can be obtained with respect to the power consumption P.
Figure JPOXMLDOC01-appb-M000059
・・・(6-13)
Figure JPOXMLDOC01-appb-M000059
... (6-13)
 図69は、特徴計算部11が図67の論理式RP-range(L)を用いて消費電力Pの最大値を求めるために行う演算処理について説明する図である。 FIG. 69 is a diagram for describing calculation processing performed by the feature calculation unit 11 to obtain the maximum value of the power consumption P using the logical expression R P-range (L) in FIG.
 特徴計算部11は、図67の論理式RP-range(P)に対し、消費電力P及びその最大値Pmaxが満たす条件より、図69の上段の論理式ψP-max(P,Pmax)を生成する。 The characteristic calculation unit 11 compares the logical expression R P-range (P) in FIG. 67 with the logical expression ψ P -max (P, P in the upper part of FIG. 69) under the condition that the power consumption P and its maximum value P max satisfy. Generate max ).
Figure JPOXMLDOC01-appb-M000060
・・・(6-14)
Figure JPOXMLDOC01-appb-M000060
... (6-14)
 消費電力Pの最大値Pmaxとすると、Pの値がPmaxよりも大きい(P>Pmax)場合は、対応する値Pは、論理式RP-range(P)が満たす領域に属しない(¬RP-range(P))。また、最大値Pmaxに対応する値RP-range(Pmax)は、論理式が満たす領域に属する(RP-range(Pmax))。論理式(6-14)は、これら2つの条件に基づき生成される。 Assuming that the maximum value P max of the power consumption P, if the value of P is larger than P max (P> P max ), the corresponding value P does not belong to the region that the logical expression R P-range (P) satisfies (¬R P-range (P)). Also, the value R P-range (P max ) corresponding to the maximum value P max belongs to the region that the logical expression satisfies (R P-range (P max )). The logical expression (6-14) is generated based on these two conditions.
 図69の中段に示すように、特徴計算部11は、生成した論理式ψP-max(P,Pmax)(6-14)に対し、パラメータPに全称記号「∀」を付与して、以下の一階述語論理式φP-max(P,Pmax)を生成する。 As shown in the middle part of FIG. 69, the feature calculation unit 11 assigns a universal symbol “∀” to the parameter P with respect to the generated logical expression ψ P -max (P, P max ) (6-14), The following first-order predicate logical expression φ P -max (P, P max ) is generated.
Figure JPOXMLDOC01-appb-M000061
・・・(6-15)
Figure JPOXMLDOC01-appb-M000061
... (6-15)
 限定記号消去部12は、特徴計算部11から上記のφP-max(P,Pmax)(6-15)が入力されると、図69の下段に示すように、入力された論理式φP-max(P,Pmax)(6-15)に対して限定記号消去を実施する。限定記号消去により、以下の式(6-16)に示すように、消費電力Pに関し、最大値Pmax「2909097/10000」が得られる。 When the restriction symbol elimination unit 12 receives the above-mentioned φ P -max (P, P max ) (6-15) from the feature calculation unit 11, as shown in the lower part of FIG. Perform the limited symbol elimination for P-max (P, P max ) (6-15). With the elimination of the limitation symbol, the maximum value P max "2909097/10000" can be obtained with respect to the power consumption P, as shown in the following equation (6-16).
Figure JPOXMLDOC01-appb-M000062
・・・(6-16)
Figure JPOXMLDOC01-appb-M000062
... (6-16)
 上記の演算処理を実施することにより、式(6-5)、(6-9)、(6-13)、(6-16)、すなわち、熱負荷の需要量L及び消費電力Pのそれぞれについての最小値及び最大値が求まる。特徴計算部11は、得られたこれらの値を画像化部13に第一の論理式ψsys(L,P)とともに渡す。画像化部13は、熱負荷の需要量L及び消費電力Pそれぞれについての最大値及び最小値に基づき、グラフの描画範囲を決定し、熱負荷の需要量Lと消費電力Pとの関係を表すグラフを含む画像50(図1等参照)を生成する。 By carrying out the above arithmetic processing, the equations (6-5), (6-9), (6-13), and (6-16), ie, the heat load demand amount L and the power consumption P, respectively, are obtained. The minimum and maximum values of are determined. The feature calculation unit 11 passes the obtained values to the imaging unit 13 together with the first logical expression sys sys (L, P). The imaging unit 13 determines the drawing range of the graph based on the maximum value and the minimum value of each of the heat load demand L and the power consumption P, and represents the relationship between the heat load demand L and the power consumption P. An image 50 (see FIG. 1 and the like) including a graph is generated.
