WO2014129052A1 - Temperature estimation device and semiconductor device - Google Patents

Temperature estimation device and semiconductor device Download PDF

Info

Publication number
WO2014129052A1
WO2014129052A1 PCT/JP2013/083227 JP2013083227W WO2014129052A1 WO 2014129052 A1 WO2014129052 A1 WO 2014129052A1 JP 2013083227 W JP2013083227 W JP 2013083227W WO 2014129052 A1 WO2014129052 A1 WO 2014129052A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
semiconductor
detection unit
unit
semiconductor module
Prior art date
Application number
PCT/JP2013/083227
Other languages
French (fr)
Japanese (ja)
Inventor
矢吹 俊生
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2014129052A1 publication Critical patent/WO2014129052A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/02Thermometers giving results other than momentary value of temperature giving means values; giving integrated values
    • G01K3/06Thermometers giving results other than momentary value of temperature giving means values; giving integrated values in respect of space
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures

Definitions

  • the present invention relates to a temperature estimation device and a semiconductor device, and more particularly to a temperature estimation device that estimates the temperature of a semiconductor element housed in a semiconductor module.
  • Inverters, choppers, and the like are known as semiconductor switching devices that perform switching to convert a DC voltage into another voltage.
  • the inverter converts a DC voltage into an AC voltage, and the chopper boosts / decreases the DC voltage and converts it to another DC voltage.
  • the chopper may be employed as a power factor correction circuit.
  • Such a semiconductor switching device has a semiconductor element (for example, a switching element or a diode), and is often manufactured as a module in which the semiconductor element is housed in a package in order to realize miniaturization or cost reduction.
  • a semiconductor element for example, a switching element or a diode
  • a resistor (hereinafter referred to as “temperature detection resistor”) may be employed in order to easily realize this.
  • the temperature detection resistor may be a normal resistor (because the resistance value has temperature dependence), but a thermistor (positive characteristic thermistor or negative characteristic thermistor) with higher sensitivity is often employed. .
  • the temperature detection resistor be installed near the semiconductor switching device. Since a temperature change in the temperature detection resistor can be detected as a temperature change in the resistance value of the temperature detection resistor, a current is supplied to the temperature detection resistor to detect a voltage drop in the temperature detection resistor.
  • Patent Document 1 Such a temperature detection technique is described in Patent Document 1.
  • a temperature detection resistor is provided at a terminal of an inverter.
  • a predetermined constant may be added to the detected temperature in order to estimate the temperature of the switching element from the detected temperature.
  • the difference between the detected temperature and the estimated temperature is not actually constant and depends on the amount of heat generated by the semiconductor element. Therefore, such an estimation method has low temperature estimation accuracy.
  • an object of the present invention is to provide a temperature estimation device that can improve the estimation accuracy of the temperature of a semiconductor element.
  • a first aspect of the temperature estimation apparatus is an apparatus for estimating an element temperature of a semiconductor element (10, Q1 to Q6) housed in a semiconductor module (1), and is a first apparatus separated from the semiconductor element.
  • a first temperature detector (31) provided at one position
  • a second temperature detector (32) provided at a second position different from the first position, the element temperature, and a first temperature at the first position.
  • a storage unit (41) in which a relationship between a first temperature difference between (TH1) and a second temperature difference between the first temperature and the second temperature (TH2) at the second position is recorded in advance.
  • a temperature estimation unit (40) for estimating the element temperature based on the first temperature detected by the first temperature detection unit, the second temperature detected by the second temperature detection unit, and the relationship. ).
  • a second aspect of the temperature estimation apparatus is the temperature estimation apparatus according to the first aspect, in which the semiconductor module (1) is interposed between the semiconductor element (10, Q1 to Q6) and a metal conductor. It has a terminal (11) to be connected, and the first temperature detector (31) detects the temperature of the terminal or the surface temperature of the semiconductor module.
  • a third aspect of the temperature estimation apparatus is the temperature estimation apparatus according to the first or second aspect, wherein the semiconductor module (1) is provided on a substrate (2), and the second temperature detection is performed.
  • the unit (32) is provided on the substrate and detects the temperature of the substrate.
  • the 4th aspect of the temperature estimation apparatus concerning this invention is a temperature estimation apparatus concerning the 1st or 2nd aspect, Comprising: The cooling part (5) which cools the said semiconductor module (1) is further included, The second temperature detection unit (32) detects the temperature of the cooling unit.
  • the 5th aspect of the temperature estimation apparatus concerning this invention is a temperature estimation apparatus concerning the 1st or 2nd aspect, Comprising: The cooling part which transfers the heat
  • a sixth aspect of the temperature estimation device is the temperature estimation device according to the first or second aspect, wherein the semiconductor module (1) is a resin portion that covers the semiconductor elements (10, Q1 to Q6).
  • the first temperature detector (31) detects the temperature inside the resin part.
  • a first aspect of a semiconductor device includes the temperature estimation device according to any one of the first to sixth aspects and the semiconductor module (1).
  • the element temperature is estimated according to the heat generation amount of the semiconductor element. it can.
  • the metal conductor has a low thermal conductivity, and therefore, the temperature of the portion that is thermally close to the semiconductor element is detected. Therefore, the temperature estimation accuracy can be improved.
  • the second temperature detection unit is provided on the substrate. Therefore, the second temperature detection unit can be easily attached.
  • the temperature detection unit is provided in the cooling unit to which most of the heat from the semiconductor module is transmitted. Therefore, the temperature estimation accuracy based on the heat generation amount of the semiconductor element can be improved.
  • the temperature estimation device of the present invention most of the heat from the semiconductor module is transferred to the heat medium via the cooling unit, so that the temperature estimation accuracy can be improved.
  • the temperature is detected at a position close to the semiconductor element, so that the temperature estimation accuracy can be improved.
  • FIG. 1 is a diagram showing a conceptual configuration of the temperature estimation device 4.
  • the semiconductor element 10 that is the target of temperature estimation is housed in the semiconductor module 1.
  • the semiconductor module 1 is an inverter module, for example, and the semiconductor element 10 is a switching element, for example.
  • FIG. 2 illustrates a circuit configuration of the inverter module 1.
  • the inverter module 1 includes switching elements Q1 to Q6 as an example of the semiconductor element 10.
  • the inverter module 1 receives the DC voltage Vdc between the DC power supply lines L1 and L2, and converts the DC voltage Vdc into three-phase AC voltages Vu, Vv, and Vw by switching the switching elements Q1 to Q6. In such a conversion operation, a current flows through the semiconductor element 10 (switching elements Q1 to Q6), whereby the semiconductor element 10 generates heat.
  • the semiconductor module 1 is attached to the substrate 2, for example. More specifically, the semiconductor module 1 has a terminal 11 connected to the semiconductor element 10 via a metal conductor (not shown), and the terminal 11 is electrically connected to the substrate 2 by, for example, soldering.
  • the terminals 11 are electrically connected to connection portions (pads) 21 provided on the substrate 2 in a state of penetrating the substrate 2.
  • the semiconductor module 1 in which the terminal 11 penetrates the substrate 2 is a kind of so-called insertion type electronic component.
  • the semiconductor module 1 is not limited to the insertion type electronic component, and may be a surface mounting type electronic component in which the terminal 11 does not penetrate the substrate 2.
  • a cooling unit 5 is provided.
  • the cooling unit 5 is a heat sink, for example, and cools the semiconductor module 1.
  • the cooling unit 5 is in direct contact with the semiconductor module 1.
  • the cooling unit 5 cools the semiconductor module 1 by receiving heat from the semiconductor module 1 and radiating it to a heat medium (air in the example of FIG. 1).
  • the cooling unit 5 since the cooling unit 5 is provided, the heat from the semiconductor module 1 is mainly transmitted to the cooling unit 5 and secondarily to the substrate 2.
  • the heat transfer from the semiconductor element 10 to the cooling unit 5 is indicated by a broken line arrow, and the heat transfer from the semiconductor element 10 to the substrate 2 is indicated by a dashed line arrow.
  • the cooling unit 5 is not necessarily provided.
  • the temperature estimation device 4 includes two temperature detection units 31 and 32, a temperature estimation unit 40, and a storage unit 41.
  • the temperature detection unit 31 includes a resistor 311 and a temperature detection resistor 312 as shown in FIG.
  • the resistor 311 and the temperature detection resistor 312 are connected in series with each other, and a DC power supply is connected to these series bodies.
  • the resistor 311 is provided on the higher potential side than the temperature detection resistor 312.
  • Such a resistor 311 functions as a so-called pull-up resistor.
  • the temperature detection resistor 312 is a so-called thermistor, and its resistance value changes relatively greatly depending on the temperature.
  • the voltage across the resistor 311 or the temperature detection resistor 312 varies depending on the temperature.
  • the voltage across the temperature detection resistor 312 is output to the temperature estimation unit 40.
  • the temperature estimation unit 40 recognizes the temperature detected by the temperature detection unit 31 based on the voltage at both ends.
  • the voltage between both ends is input to the temperature estimation unit 40 via the AD conversion unit 42.
  • the AD conversion unit 42 is a conversion unit that converts analog data into digital data.
  • the temperature detection unit 32 also includes a resistor 321 and a temperature detection resistor 322, and the temperature estimation device 4 includes an AD conversion unit 43. These function in the same manner as the resistor 311, the temperature detection resistor 312, and the AD converter 42, respectively, so that repeated description is avoided.