 図70は、図61~図69の演算結果を利用して第一の論理式ψsys(L,P)を可視化し、生成したグラフG6を例示する図である。 FIG. 70 is a diagram illustrating a graph G6 generated by visualizing the first logical expression sys sys (L, P) using the calculation results of FIG. 61 to FIG.
 画像化部13は、熱負荷の需要量の最小値Lmin=0、最大値Lmax=728、消費電力の最小値Pmin=0、最大値Pmax=290.9097に基づき、図70のグラフG6の横軸及び縦軸の描画範囲を決定している。 Based on the minimum value L min = 0, the maximum value L max = 728, the minimum value P min = 0 of the power consumption, and the maximum value P max = 290.9097 of the amount of heat load demand shown in FIG. The drawing range of the horizontal axis and the vertical axis of the graph G6 is determined.
 仮に、各軸方向の最大値及び最小値を求めずにグラフの描画を行うとすると、例えば、前回にグラフを生成したときの描画範囲をそのまま利用する、あるいは、予め設定しておいた範囲を用いることとなる。これらの方法によっては、論理式ψsys(L,P)を満たす領域A_ψsys(L,P)の描画が、ユーザが確認するのに適切なサイズでなされるとは限らない。例えば、論理式を満たす領域がグラフに納まらないことや、グラフの範囲に対して、描画される領域A_ψsys(L,P)のサイズが小さすぎることが起こり得る。本実施形態によれば、適切なサイズで論理式ψsys(L,P)を満たす領域A_ψsys(L,P)が描画される。このため、ユーザにとっては、可視化結果を更に利用し易くなり、効率的な解析に資する。
<第7の実施形態>
 上記の実施形態においては、エネルギーマネジメント支援装置1に入力されたある第一の論理式、すなわちある需給系統モデルに対して可視化を行う場合におけるユーザの利便性の向上を図っている。これに対し、本実施形態においては、2以上の需給系統モデルに対して可視化を行う場合におけるユーザの利便性の向上を図っている。
Assuming that a graph is drawn without obtaining the maximum value and the minimum value in each axis direction, for example, the drawing range at the time of generating the graph at the previous time is used as it is, or a previously set range is set. It will be used. Some of these methods, formulas ψ sys (L, P) meets the region A_ψ sys (L, P) is drawn, not necessarily be made in the appropriate size for the user to confirm. For example, and not fit to the area graph that satisfies a formula, for a range of the graph, the rendered regions A_ψ sys (L, P) can occur that the size is too small. According to the present embodiment, the area A_ψsys (L, P) satisfying the logical expression sys sys (L, P) is drawn at an appropriate size. Therefore, the user can more easily use the visualization result, which contributes to efficient analysis.
Seventh Embodiment
In the above embodiment, the convenience of the user is improved in the case where visualization is performed on a first logical expression input to the energy management support apparatus 1, that is, a supply and demand grid model. On the other hand, in the present embodiment, the user's convenience is improved when visualization is performed on two or more demand-supply system models.
 以下に、本実施形態に係るエネルギーマネジメント支援装置1による可視化の方法について説明する。なお、本実施形態においては、エネルギーマネジメント支援装置1が解析を行う需給系統モデルについては、図3に示すとおりである。但し、需給系統モデルを構成する各冷凍機1~4の特性式等については、上記の実施形態と異なり、図71に示すとおりであるので、これについて説明する。 Hereinafter, a method of visualization by the energy management support apparatus 1 according to the present embodiment will be described. In addition, in this embodiment, it is as showing in FIG. 3 about the supply-and-demand system model which the energy management support apparatus 1 analyzes. However, the characteristic formulas and the like of the respective refrigerators 1 to 4 constituting the supply and demand grid model are different from the above embodiment and are as shown in FIG. 71, which will be described.
 図71は、図3に示す需給系統モデルを構成する冷凍機1~4についての本実施形態における消費電力特性を例示する図である。 FIG. 71 is a diagram illustrating power consumption characteristics in the present embodiment for the refrigerators 1 to 4 constituting the supply and demand grid model shown in FIG.
 稼動時における冷凍機1~4の消費電力特性は、図71の数式群(7-1)に示すとおりである。 The power consumption characteristics of the refrigerators 1 to 4 during operation are as shown in the mathematical expression group (7-1) in FIG.
Figure JPOXMLDOC01-appb-M000063
・・・(7-1)
Figure JPOXMLDOC01-appb-M000063
... (7-1)
 冷凍機1~4の熱負荷の上下限を表す式は、図71の数式群(7-2)に示すとおりである。 The expressions representing the upper and lower limits of the heat load of the refrigerators 1 to 4 are as shown in the mathematical expression group (7-2) in FIG.
Figure JPOXMLDOC01-appb-M000064
・・・(7-2)
Figure JPOXMLDOC01-appb-M000064
... (7-2)
 そして、停止時における冷凍機1~4の消費電力特性は、図71の数式群(7-3)に示すとおりである。 The power consumption characteristics of the refrigerators 1 to 4 at the time of stop are as shown in the formula group (7-3) in FIG.
Figure JPOXMLDOC01-appb-M000065
・・・(7-3)
Figure JPOXMLDOC01-appb-M000065
... (7-3)
上記数式群(7-1)~(7-3)のとおり、冷凍機1と4とでは、同じ特性を示している。なお、外気温度Tの変化範囲については、上記の実施形態と同様であり、25≦T≦35であるので、図71においては記載を省略している。 As in the above mathematical expression groups (7-1) to (7-3), the refrigerator 1 and the refrigerator 4 show the same characteristics. The change range of the outside air temperature T is the same as that of the above embodiment, and 25 ≦ T ≦ 35, and therefore, the description is omitted in FIG.
 図72は、本実施形態における外気温度Tと冷凍機1~4の消費電力特性との関係を説明する図である。図72(a)は、外気温度Tがその下限である25[℃]であるときの各冷凍機1~4の消費電力特性を、図72(b)は、外気温度Tがその上限である35[℃]であるときのそれを示す。 FIG. 72 is a diagram for explaining the relationship between the outside air temperature T and the power consumption characteristics of the refrigerators 1 to 4 in the present embodiment. FIG. 72 (a) shows the power consumption characteristics of each of the refrigerators 1 to 4 when the outside air temperature T is 25 [° C.] which is the lower limit, and FIG. 72 (b) shows the outside air temperature T being the upper limit Indicates that it is 35 [° C].
 上記のとおり、冷凍機1と4とでは同じ特性を示すため、外気温度Tとの関係を示すグラフにおいても、その曲線(図72(a)においてはch_25_1及びch_25_4、図72(b)においてはch_35_1及びch_35_4)は一致している。 As described above, since the refrigerator 1 and the refrigerator 4 exhibit the same characteristics, even in the graph showing the relationship with the outside air temperature T, the curve (ch_25_1 and ch_25_4 in FIG. 72 (a) and FIG. 72 (b)) ch_35_1 and ch_35_4 match.
 図73は、上記の設例における熱負荷の需要量Lと消費電力Pとの関係を示した第一の論理式を例示する図である。 FIG. 73 is a diagram exemplifying a first logical expression showing the relationship between the demand L of the heat load and the power consumption P in the above-mentioned example.
Figure JPOXMLDOC01-appb-M000066
Figure JPOXMLDOC01-appb-M000066
 図74は、上記の論理式ψsys4(L,P)を可視化したグラフを示す図である。図74のグラフ上には、エネルギーマネジメント支援装置1に入力された論理式ψsys4(L,P)が満たす領域A_ψsys4(L,P)が表示されている。 FIG. 74 is a diagram visualizing the above-mentioned logical expression 論理 sys4 (L, P). On the graph of FIG. 74, a region A_ψsys4 (L, P) that the logical expression sys sys4 (L, P) input to the energy management support device 1 satisfies is displayed.
 ユーザは、可視化されたグラフを参照して解析を行う際に、ある需給系統モデルについて解析を行うだけでなく、2以上の需給系統モデル間で比較を行って、いずれのモデルが好ましいか等について検討することもある。上記の例では、設例のような4台の冷凍機1~4のうち、2台の冷凍機1、4の特性が同じである場合と、図4及び図5に示すように、4台の冷凍機1~4の特性が互いに異なる場合とでは、それぞれが満たす領域も異なる。本実施形態においては、2つの異なる論理式について、それぞれが満たす領域をユーザが確認し易い形態で同時に可視化している。 When analyzing with reference to the visualized graph, the user not only analyzes a certain demand-supply system model but also compares two or more demand-supply system models, and which model is preferable etc. There is also something to consider. In the above example, of the four refrigerators 1 to 4 as in the example, the characteristics of the two refrigerators 1 and 4 are the same, and as shown in FIG. 4 and FIG. In the case where the characteristics of the refrigerators 1 to 4 are different from one another, the regions which the respective units meet are also different. In the present embodiment, with respect to two different logical expressions, the regions satisfied by each are simultaneously visualized in a form easy for the user to check.