  • the temperature detector 31 is provided at a first position away from the semiconductor element 10 and detects its temperature TH1.
  • the temperature detection unit 31 is provided in the connection unit 21.
  • the terminal 11 and the connection portion 21 are usually formed of metal and are in contact with each other directly or through solder 91 that is an alloy, so the temperature of the terminal 11 and the temperature of the connection portion 21 are substantially equal to each other. Therefore, it can be understood that the temperature detection unit 31 detects the temperature of the terminal 11.
  • the temperature detector 32 is provided at a second position different from the first position, and detects the temperature TH2.
  • the temperature detection unit 32 is provided on the substrate 2.
  • the distance between the semiconductor module 1 and the temperature detection unit 31 is longer than the distance between the semiconductor module 1 and the temperature detection unit 32.
  • the storage unit 41 is, for example, a nonvolatile recording medium.
  • the storage unit 41 records the relationship between the temperature difference ⁇ T1 between the temperature TH1 and the element temperature TE of the semiconductor element 10 and the temperature difference ⁇ T2 between the temperatures TH1 and TH2.
  • Such a relationship can be determined in advance by experiment or simulation.
  • a temperature detection unit that directly measures the element temperature TE of the semiconductor element 10 is provided for one of the actual products, and the ambient temperature or cooling is further changed while changing the load (for example, current value) to the semiconductor module 1.
  • the temperatures TH1 and TH2 may be detected while changing the airflow to the unit 5.
  • the actual product is not provided with a temperature detection unit that detects the element temperature TE.
  • the temperature estimation unit 40 calculates the element temperature TE based on the temperatures TH1 and TH2 detected by the temperature detection units 31 and 32 and the function K (TH1-TH2) recorded in the storage unit 41. More specifically, the element temperature TE is calculated based on the equation (2).
  • the temperature estimation unit 40 includes a microcomputer and a storage device.
  • the microcomputer executes each processing step (in other words, a procedure) described in the program.
  • the storage device is composed of one or more of various storage devices such as a ROM (Read Only Memory), a RAM (Random Access Memory), a rewritable nonvolatile memory (EPROM (Erasable Programmable ROM), etc.), and a hard disk device, for example. Is possible.
  • the storage device stores various information, data, and the like, stores a program executed by the microcomputer, and provides a work area for executing the program. It can be understood that the microcomputer functions as various means corresponding to each processing step described in the program, or can realize that various functions corresponding to each processing step are realized.
  • the temperature estimation unit 40 is not limited to this, and various procedures executed by the temperature estimation unit 40 or various means or various functions implemented may be realized by hardware.
  • the temperature estimation unit 40 estimates the element temperature TE of the semiconductor element 10 using the temperatures TH1 and TH2 detected by the two temperature detection units 31 and 32. Thereby, the estimation accuracy of the element temperature TE can be improved as compared with the case where the element temperature TE is estimated using only one temperature TH1.
  • the element temperature TE is the sum of the temperature TH1 and the temperature difference ⁇ T1.
  • the temperature difference ⁇ T1 depends on the amount of heat generated by the semiconductor element 10 and does not depend on the ambient temperature.
  • the temperature TH1 increases according to the amount of heat generated by the semiconductor element 10, but also varies depending on the ambient temperature. Therefore, the relationship between the temperature difference ⁇ T1 and the temperature TH1 is not uniquely determined for any ambient temperature. Therefore, it is difficult to estimate the temperature difference ⁇ T1 from only the temperature TH1, and it is difficult to estimate the element temperature TE1.
  • the element temperature TE can be estimated while suppressing the influence of ambient temperature fluctuations, and the estimation accuracy of the element temperature TE can be improved.
  • the temperature detectors 31 and 32 may be provided so that the above relationship is a proportional relationship.
  • the first position and the second position can also be determined in advance by experiment or simulation, for example. For example, for one of the actual products, a temperature detection unit that directly measures the element temperature TE of the semiconductor element 10 is provided, and the temperature TH1, while changing the ambient temperature while changing the load on the semiconductor module 1 What is necessary is just to detect TH2. Then, the first position and the second position at which the relationship between the temperature differences ⁇ T1 and ⁇ T2 becomes a proportional relationship regardless of the ambient temperature are specified.
  • the proportionality coefficient k in the proportional relationship between the temperature differences ⁇ T1 and ⁇ T2 can also be calculated by the experiment.
  • the proportional coefficient k is recorded in the storage unit 41 in advance.
  • the temperature estimation unit 40 calculates the element temperature TE based on the temperatures TH1 and TH2 detected by the temperature detection units 31 and 32 and the proportionality coefficient k recorded in the storage unit 41. More specifically, the element temperature TE is calculated based on the formula (3).
  • the arithmetic processing can be simplified, and the storage capacity of the storage unit 41 can be reduced.
  • the temperature difference ⁇ T1 and the temperature difference ⁇ T2 are proportional.
  • the temperature detection unit 31 detects the temperature of the terminal 11.
  • the metal conductor has a high thermal conductivity, so that the terminal 11 is thermally close to the semiconductor element 10. Therefore, the temperature difference ⁇ T1 between the element temperature TE and the temperature TH1 is small. Therefore, the estimation accuracy of the element temperature TE can be improved as compared with the case where the temperature TH1 is detected at a position farther from the semiconductor module 1 than the terminal 11.
  • the temperature detection unit 32 is provided on the substrate 2. Therefore, the temperature detection unit 32 can be easily attached.
  • the temperature detection resistor 322 can be easily attached to the substrate 2.
  • the temperature detection unit 4 is different from the temperature estimation device 4 of FIG. 1 in that the temperature detection unit 4 is positioned.
  • the temperature detection unit 31 is provided on the surface of the semiconductor module 1. Even in this case, since the temperature detection unit 31 detects the temperature near the semiconductor element 10, the element temperature TE is estimated as compared with the case where the temperature detection unit 31 detects the temperature at a position far away from the semiconductor module 1. Accuracy can be improved.
  • the temperature detection unit 32 detects the temperature of the cooling unit 5. According to this, the temperature detection part 32 will be provided in the path
  • the temperature detection unit 32 detects the temperature of a heat medium (air in the example of FIG. 6) that receives heat from the cooling unit 5.
  • the heat medium may be water regardless of the illustration of FIG.
  • the refrigerant flowing through the refrigerant circuit may be employed as the heat medium of the cooling unit 5. Heat from the semiconductor module 1 is transmitted to the heat medium mainly through the cooling unit 5. Therefore, the estimation accuracy of the element temperature TE can be improved as compared with the temperature estimation device 4 of FIG. 4 in which the temperature detection unit 32 is provided on the substrate 2 to which heat from the semiconductor module 1 is transmitted secondarily. .
  • the semiconductor module 1 has a resin part that covers the semiconductor element 10, and the temperature detection part 31 is provided inside the resin part.
  • the temperature detection unit 32 is provided on the surface of the semiconductor module 1. In this case, since both of the temperature detection units 31 and 32 are provided at positions close to the semiconductor element 10, both of the temperature detection units 31 and 32 are provided at positions far from the semiconductor module 1 in the substrate 2. Compared to the case, the estimation accuracy of the element temperature TE can be improved.
  • the case where the temperature detection unit 31 is closer to the semiconductor element 10 than the temperature detection unit 32 is shown.
  • the case where the temperature TH1 is higher than the temperature TH2 is shown.
  • the present invention is not limited to this, and the temperature TH1 may be lower than the temperature TH2.
  • the positions of the temperature detectors 31 and 32 may be reversed.
  • the element temperature TE can be calculated using the equations (1) and (3).
  • equation (3) the proportionality coefficient k takes a negative value.
  • a determination unit may be provided that determines that the semiconductor element 10 is in an overheated state when the element temperature TE estimated as described above exceeds a predetermined reference value Tref.
  • the semiconductor module 1 for example, the switching elements Q1 to Q6
  • the semiconductor module 1 is controlled to reduce the current flowing to the semiconductor element 10, or the power supply to the semiconductor module 1 is used. What is necessary is just to cut off supply. This is realized by a control unit or the like that controls the semiconductor module 1. Thereby, the element temperature TE of the semiconductor element 10 can be reduced and an overheating state can be avoided.
  • the temperature range in which the semiconductor module 1 can normally operate can be improved as compared with the conventional case as will be described in detail below.
  • the element temperature TE is estimated by adding a predetermined value to the temperature TH1
  • the current flowing to the semiconductor module 1 is reduced (or cut off) when the element temperature TE exceeds the reference value Tref
  • the estimated element temperature TE is estimated to be higher in advance. Therefore, in such a control method, it is determined that an overheated state is present even in an originally operable region, and the current is reduced.
  • the element temperature TE can be estimated with high accuracy in this embodiment, the temperature range in which normal operation can be performed can be improved.
  • the first position and the second position are provided on one heat transfer path among a plurality of heat transfer paths from the semiconductor module 1 (broken line arrows and one-dotted line arrows) as shown in FIGS. It is desirable.
  • the first position and the second position are provided in different heat transfer paths, if the ambient temperature in one heat transfer path changes to be different from the ambient temperature in the other heat transfer path, the temperature difference ⁇ T1, ⁇ T2 The relationship can change.
  • the first position and the second position are provided in the same heat transfer path, it is not affected by the change in the relationship, so that the accuracy of the estimated temperature can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