 図75は、本実施形態における2つの論理式を可視化したグラフを例示する図である。 FIG. 75 is a diagram exemplifying a graph visualizing two logical expressions in the present embodiment.
 図75のグラフG7においては、図73の論理式ψsys4(L,P)に加えて、図6の論理式ψsys(L,P)を同時に可視化している。それぞれの領域A_ψsys4(L,P)、A_ψsys(L,P)を色分けして表示し、2つの論理式の間で重複する領域については、濃い色で表示している。 In the graph G7 of FIG. 75, in addition to the logical expression sys sys4 (L, P) of FIG. 73, the logical expression sys sys (L, P) of FIG. 6 is simultaneously visualized. The respective areas A_ψsys 4 (L, P) and A_ψ sys (L, P) are displayed in different colors, and areas overlapping between the two logical expressions are displayed in dark color.
 このように、本実施形態によれば、2以上の需給系統モデルの比較検討を可能としている。これにより、有効な解析に資する。 Thus, according to the present embodiment, comparison and examination of two or more supply and demand system models is made possible. This contributes to effective analysis.
 なお、上記の実施例では、2つの論理式を可視化する場合を例示しているが、これに限定されるものではない。例えば、3以上の論理式を可視化する構成としてもよい。 In the above embodiment, although the case of visualizing two logical expressions is illustrated, the present invention is not limited to this. For example, three or more logical expressions may be visualized.
 また、上記の実施例においては、エネルギーマネジメント支援装置1に入力された互いに異なる(第一の)論理式について、同時に可視化する場合を例示しているが、これに限定されるものではない。例えば上記の実施形態により求めた第二の論理式同士を比較したい場合等にも適用しても、同様の効果が得られる。 Further, in the above embodiment, although the case of simultaneously visualizing the (first) mutually different (first) logical expressions input to the energy management support device 1 is illustrated, the present invention is not limited to this. For example, the same effect can be obtained by applying to the case where it is desired to compare the second logical expressions obtained according to the above embodiment.
 上記においては、エネルギーマネジメント支援装置1が、空調対象空間の熱負荷の需要量Lと消費電力Pとの関係を表したグラフを画像化する場合について説明している。しかし、本発明は、これに限定されるものではなく、他の各種の需給系統モデルの解析等に利用できる。 In the above, the case where the energy management support apparatus 1 images the graph showing the relationship between the demand amount L of the heat load of the space to be air-conditioned and the power consumption P is described. However, the present invention is not limited to this, and can be used for analysis of various other demand-supply system models.
 本発明は上述した実施形態そのままに限定されるものではく、実施段階でのその要旨を逸脱しない範囲で構成要素を変形して具体化することができる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成することができる。例えば、実施形態に示される全構成要素を適宜組み合わせても良い。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。このような、発明の趣旨を逸脱しない範囲内において種々の変形や応用が可能であることは言うまでもない。 The present invention is not limited to the above-described embodiment as it is, and constituent elements can be modified and embodied without departing from the scope of the invention at the implementation stage. In addition, various inventions can be formed by appropriate combinations of a plurality of components disclosed in the above embodiments. For example, all components shown in the embodiments may be combined as appropriate. Furthermore, components in different embodiments may be combined as appropriate. Needless to say, various modifications and applications are possible without departing from the scope of the invention.