The present invention is a temperature estimation device which can improve the estimate accuracy for the temperature of a semiconductor. A first temperature detection unit (31) is provided in a first position separated from a semiconductor element (10). A second temperature detection unit (32) is provided in a second position differing from the first position. The relationship between a first temperature difference between the temperature of the semiconductor element (10) and a first temperature at the first position and a second temperature difference between the first temperature and a second temperature at the second position is prerecorded in a storage unit (41). A temperature estimation unit (40) estimates the temperature of the element on the basis of the first temperature detected by the first temperature detection unit (31), the second temperature detected by the second temperature detection unit (32), and the relationship recorded in the storage unit (41).

Description

温度推定装置および半導体装置Temperature estimation device and semiconductor device
 この発明は、温度推定装置および半導体装置に関し、特に半導体モジュールに収納される半導体素子の温度を推定する温度推定装置に関する。 The present invention relates to a temperature estimation device and a semiconductor device, and more particularly to a temperature estimation device that estimates the temperature of a semiconductor element housed in a semiconductor module.
 スイッチングを行って直流電圧を他の電圧に変換する半導体スイッチング装置として、インバータおよびチョッパなどが知られている。インバータは直流電圧を交流電圧に変換し、チョッパは直流電圧を昇圧/降圧して他の直流電圧に変換する。チョッパは力率改善回路として採用されることもある。 Inverters, choppers, and the like are known as semiconductor switching devices that perform switching to convert a DC voltage into another voltage. The inverter converts a DC voltage into an AC voltage, and the chopper boosts / decreases the DC voltage and converts it to another DC voltage. The chopper may be employed as a power factor correction circuit.
 このような半導体スイッチング装置は半導体素子(例えばスイッチング素子又はダイオードなど)を有し、小型化或いは低コスト化を実現するため、パッケージに当該半導体素子を収納したモジュールとして製造されることが多い。 Such a semiconductor switching device has a semiconductor element (for example, a switching element or a diode), and is often manufactured as a module in which the semiconductor element is housed in a package in order to realize miniaturization or cost reduction.
 一方で、半導体素子の過熱を抑制するため、半導体スイッチング回路の温度を検知する要求がある。当該温度を検知する構成としては、これを簡易に実現すべく、抵抗(以下「温度検知用抵抗」)が採用される場合がある。温度検知用抵抗は、通常の抵抗であっても(その抵抗値が温度依存性を有するので)かまわないが、より感度が高いサーミスタ(正特性サーミスタ又は負特性サーミスタ)が採用されることが多い。 On the other hand, there is a need to detect the temperature of the semiconductor switching circuit in order to suppress overheating of the semiconductor element. As a configuration for detecting the temperature, a resistor (hereinafter referred to as “temperature detection resistor”) may be employed in order to easily realize this. The temperature detection resistor may be a normal resistor (because the resistance value has temperature dependence), but a thermistor (positive characteristic thermistor or negative characteristic thermistor) with higher sensitivity is often employed. .
 温度検知用抵抗は、半導体スイッチング装置の近くに設けることが要求される。そして温度検知用抵抗における温度変化は、温度検知用抵抗の抵抗値の温度変化として検出できるので、温度検知用抵抗に電流を供給し、当該温度検知用抵抗における電圧降下を検知する。 It is required that the temperature detection resistor be installed near the semiconductor switching device. Since a temperature change in the temperature detection resistor can be detected as a temperature change in the resistance value of the temperature detection resistor, a current is supplied to the temperature detection resistor to detect a voltage drop in the temperature detection resistor.
 このような温度検出技術が特許文献1に記載されている。特許文献1では、インバータの端子に温度検知用抵抗を設けている。 Such a temperature detection technique is described in Patent Document 1. In Patent Document 1, a temperature detection resistor is provided at a terminal of an inverter.
特許第4639950号公報Japanese Patent No. 4639950
 特許文献1において、温度検知用抵抗はインバータの端子から熱を受け取るものの、インバータに収納されるスイッチング素子自体の温度がそのまま検出されるわけではない。検出される検出温度はスイッチング素子自体の温度よりも低い。 In Patent Document 1, although the temperature detection resistor receives heat from the terminal of the inverter, the temperature of the switching element itself housed in the inverter is not detected as it is. The detected temperature detected is lower than the temperature of the switching element itself.
 そこで、検出温度からスイッチング素子の温度を推定すべく、検出温度に例えば予め定められた定数を加えることが考えられる。しかしながら、検出温度と推定温度との差は実際には一定であるわけではなく、半導体素子の発熱量に依存する。よってこのような推定方法では、温度の推定精度が低い。 Therefore, for example, a predetermined constant may be added to the detected temperature in order to estimate the temperature of the switching element from the detected temperature. However, the difference between the detected temperature and the estimated temperature is not actually constant and depends on the amount of heat generated by the semiconductor element. Therefore, such an estimation method has low temperature estimation accuracy.
 そこで、本発明は、半導体素子の温度の推定精度を向上できる温度推定装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a temperature estimation device that can improve the estimation accuracy of the temperature of a semiconductor element.
 本発明にかかる温度推定装置の第1の態様は、半導体モジュール(1)に収納される半導体素子(10,Q1~Q6)の素子温度を推定する装置であって、前記半導体素子から離れた第1位置に設けられる第1温度検出部(31)と、前記第1位置とは異なる第2位置に設けられる第2温度検出部(32)と、前記素子温度と前記第1位置の第1温度(TH1)との間の第1温度差と、前記第1温度と前記第2位置の第2温度(TH2)との間の第2温度差との関係が予め記録された記憶部(41)と、前記第1温度検出部が検出する前記第1温度と、前記第2温度検出部が検出する前記第2温度と、前記関係とに基づいて、前記素子温度を推定する温度推定部(40)とを備える。 A first aspect of the temperature estimation apparatus according to the present invention is an apparatus for estimating an element temperature of a semiconductor element (10, Q1 to Q6) housed in a semiconductor module (1), and is a first apparatus separated from the semiconductor element. A first temperature detector (31) provided at one position, a second temperature detector (32) provided at a second position different from the first position, the element temperature, and a first temperature at the first position. A storage unit (41) in which a relationship between a first temperature difference between (TH1) and a second temperature difference between the first temperature and the second temperature (TH2) at the second position is recorded in advance. And a temperature estimation unit (40) for estimating the element temperature based on the first temperature detected by the first temperature detection unit, the second temperature detected by the second temperature detection unit, and the relationship. ).
 本発明にかかる温度推定装置の第2の態様は、第1の態様にかかる温度推定装置であって、前記半導体モジュール(1)は前記半導体素子(10,Q1~Q6)と金属導体を介して接続される端子(11)を有し、前記第1温度検出部(31)は前記端子の温度または前記半導体モジュールの表面温度を検出する。 A second aspect of the temperature estimation apparatus according to the present invention is the temperature estimation apparatus according to the first aspect, in which the semiconductor module (1) is interposed between the semiconductor element (10, Q1 to Q6) and a metal conductor. It has a terminal (11) to be connected, and the first temperature detector (31) detects the temperature of the terminal or the surface temperature of the semiconductor module.
 本発明にかかる温度推定装置の第3の態様は、第1または第2の態様にかかる温度推定装置であって、前記半導体モジュール(1)は基板(2)に設けられ、前記第2温度検出部(32)は前記基板に設けられて前記基板の温度を検出する。 A third aspect of the temperature estimation apparatus according to the present invention is the temperature estimation apparatus according to the first or second aspect, wherein the semiconductor module (1) is provided on a substrate (2), and the second temperature detection is performed. The unit (32) is provided on the substrate and detects the temperature of the substrate.
 本発明にかかる温度推定装置の第4の態様は、第1または第2の態様にかかる温度推定装置であって、前記半導体モジュール(1)を冷却する冷却部(5)を更に有し、前記第2温度検出部(32)は前記冷却部の温度を検出する。 The 4th aspect of the temperature estimation apparatus concerning this invention is a temperature estimation apparatus concerning the 1st or 2nd aspect, Comprising: The cooling part (5) which cools the said semiconductor module (1) is further included, The second temperature detection unit (32) detects the temperature of the cooling unit.
 本発明にかかる温度推定装置の第5の態様は、第1または第2の態様にかかる温度推定装置であって、前記半導体モジュール(1)からの熱を所定の熱媒体へと伝達する冷却部(5)を有し、前記第2温度検出部(32)は前記熱媒体の温度を検出する。 The 5th aspect of the temperature estimation apparatus concerning this invention is a temperature estimation apparatus concerning the 1st or 2nd aspect, Comprising: The cooling part which transfers the heat | fever from the said semiconductor module (1) to a predetermined | prescribed heat medium. (5), and the second temperature detector (32) detects the temperature of the heat medium.
 本発明にかかる温度推定装置の第6の態様は、第1または第2の態様にかかる温度推定装置であって、半導体モジュール(1)は前記半導体素子(10,Q1~Q6)を覆う樹脂部を備え、前記第1温度検出部(31)は前記樹脂部の内部の温度を検出する。 A sixth aspect of the temperature estimation device according to the present invention is the temperature estimation device according to the first or second aspect, wherein the semiconductor module (1) is a resin portion that covers the semiconductor elements (10, Q1 to Q6). The first temperature detector (31) detects the temperature inside the resin part.
 本発明にかかる半導体装置の第1の態様は、第1から第6のいずれか一つの態様にかかる温度推定装置と、前記半導体モジュール(1)とを備える。 A first aspect of a semiconductor device according to the present invention includes the temperature estimation device according to any one of the first to sixth aspects and the semiconductor module (1).
 本発明にかかる温度推定装置の第1の態様および半導体装置の第1の態様によれば、半導体素子の発熱量に応じて素子温度を推定することになるので、比較的精度よく推定することができる。 According to the first aspect of the temperature estimation device and the first aspect of the semiconductor device according to the present invention, the element temperature is estimated according to the heat generation amount of the semiconductor element. it can.
 本発明にかかる温度推定装置の第2の態様によれば、金属導体は熱伝導率が低いので、熱的に半導体素子に近い部分の温度を検出することとなる。よって温度の推定精度を向上できる。 According to the second aspect of the temperature estimation apparatus according to the present invention, the metal conductor has a low thermal conductivity, and therefore, the temperature of the portion that is thermally close to the semiconductor element is detected. Therefore, the temperature estimation accuracy can be improved.
 本発明にかかる温度推定装置の第3の態様によれば、第2温度検出部が基板に設けられる。よって第2温度検出部の取り付けが容易である。 According to the third aspect of the temperature estimation device of the present invention, the second temperature detection unit is provided on the substrate. Therefore, the second temperature detection unit can be easily attached.
 本発明にかかる温度推定装置の第4の態様によれば、半導体モジュールからの熱の大部分が伝達される冷却部に温度検出部が設けられる。よって、半導体素子の発熱量に基づいた温度の推定精度を向上できる。 According to the fourth aspect of the temperature estimation device of the present invention, the temperature detection unit is provided in the cooling unit to which most of the heat from the semiconductor module is transmitted. Therefore, the temperature estimation accuracy based on the heat generation amount of the semiconductor element can be improved.
 本発明にかかる温度推定装置の第5の態様によれば、半導体モジュールからの熱の大部分が冷却部を介して熱媒体に伝達されるので、温度の推定精度を向上できる。 According to the fifth aspect of the temperature estimation device of the present invention, most of the heat from the semiconductor module is transferred to the heat medium via the cooling unit, so that the temperature estimation accuracy can be improved.
 本発明にかかる温度推定装置の第6の態様によれば、半導体素子に近い位置で温度を検出するので、温度の推定精度を向上できる。 According to the sixth aspect of the temperature estimation device of the present invention, the temperature is detected at a position close to the semiconductor element, so that the temperature estimation accuracy can be improved.
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
半導体装置と温度推定装置との概念的な構成の一例を示す回路図である。It is a circuit diagram which shows an example of a notional structure of a semiconductor device and a temperature estimation apparatus. 半導体モジュールの概念的な回路構成の一例を示す回路図である。It is a circuit diagram which shows an example of a conceptual circuit structure of a semiconductor module. 温度推定装置の概念的な構成の一例を示す回路図である。It is a circuit diagram which shows an example of a notional structure of a temperature estimation apparatus. 半導体装置と温度推定装置との概念的な構成の一例を示す回路図である。It is a circuit diagram which shows an example of a notional structure of a semiconductor device and a temperature estimation apparatus. 半導体装置と温度推定装置との概念的な構成の一例を示す回路図である。It is a circuit diagram which shows an example of a notional structure of a semiconductor device and a temperature estimation apparatus. 半導体装置と温度推定装置との概念的な構成の一例を示す回路図である。It is a circuit diagram which shows an example of a notional structure of a semiconductor device and a temperature estimation apparatus. 半導体装置と温度推定装置との概念的な構成の一例を示す回路図である。It is a circuit diagram which shows an example of a notional structure of a semiconductor device and a temperature estimation apparatus.
 図1は温度推定装置4の概念的な構成を示す図である。温度推定の対象となる半導体素子10は半導体モジュール1に収納される。半導体モジュール1は例えばインバータモジュールであり、半導体素子10は例えばスイッチング素子である。図2には、インバータモジュール1の回路構成が例示されている。例えばインバータモジュール1は半導体素子10の一例たるスイッチング素子Q1~Q6を有している。インバータモジュール1は直流電源線L1,L2の間の直流電圧Vdcを入力し、スイッチング素子Q1~Q6のスイッチングによって当該直流電圧Vdcを三相交流電圧Vu,Vv,Vwへ変換する。かかる変換動作において半導体素子10(スイッチング素子Q1~Q6)に電流が流れ、これによって半導体素子10は発熱する。 FIG. 1 is a diagram showing a conceptual configuration of the temperature estimation device 4. The semiconductor element 10 that is the target of temperature estimation is housed in the semiconductor module 1. The semiconductor module 1 is an inverter module, for example, and the semiconductor element 10 is a switching element, for example. FIG. 2 illustrates a circuit configuration of the inverter module 1. For example, the inverter module 1 includes switching elements Q1 to Q6 as an example of the semiconductor element 10. The inverter module 1 receives the DC voltage Vdc between the DC power supply lines L1 and L2, and converts the DC voltage Vdc into three-phase AC voltages Vu, Vv, and Vw by switching the switching elements Q1 to Q6. In such a conversion operation, a current flows through the semiconductor element 10 (switching elements Q1 to Q6), whereby the semiconductor element 10 generates heat.
 図1の例示では、半導体モジュール1は例えば基板2に取り付けられる。より詳細には半導体モジュール1は、半導体素子10と金属導体(図示省略)を介して接続される端子11を有しており、当該端子11が例えば半田付け等によって基板2と電気的に接続される。図1では端子11が基板2を貫通した状態で、基板2に設けられる接続部(パッド)21と電気的に接続されている。このように端子11が基板2を貫通する半導体モジュール1はいわゆる挿入型電子部品の一種である。ただし半導体モジュール1は挿入型電子部品に限らず、端子11が基板2を貫通しない表面取付型電子部品であってもよい。 In the example of FIG. 1, the semiconductor module 1 is attached to the substrate 2, for example. More specifically, the semiconductor module 1 has a terminal 11 connected to the semiconductor element 10 via a metal conductor (not shown), and the terminal 11 is electrically connected to the substrate 2 by, for example, soldering. The In FIG. 1, the terminals 11 are electrically connected to connection portions (pads) 21 provided on the substrate 2 in a state of penetrating the substrate 2. Thus, the semiconductor module 1 in which the terminal 11 penetrates the substrate 2 is a kind of so-called insertion type electronic component. However, the semiconductor module 1 is not limited to the insertion type electronic component, and may be a surface mounting type electronic component in which the terminal 11 does not penetrate the substrate 2.
 また図1の例示では、冷却部5が設けられている。冷却部5は例えばヒートシンクであって、半導体モジュール1を冷却する。図1の例示では、冷却部5は半導体モジュール1に直接に接している。かかる冷却部5は半導体モジュール1からの熱を受け取って熱媒体(図1の例示では空気)へと放熱することで、半導体モジュール1を冷却する。 In the illustration of FIG. 1, a cooling unit 5 is provided. The cooling unit 5 is a heat sink, for example, and cools the semiconductor module 1. In the illustration of FIG. 1, the cooling unit 5 is in direct contact with the semiconductor module 1. The cooling unit 5 cools the semiconductor module 1 by receiving heat from the semiconductor module 1 and radiating it to a heat medium (air in the example of FIG. 1).
 図1の例示では冷却部5が設けられるので、半導体モジュール1からの熱は主として冷却部5へと伝達され、基板2へは副次的に伝達される。図1では、半導体素子10から冷却部5への熱の移動を破線の矢印で示し、半導体素子10から基板2への熱の移動を一点差線の矢印で示している。なお冷却部5は必ずしも設けられている必要はない。 1, since the cooling unit 5 is provided, the heat from the semiconductor module 1 is mainly transmitted to the cooling unit 5 and secondarily to the substrate 2. In FIG. 1, the heat transfer from the semiconductor element 10 to the cooling unit 5 is indicated by a broken line arrow, and the heat transfer from the semiconductor element 10 to the substrate 2 is indicated by a dashed line arrow. The cooling unit 5 is not necessarily provided.
 温度推定装置4は2つの温度検出部31,32と温度推定部40と記憶部41とを備える。例えば温度検出部31は図3に示すように抵抗311と温度検出抵抗312とを備える。抵抗311と温度検出抵抗312とは互いに直列に接続され、これらの直列体には直流電源が接続される。図3の例示では、抵抗311は温度検出抵抗312よりも高電位側に設けられる。このような抵抗311はいわゆるプルアップ抵抗として機能する。温度検出抵抗312はいわゆるサーミスタであって、その抵抗値が温度に応じて比較的大きく変化する。よって抵抗311または温度検出抵抗312の両端電圧は温度に依存して変化する。図3の例示では、温度検出抵抗312の両端電圧が温度推定部40へと出力される。温度推定部40は当該両端電圧に基づいて温度検出部31の検出温度を認識する。なお図3の例示では、当該両端電圧はAD変換部42を介して温度推定部40へと入力される。AD変換部42はアナログデータをデジタルデータに変換する変換部である。 The temperature estimation device 4 includes two temperature detection units 31 and 32, a temperature estimation unit 40, and a storage unit 41. For example, the temperature detection unit 31 includes a resistor 311 and a temperature detection resistor 312 as shown in FIG. The resistor 311 and the temperature detection resistor 312 are connected in series with each other, and a DC power supply is connected to these series bodies. In the example of FIG. 3, the resistor 311 is provided on the higher potential side than the temperature detection resistor 312. Such a resistor 311 functions as a so-called pull-up resistor. The temperature detection resistor 312 is a so-called thermistor, and its resistance value changes relatively greatly depending on the temperature. Therefore, the voltage across the resistor 311 or the temperature detection resistor 312 varies depending on the temperature. In the illustration of FIG. 3, the voltage across the temperature detection resistor 312 is output to the temperature estimation unit 40. The temperature estimation unit 40 recognizes the temperature detected by the temperature detection unit 31 based on the voltage at both ends. In the illustration of FIG. 3, the voltage between both ends is input to the temperature estimation unit 40 via the AD conversion unit 42. The AD conversion unit 42 is a conversion unit that converts analog data into digital data.
 また例えば温度検出部32も抵抗321と温度検出抵抗322とを備え、温度推定装置4はAD変換部43を備える。これらはそれぞれ抵抗311及び温度検出抵抗312並びにAD変換部42と同様に機能するので、繰り返しの説明を避ける。 For example, the temperature detection unit 32 also includes a resistor 321 and a temperature detection resistor 322, and the temperature estimation device 4 includes an AD conversion unit 43. These function in the same manner as the resistor 311, the temperature detection resistor 312, and the AD converter 42, respectively, so that repeated description is avoided.
 図1を参照して、温度検出部31は半導体素子10から離れた第1位置に設けられてその温度TH1を検出する。図1の例示では、温度検出部31は接続部21に設けられる。なお端子11と接続部21とは通常金属で形成されており、直接もしくは合金である半田91を介して互いに接触するので、端子11の温度と接続部21の温度とは互いにほぼ等しい。よって温度検出部31は端子11の温度を検出する、とも理解できる。 Referring to FIG. 1, the temperature detector 31 is provided at a first position away from the semiconductor element 10 and detects its temperature TH1. In the illustration of FIG. 1, the temperature detection unit 31 is provided in the connection unit 21. Note that the terminal 11 and the connection portion 21 are usually formed of metal and are in contact with each other directly or through solder 91 that is an alloy, so the temperature of the terminal 11 and the temperature of the connection portion 21 are substantially equal to each other. Therefore, it can be understood that the temperature detection unit 31 detects the temperature of the terminal 11.