Claims (12)

  1.  資源の需要設備と供給設備とからなる需給系統の解析を支援するエネルギーマネジメント支援装置であって、
     前記資源の需要量と前記資源を供給する際に消費するエネルギーとの関係を表す入力論理式の入力を受け付け、前記入力論理式に基づいて、第一の一階述語論理式を生成するとともに、前記資源の需要量及び消費エネルギーの関係を表すグラフ上に表すべき所定の特徴の記述を含む出力論理式を生成する特徴計算部と、
     前記特徴計算部が出力した前記出力論理式に基づき、前記所定の特徴を表したグラフを含む画像を生成する画像化部と、
     前記特徴計算部から前記第一の一階述語論理式が入力されると、限定記号消去法により前記第一の一階述語論理式を処理して得られる第一の中間論理式を生成し、前記特徴計算部に出力する限定記号消去部と、を備え、
     前記特徴計算部は、前記第一の中間論理式に基づいて前記出力論理式を生成すること
     を特徴とするエネルギーマネジメント支援装置。
    An energy management support device for supporting analysis of a supply and demand system consisting of resource demand facilities and supply facilities,
    An input logical expression representing a relationship between the demand amount of the resource and energy consumed when supplying the resource is received, and a first first-order logical expression is generated based on the input logical expression, A feature calculation unit for generating an output logical expression including a description of a predetermined feature to be represented on a graph representing the relationship between the demand amount of resources and the energy consumption;
    An imaging unit that generates an image including a graph representing the predetermined feature based on the output logical expression output by the feature calculation unit;
    When the first first-order logical expression is input from the feature calculation unit, a first intermediate logical expression obtained by processing the first first-order logical expression according to a limited symbol elimination method is generated. And a limited symbol elimination unit that outputs the feature calculation unit.
    An energy management support apparatus, wherein the feature calculation unit generates the output logical expression based on the first intermediate logical expression.
  2.  前記特徴計算部は、さらに前記中間論理式に基づいて第二の一階述語論理式を生成し、前記限定記号消去部に出力し、
     前記限定記号消去部は、第二の一階述語論理式に基づいて、第二の中間論理式を生成し、
    前記特徴計算部に出力し、
     前記特徴計算部は、前記第一と第二の中間論理式に基づいて前記出力論理式を生成する
     ことを特徴とする請求項1記載のエネルギーマネジメント支援装置。
    The feature calculation unit further generates a second first-order predicate logical expression based on the intermediate logical expression, and outputs the second first-order predicate logical expression to the limiting symbol elimination unit.
    The limiting symbol elimination unit generates a second intermediate logical expression based on a second first-order logical expression.
    Output to the feature calculator;
    The energy management support device according to claim 1, wherein the feature calculation unit generates the output logical expression based on the first and second intermediate logical expressions.
  3.  前記特徴計算部は、前記第一の一階述語論理式を複数生成し、前記限定記号消去部に出力し、
     前記限定記号消去部は、前記第一の一階述語論理式毎に、前記第一の中間論理式を生成し、
    前記特徴計算部に出力し、
     前記特徴計算部は、複数の前記第一の中間論理式に基づいて前記出力論理式を生成する
     ことを特徴とする請求項1記載のエネルギーマネジメント支援装置。
    The feature calculation unit generates a plurality of the first first-order predicate logical expressions, and outputs the plurality of first first-order predicate logical expressions to the limited symbol elimination unit.
    The limiting symbol elimination unit generates the first intermediate logical expression for each of the first first-order logical expressions.
    Output to the feature calculator;
    The energy management support device according to claim 1, wherein the feature calculation unit generates the output logical expression based on a plurality of the first intermediate logical expressions.
  4.  前記特徴計算部は、前記入力された論理式における前記消費エネルギーの上限または下限の少なくとも一方から所定の範囲の領域を特定する論理式を、前記出力論理式として生成する
     ことを特徴とする請求項1および3のいずれか一項に記載のエネルギーマネジメント支援装置。
    The feature calculation unit generates, as the output logical expression, a logical expression that specifies a region in a predetermined range from at least one of the upper limit and the lower limit of the consumed energy in the input logical expression. The energy management support device according to any one of 1 and 3.
  5.  前記特徴計算部は、前記入力された論理式が満たす領域を前記消費エネルギーまたは前記需要量の方向に所定の範囲だけ拡大した論理式を、前記出力論理式として生成する
     ことを特徴とする請求項1および2のいずれか一項に記載のエネルギーマネジメント支援装置。
    The feature calculation unit generates, as the output logical expression, a logical expression in which an area satisfied by the input logical expression is expanded in the direction of the energy consumption or the demand amount by a predetermined range. The energy management support device according to any one of 1 and 2.
  6.  前記特徴計算部は、前記入力された論理式が満たす領域のうち、前記消費エネルギーを所定値以上削減可能な領域を表す論理式を、前記出力論理式として生成する
     ことを特徴とする請求項1記載のエネルギーマネジメント支援装置。
    The feature calculation unit generates, as the output logical expression, a logical expression representing an area in which the energy consumption can be reduced by a predetermined value or more among the regions satisfied by the input logical expression. Energy management support device as described.
  7.  前記画像化部は、前記入力された論理式及び前記出力論理式のそれぞれについて、前記消費エネルギー及び前記需要量の関係を表すグラフを描画し、前記出力論理式が満たす領域については前記入力された論理式が満たす領域と異なる色とする
     ことを特徴とする請求項4に記載のエネルギーマネジメント支援装置。
    The imaging unit draws a graph representing the relationship between the energy consumption and the demand for each of the input logical expression and the output logical expression, and the input is performed for the area that the output logical expression satisfies. The energy management support device according to claim 4, wherein the color is different from the region that the logical expression satisfies.
  8.  前記画像化部は、前記入力された論理式及び前記出力論理式のそれぞれについて、前記消費エネルギー及び前記需要量の関係を表すグラフを描画し、前記出力論理式が満たす領域については前記入力された論理式が満たす領域と異なる色とする
     ことを特徴とする請求項6に記載のエネルギーマネジメント支援装置。
    The imaging unit draws a graph representing the relationship between the energy consumption and the demand for each of the input logical expression and the output logical expression, and the input is performed for the area that the output logical expression satisfies. The energy management support device according to claim 6, characterized in that the color is different from the region that the logical expression satisfies.
  9.  前記特徴計算部は、前記入力された論理式より、削減可能な消費エネルギー量を表す論理式を、前記出力論理式として生成する
     ことを特徴とする請求項1~3のいずれか一項に記載のエネルギーマネジメント支援装置。
    The said feature calculation part produces | generates the logical expression showing the energy consumption which can be reduced as said output logical expression from the said input logical expression. It is described in any one of the Claims 1 to 3 characterized by the above-mentioned. Energy management support equipment.
  10.  前記特徴計算部は、前記入力された論理式より、前記消費エネルギー及び前記需要量の最大及び最小を表す式を、前記出力論理式として生成し、
     前記画像化部は、前記出力論理式が表す前記消費エネルギー及び前記需要量の最大及び最小に基づき、前記入力された論理式が表す前記消費エネルギーと前記需要量との関係を表したグラフの描画範囲を決定して、当該グラフを含む画像を生成する
     ことを特徴とする請求項1および3のいずれか一項に記載のエネルギーマネジメント支援装置。