 温度検出部32は第1位置とは異なる第2位置に設けられて、その温度TH2を検出する。図1の例示では、温度検出部32は基板2に設けられる。例えば半導体モジュール1と温度検出部31との距離は半導体モジュール1と温度検出部32との距離よりも長い。 The temperature detector 32 is provided at a second position different from the first position, and detects the temperature TH2. In the illustration of FIG. 1, the temperature detection unit 32 is provided on the substrate 2. For example, the distance between the semiconductor module 1 and the temperature detection unit 31 is longer than the distance between the semiconductor module 1 and the temperature detection unit 32.
 記憶部41は例えば不揮発性記録媒体である。記憶部41には、温度TH1と半導体素子10の素子温度TEとの温度差ΔT1と、温度TH1,TH2の温度差ΔT2との間の関係が記録される。かかる関係は予め実験またはシミュレーションによって決定することができる。例えば実際の製品の一つに対して半導体素子10の素子温度TEを直接に測定する温度検出部を設け、半導体モジュール1への負荷(例えば電流値)を変えながら、さらには周囲の温度或いは冷却部5への風量を変えながら、温度TH1,TH2を検出すればよい。ただし、実際の製品では素子温度TEを検出する温度検出部は設けられない。 The storage unit 41 is, for example, a nonvolatile recording medium. The storage unit 41 records the relationship between the temperature difference ΔT1 between the temperature TH1 and the element temperature TE of the semiconductor element 10 and the temperature difference ΔT2 between the temperatures TH1 and TH2. Such a relationship can be determined in advance by experiment or simulation. For example, a temperature detection unit that directly measures the element temperature TE of the semiconductor element 10 is provided for one of the actual products, and the ambient temperature or cooling is further changed while changing the load (for example, current value) to the semiconductor module 1. The temperatures TH1 and TH2 may be detected while changing the airflow to the unit 5. However, the actual product is not provided with a temperature detection unit that detects the element temperature TE.
 ここでは以下の関係式において関数K(ΔT2)が上記関係として記憶部41に記録される。 Here, in the following relational expression, the function K (ΔT2) is recorded in the storage unit 41 as the above relation.
 ΔT1=K(ΔT2)   ・・・(1) ΔT1 = K (ΔT2) (1)
 ΔT1=TE-TH1,ΔT2=TH1-TH2を式(1)に代入すると、以下の式が導かれる。 Substituting ΔT1 = TE−TH1 and ΔT2 = TH1−TH2 into equation (1) leads to the following equation.
 TE=TH1+K(TH1-TH2)   ・・・(2) TE = TH1 + K (TH1-TH2) (2)
 温度推定部40は、温度検出部31,32によって検出される温度TH1,TH2と、記憶部41に記録された関数K(TH1-TH2)とに基づいて、素子温度TEを算出する。より詳細には式(2)に基づいて素子温度TEを算出する。 The temperature estimation unit 40 calculates the element temperature TE based on the temperatures TH1 and TH2 detected by the temperature detection units 31 and 32 and the function K (TH1-TH2) recorded in the storage unit 41. More specifically, the element temperature TE is calculated based on the equation (2).
 なおここでは、温度推定部40はマイクロコンピュータと記憶装置を含んで構成される。マイクロコンピュータは、プログラムに記述された各処理ステップ(換言すれば手順)を実行する。上記記憶装置は、例えばROM(Read Only Memory)、RAM(Random Access Memory)、書き換え可能な不揮発性メモリ(EPROM(Erasable Programmable ROM)等)、ハードディスク装置などの各種記憶装置の1つ又は複数で構成可能である。当該記憶装置は、各種の情報やデータ等を格納し、またマイクロコンピュータが実行するプログラムを格納し、また、プログラムを実行するための作業領域を提供する。なお、マイクロコンピュータは、プログラムに記述された各処理ステップに対応する各種手段として機能するとも把握でき、あるいは、各処理ステップに対応する各種機能を実現するとも把握できる。また、温度推定部40はこれに限らず、温度推定部40によって実行される各種手順、あるいは実現される各種手段又は各種機能の一部又は全部をハードウェアで実現しても構わない。 In this case, the temperature estimation unit 40 includes a microcomputer and a storage device. The microcomputer executes each processing step (in other words, a procedure) described in the program. The storage device is composed of one or more of various storage devices such as a ROM (Read Only Memory), a RAM (Random Access Memory), a rewritable nonvolatile memory (EPROM (Erasable Programmable ROM), etc.), and a hard disk device, for example. Is possible. The storage device stores various information, data, and the like, stores a program executed by the microcomputer, and provides a work area for executing the program. It can be understood that the microcomputer functions as various means corresponding to each processing step described in the program, or can realize that various functions corresponding to each processing step are realized. In addition, the temperature estimation unit 40 is not limited to this, and various procedures executed by the temperature estimation unit 40 or various means or various functions implemented may be realized by hardware.
 以上のように、温度推定部40は2つの温度検出部31,32が検出する温度TH1,TH2を用いて半導体素子10の素子温度TEを推定する。これにより、一つの温度TH1のみを用いて素子温度TEを推定する場合に比して、素子温度TEの推定精度を向上できる。この点について次に詳述する。素子温度TEは温度TH1と温度差ΔT1との和である。かかる温度差ΔT1は半導体素子10の発熱量に依存するものであって、周囲の温度には依存しない。一方、温度TH1は半導体素子10の発熱量に応じて上昇するものの、周囲の温度によっても変動する。よって、温度差ΔT1と温度TH1との間の関係は、任意の周囲温度に対して一意には決まらない。したがって温度TH1のみから温度差ΔT1を推定することは難しく、ひいては素子温度TE1を推定することは難しい。 As described above, the temperature estimation unit 40 estimates the element temperature TE of the semiconductor element 10 using the temperatures TH1 and TH2 detected by the two temperature detection units 31 and 32. Thereby, the estimation accuracy of the element temperature TE can be improved as compared with the case where the element temperature TE is estimated using only one temperature TH1. This point will be described in detail below. The element temperature TE is the sum of the temperature TH1 and the temperature difference ΔT1. The temperature difference ΔT1 depends on the amount of heat generated by the semiconductor element 10 and does not depend on the ambient temperature. On the other hand, the temperature TH1 increases according to the amount of heat generated by the semiconductor element 10, but also varies depending on the ambient temperature. Therefore, the relationship between the temperature difference ΔT1 and the temperature TH1 is not uniquely determined for any ambient temperature. Therefore, it is difficult to estimate the temperature difference ΔT1 from only the temperature TH1, and it is difficult to estimate the element temperature TE1.
 一方で温度差ΔT1,ΔT2はそれぞれ理想的には周囲の温度に依存せずに半導体素子10の発熱量に依存する。なぜなら、周囲の温度は素子温度TEおよび温度TH1,TH2に共通して影響するところ、その差を採れば周囲の温度の分がキャンセルされるからである。よって、温度差ΔT1と温度差ΔT2との間の関係は理想的には周囲の温度に依存せずに当該発熱量に依存することとなる。よって、温度差ΔT2(=TH1-TH2)から温度差ΔT1を算出することができ、ひいては素子温度TEを算出することができる。 On the other hand, the temperature differences ΔT1 and ΔT2 ideally depend on the amount of heat generated by the semiconductor element 10 without depending on the ambient temperature. This is because the ambient temperature affects the element temperature TE and the temperatures TH1 and TH2 in common, and if the difference is taken, the ambient temperature is canceled. Therefore, the relationship between the temperature difference ΔT1 and the temperature difference ΔT2 ideally depends on the heat generation amount without depending on the ambient temperature. Therefore, the temperature difference ΔT1 can be calculated from the temperature difference ΔT2 (= TH1−TH2), and thus the element temperature TE can be calculated.
 以上のように、周囲の温度変動の影響を抑制して素子温度TEを推定することができ、素子温度TEの推定精度を向上できるのである。 As described above, the element temperature TE can be estimated while suppressing the influence of ambient temperature fluctuations, and the estimation accuracy of the element temperature TE can be improved.
 また上記関係が比例関係となるように、温度検出部31,32を設けてもよい。かかる第1位置及び第2位置も例えば予め実験またはシミュレーションによって決定することができる。例えば実際の製品の一つに対して半導体素子10の素子温度TEを直接に測定する温度検出部を設け、半導体モジュール1への負荷を変えながら、さらには周囲の温度を変えながら、温度TH1,TH2を検出すればよい。そして、温度差ΔT1,ΔT2の関係が周囲の温度に依らずに比例関係となる第1位置及び第2位置を特定する。 Further, the temperature detectors 31 and 32 may be provided so that the above relationship is a proportional relationship. The first position and the second position can also be determined in advance by experiment or simulation, for example. For example, for one of the actual products, a temperature detection unit that directly measures the element temperature TE of the semiconductor element 10 is provided, and the temperature TH1, while changing the ambient temperature while changing the load on the semiconductor module 1 What is necessary is just to detect TH2. Then, the first position and the second position at which the relationship between the temperature differences ΔT1 and ΔT2 becomes a proportional relationship regardless of the ambient temperature are specified.
 温度差ΔT1,ΔT2の比例関係での比例係数kも当該実験によって算出できる。かかる比例係数kは予め記憶部41に記録される。 The proportionality coefficient k in the proportional relationship between the temperature differences ΔT1 and ΔT2 can also be calculated by the experiment. The proportional coefficient k is recorded in the storage unit 41 in advance.
 このように温度差ΔT1(=TE-TH1)と温度差ΔT2(=TH1-TH2)とが比例すれば以下の式が成立する。 If the temperature difference ΔT1 (= TE−TH1) and the temperature difference ΔT2 (= TH1−TH2) are proportional to each other, the following equation is established.
 TE=TH1+k・(TH1-TH2)   ・・・(3) TE = TH1 + k · (TH1-TH2) (3)
 この場合、温度推定部40は、温度検出部31,32によって検出される温度TH1,TH2と、記憶部41に記録された比例係数kとに基づいて素子温度TEを算出する。より詳細には式(3)に基づいて素子温度TEを算出する。 In this case, the temperature estimation unit 40 calculates the element temperature TE based on the temperatures TH1 and TH2 detected by the temperature detection units 31 and 32 and the proportionality coefficient k recorded in the storage unit 41. More specifically, the element temperature TE is calculated based on the formula (3).
 これによれば演算処理を簡易にすることができ、また記憶部41の記憶容量を低減できる。本実施の形態では温度差ΔT1と温度差ΔT2とは比例する。 According to this, the arithmetic processing can be simplified, and the storage capacity of the storage unit 41 can be reduced. In the present embodiment, the temperature difference ΔT1 and the temperature difference ΔT2 are proportional.
 また図1では、温度検出部31は端子11の温度を検出する。端子11は金属導体を介して半導体素子10に接続されるところ、金属導体は熱伝導率が高いので、端子11は半導体素子10と熱的に近い。よって、素子温度TEと温度TH1との温度差ΔT1が小さい。したがって、端子11よりも半導体モジュール1から離れた位置で温度TH1を検出する場合に比して、素子温度TEの推定精度を向上することができる。 Further, in FIG. 1, the temperature detection unit 31 detects the temperature of the terminal 11. When the terminal 11 is connected to the semiconductor element 10 via a metal conductor, the metal conductor has a high thermal conductivity, so that the terminal 11 is thermally close to the semiconductor element 10. Therefore, the temperature difference ΔT1 between the element temperature TE and the temperature TH1 is small. Therefore, the estimation accuracy of the element temperature TE can be improved as compared with the case where the temperature TH1 is detected at a position farther from the semiconductor module 1 than the terminal 11.
 また温度検出部32は基板2に設けられる。よって温度検出部32を容易に取り付けやすい。例えば温度検出抵抗322を基板2に対して容易に取り付けることができる。 Further, the temperature detection unit 32 is provided on the substrate 2. Therefore, the temperature detection unit 32 can be easily attached. For example, the temperature detection resistor 322 can be easily attached to the substrate 2.
 図4に例示する温度推定装置4は、温度検出部31の位置という点で図1の温度推定装置4と相違する。図4では温度検出部31は半導体モジュール1の表面に設けられる。この場合であっても、温度検出部31は半導体素子10に近い位置の温度を検出するので、半導体モジュール1から熱的に遠く離れた位置で検出する場合に比して、素子温度TEの推定精度を向上することができる。 4 is different from the temperature estimation device 4 of FIG. 1 in that the temperature detection unit 4 is positioned. In FIG. 4, the temperature detection unit 31 is provided on the surface of the semiconductor module 1. Even in this case, since the temperature detection unit 31 detects the temperature near the semiconductor element 10, the element temperature TE is estimated as compared with the case where the temperature detection unit 31 detects the temperature at a position far away from the semiconductor module 1. Accuracy can be improved.
 図5に例示する温度推定装置4は、温度検出部32の位置という点で図4の温度推定装置4と相違する。図5では温度検出部32は冷却部5の温度を検出する。これによれば、半導体モジュール1からの熱が主として伝達される経路(冷却部5)に温度検出部32が設けられることとなる。よって、半導体モジュール1からの熱が副次的に伝達される基板2上に温度検出部32が設けられる図4の温度推定装置4に比して、素子温度TEの推定精度を向上することができる。 5 is different from the temperature estimation device 4 in FIG. 4 in that the temperature detection unit 4 is positioned. In FIG. 5, the temperature detection unit 32 detects the temperature of the cooling unit 5. According to this, the temperature detection part 32 will be provided in the path | route (cooling part 5) in which the heat from the semiconductor module 1 is mainly transmitted. Therefore, the estimation accuracy of the element temperature TE can be improved as compared with the temperature estimation device 4 of FIG. 4 in which the temperature detection unit 32 is provided on the substrate 2 to which heat from the semiconductor module 1 is transmitted secondarily. it can.
 図6に例示する温度推定装置4は、温度検出部32の位置という点で図4の温度推定装置4と相違する。温度検出部32は冷却部5からの熱を受け取る熱媒体(図6の例示では空気)の温度を検出する。なお図6の例示に拘わらず、熱媒体は水であってもよい。また例えば冷媒回路が設けられる電気機器に本半導体装置が設けられる場合、冷媒回路を流れる冷媒を冷却部5の熱媒体として採用してもよい。半導体モジュール1からの熱は主として冷却部5を介して熱媒体へと伝達される。よって半導体モジュール1からの熱が副次的に伝達される基板2上に温度検出部32が設けられる図4の温度推定装置4に比して、素子温度TEの推定精度を向上することができる。 6 is different from the temperature estimation device 4 in FIG. 4 in that the temperature detection unit 4 is positioned. The temperature detection unit 32 detects the temperature of a heat medium (air in the example of FIG. 6) that receives heat from the cooling unit 5. Note that the heat medium may be water regardless of the illustration of FIG. For example, when this semiconductor device is provided in an electric device provided with a refrigerant circuit, the refrigerant flowing through the refrigerant circuit may be employed as the heat medium of the cooling unit 5. Heat from the semiconductor module 1 is transmitted to the heat medium mainly through the cooling unit 5. Therefore, the estimation accuracy of the element temperature TE can be improved as compared with the temperature estimation device 4 of FIG. 4 in which the temperature detection unit 32 is provided on the substrate 2 to which heat from the semiconductor module 1 is transmitted secondarily. .
 図7に例示する温度推定装置4は、温度検出部31,32の位置という点で図1の温度推定装置と相違する。半導体モジュール1は半導体素子10を覆う樹脂部を有し、温度検出部31は当該樹脂部の内部に設けられる。温度検出部32は半導体モジュール1の表面に設けられる。この場合、温度検出部31,32のいずれもが半導体素子10に近い位置に設けられるので、温度検出部31,32のいずれもが基板2のうち半導体モジュール1から熱的に遠い位置に設けられる場合に比して、素子温度TEの推定精度を向上することができる。 7 is different from the temperature estimation apparatus of FIG. 1 in that the temperature detection units 31 and 32 are positioned. The semiconductor module 1 has a resin part that covers the semiconductor element 10, and the temperature detection part 31 is provided inside the resin part. The temperature detection unit 32 is provided on the surface of the semiconductor module 1. In this case, since both of the temperature detection units 31 and 32 are provided at positions close to the semiconductor element 10, both of the temperature detection units 31 and 32 are provided at positions far from the semiconductor module 1 in the substrate 2. Compared to the case, the estimation accuracy of the element temperature TE can be improved.
 なお本実施の形態では、温度検出部31が温度検出部32よりも半導体素子10に近い場合が示されている。言い換えれば、温度TH1が温度TH2よりも高い場合が示されている。ただし、これに限らず、温度TH1が温度TH2よりも低くてもよい。例えば図1,4~7の温度推定装置4において、温度検出部31,32の位置が逆になってもよい。この場合であっても、式(1),(3)を用いて素子温度TEを算出できる。ただし、式(3)において、比例係数kは負の値を採る。 In the present embodiment, the case where the temperature detection unit 31 is closer to the semiconductor element 10 than the temperature detection unit 32 is shown. In other words, the case where the temperature TH1 is higher than the temperature TH2 is shown. However, the present invention is not limited to this, and the temperature TH1 may be lower than the temperature TH2. For example, in the temperature estimation device 4 of FIGS. 1 and 4 to 7, the positions of the temperature detectors 31 and 32 may be reversed. Even in this case, the element temperature TE can be calculated using the equations (1) and (3). However, in equation (3), the proportionality coefficient k takes a negative value.
 上述のようにして推定された素子温度TEが予め定められた基準値Trefを超えたときに、半導体素子10が過熱状態であると判断する判断部が設けられてもよい。また半導体素子10が過熱状態であると判断したときに、半導体素子10へと流れる電流を低減すべく、半導体モジュール1(例えばスイッチング素子Q1~Q6)を制御したり、或いは半導体モジュール1への電源供給を遮断すればよい。これは、半導体モジュール1を制御する制御部などによって実現される。これにより、半導体素子10の素子温度TEを低減して過熱状態を回避することができる。 A determination unit may be provided that determines that the semiconductor element 10 is in an overheated state when the element temperature TE estimated as described above exceeds a predetermined reference value Tref. When it is determined that the semiconductor element 10 is in an overheated state, the semiconductor module 1 (for example, the switching elements Q1 to Q6) is controlled to reduce the current flowing to the semiconductor element 10, or the power supply to the semiconductor module 1 is used. What is necessary is just to cut off supply. This is realized by a control unit or the like that controls the semiconductor module 1. Thereby, the element temperature TE of the semiconductor element 10 can be reduced and an overheating state can be avoided.
 かかる制御方法によれば、次に詳述するように従来に比して半導体モジュール1の通常動作可能な温度範囲を向上できる。例えば温度TH1に予め定められた所定値を加えて素子温度TEを推定し、この素子温度TEが基準値Trefを超えたときに、半導体モジュール1へと流れる電流を低減(或いは遮断)する場合、推定された素子温度TEは予め高めに見積もられることになる。したがって、このような制御方法では、本来動作可能な領域でも過熱状態と判断されて電流を低減することになる。一方、本実施の形態では高い精度で素子温度TEを推定できるので、通常動作可能な温度範囲を向上できるのである。 According to such a control method, the temperature range in which the semiconductor module 1 can normally operate can be improved as compared with the conventional case as will be described in detail below. For example, when the element temperature TE is estimated by adding a predetermined value to the temperature TH1, and the current flowing to the semiconductor module 1 is reduced (or cut off) when the element temperature TE exceeds the reference value Tref, The estimated element temperature TE is estimated to be higher in advance. Therefore, in such a control method, it is determined that an overheated state is present even in an originally operable region, and the current is reduced. On the other hand, since the element temperature TE can be estimated with high accuracy in this embodiment, the temperature range in which normal operation can be performed can be improved.
 なお第1位置及び第2位置は、図1,4~7のように、半導体モジュール1からの複数の伝熱経路(破線矢印及び一点差線矢印)のうち一つの伝熱経路上に設けられることが望ましい。第1位置及び第2位置が異なる伝熱経路に設けられた状況において、一方の伝熱経路における周囲温度が他方の伝熱経路における周囲温度とは異なるように変化した場合、温度差ΔT1,ΔT2の関係が変化しえる。これに対して、同一伝熱経路に第1位置および第2位置が設けられれば当該関係の変化の影響を受けないので推定温度の精度を向上できる。 The first position and the second position are provided on one heat transfer path among a plurality of heat transfer paths from the semiconductor module 1 (broken line arrows and one-dotted line arrows) as shown in FIGS. It is desirable. In a situation where the first position and the second position are provided in different heat transfer paths, if the ambient temperature in one heat transfer path changes to be different from the ambient temperature in the other heat transfer path, the temperature difference ΔT1, ΔT2 The relationship can change. On the other hand, if the first position and the second position are provided in the same heat transfer path, it is not affected by the change in the relationship, so that the accuracy of the estimated temperature can be improved.
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that countless variations that are not illustrated can be envisaged without departing from the scope of the present invention.