    The feature calculation unit generates, as the output logical expression, an expression that represents the maximum and minimum of the energy consumption and the demand amount from the input logical expression.
    The imaging unit draws a graph representing the relationship between the energy consumption and the demand amount represented by the input logic equation based on the energy consumption represented by the output logic equation and the maximum and minimum of the demand amount. The energy management support device according to any one of claims 1 and 3, wherein the range is determined and an image including the graph is generated.
  11.  前記画像化部は、前記特徴計算部に入力された一の論理式及び該一の論理式とは異なる他の論理式基づき、前記消費エネルギーと前記需要量との関係を表したグラフをそれぞれ色分けして描画した画像を生成する
     ことを特徴とする請求項1記載のエネルギーマネジメント支援装置。
    The imaging unit color-codes a graph representing the relationship between the energy consumption and the demand based on one logical expression input to the feature calculation unit and another logical expression different from the one logical expression. The energy management support device according to claim 1, wherein the image drawn as described above is generated.
  12.  資源の需要設備と供給設備とからなる需給系統の解析を支援するエネルギーマネジメント支援処理を情報処理装置に実行させるためのエネルギーマネジメント支援プログラムであって、
     前記資源の需要量と前記資源を供給する際に消費するエネルギーとの関係を表す入力論理式の入力を受け付けると、前記入力論理式に基づいて、第一の一階述語論理式を生成するとともに、前記資源の需要量及び消費エネルギーの関係を表すグラフ上に表すべき所定の特徴の記述を含む出力論理式を生成し、
     前記第一の一階述語論理式を限定記号消去法により処理することで第一の中間論理式を生成し、
     前記第一の中間論理式に基づいて前記出力論理式を生成し、該出力論理式に基づき、前記所定の特徴を表したグラフを含む画像を生成する、
     ことを特徴とするエネルギーマネジメント支援プログラム。
    An energy management support program for causing an information processing apparatus to execute an energy management support process for supporting analysis of a supply and demand system consisting of resource demand facilities and supply facilities.
    When an input logical expression representing a relationship between the demand amount of the resource and the energy consumed when supplying the resource is received, a first first-order logical expression is generated based on the input logical expression. Generating an output logical expression including a description of a predetermined feature to be represented on a graph representing the relationship between the demand amount of resources and the energy consumption;
    A first intermediate logic expression is generated by processing the first first-order logic expression by a limiting symbol elimination method,
    Generating the output logical expression based on the first intermediate logical expression, and generating an image including a graph representing the predetermined feature based on the output logical expression;
    Energy management support program characterized by
PCT/JP2014/076263 2014-10-01 2014-10-01 Energy management assist device and energy management assist program WO2016051553A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016545369A JP6065167B2 (en) 2014-10-01 2014-10-01 Energy management support device and energy management support program
PCT/JP2014/076263 WO2016051553A1 (en) 2014-10-01 2014-10-01 Energy management assist device and energy management assist program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/076263 WO2016051553A1 (en) 2014-10-01 2014-10-01 Energy management assist device and energy management assist program

Publications (1)

Publication Number Publication Date
WO2016051553A1 true WO2016051553A1 (en) 2016-04-07

Family

ID=55629644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076263 WO2016051553A1 (en) 2014-10-01 2014-10-01 Energy management assist device and energy management assist program

Country Status (2)

Country Link
JP (1) JP6065167B2 (en)
WO (1) WO2016051553A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3103604A1 (en) * 2019-11-25 2021-05-28 Suez Groupe Method for predicting the consumption of a resource distributed in a distribution network

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6132064B1 (en) * 2016-12-28 2017-05-24 富士電機株式会社 Operation support apparatus, operation support system, information processing apparatus, operation support method, and program
JP6292338B1 (en) 2017-08-04 2018-03-14 富士電機株式会社 Operation support system, operation support apparatus, operation support method, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129470A1 (en) * 2013-02-19 2014-08-28 富士電機株式会社 Energy management assist device and energy management assist program
JP2014160359A (en) * 2013-02-19 2014-09-04 Fuji Electric Co Ltd Production plan support device, production plan support program, and method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129470A1 (en) * 2013-02-19 2014-08-28 富士電機株式会社 Energy management assist device and energy management assist program
JP2014160359A (en) * 2013-02-19 2014-09-04 Fuji Electric Co Ltd Production plan support device, production plan support program, and method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHIO TANGE ET AL.: "Visualization of Energy Optimization Problems under Supply and Demand Balance for Energy Saving Pre-verification", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN C DENSHI JOHO SYSTEM BUMONSHI, vol. 134, no. 1, January 2014 (2014-01-01), pages 78 - 84 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3103604A1 (en) * 2019-11-25 2021-05-28 Suez Groupe Method for predicting the consumption of a resource distributed in a distribution network
WO2021105608A1 (en) * 2019-11-25 2021-06-03 Suez Groupe Method for predicting consumption of a resource distributed in a distribution network

Also Published As

Publication number Publication date
JPWO2016051553A1 (en) 2017-04-27
JP6065167B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
WO2016051553A1 (en) Energy management assist device and energy management assist program
JP5761476B2 (en) Energy management support device and energy management support program
JP6496470B2 (en) Production plan support device, production plan support program and method
Matallana et al. Estimation of domains of attraction: A global optimization approach
JP2008040528A (en) Structure optimization method
Çil et al. Constraint programming model for multi-manned assembly line balancing problem
JP2007148650A (en) Support system, method and program for facility layout planning
Koor et al. Optimal pump count prediction algorithm for identical pumps working in parallel mode
KR20160122424A (en) Methdo for Optimizing Analysed Model based on Lightweight Models
CN104348996A (en) Image switching apparatus, image switching system, and image switching method
JP5761662B2 (en) Building energy management apparatus and building energy management method
JP6119574B2 (en) Air conditioning control support device, air conditioning control support program, and air conditioning control support method
CN104168330A (en) Optimal compensation method for solving Web service combination anomaly based on relational graph
JP6292338B1 (en) Operation support system, operation support apparatus, operation support method, and program
JP6724420B2 (en) Operation support device, operation support system, operation support method, and program
JP6668852B2 (en) Plant operation support device, plant operation support method, program, and plant operation support system
CN104199994A (en) Interactive harmonious color matching method
JP2018097493A (en) Plant operation support apparatus, display apparatus, plant operation system, and plant operation support method
Wilson et al. Expanding power system analysis toolbox (PSAT) functionalities for better result interpretation
JP6477293B2 (en) System operation support apparatus, system operation support method, and program thereof
CN112099779A (en) Method and related device for generating visual operation interface
Haruna et al. Method for visualizing switching patterns for a matrix converter using instantaneous space vector diagrams
Bassanino et al. A collaborative environment for energy-efficient buildings within the context of a neighborhood
WO2016157329A1 (en) Client device, communication system, rendering control method, and rendering processing control program
Tomiyama et al. Real-time price optimization for load frequency control in electric power systems with wind farms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903389

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545369

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903389

Country of ref document: EP

Kind code of ref document: A1