Claims (7)

  1.  半導体モジュール(1)に収納される半導体素子(10,Q1~Q6)の素子温度を推定する装置であって、
     前記半導体素子から離れた第1位置に設けられる第1温度検出部(31)と、
     前記第1位置とは異なる第2位置に設けられる第2温度検出部(32)と、
     前記素子温度と前記第1位置の第1温度(TH1)との間の第1温度差と、前記第1温度と前記第2位置の第2温度(TH2)との間の第2温度差との関係が予め記録された記憶部(41)と、
     前記第1温度検出部が検出する前記第1温度と、前記第2温度検出部が検出する前記第2温度と、前記関係とに基づいて、前記素子温度を推定する温度推定部(40)と
    を備える、温度推定装置。
    An apparatus for estimating an element temperature of a semiconductor element (10, Q1 to Q6) housed in a semiconductor module (1),
    A first temperature detector (31) provided at a first position away from the semiconductor element;
    A second temperature detector (32) provided at a second position different from the first position;
    A first temperature difference between the element temperature and a first temperature (TH1) at the first position; and a second temperature difference between the first temperature and a second temperature (TH2) at the second position. A storage unit (41) in which the relationship of
    A temperature estimation unit (40) for estimating the element temperature based on the first temperature detected by the first temperature detection unit, the second temperature detected by the second temperature detection unit, and the relationship; A temperature estimation device.
  2.  前記半導体モジュール(1)は前記半導体素子(10,Q1~Q6)と金属導体を介して接続される端子(11)を有し、
     前記第1温度検出部(31)は前記端子の温度または前記半導体モジュールの表面温度を検出する、請求項1に記載の温度推定装置。
    The semiconductor module (1) has a terminal (11) connected to the semiconductor element (10, Q1 to Q6) through a metal conductor,
    The temperature estimation device according to claim 1, wherein the first temperature detection unit (31) detects a temperature of the terminal or a surface temperature of the semiconductor module.
  3.  前記半導体モジュール(1)は基板(2)に設けられ、
     前記第2温度検出部(32)は前記基板に設けられて前記基板の温度を検出する、請求項1または2に記載の温度推定装置。
    The semiconductor module (1) is provided on a substrate (2),
    The temperature estimation device according to claim 1 or 2, wherein the second temperature detection unit (32) is provided on the substrate and detects the temperature of the substrate.
  4.  前記半導体モジュール(1)を冷却する冷却部(5)を更に有し、
     前記第2温度検出部(32)は前記冷却部の温度を検出する、請求項1または2に記載の温度推定装置。
    A cooling unit (5) for cooling the semiconductor module (1);
    The temperature estimation device according to claim 1 or 2, wherein the second temperature detection unit (32) detects the temperature of the cooling unit.
  5.  前記半導体モジュール(1)からの熱を所定の熱媒体へと伝達する冷却部(5)を有し、
     前記第2温度検出部(32)は前記熱媒体の温度を検出する、請求項1または2に記載の温度推定装置。
    A cooling section (5) for transferring heat from the semiconductor module (1) to a predetermined heat medium;
    The temperature estimation device according to claim 1 or 2, wherein the second temperature detection unit (32) detects the temperature of the heat medium.
  6.  半導体モジュール(1)は前記半導体素子(10,Q1~Q6)を覆う樹脂部を備え、
     前記第1温度検出部(31)は前記樹脂部の内部の温度を検出する、請求項1または2に記載の温度推定装置。
    The semiconductor module (1) includes a resin portion that covers the semiconductor elements (10, Q1 to Q6),
    The temperature estimation device according to claim 1 or 2, wherein the first temperature detection unit (31) detects a temperature inside the resin unit.
  7.  請求項1または2に記載の温度推定装置と、
     前記半導体モジュール(1)と
    を備える、半導体装置。
    The temperature estimation device according to claim 1 or 2,
    A semiconductor device comprising the semiconductor module (1).
PCT/JP2013/083227 2013-02-21 2013-12-11 Temperature estimation device and semiconductor device WO2014129052A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-031877 2013-02-21
JP2013031877A JP2014163679A (en) 2013-02-21 2013-02-21 Temperature estimation device and semiconductor device

Publications (1)

Publication Number Publication Date
WO2014129052A1 true WO2014129052A1 (en) 2014-08-28

Family

ID=51390865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083227 WO2014129052A1 (en) 2013-02-21 2013-12-11 Temperature estimation device and semiconductor device

Country Status (2)

Country Link
JP (1) JP2014163679A (en)
WO (1) WO2014129052A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039342A1 (en) * 2014-09-09 2016-03-17 富士電機株式会社 Semiconductor module

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6402567B2 (en) * 2014-10-03 2018-10-10 セイコーエプソン株式会社 Circuit device and electronic device
JP6569286B2 (en) * 2015-04-28 2019-09-04 株式会社デンソー Battery temperature estimation device
JP6569447B2 (en) * 2015-10-07 2019-09-04 株式会社デンソー Electric motor control device
JP2018198533A (en) * 2018-09-11 2018-12-13 セイコーエプソン株式会社 Circuit device and electronic apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03176623A (en) * 1989-12-05 1991-07-31 Anritsu Corp Temperature controller for semiconductor element and temperature sensor used for the same
JPH09211266A (en) * 1996-01-30 1997-08-15 Hitachi Ltd Semiconductor device and optical communication module
JP2003021550A (en) * 2001-07-06 2003-01-24 Yamatake Corp Temperature compensation device of torque tube type meter
JP2006032369A (en) * 2004-07-12 2006-02-02 Toshiba Corp Power conversion apparatus
JP2008305984A (en) * 2007-06-07 2008-12-18 Toshiba Corp Semiconductor device
JP4639950B2 (en) * 2005-05-19 2011-02-23 パナソニック株式会社 Inverter device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03176623A (en) * 1989-12-05 1991-07-31 Anritsu Corp Temperature controller for semiconductor element and temperature sensor used for the same
JPH09211266A (en) * 1996-01-30 1997-08-15 Hitachi Ltd Semiconductor device and optical communication module
JP2003021550A (en) * 2001-07-06 2003-01-24 Yamatake Corp Temperature compensation device of torque tube type meter
JP2006032369A (en) * 2004-07-12 2006-02-02 Toshiba Corp Power conversion apparatus
JP4639950B2 (en) * 2005-05-19 2011-02-23 パナソニック株式会社 Inverter device
JP2008305984A (en) * 2007-06-07 2008-12-18 Toshiba Corp Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039342A1 (en) * 2014-09-09 2016-03-17 富士電機株式会社 Semiconductor module
CN106063109A (en) * 2014-09-09 2016-10-26 富士电机株式会社 Semiconductor module
JPWO2016039342A1 (en) * 2014-09-09 2017-04-27 富士電機株式会社 Semiconductor module
US10020297B2 (en) 2014-09-09 2018-07-10 Fuji Electric Co., Ltd. Semiconductor module

Also Published As

Publication number Publication date
JP2014163679A (en) 2014-09-08

Similar Documents

Publication Publication Date Title
WO2014129052A1 (en) Temperature estimation device and semiconductor device
US9496818B2 (en) Motor driving apparatus with abnormality detection function
US10349562B2 (en) Semiconductor power converter
US9995636B2 (en) Temperature sensing system for switching device
US20150063417A1 (en) Temperature sensing circuit for igbt module
KR100685000B1 (en) Thermal Sensing Apparatus And Computer Comprising The Same
MXPA04005093A (en) Vehicle controller.
JP6299368B2 (en) Semiconductor device temperature estimation device
JP5920492B2 (en) Temperature estimation device and semiconductor device
JP6999860B2 (en) Power converter
JP7067205B2 (en) Semiconductor device
JP6653122B2 (en) Electric compressor, control device and monitoring method
JP2017183530A (en) Semiconductor device
JP6847158B2 (en) Power converter
JP4946278B2 (en) Power converter
JP6897104B2 (en) Thermocouple temperature measuring device
JP5571447B2 (en) Power supply with electronic thermal protection
JP2000228882A (en) Protective device for variable speed inverter
TWI721045B (en) Semiconductor component comprising a substrate and a first temperature measuring element, and method for determining a current flowing through a semiconductor component, and control unit for a vehicle
CN106482859B (en) Method and device for determining the temperature of a plurality of switching units of a switching device of a control unit, and switching device of a control unit
JP2011133420A (en) Temperature detection method for switching element
WO2018229849A1 (en) Temperature protection device of semiconductor element
JP2014166021A (en) Semiconductor device
JP2011087401A (en) Temperature detector of electronic component and drive control unit of on-vehicle power element
CN106644150B (en) Method and device for determining the temperature of at least one first and second switching unit of a control unit, and control unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875976

Country of ref document: EP

Kind code of ref document: A1